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ABSTRACT 

FORESTED WETLANDS FOR WATER RESOURCE 
MANAGEMENT IN SOUTHERN ILLINOIS 

1 
I 
1 
) A 30 ha cypress - tupelo (Taxodium distichum - Nyssa aquatics) 
, floodplain swamp in Southern Illinois was studied for its hydro- 

logic, biogeochemical and ecological characteristics. The hydro- 

logy, water chemistry, sediment dynamics and ecosystem product- 

ivity were described for the swamp and interactions with the ad- 

jacent Cache River were emphasized. A representative flood in 

the spring spilled water and sediments from the river to the swamp, 

temporarily reversing the normal flow of water from the swamp to 

the river. The annual hydrology budget for the swamp showed inflows 

of 7'4.4 cm throughfall, 63.9 cm runoff, and 21.9 cm groundwater; 

the outflows were 7'2.8 cm evapotranspiration, 54.9 cm surface out- 

flow, and 21.0 cm groundwater, the latter two draining to the 

river. Loading rates for several chemical parameters were calcul- 

ated from the swamp to the river and water chemistry of the swamp 

and river was contrasted. Primary productivity measurements 

showed high rates when the floating duckweed was included; cypress 

productivity was shown historically to be related to amount of 

flooding. A phosphorus budget was determined for the swamp and 

this indicated that the flooding river contributed over 10 times 

the phosphorus to the swamp as was discharged the rest of the year. 

Mitsch, W. J., C. L. Dorge, and J. R. Wiemhoff 

FORESTED WETLANDS FOR WATER RESOURCE MANAGEMENT IN SOUTHERN 
ILLINOIS 

Final report to the Water Resources Center, University of 
Illinois, Urbana, 197'7'. 

KEYWORDS: wetlands / cypress swamp / phosphorus cycle / 
Taxodium / hydrology budget / sedimentation rates / flooding 
river / floodplain / water quality / swamps / primary produc- 
tivity / ecosystem / Southern Illinois / non-point source 
loading / duckweed / nutrients 



iii 

TABLE OF CONTENTS 

Page 

ABSTMCT............0........................................... ii 

EXECUTIVE SUMRY. . . . . . . . . . . . . . . . .  ............................ 1 

INTRODUCTION.........................................e........ 4 

PHASE 1 - HYDROLOGY............................................ 18 

Heron Pond Annual Water Budget - J. Wiemhoff 18 

The Role o f  Heron Pond and Other  Wetlands i n  Southern  
I l l i n o i s  Water Management - J. Wiemhoff 68 

PHASE 2 - WATER CHEMISTRY...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 1 

Heron Pond Water Chemistry - C. Dorge 91 

Chemical I n t e r a c t i o n s  Between Heron Pond and t h e  Cache 
River  - C. Dorge 120 

Phosphorus Dynamics i n  a Swamp Microcosm - C. Dorge 135 

PHASE 3 - ECOSYSTEM STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * .  146 

Sedimenta t ion Rates  and Sediment Ana lys i s  i n  Heron Pond - 
C. Dorge and W. Mitsch 146 

N e t  Primary P r o d u c t i v i t y  and Biomass o f  Vege ta t ion  i n  
Heron Pond - C. Dorge and W. Mitsch 164 

R e l a t i o n s h i p s  o f  Flood Volume t o  Cypress Growth - M. Hickey 
and C. Dorge 190 

PHASE 4 - SYSTEMS ANALYSIS...-.... -...*..... ....*..**.....*.-.. 198 

A Phosphorus Budget f o r  Heron Pond - C. Dorge 198 

Modell ing o f  t he 'He ron  Pond Ecosystem - H. Ogawa 218 

A Hydrology Model f o r  Heron Pond - J. Wiemhof f 223 

Energy Conservat ion through I n t e r f a c e  Ecosystems - 
W. Mitsch 

APPENDIX A..-.-........**......................*.* 249 



EXECUTIVE SUMMARY 

Forested wetlands are often found in close proximity to 

rivers, especially in the Southeastern Coastal Plain and in the 

Lower Mississippi River Basin as far north as Illinois and 

Indiana. The Cache River in Southern Illinois was found-to 

2 have 4770 ha of forested wetlands in its 1912 km drainage 

basin. The goal of this study was to describe the hydrologic, 

biogeochemical and ecological characteristics of a forested 

swamp in Southern Illinois, with particular attention paid to 

the interactions of the swamp with its adjacent river. It was 

also a goal of this study to demonstrate if these swamps are 

performing natural services that would otherwise cost man 

fossil fuel energy to achieve. 

This study was conducted at Heron Pond, a 30 ha cypress - 
tupelo (Taxodium distichum - Nyssa aquatics) floodplain swamp 
adjacent to the Cache River. Heron Pond is separated from the 

river by a natural levee and is normally 2 - 3 meters above the 
river elevation. A seasonal flood in late March of the study 

period passed 16 x lo6 m3 of highly sedimented flood water over the 

swamp. An annual hydrology budget for Heron Pond showed that 

the inflows were 74.4 cm throughfall, 63.9 cm runoff, and 21.9 

cm groundwater while the outflows were 72.8 cm evapotranspira- 

tion, 54.9 cm surface outflow, and 21.0 cm groundwater; the 

latter two draining primarily into the river. In March, in- 

flows were 3.6 times greater than outflows while in June, out- 

flows were 1.9 times greater than inflows. ~vapotranspiration 

experiments in June showed that approximately 57 percent was 



due to duckweed (Azolla mexicana -. and Spriodela polyrhiza). An 

open surface without tree shading was shown to evaporate 14 

percent more. Analysis of the flood data showed that the flood- 

plain swamps aided in floodwater storage and a reduction in peak 

discharge. 

Water chemistry data indicates that the swamp has no ap- 

parent nutrient deficiency although its acidic and reduced con- 

ditions may reduce availability. The following loadings to 

2 the river from the swamp in gm/m -yr were calculated: P-0.183; 

N-1.03; total solids - 282; S04-s - 5.1; K+ - 2.33; Mg++ - 
+ 

1.88; Na - 2.06; ~ a + +  - 4.74. Export levels were similar to 

or lower than those from undisturbed forests for several para- 

meters and were far less than disturbed ecosystems. Water con- 

centrations were lower in the swamp discharge than in the river 

itself for: alkalinity, hardness, conductivity, total dissolved 
- - - - + ++ + ++ 

solids, SO4 , NO3 , NO2 , K , Mg , Na , and Ca . Discharges 
- 

from the swamp were higher than the river in COD, NH3 , and TKN. . 

Although phosphorus values were similar, the river contained con- 

siderably more insoluble phosphorus during the flood season. 

Sedimentation traps, litter traps, and tree growth analysis 

2 
showed the ecosystem net primary productivity to be 1963 gm/m -yr, 

56% of which is associated with the duckweed. Tree productivity 

is considerably less than that found in a Louisiana cypress - 
tupelo swamp; the primary reason is probably the increased water 

levels in Heron Pond created by a beaver dam 10 years ago. The 

flood was estimated to have contributed 447 gm/m2 of sediment to 

the swamp, or 8.4% of the total measured during the year. Tree 

ring analysis showed a significant relationship between cypress 



tree growth and flooding of the swamp, suggesting that the highly 

nutritive sediments increase swamp productivity. 

A phosphorus budget was constructed with the above data and 

with phosphorus analysis of water and ecological materials. 

2 Based on a square meter of swamp surface, 729 g-P/m -yr dis- 

charges past the swamp in the river. Of that, approximately 

2 80 g-P/m -yr passed over the swamp during the flood and 3.6 

2 2 g-P/m -yr of that was sedimented out. Approximately 0.87 g-P/m -yr 

2 is taken up by the trees while about 3.3 g-P/m -yr is cycled due 

to all understory productivity in the swamp, primarily from the 

floating duckweed. Rainfall, runoff and groundwater contributed 

2 2 approximately 0.25 g-P/m -yr while 0.34 g-P/m -yr discharged 

from the swamp during the non-flooding times. Thus, the swamp 

took in 11.3 times the amount of phosphorus it discharged during 

the study period. 

Preliminary calculations showed that it would cost the equiva- 

lent of $18,50O/year in dollar terms or 415 barrels of oil equiva- 

lent/year in energy terms to perform through technological alter- 

natives the phosphorus removal and flood control performed by the 

swamp during the study year. 



INTRODUCTION 

by 

William J. Mitsch 

Wetlands have come under increased study in recent years. 

This renewed interest is due to two major factors. First, a 

significant number of natural wetlands throughout the nation 

have been drained due to increased land requirements, especially 

for agricultural fields and urban centers. It was estimated in 

1968 that only 55 percent of the original 51 million hectares 

(127 million acres) of wetlands in the United States remained 

and that this was disappearing at a rate of one percent per year 

(Niering, 1968). A second factor involves the importance of 

these areas to man. Benefits include wildlife conservation 

(Shaw and Fredine, 1956), water management (~achnowski - Stokes, 
1935; Goodwin and Niering, 1974; Odum et al., 1974), sediment -- 
removal (Wharton, 1970), wastewater recycling (Odum -- et al., 1974, 

1975, 1976, 1977; Brown et -- al., 1974; Grant and Patrick, 1970; 

Kadlec -- et al., 1974; Mitsch, 1975) and background nutrient control 

(Kitchens et al., 1974). -- 

Southern Illinois Wetlands 

The southern-most counties of Illinois have a few scattered 

remnants of forested wetlands that were estimated to originally 



cover  100,000 h e c t a r e s  (Anderson and White,  1970) .  Th i s  a r e a  

i s  i n  t h e  n o r t h e r n  extreme o f  t h e  bottomland f o r e s t s  o f  t h e  

Sou thea s t e rn  C o a s t a l  P l a i n  and t h e  lower M i s s i s s i p p i  b a s i n .  

Bald c y p r e s s  (Taxodium d i s t i chum)  and water t u p e l o  (Nyssa a q u a t i c a )  

dominate t h o s e  swamps which have s t a n d i n g  w a t e r  most o f  t h e  y e a r .  

The r i v e r i n e  swamps a r e  u s u a l l y  h y d r o l o g i c a l l y  connected  t o  near -  

by s t r e ams  and r i v e r s  f o r  a t  l e a s t  p a r t  o f  t h e  yea r .  

The Cache River  watershed (F ig .  1) cove r s  1912 squa re  k i l o -  

meters o f  sou the rn  I l l i n o i s  i n  Union, Johnson,  Alexander,  P u l a s k i ,  

Massac, and Pope c o u n t i e s .  Analyses o f  a e r i a l  photographs  and 

t opog raph i c  maps of  t h e  watershed showed 4770 ha o f  f o r e s t e d  

we t lands  w i t h i n  t h e  d r a inage  b a s i n .  While t h i s  i s  one o f  t h e  

main we t land  a r e a s  i n  sou t he rn  I l l i n o i s ,  it comes c o n s i d e r a b l y  

s h o r t  o f  t h e  100,000 ha  e s t i m a t e  g iven  above; many of  t h e  former 

we t l ands  i n  t h i s  watershed have been d r a i n e d  f o r  u se  a s  a g r i c u l t u r a l  

l a n d  a f t e r  logg ing .  

The Cache River  o r i g i n a t e s  i n  t h e  Shawneetown Ridge,  a n  east- 

w e s t  escarpment  o f  t h e  Pennsylvanian  p e r i o d  (Voigt  and Mohlenbrock, 

1964 ) .  Much o f  t h e  Cache River  i t s e l f  f lows i n  an  abandoned channe l  

o f  t h e  Ohio River .  The P o s t  Creek c u t o f f ,  c o n s t r u c t e d  i n  t h e  1 9 1 0 ' ~ ~  

c r e a t e s  a s h o r t - c i r c u i t  f o r  t h e  Cache River  t o  t h e  Ohio River  (see 

F ig .  l ) ,  d i v i d i n g  t h e  Cache Basin  i n t o  e s s e n t i a l l y  two d r a inage  a r e a s .  

A s  t h e  Cache River  r e aches  t h e  lower h a l f  o f  i t s  c o u r s e  o u t  of  t h e  

Shawnee H i l l s ,  t h e  l and  suddenly  f l a t t e n s  and d r a inage  c o n d i t i o n s  

change t o  s low f lowing  and meandering channe l s  and numerous we t lands  

c h a r a c t e r i s t i c  o f  t h e  C o a s t a l  P l a i n .  The lower Cache v a l l e y ,  i n  

f a c t ,  i s  inunda ted  by t h e  Ohio River  i t s e l f  on a n  ave rage  i n t e r v a l  

of  100 y e a r s  ( ~ o o d i n g ,  1971) . I t  i s  i n  t h i s  environment t h a t  t h i s  

s t u d y  was conducted.  
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Heron Pond 

Heron Pond, a 30 ha cypress - tupelo swamp in Johnson County 
and adjacent to the Cache River near Vienna, was used as the study 

site in this research. Fig. 2 shows the swamp and river location 

along with sampling locations discussed throughout this report. 

Heron Pond, so named because of its former function as a rookery 

for the Great Blue Heron, is presently a nature preserve maintained 

by the Illinois Department of Conservation. It is part of a much 

larger parcel of swamp land called the Little Black Slough, one of 

the largest tracts of wetlands ever purchased for conservation 

measures (Mharton, 1977). The site was chosen for study 

because of the relative seclusion and protection offered by the 

state preserve, because of the unique drainage conditions which 

facilitate outflow measurements, and because previous research had 

been conducted in this swamp. Anderson and White (1970) conducted 

a floristic study of the swamp; these investigators suggested a 

recent high mortality of tupelo around the swamp's edge to be'due 

to higher water levels caused by beavers. It has been estimated that 

the beavers entered the area in 1967 (Max Hutchison, personal 

communication). Some of the swamp had been logged in the past. 

Research Design 

This study was designed to be an ecosystem level look at the 

cypress-tupelo swamps of southern Illinois and to describe the 

importance of these swamps in local biogeochemical and hydrological 

cycles. Furthermore, quantification of potential benefits of 

forested wetlands to man in water resource management was a primary 

objection of the research. These benefits may include flood control, 

drought control, enhancement of water quality, and sediment retention. 



0 .5 1 
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Figure 2. Location of sampling stations in Heron Pond 



These objectives were pursued with one year of field and lab- 

oratory measurements of Heron Pond as a part of the Cache River 

floodplain; hydrologic, geochemical and ecological connections 

between the swamp and the river were described. 

Fig. 3 shows the typical relationship of a floodplain swamp 

and river in the Coastal Plain area of southern Illinois. South- 

ern Illinois is often described as having significant water 

shortage problems despite adequate annual precipitation (Illinois 

State Water Survey, 1975). This is due to a pronounced low flow 

period in the streams in late summer coupled with a minimal ground- 

water storage. During the flood season, however, water is more 

abundant than necessary. 

It has been shown that increased flooding of the Mississippi 

River can be explained by the increased use of channels and levee 

systems replacing the meandering river with its floodplain (Belt, 

1975). This study investigated the value of forested wetlands as 

natural reservoirs with significant floodwater storage in the wet 

season and slow water recharge in the dry season. The study was 

aided by a representative annual flood which occurred on March 29, 

1977 which contributed data on our knowledge of swamp - river 
interactions. 

Biogeochemical studies were designed around water, sediment, 

and vegetation analyses and measures of ecosystem structure and 

function. While output levels and swamp - river comparisons were 
determined for several chemical parameters, a complete biogeo- 

chemical cycle was determined only for phosphorus. A system 

diagram showing the major energy storages and flows is given in 

Fig. 4. A model of the phosphorus cycle in the swamp is shown 
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Figure 4 .  Systems diagram of energy flow i n  ~ e r o n  Pond 



in Fig. 5. Models such as these were used to design the sampling 

program. While the models are similar in appearance, Fig. 4 

shows that energy makes a one way trip through the system while 

phosphorus (Fig. 5) is cycled again and again from biotic to 

abiotic compartments. It is this system view which dominates 

this study and allows for a study of the parts to be brought 

together as a culmination of the research. 

Figures 6 through 10 show photographs of the Heron Pond 

study area and some of the research sites. The research results 

are presented for convenience in this report as individually 

authored papers under the following phases: 

Phase I Hydrology 

Phase I1 Water Chemistry 

Phase I11 Ecosystem Studies 

Phase IV Systems Analysis 
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PHASE 1 - HYDROLOGY 
Heron Pond Annual Water Budget 

BY 

John Wiemhoff 

INTRODUCTION 

This project investigated the hydrology of Heron Pond, a 

cypress - tupelo swamp bordering the Cache River in Southern 
Illinois, in an attempt to quantify its water management con- 

tribution. From the data generated in this study, it will be 

possible to extropolate to the entire wetland area of Southern 

Illinois to approximate the value of all southern Illinois wet- 

lands in providing less extreme annual flood - drought cycles. 
The Cache River is the outlet for the drainage from 720 

square miles of territory in Union, Johnson, Alexander, Pulaski, 

Massac, and Pope counties. Although many attempts have been 

made to drain all lands (prior to conservation of these wetlands), 

portions of the floodplain are periodically or continually flooded 

(Pickels and Leonard, 1921). 

Heron Pond is 5 miles south of Vienna in Johnson County. 

The site includes Heron Pond Nature Preserve, now owned and 

maintained in its natural state by the Illinois Department of 
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Survey, 1957). The region is bordered on three sides by the 

Mississippi, Ohio, and Wabash Rivers, and the highest mean 

rainfall within the state occurs there. This paradox is ex- 

plained by the fact that streamflow is highly variable in 

southern Illinois. This is due to limited groundwater contri- 

bution and high percentage of thunderstorm type rainfall. 

During the wet season, water is more abundant than necessary, 

and with the elimination of swamp storage and construction 3f 

channels and levee systems, large rivers as the Mississippi 

experience increased flooding. 

With this in mind, it was the goal of this portion of 

the study to determine the usefulness of forested wetlands to 

the hydrologic scheme by determining the water budget of a 

typical river cypress swamp, Heron Pond. 

Soils 

The old Ohio River valley or alluvial plain along the 

south line of Johnson county is characterized by alluvial 

terraces and recent floodplains of the Cache River and Bay 

Creek, (U.S.D.A., 1964). Except for terrace ridges, this 

area has been wet and very poorly drained until dredging, 

channel straightening, and construction of the Post Creek 

cut-off which runs south from the eastern end of the old 

Ohio River valley, across Pulaski county for about 5 miles 

to the Ohio River, short circuiting some of the normal flow 

of the Cache River away from the Mississippi River. Today, 

as is seen by such areas as Little Black Slough and Heron 

Pond, some of the floodplains are poorly drained, with 

cypress and tupelo swamps still present. 



The Karnak - Dupo Association soil, which includes Heron 
Pond, occurs mainly in the southwestern part of Johnson county 

in the lowlands along the Cache River, occupying less than 30% 

of the total area of the county. These soils are nearly level, 

poorly to imperfectly drained soils of the lower Cache River 

floodplain (Fig.11). These soils are derived largely from 

sediments left by the Ohio River when it flowed through this 

valley. Piopolis clay, the soil over which Heron Pond lies, 

is an acid silty clay loam to a depth of 40 inches or more. 

Piopolis silty clay loam (Fig.12, #420) is poorly drained 

with very impermeable characteristics (Table 1). 

Bonnie silt loam (Fig.13) making up the natural levee 

between Heron Pond and the Cache River, is a gray, poorly to 

very poorly drained soil type found in low lying bottomland 

areas that have had poor natural drainage. It is in this 

natural levee that well #1 was installed to determine ground- 

water flow from Heron ,Pond to the Cache River. 

Hosmer silt loam (Fig. 14), with a slope of 7 - 128, is adjacent 
northwesterly to the swamp, and is the site of well #2, used 

to determine flow into the swamp from adjacent higher land 

elevations. Hosmer silt loam is a light colored, moderately 

well drained upland soil type developed under forest. The 

parent material is usually more than 80 inches of loess. 

Hosmer occurs in western and southwestern Johnson county, as- 

sociated in this case with Zanesville soil. The upper part 

of the Hosmer profile has good moisture - storage capacity 
and is permeable to water and plant roots. However, the 

slightly to moderately well developed fragipan in the lower 



Figure 11. Soil Types Bordering Iieron Pond 
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Table 1 

Properties of the Soils Bordering Heron Pond* 

Soil type Depth to Seasonal 
and High Water, 
Number m 

Hydrological Characteristics 
Depth to Depth from Shrink- Available Range 
Bedrock, Surface, Swell water Permeability 
m cm Potential cm of depth cmlday 

Piopolis Silt 0- 1 
Clay Loam(420A) 

Bonnie Silt 0- 1 
Loam(l08A) 

Hosmer Silt 
Loam(2 14D) 

Weinbach Silt 1.5-3.0 
Loam(46 1A) 

> 3 0-107 High 0.53 3.0-12.2 
107-152 High 0.51 0.0-3.0 

3* 0-5 1 Moderate to Low 0.76 12.2-48.8 
1** 52-89 Moderate to Low 0.76 3.0-12.2 

90-152 Moderate to Low 0.76 12.2-48.8 

2-4* 0-30 Moderate to High 0.61 48.8-152.4 
1** 31-76 Moderate to High 0.69 12.2-48.8 

77-152 Moderate to High 0.71 3.0-12.2 
>I52 Moderate 12.2-48.8 

>3 0-30 Moderate to Low 0.66 12.2-48.8 
31-91 Moderate to High 0.66 3.0-12.2 
92-152 Moderate to High 0.56 12.2-152.4 

Zanesville Silt 0.5-1.0 0.5-1.0 0-30 ModeratetoLow . 0.61 48.8-152.4 
Loam(340E) 3 1-9 1 Moderate to High 0.69 12.2-48.8 

Wellston-Muskingum 0.2-0.5 0.2-0.5 0-30 Low 
Complex(339-425E) 

* Modified from Soil Survey: Johnson County, Illinois, University of Illinois (U.S.D.A., 1964) 
** Average 





Hosmer silt loam, 1.5- to 4-percent slopes 121 4B or WB), representative profile 

Dark grayish-brown (10YR 4/2) friable silt loam witli weak crumb structure. p E  5.0. 

Brownish-yellow to yellowish-brown (10YR 6/6-5/41 friable silt loam with platy structure. 
pH 4.7. 

k'ellowish-brown (10YR 5/4) firm, heavy silt loam to silty clay Ioarn with granular to  
fine 'subangular blocky structure. pII 4.7. 

Ycllomish-brown (10YR 5/4) to brown (7.5TR 5/4) firm silty clay Ioarn to  heavy silt 
loam with subnngul:ir blocky structure. Few dark brown (7.53% 4/4) clay coatings 
present. pH 4.8. 

Yelloivish-brown (10YH 5/4) to brown (7.5YR 5/11) firm silty clay loam with subangular 
blocky structural aggrcgiitrs which are coated xritii light gray (10YR 7/2). Some dark 
brosv~i (75YR 4/4) clay coatings present. pI1 4.7. 

Brown (7.5YR 5/4) to yellomish-brown (IOYR 5/4), mottled with gray (10YR 6/11 and 
yellowish-brown (10YIt 5/8), very firnr silty clay 1o:irn n7it.h coarse prisinntic breliking t o  
coarse blocky structure. Thick cl:lrk brown (7.5TR 4/4) cltry coatings present. p H  4.8. 

Sirriil:~r to but having w:ikrr, milch co:iwer blocky s t r~~c ture  and fewer clay coatings, 
and apprwicliing silt loam in tc~xturt~, especi:ilIy in the lower part. Large polygonal blocks 
bou~itlrd by gray streaks o f  cl.iy iuid silt :me present. ]>I1 4.9. 

Figure 14. Hosmer Silt Loam (U.S.D.A., 1964) 



p a r t  o f  t h e  p r o f i l e  a l l ows  r o o t  p e n e t r a t i o n  on ly  i n  t h e  g r ay  

s t r e a k s .  S ince  few r o o t s  p e n e t r a t e  t h e  f r a g i p a n ,  l i t t l e  

m o i s t u r e  i s  o b t a i n e d  i n  t h i s  zone. Hosmer i s  t h e  most ex- 

t e n s i v e  s o i l  t y p e  i n  Johnson coun ty ,  occupying more t h a n  30% 

of  t h e  county .  

Weinback s i l t  loam i s  v e r y  l e v e l  a s  i s  Bonnie s i l t  loam 

and is  a l s o  found on a  s h o r t  s t r e t c h  between Heron Pond and 

t h e  Cache. I t  i s  an  i m p e r f e c t l y  d r a i n e d  f o r e s t  s o i l  t y p e  

developed on t h e  Ohio River  t e r r a c e s  which border  what i s  now 

t h e  Cache River  and Bay Creek f l o o d  p l a i n s  i n  s o u t h e r n  Johnson 

county .  A f t e r  t h e  Ohio abandoned i t s  channe l ,  Cache River  and 

Bay Creek occup ied  t h e  v a l l e y .  But t h e  terrace sed iments  a r e  

l a r g e l y  t h o s e  l e f t  by t h e  Ohio. T h i s  a r e a  o f  Weinback i s  one 

o f  t h e  s h o r t  c i r c u i t s  t h e  Cache River  makes o u t  o f  i t s  channe l  

w h i l e  f lowing  th rough  Heron Pond d u r i n g  f l o o d s .  

~ a n e s v i l l e  s i l t  loam i s  12  - 18% i n  s l o p e  i n  t h i s  s t u d y  

a r e a  and b o r d e r s  t h e  sou thwes t  p a r t  o f  Heron Pond. The s u r f a c e  

o f  t h e  o v e r a l l  a r e a  e x h i b i t s  3  l a r g e  s e a s o n a l  runof f  r a v i n e s .  

Th i s  s o i l  i s  w e l l  d r a i n e d ,  l i g h t  i n  c o l o r ,  developed under 

f o r e s t  from abou t  40 i nches  o f  l o e s s  o v e r  sand s t o n e  r e s id ium 

o r  sand s t o n e  bedrock.  There i s  f r a g i p a n  development i n  t h e  

lower  p a r t  o f  t h e  p r o f i l e  o f  Z a n e s v i l l e ,  b u t  it is  n o t  a s  

s t r o n g l y  exp re s sed  nor  a s  t h i c k  a s  t h e  f r a g i p a n  o f  Hosmer. 

Wel l s ton  - Muskingum complex occupy s t e e p  s l o p e s  t o  t h e  

s o u t h  o f  Heron Pond. These s o i l s  a r e  w e l l  d r a i n e d  t o  exce s s -  

i v e l y  d r a ined .  Because sand s t o n e  o c c u r s  a t  sha l l ow  d e p t h s ,  

t h e y  a r e  somewhat poor f o r  tree growth. Also ,  s t o n e s  a r e  

f r e q u e n t .  Wel l s ton  may have a s  much a s  20 i n c h e s  o f  l o e s s  

p a r e n t  m a t e r i a l  i n  i t s  p r o f i l e .  



The soils of major concern in this study were 1) Piopolis 

Silt Clay Loam, over which Heron Pond sits and which, with its 

clay lens just beneath the upper sediments, was assumed to be 

impermeable (Table l), and 2) Bonnie Silt Loam, in which the 

groundwater loss from Heron Pond to the Cache River, was de- 

termined with permeability constants using Darcy's law. 



METHODS 

To determine the various flows and storages in the swamp 

hydrologic system, a water budget was computed on a daily 

basis. A summary diagram of the gaging devices used is given 

in Fig.15. A water budget is a quantitative statement of the 

balance between the total water gains and losses of the swamp 

for a given period of time. The budget considers all water 

entering, leaving, or stored within the swamp. The following 

equation describes the relationship between the significant 

water budget components: 

dS = TF + RO + Gin - ET - WEIR dt 

Where 

TF = Throughfall 

RO = Runoff 

*Gin = Net Groundwater input 

ET = Evapotranspiration 

WEIR = Stream flow out through channels 

* Net Groundwater input can be separated 
into groundwater flowing in and ground- 

water flowing out. 

The daily change in level of Heron Pond will be reflected by 

the daily flows into or out of the swamp by these various 

pathways. Since the most difficult component to measure in 

this equation is the net groundwater flow, the equation is 

rearranged to solve with that component being the only unknown: 





- 
Gin dS - TF + ET + WEIR - RO - dt 

Since the study area was not accessable on a daily basis, the 

only component that was measureable on a continuous basis was 

the water level. This component was graphed on a continuous 

basis by a Stevens Type F water level recorder (Fig.16). All 

other components were approximated by deriving correlations 

between them and parameters that are measured on a daily basis 

within the general study area. By interpolating on a daily 

basis from these correlations, the approximate component values 

are derived. 

The daily budget was calculated by a computer program which 

did the following: 

(1) Each subsequent daily water level as recorded at 

8:00 am was entered, and then substracted the previous 

days water level to yield the daily change, in cm. 

(2) Flows of throughfall, evapotranspiration, weirflow 

(surface outflow) and runoff were calculated on a 

daily basis by equations to yield their regression 

contributions to water level changes, also in cm. 

(3) The residual calculated in the equation is the net 

groundwater input into the swamp. 

For the water budget program to function in this manner, 

an assumption had to be made that changes in water level had 

no effect on the surface area of swamp, i.e. the sides of the 

swamp were vertical. This was shown to be a valid assumption. 
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P r e c i p i t a t i o n  and Throughfa l l  

R a i n f a l l  can be s e p a r a t e d  i n t o  s e v e r a l  components a f t e r  

it f a l l s  i n t o  t h e  swamp a r e a .  Water t h a t  i s  i n t e r c e p t e d  

and e v e n t u a l l y  evapora ted  from t h e  c y p r e s s  canopy i s  c a l l e d  

i n t e r c e p t i o n .  R a i n f a l l  i s  a lmos t  e n t i r e l y  i n t e r c e p t e d  when 

t h e  r a i n  i n i t i a l l y  s t a r t s  f a l l i n g .  This  a p p l i e s  e s p e c i a l l y  

t o  t h e  months when t h e  cyp re s s  canopy c o n t a i n s  need l e s .  A s  

more r a i n  f a l l s ,  t h e  canopy becomes s a t u r a t e d  and a s  much 

wa te r  d r i p s  from it a s  i s  f a l l i n g  on it, and a s  branches  and 

s t e m s  become s a t u r a t e d ,  t h e  swamp wa te r  l e v e l  i n c r e a s e s  a s  

f a s t  a s  t h e  r a i n  f a l l s .  A t  t h i s  p o i n t  t h r o u g h f a l l ,  t h e  wate r  

n o t  i n t e r c e p t e d  b u t  f a l l i n g  s t r a i g h t  th rough  t h e  canopy, and 

stemflow, t h e  wate r  d r i p p i n g  down t h e  b ranches  and t r u n k s ,  

a r e  s i g n i f i c a n t .  S ince  p r e v i o u s  s t u d i e s  o f  cyp re s s  swamps 

hydrology have determined t h a t  a t  i t s  ve ry  maximum stemflow 

i s  3 %  of  t h r o u g h f a l l  (Heimburg, 1976 ) ,  it has  been l e f t  o u t  

of  t h e  c a l c u l a t i o n s .  I t  would appear  a s  a  p a r t  o f  t h e  runof f  

d i s c u s s e d  below. 

To deve lop  a c a l i b r a t i o n  curve  t o  de te rmine  d a i l y  through- 

f a l l ~ v a l u e s ,  n i n e  r a i n  gauges were set  o u t  th roughout  t h e  swamp 

(Fig.  2)  and were c o l l e c t e d  e i t h e r  eve ry  month o r  eve ry  2 months. 

To p r e v e n t  evapo ra t i on  o f  wa t e r  i n  t h e  r a i n  gauges ,  a  sma l l  

amount o f  m ine ra l  o i l  was added. Also ,  d u r i n g  w i n t e r  months, 

0.5 i n c h  o f  e t h e l e n e  g l y c o l  was added t o  a l l  r a i n  gauges when 

reset,  and 0.5 s u b t r a c t e d  from t h e  t h r o u g h f a l l  r e a d i n g s  when 

c o l l e c t e d .  This  p r e c a u t i o n  was t aken  a f t e r  s e v e r a l  r a i n  gauges 

were found cracked from ice expansion i n  December, and t h e i r  

r e a d i n g s  had t o  be d i s c a r d e d .  They w e r e  averaged t o  de te rmine  



a t o t a l  t h r o u g h f a l l .  T o t a l  p r e c i p i t a t i o n  was measured on a 

d a i l y  b a s i s  i n  a n  open a r e a  w i t h i n  1 k m  o f  t h e  swamp and w e r e  

summed t o  cor respond  t o  t h e  same t i m e  p e r i o d  a s  t h e  swamp r a i n  

gauges.  T o t a l  r a i n  was t h e n  p l o t t e d  v s .  t h r o u g h f a l l  f o r  v a r i o u s  

segments  o f  t h e  y e a r ,  and a r e g r e s s i o n  e q u a t i o n  was developed.  

T h r o u g h f a l l  w i t h i n  t h e  canopy c o u l d  t h e n  be  c a l c u l a t e d  f o r  any 

p r e c i p i t a t i o n  e v e n t .  

Runoff 

Runoff i s  t h e  s u r f a c e  f low t h a t  e n t e r s  t h e  swamp from t h e  

a d j a c e n t  l a n d  a r e a s .  Two t y p e s  o f  r u n o f f  o c c u r .  s h e e t f l o w  

o c c u r s  where w a t e r s  f low s lowly  down g e n t l e  s l o p e s ,  w h i l e  and 

i n  s t e e p e r  a r e a s  w a t e r  c o l l e c t s  i n t o  s m a l l  r a v i n e s  and f lows  

i n t o  t h e  swamp. These s t e e p e r  s l o p e s  predominate  on t h e  s o u t h  

and sou thwes t  b o r d e r s  o f  t h e  swamp ( F i g . 1 1 ) .  To d e t e r m i n e  run-  

o f f  f o r  a p a r t i c u l a r  s t o r m ,  t h e  t o t a l  swamp l e v e l  i n c r e a s e  was 

r e a d  from t h e  w a t e r  l e v e l  r e c o r d ,  even i f  it c o n t i n u e d  f o r  a 

day o r  two a f t e r  t h e  s to rm s topped .  From t h i s  v a l u e  t h r o u g h f a l l  

i s  s u b t r a c t e d ,  t h e  b a l a n c e  c o n s i d e r e d  t o  be  r u n o f f .  

S e a s o n a l  d i f f e r e n c e s  can  b e  observed when p l o t t i n g  t o t a l  

r a i n  v s .  r u n o f f .  For  t h e  month o f  March, snowmelt,  heavy r a i n s  

and s a t u r a t e d  s o i l s  r e s u l t e d  i n  l a r g e  r u n o f f s .  March i s  a t i m e  

i n  which much snowmelt i s  s e e n  and f r o n t a l  r a i n  s t o r m s ,  l i g h t  i n  

i n t e n s i t y  b u t  l o n g  i n  d u r a t i o n  a r e  a l s o  e x p e r i e n c e d .  Summer 

months e x p e r i e n c e  c o n v e c t i v e  r a i n s t o r m s  more o f t e n  which a r e  

heavy i n  i n t e n s i t y  and s h o r t  i n  d u r a t i o n .  For t h e s e  r e a s o n s  

s e p a r a t e  r e g r e s s i o n  c u r v e s  were developed f o r  d i f f e r e n t  s e a s o n s  

f o r  r u n o f f .  



Evapotranspiration 

Evapotranspiration is the combined effect of vegetation 

transpiring water and evaporation of surface and groundwater. 

Evapotranspiration is very seasonal being highest in June and 

July and tapering off to zero in the winter months. Evapo- 

transpiration also experiences diurnal fluctuations, occuring 

primarily during daylight when transpiration dominates. Eva- 

potranspiration amount is dependent upon temperature, solar 

intensity, wind, humidity, and whether or not trees have 

leaves. In winter months all climatogical factors are small 

and the deciduous trees have no leaves. Some small amounts 

of sublimation will occur in winter, but is assumed negligible. 

Evapotranspiration is exerted on Heron Pond by cypress and 

tupelo trees and duckweed in the swamp, and exerted on the 

surrounding groundwater by the surrounding forest. 

To determine daily evapotranspiration within the swamp, 

correlations were drawn between corrected pan evaporation, as 

measured by a nearby meteorological station, and evapotran- 

spiration as determined from the water level record within the 

swamp. Daily pan evaporation values were obtained from Dixon 

Springs Agricultural Station. The pan evaporation was multiplied 

by a pan coefficient of 0.7 to compensate for the over-estimation 

of actual evaporation due to the location and type of pan used. 

Evapotranspiration within the swamp was measured by the diurnal 

fluctuation method described by White (1932) and Todd (1959). 

Periods were chosen that did not reflect interference by rain- 

fall in the decay rate of the waters level. Average night- 

time level slope was determined for a period which reflect the 



amount of water being lost by only groundwater and streamflow 

losses. This slope was extrapolated down for a certain period 

and the difference between this level and the actual lower level 

was due to evapotranspiration over that time period. Both the 

values of corrected pan evaporation and evapotranspiration were 

put on a daily basis, then graphed, and a correlation equa,tion 

determined. Therefore, by obtaining daily corrected pan eva- 

poration data from the weather station, evapotranspiration 

within the swamp could be approximated. 

Surface Outflow 

Surface outflow (Weir flow) is the streamflow from the 

swamp through a channel into the Cache River as measured by a 

compound weir (Fig. 9). Four outlets actually empty into the 

Cache River, but the outflow with a weir was significantly 

higher than the others. As the water level of the swamp in- 

creased, discharge through these outlets increased. A log 

relationship was determined between the surface outflow and 

and the swamp stage knowing the water level of the swamp. 

The amount of stream flow from the swamp to the river could 

then be calculated knowing the swamp stage. 

Groundwater 

From the water budget equation, net groundwater is deter- 

mined as the residual. In an attempt to separate groundwater 

flow in and groundwater flow out of the swamp, two shallow 

wells were installed (Fig. 2). Well #1 was installed in the 

natural levee between Heron Pond and the Cache River in an 

attempt to determine the groundwater flow out of the swamp 



into the river. Well #2 was installed on the slope of the 

western adjacent land in an attempt to determine flows into 

the swamp from higher land elevations. 

DarcyDs law was used to calculate the flow out from 

the swamp to the river, using the swamp stage and the Well #1 

measurements for the head drop. The flow into the swamp, in 

these periods, in which that is the case, could not be done 

quite as easily since while Well #2 could give a good average 

flow for the land area northwest of the swamp, it could not 

account for the water table with differing slopes to the west 

and southwest of the swamp, For this reason, the total inflow 

of groundwater into the swamp was determined by taking the net 

flow determined by the residual amount in the computer program 

calculation, and adding the amount which was determined by 

Darcy's law from Well #1. 
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RESULTS AND DISCUSSION 

Hydrologic Components - .  

Precipitation and Throughfall - Table 2 indicates: 1) 

the amount of throughfall recorded at different points through- 

out the swamp by farm rain gauges, 2) the mean of these through- 

fall readings representing mean throughfall for the period of 

time, 3) total rain as the sum of daily rainfall values re- 

corded by a standard precipitation gauge (Table 3), just out- 

side the swamp in an open field and 4) total rainfall for the 

entire period recorded just outside the swamp in the same open 

field by a farm rain gauge similar to those used in the swamp. 

Due to flooding of the swamp and subsequent flooding of the 

rain gauges within the swamp, throughfall readings could not 

be recorded for March, April and May. 

The total precipitation recorded outside the swamp is com- 

pared to throughfall recorded within the swamp in Fig. 17. 

This was done to approximate the daily throughfall as a function 

of the daily total rain. The regression equation is solved by 

the least squares method. The equation describing this re- 

lationship (r = 0.987) is: 

TF = 0.6975 (TR) + 0.0009 

where, 

TF = Throughfall, cm 

TR = Total Rainfall, cm 

Thus 70% of rainfall was entering the swamp as throughfall. No 

seasonal change in this value was seen. 



Table 2 

P r e c i p i t a t i o n  and Throughfal l  f o r  Heron Pond Study 

Period Heron Pond Throughfal l ,  cm To ta l  P r e c i p i t a t i o n ,  cm 
1 2 3 4 5 6 7 8 9 Average Std.  Farm 

P r e c i p i t a t i o n  Gauge 
Gauge 

farm r a i n  gauges overflowed 
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Tab le  3 (Cont.) 

Precipitation Record (cm) For Heron Pond Study Period 

Location: Max Hutchison's farm approximately 0.8 km east of 
Heron Pond 

Time of Observation: 0700 

1977 

Day April May June July Aug . Sept . 
- -- 

1 2.57 0.05 
2 0.84 
3 0.03 
4 0.30 1.45 
5 0.38 2.21 
6 
7 0.56 
8 
9 

10 3.27*** 1.57 
11 0.84 
12 0.36 0.71 
13 0.15 4.39 
14 0.94 3.43 
15 tr. 1.35 
16 tr. 
17 0.81 2.08 
18 0.18 2.18 
19 
20 0.86 
21 0.48 0.15 0.30 
22 3.56 0.18 0.05 
23 0.36 0.10 
24 0.05 0.43 2.33 0.10 
25 0.96 4.67 
26 0.2 5 0.48 
2 7 1.68 
28 0.08 1.02 
29 3.25 1.55 0.53 3.20 
30 0.03 
31 0.38 . - - 

TOTALS 9.83 5.82 9.18 9.37 14.95 
\ 

* precipitation as snow 
** precipitation as snow; probably underestimated 
***  total since August 8 





Runoff - Runoff was determined after precipitation events 

by measuring the total water level increase in Heron Pond and 

then subtracting out the amount which is throughfall as calculated 

by the regression equation. The runoff value is a function of 

the season as can be seen by comparing total precipitation to 

runoff (Table 4, Fig.18). March includes very large amounts of 

runoff, partically due to snow melt (which is actually delayed 

runoff, from the winter months), and due to saturated top soil 

during long duration storms. October and July are less steep 

in runoff equation slope. Also February exhibits a large in- 

crease which is registered as runoff which is in reality thawing 

of the ice in the swamp. 

For the period of April the water level record had to be 

reconstructed by an exponential decay method due to a malfunc- 

tioning water level recorder. The equation describing July 

runoff was used rather than that from March since it is assumed 

that by April snow melt is complete. Also, the total through- 

fall amounts for April and July are similar. Using this equation 

to determine and add the daily runoff to the April calculations, 

brought the ending of April's exponential decay determined water 

level in line with actual levels recorded at the start of May. 

The equations for runoff for the three seasons were: 

where, 

RO = 0.531 (,TP) -0.525 for October 

RO = 2.336 (TP) -2.094 for March 

RO = 0.371 (TP) +0.170 for July, 

RO- = runoff 

TP = total precipitation. 
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Evapotranspiration - Corrected pan evaporation, as re- 

corded at Dixon Springs Agricultural Station, approximately 

25 km northeast of Heron Pond, is compared to the actual eva- 

potranspiration, as measured from the water level records in 

Table 5. A regression equation was then developed to approx- 

imate evapotranspiration knowing daily pan evaporation (Fig. 
\ 

19). The equation (r = 0.999) describing the relationship is: 

ET = 0.8991 (EVAP) + 0.0236 

where, 

ET = daily evapotranspiration, cm/day, 

EVAP = corrected pan evaporation, cm/day. 

An experiment was run the first four days of June, a 

time when evapotranspiration is significant, to determine the 

quantity of evapotranspiration attributable to duckweed. Two 

tubs were placed within the swamp resting low in the water, 

both filled with the same quantity of water, one tub with the 

surface covered with duckweed, the other with its surface 

clear (Fig.20). Water temperatures within the two tubs were 

kept equal since the tubs had most of their surface area ex- 

posed to the swamp water, which kept the tub water at approx- 

imately the same temperature as the swamps. After 4 days the 

tub with a clear surface had dropped 0.59 cm, whereas the tub 

with duckweed had dropped 0.71 cm. The total drop in swamp level, 

after subtracting off the amount of level drop due to surface 

outflow and groundwater, was 1.64 (Table 6). Therefore out of 

the total amount of evapotranspiration taking place within Heron 

Pond, cypress - tupelo trees account for 57%, and duckweed accounts 
for a significant 43%. 



Table 5 

Corrected Pan Evaporation and Evapotranspiration for Heron Pond Study 

Period Corrected Pan Evaporation, cm/day Measured Evapotranspiration, cm/day 

Oct. 18-14 

June 5-11 

July 3-9 

July 12-19 

Aug 1-7 

Aug 19-22 

Sept 1-7 



30 . 4 0  . 50  
\. 

Corrected Pan Evaporation, cm/day 

Figure 19. Relationship Between ~vapotranspiration in 
Heron Pond and Corrected Pan  vapora at ion at 
Dixon Springs Agricultural Center. 
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Surface Outflow - The amount of surface outflow was 

measured during various swamp stage levels at different times 

of the year, as seen in Table 7. The flow through the main 

channel was measured with a calibrated V-notch weir, in which 

the relationship between the head and the flow of water through 

the weir is expressed by the following equation: 

where, 

Q = flow, cfs 

H = head, in feet 

To this flow was added the flows of the smaller streams, which 

were usually an order of magnitude less than the main outflow 

channel. 

During periods in which readings were taken when the swamp 

was frozen (Dec., Jan.), flow was considered to be retarded in 

comparison to thawed readings. Due to the variability in readings 

which was probably due to different thickness of ice cover, these 

readings were not considered. 

To determine at what swamp water level no surface outflow 

occurs, lower swamp level readings were compared to their cor- 

responding surface outflow values (Fig. 21). The curve created 

by the data points was extrapolated downward until it itercepted 

the zero readings of surface outflow, yielding a swamp stage of 

26.00 cm as the point at which no surface flow occurs. 

A linear relationships can be seen in four of the seven 

data points when surface outflow is plotted vs swamp stage (Fig. 

22). Since it was very hard to seal all leakage around the weir, 



Table 7 

Heron Pond Water Level and Surface  Outflow 

Date 
Heron Pond 
Water Level,  c m  

Sur face  Outflow, 
crn/day 

* Heron Pond f rozen  over ,  



Heron Pond Water L e v e l .  cm 

Figu're 21. R e l a t i o n s h i p  Between S u r f a c e  Outf low a t  
Weir and Heron Pond Water Level  Used t o  
Determine Zero Flow C o n d i t i o n s .  





some points were assumed to be under-estimations of the total 

flow, and were neglected. From the four remaining data points, 

the following equation was developed: 

WEIR = 1.461 x (L-26.00) 2.138 

where, 

WEIR = Daily swamp level decrease from surface 

outflow, cm/day, 

L = Swamp water level, cm. 

Therefore, by knowing the water level, daily stream flows can 

be approximated. The correlation coefficient for the data is 

0.994. This relationship proved to be useful in extrapolating 

to high flows (as described by Linsley -- et al., 1975) . 
Groundwater - Net groundwater, as calculated in the daily 

program, can be broken down into the amount of water entering 

and the amount of water leaving the swamp by groundwater flow, 

for a given amount of time, in this case on a monthly basis. 

Groundwater leaving the swamp via flow through the natural 

levee and into the Cache River is calculated by Darcy's law 

to determine the velocity, then by multiplying the velocity by 

the area the water is flowing through, the volume of water 

leaving the swamp is known. By dividing this volume by the area 

of the swamp, the water level drop in the swamp is determined. 

Darcy's law states that the velocity is determined by multi- 

plying the permeability of the soil by the slope of the water 

table (Fig. 23 ) 

where, 
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V = Velocity, cm/day 

K = permeability, cm/day 

S = Slope of water table from edge of 

swamp to the well, and is represented 

To determine the monthly mean AH, the head difference between 

the swamp water level and the water level in the well, the mean 

values of the entire month were determined by interpolating the 

daily well levels between well level data points (Fig. 24), and 

determining the average for the month (Table 8). 

To determine the mean monthly AL swamp level was compared 

with the distance the swamp edge was to the well (Table 9) with 

the semilog relationship 

AL = 10 (W.L.) -00044) + 3.566 

where, 

W.L. = Swamp water level 

AL = Distance. 

By multiplying the soil permeability of Well #1 by each respective 

mean monthly slope, the mean monthly velocity is realized. To 

determine the area this velocity is moving through, the length of 

the natural levee separating the swamp and river was measured and 

was expressed as a constant 1.8 km. The mean monthly depth of 

soil the water was flowing through was determined to be the differ- 

ence in mean monthly well level and the level of the Cache River 

bed (Fig. 23). By multiplying this difference of monthly means 

by the length of the levee, the area is determined, and by 

multiplying the monthly velocity by this area yields the water 

volume lost. The loss in swamp level due to this volume can be 
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Table 9 

Heron Pond Water Level and Distance to Well # 1 

Date Well level, cm 
Distance from well 
to edge of swamp, cm 



Table 10 

Groundwater Loss Through The Natural Levee At 

Well #1 From Heron Pond To The Cache River As 

Calculated Using Darcy's Law 

Darcy's Law Calculations Area Calculations Heron Pond Water Loss 

Month AH, cm AL, cm S(s1ope) K(permeability), cm/mo. V e l x i t y ,  cm/mo. Length, m Depth, cm Area, cm2 Volume, cm 3 Water Level 
Drop, cm 

Oct. 

Nov. 

Dec . 
Jan. 

Feb. 

Mar. 

April 

- &Y 

June 

July 

Aug . 
Sept. 



2 calculated by dividing the volume by 301,440 m , the area of 
the swamp (Table 10). 

Knowing the net amount of groundwater flowing into the 

swamp as a residual of the water budget calculations, and now 

having determined the flow out of the swamp to the Cache River, 

it is possible to calculate the flow into or out of the swamp 

from other adjacent area (Table 11). It is therefore possible 

to estimate total inflow and outflow of groundwater to and from 

Heron Pond. 

WATER BUDGET 

By the summation of daily water budget component values, it 

is possible to see how much water is gained or lost by the 

swamp on a monthly or yearly basis (Table 12). Throughfall is 

seen to have the most significant effect on the hydrologic cycle 

of the swamp in contributing more than 74 cm to the water level, + 

however almost that much is lost from evapotranspiration over the 

same years time, even though evapotranspiration occurs more 

seasonally. So the two components moreless counteract each other. 

The amounts of yearly runoff and'surface outflow are also an output 

and input with relatively the same yearly values. Groundwater in- 

put and groundwater output are almost balanced making the net 

groundwater gain for the year less than one cm. The magnitude of 

importance of each hydrologic component over the annual cycle can 

be seen (Fig. 25). Of the total inputs of the year, 46% was 

throughfall, 40% was runoff, and 14% groundwater. Total yearly 

outputs were 49% evapotranspiration, 37% surface outflow, and 14% 

groundwater. 
/ I 



T a b l e  11 

G r o u n d w a t e r  I n f l o w s  And O u t f l o w s  

Of H e r o n  P o n d  

Net Groundwater Loss or Groundwater Groundwater Total Groundwater Total Groundwater 
Gain To Heron Pond Loss to Cache Loss or Gain Into Heron Pond, Out Of Heron Pond, 

(Residual of Program), cm River, cm From Other cm cm 
Areas, cm 

O c t .  

Nov . 
Dec  . 
Jan. 
F e b .  

Mar. 

A p r i l  

May 
June -2.517 

J u l y  -2 .888  

A u ~  . -1 .124  

Sept. 0 . 1 9 1  

TOTAL 



Table 12 

Inflow and Outflow Components of Heron Pond's Hydrologic Budget 

Inf lows Out Llows 
Evapo- Surf ace 

Months Water level, Throughfall, Runoff , Groundwater, transpiration Outflow Groundwater 
cm cm cm cm cm cm cm 

Oct 

Nov 

Dec 

Jan 

Feb 

Mar 

April 

May 

June 

July 

Aug 

Sept 

Mean 

Total 



Figure 25, Heron Pond Annual Water Budget (Values 

in cm/yr). 
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Since different components show seasonal fluctuations at 

different times of the year, high inputs will usually 

be counter-balanced after a short lag time by high outputs. 

Examples of this are when heavy rains occur and throughfall and 

runoff increase the water level significantly, two drains of 

the hydrologic system, surface outflow and groundwater outflow 

become more significant since they are a function of the water 

level. Similarly, when swamp water levels are very low, as in 

October, groundwater will flow in from surrounding higher water 

tables. The swamp consequently maintains relatively constant 

levels throughout the year and has never been known, according 

to the local residents (Anderson and White, 1968), to dry up. 

A seasonal water budget can also be seen (Fig. 26) and is 

well illustrated by 3 months representing 3 seasons experienced 

in the swamp. In March, when much rainfall occurs, inflows are 

3.6 times greater than outflows. In June, when the rainy season 

is over leaving the water level high and the solar intensity, 

temperature, and plant productivity (transpiration) are high, 

outflows are 1.9 times greater than inflows. By October, the 

water level has stabilized after the summer and is not affected 

as highly by climalological factors. During this time inflows 

are only 1.6 times greater than outflows. 

As has been illustrated, it is possible to breakdown all 

hydrologic components involved in the study area and determine 

their significance during any specified time period, by using the 

water budget method, solving for a residual in the equation, then 

breaking the residual down even further as in groundwater into 

or out of Heron Pond. 



October 

water 
1.7 

Net Groundwater 2. 

Figure 26. Seasonal Water Budget for Heron Pond 

(values in cm/rno) 



The Role of Heron Pond and Other 

Wetlands in Southern Illinois Water Management 

BY 

John Wiemhoff 

INTRODUCTION 

To insure an abundant supply of water in the future, con- 

sideration must be given to natural water conservation entities, 

rather than destroying them and replacing them with costly man- 

made structures. Wetlands are potential useful natural eco- 

systems which can provide natural storage of water to be used 

as recharge during low flow periods. Ruckelshaus (1973) stated . 

the U.S. EPA's policy to preserve wetland ecosystems: "Wet- 

lands represent an ecosystem of unique and major importance to 

the citizens of this Nation and, as a result, they require ex- 

traordinary protection. The Nation's wetlands, including 

marshes, swamps, bogs, and other low lying areas, which during 

some period of the year will be covered in part by natural non- 

flood waters, are a unique valuable irreplaceable water resource. 

Comparable destructive forces would be expected to inflict more 

lasting damage to them than to other ecosystems". Unfortunately 

wetlands used to be generally thought of only as so much waste- 



, 
land - an unfortunate occurrance in the land-economists 

1 

1 
classification of productive land uses. Only when they could 

be drained or filled to create suitable land for agriculture, 

I industrial, or residential expansion were wetlands of any 
( 
1 

value. Only as a result of various periods of critical water 
1 
i 
j shortages or over abundances (flooding) has a new awareness 

of wetlands as a natural tool for water conservation been 

realized. 

With increased settlement and industrialization of pre- 

viously unsettled areas, there has been a subsequent lowering 

of groundwater tables. Lowering of water tables was not due 

to changes in rainfall, but rather to the loss of water from 

drainage operations and clearing, through surface runoff and 

increased consumption by industries (Dachnowski - Stokes, 
1935).   his study investigated the influence of peat deposits in 

their ability to conserve water, check floods, retard erosion 

and silting, and maintain a sufficiently high water table. 

Undrained peat areas in level terrain show very little runoff. 

Sufficient water is retained to cause a general rise in the 

water table and a tendency to float layers of peat and their 

I surface vegetation. Peat moss, when saturated, may contain 
i 

20 times its weight in water, and, under certain natural field 

. I conditions, will swell 14 - 20 feet above the general surface. 
1 Peat materials, also being poor conductors of heat, do not 
i 
d freeze to the bottom, thereby keeping up an underground supply 

1 of available water nearly through out the entire year. 
4 

Ackermann (1971) states that the Sangamon River in Illinois has 
7 

j a small channel-for a drainage area of about 800 square miles, 



because 100 y e a r s  ago,  and f o r  thousands o f  y e a r s  be fo re  t h a t ,  

t h e  upstream d ra inage  a r e a  was l a r g e l y  swamp and marsh. This  

r e t a i n e d  a  g r e a t  d e a l  o f  runof f  and r e l e a s e d  it s lowly ,  so  a  

s m a l l  channel  w a s  a l l  t h a t  was r e q u i r e d .  

Wetlands f u n c t i o n  a s  n a t u r e ' s  age-old method of  f l ood  

c o n t r o l  by f u r n i s h i n g  overf low a r e a s  where exces s  wa te r  i s  

t empora r i l y  h e l d ,  and,  a s  s t a t e d  by Gabr ie l son  (1962) ,  "is 

fed  o u t  l a t e r  a s  t h e  downstream channe ls  a r e  a b l e  t o  ac-  

comodate t h e  runo f f .  Marshes, swamps, smal l  l a k e s  and even 

bog-holes ac t  a s  f l ood  c o n t r o l  dev i ce s  t o  t h e  e x t e n t  t h a t  

t hey  a r e  c o l l e c t i o n  b a s i n s  f o r  s u r f a c e  wate r  and f e e d  it o u t  

g r a d u a l l y  through s p r i n g s  and seeps  o r  through open o u t l e t s .  

This is  a l s o  t h e  f i r s t  va lue  u s u a l l y  c i t e d  as t h e  j u s t i f i c a t i o n  

f o r  b u i l d i n g  farm ponds o r  smal l  impoundments i n  t h e  upper 

p o r t i o n s  of smal l  wa te r  sheds."  The U . S .  Department o f  I n t e r i o r  

(1962) s t a t e s  " i t  seems obvious  t h a t ,  i n  many i n s t a n c e s ,  n a t u r a l  

wet lands  s i m i l a r l y  l o c a t e d  ( a s  a r e  smal l  f l ood  wate r  d e t e n t i o n  - 

r e s e r v o i r s )  i n  headwater a r e a s  would a i d  i n  r e t a r d i n g  f l ood  

wa te r s  and p reven t ing  down-stream f loods . "  Those s t reams  o r  

r i v e r s  w i t h  e x t e n s i v e  swamp l ands  w i t h  n a t u r a l  v e g e t a t i o n  a r e  

s lower  t o  rise and s lower  t o  d i s cha rge  when inunda t ion  comes. 

  he n a t u r a l  l e v e e ,  v e g e t a t i o n  and l i t t e r  act  t o  dam and impede 

t h e  exces s  water .  

Once water i s  s t o r e d  w i t h i n  t h e  swamp, t h e  swamp e x h i b i t s  
i 

some n a t u r a l  wate r  conse rva t ion  q u a l i t i e s  n o t  seen  i n  man-made 
1 

a l t e r n a t i v e s ,  Wharton e t  a l . ,  (1976) s t a t e s  f o r  F l o r i d a  cyp re s s  swamps: -- I 
"They are s e l f  ma in t a in ing  and can add sediment wi thout  f i l l i n g  

i 
I up. Cypress swamps a r e  p r o t e c t e d  a g a i n s t  e x c e s s i v e  t r a n s p i r a t i o n  1 

i n  d r y  p e r i o d s  by t h e  d rop  of l e a v e s  and shad ing  o f  t r unks .  Cypress I 



swamps grow and transpire water in wet periods when waters are 

in excess. Reservoirs are more exposed to water loss. Swamp 

storages absorb nutrients into trees, instead of becoming 

eutrophic with problems of floating plants, anaerobic waters 

and fish kills. The swamp ponds and strands are means for 

holding waters long enough for recharge to occur into ground- 

waters with filtering actions of the vegetation and pond sediments. 

Wharton (1970) compared the hydrograph of two Georgia rivers, 

the Yellow and the A~COVY, over a five year period, both streams 

being sister tributaries of the Qcmulgee. The major difference 

is that the Alcovy has much more swamp land. Following heavy 

rains both streams begin to rise at the same time, but the high 

water peaks of the Alcovy lag 24 hours behind those of the Yellow. 

Most inundations of the Yellow River are more "flashy" than those of 

the Alcovy: The Alcovy's curves are smooth and the minor fluc- 

tuations seen on the Yellow are missing. Although the Yellow 

drains a watershed 36% greater than the A~COVY, its low water 

flows are surprisingly close in volume to those of the A~COVY, 

suggesting some possible influence of the swamp on base flow. 

The effect of swamps on base flow during river low flows 

is significant. When flooding occurs, both groundwater reserves 

and wetland surface water are refilled. As river levels go down, 

groundwater serves as a vast underground reservoir which is the 

source of the river base flow. Groundwater may be recharged 

at this point by surface water stored in wetlands. Not only 

capacity but duration of base flow is important. Riggs (1964) 

compared a swampy and non-swampy stream. The recession of the 

base flow from the swampy Haw River in North Carolina was shown 

to be markedly less than the base flow from the New River, 



Tennessee, a stream which courses through rolling terrain and 

has no swamp. 

There have been some attempts to determine the economic 

value of forested wetlands in water management. Unfortunately, 

the economic value of these particular ecosystems do not show 

up directly in monetary exchange until we have to replace the 

service when it is lost. One such study was done on the Alcovy 

River swamp ecosystem (Wharton, 1970) in which the value to 

water quantity was estimated at $228,014 annually (Table 13). 

Heron Pond Flood Storage 

The entire Cache River Basin contains about 47 sq. km. of 

forested wetlands strung out along the length of its path through 

Southern Illinois (Fig. 1). About one third, or roughly 16 

sq. km. of these swamps are situated along the Cache above the 

Forman U.S.G.S. gauging station, a point at which flows are 

recorded every hour. Residents living within proximity of 

the study area indicated that the Cache River floods into 

Heron Pond usually once a year. It was anticipated that during 

this study period a flood would occur, and the susbequent data 

associated with it could be collected. 

The elevations of importance were surveyed at the onset 

of this study in an attempt to determine what river stage, 

as measured at the Forman guaging station, would flood Heron 

Pond. The following data and calculations were accumulated to 

determine this critical "bankfull discharge" stage: 



Table 13 

Value to Water Quantity of the 

Alcovy River Swamp Ecosystem (as from Wharton, 1970) 

Value to 
Water Quantity 

Annual value 
estimate 

100 year 
value estimate 

Value of groundwater ' $201,380 
storage 

Loss of groundwater 
storage 

Total $228,014 $21,469,700 



1) Cache River l e v e l  a t  Forman gauging s t a t i o n  
( S t a t i o n  3) 2.05 f t .  

2) Drop i n  head o f  Cache River from S t a t i o n  # 5 
t o  S t a t i o n  # 3 (Fig.  2) 8.94 f t .  

3 )  V e r t i c a l  d i f f e r e n c e  between Cache River a t  
S t a t i o n  # 5 and "0" on Heron Pond s t a f f  guage 8.20 f t .  

4 )  Bankful l  d i scharge  a s  measured on Heron Pond 
l e v e l  r eco rde r  ,2.86 f t .  

Cache River "Bankfull  Discharge Stage" a s  measured a t  
Forman gauging s t a t i o n .  22.05 f t .  

Whenever t h e  l e v e l  of s t a g e  recorded a t  Forman gauging s t a t i o n  

rises above 22.05 f t ,  it can be assumed t h a t  Heron Pond, and 

more than  l i k e l y  t h e  o t h e r  swamp a r e a s  above t h e  gauging s t a t i o n  

a r e  f looding  (Fig.  1). The h i s t o r y  of f loods  occuring i n  which 

Heron Pond i s  flooded i s  seen i n  Table 1 4 .  The recur rence  i n t e r -  

v a l  of a f lood  i n  which Heron Pond i s  subsequently f looded i s ,  

a s  read  from a frequency curve (Fig.  271, about 2 years .  However 

t h i s  frequency curve (Fig.  27) i s  f o r  annual maxima. ~ n s p e c t i o n  

of Table 1 4  shows t h a t  Heron Pond flooded 45 t i m e s  i n  50 y e a r s  

f o r  a  p a r t i a l  d u r a t i o n  recur rence  i n t e r v a l  of 1 .13  y r .  Leopold 

e t  a l . ,  (1964) found r i v e r s  i n  southern and c e n t r a l  Indiana t o  -- 
have bankfu l l  d i scha rge  recur rence  i n t e r v a l s  ranging from 1.07 

t o  1 .9  wi th  an average of 1.30 years .  

With t h e  o n s e t  of continuous and i n t e n s e  r a i n  beginning on 

March 27, Heron Pond was flooded on March 29th. The f lood 

peaked a t  6:00 am on March 30 wi th  a  swamp s t a g e  of 227 c m ,  o r  

more than  1.6 m h igher  than  t h e  water l e v e l  px io r  t o  t h e  r a i n f a l l  

(Fig.  28 ) .  The Cache River peak s t a g e  a t  t h e  gauging s t a t i o n  
3 

was 26.55 f t . ,  wi th  t h e  r i v e r  d i scharg ing  201 m /sec. (Fig.  29) .  

The Cache River s h o r t - c i r c u i t e d  o u t  of i t s  channel ,  through 

Heron Pond and surrounding low land a r e a s ,  recharg ing  groundwater 



T a b l e  1 4  

H e r o n  Pond F l o o d i n g  D u r i n g  L a s t  5 0  Years 

D a t e  C a c h e  R i v e r  C a c h e  R i v e r  Maximum 
( N o s t  Gauge D i s c h a r g e  H e r o n  Pond S t a g e  
r e c e n t  Forman ,  Ill, Forrnan,  I l L ,  ( F l o o d i n g  stage = 87 .2  crn), 
f i rst)  f t .  3  rn /sec crn . 

Mar 2 9 ,  1 9 7 7  
Mar 3 0 ,  1 9 7 5  
Nov 2 9 ,  1 9 7 3  
May 2 8 ,  1 9 7 3  
A p r i l  2 4 ,  1 9 7 3  
A p r i l  1 7 ,  1 9 7 7  
J a n  3 1 ,  1 9 6 9  
Mar 11, 1 9 6 4  
F e b  2 8 ,  1 9 6 2  
May 9 ,  1 9 6 1  
J a n  2 2 ,  1 9 5 9  
J u l y  2 0 ,  1 9 5 8  
May 2 4 ,  1 9 5 7  
A p r i l  6 ,  1 9 5 7  
Mar 2 ,  1 9 5 2  
J a n  1 6 ,  1 9 5 1  
A p r i l  5 ,  1 9 5 0  
F e b  1 4 ,  1 9 5 0  
J a n  1 4 ,  1 9 5 0  
J a n  5 ,  1 9 5 0  
J a n  2 6 ,  1 9 4 9  
A p r i l  1 4 ,  1 9 4 8  
A p r i l  1 6 ,  1 9 4 5  
A p r i l  3 ,  1 9 4 5  
Mar 7 ,  1 9 4 5  
A p r i l  1 2 ,  1 9 4 4  
Mar 2 0 ,  1 9 4 3  
M a r  6 ,  1 9 3 9  
J a n  1 6 ,  1 9 3 7  
J u n e  2 2 ,  1 9 3 5  
J u n e  1 8 ,  1 9 3 5  
M a r  1 2 ,  1 9 3 5  
Nov 2 4 ,  1 9 3 5  
May 1 6 ,  1 9 3 3  
J a n  1, 1 9 3 3  
J a n  15 ,  1 9 3 0  
F e b  2 7 ,  1 9 2 9  
J a n  2 6 ,  1 9 2 9  
J a n  2 0 ,  1 9 2 9  
J u n e  2 9 ,  1 9 2 8  
J u n e  2 2 ,  1 9 2 8  
Dec 15,  1 9 2 7  



Table 1 4  continued 

Heron Pond Flooding During L a s t  50 y e a r s  

Date Cache River c 
(Most Gauge Discharge Heron Pond Stage 
r e c e n t  Forman, Ill. I Forman, Ill. I fo loo ding s t a g e  = 87.2 cm) , 
f i r s t )  f t .  3 m /sec c m  . 

* 
A p r i l  16 ,  1927 24.56, 155 
Mar 19,  1927 27.71, 230 
Jan  23, 1927 26.39 194 

* 
Older t ype  guage read ing  co r rec t ed  t o  p r e s e n t  guage by us ing  
known d i scha rges .  

** 
~ l o o d  occur r ing  dur ing  s tudy  per iod .  



3 
Cache River Discharge, m /sec 





l e v e l s  a s  w e l l  a s  swamp a r e a s  such a s  Heron Pond. Access i n t o  

t h e  s tudy  a r e a  dur ing  f looding  occurred only by boa t  through 

f looding  lowlands. 

From t h e  storm hydrograph f o r  t h e  f lood  (Fig.  30) , t h e  

e f f e c t i v e  r a i n f a l l  ( t h a t  p o r t i o n  of  r a i n f a l l  t h a t  c o n t r i b u t e s  

t o  runof f )  was determined by p lan imeter ing  t h e  a r e a  above base 
3  flow and under t h e  hydrograph curve.  The a r e a  above 1 1 4  m / sec  

i s  t h e  d ischarge  which occurred '  over  and above t h e  "bankfu l l  

d i scharge ."  

To determine t h e  amount of t h e  storm ra inwater  t h a t  i s  

no t  runof f ,  b u t  held back e i t h e r  i n  s o i l s  a s  i n f i l t r a t i o n ,  

r e t a i n e d  i n  man-made r e s e r v o i r s ,  o r  he ld  i n  swamps, e f f e c t i v e  

r a i n f a l l  must be sub t rac t ed  from t o t a l  r a i n f a l l  (Table 1 5 ) .  

I t  can be seen from t h i s  t a b l e  t h a t  t h e  f lood t h a t  occurred 

cons i s t ed  of one r a t h e r  long storm wi th  l i g h t  r a i n f a l l  ending 

wi th  an i n t e n s e  r a i n f a l l  of g r e a t e r  than 10 cm i n  6 hours.  

These 2 i n t e n s i t i e s  a r e  seen on t h e  storm hydrograph (Fig. 30).  

When storms occurs ,  i n f i l t r a t i o n  i n t o  s o i l  occurs  f a i r l y  r a p i d l y  

a t  f i r s t ,  depending upon p r i o r  s o i l  mois ture  cond i t ions .  But 

wi th  i n t e n s e  s torms,  t h e  s o i l s  become s a t u r a t e d  very quick ly  

and a r e  impermeable t o  added r a i n f a l l .  This exp la ins  t h e  very 

l a r g e  amount of e f f e c t i v e  r a i n f a l l  (65%) of t o t a l  r a i n f a l l  

dur ing  t h i s  storm. A s  can be seen from o t h e r  storms on March 

3  (Fig. 31)- and March 11 (Fig. 3 2 ) ,  t h e  amount of e f f e c t i v e  

r a i n f a l l  was 22.8% and 27.5%, r e s p e c t i v e l y ,  of t h e  t o t a l  r a in -  

f a l l .  I n  both t h e s e  smal le r  s torms,  f looding  of t h e  swamps 

d i d  no t  occur .  
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Table 15 

Analysis of Cache River Hydrographs 

Effective Storm 
Rainfall Water Retained 

Date Storm Rainfall as measured in Swamps Water 
of Storm Duration as measured at Forman * or Soils, Retained 
Hydrograph hr . at Dixon Springs, Gauging Station, (Rainfall-Effective in Swamp 

cm . cm. Rainfall) , cm. 

Water 
Retained 
in Soils, etc. 
cm . 

cm. 

8 2  * Cache River Drainage above Forman U.S.G.S Gauging Station = 6 .294  x 10 m 
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To estimate how much of this flood water is stored by 

the swamps bordering the Cache River, the amount of flood 

water stored by Heron Pond can be extrapolated to include all 

the swamp areas above the gauging station. This storage 

is to include only storage that is left behind after the flood, 

not the gross amount of water over the wetland during peak 

flood stages. The reason for using only the water left behind 

is that it is the intention of this study to determine the 

significance of swampy wetlands, not entire floodplains in 

water conservation. The extrapolation coefficient was deter- 

mined as follows: 

Area of Heron Pond = 301,440 m 2 

7 2 Area of wetlands above Forman = 1.57 x 10 m 

This is to say that Heron Pond is 1.9% of the total wetlands 

above Forman, and these wetlands are in turn only one third of 

the total wetlands in Southern Illinois. The amount of flood 

water left behind in Heron Pond is 26.58 cm the difference 

between the water level when the swamp is "full" (87.17 cm) and 

the level prior to flooding (60.59 cm). By multiplying this 

2 26.58 cm by the area of Heron Pond (301,440 m ) ,  the volume 

3 of 80,131 m is left in Heron Pond after the flood. Extra- 

polating to the entire wetland area above Forman by multiplying 

this volume by the extrapolation coefficient suggests that 

6 3 4.18 x 10 m of flood water was left behind in wetlands after 

the flood receeded (Fig. 3.0). This, of course, assumes that 

other wetlands are similar in structures and had initial water 

levels the same at the onset of flooding as Heron Pond. 



When the Cache River and Heron Pond separate during the 

recession of the river, the Heron Pond bankfull volume is 

left behind. The decay rates of the river and the swamps are 

vastly different (Fig. 33). The river has a decay coefficient 

of .1386/day and Heron Pond has a decay coefficient of .0117/ 

day. Long after the river has gone down, the swamp still has 

a high stage and since surface outflow out of the swamp is a 

function of the level of the swamp, Heron Pond adds much water 

to the river after river swamp separation of the 1.5 x 10 7 

m3 discharge of the Cache after separation of swamp and river 

5 3 (Fig. 30), 9.7 x 10 m of the remaining hydrograph's discharge 

(prior to resumption of base flow), or 6.4%, is due to swamp 

recharge after swamp river separation. This was calculated 

uding Heron Pond surface out-flow during the hydrograph period, 

separating out its base flow before theflood, and extrapolating 

to the rest of the swampland above Forman. The 4.18 x 10 m3 

of storm water that is retained in the swamp is 8.4% of the 

total storm hydrograph (4.97 x lo7 m3) as recorded at Forman. 

The effect of this storage is a smoothing out of the hydrograph. 

Without flood storage in swamp levels, peak discharges would 

be higher and recession occur faster than is now occuring. 

Recharge 

With large amounts of water left behind by flooding, or 

i 
other imputs into the swamps, this water will either recharge 

adjacent groundwater storages or flow either by streamflow or 

by groundwater flow into the Cache River. This flow to the 

river can be significant and very useful during periods of 





low flow in augmenting other groundwater flows to keep the river 

from drying up. 

By determine the mean monthly flows of the Cache River at 

Forman and determining the total mean monthly flows of all 

streamflow and groundwater from the wetlands, it is possible 

to see the potential role of swamp lands to recharge the 

river during low flows (Table 16). Again, the mean monthly 

flows had to be extrapolated to the entire area above Forman 

from Heron Pond data by using the extrapolation coefficient. 

The percents must not be taken as exact, since the entire 

amount of discharge that come from the wetlands will not remain 

in the channel by the time it reaches the gauging station. 

Also, since the swamp was frozen very solid from early 

December until February, the measurements taken during this 

period were subject to errors. Two of the main possibilities 

for error were the float of the water level being frozen up 

and not reflecting in-coming rainfall or out-going ice melt. 

The surface outflow also probably did not respond exactly to 

the logarithmic equation during these frozen periods because 

of ice blockage. Therefore the precentages may be somewhat 

inflated; however the relative importance of recharge during 

the different seasons of the year is worth noting. During 

periods of little rainfall during the winter (Nov., Dec., Jan.) 

and summer (June, July, Aug.), recharge by wetlands can be 

very significant, and during periods of high rainfall in spring 

(March) , rather insignificant. 



Table 1 6  

Recharge P o t e n t i a l  of Swamps Bordering t h e  Cache River 

Monthly 
Mean 

Monthly Streamflow 
Mean from swamps 
Cache River upstream from 
Discharge Forman, Ill.  
Forman, Ill. ( a s  ex t r apo la t ed  

3 m /sec from Heron Pond) 

Month 3 
m / sec  

Monthly 
Mean 
Groundwater flow 
from swamps up- 
stream from 
Forman, Ill.  
( a s  ex t r apo la t ed  
from Heron Pond) 

Monthly 
Mean 
To ta l  Contr i -  
bu t ion  from - % o f  Cache 
swamps t o  Discharge a t  
Cache River up- Forman t h a t  
stream from is  from 
Forman, I11 Wetland 

3 Recharge m /sec 

Oct. 

Nov . 
Dec . 
Jan.  

Feb. 

March 

Apr i l  

May 
June 

J u l y  

Aug . 
Sept.  



CONCLUSIONS 

As can be seen, wetlands play on important role in rounding 

off the peaks and low points of the Cache River discharges. 

Floods are not as severe as they could be without natural 

reservoirs, and seasonal low river flows are continually recharged. 

Storage of the March flood was exhibited with the swamp land 

retaining 7.8% of the runoff, although no swamp storage was seen 

on any other storm occurances during the study period. Recharge 

was seen to be very significant during summer and winter months, 

when river stages are normally low, being supplied mostly by 

groundwater. 
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PHASE 2 - WATER CHEMISTRY 

Heron Pond Water Chemistry 

Carol L. Dorge 

INTRODUCTION 

Wetlands are among the least and the most productive eco- 

systems in the world (Rodin and Bazilevich, 1967) and product- 

ivity is most closely related to nutrient availability. Likens and 

Bormann (1972) suggest that the optimum environment for plant 

growth might be a rooted aquatic medium - carbon dioxide and 
light are available from above while nutrients in usable form, 

as soluble ions, can be drawn from the sediments. Nutrient 

availability is not simply a matter of access, however. Sediment 

cation exchange capacity, pH (particularly as it affects solub- 

ilities) and oxygen levels can be important limiting factors to 

vegetation, animals and microbes alike. Likewise the biotic 

part of the ecosystem influences the water chemistry through 

nutrient leaching, humic acid production, recycling, and metabo- 

lism. 



The water chemistry of Heron Pond is discussed here in re- 

lation to its nutrient value. System dynamics which affect 

Heron Pond chemistry are considered including groundwater flow, 

rainfall and relationships with the Cache River, particularly 

when the river floods the swamp, Nutrients in relation to plant 

growth are also discussed. 

METHODS 

Water Sam~les 

Chemical analysis for alkalinity, conductivity, turbidity 

and phosphorus and all field measurements were made by the 

researchers in this study. Other analyses were performed by 

an outside laboratory. All methods are presented in Table 17. 

Station 1 was located on the Cache River, upstream of 

Heron Pond, Stations 2 and 3, were on the river below the swamp. 

Station 4 was near the main platform in the swamp, 4a was 90 m 

from the platform and 5 was the swamp outflow (Fig. 2). Water 

samples were screened for duckweed and fixed with sulfuric acid 

for phosphorus analysis and nitric acid for cation analysis. 

Fixed and unfixed samples were transported from the study site 

to the laboratory on ice. 

Throughfall samples were collected in six rain gages at 

random locations under the swamp canopy. Three additional 

gages in the swamp which were not under the canopy and another 

in a clear area, 0.8 km from the swamp, were used for rainfall 

measurement and analysis. Gages were acid washed before they 

were set in place. They were covered with screen in order to 



Table 17 

Methods for Analysis of Physical and Chemical Parameters 
1 

Parameter Method 

Dissolved Oxygen 

PH 
Alkalinity 

Hardness 

Turbidity 

Conductivity 

Total Soluble Phosphorus 

Total Phosphorus 

TKN 

Dissolved Residue 

Total Residue 

COD 

K+ 

M ~ + +  

Na+ \ 

Ca ++ \ 

Dissolved oxygen probe 

pH probe 

Titration 2 

By calculation from Ca and Mg conc. 

Turbidimeter 

Probe 

Ascorbic ~ c i d  Method 1 

Ascorbic Acid Method 1 

Ascorbic Acid Method 1 

2 Diazotization Method (autoanalyzer ) 

Cadmium reduction method (autoanalyzer) 

Berthelot Reaction Method (autoanalyzer) 

Modified Berthelot Reaction Method ( " )  

Turbidimetric Method 2 

Constant wgt. on drying @ 180 C, filtered 
2 

Constant wgt. on drying @ 180 C, unfiltered 
2 

Dichromate reflux method 2 

Atomic emission 

Atomic absorbtion 

Atomic emission 

Atomic absorbtion 

Murphy and Riley (1962) 
1 1 ; APHA (1976) 

3 r 



limit insect and litterfall contamination, and mineral oil was 

added to prevent evaporation. A mineral oil blank was run 

during phosphorus analysis of the rainwater and values were 

far below the limits of measurement. Other chemical parameters 

for rainfall samples were measured by the outside laboratory 

according to the methods used for swamp and river water analyses. 

No mineral oil blank was run, and samples for only one date, 

July 29, 1977, were analyzed. 



RESULTS AND DISCUSSION 

Rain and Throughfall 

Rainfall and throughfall were measured to determine input 

of phosphorus and other minerals to the swamp through atomos- 

pheric channels and to determine that part of the input, more 

accurately described as nutrient cycling within the system, 

due to leaching from canopy plant tissues. Average concentra- 

tions for throughfall and rainfall are given in Table 18. 

Original data are in appendix A of this section. Eaton -- et al., 

(1973) described nutrient input to the system by throughfall, 

as due to any of the following: 

1) Materials contained in the rainfall itself 

2) Impacted aerosols on canopy, washed of by incident 

precipitation, or 

3) Nutrients with gaseous phases which have been in- 

corporated in the tissues, removed by incident 

precipitation, 

Rainwater generally has a pH of 5.6 and low buffering 

capacity due to low alkalinity. Certain atomospheric con- 

taminants, primarily SO2 and NO2, easily lower the pH by com- 

bining with atomospheric H20 to form either sulfuric or nitric 

acid. Heron Pond throughfall has characteristically low 

alkalinity, 8.3 mg/l, and this value is reflected in the swamp 

water chemistry which had an average alkalinity value of 33 



Table 18 

Chemical Composition of Rainfall and Throughfall 

THROUGHFALL RAINFALL 
2 2 Heron Florida1 Okefenokee ~ubbard~ Heron Florida 0kefenokee2 ~ubbard~ Southern 4,5 

Pond Swamp Swamp Brook Pond Swamp Swamp Brook Lake 
Michigan 

pH 

Alkalinity 

Hardness 

I Conductivity 

Total P 

NO3-N 

NH3-N 

TKN 

Dissolved Residue 

Total Residue 

COD 

1 - Brezonik et al., (1974); 2 - Schlesinger (1977); 3 - Likens et al., (1977); 4 - Murphy and Doskey (1975); 
5 - USEPA (1976). * - total soluble P 
All values expressed as mg/l with the exception of pH (pH units) and conductivity (umb/cm) 



Nutrients contained in the rainfall itself, or in dry fall- 

out, increase with proximity to cultivated farms or lawns (Murphy 

and Doskey, 1975). Flat forested land with ground cover does not 

significantly input nutrients to the atomosphere; Heron Pond is 

surrounded by forests, therefore rain nutrient concentrations would 

be expected to be minimal. Nitrogen increases near areas of sat- 

urated, poorly aerated soil. This might explain slightly higher 

NH3-Nvalues in Heron Pond rain and throughfall. Phosphorus in 

rainfall can range in concentration from .005 - 0.120 mg/l (Gorham, 

as ref. by Brinson, 1977) . Concentration has been found to be 

inversely proportional to rainfall volume for both rainfall and 

throughfall in a cypress swamp (Schlesinger, 1977). 

Throughfall and rainfall inputs to Heron Pond are presented 

in Table 19. Total phosphorus input to the swamp by throughfall 

2 averaged 0.144 p P/m -yr (average concentration 0.193 mg P/l). 

Brinson, et -- al. (1977) found a throughfall input of 0.128 gm P/ 

m2gyr in a North Carolina tupelo swamp. Schlesinger (1977) 

2 found 0.075 gm P/m -yr to be recycled by leaching while Brinson 

2 measured 0.105 gm P/m -yr due to canopy leaching. A leachate 

value for Heron Pond can be computed from throughfall and rain- 

2 2 fall input 0.155 gm P/m -yr to Heron Pond and is 0.029 gm P/m -yr. 

The Heron Pond rainfall value is greater than that measured by 

2 2 Brinson (0.0499 gm P/m -yr) or Schlesinger (0.022 gm P/m -yr). 

In the Murphy and Doskey (1975) study of total atomospheric 

2 input of phosphorus to southern Lake Michigan, 0.073 gm P/m -yr 

was the amount deposited annually by rainfall. A comparison of 

concentration values was presented in Table 18. 



Table 19 

Nutrient and Chemical Inputs to Heron Pond by 

Rainfall and Throughfall 

2 2 Throughfall, gm/m -yr Rainfall, gm/m -yr 

Alkalinity 

Hardness 

Conductivity 

Total P 

NO3-N 

NH3-N 

TKN 
- - 

SO4 -S 

Dissolved Residue 

Total Residue 

COD 

K+ 

M ~ + +  
+ Na 
++ 

Ca 

All values expressed as mg/l with the exception of pH (pH units) and 

conductivity (pmbo/cm) 



Algae was found growing in gages in Heron Pond and in the 

USEPA collectors during the warmer months. More detailed 

analysis of Lake Michigan samples also revealed pollen, insect 

larva and other inputs. These would be assumed to be part of 

total atomospheric input. While samples containing large in- 

sects or otherwise noticeably contaminated were eliminated 

from data analysis, it is possible that Heron Pond rainfall 

values are higher than others due to contamination by pollen 

or small insects. Because "dry fallout" was not measured as 

a separate component of nutrient input to Heron Pond, for the 

purpose of calculating nutrient budgets in this study, it is 

assumed that these values validly represent atomospheric input. 

It was also assumed that agitation of the Heron Pond samples 

dispersed the algae and total phosphorus analysis produced a 

correct value for phosphorus input. Stemflow was assumed to 

be negligible in this study. Brinson found it to represent 

less than 1% of throughfall input. 

Heron Pond throughfall average orthophosphate concentration, 

. 0 4 6  mg P/1, almost equals values measured in Florida (.05 mg P/ 

1) but is significantly less than that measured under a birch, 

maple, beech canopy at Hubbard Brook, 0.15 mg/l (Likens 'et -- 'ale, 

1977). Values might be due to differing sampling techniques. 

No preservative was added to Heron Pond gages and sampling was 

at two month intervals; great change in phosphorus form would 

be expected. Hubbard Brook sampling was done at more frequent 

intervals! a sampling period of less than or equal to one week 

was suggested for minimizing problems of contamination and bio- 

geochemical transformation. In addition the Hubbard Brook studies 



did not include data for precipitation collectors which contained 

leaves or insect debris. The intent was to have a sufficient 

number of collectors that at least one sample would be "clean", 

(Likens et al., 1977'). It was found impossible, in Heron Pond, -- 
to sample only "clean" containers. All gages contained litter 

and small insects in varying degrees at each sampling tirne. As 

was done for rainfall samples, when analysis of individual samples 

showed great deviation, any extremely high results were discarded. 

It can be assumed, however, that throughfall values include some 

chemical input by detrital pathways. For this study, this input 

will be considered a valid component of throughfall. 

Nitrate concentrations (0.40 mg/l) in Heron Pond rain were 

27% as high as those in Hubbard Brook (1.47 mg/l) where acid 

rain, principally due to atomospheric NO2, is an increasing pro- 

blem. Florida rain, averaged only 0.24 mg/l NO3-N. ~mrnonia 

nitrogen values were more similar for the three systems: 0.20, 

0.22 and 0.38 mg N/1 for Florida, Hubbard Brook and Heron Pond 

respectively. 

Cation concentrations were greater than those found in 

other systems. Because a mineral oil blank was not run, data 

may not be valid. 

Sulfate concentration in the swamp throughfall, 11.6 mg/l, 

is significantly higher than rainfall concentrations, 0.01 mg/l, 

indicating substantial intrasystem recycle of this nutrient by 

leaching. Similar results were obtained at Hubbard Brook, to 

a lesser degree. Higher rainfall sulfate concentrations may be 

due to higher levels of atomospheric SO2 there. 



Heron Pond water chemistry is summarized in Table 20 and 

presented in graphical form (Figs. 34 and 35) (complete water 

chemistry data is presented in Appendix A). Nutrients show 

little change in concentration over the annual period with 

one exception, the flood period; at this time an estimated 

6 3 1.6 x 10 m of river water mixed briefly with the swamp 

water and chemical measurements were characterized by concen- 

trations found in the turbid river water. Total solids also 

peaked, to a lesser degree, as an estimated 8.3 kg of sediment 

passed over the swamp. The magnitude of flood transport over 

the swamp is demonstrated by comparison with average storages 

in the swamp (Table 21). 

Relationships to pH Heron Pond pH averaged 6.1; this 

is less than the Cache River average and more basic than normal 

rainfall, suggesting partial buffering. The relationship of 

pH to wetland character has been discussed at length. Gorham 

(1967) attributed the shift in dominant ions from the ~a" and 
- 9 HCO) of a circumneutral water to the H of a bog-typeLto 1) 

oxidation of sulfur compounds, 2) air pollution H2S04,. 3) H' 

displacement by cation exchange and 4) throughfall. 

While air pollution sulfates are an extremely low input, 

as determined by rainfall concentrations, sulfates added by 

leaching are an important source here. Swamp levels averaging 

1.6 mg/l, are lower than rainfall levels; it is likely that 

anaerobic conditions in the swamp sediment encourage growth 

of sulfur reducing bacteria, When sediments are disturbed, 



Table 20 
Comparative Water Chemistry Annual Averages 

For Swamps and Marshes 

~lorida' ~lorida' ~lorida' swampJ Taylor slough4 Wisconsin 5 
parameter Stas POnd Rainwater Groundwater Sewage L~~~~~~~~~ a on Channelized Florida 

Dome Dome Dome Swamp-_- Stream Stream Everglades Marsh 

Dissolved 
Oxygen 

2.2 

PH 6.1 4.3-4.7 4.9-6.9 4.2-6.3 
Alkalinity 31 0 70 0-174 
Hardness 2 7 
Turbidity 223 0.38-54 0.6-1.2 0.9-2.4 
Conductivity 110 60-72 131-370 115-500 55 152 
Ortho-Phosphate 0.158 0.02-1.3 0.08-0.70 .36-4.4 0.15 
Total Soluble P 0.191 
Total P 0.326 0.03-0.57 0.10-0.70 .52-6.8 0.34 .046 .053 
NO2-N <.01 - - 
NO3-N <.01 0.01-0.9 0-2.1 0-1.9 0.28 0.047 0.62 

NH3-N 1-00 0.01-0.5 0.01-3.8 .03-6.7 0.25 - - 
TKN- 1.64 1.0-2.0 0.08-10.2 1.5-8.8 1.63 0.48 0.31 
SO4 -5 1.6 6.0 

Dissolved 
Residue 66 

Total Residue 125 

c9D 44.8 

K *  3.3 0.4-1.1 0.9-1.1 4.5-7.2 
Kg 11.8 1.5-2.5 27.9-35.9 11.4-20.6 N ~ L  3.2 2.9-5.7 7.5-8.1 23.2-38.9 
Ca 17.0 1.0-3.2 24.4-35.5 7.8-18.5 

- - - -  - - 

1 Brezonik &. (1974) - 2 Day &. (1977) - 3 Kuenzler (1976) - 4 Waller g &. (1975) - 5 Lee &. (1975) 
All values expressed as mg/l with the exception of pH (pH units) and conductivity (umho/cm) 
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Table 21 

The Magnitude of Flood Transport, Demonstrated by 
Comparison to Normal Storages in the Water Column 

Storage in 
Swamp Water 

Parameter Column, gm/m 

Flow Over Swamp 
~uring Flood 
gm/m2 

Alkalinity 

Hardness 

Total P 

TKN 
- - 

SO4 -S 

Dissolved Residue 

Total Residue 

COD 

p p  - - 

* 
Use average river concentration: Swamp value not available. 

All values expressed as mg/l with the exception of pH (pH units) 
and conductivity (ymh/cm) 
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bubbles appear, accompanied by the odor of H2S, the product of 

vegetation decay and sulfate reduction. 

Heron Pond ammonia nitrogen levels (1.00 mg/l) are 100 

times greater than nitrate levels; formation of the ammonium 

ion would partially counteract acidity from H2S04. Total 

nitrogen is 1.64 mg/l. Here levels are higher than Cache River 

levels. Ammonia levels are higher than those found in a 

Wisconsin marsh (Lee -- et al., 1975) and approximately equal to 

levels found in a Florida groundwater and sewage cypress dome 

(Brezonik, -- et ale, 1974). Accumulation of NH -N under anaerobic 3 

conditions is expected as part of bacterial decay of organic 

matter. It may be taken up by plants, immobilized in cell 

materials, adsorbed onto clay or volatilized under alkaline 

conditions. Only if oxygen is present will mineralization 

proceed with conversion to nitrate. If this occurs and sub- 

sequently nitrates percolate into anaerobic layers (this may 

occur if microenvironments of aerobic and anaerobic conditions 

exist) denitrification can occur (Tusneem and Patrick, 1971). 

Total nitrogen levels are approximately equal to Florida 

rainwater dome levels. Comparisons are made in Table 20. Both 

total and ammonia nitrogen peak at the end of the growing season. 

Likens et al., (1977) found similar seasonal peaks to occur in -- 
streams, with NO -N maximum at times of minimum biological activity. 3 

COD peaks with NH3-N on autumn, indicating significant accumula- 

tion of products of incomplete decomposition. 

Dissolved Oxygen - Heron Pond dissolved oxygen averaged 
2.2 mg/l. Both cypress and tupelo grow better in saturated, 



aerated soil, although cypress growth is greater when fertilized 

with urea than with NO3-N while tupelo prefers the oxidized 

nitrate form (Dickson and Broyer, 19721. Watt and Heinselman (1965) 

reported that channels of water movement in a spruce bog have 

richer fauna than do more stagnant sections and attributed this 

to better decomposition of leaf litter and nutrient release in 

the channel. Oxygen without this nutrient supply did not in- 

crease growth. Heinselman (1963), Brinson (1977) and ~chlesinger 

(1977) agreed that a reduced environment and low dissolved 

oxygen are associated with limited nutrient uptake. Moore and 

Bellamy (1974) also suggested that lack of oxygen might be 

important to nutrient usability, but noted that only eight per 

cent of saturation oxygen was necessary for an "aerobic" reaction 

to take place. 

This is not to say however, that Heron Pond is an oxidized 

system. Dissolved oxygen is near zero at the sediment water 

interface, COD levels averaging 49.8 mg/l and the presence of 

reduced forms of nutrients, notably ammonia nitrogen, characterize 

the system and suggest diffusion of oxygen or oxygen input as a 

product of duckweed photosynthesis may limit higher concentration 

to the upper layer of water; oxidized nutrients may be available 

only near the water surface. 

Phosphorus Solubility - Phosphorus, the element most 

intensely studied in Heron Pond, is usable as a plant nutrient 

at levels as low as 0.001 mg/l (Garrels et a1 1975). Concen- - -. 8 

tration in the water column has been shown to be regulated by 

precipitation reactions, sediment - water exchange and plant 
uptake. Enfield and Bledsoe (1975) in a study which did not 

concern reduced conditions, reported that at low pH8 ferric 



and aluminum phosphates control equilibrium concentrations. 

A1P04 and FeP04 have minimum solubilities at pH 6 and 5.5 

respectively. If present, A1 (111) could limit soluble 

phosphate concentrations to 0.010 mg/l given this equilibriun 

relationship and pH in Heron Pond. This phosphate level is 

lower than that currently found in Heron Pond; average ortho- 

phosphate concentration is 0.158 mg P/1. Equilibrium phosphate 

concentration for FeP04 dissolution is approximately 1.0 mg/l 

at pH 6.0. Neither of these, then, is controlling phosphate 

levels; aluminium is not present in sufficient quantity, or 

more precipitation of phosphate would take place, and solubility 

of the Fe (111) form, in excess of concentrations found in the 

swamp, suggests it is not the limiting factor in determining 

concentration, Similarly, under acidic anaerobic conditions, 

very soluble Fe (11) forms a.nd orthophosphate prevail. While 

only limited analysis of solubility relationships can be made 

because analysis for iron and aluminum was not a part of this 

study, it is likely that iron is present in Heron Pond and plays 

an important, though not limiting role in phosphorus dynamics. 

Southern Illinois rivers have iron concentrations near maximum 

for the state; a five-year average for the Cache River was 8.1 

mg/l (total iron) (Nienkerk and Flemal, 1976) . 
At higher pH, hydroxyl-apatite (Ca5 (OH) (PO4) 3) solubility 

controls phosphate concentrations, however at pH 6 approximately 

1 mg P/1 is required for conversion of CaC03 (assuming saturation 

levels) to hydroxyl-apatite (Stumm and Morgan, 1970). 

Sediment Exchanqe and Other Forms of Adsorbtion - Both 

water and sediment concentration control the rate of phosphorus 



exchange (Wildung and Schmidt, 1973) although there is little 

correlation between sediment and water concentrations in 

undisturbed (unagitated) systems (Williams and Mayer, 1972). 

Under anaerobic conditions, sediments have been found to 

act as a buffering system, releasing phosphorus when water 

concentration is low and removing it when it is high 

(Patrick and Khalid, 1974). In a lake, deposition is ex- 

ceeded by regeneration only when overturn causes oxidizing 

conditions at the sediment/water interface and this can be 

inhibited in the presence of a barrier of Fe +++ (~illiarns 

and Mayer, 1972). Oxidation - reduction potential, pH, 
calcium concentration and agitation of sediments all 

regulate phosphorus release or adsarbtion (Kramer -- et al., 

1972). Uptake by rooted plants may act as a "sink" or 

"resin" for sediment phosphorus, driving the water/sediment 

equilibrium reaction toward the sediment. This cycle is 

completed by return of the nutrients to the water column as 

canopy leachate or litterfall with subsequent decomposition. 

Brinson et al., (1977) found microbes attached to detrital -- 
leaf litter to adsorb phosphorus, acting as a temporary sink 

and decreasing turnover time in the nutrient cycle. During 

the growing season, microbial function reverses; bacteria in 

the water column may act to keep phosphorus there. In the 

autumn and spring, particulate organic phosphorus (a phosphorus, 

aluminum, iron, humic acid complex) was found to be an important 

form in the Tar River swamp in North Carolina. Soluble organic 

phosphorus levels in Heron Pond (total soluble phosphorus minus 

orthophosphate) were maximum in October (0.150 mg/l) and June 

(0.100 mg/l) with summer values of 0.03 mg/l and winter values 



n e a r  z e r o ,  s u g g e s t i n g  complexing s i m i l a r  t o  t h a t  found by 

Br inson.  

T o t a l  P h o s ~ h o r u s  and Absorbed P h o s ~ h o r u s  - T o t a l  

phosphorus c o n c e n t r a t i o n s  a r e  r e g u l a t e d  by mechanisms ve ry  

d i f f e r e n t  from t h o s e  c o n t r o l l i n g  s o l u b l e  phosphorus l e v e l s .  

Phosphorus may be p r e s e n t  a s  p a r t  o f  p a r t i c u l a t e  o r g a n i c  

m a t t e r  o r  l i v i n g  p l a n t s  o r  an ima l s ,  m ine ra l  suspended s o l i d s ,  

o r  adsorbed  o n t o  c l a y  p a r t i c l e s .  Adsorb t ion  i s  maximum 

a t  pH 5  t o  6  (Stumm and Morgan, 1970 ) ,  t h e  reduced  c o n d i t i o n s  

o f  t h e  swamp sed iments  shou ld  n o t  a f f e c t  t h i s  p r o c e s s  which i nvo lve s  
- - 

a t t r a c t i o n  o f  t h e  a n i o n i c  PO4- t o  p o s i t i v e l y  charged  c l a y  s u r -  

f  a c e s .  

T o t a l  phosphorus i n  Heron Pond ave rage  0.326 mg/l, b u t  

f l oodwa te r s  averaged 1.56 mg/l on  A p r i l  1, due t o  g r e a t e r  l e v e l s  

o f  suspended m a t e r i a l  a t  t h i s  t i m e .  S tandard  d e v i a t i o n  o f  t o t a l  

phosphorus c o n c e n t r a t i o n  ( i n d i c a t i v e  o f  t h e  magnitude o f  f l o o d  

impact )  was 0.117 when t h e  f l o o d  v a l u e  was n o t  i nc luded  and 0.406 

when it was i nc luded .  

Ni t rogen  - Phosphorus R a t i o s  - R a t i o s  o f  t o t a l  n i t r o g e n  t o  

t o t a l  phosphorus  have been used a s  i n d i c a t o r s  o f  n u t r i e n t  l i m i t -  

a t i o n .  The p o i n t  above which phosphorus i s  cons ide r ed  l i m i t i n g  

i s  commonly assumed t o  be 10.0 mg N/1:1.0 mg P/1. While t h e r e  

is g r e a t  v a r i a t i o n  i n  c o n c e n t r a t i o n s  i n  l i v i n g  m a t t e r  a n  i d e a l -  

i z e d  o r g a n i c  molecule  ha s  t h e  r a t i o  16 atoms N : l  atom P (7 gm N :  

1 g-m P) ( t h i s  r a t i o  was proposed by Red f i e ld  and i s  commonly 

c a l l e d  t h e  R e d f i e l d  r a t i o ) .  The r a t i o  f o r  Heron Pond wa t e r  i s  

5 .1  s u g g e s t i n g  an  e x c e s s  o f  phosphorus.  Tab le  22 compared t h i s  

v a l u e  t o  t h o s e  f o r  o t h e r  sys tems.  
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Plants as Indicators of Water Chemistry - Plants, by 

their nutrient uptake mechanisms, their choice of nutrient 

form (for example, NH3-N as opposed to NO3-N), their structural 

adaptations and adaptations to xerophytic conditions, select- 

ively adapt to a variety of nutrient conditions. 

Duckweed appears to be an indicator of a rich nutrient 

supply. It is capable of luxury consumption of phosphorus 

(plant tissue concentrations increase in conjunction with in- 

creased levels in water), and was found to be an important 

primary producer in the Florida cypress dome which received 

sewage, and not in natural domes there (Price, 1975). This 

suggests Heron Pond nutrient availability may be comparable 

to a dome receiving sewage and not to southern swamps with 

predominantly autochthonous nutrient supplies. This may not 

be related to the nutrient phosphorus, however. Average 

total phosphorus concentrations were greater in Florida 

groundwater, rainwater and sewage domes, than in Heron Pond 

(Brezonik et -- al., 1974). 

Absent from Heron Pond are the xerophytic plants, epiphytes 

and carnivorous plants often found in nutrient deficient bogs. 

Schlesinger (1977) found an important component of the Okefenokee 

swamp to be Spanish moss (Tillandsia usneoides L.), .a vascular 

epiphyte with two adaptive mechanisms: low tissue nutrient 

concentrations and the ability to obtain nutrients directly 

from rainfall. This plant is not only adapted to low nutrient 

levels, it acts to perpetuate them; it was found to intercept 

NO3-N in sufficient levels to cause throughfall concentrations 



to be less than rainfall concentrations. Carnivorous plants 

and evergreen shrubs were important components of the shrub 

layer in Okefenokee; evergreenness, by providing more efficient 

nutrient use and limiting losses due to litterfall, is another 

possible adaptation to low nutrient conditions (Monk, 1966). 

Lake of evergreen shrubs in Heron Pond further differentiates 

it from bog-like swamps. 

Some Characteristics Associated with Nutrient stress - 
While phosphorus levels, ammonia-nitrogen levels and duckweed 

growth are representative of a nutrient rich system, in some 

respects Heron Pond has characteristics often associated with 

nutrient impoverishment. 

As previously mentioned, a reduced environment and low 

dissolved oxygen levels result in limited nutrient uptake. 

Schlesinger (1977) further suggests that the relatively low 

ratio of cypress leaf biomass to total biomass is an adapta- 

tion to low nutrient availability, particularly in light of 

the fact that, in the trees he studied, return of nutrients to 

perrenating organs prior to leaffall (73%- 91%) was approximately 

equal to that of upland tree species in nutrient rich environments. 

In Heron Pond, average return was found to be only 37% although 

one autumn measurement suggest return may be as much as 77%. 

Other adaptions for more efficient nutrient use, suggested by 

Schlesinger, include low concentrations of nutrients in woody, 

non-photosynthetic plant parts, and low intraspecific competition 

(high density single species stands with little evidence of self 

thinning). Both of the above are characteristic of Heron Pond, 

the cypress wood leaf phosphorus ratios was .027:1 and stand 



density is near maximum for a temperate forest as discussed in 

the Net Primary Productivity and Biomass chapter of this re- 

port. 

Schlesinger found numerous xerophytic plants in the shrub 

layer of Okefenokee. Xerophycity has often been related to 

nutrient deficiency (Marchand, 1975; Watt and Heinselman, 1965; 

Rigg, 1916). Xerophytic plants were not part of the Heron Pond 

shrub layer, but the substrate was notably an aerated one, con- 

sisting of fallen logs and tree stumps with plants rooted near 

the water surface. Duckweed, the most important understory 

producer, appeared to suffer no deficiencies; productivities 

as determined by sedimentation rates were as high as those in 

the Florida cypress dome receiving sewage (Struble and Graetz, 1976). 

Heron Pond is more acid than the Cache River, suggesting 

either H' production (or release by ion exchange), lower 

buffering capabilities, or both, 

Acid waters are generally nutrient poor and while certain 

plants may be capable of growth at acid or basic pHI nutrient 

availability, as affected by pH might select certain plant groups 

4- 
(Cowardin, -- et al., 1977; Heinselman, 1963). The exchange of H 

for nutrients is a well documented cause of nutrient poor con- 

ditions (Watt and Heinselman, 1965; Gorham, 1967: Heilman, 
.\ 

1966; Schlesinger, 1977). 

Removal of nutrients from the water column is selective; 

both peat and microbes accumulate nitrogen faster than potassium, 

magnesium and calcium in that order (Schlesinger, 1977). Peat 

accumulation itself may act as a nutrient sink if nutrients are 

tied up in non-decomposed materials. Peat, however, was a small 



part of Heron Pond sediments, although surface layers were 

up to 30% organic matter. Adjacent marshy areas not in- 

cluded in this study were, however, developing deeper peat 

layers. Schlesinger, (1977) found similar spacial variation 

in Okefenokee sediments. 

Conductivities of approximately 100 pmho/cm are associated 

with acid waters while values of 1000 and greater are commonly 

found in waters of pH greater than 8 (Enfield and Bledsoe, 1975). 

Heron Pond conductivity averaged 110 pmho/cm and decreased with 

dilution (Fig. 36 ) . Maximum values did not exceed 250, however. 

It is interesting to note that conductivity and Heron Pond and 

Cache River orthophosphate concentration are inversely related 
+ 

to water volume and flow. Likens and Bormann, (1972) found Na and 

silica concentrations in a river to decrease with increased 

+ + flow while K , NO3-N and H increased. Cation and NO3-N con- 

centrations in Heron Pond could not be correlated with outflow 

at Sta. 5 or with swamp stage, 

++ ++ Ca , Mg ,,Hardness, Alkalinity 

Despite the above factors which relate more to the avail- 

ability of nutrient cations than phosphate or other anions, Ca 
++ 

and M ~ + +  levels of 17.0 mg/l and 11.8 mg/l are similar to those 

shown in Table 20 for other ecosystems and greatly exceed those 

for a swamp on a natural stream (2.1 mg/l and 1.6 mg/l) (Kuenzler, 

1976). Average swamp M ~ + +  concentration is greater than that in 

the Cache River, 5.7 mg/l. Lower alkalinity in Heron Pond relative 

to the river (31 mg CaC03/1 vs 99 mg CaC03/1) is expected in light 

++ ++ of acidic conditions in the swamp. Swamp Ca , Mg levels might 

be attributable to magnesium and calcium phosphate complexes, in 





I addition to carbonate species. Increased solubility of these 

j in acid conditions might explain the higher swamp MgC+ levels. 
I 

The value for swamp alkalinity might be higher than the 
1 
1 true value due to an unreasonably high value for January (appendix 

A), which might be attributable to sampling under thick ice. 
++ 

Ca and Mg++ concentrations are intermediate those of a ~lorida 

rainwater dome and a groundwater dome (~rezonik -- et al., 1974). 

Heron Pond throughfall (cm) minus groundwater input (cm), 

was plotted against calcium concentration hardness and alkalinity 

(Fig.37). The relationships were found to be linear. Concen- 

trations could not be significantly correlated to groundwater 

input alone. From these formulas, it is concluded that major 

cation concentrations are regulated by groundwater input and 

1 rainwater dilution and effects of sediment exchange and pH are 

minimal. 

I 
CONCLUSIONS 

The water of Heron Pond has no apparent nutrient deficiency 

and acid pH, while perhaps inhibiting growth of calciphers 

such as the common duckweed Lemna minor, does not inhibit pro- 

duction in general; two other species of duckweed Spirodela 

polyrhiza and Azolla mexicana have selected Heron Pond and are 

important producers. The cypress, are well adapted to the 

anaerobic conditions of the sediments. 

Nutrient input by rainfall and throughfall is approximately 

equal to input in other systems not receiving rain polluted by 

atornospheric contaminants. Some conditions, including acid pH, 



Through fa l l  ( c m )  minus Groundwater I n t o  Swamp ( c m )  

F i g u r e  37. Through fa l l  and Groundwater I n f l ow  R e l a t i o n s h i p s  t o  S e l e c t e d  Concen t r a t i ons  



low dissolved oxygen, and a reducing environment as indicated 

by high ammonia levels and apparent reduction of sulfates have 

been associated with low nutrient availability; most character- 

istics of Heron Pond water chemistry, however, place it among 

the more productive forested wetlands. Cation exchange and 

peat accumulation are not important nutrient sinks in Heron 

Pond. 



Chemical Interactions Between Heron Pond 

and the Cache River 

Carol L. Dorge 

INTRODUCTION 

Heron Pond as a river floodplain swamp has been shown to be 

a productive ecosystem with abundent nutrients in the water column. 

It has been compared to other forested wetlands which are not 

supplied allocthonous nutrients, and found not "bog-like" in respect 

to nutrient deficiencies which are often associated with swamps. 

The study of river/swamp interaction also involves the 

reverse impact, that of the swamp upon the river, and in addition, 

more basic questions must be answered, e.g. how do the river and 

swamp differ and how are they similar? 

METHODS 

The Cache River was sampled on all days that Heron Pond was, 

and water chemistry analyses performed with those for Heron Pond 

and its outflow, according to methodology presented in the water 

chemistry section of this report. Water chemistry data for the 

three Cache River stations (Appendix A) were compared statistically 



using a paired - t -  test to determine whether any parameter 
revealed significant difference between the stations. 

River measurements were averaged upon determination that 

stations were not significantly different, These values were 

paired with swamp water chemistry measurements (Sta. 4) and 

with swamp outflow data (Sta. 5) and significant differences 

determined. Values for April 1, the flood, were included in 

these calculations. 

Outflow values (flow at Sta. 5) for nutrients, solids and 

COD were calculated, for each sample period, as the product of 

3 surface flow (m/period) and concentration (gm/m ) and summed 

2 for annual outflow (gm/m -yr). Groundwater flow, expressed as 

similar units, was similarly multiplied by concentration, and 

added to overland flow values, for total outflow. Average 

annual concentration values for swamp outflow were computed 

using weighted flow values with measured concentrations. 

RESULTS 

The river and swamp were found to be predominantly different 

in water chemistry (Tables 23 through 26). Twelve parameters were 

found to be present in lower concentrations. NH3-N was greater 

in the swamp, suggesting significant difference between the two 

systems in oxidation potential. NH3-N is rapidly converted to 

NO3-N by bacteria in aerobic conditions (Tusneem and Patrick, 

1971). TKN and COD values were also greater in the swamp and were 

most likely due to greater levels of bacteria and organic matter 



Table  23 

Cache River  - Heron Pond Outflow 

Water Chemistry Comparison 

2 3 
Cache R. Cachel Cache R.  Cache R. Post C k a  Pond 

Outflow River  a t  Forman W e  Vienna 
. Cut o f f  

Disso lved  Oxygen 

pH 
A l k a l i n i t y  

Hardness 

T u r b i d i t y  

Conduc t i v i t y  

T o t a l  S o l u b l e  P 

T o t a l  P 

NH2-N 

TKN 
- - 

S04 

Dissolved Residue 

T o t a l  Residue 

COD 

K+ 

M ~ + +  

~ a +  
++ 

C a  

1 a v e r .  3 s t a t i o n s ,  h h i s  s t u d y  A l l  v a l u e s  exp re s sed  as mg/l 
w i t h  t h e  e x c e p t i o n  o f  pH (pH 

Nienkerk and Flemal (1976) u n i t s )  and c o n d u c t i v i t y  (pmho/cm) 

111 EPA W. Q. Network (1975 - 1976) 

* f l o o d  ave.  conc:  1.332 mg/l 

* *  e l e c t r o d e  



Table 24 

Water Quality Parameters That Are 

Probably Lower In The Swamp 

Parameter Number of cache' Heron Pond 
Samples River Pond Outflow 

pH 
Alkalinity, mgCaC03/l 

Hardness, mgCaC03/l 

Conductivity, pmho/cm 

Total dissolved solids, 
mg/l 
- - 

so4 , mg/l 

+ River sample average of 3 stations 

! 
, 1 

* Significantly lower than river concentration at 95% level 

* *  Significantly lower than river concentration at 90% level 



T a b l e  25 

Water Q u a l i t y  P a r a m e t e r s  T h a t  A r e  

S i m i l a r  I n  Swamp And River 

Pa ramete r  
+ 

Number o f  Cache Heron Pond 
Samples R i v e r  Pond Outf low 

T u r b i d i t y ,  JTU 8 266 223 206 

T o t a l  S o l i d s ,  mg/l 3 328 226 335 

T o t a l  Suspended S o l i d s ,  3 225 98 186 
mg/l 

Or thophospha te ,  mg-P/1 . 8/9 0.148 0.163 0.170 

T o t a l  S o l u b l e  Phosphorus ,  8 0.203 0.201 0.238 
mg-P/1 

T o t a l  Phosphorus ,  mg-P/1 8 0.437 0.345 0.368 

+ River sample  a v e r a g e  o f  3 s t a t i o n s  



Table 26 

Water Quality Parameters That are Probably Higher in the Swamp 

Parameter 
Number of 
Samples 

cache+ 
River 

Heron 
Pond 

Pond 
Outflow 

Kjeldahl Nitrogen, mg-N/1 

NH3-N, mg-N/1 

COD 

+ River sample average of 3 stations 
** 

Significantly higher than river concentration at 90% level 



a t  d i f f e r e n t  s t a g e s  o f  decomposit ion i n  t h e  swamp. 

G r e a t e r  t o t a l  c a t i o n  c o n c e n t r a t i o n s ,  c o n d u c t i v i t y ,  d i s s o l v e d  

s o l i d s ,  a l k a l i n i t y  and hardness  v a l u e s  i n  t h e  Cache ~ i v e r  a r e  

most l i k e l y  due t o  g r e a t e r  wea ther ing  o f  rock i n c l u d i n g  i n -  

c r e a s e d  s o l u b i l i t y  o f  c a rbona t e  compounds. Most s u l f a t e  i n  

s t reams  i s  s i m i l a r l y  due t o  wea ther ing  o f  e i t h e r  gypsum (CaS04 - 
2 H 2 0 )  o r  p y r i t e  (FeS2) fo l lowed by o x i d a t i o n  o f  t h e  s u l f u r  

( ~ a r r e l s  e t  a l . ,  1975 ) .  Mean l e v e l  o f  ha rdness  i n  Cache River -- 
b a s i n s t r e a m s  i s  approximate ly  100 mg CaCO /1 w i t h  a l k a l i n i t y  3 

approximate ly  50 mg CaC03/l (Nienkerk and Flemal 1976) .  Table  23 

compares v a l u e s  f o r  t h e s e  and o t h e r  pa ramete rs  measured a s  p a r t  

o f  t h i s  s t udy  w i t h  averages  g iven  by Nienkerk and Flemal (1976) 

and w i t h  I l l i n o i s  Environmental P r o t e c t i o n  Agency v a l u e s  (1975 - 
1976) f o r  t h e  Cache River  a t  West Vienna, I l l i n o i s  and f u r t h e r  

downstream i n  a s e c t i o n  which was channe l ized .  

Phosphorus, i n  a l l  forms measured, v a r i e s  l i t t l e  i n  con- 

c e n t r a t i o n  from swamp t o  r i v e r .  Orthophosphate v a l u e s  i n  t h e  

r i v e r  were lower t h a n  average d u r i n g  t h e  f l o o d ,  s u g g e s t i n g  a 

d i l u t i o n  e f f e c t ,  o r  a d s o r b t i o n  o n t o  c l a y  p a r t i c l e s  wh i l e  t o t a l  

phosphorus was approximate ly  t h r e e  t i m e s  g r e a t e r  t h a n  normal 

d u r i n g  t h e  f l o o d  season ,  i n d i c a t i n g  t r a n s p o r t  o c c u r s  p r imar ly  

a s  p a r t  o f  t h e  suspended load .  

In f low - Outflow R e l a t i o n s h i p s  

Ecosystems have d i f f e r i n g  c a p a b i l i t i e s  f o r  n u t r i e n t  re- 

t e n t i o n .  Hubbard Brook, a  t empera te  f o r e s t  ecosystem, was 
++ ++ + - - 

found t o  r e l e a s e  Ca , Mg , K+, N a ,  SO4 , ~l+++,  Si02  i n  

q u a n t i t i e s  g r e a t e r  t han  t h o s e  i n p u t  t o  t h e  system w h i l e  

+ -3 
a f f e c t i n g  n e t  removal o f  NH4-N, H and PO4 . The pr imary 



+ 
sou rce  of c a t i o n i c  ou tpu t  was a t t r i b u t e d  t o  exchange of H 

f o r  o t h e r  c a t i o n s ;  ammonia removal was a t t r i b u t e d  t o  d e n i t r i -  

f i c a t i o n ,  (Likens -- e t  a l . ,  1977) .  When e x p o r t  from a  cu tove r  

f o r e s t  was compared t o  t h a t  o f  an  uncut  f o r e s t ,  e x p o r t  va lues  

f o r  t h e  group of  i o n s  desc r ibed  above were inc rea sed  by f a c t o r s  

from 1 .9  - 22 .4  t i m e s .  Ch lor ide  e x p o r t  i n c r e a s e d  37 t i m e s  

(Likens and Bormann, 1972) .  

S i m i l a r  i nc rea sed  e x p o r t  of n u t r i e n t s  occur red  i n  Rough 

S ike ,  a  d i s t u r b e d  bog. Drainage of  wet lands  may a l s o  cause  

massive release of  n u t r i e n t s .  A d r a ined  marsh may i n p u t  t o  

a  r i v e r  f i f t y  t i m e s  t h e  phosphorus c o n t r i b u t e d  by a g r i c u l t u r a l  

l ands ,  whi le  a  n a t u r a l  marsh may produce no n e t  i n p u t  of  

phosphorus (Lee -- e t  a l . ,  1975) .  

More r e c e n t  s t u d i e s  have focused on t h e  n u t r i e n t  r i c h  

"energy subs id i zed"  r i v e r  f l o o d p l a i n  swamps ( f e n s )  o r  t h o s e  

which r e c e i v e  sewage, e i t h e r  a c c i d e n t a l l y  o r  i n t e n t i a l l y .  

Wharton (1970) showed t h a t  d i s s o l v e d  oxygen i n c r e a s e d  as 

r i v e r  w a t e r s  from t h e  Alcovy River flowed through t h e  Alcovy 

Swamp i n  Georgia.  

I n  tests on a sou the rn  Louis iana swamp, Engler  and P a t r i c k  

(1974) found n i t r a t e  removal of  4.38 mg/l. (A marsh s t u d i e d  

s imul taneous ly  was found t o  remove 7.64 mg/l.) They found t h a t  

t h i s  removal r a t e  could  be i nc rea sed  by l a y i n g  down o rgan ic  

m a t t e r  such a s  r i c e  s t r aw  t o  improve t h e  h a b i t a t  of t h e  micro- 

organisms which w e r e  doing t h e  work. Bent ley (1969) found 

s i m i l a r  n i t r o g e n  r educ t ion  i n  water  which passed through a  marsh. 



Kitchens -- et al., (1974) found phosphorus to decrease 0.75 - 
2.00 times as it flowed through a river floodplain swamp. He de- 

monstrated that this was a biological sink by showing that 

physical parameters such as turbidity did not change. 

Hartland-Rowe and Wright (1975)) in a study of a populus, 

alder, willow and cat-tail "swamp" located downstream of a swamp 

treatment plant, found the following per cent reductions, 3640 

meters from the outfall of the plant, for a study period of 

June to October: 

Parameter 

BOD 

TSS 

Total P 

Ortho-P 

Surfacants 

% Reduction 

Total Coliform 98.7 

Whether this area should truly be called a swamp, or is a 

marshy area with some trees in drier spots, is not clear 

from the article. 

Nitrogen and phosphorus uptake was demonstrated to occur 

in water passing through the Everglades (Waller and Earle, 1975). 

In the Minnesota bog studied by Reiners (1972), nitrogen was 

found to be taken up from June to October (the growing season). 

A Florida cypress dome with high sewage loading was found 

to retain 4% of the phosphorus and 76% of the nitrogen which 

was input; overflow waters carried out the remaining percentages. 



Phosphorus was found to increase in the sediments while nitrogen 

did not (indicating biological denitrification) and the dome 

produced trees with greater leaf and fruit than similar domes 

which did not have sewage supplied them. Lower loading rates 

resulted in retention of essentially all of the nutrients. 

Conner and Day (1976) found net export of nutrients from 

a Louisiana swamp in which the floodplain input has been halted 

by construction of levees; it is possible here, however, that 

input from agricultural sources was significant. Net flow of 

carbon, nitrogen and phosphorus decreased - inflow was greater 

than outflow . 
Wharton (1970) summarized the effects of the "energy subsidy" 

of riverine swamps: They receive aerobic decomposition and 

nutrient release in the dry season, with a bloom in productivity 

during the wet season. As is apparent, the timing of the flood - 
I 

dry cycle is extremely important. Most Piedmont streams, he 

claimed, flood during the dry season when damage to growth will 

be minimized. 

Outflow from Heron Pond 

While inflow - outflow budgets were not determined for 
parameters other than phosphorus, outflow by overland flow 

(Sta. 5) and groundwater was calculated for the following: 

ortho-PO4 and total phosphorus, all nitrogen forms, dissolved 

+ ++ + ++ and total solids, COD, SO4-S, K , Mg , Na and Ca (Table 27). 

Outflow values are compared to streamflow outflows for 

various ecosystems described by Likens et al., (1977) and Lee -- 
et al., (1975) in Table 28. Heron Pond outflow values are given -- 
both as overland flow only, and as total flow which including 



Table 27 

Heron Pond Chemical Outflovs and Average Outflow Concentrations 

Dissolved Total 
PO4-P Total P NO2-N NO3-N NH3-N Org-N Total N Solids Solids COD SO4-S K+ Mg* ~ a +  ~ a *  

Weighted Mean. 

Concentration, mg/l 0.205 , 0.380 < 0.01 < 0.014 0.537 0.599 1.15 32 316 42.4 5.7 2.6 2.1 2.3 5.3 

Overland Outflov 

gm/m2-yr 0.140 0.260 < .010 < 0.010 0.371 0.413 0.794 22 216 29.0 3.9 1.78 1.44 1.58 3.63 

Groundwater Dutflov 
2 

gm/m -yr 0.043 0.080 < 0.003 < 0.003 0.113 0.12 0.24 7 66 8.9 1.2 0.55 0.44 0.48 1.11 

Total Outflow 

All values expressed as mg/l with the exception of pH (pH units) and conductivity (umho/cm) 



Table 28  

Ecosystem Comparison of S e l e c t e d  Outflows 

Temperate. 
Temperate Angiospern - deciduous ~ o s t l y  ~onife;ous  Temperate bog 

Heron Tropical  
Carnation ELA Rough* Maeanant 

E c o s y s b e ~  
&z;tnd Hubbard Coveeta. S i lve r s t r eam Toughannock Creek. Van- Ontar io  Sike. Catchment. El  Verde. Rio Negro 

Flow Only 
N.C. New Zealand Ck., N. Y. couver, Can. Canada England Mid Wales darsh Puer to  Rico Braz i l  

Parameter 

Total-P 

NO3-N 

To ta l  N 

so4--s 

K+ 

w* 
NEL+ 

ca* 

2 A l l  Values expressed a s  gm/m -yr 

Source of data :  

Heron Pond ( t h i s  s tudy)  

Wisconsin Harsh (Lee &. , 1975) 

A l l  o the r s  (Likens & &. , 1977) 

* Transport of eroded p e a t  no t  included 

** NO3-N + NH3-N 

A l l  values  expressed as mg/l v i t h  t h e  except ion of pH @A unf t s )  
and conduct ivi ty  (~mho/cm) 
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groundwater flow. The l a t t e r  may be v a l i d l y  compared t o  

Hubbard Brook "streamflow" va lues ;  t h e r e  it was assumed t h a t  

because  o f  an  impermeable f ~ r m a t i o n  below t h e  f o r e s t  f l o o r ,  a l l  

groundwater e n t e r e d  t h e  s t ream and was measured a s  ou t f l ow  from 

t h e  system. 

L Tota l  phosphorus e x p o r t  from Heron Pond, 0.340 gm/m -yr i s  

g r e a t e r  than  t h a t  o f  a l l  non-wetland ecosystems p r e s e n t e d  i n  

2 Table  18 ,  and g r e a t e r  t han  e x p o r t  o f  0.108 gm/m -yr  from Lake 

Wingra, a  e u t r o p h i c  l a k e  i n  Wisconsin. Systems which exceed 

o r  approach t h e  swamp's o u t p u t  a r e  Rough S i k e ,  a  d i s t u r b e d  

2 2 bog, (0.4 gm P/m - y r ) ,  and a  Wisconsin marsh (0.284 gm/m - y r ) .  

A phosphorus budget  f o r  Heron Pond, however, r e v e a l e d  t h a t  

n e t  removal of phosphorus t a k e s  p l a c e  (see phosphorus budget  

r e p o r t ) .  Swamp phosphorus i n p u t  t o  t h e  r i v e r  when compared 

t o  t h e  t o t a l  q u a n t i t y  t r a n s p o r t e d ,  by t h e  r i v e r  i s  o n l y  0.047%. 

Loadings f o r  o t h e r  pa ramete rs  a r e  even s m a l l e r  pe r cen t ages ,  w i th  

t h e  excep t ion  of N H i - N ,  TKN and COD w i th  r e l a t i v e  swamp/river 

c o n c e n t r a t i o n  g r e a t e r  than  t h a t  o f  phosphorus. 

Ni t rogen e x p o r t  i s  low i n  comparison w i t h  o t h e r  sys tems.  

So lub l e  NO -N,  an  impor tan t  form o f  n i t r o g e n  i n p u t  from systems 3  

w i t h  a e r o b i c  c o n d i t i o n s ,  i s  i n  low c o n c e n t r a t i o n s  i n  Heron Pond. 

Ammonia i s  more impor tan t ;  some ou t f l ow  may be i n h i b i t e d  by 

a d s o r b t i o n  o f  ammonium i o n  on to  c l a y  (Ga r r e l s  -- e t  a l . ,  1975) .  

Over h a l f  o f  n i t r o g e n  expo r t ed  i s  o r g a n i c  n i t r o g e n .  

S u l f a t e  e x p o r t  was f a r  less t h a n  average  f o r  t h e  systems 

compared. Average e x p o r t  i n  t h e  Cache River  d r a i n a g e  b a s i n  is  

2 approximate ly  0.149 gm/m - y r ,  computed from d a t a  f o r  l oad ings  

2 given  by Nienkerk and Flemal (1976).  Heron Pond e x p o r t ,  5 . 1  gm/m -yr ,  

would n o t  appear  t o  be i n d i c a t i v e  o f  a  d i s t u r b e d  system. Likens and 



Bomann, (1972) found sulfate export to decrease when a temperate 

forest was clear cut. Export from the Taughannock Creek system 

2 was 38 gm/m -yr, much greater than from Heron Pond. Cation 

loading levels were low in comparison with the other systems 

studied. Export of ~ a + +  from Rough Sike, a disturbed bog, was 

14 times greater than from Heron Pond. 

DISCUSSION 

Heron Pond export values are in general far less than 

those of disturbed systems. An exception to this is phosphorus, 

with export exceeding that of the Taughannock Creek, New York 

ecosystem. Here the difference in nitrogen and phosphorus 

mobility is apparent. Taughannock exports 5.6 mg/l NO3-N and 

NH -N in comparison to Heron Pond's 0.50 mg/l, and is said to be 3 

receiving agricultural drainage in quantities which exceed natural 

removal capabilities (Likens -- et al., 1977). Phosphorus export 

values for the two systems are almost equal. 

Phosphorus generally occupies a sedimentary cycle in ter- 

restrial systems, and the aquatic environment of Heron Pond 

might perhaps make comparison of export only, without consider- 

ation of inputs, of limited value, except in comparison to data 

for other wetlands. Losses in a terrestrial system are most 

commonly due to weathering, with the additional atomospheric 

release of those elements with a gaseous phase (carbon, nitrogen 

and sulfur), as part of their cycle (Likens et -- al., 1977). Both 

the sulfur and nitrogen cycle have anaerobic conditions required 

in release to the atomosphere. C02 can be expected to be removed 



due to photosynthetic productivities in the system. Net 

removal of these in Heron Pond, then, is likely. 

Based upon the above factors, it is apparent that com- 

parison by export only may be best used in characterizing 

nutrient conditions in waters receiving swamp outflow, but 

not in hypothesizing net removal capabilities. A complete 

nutrient budget would be required for each element to deter- 

mine the swamp's true efficiency in utilizing these materials. 

This was done for phosphorus in another section of this report. 
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Phosphorus Dynamics in a Swamp Microcosm 

by 

Carol L. Dorge 

INTRODUCTION 

Previous discussions of Heron Pond Water chemistry suggest 

regulation of phosphorus concentration by biological components, 

or sediment/water exchange. In order to better understand some 

of these relationships a laboratory experiment was performed. 

METHODS 

Heron Pond water, sediment and duckweed were transported 

to the laboratory in five gallon carboys, then thoroughly mixed 

before the experiment was begun. One inch of sediment was 

placed in seven five-gallon aquaria (20 cm x 28 cm), while two 

aquaria were not supplied sediment. All of the aquaria were 

filled with swamp water and allowed one week to stabilize. 

After one week, duckweed and/or dry leaf litter was added to 

selected tanks according to the design scheme presented in Table 

29. 



Table 29 

Design Scheme for Swamp Microcosms 

Tank 
Number 

Treatment 
of system 

Interpretation of 
results 

Control Tanks: 

1 Light 
Water 
Formal in 

4 

Experimental Tanks: 

5 

Light 
Water 
Formalin 
Sediment 

Light 
Water 

Non-biological activity: 
a) sorbtion onto glass 
b) phototaxis 
c) settling not related to 

biological activity 

Exchange from sediments 
not related to biological 
activity (calculated in 
reference to results from 
tank 1) 

Biological Activity in 
the water colum (calculated 
in reference to results 
from tank 1) 

Light Biological ~ctivity in 
Water sediment exchange (calculated 
Sediment in reference to results 

from tanks 1 - 3) 

Light 
Water 
Sediment, 

Leaf Litter 

Light 
Water 
Sediment 
Duekweed 

Light 
Water 
Sediment 
Duckweed* 

Leaf Litter 

a) Decomposition of leaf litter 
b) Sedimentation rates 
c) A P concentration in water 

and sediment trap 

a) P removed by duckweed growth 
b) A P concentration in water 

and sediment trap 

a) Dyanimcs of P when released 
by litter decomposition in 
presence of duckweed 

b) A P concentration in water 
and sediment trap 



Table 29 continued 

Light 
Water 
Sediment 
Duckweed 

Same as Tank 6 
(replicate) 

Light a) Litter decomposition rates 
Water b) A P concentration of 
Sediment decomposing litter 
Duckweed c) Effect of greater initial 

Leaf Litter -,, litter (15.15 gm dry wt) 
in litter bags 

* 2 
equivalent to 90 gm/m , (5.10 gm dry wt/tank) 

** 
cypress litter In fiberglass screen "bag'!, 2.55 gm dry wt/bag 



Cool white florescent light bulbs, 80 cm above the water 

surface, provided the energy source for growth. Two sediment 

collectors were placed in each tank, one with opening approx- 

imately 10 cm below the water surface, and one 5 cm above the 

sediment surface (Fig.38). The sediment traps were suspended 

by galvanized steel wire; the opening was covered with a 

watch glass when traps were brought up for sediment collection 

and analysis. 

Water phosphorus concentration, for replicate samples, 

and temperature was measured eight times over a two month 

period. Duckweed, leaf litter and sediment phosphorus concen- 

trations, as well as dissolved oxygen, alkalinity, conductivity 

and pH were measured less frequently. Methods used were those 

presented in Table 17 of the Heron Pond Water Chemistry report and 

those used in the Heron Pond phosphorus budget. 

The above experiment was concluded when water phosphorus 

concentrations appeared to reach equilibrium. Water for all 

tanks except No. 9 was mixed and replaced. Tanks 6, 7 and 8 

were spiked with KH2P04 to achieve levels of 0.10, 0.50 and 

1.00 mg P/1 respectively. Water and duckweed phosphorus levels 

were measured. Tank 9, containing litterbags, was untouched 

in order to continue analysis of decomposition rates. 

RESULTS AND DISCUSSION 

Phase I 

Water column phosphorus data for Phase I of the study is 

presented in Table 30. 
9 





Table 30 

PHASE I: COMPARISON OF TANK PHOSPHORUS LEVELS 

Ortho-phosphate, pg/l Total Soluble P, pg/l 
Tank Initial Final Average Standard Initial Final Average Standard 
Number Conc. Conc. Conc. Deviation Conc. Conc . Conc . Deviation 

Total P. vg/l 
Initial Final Average Standard 
Conc. Conc. Conc. Deviation 



Temperature in the tanks ranged from 18 - 26O~. Average 
, pH for all tanks was 5.9 with deviation not attributable to 

different conditions in the tanks (standard deviation = 0.5). 

Alkalinity averaged 29.1. Early conductivity measurements 

averaged 114 pmho/cm; later values ranged from 10 pmho/cm to 

290 pmho/cm with standard deviation equal to 53.6. It is be- 

lieved that corrosion of sediment trap wire caused these results. 

Water phosphorus concentration may have been influenced by 

reaction with dissolved metals and results of water phosphorus 

analyses must be interpreted with caution in light of this. 

Tank phosphorus dynamics will be compared but few conclusions will 

be drawn. 

Average ortho-phosphate concentrations are slightly higher 

in experimental tanks than control tanks. A more definite trend 

toward complete removal of phosphate from the water column is 

observed in the control tanks. Therefore rate of release of 

ortho-phosphate by litter or duckweed must exceed the rate at 

which it is removed by adsorption on aquarfum glass, or the other 

variables listed in Table 29. The most stable systems (with 

minimum deviation) had both litter and duckweed, e.g. tanks 7 

and 9. Total soluble phosphorus showed trends similar to those 

of ortho-phosphate although standard deviation for all measure- 

ments was greater. 

High total phosphorus in Tank 5 may be due to high levels of 

particulate matter from decomposing litter. In general, higher 

levels in the experimental tanks would be caused by this suspended 

matter. Standard deviation values for the experimental tanks far 

. ]  
t:. 



exceeded those of the control tanks, while ortho-phosphate 

levels were shown to be less variable in experimental tqnks. 

Tank 7 had the maximum measured concentration, 0.525 mg/l, 

intermediate in the study period, when leaf litter appeared to 

be actively undergoing decomposition. 

Phase I1 

Tanks which were spiked to levels of 1.15 mg P/1 returned 

to natural levels in two weeks (Table 31). Duckweed was a.nalyzed 

and phosphorus content, was found to be higher in the tank which 

received the greatest spike. 

Litter decomposition, expressed as percent dry wt remaining, 

is shown in Table 32. 

Table 32 

Litter Decomposition 

No. of Weeks % dry wt remaining 

- 

Very similar rates for decomposition (expressed as change in 

organic weight only) were obtained by Brinson (1977). In gen- 

eral, lower autumn water temperatures would cause rates to be 



Table 31 

Phase 11: Phosphorus Levels i n  Spiked Tanks and Duckweed 
I 

i 

i 
i I n i t i a l ,  pg/l F i n a l ,  pg/l Duckweed 
i Tank Ortho- To ta l  To ta l  mg P/gm dry  w t  

Number phosphate P P 
I 
I 

i 

i * 
Spike t o  i n c r e a s e  concen t ra t ion  by 0.2 mg/l. 

** 
Spike t o  i n c r e a s e  concent ra t ion  by 0.5 mg/l. 

*** 
Spike t o  i n c r e a s e  concent ra t ion  by 1.0 mg/l. 

I 
I 
1 



less in a natural environment, than in the laboratory. Phosphorus 

concentrations of litter bag contents increased over time. 

Schlesinger (1977) and Brinson (1977) found similar increases and 

attributed them to adsorbtion on the litter or on microbes attached 

to the litter, or immobilization by microbes attached to the litter. 

Sedimentation Rates 

Sedimentation attributed to duckweed productivity, 0.26 gm 

dry wt/m2-day was less than values found in natural systems. In 

another microcosm study (Glandon, 1977) rates, measured by change 

2 in biomass over time were 0.86 gm dry wt/m -day. 

Litter was found to settle in the period of a month, but de- 

composition was not complete in this period as previously dis- 

cussed. Suspension of litter bags in the water column might there- 

fore not perfectly replicate the natural system assuming microbial 

activity is different at the sediment/water interface. Rates are 

shown in Table 33. The value for litterfall "projected yearly 

deposition" is purely hypothetical due to seasonal variation in 

true litterfall rates. 



Table 33 

Sedimentation Rates 
. . " .  . " - 

Sample 
Description 

Sample 
Period 

# 
days 

Projected year y deposition 3 (gm/m -yr) 

Duckweed Sed. 
(Ave. Tanks 
6 - 9) 
Duckweed Maximum 
Growth 
(Tank 8) 

Total Sedimentation 6/17-7/8/77 
(Tanks 5 - 7) 
Litter onlyL 6/17-7/8/77 

Sed. not due to 6/17-7/8/77 
litter or duckweed 
(tanks 1,3,4) 

52% of litter added to tanks initially was measured in this sediment collection. 

This valye is approximately equal to normal annual litterfall for Heron Pond, 
348 gm/m -yr. 



PHASE 3 - ECOSYSTEM STUDIES 

Sedimentation Rates and 

Sediment Analysis in Heron Pond 

Carol L. Dorge 

and 

William J. Mitsch 

INTRODUCTION 

Heron Pond sediments received limited study in this 

research; their importance as energy and nutrient storages 

received primary emphasis. Sediment core analyses were 

limited to measurement of phosphorus content, organic matter 

and bulk density. Rate of sediment accumulation in the swamp 

was also measured. Sediment deposition is due to both autochthonous 

sources within the swamp and to allochthonous sources, primarily 

the flooding Cache River. Sediments as they relate to hydrology, 

swamp productivity, and the phosphorus budget are discussed further 

in other sections of this report. 



METHODS 

Sediment Core 

Sediment cores approximately 25 cm long were taken from 

Heron Pond with a K.B design core sampler. Two cores was 

frozen, then sliced into cylindrical sections and volumes 

calculated. The sections were than dried at 1 0 3 ~ ~ ~  dry/wet 

ratios determined and bulk density computed. The sections 

were then ashed at 550°C and percent organic matter was cal- 

culated. Organic storage in kg/m2 for the 25 cm surface 

layer was calculated by integrating the product of bulk 

density and organic content. This value was converted to 

energy by using a conversion factor of 4.5 kcal/gm O.M. 

Ashed subsamples of the sediment core were covered, 

allowed to stand for 12 hours in concentrated nitric acid, 

then heated carefully in the acid for one hour. This ex- 

tract was analyzed for phosphorus content according to the 

Ascorbic Acid - Molybdate blue method (Murphy and Riley, 
1962). Sediment particle size was measured with a Leeds 

and Northrup particle analyzer. 

Sedimentation Rates 

Ten sediment traps (Fig.39), each with area open to 

L collection of 60.1 cm , were used to measure sedimentation 
rates. Two replicate traps were placed at each of 5 sample 

stations (see Fig. 2 for locations). These data were applied 





in calculation of aquatic production, settling of phosphorus, 

and flood contribution to sedimentation and phosphorus de- 

position. Traps were sampled 5 times during the study period. 

Undisturbed swamp water was siphoned into the traps which 

were then covered and lowered into position, the cover was 

then carefully removed. A control was run to measure resus- 

pension during the placement and uplift of the traps and less 

then 0.5 gm of sediment (7% of minimum collection) was collected. 

This test was run at a time when swamp water level was sign- 

ificantly higher than trap height; however, measurements of 

total deposition during seasons of low water level are not 

significantly higher. Limited data for sedimentation in a 

Florida dome which was receiving secondary sewage suggest a 

rate 65% as large as the Heron Pond rate; that study also 

suggests that some stirring of the sediments may have affected 

results (Graetz and Struble, 1975) . 
Wet and dry weight of sediment trap samples were determined 

as with the sediment cores. Ashed samples were used to de- 

termine organic matter and phosphorus content in the same 

manner as sediment core analyses. Phosphorus concentration 

for each sediment trap sample was multiplied by the deposition 

rate for each period to arrive at values for phosphorus 

deposition by sedimentation. 

Flood contribution to sedimentation was assumed to be 

the "excess" deposition during the March 3, 1977 - June 2, 1977 
sampling period. The normal deposition rate for this time was 



assumed to equal the average of the rates for the period 

ending March 5 and the June 2 - July 29 period. This value 

subtracted from the total deposition gives flood contribu- 

tion. The volume of water which passed over the swamp 

multiplied by average solids concentration of floodwater 

samples gave a value for solids passing over the swamp. 

RESULTS 

Sediment Co-re 

Sediment core bulk density, and organic matter are 

presented in Table 34 and graphed vs. depth (Fig. 40). 

Fig.40 also shows phosphorus concentration with depth. Bulk 

density, to a depth of 24 cm averaged 0.74 gm dry wt/cm3 in 

core 1 and 0.62 gm dry wt/cm3 in core 2. The increase in 

bulk density with depth is expected as organic content decreases 

(Brady, 1974). Percent organic matter averaged 8.96% in core 1 

and 26.8% in core 2. This high value for core 2 is attributed 

to a value of 30% in the surface layer of the core. This value 

is likely due to recently deposited leaf litter and/or duck- 

weed. (Fresh leaf litter averaged approximately 90% organic 

matter while duckweed averaged 75 - 80%). Eliminating the 

high surface value for core 2, average percent organic matter 

for the core is 7.6%. By contrast, sediment collected in 

sediment traps had an average 52.5% organic matter. The peat 



Table  34 

Sediment Core Analyses 

S e c t i o n  S e c t i o n  W e t  Dry Bulk d e n s i t y ,  % 
Ash - 

N o .  l e n g t h ,  c m  we igh t ,  gm w e t  c~rn/cm~ o r g a n i c  d ry  

Core No. 1 

Core N o .  2  

Core N o .  1: 

Bulk d e n s i t y  x = 0.74 

% o r g a n i c  m a t t e r  x = 8.96% 

Organic  s t o r a g e  = 14.3  kg O.M/m 
2 

Core N o .  2  : 

Bulk d e n s i t y  x = 0.62 

% o r g a n i c  m a t t e r  = 26.8% 

% o r g a n i c  m a t t e r  ( lower  s e c t i o n s )  = 7.6% 

Organic  s t o r a g e  = 15.6 kg O.M./m 
2 

* Bulk d e n s i t y  (gm d r y  w t / c m 3 )  = 3 x w e t  w t  (gm) 3 volume ( c m  ) 



BULK D E N S I T Y , ~ ~ ~ ~  '10 ORGANIC mg-Pig d r y  w t  

Figure  40.  Sediment c o r e  p r o f i l e s  from Heron Pond f o r  bulk  d e n s i t y ,  
o rgan ic  c o n t e n t ,  and phosphorus con ten t .  



layer in the sediments is shallow and clay is predominant by 

1 a depth of 10 cm. The organic content of the sediment to 25 

2 cm from the two cores averaged 14.95 kg O.M/lm or an energy 

2 value of 67,300 kcal/m . This organic storage is about one- 

third of the total tree biomass of the swamp (see "Net Primary 
) 

Productivity and Biomass of Vegetation in Heron Pond" in this 

l report). 

Mean particle diameter of sediment in the top 5 cm is 

I 28 p; this is the size of silt particles. Visual analysis 

of deeper sediment layers indicate they are predominantly 

I clays; this is characteristic of southern Illinois swamps. 

I The U. S. Department of Agriculture (1964) described Heron 

Pond soil as Piopolis silty clay loam, a soil with high clay 

I content, low organic matter, plastic when wet and slowly 

permeable. The swamp, then, is sealed with an impermeable 
I 

I 
I lense of clay that eliminates vertical flow of groundwater. 

I Sediment core phosphorus content is presented in Fig.40. 
I 
J Maximum concentration, 1.3 mg-P/gm dry wt, was found in the 

I surface layer. Total storage, calculated assuming average 
1 

bulk density for the 2 cores, was 119 gm-~/m2 in the upper 
1 

I 25 cm. 
I 

I Sedimentation Rates 
I 

Sedimentation rates measured at individual stations are 
I 
1 
i given in Table 35. Little consistent spatial pattern was 

1 noted. Analysis of variance (u = 0.05) of differences in 
? 
I 

station location could not reject the hypothesis that the 
? 



Table 35 

Sedimentation Rates by Individual Traps For Heron Pond 

Period 

2 Sediment Deposition, gm/m -day by Trap Number 

# days Ave % Organic 1 2 3 4 5 Ave 
0.M.Dry 0.M.Dry 0.M.Dry 0.M.Dry 0.M.Dry 0.M.Dry 

O.M.  = Organic Matter 



sedimentation rates were similar at all stations. Station 1 

seemed to be located away from the main flow during flooding, 

but otherwise had similar values to the others. 

Table 36, sern~narizes weighted averages of total and daily 

sediment deposition while Fig. 41 presents a bar graph of 

organic and inorganic portions of the sedimentation rates. 

Highest rates of sediment deposition were experienced in 

autumn during the time of maximum litterfall and duckweed 

deposition. Less noticeable peaks are noted in spring and 

late summer. Extending the data for a full year, total 

2 deposition was calculated to be 5.6 kg/m with organic sedimen- 

tation about 2.9 kg/m2 or 52% of the total. The average 

2 sedimentation rate was 15.3 g/m -day. Thirty one percent 

of the total sedimentation and 41 percent of the organic sedi- 

mentation occurred during the months of October and December. 

The flood contribution to the sedimentation was found 

to be 447 g/m2 (see calculation on Table 37). It was estimated 

2 that 15 kg/m of sediments passed over the swamp during the 

flood. Thus about 3 percent of this stream load settled out 

in Heron Pond. The sediments deposited for this period were 

low in organics (24.7%) as would be expected in high sediment 

loaded flood water (see water chemistry section). This suggests 

that the calculated flood contribution is a low estimate. If 

the average organic percent before and after the flood is used 

as the basis for the calculation, the flood is estimated to 

contribute 787 g/m2 in total sediments. 



SEDIMENTAT ION 

INORGANIC 
ORGANIC 



Table 36 

Summary Sediment and Phosphorus Deposition Rates 

Sediment Deposition Phosphorus Phosphorus Deposition 
Date of No. of days in Total, gm dry wt concentration Total, 
Collection sample period gm dry wt/m 2 -day mg-P/gm dry wt 2 

mg/m2 
mg-P/m -day 

Total or 349 
average 

Wt. annual 365 5586 15.3 2.8 15685 43.0 
values 

1. Calculated by extrapolation of phorphorus - organic matter curve. 



T a b l e  37  

C a l c u l a t i o n s  f o r  F l o o d  S e d i m e n t  a n d  P h o s p h o r u s  D e p o s i t i o n  

S e d i m e n t  d e ~ o s i t i o n  d u e  t o  f l o o d  

1 0 . 9  gm d r y  w t  + 9 . 9  gm d r y  w t  - 
2 

- 
m2-day m -day  

a m o u n t  n o t  d u e  t o  f l o o d :  (3/5/77-6/2/77) 

1 0 . 4  gm d r y  w t  

m2-day 

1 0 . 4  g m d r y w t  x 8 9  d a y s  = 926  g m d r y w t / m  2 

2 m - d a y  

a m o u n t  d u e  t o  f l o o d :  

1 3 7 3  gm d r y  wt/m 2 - 926  gm d r y  wt/m = 4 4 7 g m d r y w t / m  
2 

P h o s p h o r u s  d e p o s i t i o n  d u e  t o  f l o o d  

a m o u n t  n o t  d u e  t o  f l o o d :  (3/5/77-6/2/77) 

2 8 . 9  mg-P x 8 9  d a y s  = 2572  mg-P/m 2 

-2 m - d a y  

a m o u n t  d u e  t o  flood: - 
6188  mg-P/m 2 - 2572mg-P/m = 3616mg-P/m 2 



Phosphorus Deposition 

Sediment trap phosphorus content was found to be inversely 

proportional to organic content (Fig.42). This may be due to 

the high clay content of the sediments: clay is known for its 

affinity to phosphorus (Brady, 1974). Deposition rates cal- 

culated for each sample period are presented in Table 36. A 

2 total of 15.7 g-P/m -yr was captured by the sediment trap. 

2 Of that, a total of 3.6 g-P/m was calculated to have been 

contributed by the flood (Table 37). This is shown as a bar 

graph in Fig.43. Note that when deposition is expressed in 

terms of phosphorus, the highest rate was experienced at flood 

time. On a phosphorus balance, the flood passed 80.2 g-P/m 2 

over the swamp; thus 4.5 percent of this amount was sedimented 

out into the swamp. 

DISCUSSION 

While the sediments are an important reservoir of energy 

and nutrients in this forested wetland, it was also shown 

that the fluxes of energy and nutrients are also very high. 

If one assumes that the surface deposits are represented by 

the surface sample of core No. 2 (30% organic matter), then 

2 the "active" organic layer can be estimated to be 4800 g/m . 
2 The total organic sedimentation rate was 2900 g/m -yr, thus 

yielding a rapid turnover time of 1.6 years. This is re- 

markably close to the value of 1.5 years reported by Whittaker 

(1975) for the temperate deciduous forest. If the sedimentation 

was overestimated due to resuspension the turnover time would 



mg P/g dry wt 





be proportionally longer. 

The flood had a major part in the phosphorus deposition 

2 to the sediments. It was estimated that 3.6 g-P/m was 

contributed by the flood. This can be compared to the 119 

g-~/m2 in the upper 25 cm of the swamp. Phosphorus values 

in the sediment trap samples over the flood period were very 

high (4.5 mg-P/g dry wt.) compared to other sediment trap 

samples (2.0 - 3.2 mg-P/g dry wt.) and to sediment core 
samples (0.4 - 1.3 mg-P/g dry wt.). The sink for the 

sedimented phosphorus is not known but the pattern of de- 

creased phosphorus in the sediment suggests significant 

uptake by the vegetation; leaching to groundwater has to be 

minimal with the impermeable clay lense under the swamp and 

overland flow out of the swamp accounts for a small percentage 

of the deposition (see water chemistry section). 

The sedimentation rates measured in this study are ex- 

tremely high and mention should be made of possible sources 

of overestimation. Resuspension during trap installation 

and recovery, as well as during the entire sampling period, 

has to be studied carefully. Even though the cypress trees 

serve as a wind break and thus rarely allow for turbulent 

conditions in the water, some stirring is possible. Struble 

and Graetz (1976), in similar measurements in Florida ex- 

perimental cypress swamps, found lower sedimentation rates 

(5 - 19 g/m2-day) than the rates of this study (10 - 28 g/m2-day) 
but likewise cautioned that resuspension was probable. They 

suggested traffic by experimenters in the swamp as a main course; 



this was generally not a problem at Heron Pond. 

While, for sediments, phosphorus was the only specific 

chemical parameter studied, it has been shown that swamp 

sediments are extremely important in other nutrient cycles 

and in removing nutrients from the water column through 

cation exchange. The appearance of bubbles accompanied by 

the odor of hydrogen sulfide when the sediments are disturbed 

in Heron Pond indicates the presence of sulfur bacteria and 

an anaerobic environment. The H2S may contribute to swamp 

acidity if oxygen is present in the water column and sulfur 

compounds become oxidized to sulfuric acid (Gorham, 1967). 

Sediments also affect pH and nutrient availability by the 

nature of the peat. Sphagnum peat, for instance, through 

cation exchange, will release hydrogen ions into the water 

column while removing other ions. This often results in a 

nutrient deficient environment (Watt and Heinselman, 1965). 

Sphagnum is not present in Heron Pond (Anderson and White, 

1970); however other forms of peat might be performing 

similar activities, in addition to serving as valuable energy 

storage. 



Net Primary Productivity and Biomass 

of Vegetation in Heron Pond 
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William J. Mitsch 

INTRODUCTION 

Wetlands have been described as being among the most 

productive ecosystems (Westlake, 1963; Whittaker, 1975). 

Net primary productivity and biomass of the various vegeta- 

tive components of Heron Pond were measured to determine 

the structure and function of a cypress-tupelo floodplain 

forest in Southern Illinois and to compare the values with 

measurements made elsewhere. Heron Pond is near the 

northern extreme of this type of bottomland forest. Major 

vegetative components include baldcypress (Taxodium distichum) 

and swamp tupelo (Nyssa aquatica) in the canopy, a mat of 

floating duckweed (described by Anderson and White (1970) as 

being composed of Azolla mexicana and Spirodela polyrhiza) on the 

water and various shrubs and herbaceous understory on floating 



logs and tree stumps. A list of the understory vegetation in 

Heron Pond as described by Anderson and White (1970) is given 

in Table 38. 

METHODS 

Duckweed 

To measure duckweed biomass, a 0.19 m2 box with screen 

bottom and open top was lowered into the water and moved 

below the surface to an area of undisturbed duckweed; it 

was then raised, and duckweed collected from the screen. 

This was repeated 3 times. The cornposited sampled was 

weighed wet; a subsample was dried in the lab at 1 0 3 ~ ~  to 

determine a dry/wet ratio. 

Duckweed productivity (D) was calculated from sedimenta- 

tion values as follows: 

Total Sediment - L~~~~~~~~~ - D = Flood - 
deposition deposition 

Resuspension 
Estimate 

Methods of sediment collection are presented in the section 

of this report entitled "Sedimentation Rates and Sediment 

Analysis in Heron Pond". 

In order to avoid overestimation of duckweed productivity, 

an estimate of resuspension into the sediment traps was made. 

It was assumed that little detrital production occurred both 



Table 38 

Understory Vegetation in Heron Pond 

as Described by Anderson & White (1970) 

Herbs & Shrubs 

Moss spp. 

Galium obtusum 
Rosa palustris * 
Scutellaria lateriflora 
Itea virginica 
Cuscuta cuspidata 
Cyperus erythrorhizos* 
Rhus radicans 

Carex sp. 
Parthenocissus quinquefolia 
Smilax SD. 
Rubus sp. 
Vitis sp. 
Lobelia cardinalis 
Cv~erus esculentus 
-LC_ 

Cyperus erythrorhizos 
Cephalanthus occidentalis* 

Seedlings 

Ulmus sp. 
Acer rubrum var. Drumndii 
Taxodium distichum 

Aquatic Vegetation 

Azolla mexicana* - - -  - - - 

Spirodela polyrhiza* 
Cerato~hvllum demersum* 

* Positively identified i.n this study 



during the winter and during late spring period, the average 

2 value during these two periods, 10.4 gm/m -day, was subtracted 

from the other periods to give a more realistic measure of 

duckweed (and total aquatic) net productivity. 

Cypress and Tupelo 

A point quarter survey (Cottam and Curtis, 1956) provided 

the basis for biomass and productivity measurements. Ten 

points, 30 meters apart along a line south from the main plat- 

form sample station 4, were established and marked with stakes. 

Each point defined four quadrats (a north, south, east and west 

quadrat), Diameter at breast height (DBH), height, distance 

from the stake and tree species was recorded for the nearest 

tree (with minimum diameter 10 cm) in each quadrat. One tree 

at the tenth point, was eliminated from data analysis because 

a double trunk produced an unrepresentative DBH value. There- 

fore, a total of 39 trees were evaluated. 

Tree biomass was calculated using the parabolic formula 

for volume Vp: 

r = radius at breast height 

h = height 

Biomass values were obtained by multiplying calculated 

volume by density values of 451 kg dry wt/m3 and 491 kg dry wt/m 
3 

for cypress and tupelo respectively. These were obtained from 

values reported in the U. S. Department of Agriculture Wood 

Handbook (1940) after correcting for moisture content. 



To place biomass data on an areal basis, mean area per 

tree was computed from point-quarter survey distance measure- 

ments and multiplied by the number of trees to give a value 

for sample area. This method was found by Cottam and Curtis 

(1956) to result in a more accurate value for area than other 

commonly used sampling techniques. 

Tree production was calculated as the sum of the following 

components: litterfall (L), above-ground woody growth (AB/At) 

and root growth (AR/At). Litter was collected in 9 litter boxes 

2 with an area of 0.19 m each. They were located at randomly 

selected sites along the transect used for the point-quarter- 

survey (see Fig. 2). Litter was sampled 7 times and composited 

during the 12 month study. Litter was dried at 1 0 3 ~ ~  and weighed 

to determine its contribution in gm dry wt. 

Above ground woody growth (AB/At) was determined using tree 

core analyses of 9 cypress and 10 tupelo and estimating biomass 

change over the last 5 years. 

Using the parbolic formula on an incremental growth basis 

(Whittaker and Woodwell, 1968), biomass change over the chosen 

5 year period for each cored tree is given as: 

where, 

WP = wood production, kg/yr 

p = density of wood, kg/m 3 

r1rr2 = tree radii at beginning and end of 5 year 

period, m 

h = tree height, m 



The calculated production values for cored trees were 

graphed as WP vs DBH and from this graph the productivities 

for surveyed trees were interpolated. These values were 

placed on an areal basis in the same manner as biomass values, 

produced a value for above ground wood productivity (AB/At) in 

Root biomass was found by Mitsch (1975) to be 35.6% of 

total cypress biomass in Florida. In an average temperate 

forest, root biomass is 20 - 35% of total above-ground biomass 
(21% of total biomass) while fire adapted trees have 36% of 

total biomass in their roots (Woodwell and Whittaker, 1968). 

This coefficient was used to compute both root production and 

biomass from above-ground productivity and biomass, according 

to the simplified method presented by Newbould (1967): 

Above-ground production = Below-ground production 
Above-ground biomass Below-ground biomass 

K is assumed to be unity (Newbould, 1967). 

Importance values, calculated from relative dominance, 

relative density and relative frequency were also computed 

from point quarter survey data (method modified from Cottam and 

Curtis (1956) as given in Smith (1972) ) .  

Herbaceous Understory 

The biomass of leaves of understory shrubs and harvested 

herbaceous understory vegetation (AH/At) at the end of the 

growing season was used an an estimate of the minimum pro- 

ductivity value which might be attributed to these plants. 

This method was used by Schlesinger (1977) and Conner and 

Day (1976). To'ascertain that turnover time of these com- 



ponents of the Heron Pond understory is at least one year, 

the species list (Anderson and White 1970) was used. Eighteen 

2 randomly selected 0.5 m plots were harvested in September. 

RESULTS AND DISCUSSION 

Duckweed 

Duckweed biomass at each sampling time is presented in 

Fig. 44. A maximum standing crop of 408 gm dry wt/m2 was 

found in September 1977while biomass was zero during winter 

months. Most of the growing season had values between 100 

2 and 200 gm dry wt/m . This is high compared to values measured 

by Wood (1972) in a southern Illinois pond with duckweed. A 

maximum increase in biomass of 5.3 gm/m2-day was measured in 

September 1977. Total aquatic net production was found by 

2 sedimentation measurements to average 3.0 gm dry wt/m -day, 

2 totalling 1097 gm dry wt/m -yr. This was assumed to be due 

primarily to the floating duckweed. Price (1975) found 

duckweed production in a ~lorida cypress dome which was re- 

ceiving secondary treated sewage, at an equilibrium growth 

2 phase to be 2.91 gm wet wt/m -day. Assuming a dry/wet ratio 

of 0.09 (from Heron Pond data), this would equal 0.26 gm dry 

2 wt/m -day. Glandon and McNabb (1977), in a laboratory experiment, 

found growth rates averaging 0.86 gm dry wt/rn2-day at approximately 

2160 kcal/m2-day (19,000 lux) . The much higher growth rate 

found at Heron Pond approximates that of a eutrophic marsh system 

although somewhat Power than a waterhyacinth marsh producing 





2 5044 gm/m -yr (Mitsch, 1977) or a reed swamp found to produce 

2 2900 - 4600 gm/m -yr (Watt and Heinselman, 1965). Duckweed, 

in its early growth stages has a doubling time of approximately 

2 days (Price, 1975; Glandon and McNabb, (1977). Maximum doubling 

time measured in Heron Pond was 17 days. 

Litterfall data for Heron Pond is presented in bar graph 

2 form in Fig. 45. Total annual litterfall was 348 gm dry wt/m -yr. 

This value is much less than the value obtained by Conner and 

Day (1976) in a cypress tupelo swamp in Louisiana (620 gm dry 

2 2 wt/m ) and approximates the 310 gm dry wt/m -yr found by 

Schlesinger (1977) in the nutrient-poor Okefenokee swamp in 

Georgia. Heron Pond annual litterfall, expressed as a percent 

of total biomass, is 0.8%; this value is also lower than the 

average for a swamp forest, 1.5 - 2% according to Rodin and 
Bazilevich (1967). Leaf production in cypress swamps is 

approximately equal to that of a temperate forest, 300 - 400 
2 gm dry wt/m -yr; values for Lac des Allemands, Louisiana 

(Conner and Day, 1976) and the Tar River swamp, North Carolina, 

(Brinson, 1977) approach levels in a tropical forest, 900 gm 

2 dry wt/m -yr (Woodwell and Whittaker, 1968). 

Results of tree core analyses are presented in Table 39. 

These data were plotted as wood productivity vs DBH for both 

cypress and tupelo (Fig.46). Regressions with the following 

equations were formulated for cypress and tupelo: 

y = 0.1829 x -0.66 (cypress) 

y = 0.5675 x -7.437 (tupelo) 





1 

Table 173 
3 

Cypress and Tupelo Net Primary Productivity Calculations Based 
on Tree Core Analysis for the Last 5 Years 

Tree Height DBH Basal Area E V ~  NPP 1 
1 

Number TYPe (m) (cm) Increase (cm /yr) (m /yr) (kg/~r) I 

Cypress 
Cypress 
Cypress 
Cypress 
Cypress 
Cypress 
Cypress 
Cypress 
Cypress 

Tupelo 
Tupelo 
Tupelo 
Tupelo 
Tupelo 
Tupelo 
Tupelo 
Tupelo 
Tupelo 
Tupelo 

2 
1. Basal Area Increase = BAI = rr(r22-r12)/5 (cm /yr) 

Where r2= present tree radius 
rl= tree radius 5 years ago 

3. NPP = Net Primary Production = p EVI 

p = 451 kg/m3 (cypress) (USDA, 1940) 

p = 491 kg/m2 (tupelo) (USDA, 1940) 





where, 

x  = DBH ( c m )  

y  . = wood p roduc t i on  (kg/yr)  

These g raphs  were used t o  i n t e r p o l a t e  t h e  wood produc t ion  

v a l u e s  f o r  a l l  t h e  trees, p r e s e n t e d  w i t h  p o i n t  q u a r t e r  su rvey  

and biomass d a t a  i n  Table 40. Fig.47 shows t h a t  w h i l e  d iamete r  

growth slowed f o r  l a r g e r  cyp re s s  i n  Heron Pond, i n c r e a s e  i n  

b a s a l  a r e a  approximated a  l i n e a r l y  i n c r e a s i n g  r e l a t i o n s h i p  w i th  

DBH . 
Above-ground wood p roduc t i on  f o r  c y p r e s s  and t u p e l o  were 

2  2  193 g m d r y  w t / m  -yr  and '137 gm d r y  w t / m  -y r  r e s p e c t i v e l y  f o r  a  

2 t o t a l  o f  330 gm d r y  w t / m  -yr .  Root p r o d u c t i v i t i e s  were 107 gm 

2 2 d r y  w t / m  -yr  and 76 gm d r y  w t / m  -yr .  T o t a l  tree p roduc t i on  

2 ( l i t t e r  + wood + r o o t )  i s  t h e r e f o r e  861 gm d r y  w t / m  -y r .  Above - 
2 ground p roduc t i on  i s  678 gm/m -yr .  Heron Pond above-ground tree 

p r o d u c t i v i t y  i s  compared t o  t h a t  o f  s e l e c t e d  s o u t h e a s t e r n  swamp 

ecosystems i n  Table  41. N e t  p r o d u c t i v i t y  i s  a lmos t  h a l f  o f  

t h a t  measured i n  a  s i m i l a r  cypress - tupe lo  swamp i n  Louis iana  by 

Conner and Day (1976) . 
Cypress and Tupelo Biomass 

Biomass v s .  DBH f o r  28 c y p r e s s  and 2 1  t u p e l o  were p l o t t e d  

and compared t o  a  s i m i l a r  d a t a  f o r  Taxodium di ' s t ichum v a r .  

nu t ans  h a r v e s t e d  i n  F l o r i d a  by Mitsch (1975) (F ig .48) .  While 

t h e  F l o r i d a  trees were s m a l l e r  t h a n  t h o s e  i n  Heron Pond, s i m i l a r  

r e g r e s s i o n s  were ob t a ined .  Desp i te  t h e  g r e a t e r  wood d e n s i t y  of  

t u p e l o ,  no d i f f e r e n c e  i n  biomass v s  DBH was found f o r  Heron 

Pond c y p r e s s  vs .  t u p e l o  and t h e  graph i s  r e p r e s e n t e d  by a s i n g l e  



Table 4 0  

Above-Ground Biomass and Productivity Calculations from Tree Survey in Heron Pond 

Page 1 of 2 

Productivity 
Tree Height DBH Distance Parabolic3 Biomass (kg dry wt) (kg dry wt/yr) 
Number Type* (m (cm) (m Volume (m ) Cypress Tupelo Cypress Tupelo 



Table 40 Cont'd 

Above-Ground Biomass and Productivity Calculations from Tree Survey in Heron Pond 

Page 2 of 2 

Productivity 
Tree 

Type* 
Height DBH Distance Parabolic3 Biomass (kg dry wt) 

Number (m) (cm) (m Volume (m ) Cypress Tupelo Cypress Tupelo 

Total 

* 1 = Cypress 

2 = Tupelo 



40 60 80 100 120 140 160 
DBH, cm 

Figure 47. Diameter increase and basal area increase for 
cypress in Heron Pond as a function of diameter 
at breast height (DBH) . 



Table 4 1  

N e t  Primary P roduc t iv i ty  of  Trees i n  Cypress and Tupelo Swamps 

System Reference L i t t e r f a l l  
(w/m -yr) 

A B / q  Tota l  Production 
(gm/m -yr )  (gm/m -yr )  

Heron Pond, I L  This s tudy 34 8 
(Above ground only)  - - 

Withlacoochee S t a t e  Mitsch & Ewel 
F o r e s t ,  F l o r i d a  (Unpublished) 

Cypress-Hardwood 
Stands 

Cypress-Tupelo 
Stands 

Cypress Pure Stands 

Cypress Pine Stands 

Alachua County, FL Mitsch & Ewe1 
(Unpublished) 

Sewage Dome 

Groundwater Dome 

Drained Dome 

Ponded Dome 

Okefenokee Swamp, 
Georgia Schles inger  

(1977) 



Table 41 Cont'd 

Lac des Allemands 
Swamp, LA 
Cypress-Tupelo 

Bottomland 
Hardwood Forest 

Conner & Day 
(1976) 

Big Cypress Swamp, FL Carter, et. al. 
(1973) 

Undrained Swamp 

Drained Swamp 

Tar River 

Tupelo Swamp, NC ~rinson' (1977) 609-677 - - 





line of log paper with equation: 

where, 

y = biomass (kg) 

x = DBH (cm) 

2 Using a value for total sampling acreage of 1514 m , 

cypress and tupelo biomass were found to be 39.1 kg/m2 and 

5.9 kg/m2 respectively. Average total above-ground biomass 

of a mature temperate forest is 30 - 50 kg/m2 (Woodwell and 
2 Whittaker, 1968). Mean area per plant is 38.8 m . Mitsch 

and Ewe1 (unpublished) found cypress biomass to range from 

with average value, 13.5 kg dry 

in Withlacoochee State Forest, Florida. Cypress-tupelo 

2 stands there had average cypress biomass of 19.0 kg dry wt/m . 
Relative density, relative frequency, relative dominance 

and importance values for Heron Pond trees are presented in 

Table 42 and compared to values computed previously in Heron 

Pond by Anderson and White (1970). Data from this study 

indicate that tupelo tend to be clumped. Anderson and White 

did not compute relative fr.equency and it is likely that, if 

this were included, their importance values (58.1 for cypress 

in a cut-over stand and 82.4 in an old growth stand) would 

shift further in favor of cypress. In general, the results of 

the two studies compare favorably. 

Non-aauatic Understorv Production 

Harvest of understory vegetation in September produced a 

2 yield of 4.5 gm dry wt/m , with values ranging from zero - 29 



Table  42 

R e l a t i v e  I n p o r t a n c e  o f  Cypress ,  Tupelo and 

Drummond Maple i n  Heron Pond 

Taxodium d i s t i c h u m  Nvssa a a u a t i c a  A c e r  drummondii 

T h i s  cut-'  Old-growth T h i s  cut-' Old- 1 T h i s  cut-' Old- 1 
Study o v e r  Stand Study o v e r  growth Study o v e r  growth 

S tand  S tand  S tand  S t a n d  S tand  

Average DBH ( c m )  57.0 63.5 70.6 

Average He igh t  21.1 - - 
(m)  

R e l a t i v e  Dens i ty  71.8 45.9 70.9 

R e l a t i v e  62.5 - - 
Frequency 

R e l a t i v e  84.1 70.4 94.0 
Dominance 

I m p o r t a n t  Value 72.8 58.12 82,42 
on  b a s i s  o f  100 

Anderson and White (1970) 

Does n o t  i n c l u d e  r e l a t i v e  f requency  



gm/m2 (Table 43). Standard deviation of harvest values for 0.5 rn 
2 

plots was 3.9 with mean, 2.2, indicating vegetation was not uniformly 

distributed. Vegetation distribution was dependent upon the 

availability of rotting logs or tree trunks for substrate. 

Annual productivity of this vegetation strata is thus estimated 

2 to be 4.5 gm dry wt/m -yr. Similar harvest in a cypress-tupelo 

2 swamp by Conner and Day (1976) produced 20 grn dry wt/m -yr. 

Total Above-around Production 

Total swamp net primary productivity, is estimated to be 1963 

2 gm dry wt/m -yr. Duckweed is the dominant producer, contributing 

55.9% of the total (Table 44). Historical data for tree growth 

from tree ring measurements indicate that the period 1971 - 
1975 may have been an abnormally low growth period. Beaver 

activity in the late 1960's raised the swamp water level and was 

observed to cause an abnormally high tupelo death rate. It is 

difficult to determine whether beaver activity, flood water 

volume or another forcing function cause the apparent low tree 

growth. 

It is conceivable that duckweed production increases in 

response to lower tree growth and more open canopy; Mitsch and 

Ewe1 (unpublished), however, found duckweed productLon to increase 

rapidly in a Florida sewage dome at the same time that tree 

growth (measured as change in diameter) appeared to also be 

increasing. In the Florida study, both cypress domes receiving 

sewage and groundwater had approximately equivalent growth 

per tree: 4.2 - 5.0 kg dry wt/tree -yr. Normal growth was 

2.5 - 3.5 kg dry wt/tree -yr. Heron Pond tree growth averaged 



T a b l e  43 

Harvest o f  Herbaceous  V e g e t a t i o n  i n  Heron Pond 

September  1 7 ,  1977 

S t a t i o n  

0.00 

0.12 Sample p l o t  s i z e :  0.5 m 2 - 
5.55 x = 2.37 g m d r y w t  

5.80 S t a n d a r d  d e v i a t i o n  = 3.869 

0.00 Average % o r g a n i c  matter = 74% 

0.00 Herbaceous  P r o d u c t i o n :  

4.5 gm d r y  w t  
2  m -vr 



Table 4 4  

D i s t r i b u t i o n  o f  N e t  Primary P roduc t iv i ty  i n  Heron Pond 

- - 

Component 
N e t  Primary Product ion 

2 
(sm/m y r )  

% of  To ta l  
Product ion 

Trees 

Cypress & Tupelo 
l i t t e r  

Cypress Wood 
Tupelo Wood 
Cypress Roots 
Tupelo Roots 

Duckweed 

Herbaceous Vegetat ion 

T o t a l  



10.4 kg/cypress -yr and 18.8 kg/tupelo -yr, suggesting an 

environment conducive to high productivities. The cypress in 

Heron Pond averaged an increase in DBH of 2.2 mm/yr as compared 

with 2.8 - 3.0 mm/yr in the experimental cypress domes, 3.3 
mm/yr for cypress-hardwood association and 1.7 mm/yr for cypress- 

tupelo associations, all in Florida (~itsch and Ewel, unpu'blished). 

The relative increase is less because the trees are much larger. 

In summary, Heron Pond can be compared to other ecosystems 

and is found to be among the most productive of temperate eco- 

systems when understory duckweed is included (Table 45). Its 

value in collection of solar energy may be surpassed only by 

some marsh systems and fossil fuel energy subsidized agricultural 

2 systems. Energy storage in the tree layer, 45 kg dry wt/m , is 
greater than that of most temperate forests (eg. Woodwell and 

Whittaker, 1968). 

Tree productivity itself is low for a swamp of this type 

and raised water levels may have caused a decrease in produc- 

tion. Few cypress seedlings were seen under the canopy, as 

cypress seedlings need a period of dry conditions in which to 

germinate (Demaree, 1932). Although the swamp is near the 

northern extreme of this type of ecosystem, it seems to have 

the potential for productivities equal to those typical of 

more southern climes. The higher water levels have selected 

for aquatic productivity (duckweed) in lieu of tree productivity. 



Table 45 

Ecosystem Comparison of Total Net Primary Productivity 

Net Primary Productivity 2 

Floodplain Swamps 

Heron Pond riverine swamp (This study) 

Lac des Allemands, Louisiana, (Conner & Day, 1976) 1140 
1 

Lac des Allemands, (estimate) l Louisiana, 
. (Conner & Day, 1976) 

Louisiana bottomland hardwood (Conner & Day, 1976) 1574 
1 

Louisiana bottomland hardwood (estimate) l 
(Conner & Day, 1976) 

"Southern River Swamp" (Goodwin and Neiring, 1974) 2250 

Germany--temperate reed swamp (Watt & Heinselman, 4600 
1965) 

America--temperate reed swamp (Watt & Heinselman, 2900 
1965) 

Minnesota cedar swamp (Reiners, 1970) 1070 

Southern Florida drained slough (Carter et -- al., 1974)368 

Okefenokee Swamp, Georgia (Schlesinger, 1977) 692 

Other Swamps 

Southern Florida cypress dome receiving sewage 
(Odum, et. al., 1977) 1530 

Florida undrained slough (Carter 'et al., 1974) 
-7 

1170 

Other Ecosystems 

Tropical rain forest (Watt & Heinselman, 1965) 3250 

Sugarcane (Goodwin and Neiring, 1974) 27010 

Temperate forest (Whittaker and Woodwell, 1968) 1200-15PO 

Louisiana salt marsh (Teal, 1962) 1823 
. . 

Water hyacinth marsh (Mitsch, 1977) -.SO44 

estimate based on assumed values for herbaceous growth 
using literature values for insect consumption. - 

2 many values include only above-ground productivity. 
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Relationships of Flood Volume to Cypress Growth 

BY 

Michael J. Hickey 

and 

Carol L. Dorge 

INTRODUCTION 

It is known that variations in ring widths from certain 

trees can be used to date wood and to provide information on 

past climates (Schulman, 1956; Fritts et -- al., 1971). Ring- 

width variations have recently been used to evaluate environ- 

mental factors important to tree growth. For example, climatic 

variables in the midwest have been shown to affect ring - width 
growth of oak (Fritts, 1962). This implies that the relative 

widths of rings from oak may serve as records of past climate. 

An excellent example of the application of tree ring dating 

to environmental studies is offered by Stockton and Fritts 

(1973). Their study related water level records from 1810 - 
1967 for Lake Athabasca, Canada to growth of white spruce. 

This paper is an attempt to correlate annual tree growth 

of cypress trees (Taxodium distichum) with the annual flood 

water volume in a cypress tupelo swamp, Heron Pond. A linear 

regression model has been developed for a twenty-five year 

period. 
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METHODS 

Ten cypress trees were cored and annual growth rings 

were identified according to methods described by Stokes and 

Smiley (1968). Growth was expressed as change in basal area 

per year and was determined by calculating the area between 

each ring. To facilitate data handling the annual growth 

data for the ten trees were averaged and then lumped into 

five year periods. There were eight five year periods which 

correspond to the study period of 40 years (1927-1966). 

Therefore for each five year period (eg. 1962:1966) there is 

2 a number corresponding to tree growth given as cm /year. The 

most recent data (1967-76) were left out of the analyses be- 

cause it is well known that increased water levels due to 

beaver dams had a negative effect on tree growth in Heron 

Pond (see net productivity section). 

Peak stage and discharge data for the Cache River at 

Forman, Illinois from 1927-1966 (Table 14) were ueed to 

determine the five year flood volume to be correlated with 

the five year tree data. These five year flood data were 

calculated by summing all floods in a given five year period 

with a discharge greater than 4005 cfs. It has been shown 

that a discharge of greater than 4005 cfs. will cause the 

Cache River to flood into Heron Pond (see section on river 

flooding in hydrology section). 

Regression and correlation analyses were applied to the 

data using flood volume as the independent variable and tree 

growth the dependent variable. The correlation coefficient, 



2 r, was computed and the value, r (expressed as a per cent), 

was used to represent the percent of vqriation in tree growth 

which was explained by flood volume. 

RESULTS 

2 By superimposing tree growth (cm /yr) and flood volume 

(cfs) vs five year period on the same graph an interesting 

relationship develops. (Figure 49). For the thirty year period 

from 1966 to 1937, flood volume and tree growth are somewhat 

correlated. For the years 1926 to 1936 it appears that an 

inverse correlation is the case. Data for regression analysis 

for the thirty year period, 1937 to 1966 is presented in Table 

46. After graphing the regression equation for this thirty 

year period (Figure 50, line 1) it was apparent that one point 

deviated greatly from the regression line. This point was 

generated by the last five year period in the thirty year total, - 

1937 - 1941. Regression and correlation analyses were then 

performed for the twenty-five year period from 1966 to 1942 

and new regression constants and correlation coefficients 

determined. A high degree of correlation was obtained for 

tree growth vs flood volume with these data. 

DISCUSSION 

Tree ring growth and flood water volume were analyzed 

for a forty year period (1927-1966). Figure 49 shows a signi- 

ficant change in the relationship between tree growth and flood 

water prior to 1936. The correlation coefficient for 



Year 

Period 1 2 3 4 5 6 7  8 
Figure 49 Increase  i n  Cypress Basal a rea  i n  Heron Pond f o r  5 year i n t e r v a l s ,  

Also shown i s  t h e  t o t a l  of a l l  f loods  t h a t  overflowed i n t o  Wren 
Pond f o r  t h e  same 5 year pe r iods .  



Table 46 

Regressional Analyses for Tree Growth vs Flood Volume 

5 Year Total 5 Year 
Period Year Flood Water (cf s) Tree Growth 



Tree  

Growth, 

crn2/yr 

40 Line 1, n=6 

'"v . Line 2 .  n=S 

Flood T o t a l ,  x 103 c f s  

F igure  50 - Rela t ionsh ips  between Cache River Flood Volumes and 
Cypress Tree  Growth i n  Heron Pond f o r  Two Per iods .  



periods 1 through 6 was calculated to be 0.77. This indicates 

a positive correlation which is marginally linear. Only 51.4% 

of the variation in tree growth values can be explained by flood 

volume variation. 

Regressional analysis was performed on the data for 

the first five periods and the results are shown in Table 46. 

Remarkable values of 0.99 and 99.8% were obtained for r and 

2 2 r % respectively. This r % value indicates that 99.8% of the 

variation in the tree growth is explained by variation in flood 

volume. 

CONCLUSION 

It was impossible to incorporate the tree growth and flood 

values for periods 7 and 8 into the simple linear regression. 

It is possible that the high flood water values for periods 

7 and 8 had a detrimental affect on tree growth but this 

could not be tested. Mitsch and Ewe1 (unpublished) in a study 

of cypress growth in Florida found similar decreases in product- 

ivity at high water levels with growth maximum at intermediate 

levels. 

The fact that a correlation coefficient of 0.99 was 

obtained in relating tree growth to flood volume for the 

first five study periods seems to indicate an almost certain 

positive relationship. Including the sixth period reduces the 

correlation coefficient to 0.72. Addition of periods 7 and 

8 would break down all linear relationships. In the period 

1936-1941, some variable, which may have been climatic, or 



may have been a  r e s i d u a l  e f f e c t  of pre-1936 cond i t ions ,  changed 

t o  a  g r e a t  e x t e n t  t h e  c o r r e l a t i o n  between tree growth and f lood  

water  volume. 

Fur the r  s tudy  should expand upon d a t a  f o r  per iods  of 

excess  f looding ,  such a s  per iods  7 and 8 (1926-1936), i n  

o rde r  t o  determine i f  growth i s  nega t ive ly  c o r r e l a t e d  t o  f lood  

volume above some th resho ld  l e v e l .  
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PHASE 4 - SYSTEMS ANALYSIS 

A Phosphorus Budget for Heron Pond 

Carol L. Dorge 

and 

William J. Mitsch 

INTRODUCTION 

While floodplain swamps have sometimes been accused of 

imputting undesirable color, organics and associated nutrients 

to their associated rivers, their function as pollutant source 

or sink can best be determined if all inputs and outputs are 

considered and net effects determined. Discussion in the 

"water chemistry" section of this report described inflow/out- 

flow characteristics of some rivers which pass through wetlands. 

A more complete study of the \phosphorus dynamics of Heron Pond 

is presented here. It includes precipitation, river flooding, 

groundwater and runoff inp~t~~groundwater and overland flow ex- 
I 

port as well as intrasystem uptake and recycle through plant 

growth, litterfall, leaching and sedimentation. 
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METHODS 

Phosphorus Transport in Water 

Combining chemical analysis for phosphorus in water with 

hydrological data, phosphorus transport by the following vectors 

was calculated: rainfall and throughfall, runoff, groundwater 

(in and out of Heron Pond), and outflow at Sta. 5, a continually 

3 flowing stream with minimum flow 15 m /day in October and max- 

3 imum 5984 m /day on March 30, 1977. Comparison to Cache River 

flows was made. Flows were computed as annual totals, but also 

separated into seasonal subtotals to better illustrate variation 

in system dynamics. 

3 Measured phosphorus concentrations (gm/m ) for eight sample 

datas were fitted to Sta. 5 outflow values expressed as change 

in weir height (m/day) and the two multiplied, with the result 

equal to phosphorus outflow (gm/m2-sample period). These values 

were summed to give annual outflow. Concentrations measured 

April 1, 1977, during the flood, were applied only to the five 

day flood period. Total phosphorus (1.94 mg/l at Sta. 5), was 

much greater than ortho-phosphorus (0.211 mg/l), indicating that, 

during the flood, phosphorus was predominantly part of the sus- 

pended load; it was assumed that settling occurred when the 

river and swamp separated, ending throughflow and that all phos- 

phorus contributed to the swamp by the flood was measured as 

sediment deposition. 

In order to estimate the total flood volume and transport 

of materials in these waters a curve of Cache River flow vs 

time was integrated above bankfull discharge. Stage corres- 



ponding to this discharge was estimated by two independent 

methods: 1) analysis of the peak stages in Heron Pond and the 

Cache River, and 2) a survey of elevations along the levee 

relative to the Cache River stage at that time. Agreement be- 

tween the two methods was very good. Flood volume multiplied 

by phosphorus concentration in floodwaters produced a value for 

phosphorus carried in these waters. 

Inflow and outflow by groundwater and input by runoff were 

computed as the product of average concentration and average 

flow. Only one sample of groundwater and one of runoff were 

analyzed for phosphorus concentration. Groundwater phosphorus 

input was assumed to be entirely in soluble form. Because dis- 

turbances during well sampling may have caused stirring of soil 

particles and exagerated total phosphorus concentrations, for 

groundwater phosphorus input well ortho-phosphate concentra- 

tions were multiplied by inflows for the entire year and were 

assumed to represent total input. Heron Pond average outflow 

concentration was multiplied by groundwater outflow for phos- 

phorus export by groundwater. 

Rainfall and throughfall input was computed as the pro- 

duct of average phosphorus concentration and rainfall (cm) 

from 6 rain gages under the canopy and 4 in the clearing. 

2 The final value is converted to the units gm P/m -yr. Rain 

gages contained mineral oil to prevent evaporation and a 

mixture of ethylene glycol and methanol in the winter months 

(December - January) to prevent freezing. These materials, 

at concentrations equivalent to gage concentrations, were 

analyzed and phosphorus content found to be negligible. 
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t o  be  t h o s e  r e q u i r e d  t o  produce t h e  growth measured a s  duckweed 

i n  t h e  biomass and n e t  p r o d u c t i v i t y  s e c t i o n .  

Water Ana lys i s  

Heron Pond, t h e  Cache River ,  and a  s t ream emptying from t h e  

swamp t o  t h e  r i v e r ,  were sampled a t  a  t o t a l  o f  5  s t a t i o n s  (F ig .  

2)  and ana lyzed  f o r  phosphorus a s  d e s c r i b e d  i n  t h e  wa te r  chem- 

i s t r y  s e c t i o n .  S to r age  of  phosphorus i n  t h e  water colunln was 

c a l c u l a t e d  a s  t h e  p roduc t  o f  phosphorus c o n c e n t r a t i o n  and swamp 

2 volume d i v i d e d  by swamp a r e a  (301,440 m ) .  

RESULTS AND DISCUSSION 

A number o f  systems i n c l u d i n g  cyp re s s  domes and swamps 

(Mitsch, 1975; S c h l e s i n g e r ,  1977 ) ,  marshes ( G r e i j  and Kle in ,  1976) 

and tempera te  f o r e s t s  (Likens and Bormann, 1972) have been shown t o  

e f f e c t  n e t  removal o f  phosphorus. An o v e r a l l  diagram f o r  t h e  

annual  phosphorus budget  i n  Heron Pond d u r i n g  t h e  s t udy  pe r iod  

i s  g iven  i n  F ig .  51, w i th  sou rce s  g iven  i n  Tab le  47. 

Sedimenta t ion and Flood Con t r i bu t i on  

S o i l  may a c t  a s  a  sou rce  o r  s i n k  f o r  phosphorus i n  a  swamp 

(Brinson,  1977) ;  most s t u d i e s  demonstra te  t h e  l a t t e r ,  however 

(Sch l e s inge r ,  1977; Heilman, 1968 ) .  Most l a k e s  a l s o  have n e t  

movement o f  phosphorus i n t o  t h e  sediments  (Carpen te r  and Adams, 

1977; Willianls and Mayer, 1972) .  Sedimenta t ion w a s  found t o  be an 

impor t an t  s i n k  i n  Heron Pond. During t h e  b r i e f  f i v e  day f l ood  

2  
p e r i o d  3.6 mg P/m was depos i t ed .  The t o t a l  l o a d  which passed  

ove r  t h e  swamp a t  t h i s  t ime was 80.2 gm/m2 o f  which 76.6 gm/m 
2 
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Table 47 

Sources of Values Used in Phosphorus Budget, Figure 51 

Reference 
Number Description Calculation Value 

storages, gm p/m2 

Sediment (24 cm depth) Integration of sediment phosphorus 
profile 

Cypress and Tupelo Wood 0.10 mg P/gm dry wt x 39.1 kg dry wt/m 2 

+ 0.20 mg P/gm dry wt x 5.9 kg dry wt/m 2 

Cypress and Tupelo Roots 0.10 mg P/gm dry wt x 21.6 kg dry wt/m 2 

+ 0.20 mg P/gm dry wt x 3.3 kg dry wt/m 2 

Cypress and Tupelo Leaves 3.5 mg P/gm dry wt x 348 gm dry wt/m 2 

Duckweed 3.0 mg P/gm dry wt x 67 gm dry wt/m 2 

Water 

Flood input 

Flood sedimentation 

Flood output 

Weighteg average of concentration 
(gm P/m ) x Swamp Stage (m) 

Flows, gm 2 P/m -yr 

7 3 2 1.6 x 10 m /301440m x 1.51 gm P/m 3 

refer to sedimentation section 

Flood input - Flood sedimentation 



Table 47 continued 

Reference 
Number Description Calculation Value 

10 Runoff 

11 Groundwater input 

12 Groundwater outflow 0.21 m/yr x 0.380 gm P/m 3 

13 Stream outflow refer to swamp outflow section 

14 Phosphorus sedimentation 
not due to flood or litterfall Total sedimentation-Flood sedimentation 

-Litterfall 

Sedimentation from duckweed Duckweed NPP x P concentration 
production 2 1.097 kg dry wt/m -yr x 3.0 mg P/gm dry wt 

Understory litterfall and 
deposition of herbaceous 
vegetation 2 4.5 gm dry wt/m -yr x 5.1 mg P/gm dry wt 

Total tree uptake 

Above-ground tree uptake 

~ypress'wood and root + Tupelo wood & root 
+ Litterfall + Leaching 

2 0.10 mg P/gm dry wt x 300 gm dry wt/m -yr 
2 + 0.20 mg P/gm dry wt x 213 gm dry wt/m -yr 

C\ C\ 

Cypress Wood + Tupelo Wood + Litterfall 
+ Leaching 

2 0.10 mg P/gm dry w t  x 193 gm dry wt/m -yr 
C\ 

+ 0.20 mg P/gm dry wt x 137 gm dry wt/mL-~r 
9 



Table 47 continued 

Reference 
Number Description Calculation Values 

Uptake by leaves 

Return prior to litterfall 

Litterfall 

Rainfall 

Throughfall 

Leachate 

Understory vegetation uptake 

Duckweed uptake 

Cache River Flow 

2 3.5 mg P/gm dry wt x 348 gm dry wt/m -yr 

Leaf uptake - leachate - litterfall - AB 
2 2 1.22 gm P/m -yr - 0.029 gm P/m -yr 
2 2 - 0.766 gm P/m -yr - 0 gm P/m -yr 

2 2.2 mg P/gm dry wt x 348 gm dry wt/m -yr 

Throughfall - Rainfall 
2 4.5 gm dry wt/m -yr x 5.1mg P/gm dry wt 

2 1.097 kg dry wt/m -yr x 3.0 mg P/gm dry wt 

Weighted average of concentration x flow 



was not deposited and flowed out as suspended load with the 

flood waters. This is the largest individual component of 

Heron Pond's phosphorus budget. Sediment trap collection, 

which included the above deposition, and duckweed and litter 

2 settling, totaled 15.7 gm P/m -yr. Question as to possible 

resuspension during measurement were discussed in the sedi- 

mentation section of this report. 

Greatest phosphorus storage was also in the sediments, 

2 119 gm P/m in the top 24 cm. Relative storage (as gm P/gm 

dry wt) probably decreases with depth due to migration of 

phosphorus upward (Williams and Mayer, 1972). Sebetich 

(1975) in an experiment with microcosms found 47% of phosphorus 

in the top 4 mrn of sediment in his experimental system. 

Rainfall, Groundwater and Surface Flows 

2 Rainfall contributed 0.115 gm P/m -yr while leaching added 

2 2 0.029 gm P/m -yr to total 0.144 gm P/m -yr as throughfall. As 

noted in the water chemistry report, rainfall samples varied 

significantly in concentration (standard deviation = 0.061 mg P/1) 

and some may have contained pollen or insect matter. If true 

rainfall concentrations are lower, canopy leaching was probably 

2 underestimated. Runoff input was 0.128 gm P/m -yr. Groundwater 

2 input (0.014 gm P/m -yr) was less than groundwater outflow (0.080 

2 gm P/m -yr). Both were minimal in comparison with other flows. 

2 Total phosphorus outflow at Sta. 5 was 0.260 gm P/m -yr. 

Of this, 55% was in the ortho-phosphate form, therefore readily 

available as a plant nutrient. These values, when compared to 

the load carried.by the Cache River represent an addition to the 

total phosphorus load of only 0.036%. 



The maximum daily value for phosphorus outflow, 0.058 

2 
gm P/m -day occurred March 30, 1977, immediately prior to 

flow reversal in the stream at Sta. 5 and flooding of Heron 

Pond by the river. The minimum value, 0.008 gm/m2-day occurred 

October 29, 1976. Seasonal change in rainfall, runoff and 

groundwater input and groundwater and weir outflow is represented 

diagramatically in Fig. 52. 

Plant Tissue Concentrations 

Uptake by primary producers and storage in plant biomass 

represents an additional "sink" for phosphorus. These capacitors 

may also serve as indicators of nutrient conditions. Swamp 

vegetation often has limited access to nutrients due to anaerobic 

conditions in the root zone, or cationic exchange.by the sediments, 

and various mechanisms for nutrient conservation, including move- 

ment of nutrients into the perrenating organs prior to litterfall 

have been suggested (Moore and Bellamy, 1974; Schlesinger, 1977): 

Numerous studies have related plant tissue nutrient concentration 

to environmental conditions; some will be discussed in relation to 

concentrations found in Heron Pond vegetation. Phosphorus con- 

centrations measured in Heron Pond sediment and vegetation is 

presented in Table 48 and comparison with values for vegetation in 

other ecosystems in Table 49. 

Phosphorus concentration in cypress wood (0.10 mg P/gm dry wt) 

is almost equal to that found by Schlesinger (1977) in Okefenokee 

Swamp, a swamp which he described as nutrient deficient. Foliage 

concentrations, 3.5 mg P/gm dry wt are greater than those found by 

Schlesinger, 0.98 mg P/gm dry wt. Schlesinger noted that while 

foilage accounted for 41% of above-ground tree NPP, 50 - 70% of 



Figure 52 

Seasonal Changes i n  Heron Pond Onflow and Outflow 

December-February 

March-May 

June-August 

. A l l  f lows expressed as  gm P/m 
2 



Table 48 

Phosphorus Analyses of Ecological Materials in Heron Pond 

Sample Number mg-P ash - mg-P 
Date Samples g a m  wt dry gm dry wt 

Litter 

Live Cypress 
Needles 

Cypress Wood 

Tupelo Wood 

Duckweed 

Herbaceous 
Understory 

Sediment Trap 

Sediment (clay) 
(humus ) 



Table 49 

Chparison of Vegetation Phosphorus Concentrations in Heron Pond 

With Other Ecosystems 

Source Description Tree P Concentration 
Ecosystem of Data of Material Analyzed Spegies mgp/gm dry wt 

Heron Pond 
I t  II 

F1. Sewage 
Dome # 1 

F1. Sewage 
Dome /I 2 

F1. Rainwater 
Dome 

Okef enokee 
Swamp 

Old Sphagnum 
bog (nutrient 
poor soils) 

Birch/Alder 
Forest (nutri- 
ent rich soils) 

Hubbard Brook 
Temp. forest 5 

I 1  I t  

II II 

Cultivated 
pine plantatioh 6 

Heron Pond 1 

F1. Sewage 
Dome /I 1 2 

F1. Sewage 
Dome /I 2 2 

F1. Groundwater 
Dome 2 

F1. Rainwater 
Dome 2 

Okefenokee 3 

Cultivated 
Pine Plantation 6 

N. Taiga Pine 
Forest 7 

Forest Steppe 
Spruce Stand 7 

S. Taiga Larch 
Stand 7 

~ubbard Brook 
Temp. forest 5 

Wood 

Branch 

11 

11 

Wood 

11 

11 

II 

I1  

11 

I 1  

11 

11 

Foliage 

II 

11 

II 

II 

II 

11 

11 

,I 

I 8  

I t  

- 

Taxodium distichum . 
Nyssa aquatica 

T. distichum v nutans 

Picea excelsa -- 

Acer saccharum 

Pinus rubens -- 
P pensylvanica - 
P taeda L. --- 
T. distichum - 
" " v nutans 

11 II I 1  

Pinus sylvestris 

Picea excelsa -- 
Larix europea 



Table  49 Continued 

Bubbard Brook 
Temp. f o r e s t  ~ o l i a ~ e  P. rubens  - -  1.0 

tt P. pensy lvan ica  - 2.4 

L i t t e r f a l l  - T. d i s t i chum 2.2 
I t  I1  t l  v n u t a n s  .35-.8 
II 1.18 

Heron Pond 1 

Okefenokee 3 

Minn. Swamp 8 

N .  Taiga  p ine  
f  o r e s t  7 p.  s y l v e s t r i s  - 0.40 

F o r e s t  Steppe 
Spruce  Stand P. e x c e l s a  - -  
C e n t r a l  Taiga  
Sprucelmoss 
Stand P. e x c e l s a  - -  
S. Taiga  
Larch Stand L. europea - 
C u l t i v a t e d  
P ine  P l a n t a t i o n  Roots P. t aeda  L. - -  
Hubbard Brook 
Temp. F o r e s t  

I t  I t  

I1  II 

I! A. saccharum - -- 
It P. rubens  - -  
II P. pensy lvan ica  - 

Duckweed Heron Pond 

F1. Sewage 
Dome # 1 

F1. Sewage 
Dome 11 2 

F1. Groundwater 
Dome 

Heron Pond Composite of  
Herbaceous M a t e r i a l  

Th i s  s tudy  

Pos t  and S t r aub  (1975) 

S c h l e s i n g e r  (1977) 

Heilrnan (1968) 

Likens  and Bormann (1970) 

w e l l s  e t  a l . ,  (unpubl i shed)  

Rodin and Baz i l ev ich  (1.967) 

Rc ine r s  (1972) 

P r i c e  (1975) 



annual nutrient uptake went to foliage and described this effici- 

ency as a possible adaption to nutrient limitation. In this case, 

Heron Pond cypress may be considered even more efficient. Foliage 

accounted for 51% of annual above-ground NPP while phosphorus up- 

take by foliage was 95% of tree uptake. 

Heron Pond root concentrations were assumed to be equal to 

wood concentrations.. In a cultivated loblolly pine plantation 

with wood concentration equal to that of Heron Pond cypress, 

root concentrations, 0.47 mg P/gm dry wt, was found to be five 

times greater than wood (Wells et al., unpub.). In Hubbard -- 
Brook (Likens and Bormann, 1970) root concentrations ranged from 

1.25 times wood concentration for Pinus pensylvanica to 37 times 

for Acer saccharum. It is likely, then, that greater root con- 

centration exist in Heron Pond and root phosphorus storage and 

uptake was underestimated by assuming concentration equal to 

that of wood. 

Heron Pond wood phosphorus concentration is seen not to be 

abnormal for trees; it is less than Florida branch concentration 

(Post and Straub, 1975). However, when analyzed separately, 

branch concentration has been found to be greater than that of the 

wood (Schlesinger, 1977; Likens and Bormann, 1970). 

Cypress foliage concentrations (3.5 mg P/gm dry wt) were 

greater than all other trees for which data was obtained, and 

were nearly equivalent to the value 3.30 mg P/gm dry wt, found in 

southern taiga larch stands (Rodin and Bazilevich, 1967). Con- 

centrations do not always appear to be related to nutrient avail- 

ability. Florida sewage dome values were found to be less than 

those for natural domes (Post and Straub, 1975) and were equivalent 



to values found in Okefenokee Swamp which has been described as 1 
I 
I 
I 

having characteristics of nutrient deficiency (Schlesinger, 1977). 

Nutrient retention by return of twigs prior to leaf-fall, the 1 
ratio represented by litterfall concentration:Eoliage concentration 

was found to be 0.35:0.98 in Okefenokee and only 2.2:3.5 in this i 
study. From data of Rodin and Bazilevich (1967) in Table 47, 1 

1 
values of 0.66:0.50 and 1.80:3.30 were computed for forest - steppe 
spruce stands and southern taiga larch. The spruce litter is un- I 
usual in its greater relative litter concentration. Variation in 

I 
litter concentrations is likely due to premature abscission which 1 

does not allow nutrient reabsorbtion to take place (Gosz -- et al., 1972). I 

It may be that plants with more rapid turnover are able to 

respond more quickly to nutrient conditions and are better in- ~ 
dicators of impoverishment or excess. Differential uptake based 

on nutrient availability was demonstrated' in a study of Myriophyllum j 

spicatum L. in Lake Wingra, Wisconsin, in which sampling sites 

near nutrient input points and sites away from those points had 
I 

significant differences in tissue phosphorus concentration. Levels 1 
ranged from 1.3 mg P/gm dry wt to 5.62 mg P/gm dry wt (Carpenter 

and Adams, 1977). 

Duckweed may have a similar'rate of luxury uptake in the swamp 1 

ecosystem. Duckweed in Florida sewage domes had concentrations of 
I 

8 - 10 mg P/gm dry wt compared to 3.69 + 1.78 in cypress dome re- - I 
ceiving groundwater dome (Price, 1975). Heron Pond duckweed had 

levels of 3.0 mg P/gm dry wt, second in concentration only to 1 

cypress foliage with 3.5 mg P/gm dry wt, It is interesting to note 
I 
1 

that sediment trap samples also averaged 3.0 mg P/gm dry wt, although 
I 



organic content of sediments averaged 51.6 percent in comparison 

to 77 and 90 percent in duckweed and litter. This suggests a 

cycle in which phosphorus is released with decomposition of organic 

matter, maintaining concentration in the fresh sediment at an aver- 

age of 3.0 mg/gm dry wt. From sediment trap sample analysis, 

phosphorus was found to be inversely proportional to organic con- 

tent, indicating the release of phosphorus described above may 

precede organic matter decomposition. Phosphorus concentration 

in the water column is fairly constant. (Refer to "Water Quality" 

section for discussion of seasonal variation.) For the most. 

part, export and plant uptake is assumed to balance release from 

decomposing materials. 

Plant Uptake, Storage and Litterfall 

Using the concentration values calculated (Table 48) and 

productivity and biomass values given in "Net Primary Product- 

ivity and Biomass of Vegetation in Heron Pond", uptake and 

storage values were determined for all components. 

The greatest flows of phosphorus, excluding flood input, 

were sedimentation and its important components, deposition 

from duckweed and litterfall. Litterfall contributed 0.766 gm 

2 2 P/m -yr and duckweed, 3.291 gm P/m -yr. 

Storage in cypress and tupelo wood was 3.91 gm p/m2 and 

1.18 gm p/m2 respectively. Storage in cypress and tupelo roots 

2 were 2.16 and 0.66 gm P/m . Uptake required for wood and root 

2 production was 0.030 and 0.043 gm P/m -yr, respectively. 

2 Storage in the leaves was found to be 1.22 gm P/m . Greater up- 

take by tupe1o.i~ attributed to greater average wood concentration 

and a higher productivity to biomass ratio than that of cypress. 



2 The understory layer uptake is 0.023 gm P/m -yr; storage 

and return by winter die-off, for purposes of this study, is 

assumed to be the same. Some accumulation of biomass and net 

phosphorus accumulation by perrenial shrubs may be occurring 

in the understory layer, but this value would be negligible. 

Another important contribution of the biotic sector is 

recycle by canopy leaching. In Heron Pond, leaching recycled 

2 0.029 gm P/m -yr. This is discussed further in the water chemistry 

section. Litterfall when compared to canopy leaching contributed 

67.4% of phosphorus recycled in Okefenokee swamp (Schlesinger, 

1977) and 84.4% in the Tar River tupelo swamp (Brinson, 1977). 

(stemflow contributed less than 4% to total phosphorus recycle 

by trees.) In Heron Pond, litterfall and leaching contributed 

2 96% and 4% of a total 0.795 gm P/m -yr. These values are in part 

a result of the higher average phosphorus concentration of Heron 

Pond litter. 

SUMMARY AND CONCLUSIONS 

Measured concentrations for water and vegetative tissue have 

been found comparable to values in Florida cypress swamps and 

duckweed production parallels that of a Florida sewage dome, al- 

though tissue phosphorus concentrations are less in Heron Pond. 

Unfortunately, analysis of phosphorus dynamics is not available 

for many natural swamp ecosystems of greater productivity and 

comparison, therefore, has focussed on Okefenokee and other systems 

which have been called nutrient deficient. 



2 Total tree uptake, 0.867 gm P/m -yr was found to go pre- 

dominantly to leaf production. Above ground uptake is 0.841 

2 gm P/m -yr and may be compared to the Okefenokee~total, 0.23 

2 
gm P/m -yr (Schlesinger, 1977). Here, also, leaf consumption 

was the predominant factor. Phosphorus is cycling more rapidly 

through litterfall in Heron Pond than Okefenokee; this'may be 

indicative of greater nutrient stress in Okefenokee. 

Duckweed production, death, decomposition and sedimentation 

appears to be a rapid and important cycler of phosphorus in the 

water column. 

Total phosphorus input during the flood is the largest 

2 single contribution to the system (3.6 gm P/m -day), but the 

potential impact of this great input is dampened by rapid 

sedimentation of the load and limited release of soluble 

phosphate from sedimented forms. The deposition of phosphorus 

by the flood, was shown to be 10.6 times that discharged back 

to the river as surface flow and groundwater flow during the 

rest of the year. 
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Modelling of the Heron Pond Ecosystem 

by 

Hisashi Ogawa 

INTRODUCTION 

This report concerns a total view of Heron Pond ecosystem. 

An ecosystem is in general composed of storages within its 

components and interactions between the components. The systems 

model considers important storages and flows, and ultimately 

applies mathematical relationships to them. 

Heron Pond ecosystem has two major autotrophic components: 

trees (cypress and tupelo) and floating duckweed. The pond 

sediment is considered a heterotrophic component due to decom- 

position of accumulated organic matter. The water column plays 

an important role in regulating pond metabolism. The major 

forcing functions are solar energy, rain, runoff, groundwater 

inflow and the flooding river. Special attention was paid to 

phosphorus in simulation of the ecosystem nutrient budget. These 

energy and nutrient forces upon entering the system are either 

stored or pass through the ecosystem. 



METHODS 

Modelling techniques  fo l low t h e  method developed by Odum (1971) 

and Odum and Odun (E976), us ing  energy language symbols i n  a ne t -  

work diagram t h a t  shows major f lows,  pathways and v a r i a b l e s  with- 

i n  a system a s  w e l l  a s  t h e i r  i n t e r a c t i o n s .  

DISCUSSION 

A model f o r  Heron Pond is  shown i n  Pig.  53. So la r  energy 

i s  used i n  t h e  photosynthe t ic  p rocesses  o f  cyp res s  - t upe lo  

trees and duckweed and a t  t h e  same t i m e ,  a c c e l e r a t e s  evapotran- 

s p i r a t i o n .  R a i n f a l l  i s  i n t e r r u p t e d  by t h e  tree canopy and 

reaches  t h e  pond water  s u r f a c e  a s  t h r o u g h f a l l .  Runoff and 

groundwater c o n t r i b u t e  t o  t h e  wate r  s t o r a g e .  Rain, runoff  and 

groundwater c a r r y  phosphorus i n t o  t h e  wate r  column where duck- 

weed may remove it f o r  photosynthes i s .  A comparator shows 

t h a t  when t h e  water  l e v e l  o f  t h e  r i v e r  reaches  f l ood  s t a g e ,  

f l ood  water comes i n t o  t h e  pond. The c u r r e n t  a s s o c i a t e d  wi th  

t h e  f l ood  has  g r e a t e r  c a p a c i t y  t o  c a r r y  s o l i d s  i n  suspension 

which c o n t a i n  h igher  concen t r a t i on  of  phosphorus. Organic 

matter s t o r a g e  (named ORG i n  t h e  diagram) i n  t h e  wate r  column 

has  r e l a t i v e l y  s h o r t  turn-over  t i m e .  L i t t e r f a l l  and dead 

duckweed se t t le  c o n t r i b u t i n g  t o  sediment s t o r a g e  o f  o rgan ic  

matter and n u t r i e n t s .  The sedimented o rgan ic  m a t t e r  i s  de- 





composed by microbes (named MICROB in the diagram) and phos- 

phorus in the organic matter is then changed into inorganic 

form. This is in turn used up by the trees. 

Similation of this model can assist analysis of the inner 

workings of the ecosystem as well as effects of the flood. The 

similation can also be applied to predict reaction of the eco- 

system to changing conditions and therefore it can offer a use- 

ful means for control and management of the ecosystem.   able 50 

gives sources of data necessary for model calibration and sub- 

'sequent simulation. 
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TABLE 50  

Pathways and Storages for Energy Flow Model Shown in Fig. 53. 

Pathways Investigator 

Rain 
Runoff 
Groundwater 
Throughfall 
Floodwater 
Evapotranspiration 
Surface and groundwater outflow 
Phosphorus in rain 
Phosphorus in runoff 
Phosphorus in groundwater 
Phosphorus in floodwater 
Phosphorus in throughfall 
Net primary production (Cypress and 
Litterfall 
Net primary production (Duckweed) 
Sedimentaction 
Total phosphorus sedimentation 
Soluble inorganic phosphorus uptake 
Cypress and Tupelo 

Soluble inorganic phosphorus uptake 
Duckweed 

Total phosphorus outflow 

Storages 

Water storage 
Cypress and Tupelo biomass 
Phosphorus in Cypress and Tupelo 
Duckweed biomass 
Phosphorus in Duckweed 
Total phosphorus in water 
Organic matter in sediment 
Total phosphorus in sediment 
Water level at stage 
Phosphorus in river 

Wiemhof f 
Wiemhoff 
Wiemhof f 
Wiemhof f 
Wiemhof f 
Wiemhoff 
Wi emho f f 
Dorge 
Dorge 
Dorge 
Dorge 
Dorge 

Tupelo) Dorge 
Dorge 
Dorge 
Dorge 
Dorge 

by 
Dorge 

by 
Dorge 
Dorge 

Wiemhoff 
Dorge 
Dorge 
Dorge 
Dorge 
Dorge 
Dorge 
Dorge 
Wiemhof f 
Dorge 



A Hydrology Model for Heron Pond 

. BY 

John Wiemhoff 

INTRODUCTION 

I 

1 It is now possible to model flow of energy and materials 

through ecological pathways. With the adjustments of inputs, 
I 
! 

outputs or storages of the model, one can observe the effect 

! upon the remaining components, since an alteration of one 
1 
I part of the ecosystem usually will either directly or indirectly 

1 
I have an impact on the other parts eventually. This phase of 
I 

the study describes the hydrologic interactions of Heron Pond 
j 
I with a simple hydrologic 'model. All storages and flows are 

i listed in cm as related to Heron Pond staff gage. 
j 

THE .MODEL 

i 
I The first step in modelling Heron Pond hydrology was to 
I 

describe the hydrologic system diagramatically. There are various 
I 
I symbolic languages used to describe system components, the one 

t adopted for this study is "energesen (Odum, 1971). Figure 54 

J describes the model used for Heron Pond with Energy language. 

The two storages within the system are Heron pond surface water 





and the adjacent groundwater reservoir. The inputs into the 

swamp are throughfall, runoff, groundwater, and occasionally, 

flood water from the Cache River. Inputs into the groundwater 

are infiltration, flows from other groundwater sources, flows 

from Heron Pond, and occasionally floodwater from the Cache 

fiver. Outputs from Heron Pond are evapotranspiration, flow 
i 
\ 

. 1 to the adjacent groundwater storage, surface outflow to the 

Cache River and groundwater seepage to the Cache. Outputs 

from the groundwater storage are evapotranspiration, flows 

1 
I 

into Heron Pond and groundwater seepage to the Cache ~iver. 

The forcing functions, or those components which have re- 
I 

I lative unlimited supply capabilities, are throughfall (R), 

the major aquifer of the area (A), the Cache River (C) and 
I 
I 
I 
1 solar intensity (S), of which evapotranspiration is a function. 

I The next step after representing the system diagramatically 
I 

is to transform the diagram into mathematical equations. The 

1 differential equations describing the changes, over time, in 

the swamp and groundwater respectively are: 
I 

, I dH = R + K3R - K2 (H-G) - K5S - dt K7H - K8H 

where, 

R = Throughfall (Rain) 

H = Heron Pond water level 

S = Solar intensity. 

The Cache River was not considered in the calculations because 

the storm whi,ch occurred on May 27 - 29, 1977 during the study 
period, flooded the swam& with rainfall and runoff before the 



river rose above the bankfull discharge stage. Therefore, 

strictly hydrologically speaking, the Cache River did not 

contribute any volume that was retained after river reces- 

sion. 

After developing the mathematical formulae, values were 

determined for the flows (Table 51). The flow values were 

taken both from literature, whenever possible, or from the 

data generated from the water budget phase of this project. 

For storages and forcing functions, average and maximum 

values were determined. All forcing functions and flow values 

were put on a cm/wk basis for uniformity. 

It was then necessary to determine the coefficients (K) 

of the various flows. The method used was to divide the flow 

rate by the average of the storage component of which that 

flow is a function. For example: 

K5S = 1.4 S = 2100 

Using this method, the proportionality constantswere determined 

for all flows (Table 51). Knowing the proportionality constants 

associated with the different flows and the initial condition of 

the storages, which in this case were assumed to be the average 

levels, the model was ready for input into the computer. 

THE MODELLING LANGUAGE: CSMP 

The computer language used to model the hydrology of Heron 

Pond is IBM/360 Continuous Systems Modelling Program, or CSMP 

(IBM, 1972). It is a problem - oriented program designed to 
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Table 51 

Proportionality Constant and Initial Condition 

Determinations for Heron Pond Model 

- - - -  

Symbol Description 
Average Value Maximum Value 
cm (storage) cm (storage) 

or or 
cm/wk (flow) cm/wk (flow) 

Type of 
Component 

Storage H Heron Pond Water Level 48 
Groundwater storage 
level 

Forcing Func- R Rainfall (throughf all) 2.3 3.0 
t ions S Solar Intensity 2100 4000 

A 0 
C 

Flows . K1 (H-G) Swamp to Groundwater 
exchange 
~roundwit er to Swamp 
exchange 

K3R Runoff into Swamp 

K4R 
Infiltration into 
Groundwater 
Evapotranspiration 
from Swamp 
Evapotranspiration 
from Groundwater 

K7(H-26) 
2.138 Surf ace outflow 

from Swamp to 
Cache River 
Seepage from Swamp 
to Cache River 
Seepage from Ground- 
water to Cache River 

Proportion- 
ality 
Constants 



facilitate the digital simulation of continuous processes, as 

ecological interactions, on large - scale digital machines. 
This program provides an application - oriented language that 
allows these problems to be prepared directly and simply from 

either a block - diagram representation or a set of ordinary 
differential equations. The program includes a basic set of 

functional blocks with which the components of a continuous 

system may be represented, and accepts application - oriented 
statements for defining the connections between these functional 

blocks. 

Fortran statements are accepted by the S/360 CSMP format, 

allowing the user to readily handle non - linear and time varient 
problems of considerable complexity. 

Output in this program is the generation of actual curves 

of the requested output, which are scaled to fit onto the paper 

automatically. Below the output curve, at each integration 

interval, the value of the component of that particular point 

in the simulation is printed. The maximum and minimum values 

for the entire simulation of that component are listed above the 

curve itself. 

DATA COLLECTION 

Heron Pond has, as determined from the water budget, a mean 

stage of 48 cm, and floods from the Cache River at 87 cm. 

Groundwater, as recorded at well # 2  in the water budget, has 

a mean elevation of 50 cm, slightly higher than Heron Pond, having 

a maximum of 100 cm. 



Rainfall (throughfall) was determined from data secured 
I 

I from Dixon Springs Weather Station. The input rainfall is 

adjusted from the Dixon Springs data into a sine wave which 

I generates a maximum of 3.0 cm/wk occurring in spring, and a 

yearly mean of 2.3 cm. 
I 

Solar intensity (in Langleys) was also taken from DTxon 

i 
Springs data and adjusted into a sine wave which generates a 

maximum solar intensity of 4000 ly/wk in June, and an annual 

; 
I mean of 2100 ly. 

All flows into the groundwater storage had to be multi- 

I plied by 3.6 since the porosity of the soil is 0.28. When 

I 

I flows come from groundwater to Heron Pond they had to be 
I 

divided by 3.6. 

1 
I 

The average value of flows were determined from the data 

I generated in the water budget phase (Table 12). An exception 
i 
I 
I to what the normal procedure in proportionality constant de- 

termination is surface outflow. The surface outflow, being 

a log function of the Heron Pond water level, was determined 

by using the same formula used in the water budget phase, but 

converted from daily calculations to weekly. 

PRELIMINARY RESULTS 

The CSMP program used in preliminary simulation is shown in 
* 

Figure 55. Results of water level in Heron Pond and the ad- 

jacent groundwater are shown in Figures 56 and 57. The model 

establishes steady conditions readily and gives values similar to 

those found in the field study. Further simulations will include 

experiments with different flooding regiences and watershed changes. 



****CONTINUOUS SYSTEM MODELING PROGRAM**** 

***PROBLEM INPUT STATEMENTS*** 

*JOHN WIEMHOFF 
*TITLE:HERON POND HYDROLOGY 
*H=HERQN POND WATEk LEVEL(CM) 
*G=GOUNDWATER LEVEL(CM1 
*S=SQLAH I N T E N S I T Y ( L A N G L ~ Y S )  
*RzTHROUGHFALL(CM) 
*C=CACHE RIVER LEVEL(CM1 
*Kl=SWAMP TO GROUNDWATER EXCHANGE COEFFICIENT 
*K2=GROUNDWATER TO SWAMP EXCHANGE COEFICIENT 
*K3=RUNOFF COEFFICIENT 
*KUzINFILTRATION COEFFICIENT 
*KS=SNAMP EVAPOTRANSPIRATION COEFFICIENT 
*K6=GROUNDWATER EVAPOTRANSPIRATION COEFFICIENT 
*K7=STREAMFLOw COEFFICIENT 
*K8=HERON POND SEEPAGE TO RIVER COEFFICIENT 
*K9=GROUNDWATER LOSS TQ RIVER COEFFICIENT 
I N I T I A L  
* I N I T I A L  CONDITIONS 
INCON ICH=48 
INCON ICG=50 
CONST K l ~ O a 5 1  
CONST K 2 s O e l Y  
CONST K 3 ~ 0 . 5 2  
CONST K Y = l a 2 8  
CONST KS=eOOl 
CBNST K 6 r a 0 0 1  
CONST K7= laO2Ea3 
CONST K 8 s a 0 0 0 8  
CONST K9Za029  
DYNAMIC 
Y H = S I N E ( O a 0 ~ ~ 1 2 0 6 3 ~ 0 a O )  
Z=YR*O 175  
R=Z+2 a25 
~S=SINE(O~O,~l20&3~4a7123&9) 

=YS*1800 
S:T+2200 
A=O 
*INTEGRATE 
~ H = T N T G R L ( I C H , R + K ~ * R L K ~ * ( Y H - Y G ) - K S * S - K ~ * ( ( Y H - ~ ~ ) * * ~ . ~ ~ ~ ) - K ~ * Y H )  
yG:IhTGRL(ICG,KY*H+A+Kl*(YH-YG)-K6*s-K9*YG) 
TERMIhAL 
TIMER D E L T = ~ ~ o , F I N T I M = ~ ~ ~ , P R D E L = ~ ~ ~ ~ ~ ~ ~ ~ ~  
PRTPLT YH 
PRTPLT YG, 
PRTPLT H 
PRTPLT S 
METHOD RKS 
LABEL H SWAMP WATER LEVEL (CM) 
LABEL G GROUNDWATER LEVEL (CM) 
LABEL R RAINFALL (CM) 
LABEL S SOLAR INTENSITY (LYS)  
EN0 
STOP 

Figure 55. CSMP program used to simulate Heron Pond hydrology. 
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ENERGY CONSERVATION 

THROUGH INTERFACE ECOSYSTEMS' 

William J. Mitsch 

INTRODUCTION 

Solar driven ecosystems have always contributed to man's 

well being. In primitive times, man was but a small part of 

the system, harvesting what he needed from the forests and 

rivers, utilizing but a small portion of those ecosystems' 

energy flows. Later on, early agriculture, forestry, and 

fishing, all solar based systems, provided the basis for man's 

activity through the production of food and fiber. As man 

changed from wood to fossil fuels for his primary fuel source, 

the Industrial Revolution ushered in a myriad of domestic eco- 

systems from modern agriculture, forestry, and fisheries to 

sewage treatment plants (not solar driven, but in many ways 

similar to heterotrophic rivers). Each of these systems now 

utilizes significant inputs of fossil fuels in order to allow 

1. Part of paper by same title presented at the International 
Conference on Energy Use Management, Tucson, Arizona on 
October 27, 1977, spohsored by the Interdisciplinary Group for 
Ecology, Development, and Energy (EDENS) and the University 
of Arizona. 
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Figure  58. Energy suppor t  system f o r  man. 



and developed areas. Odum (1973) referred to the "free subsidies" 

from nature to man while Woodwell (1974) called them "public 

service functions". They have been discussed as a part of net 

energy analyses by Gilliland (1975) and in subsequent letters to 

Science (see 192:8-12). More recently Odum (1977) and Westman 

(1977) reviewed the topic by asking what the economics of natural 

ecosystems should be. 

In referring to Fig. 58, some questions of the natural eco- 

system contribution to man's well being can be asked: 

(1) What are the tasks that natural systems perform best 

for man? 

(2) Should the natural energies be manipulated by man to 

suit his needs, thereby essentially creating more 

domestic ecosystems, or should nature be left alone 

to perform these tasks? 

(3) What are the economic and hence energetic savings for 

man that result from these ecosystems. Worded another 

way, what fossil fuel costs result when man attempts 

to perform equivalent services? 

(4) Is the energy flow in the ecosystem a measure of its 

"value", either to man and/or the biosphere? 

ENERGY COST OF ENVIRONMENTAL TECHNOLOGY 

Certain services provided before by nature are beginning 

to be replaced by high energy technology, particularly in the 

field of environmental control. While it is true that certain 

controls are warrented and even necessary to protect human 



health and sensitive ecosystems, increased pollutant loadings 

and increased centralization (called regionalization) of dis- 

charges have lead to very high burdens on our energy resources. 

Fig. 2 shows an example of a vertical analysis of energy costs 

of a simple aeration tank, a device used in many water treat- 

ment processes (Khan, 1977). The total cost in the example is 

21 x lo6 BTU. Processed materials alone account for 60% at 

this cost. Examples of energy costs at advanced wastewater 

technology are given in Table 52. 

One result of our overzealousness to clean up the environ- 

ment has been a series of laws that put limitations on the dis- 

charges allowed into waterways to "zero discharge" by 1983. 

Khan (1977) has estimated the energy cost of such a policy, if 

extended to advanced wastewater treatment for both municipal 

and industrial discharge would imply an equivalent consumption 

of 1.7 million barrels of oil per day (Table 53). TO put this 

in perspective, this is 4.3% of the total proj,ected national 

energy consumption projected for 1980 and equals the daily out- 

put the Alaska pipeline is expected to yield by the end of 

1977 (EOP, 1977). 

INTERFACE ECOSYSTEMS 

That these technological energy costs for services once 

provided by natures assimilative capacity are becoming a 

significant part of our national energy budget gives impetus 

to the search for ecosystems and ecosystem functions that act 

as "interface ecosystems" between mans wastes and the rest of 

nature. While some would argue that this is a traitorous 

stance to take on the environmental/ecological issues at hand, 

I present the following arguments for this approach, regardless 



Table 52 

Summary of Energy Costs of AWT Processes 

Process Energy Cost ( M B T U ~ ~ ~ G )  

Lime Treatment 

a) Low Lime Primary 

b) High Lime Primary 

c) Single Stage Tertiary 

d) Two Stage Tertiary 

Recarbonation 

Kultimedia Filteration 

Carbon Absorption , 
a) Primary Effluents 

b) Secondary Effluents 

c)  Tertiary Effluents 

Ammonia Air Stripping 

Nitrification-Denitrification 

Break-point Chlorination 

From Khan (1977) 



Table 53 

Energy Expense of Water Pollution Cleanup 

Compared With Other Energy Flows 1 

Energy Flow 
6 10 Barrels oil/day 

% of 

Total 

Total U.S. Energy Con- 

sumption (1980) 

Alaskan pipeline con- 

tribution (1978) 

Municipal wastewater 

treatment 

Municipal-A~T/Industrial/- 

secondary treatment 

Zero discharge by ~unicipal 1.7 
and Industrial 

1 Khan (1977) 



of the future energy scenario: 

(1) If our economy is heading towards an energetic steady 

state, we may be forced to depend on natural systems 

to provide functions more than ever. Should this 

scenario occur, demands for natural areas by land 

speculators and entrepreneurs might diminish as 

would liesure time and hence recreational demand for 

government holdings at natural areas. We would revert 

to the natural subsidies as a matter of course. 

(2) Should our national energy budget continue to rise, 

more and more rationale will be needed to keep areas 

in their natural state as land use patterns continue 

to use up space and fossil fuels continue to replace 

natural functions. The arguement for conservation 

alone may diminish as a rationale for preserving 

natural areas. 

The concept of the interface ecosystem involves two 

types of systems: 1) ecosystems that are altered slightly 

to perform low energy cost services for use, and 2) eco- 

systems that provide hidden energy subsidies in their natural 

state with no overt alteration by man. Examples of both will 

be given in this paper. 

Wetlands as Interface Ecosystems 

Wetlands have caught the imagination of ecologists as 

areas that may have significant economic benefit to man. 

Gosselink et -- al. (1974) discussed the value of tidal salt 



marshes as bases of fisheries, oyster aquaculture and tertiary 

treatment services to man. hlharton (1970) discussed the eco- 

nomics of the "multiple-use environment" associated with 

southern river swamps. 

Past studies of freshwater wetlands have investigated 

several of the important contributions fo wetlands. 

Dachnowski-Stokes (1935) long ago suggested peat lands to be 

useful as "safeguards against drought, floods, erosion, and 

lowered ground waters". Grant and Patrick (1970) reported on 

Tinicum marsh near Philadelphia where significant decreases 

in pollution were noted as water flowed through the marsh. 

Wisconsin marshes were investigated by Bentley (1969) and 

Klopatek (1974) for their effects on water quality. Each 

investigator found seasonal patterns in nutrient discharges 

from the marshes, suggesting a net uptake of the elements in 

summer and a net discharge in the nongrowing season. Wharton 

(1970) documented the role of a southern river swamp in sediment 

removal while Kitchens et al. (1974) found reductions on the -- 
. . s  

order of 50 percent for phosphorus in river water flowing 

through South Carolina forested wetlands. Brown et al. (1974) -- 
gave preliminary evidence that a forested wetlands area in 

central Florida receiving sewage for nineteen years proved 

to be a nutrient sink with the added benefit of significantly 

greater tree growth in the sewage-receiving area when compared 

to a nearby control area. 



Recycling in Florida Cypress Domes 

The cypress wetlands used in this study are the main re- 

search sites in a project entitled "Cypress Wetlands for Water 

Management, Recycling and Conservation. "' Commonly referred 
to as cypress domes or ponds these pockets of cypress trees 

(Taxodium distichum var. nutans) are located in areas of low 

relief with seasonal standing water, amid drier pine flatwoods 

or plantations. 

Secondarily-treated wastewater and groundwater has been 

applied to several cypress domes near Gainesville, Florida 

(Fig. 59) as part of the research project since early 1973 while 

others are being studied in their natural state. Loading rates 

were tested up to 13 cm/wk with best results achieved at lower 

rates around 2.5 cm/wk. The domes seem to be able to consis- 

tently take the lower loading rates with a minimal overland 

flow. Little change in the groundwater quality over background 

is noted downstream of the experimental domes. 

Vegetation changes occurred both in the canopy and in the 

understory. An extensive mat of duckweed (Lemna purposilla, 

Spriodela oligorhiza, and Azolla caroliniana) developed in the 

domes receiving sewage. The canopy, primarily cypress trees, 

showed preliminary favorable growth response to the treated 

sewage (Table 54). 

1 - Funded by N.S.F. Grant GI-38721 (RANN Division) and Rockefeller 
Foundation Grant RF-73029, H. T. Odum and K. C. Ewel, Principal 
Investigators. 
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Figure 59. 'Cypress dome experimental recycling project in 
Gainesville, Florida. 



Table 54 

Cypress Tree Growth Data in Alachua County 

Experimental Domes 

Dome 
Average Diameter 
Increase, m / y r  

Increase in Biomass 

Sewage Dome No. 1 

Groundwater Dome 

Drained Dome 1 

Ponded Dome 1 

Values calculated for nearby domes based on 11 years of tree 
growth data. 



The energy value that is required for this system per gallon 

of wastewater treated is given in Table 55. A considerable savings 

is recognized whereby the technological alternative of tertiary 

treatment costs about 7.7 times the energy cost of dome disposal. 

Both of these costs were determined in the same general manner, 

utilizing the energy coefficients of Bullard and Herendeen (1975). 

In addition, the cypress system is recharging groundwater supplies 

and probably growing cypress trees faster. The technological al- 

ternative still has remaining questions of sludge disposal.as well. 

The natural energy flow, calculated from the gross primary 

productivity of the dome receiving sewage is also given in Tahle 55. 

The number is put in fossil fuel equivalents., The total still 

comes to less than the energy flow required by technology alone, 

suggesting that a proper mix of high quality energy (eg. fossil 

fuels) and low quality energy (sunlight) may achieve results at 

better energy efficiencies than could be achieved by either source 

alone. 

- 
Heron Pond Value 

Similar energy calculations were made for Heron Pond to 

answer the question: what energy expenses would be necessary 

to perform similar functions now being carried out by Heron 

Pond? The services of P removal in sedimentation and flood 

control are used. It is full well realized that these are 

hypothetical costs and probably would not be spent if the 

swamp was replaced with a parking lot. Nevertheless, the 

environment would be that much more degraded if that were to 



Table 5 5  

Energy Value of Florida Cypress Dome Disposal Compared With 

Tertiary Treatment 

Cypress Dome Tertiary 

Disposal Treatment 

-- - - 

Fossil Fuel 

Energy Cost, kcal/gal 

Natural Energy Subsidy, 

kcal FFE/gal 

1. Based on dollar cost given in Odum et al., (1977). -- 
2. Based on gross primary productivity given in Odum -- et al., (1977), on energy quality 

factor of 20 kcal GPP/kcal FFE, and 2.5 cm/wk application rate. 

3. From Khan (1977). 



occur. The energy cost for equivalent phosphorus removal 
6 

and flood control are given in Table 56. The 578 x 10 kcal/ 

yr is equivalent to 414 barrels of oil per year; the money 

value of Heron Pond for the services is $18,49O/year. This 

is based on only two of the services this ecosystem provides; 

perhaps there are others which will increase this total. 

CONCLUSIONS 

calculations of the energy waste that results when man 

does not recognize the value of natural systems are shown. 

Two wetland examples are given, one where man sets up an inter- 

face for nutrient recycling in Florida and the other where 

natural benefits of a swamp are identified in Southern Illinois. 

It is hoped that these kind of examples will lead to both con- 

servation of our natural ecosystems and our precious energy 

supplies by recognizing the value of ecosystem energy flows. 



Table 56 

Substitute Energy and Money Value of 30 ha Southern Illinois 

Cypress - Tupelo Swamp 

Value Energy Value 

(lo6 kcal FFE/yr) 

Money Value 
($1000/yr) 

Nutrient Removal (P-removal) 

Flood Control 

TOTAL 587 18.49 

2 1. Based on 3.6 g P/m -yr removed from river by swamp (Mitsch et al., in press) and -- 
energy cost of P-removal technology of 36.1 ~ ~ ~ / g a l  (Khan, 1977). 

2. Based on $79.92/MG for P-removal (1969 $) (Khan, 1977). 

3. Based on $29l/acre-ft-yr calculated for flood control (7 resevoirs) on N. Branch 

Chicago River (U.S.D.A. -- et al., 1976) . 
4. Based on dollar cost (note 3) and energy intensity of 0.0796 MBTU/$ for new construc- 

tion-public utility (Bullard and Herendeen, 1975). 
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APPENDIX A 

HERON POND CHEMISTRY DATA 

Sheet 1 of 2 Station 1 

Location Cache River North of Swamp 

Date 

Flow (cfs) 

Time of Sampling 

Air temperature (OC) 

Water temperature (OC) 

Dissolved Oxygen (mg/l) 

PH 

Alkalinity (mg caco3/1) 

Hardness (mg caco3/1) 

- 
1977 

1/8 

.02 
1430 

6 
0 

10.4 

7.6 

140 

185 

8/13 

17 

70 

3/ 5 

104 0 
1045 

I fi 
8.5 

9.4 
- 

24 

30 

17 

445 

.I30 

.230 

.440 

25 

400 

.130 

.140 

.21O 

.O1 

.03 

Turbidity (JTU) 

Conductivity (pmho/cm) 

Ortho-phosphate (mg-P/1) 

Total Soluble P (mg-P/1) 

Total P (mg-P/1) 

NO2-N (mg-N/1) 

NO3-N (mg-N/1) 

447 

123 

.207 

.460 ' 
1.22 

.02 

.08 

1 9 7 6  

10/3 

0.55 
1030 

25 
16.2 

4.5 

7.1 

80 

93 

. 

12/5 

13 
1500 

- 
5 

12.3 

8.3 

92 

119 ---- 

151 

.I64 

.072 

.254 

58 

292 

.040 

.240 

.350 

.O1 

.03 



HERON POND CHEMISTRY DATA 

Station 1 

Location Cache River North of Swamp 

Sheet 2 of 2 

Date 

 low (cfs) 

Time of Sampling 

Air temperature (OC) 

Water temperature (OC) 

Dissolved Oxygen (mg/l) 

pH 
Alkalinity (mg caco3/1) 

Hardness (mg cac03/1) 

Turbidity (JTU) 

Conductivity (pmho/cm) 

Ortho-phosphate (mg-P/1) 

Total Soluble P (mg-P/1) 

Total P (mg-P/1) 

NO2-N (mg-N/1) 

NO3-N (mg-~/l) 

Ammonia (mg-N/1) 

TKN (mg-~/1) 

SO; (mg/l) 

Dissolved Residue (mg/l) 

Total Residue (mg/l) 

COD (mg/l) 

K+ (mg/l) 

~ g + +  (mg/l) + 
Na (mg/l) 

4-4- 
ca hg/l) 

4/1 

3560 

1045 
- 
- 
- 
- 
32 

19 
472 

120 

.I37 

- 
2.1 2 

06 

.O2 

.24 

1.03 

13.1 

95 

297 

36.4 

3.2 
2.4 

2.4 
3.7 

5/3 

623 

- 
- 
- 

6/25 

1230 

28 

24 " 

8.0 

7.2 

144 

- 
242 * 

560 

.I63 ' 

.I27 

3ns 

~ 9 7 7  

6/4 

1200 

28 

18 
- 
- 

146 

128 
370 

500 

.lo1 

.I30 

7 5 4  

0 1 

.10 

0.0 

0.6 

- 
- 
- 
- 

3.7 
4.7 

19.0 
43.4 

7/31 

84 

65 , 

419 

280 

.231 

.223 - 
arm -, 

.06 

.25 

.60 
0.88 

9.5 

72 
343 

29.5 

4.4 
4.6 

7.4 
18.3 
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