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ABSTRACT 

This was a study to evaluate the suitability of subirrigation along 

with alternative soil and water trujlnagement practices on claypan soil. Crop 

yields on these soils are usually low because of limited water management 

for crop production. Several years of crops, soil and weather data 

collected on a claypan soil in Illinois were used to study performance of 

subirrigation and conventional irrigation on these soils. Various drain 

spacings and depth combinations for both good and poor· quality surface 

drainage were simulated. Results indicated that optimum drain spacing for 

subirrigation on these soils would be 6 m under good surface drainage, and a 

weir setting depth of 35 cm on a 5-year recurrence interval basis. However, 

such a close drain spacing may not be economically feasible. 
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INTRODUCTION 

The design of efficient agricultural water management systems is 

becoming more critical as production costs and farm prices climb. Water 

is essential for the permanence and stability of agriculture and demand 

for water is increasing due to the competition of domestic, municipal, 

recreational and industrial uses; excessive water quality deterioration; 

losses through seepage, runoff and.evaporation; and increasing tendency 

towards irrigation. 

Although the Midwest· States receive an ample amount of water as 

annual precipitation, irrigation in these areas is often economical. 

Three factors necessitate irrigation in Midwest States: (a) the annual 

rainfall distribution does not coincide with the evapotranspiration dis

tribution, (b) water holding capacity generally is not sufficient to 

provide adequate water for crops during the deficit rainfall period and 

(c) frequently restricted rooting depth limits soil water availability to 

plants (Lambert et al., 1981). Most of Midwestern states experience 

frequent periods of hot and dry weather during the growing season. For 

instance, in East-Central Illinois, the probability of a 5-day or longer 

dry period (where dry period is defined as less than 0.25 cm precipita

tion in 24 hours) is approximately 75 percent for the second half of 

July. When rainfall does occur during the growing season, the low 

permeability of the heavy soils in some areas and their flat topography 

result in excessive water in the plant root zone. Therefore, artificial 

drainage systems are needed to satisfy two specific requirements: (a) to 

insure trafficable conditions for seedbed preparation, planting, harvest

ing, and other field operations; and (b) to remove excess water from the 

root zone during heavy rainfall periods to insure a suitable environment 

for plant growth during the growing season. 
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Subirrigation systems are designed to provide total water manage

ment for crop production in areas where both irrigation and drainage are 

needed. During wet periods,- the system operates as a drainage system to 

remove excess water. During dry periods, water is supplied back through 

the system to the growing crop. In the irrigation mode, water is 

diverted into the drains and then infiltrates out into the soil. 

Moisture then reaches the plant roots through lateral and outward 

movement. The method requires that the depth to water table be 

subject to rigid control otherwise the depth can become too shallow or 

too deep and either retard growth or stop it completely. 

As with other methods of water management, certain restrictions 

must be recognized to successfully operate a subirrigation system. 

Ideally, subirrigation can be practiced in areas with a nearly level and 

smooth soil surf ace and a soil profile that includes a highly permeable 

stratum extending from the surface down to 60 cm or more, underlain 

by a relatively impermeable substratum (Hoskyn and Bryan, 1969). The 

impermeable layer insures that water applied will remain where 

needed, and that a minimum quantity of water will be needed to raise the 

water table. Subirrigation system effectiveness depends on several soil 

physical characteristics such as hydraulic conductivity and moisture 

holding capacity. The soil should be permeable enough so that water 

will move quickly to supply plants all the water they need in peak 

consumption periods. Also soil must drain readily enough to remove the 

excess water which occurs during heavy rainfall. The rate and distance 

of water movement is dependent primarily upon the texture of the soil. 

For example, water in the unsaturated state moves more rapidly but for a 

shorter distance in a sandy loam than in a silt loam soil. Therefore, 
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drain spacing is directly related to the distance water will move in the 

soil and still fulfill plant water requirements. Drain spacing is a 

major factor in total system cost and perhaps the most important single 

variable in the system design and in the successful functioning of the 

system. Within limits of availilble machinery, drain depth has little 

effect on system cost, but is very important in that sufficient depth is 

necessary to provide the necessary head differential to move water 

rapidly from the drain tube and through the soil. 

There are several claimed and potential advantages of such a water 

management system. Foremost are low labor and maintenance requirements 

when one buried system provides both irrigation and drainage. The method 

can be used on soils having relatively low water holding capacities and 

high intake rates. Weed seeds are not carried over the surf ace of the 

land by irrigation water to germinate and grow. Thus, weed control is 

simplified under subirrigation. Another important advantage is that, 

compared to sprinkler irrigation, soil compaction and erosion is reduced, 

as is the nutrient leaching from the upper root zone. Soils warm earlier 

in the spring due to good subsurface drainage and some proof exists that 

plugging of the tiles may be eliminated by the backf lashing effect of 

subirrigation water (Zetsche, 1964). In contrast to sprinkler irrigation 

in which water loss from evaporation can amount to as much as 30 percent, 

subirrigation reduces the problem of surface evaporation, and therefore, 

higher water-use efficiencies and better crop yields can be obtained. 

Subirrigation has some disadvantages though, and ignoring them can 

be a very serious mistake. The single most imporant disadvantage is that 

the system requires an unusual combination of natural conditions to exist 
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(Criddle and Kalisvaart, 1967). Other disadvantages are that only water 

supplies of good quality may be used and that choice of crops to be 

irrigated by this method may be somewhat limited to a narrow range of 

rooting characteristics. Finally, depending on the tile spacing required 

for satisfactory crop production, total cost of the system can be a 

limiting factor. 

There are about 4 million hectares of claypan soil in the Midwest. 

These soils have a 30- to 75-cm layer of silt loam topsoil with a heavy 

clay subsoil that is very slowly permeable and severely limits root 

development and water penetration. The crop yields on these soils are 

usually low because of limited water management. With proper water 

management these soils can become very productive. A high percentage of 

these soils occur on nearly level to gently sloping lands of Illinois. 

There are many areas in the Midwest where subirrigation, if 

properly designed and operated, would give better results than the 

conventional methods of soil and water management. Climate, topography, 

subsoil characteristics, and high water table associated with claypan 

soils in the Midwest may be particularly adaptable to subirrigation. 

However, very little information is available on subirrigation systems 

for claypan soils in the Midwest. Their feasibility, and performance 

compared to commonly practiced irrigation systems have not been studied, 

nevertheless, investigations show that subirrigation systems do work 

satisfactorily in some areas, and it has been stated that this system of 

irrigation, if properly designed and operated, might be the best method 

available for many areas (Criddle and Kalisvaart, 1967). The extent of 

claypan soils in the Midwest justifies efforts in studying the suitabil

lity of subirrigation in these soils. 
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The objectives of this study were: (a) to evaluate the suitability 

of subirrigation along with alternative soil and water management 

practices on claypan soils, and (b) if subirrigation is suitable, develop 

design criteria for the Midwest. 

PREVIOUS WORK 

Walker et al. (1982) investigated the effects of combinations of 

both irrigation and drainage treatments on corn production on claypan 

soils in the upper Midwest for five years. The irrigation treatments 

were sprinkler, furrow, and no irrigation. The drainage treatments were 

surface, subsurface, and no drainage. The results indicated average corn 

yield increases of 0.8 and 2.4 t/ha due to drainage and irrigation, 

respectively. Together, irrigation and drainage acted synergistically 

to produce an average yield increase of 4.8 t/ha. They concluded that 

both irrigation and drainage is needed for maximum crop production on 

the claypan soils. Rausch and Nelson (1984) investigated the benefits 

of water management systems on claypan soils of Missouri. They reported 

that subirrigation improved alfalfa yield by 2.5 times over that of non

irrigated plots. However, the slow permeability of the claypan layer 

restricted the lateral water flow in the soil and subirrigation water 

moved less than 2 meters away from the trench. It should be noted that 

they used a 15-m spacing between the drains used for subirrigation and 

that their results are based on only one year of data collection. 

Cole (1971) presented an excellent comprehensive review of 

knowledge pertaining to subirrigation. He lists 58 references in his 

literature survey of potential and problems related to subirrigation. 

Increases in crop yi'elds under subirrigation systems have been reported 
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by many investigators. These reports have been encouraging. In 

Arkansas, reports indicate a 340-kg increase in cotton yield with sub

irrigation over the nonirrigated check (Bryan and Baker, 1964). In 

Texas, studies have shown comparable corn yields for subirrigation and 

furrow irrigation, while the subirrigation system required 42 percent 

less water (Zetzsche, 1964). Eldin (1970) reported corn yields of 10.44 

and 6.33 t/ha under subirrigation and control system of irrigation, 

respectively. He also reported that cucumbers with 66.0 cm of water 

produced 43.9 t/ha of yield in subirrigation, but no yield was obtained 

using a sprinkler system. Sepaskhah et al. (1976) reported that sub

surface irrigation required 55 percent less water to produce bean yields 

comparable to that obtained with furrow irrigation. 

A restricting layer exists at a depth of less than 75 cm in claypan 

soils. This layer is very slowly permeable thereby limits natural 

subsurface drainage and causes a high water table in claypan soils 

(Goetsch, 1981). Recent studies by Skaggs have demonstrated the 

feasibility of crop production on an area which has both a high water 

table and an impermeable layer beneath the soil surface (Skaggs, 1977). 

The relationship of water table depth to yield of many field crops has 

been investigated. Doty et al. (1975) found that silage yields of field 

corn increased by 0.5 t/ha for each additional day the water table was 

maintained at less than 100 cm from the surf ace in a sandy soil. Other 

studies have also shown the best crop response when the water table was 

maintained between 60 and 100 cm from the soil surf ace (Follett and 

Doering, 1974). These findings show that controlling the water table 

could increase crop production on a variety of soils. Therefore, sub

irrigation, which maintains the water table at some predetermined depth 
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below the ground surface could be suitable for optimum crop production 

on claypan soils in the Midwest. It should be noted that previous 

studies show that the best water table depth for crop production is 

greater than the claypan depth (Doty et al .• 1975). 

MODEL DESCRIPTION 

The simulation model. DRAINMOD. was developed at North Carolina 

State University for shallow water table soils and was described in 

detail by Skaggs (1978, 1980). The model was developed for design and 

evaluation of multicomponent water management systems which may include 

facilities for surface drainage. subsurface drainage, sprinkler 

irrigation and subirrigation. It has been extensively used and its 

accuracy verified against field data from several locations (including 

North Carolina. Ohio and Indiana) and it is currently being tested 

against data from Florida, Louisiana and California (Skaggs, 1982). 

A schematic of the water management model is shown in Figure 1. 

Detailed descriptions of the model logic and examples of its application 

have been given by Skaggs (1980). Briefly, however, the model is based 

on a water balance for a thin section of soil of unit surface area which 

extends from the impermeable layer to the surf ace and is located midway 

between the adjacent drains. The water balance is computed on an hourly 

basis in DRAINMOD by using approximate methods to calculate infiltration, 

drainage, subirrigation. and evapotranspiration. When rainfall occurs, a 

water balance is also conducted at the surf ace with time increments that 

can be as short as three minutes to describe the infiltration process 

(Skaggs and Nassehzadeh-Tabrizi, 1983). 
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Figure 1. Schematic of the water management system considered by 
DRAINMOD; subsurface drains can be used for both sub-
irrigation and drainage (Skaggs, 1978). 



Model Components 

Precipitation 

9 

Precipitation records are one of the major inputs to DRAINMOD. The 

accuracy of the model prediction for infiltration, runoff and surf ace 

storage is dependent on good rajnfall data (Skaggs, 1978). Precipitation 

records are read into the model as hourly values. Skaggs (1982) 

indicated the precipitation records of shorter time increments can be 

used, but such data are not normally available, so the model is 

programmed to read hourly records. 

Infiltration 

The Green and Am.pt (1911) equation is used by DRAINMOD to predict 

infiltration rates into the soil. The equation was originally derived 

for deep homogenious soil profiles with a uniform initial water content. 

Water is assumed to enter the soil as slug flow resulting in a sharply 

defined wetting front. The Green and Am.pt equation, which is a result of 

the direct application of Darcy's Law to a slug flow regime, may be 

written as: 

(1) 

where f is the infiltration rate, F is the accumulated infiltrati9n, Ks 

is the hydraulic conductivity of the wetted zone, M is the difference 

between final and initial volumetric soil moisture contents, and Sav is 

the effective suction at the wetting front. For a particular soil with a 

given moisture content, Equation (1) can be written as: 

f = A/F + B (2) 

where A and B are parameters that depend on soil properties, and initial 

water content and distribution. 
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In addition to uniform profiles for which Green and Ampt equation 

was originally developed, Bouwer (1969) and Childs and Bybordi (1969) 

reported that it may also be used for soils with nonuniform initial water 

contents and profiles that become denser with depth. The model requires 

input for infiltration in the form of a Table of A and B versus water 

table depth. When rainfall occurs, A and B values are interpolated from 

this table for the appropriate water table depth at the beginning of the 

rainfall event. Then an iteration procedure is used with Equation (2) 

to determine the cumulative infiltration at the end of hourly time 

intervals (Skaggs, 1978). 

Surf ace Drainage 

When rainfall occurs, water infiltrates into the soil surface and 

percolates through the profile and raises the water table. If the 

rainfall rate is greater than the soil infiltration capacity, then water 

begins to collect on the surface. Surface drainage is characterized by 

the average depth of depression storage that must be satisfied before 

runoff can begin. Gayle and Skagg_s (1978) reported that depression 

storage depth in an eastern North Carolina field varied from about 1 mm 

for lands.that had been smoothed to greater than 30 mm for rough plowed 

fields. Surface detention storage which depends on the runoff rate, 

slope, and hydraulic roughness of the surface is neglected in DRAINMOD. 

Detention storage is the depth of surface water that is accumulated, in 

addition to the depression storage, before runoff from the surface 

begins. By neglecting surface detention storage, DRAINMOD assumes that 

runoff moves immediately from the surf ace to the outlet. 
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The effect of improving the surf ace drainage can be simulated by 

varying the average depth of depression storage from small values for 

good surface drainage to large values for poor surface drainage. 

Subsurface Drainage and Sµbirrigation 

The rate of subsurface water movement into drain tubes depends on 

the hydraulic conductivity of the soil, drain depth and spacing, soil 

profile depth and water table elevation. Water moves toward drains in 

both the saturated and unsaturated zones. However, in DRAINMOD it is 

assumed that lateral water movement occurs mainly in the saturated zone. 

Hooghoudt's steady state equation as used by Bouwer and Van Schilfgaarde 

(1963) is used in DRAINMOD for subsurface drainage. This equation can be 

written as: 

q 

where q is the flux, m is the midpoint water table height above the 

drain, K is the effective lateral hydraulic conductivity, L is the 

distance between the drains, and de is the equivalent depth of the 

impermeable layer below the drain which is used in this equation to 

correct for convergence near the drains. 

(3) 

By using Equation (3) in DRAINMOD, it is assumed that drainage is 

limited by the rate of soil water movement to the drains and not by the 

hydraulic capacity of the drain tubes or of the outlet. This means that 

when the flux given by Equation (3) exceeds the Drainage Coefficient (D. 

C.), q is set equal to the D.C. in DRAINMOD (Chieng et al., 1978). The 

water level in the main outlet may also limit the drainage flux, however, 
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such outlet limitations are also neglected in DRAINMOD. Skaggs (1982) 

reported that although Equation (3) was derived mainly for steady state 

conditions, when applied for short time increments or for small changes 

in the water table position, the method compared well with transient 

methods for predicting drainage flux. A modified version of Equation 

(3) as presented by Ernst (1975) is used in DRAINMOD to calculate sub-

irrigation rates: 

q = (4) 

where D0 = y0 + d; y0 is the water table elevation over the drain, d is 

the distance from the drain to the impermeable layer, and h0 = y0 + de• 

Other notations used in Equation (4) are the same as defined previously. 

Evapotranspiration 

The model uses the empirical method developed by Thornthwaite 

(1948) to estimate the potential evapotranspiration (PET). The PET is 

computed in the main program of DRAINMOD from recorded daily maximum and 

minimum temperature data. The heat index must be determined and inputed, 

along with the latitude of the site. Based on latitude and date, 

adjustments for day length and number of days in the month are made in 

the program. The determination of evapotranspiration is a two-step 

process in the model. First, using atmospheric data, the daily PET is 

calculated and is distributed on an hourly basis. The model distributes 

the PET at a uniform rate for the 12-hour period between 6:00 a.m. and 

6:00 p.m. In case of rainfall, hourly PET is set equal to zero for any 
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hour in which rainfall occurs. After PET is calculated, if soil water 

conditions are not limiting, evapotranspiration is set equal to PET. 

When PET is higher than the amount of water that can be supplied from the 

soil, evapotranspiration is equal to the smaller amount. Several other 

methods give more accurate estimates of PET than Thornthwaite, but 

require input data that are not readily available. However, if the input 

data can be obtained, the evapotranspiration coefficients calculated by 

other methods can also be read into the program. 

Objective Functions 

The objectives of .agricultural water management systems are to 

eliminate crop yield reductions due to lack of or excessive soil water 

conditions. DRAINMOD can be used to simulate the performance of a given 

system design and evaluate the appropriate objective functions for a long 

period of weather record (Skaggs, 1978). Objective functions such as 

number of working days, number of dry days, and a stress factor, such as 

SEW30 are calculated for each year simulated~ Then, by making multiple 

simulations, the system that satisfies the water management objective 

functions can be identified. 

Working Days 

This is a parameter used to characterize the ability of a water 

management system to insure trafficable conditions during planting and 

harvesting periods. DRAINMOD counts a day as a working day if: (a) the 

air volume in the profile exceeds a limiting value, AMIN; (b) the rain

fall during that day is less than a minimum value, ROUTA; and (c) a 

minimum number of d~ys, ROUTT, has elapsed since that amount of rainfall 

occurred. It should be noted that ROUTA and ROUTT are assumed to be 

independent of AMIN and of the Water Management System (Skaggs, 1978). 
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AMIN can be estimated from the soil water characteristics curve and 

the drainage-volume water table depth relationship. ROUTA and ROUTT can 

be approximated by field observations during the spring period of seedbed 

preparation. Skaggs (1978) has experimentally obtained these parameters 

for a wide range of soil types and conditions. 

Dry Days 

Number of dry days quantifies the length of time during growing 

season when deficit soil water conditions exist. A dry day is defined 

as a day in which evapotranspiration (ET) is limited by soil water 

conditions. The limiting water content.depends on the potential evapo-

transpiration (PET) rate as well as soil and crop properties. Days in 

which ET is less than PET because of soil water conditions are assumed 

to be detrimental to optimum crop production and are counted as dry days 

(Skaggs, 1980). 

SEW30 concept was originally defined by Sieben (1964) to evaluate 

the effect of high water table level on crop production. It is the sum 

of excess water table rises above the 30-cm depth. It is ordinarily 

measured in cm-days and may be expressed as: 

n 
~ 

i=l 
(5) 

where Xi is the water table depth on day i and n is the number of days in 

the growing season. Negative terms inside the summation are neglected. 

Sieben (1964) found that crop yields decreased for SEW30 values greater 

than 100- to 200-cm days. However, his values were the sum of SEW30 for 

the entire year. Massey et al. (1983) reported that any water management 
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system that limits SEW30 to 100-cm days or less are adequate for corn 

production. However, depending on the type of the crop and the timing 

of the excess soil water condition,·the optimum value for SEw30 may be 

different. 

Therefore, these three objective functions, working days, dry days 

and SEW3o are used in DRAINMOD to quantify the performance of a water 

management system. Ideally a system should provide a given number of 

working days during the planting period, a minimum number of dry days to 

prevent crop damages due to deficient soil water conditions, and SEW30 

values less than a given maximum to prevent crop stress due to excessive 

soil moisture conditions. 

SIMULATION INPUT DATA AND PROCEDURE 

Soil Information and Input Data 

Claypan soils in Illinois consist primarily of the Hoyleton-Cisne

Huey soil association which occur on the uplands of south-central and 

southern Illinois. These soils typically have very dark grayish brown 

silt loam Ap horizons. The A2 horizons are grayish brown and light gray 

silty types. Mottled grayish brown heavy silty clay loam makes up the 

B2t horizon. Mottled light brownish gray silty clay loam B3 horizons and 

dark grayish brown silt loam C horizons at depth of about 150 cm complete 

the soil profile of the Cisne series. Typically there is a very tight 

claypan layer located at a depth of 30 to 75 cm that is slowly permeable 

and severely limits root development and water penetration. 

The saturated hydraulic conductivity data collected by Lembke et 

al. (1984) on Cisne silt loam soil at a site near Altamont, Illinois, in 

Effingham County was used in this study. They used a method based on 
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water table drawdown (Skaggs, 1976) to measure the saturated hydraulic 

conductivities of four heavy soils in Illinois. The saturated hydraulic 

conductivity value is listed_ in Table 1. 

The soil water characteristics data were taken from Goetsch (1981) 

and the University of Illinois Agricultural Experiment Station Bulletin 

760 (1979) for Cisne silt loam soil (Figure 2). The main use of this 

data is to calculate the relationship between drainage volume and water 

table depth for use in DRAINMOD. This is that volume of the soil profile 

which becomes air after the gravitational water has moved down to the 

water table·. However, in this study the drainable porosity values 

collected by Lembke et al. (1984) were used to estimate these relation

ships. Drainage volume and water table depth relationship calculated 

from soil water characteristics data is plotted in Figure 3. 

Coefficients for the Green-Ampt infiltration equation were deter

mined using the data from the North Central Regional research publication 

number 259 (1979). A sprinkler infiltrometer was used to collect these 

data. The infiltration rates were determined by drawing a smooth curve 

through the observed cumulative infiltration data and taking the slope 

at various times along the curve. The parameters A and B were estimated 

from these data by first defining a variable G = l/F such that Equation 

(2) could be written as: 

f = AG + B (6) 

Then A and B were determined by fitting a straight regression line to a 

plot F vs. G data. Finally by using the methods suggested by Skaggs 

(1979), the coefficients of A and B were determined for various water 

table depths. Values of A and B corresponding to selected initial water 

table depths are tabulated in Table 2. 
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Table 1. Summary of input data for soil properties and crop parameters 
for Cisne silt loam soil. 

Input Parameter Program Variable Value 
Name 

Depth to restrictive layer DEPTH 60 cm 

Saturated hydraulic conductivity CONK 1.6 cm/hr 

Saturated water content * 0.355 cm3/cm3 

Water content at lower limit available 
to plants (wilting point) WP 

Initial water table depth IDTWT 0.0 cm 

Maximum corn root depth ROOTD 35.0 cm 

Minimum soil air volume required 
for tillage operations during spring AMINI 3.2 cm 

Minimum rain to stop field operations 
during seedbed preparation ROUTAl 1.2 cm 

Minimum tim~ after rain before can 
till in spring ROUTT! 2 days 

Working period for seedbed preparation BWKDY April 15-May 10 

Working hours during spring SWKHR 0800-2000 

Depth to which SEW calculations are made SEWX 30 cm 

Year and month simulation starts START 1952-01 

Year and month simulation ends END 1971-12 

Latitude for temperature station LATT 39°, 30' 

Heat index HET 57.0 

*This variable is not a direct input to DRAINMOD, but is used to 
.calculate other parameters. 
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Table 2. Coefficients for the Green-Am.pt infil
tration equation as a function of 
initial water table depth. 

Water table depth, cm A, cm2/hr B, cm/hr 

0 o.oo o.oo 
20 0.63 1.60 
30 0.78 1.60 
50 1.25 1.60 

100 4.79 1.60 
200 8.62 1.60 
400 18.22 1.60 
500 20.13 1.60 

The trafficability parameters for the soil of this study are listed 

in Table 1. ·These parameters were estimated from the texture of the plow 

layer by comparing the physical characteristics of Cisne silt loam with 

those of soils for which the parameters values have been previously 

measured and reported by Skaggs (1978). 

Several methods are available for estimating the relationship 

between maximum rate of upward water movement and water table depth. As 

Skaggs (1978) reported, the entire concept is approximate because the 

relationship in DRAINMOD is defined for steady state conditions while the 

actual upward water movement process is transient. These relationships, 

plotted in Figure 3, were estimated using a computer program developed by 

Skaggs (1978). The computer program defines these relationships by 

numerically solving Richards equation for vertical unsaturated water 

movement due to evapotranspiration at the surf ace. A summary of some of 

other soil input data as used in DRAINMOD for the Cisne silt loam soil is 

presented in Table 1. 
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Crop Input Data 

Crop input data to DRAINMOD include the relationship between 

effective rooting depth and time and the days to initiate and stop SEW 

and Dry Day computation. The effective root zone depth was assumed to be 

dependent on time after planting and was taken as that given by the 60 

percent curve from the data of Mengel and Barber (1974) as suggested by 

Skaggs (1982). Since soil moisture will be removed from a shallow 

surface layer by evporation even when the land is fallow, therefore an 

effective root zone depth of 3 cm was assumed for the periods before and 

after the growing season. The maximum effective root depth for corn in 

this study was assumed to be 35 cm. · The period between April 15 and May 

10 was assumed for beginning and ending Julian dates for spring planting, 

respectively, and was used for SEW and Dry Date computation. 

Drainage System and Climatological Input Data 

The system input data are the drain spacing, drain depth, effective 

depth to the impermeable, layer and the depth of surface depressional 

storage. A parallel drain tube for subsurface drainage or subirrigation 

was assumed. Drains were assumed to be 10.2 cm (4.0 inches) inside

diameter corrugated plastic tubing. Drain spacings varied between 200 

and 1500 cm, and the drain depth was assumed to be 60 cm. The effective 

drain depth to the impermeable layer, a parameter used to account for 

convergence near the drains was obtained using a computer program 

d~veloped by Skaggs (1978). The effective depth (de), depends on drain 

depth, spacing and radius. 

The depressional storage parameter used to quantify surf ace 

drainage is somewhat. more difficult to define. Gayle and Skaggs (1978) 
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quantified surf ace drainage by means of surface drainage depressional 

storage measurements on several soils of North Carolina. They published 

a· subjective guideline for estimating the surface storage. For this 

study two levels of surface storage were selected for simulation purposes. 

These were 3 mm for good surface drainage and 30 mm for poor surf ace 

drainage. A summary of these input data for Cisne silt loam soil is 

presented in Table 3. Hourly precipitation and daily maximum and minimum 

temperature records are the required input by DRAINMOD. The temperature 

data is used by the model to calculate the evapotranspiration by 

Thornthwaite method which derives the element for the equation from the 

temperature data, latitude, and heat index for the location. Twenty years 

(1952-1971) of climatological data from Springfield, Illinois, were 

employed in this study. 

Table 3. Summary of drainage input parameters used in simulation for 
Cisne silt loam soil. 

Input Parameter Program Variable Value 
Name 

Drain depth DDRAIN 55.0 cm 

Drain spacing SDRAIN 200,300,400,500,600,700, 
800,900,1000,1200,1500 cm 

Actual depth to impermeable * 60.0 cm 
layer 

Drain diameter * 10.0 cm 

Effective drain radius, re * 0.51 cm 

Surface depressional storage STMAX 3.0 mm, 30.0 mm 

Effective depth from drain to 
impermeable layer 

* depends on drain depth, spac
ing and radius (Skaggs, 1978) 

These variables are not direct inputs to DRAINMOD, but are used to 
calculate other input parameters. 
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RESULTS AND DISCUSSION 

Model Performance: 

The performance of DRAINMOD wa.s tested by comparing measured 

and simulated SEW30 values for a combination of surface and subsurface 

drainage treatment. The data collected on a Cisne claypan soil at the 

Brownstown Agronomy Research Center in Southern Illinois during the 1982 

growing season was used to test the model. The research study area 

consisted of 40 plots, 0.064 ha each. Each plot had one of ten differ

ent combinations of irrigation and drainage treatments. The irrigation 

treatments were sprinkler, furrow, and no irrigation, while the drainage 

treatments were surface, subsurface, both surface and subsurface, and no 

drainage. Three lines of corrugated plastic tubing 75 mm in diameter 

and spaced 6.0 m apart provided the subsurface drainage. Surface 

drained plots had a slope of 0.5 percent parallel with the long 

dimension of the plot. Precipitation, temperature and evaporation data 

for a period of 7 years are available from the research site. During 

1982, two observation wells were installed at the center line between 

the subsurface drains for each of the plots after planting operations. 

Water table elevation readings were taken in each well on a daily basis 

during periods of high water table, and SEW30 for each drainage 

treatment was calculated using Equation (4). 

The data collected from the Brownstown Research Center were used 

as input to DRAINMOD to simulate the SEW30 values for a combination of 

surf ace plus subsurface drainage treatment with no irrigation. A 75-mm 

tubing diameter with 6.0-m spacing were used for simulation. The 

impermeable layer was assumed to be at 45-cm (18-in.) depth, as is the 

case in Brownstown. The saturated hydraulic conductivity and infiltra

tion data used in the simulation were those reported by Lembke et al. 



(1984) and the North Central Regional research publication No. 259 

(1979) for Cisne Soil Association, respectively. Precipitation and 

temperature data employed in this simulation were collected from the 

research site. Surf ace drainage was simulated by using a depression 

storage of S = 3 mm. 

Predicted and measured weekly cumulative SEw30 values for 1982 

growing season were in excellent agreement (Figure 4) with a coeffi

cient of determination of 0.91. The total measured SEw30 values for the 

1982 growing season was 24.56-cm day as compared to 27.33-cm day for the 

simulated ones. Although the comparison shown in Figure 4 is just for 

one growing.season, the close agreement with the experimental results 

indicate that DRAINMOD is a reliable and useful tool for simulating the 

effect of drainage system design on water table elevations for claypan 

soils of the Midwest. 

Simulations: 

Simulations were conducted for 20 years of climatological data 

from 1952 to 1971. The performance of conventional drainage, and sub

irrigation systems were evaluated. Iµ subirrigation mode, a weir is 

placed in the drainage outlet and water is pumped into the drainage 

system as required to maintain a constant water level. 

Various drain spacings and depths combinations for both good and 

poor surf ace drainage were simulated. Good surf ace drainage was 

simulated by a surf ace depressional storage of S = 3 mm, which can be 

provided by land-forming or shaping the surface (Skaggs and Nassehzadeh

Tabrizi, 1983). Poor surface drainage represents no improvement from 

the natural conditions and was simulated by using a surf ace depressional 

storage of S = 30 mm. 
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A design for each system was selected to meet the trafficability 

and crop protection requirements for continuous corn. It was assumed 

that 10 working days during the 1 month prior to planting time were 

required to plant the corn based on a 5-year recurrence interval. The 

actual length of time required for seedbed preparation depends on 

several factors such as the size of operation and availability of 

equipment and labor. A design that gives a 5-year recurrence interval 

of 100-cm days or less SEw30 value was chosen to protect the crop from 

excess soil water conditions during the growing season. 

Effects of Subirrigation on SEW30, Working Days and Dry Days: 

The effect of drain spacing and weir depth on the number of 

working days during the one-month period prior to planting is shown in 

Figure 5 for a 5-year recurrence interval. Surface drainage had little 

effect on the number of working days and similar relationships were 

obtained for both good and poor surf ace drainage. Any drain spacing 

up to 8 m would provide the required number of working days (10 or more 

days) for seedbed preparation, however, other objective functions such 

as dry day and SEW30 will be the dominant factors in determining the 

optimum weir setting depth. 

The results of 20 years simulations conducted to study the effects 

of weir setting depth during subirrigation of Cisne soil on SEW30 values 

are shown in Figures 6 and 7. Relationships are plotted on a 5-year 

recurrence interval (5 YR!) for poor (S = 30 mm) and good (S = 3 mm) 

surface drainage, respectively. The results show that SEW30 is strongly 

dependent on drain spacing and weir setting depth. These results also 

indicate the importance of good surf ace drainage if subirrigation is to 
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be used. An SEW30 value of less than 100-cm days can be obtained with a 

drain spacing of 6 and 5 m for weir setting depths of 35, 43, and 47 cm 

with good and poor surface -drainage, respectively (Figures 6 and 7). 

However, the effect of weir setting depth and drain spacing on the 

number of dry days plotted for a 5-year recurrence interval (Figure 8), 

indicate that a 6-m spacing would result in about 2 dry days at weir 

setting depth of 32 and 35 cm and 7 dry days for weir settings at 43-

and 47-cm depths. Closer inspection of the simulation results showed 

that for 6 m spacing, 5 out of 7 dry days under 43- and 47-cm weir 

depths occurred during the second half of July. This is the period that 

corn is pollinating and moisture stress has a severe negative effect on 

crop yield. On the other hand, the detailed analysis of simulation 

results indicated that the 2 dry days under weir setting depths of 32 

and 35 cm occurred immediately after planting when rooting depths were 

negligible and subirrigation had just been started. Under these 

circumstances, the 2 dry days appear to be acceptable and, therefore, 

the optimum drain spacing sufficient for subirrigation on the Cisne soil 

would be 6 m under good surface drainage, and a weir setting depth of 35 

cm on a 5-year recurrence interval basis. This means that 4 years out 

of 5 or 80 percent of the years suitable conditions would be available 

for proper subirrigation of corn on a Cisne soil if the drain spacing is 

6 m and weir setting depth is 35 cm. This 35-cm weir setting depth at 

the drainage outlet indicate that the water table depth directly over 

the drain tubes during subirrigation will be approximately 35 cm, but it 

will increase with distance away from the drain during the dry periods 

because of evapotranspiration (Skaggs, 1980). The 35-cm depth was 
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chosen so that the water table would not be too close to the surf ace 

directly over the drain tubes. 

To further examine the effects of surf ace drainage quality on the 

drainage protection for crop growth, the drain spacing versus SEw30 

relationships for both poor and good surf ace drainage under subirriga

tion with weir setting at 35-cm depth are replotted in Figure 9. One 

can see that the effect of surf ace drainage is greater for poor (wider 

drain spacings) than good subsurface drainage. ·For example, with a 

subsurface drain spacing of 6 m, the SEw30 value is reduced only by 

50-cm days when good surface drainage is practiced, while at 9.5-m 

spacing the reduction in SEW30 value due to good surf ace drainage is 

175-cm days. In other words, having good surface drainage reduces the 

subsurface drainage requirements. However, this reduction in drain 

spacing is not of much significance for heavy soils such as Cisne silt 

loam (Figure 9). As was mentioned earlier, an SEW30 value of 100-cm 

days can be obtained with drain spacing of 5 m for poor surf ace drainage 

and 6 m for good surface drainage. This means a reduction of about 15 

percent in tubing and installation costs when good surface drainage is 

practiced. However, the total cost of the alternatives should be com

pared and other factors such as compatibility with the farming operation 

be considered before a final decision is made. When surface drainage is 

poor during high rainfall, water may be stored on the surfaces and cause 

flooding conditions and it can only be removed either by evaporation or 

subsurface drainage. Because of the very slow permeability of Cisne 

silt loam soil, it might take quite some time to remove the surface 

water by subsurface drainage. Therefore, it is very important that a 

reasonable combination of good surf ace and subsurface drainage be used 

on these types of soil. 
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Our results indicate that the limiting factor on drain spacing for 

a combined drainage-subirrigation system on Cisne claypan soil is the 

drainage rather than irrigation requirement. For instance, a drain 

spacing of 9.S m and a weir depth of 3S cm would result in less than 3 

dry days which would satisfy the irrigation requirement (Figure 8). 

However, this drain spacing of 9.5 m would give an SEw30 value of 42S-cm 

days which would be unacceptable from the crop protection aspect (Figure 

9). These results are compatible with those. reported by Skaggs (1981) 

for subirrigation of a sandy loam soil in North Carolina conditions. 

All of our result_s presented were based on an assumed depth to the 

impermeable layer of 60 cm and depth to the center of drain of SS cm. 

One possibility for increasing the drain spacing for subirrigation is to 

increase the drain depth. However, the drain depth may be limited by 

the depth of impermeable layer as is the case for claypan soils. The 

depth to the impermeable layer of claypan soils of Midwest varies 

between 30 to 7S cm, depending on their location. Simulations were run 

to study the effects of depth to the impermeable layer of a Cisne soil 

on the drain spacing for subirrigation. The effect of drain spacing on 

SEW30 at various depths to the impermeable layer is shown in Figure 10. 

It is assumed that drains are located on the impermeable layer and that 

good surface drainage exists. Thus, the depth to the center of a 4-inch 

tile would be 4S, SS, and 70 cm for depths to the impermeable layer of 

SO, 60, and 7S cm, respectively. By placing the drains at a depth of 70 

cm, rather than 4S cm, the drain spacing could be increased from 4.S to 

7 m for good surface drainage, an increase of about SS percent in 

spacing. This alternative would also be satisfactory from the traffic

ability aspect (Figure 11), since it would provide 13 or more working 
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days on a 5-year recurrence interval basis. The results presented in 

Figure 11 also indicate that trafficability during seedbed preparation 

is heavily dependent on drain spacing and drain depth. As drain spacing 

and depth increases, more working days would be available for seedbed 

preparation and planting. Increasing the drain depth from 45 cm to 70 

cm has little effect on the number of dry days during the growing season 

(Figure 12) and less than 4 dry days would result during the growing 

seasons of 4 out of every 5 years. It should be emphasized that the 

depth to the impermeable layer of claypan soils is a limiting factor on 

drain depth and it is not always practical to install the drain at the 

desired depth. 

The results of a 5-year study on irrigation and drainage of corn 

by Walker et al. (1982) on Cisne claypan soil indicated average corn 

yield increase of 0.8 and 2.4 t/ha due to drainage and irrigation, 

respectively. The interactive effect of irrigation and drainage 

produced an average yield increase of 4.8 t/ha. Their results support 

the necessity of both drainage and irrigation practice on these soils. 

If feasible, subirrigation which provides both drainage and irrigation 

could be an appropriate water management system for claypan soils. 

However, a 6-m spacing between the drains is probably not an economical 

practice for grain crops and our results indicate that wider drain 

spacings would not be practical for subirrigation mainly because of the 

restricted lateral water distribution in claypan soils. These findings 

are in agreement with those reported by Rausch and Nelson (1984) on 

subirrigation of claypan soils in Missouri. After one year of field 

experimenting with subirrigation of alfalfa on a claypan soil, they 

concluded that water distribution was a serious problem and that more 
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research is needed to improve the horizontal movement of subirrigation 

water in claypan soils. 

Effect -of Combined Surface and Subsurface Drainage on SEW30 Working Days 

and Dry Days: 

The current recommendation for drainage practice on Cisne claypan 

soils is surface drainage, but surface drainage systems have not been 

very satisfactory because land grading removes the topsoil from some 

areas of the field and reduces its productivity (Walker et al., 1982). 

Simulations were run to identify alternatives of surf ace and subsurface 

drainage system that would satisfy traf ficability and crop protection 

requirements. In these simulations, it was assumed that the depth to 

the center of the subsurface drain was 55 cm and the drain was rested on 

the impermeable layer. 

The effect of drain spacing on the number of working days 

available for seed preparation and planting is shown in Figure 13. 

Results for both good and poor surface drainage are plotted on a 5-year 

recurrence interval basis. The effect of surface drainage on the number 

of working days depends on the quality of subsurface drainage. At very 

close drain spacings (less than 4 m), there are no significant 

differences in the number of available working days. However, as the 

drain spacing increases the effect of surf ace drainage becomes more 

pronounced (Figure 13), and more working days are available with good 

surface drainage. However, trafficability has a stronger dependency on 

subsurface drainage than surface drainage on these soils. For instance, 
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the difference in the number of working days between good and poor 

surface drainage is 2.5 days at best, whereas, increasing the subsurface 

drain spacing from 2 to 15 m would result in a decrease of about 8.5 and 

6.5 days in the number of available working days for poor and good 

surface drainage, respectively. The results presented in Figure 13 also 

indicate that surf ace drainage has a relatively small effect on the 

subsurface drain spacing required to insure a given number of working 

days on a 5-year recurrence interval basis. 

The relationships between SEW3o and drain spacing for both good 

and poor surf ace drainage are plotted in Figure 14. Drain spacings of 

10 m and 12 m would result in the required crop protection (SEW30 < 

100-cm days) for poor and good surface drainage, respectively. Both of 

these combinations would provide 10 or more working days for seedbed 

preparation and planting (Figure 13). Again subsurface drainage has a 

much greater effect than surface drainage on the value of SEW30• The 

effect of surf ace drainage quality on SEW30 is more pronounced at wider 

drain spacings (Figure 14). 

The effect of drain spacing on the number of dry days is shown 

in Figure 15. The quality of surface drainage had no apparent effect on 

the number of dry days. In DRAINMOD, a dry day is defined as a day in 

which the crop is under stress. That is evapotranspiration is limited 

by soil water conditions. These results indicate that on the average, 4 

out of every 5 years we should expect to have 8 or fewer dry days during 

the growing season for any drain spacing of 15 m or less. Further 

examination of the simulation results showed that 6 of these 8 dry days 

occur during the second half of July and first week of August, a period 

during which the corn crop is most susceptible to moisture stress in 

Midwest. 
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It should be pointed out that all of these results are based on an 

assumed maximum rooting depth of 35 cm. One method for decreasing the 

number of dry days under conventional drainage would be to increase the 

crop root depth (Skaggs, 1981). In claypan soils, root depths are 

mostly limited by the hard claypan and it has been reported that high 

fertility level will encourage deeper root growth on claypan soils 

(Fehrenbacher et al., 1969). In some cases, root depths are limited by 

high water table which prunes back deeper roots. Thus, improving the 

rooting depth in this case, is a matter of providing good drainage and 

selecting a crop variety which has deeper rooting characteristics 

(Skaggs, 1978). For example for the conditions of Cisne claypan soils, 

increasing the rooting depth from 35 cm to 50 cm reduced the number of 

dry days from 8 to 2 (results not shown). However, it should be 

emphasized that the removal of a physical barrier like the claypan by 

deep chisel plowing might not be possible and/or feasible. It appears 

that supplemental irrigation is required for proper soil and water 

management of crop production on these soils. As indicated earlier, our 

results indicate that a 6-m drain spacing is required for a subirrigation 

system to function properly on claypan soils. Such a close drain spacing 

could not be economically feasible. Therefore other alternatives such as 

surf ace irrigation or improved fertility management practices along with 

a proper drainage system should be considered and the least cost alterna

tive that would provide proper water management for claypan soils be 

selected. 
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SUMMARY AND CONCLUSIONS 

There are about 4 million hectares of claypan soils in the Midwest. 

These soils have a 30- to 75-cm layer of silt loam topsoil with a heavy 

clay subsoil that is very slowly permeable and severely limits root 

development and water penetration. The crop yields on these soils are 

usually low because of limited water management. Subirrigation systems 

are designed to provide total water management for crop production. 

Climate, topography, subsoil characteristics, and high water table 

associated with the claypan soils are particularly adaptable to subirri

gation. This was a study to evaluate the suitability of subirrigation 

along with alternative soil and water management practices on claypan 

soils. 

A water table management simulation model, DRAINMOD, was used for 

this study. Simulations were run on 20 years of climatological data and 

several years of crop, soil, and weather data collected on a claypan 

soil in Illinois. The performance of subirrigation and conventional 

drainage systems were evaluated. Various weir setting depths and drain 

spacings, and depths combinations for both good and poor quality surface 

drainage were simulated. A design for each system was selected to meet 

the trafficability and crop protection requirements for continuous corn 

production. 

The following conclusions were drawn from this study: 

1. Surface drainage had a nonsignificant effect on the number of traffic

able days in the field and similar results were obtained for both good 

and poor quality surface drainage with subirrigation practice. 

2. SEW30 value, the sum of excess water table rises above 30-cm depth was 

strongly dependent on drain spacing and weir setting depth. The 
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results also emphasize the importance of good surf ace drainage if 

subirrigation is to be practiced. 

3. The optimum drain spacing sufficient for subirrigation on the Cisne 

claypan soil would be 6 m under good surf ace drainage and a weir 

setting depth of 3S cm on a S-year recurrence interval basis. This 

means that 4 out of S years or 80 percent of the years suitable 

conditions would be available for proper subirrigation of corn crops. 

4. Under subirrigation, the effect of surface drainage is greater for 

poor (wider drain spacing) than good subsurface drainage. In other 

words, having good surface drainage reduces the subsurface drainage 

requirements. 

S. The limiting factor on drain spacing for a combined drainage-subirri

gation system on Cisne claypan soil is the drainage rather than 

irrigation requirement. 

6. One possibility for increasing the drain spacing, thereby reducing 

the cost for subirrigation is to increase the drain depth. By placing 

the drains at a depth of 70 cm, rather than 4S cm, an increase of 

about SS percent in spacing can be resulted. As drain spacing and 

depth increases, more trafficable days would be available for seedbed 

preparation and planting. However, it should be emphasized that the 

depth to the impermeable layer of claypan soils is a limiting factor 

on drain depth and it is not always practical to install the drain at 

the desired depth. 

7. Detailed analyses of the occurrence of the number of dry days during a 

growing season using 20 years of climatological data suggests that 

supplemental irrig~tion is required for proper water management and 
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crop production on claypan soils in the Midwest. Our results indicate 

that a 6-m draiq spacing is needed for a subirrigation system to 

function properly on claypan soils. Such a close drain spacing may 

not be an economical practice for grain crops and wider drain spacings 

would not be practical for subirrigation mainly because of the 

restricted lateral water distribution in claypan soils. Therefore, 

other alternatives such as surface irrigation and improved fertility 

management practices along with a propei drainage system should be 

considered and the least cost alternative be selected. 
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