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ABSTRACT 

The aim of this study is to determine the potential for 

supplemental crop irrigation of the tight subsoil area of Southern 

Illinois with surface water impounded in small catchment reservoirs. 

The geographic area of the tight soils (mainly the southern 1/3 of 

Illinois includes almost 25 percent of the state. Random statistical 

sampling was used to select topographic quadrangles in this area for 

investigation of reservoir sites. Costs and water volume were then 

computed for sites with potential for reservoir siting. The results of 

the survey of potential reservoirs and cost analysis indicate abouat 

1.2 million acres of land in the claypan area of Southern Illinois can 

be irrigated under current cost conditions depending on the price of 

corn and soybeans. 

From inspection of the best potential reservoir sites, watersheds, 

and irrigation areas, a specific site was selected for detailed 

analysis. Site analysis showed the most profitable management practice 

to be a corn-soybean rotation with reduced tillage, up-and-down slopes 

plowing, and irrigation. Further analysis was performed concerning the 

effect of sedimentationon reservoir capacity and, optimal land use. 

The results indicate that, over a thirty-year period, sedimentation 

will not have any appreciaable effect on reservoir capacity and on land 

use practice. 

Finally, the supplemental irrigation system was analysed to 

determine its overal economikc feasibility. A supply curve for 

irrigation from reservoirs was developed. 





iv 

Executive Summary 

This report presents the results of an investigation into the 

potential for supplemental crop irrigation of the tight subsoil area of 

Southern Illinois with surface water impounded in small catchment 

reservoirs. The aim of the study was to determine the geographic and 

economic feasibility of irrigation from surface impoundments in this 

region. 

The geographic area of the tight soils (mainly the southern 1/3 of 

Illinois) was determined. This soil area includes almost 25 percent of 

the state. A random statistical sampling procedure was used to select 

topographic quadrangles within the study area for investigation of 

reservoir sites. Reservoir costs and water volume were then computed 

for the sites within quadrangles with good potential for reservoir 

siting. The results of the geographic sample survey of potential 

catchment reservoirs and the subsequent cost analysis indicate that 

there is a potential for irrigating about 1.2 million acres of land in 

the claypan area of Southern Illinois with surface catchment runoff 

water under current cost conditions depending on the price of corn 

From on-site inspection of the potentially best reservoir sites, 

watersheds, and area for irrigation, a specific site was selected for 

detailed analysis. The specific site analysis showed irrigation of 

corn to be profitable, with the most profitable management practice 

being a corn-soybean rotation with reduced tillage, plowing up and 

down slopes, and irrigation. Further analysis was performed concerning 

the potential effect of sedimentation on reservoir capacity and, hence, 
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on optimal land management practices. The results indicate that, over 

a thirty year planning horizon, sedimentation did not have any 

appreciable effect on reservoir capacity and consequently, on the 

choice of an optimal set of management practices. 

Finally, the supplemental irrigation system was subjected to 

financial analysis to determine its overall economic feasibility. All 

sizes of reservoirs were found to be clearly profitable. 
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1. Aggregate Assessment of Irrigation from 

Surface Water Impoundments in Illinois 

1.1 Introduction and Background 

The research reported here was designed to evaluate the economic 

feasibility of supplemental irrigation of corn and soybeans in Illinois 

south of the Wisconsin glaciation by impoundment and use of water 

runoff. If economically feasible, this would improve management of 

water resources. Since the exploitable quantity of ground water in 

this area is very limited for most uses, including human consumption as 

well as irrigation, the physical and overall economic feasibility of 

establishing catchment reservoirs for irrigation is of interest. 

Moreover, production cost risk is a function of yield variability of 

the two dominant crops, corn and soybeans. The variability in yields 

occurs mainly from the variability in rainfall and this variability in 

rainfall and the resultant crop yield response can be reduced 

substantially by supplemental irrigation. 

In any kind of catchment reservoir system for runoff water, an 

important aspect of water control is the control of nonpoint source 

pollution. The report estimates sediment runoff and costs of obtaining 

sediment reductions. The effect of sediment deposition on reservoir 

life is also considered. 

Irrigation in agriculture has a long and successful history in 

many arid and semiarid environments. However, only recently has 

interest in irrigation for grain crops occurred in the humid and sub- 

humid environments. The most intensive interest and successful 



application of supplemental irrigation in the humid to sub-humid 

environments has centered in the western regions of the "Corn Belt" 

states (Sisson and Wiersma). Almost without exception of water for 

irrigation in these areas has come from underground sources. 

Because grain farmers operate in a competitive market and are not 

able to influence the prices of their output to any significant degree, 

they have tried to reduce costs per unit of production by increasing 

output. Additionally, cost savings resulting from increased size of 

farm or reduced costs per unit are not expected to any significant 

extent in the foreseeable future. Further increases in yield in humid 

areas are now likely only through development of new technologies and 

varieties and through improved water control and water use. A recent 

study by Lazarus and Scott shows that the variance of yield on 

individual farms over the years is substantially larger than expected 

based on previously known information on the variation from year to 

year of county yields. For example, in Effingham County, Illinois 

which is in the study area, a sample of 10 high management farms 

studied over a period of 21 years shows an average standard error of 23 

bushels per acre for corn yield even after removing the time trend for 

yield increases. This means that if the variation is normally 

distributed, then 2/3 of the time the range in yield expected is 46 

bushels per acre. Assuming that on these high management farms most of 

the known technologies are being applied, then this large variation 

will be due largely to low soil water holding capacity and variation in 

rainfall. Looking only at the county average yields over the same 

period, we would mistakenly assume the standard error to be only 12 

bushels per acre or about half the actual variation faced by individual 



farmers. The difference is a consequence of aggregating across farms 

that may experience partially offsetting yield results in a given year. 

In nonirrigated areas, soil moisture in the form of natural 

occurring rainfall has been regarded as a ubiquitous and free input. 

However, scientific research has documented the importance of rainfall, 

particularly during the flowering period, on corn and soybean yields 

(Runge and Odell). Given the optimum economic level of chemical 

inputs, seeding rate, and time of planting, the soil moisture level 

during the flowering stage is the most limiting factor on yields. If 

yields per acre are to be significantly increased, soil moisture 

availability will have to be increased during the actual flowering 

stages. 

While it is true that every section of Illinois normally receives 

more water as rain or snow each year than is lost by 

evapotranspiration, there is never a year when soil moisture is not 

deficient for optimum crop growth sometime during the growing season, 

particularly in the area south of the Wisconsin glaciation. (Shown on 

Map 1.1) In an "average" year evaporation plus transpiration exceeds 

precipitation from May to September. Crops will grow well during this 

period only if stored soil moisture is sufficient to make up the 

deficit, evapotranspiration is reduced appreciably below potential, or 

water is added by irrigation (Hinesly, Pendleton, and Peters). 

The low moisture holding capacity of soils, high 

evapotranspiration, and low probability of getting rain in Southern 

Illinois during the critical flow&ring stage of corn and soybeans have 

all contributed to producer risk and limited their maximum potential 

economic use of fertilizers (especially nitrogen). This in turn limits 





the total supply (of corn and soybeans) available from this area. 

Response to additional water has been estimated by Runge and Odell 

(1960). The probability of getting an inch of rain per week is lowest 

in all sections of Illinois during the time of corn and soybean 

flowering--the last half of July. Supplemental irrigation during this 

relatively short period of flowering could significantly increase 

yields. 

As was mentioned previously, supplemental irrigation water in the 

Western states of the "Corn Belt" is supplied from ground water. This 

source of water is not infinite and increases in irrigation costs will 

occur as the depth of the water table is lowered and/or energy costs 

increase (Great Plains Agricultural Council). In fact, energy costs 

have risen so that already some of the areas using underground aquifers 

have gone out of production. In a rainfall and runoff catchment 

irrigation system, as examined by this study, the supply of water will 

be replenished during the year. The fact that the water is renewable 

will increase the stability of yield and reduce long-term producers' 

risk. 

There is a great loss of nutrients and chemicals on soils in the 

claypan area because a small share of precipitation filters into the 

soil. Most drainage is surface runoff with little or no tile drainage. 

Improved water runoff control by collection in a system of small 

catchments will lower downstream pollution due to runoff of sediment, 

nutrients and chemicals. Of course, s,ediment deposition in the 

reservoirs will affect their useful lives. 

Thus, the reasons for selection of the area in Illinois south of 

the Wisconsin terminal morain for this study are as follows: The 



coefficient of yield variation in this area is substantially greater 

than elsewhere in Illinois indicating greater potential gains to 

effective water management; the basic water holding capacity or amount 

of water available for plant growth in the older claypan soils of 

Illinois is low, making the amount and distribution of water added 

during the growing season much more critical; distribution of aquifers 

in southern Illinois is limited and the water available from such 

aquifers is even more limited (Great Plains Agricultural Council); the 

soils of southern Illinois are not very permeable to water and 

therefore provide a good medium for holding water in catchment 

reservoirs; the topography in much of southern Illinois is conducive to 

surface impoundment; and the climatic temperatures are such that 

greater evapotranspiration occurs making added water during the growing 

season more critical for obtaining maximum yield potential. 

A sample survey of the area shown in the map of southern Illinois 

(Map 1.2) has been taken and estimates of potential reservoir catchment 

locations have been made. Random representative sample segments which 

are geographic segments of the region were taken and examined with 

aerial photographs, topographic maps and soil type maps coupled with a 

subsampling of on-site assessment of water catchment potential. 

1.2 Objectives of the Project 

The research was designed to evaluate the economic feasibility of 

supplemental irrigation of corn and soybeans in Illinois south of the 

Wisconsin terminal morain by better management of water runoff. 





The specific objectives of the study are: 

(1) To estimate a set of physical and economic data for on-farm 

rainfall catchment reservoirs and supplemental irrigation costs 

based on a statistical probability sample of locations in the area 

of claypan and associated soils in southern Illinois. (See Map 

1.1) 

(2) Use irrigation yield data available from the Brownstown 

Experiment Station and corollary data from similar soil types from 

other stations to project yields which could be expected with 

adequate water availability. 

(3) To estimate the potential reduction in sediment, chemical, 

and nutrient runoff into streams from an effective system of small 

catchment reservoirs for water reuse and to evaluate the costs of 

alternative approaches to agricultural pollution reduction. 

1.3 Project Phases 

The first phase of the project was to draw a statistical 

probability geographic sample of potential catchments. The specific 

counties in southern Illinois (See Map 1.2) where the tight subsoil is 

located which were included in the area of the catchment site survey 

are: Bond, Clay, Clinton, Effingham, Fayette, Hamilton, Jasper, 

Jefferson, Marion, Perry, Richland, Washington, Wayne and Franklin 

Counties (Map 1.2). While there are additional counties in southern 

Illinois which also have some claypan soils, most of these counties are 

on the fringe of the main claypan area and are also contiguous with 

either the Illinois, Ohio or the Wabash Rivers, the fringe counties 

contain substantial amounts of overflow sand and rocky deposits which 



are not directly associated with the claypan area. Since only a few of 

the sites could be examined, a random sampling of the geographic area 

involved in these counties was necessary. 

The land area of each county was determined. The plat maps of 

each county were examined carefully and the total number of sections of 

land in each county were calculated then examined. A section of land 

is an area measured by one mile on each side or one square mile. Table 

1.1 indicates the number of sections of land in each county. The range 

of land sections was from 349 sections in Richland County, the smallest 

county in the area, up to Wayne County which contained 703 sections. 

Then a 1/100 sample was taken in each county in a stratified random 

sampling procedure. Each county is a stratum and 1/100 of the sections 

in each county were drawn on a random basis. This resulted in a total 

of 67 randomly selected sections out of a total of 6,724 sections in 

the study area. 

Topographic maps for each section sampled were obtained from the 

Illinois Geological Survey. Each section was carefully examined to 

determine whether or not there was any potential from the standpoint of 

the geological maps for the siting of a catchment reservoir (See Table 

1.2). Certain sections were discarded from further analysis because 

they either fell too close to a village or city, were divided by 

existing highways or railroads, or had other physical features that 

precluded the use of the watershed or the area for a catchment basin. 

Then each of the remaining sections was carefully analyzed from the 

topographic maps and further sections were discarded because of the 

lack of any potential site for a reservoir appropriate for irrigation. 



Other criterion which were believed to be important in making 

final selections of segments to analyze further with regard to costs of 

the catchments were the length, depth and cross-section of the dam, the 

acre feet of water contained in the catchment reservoir and the acres 

of land which would be removed from production. The drainage area of 

the watershed where the water would run off into the dam or into the 

catchment area was also considered to be important and this was 

measured. 

A reservoir cross section at the dam site was made for each 

reservoir site and the number of acre feet were calculated for each 

potential reservoir. Engineering notes on dam size and cross section, 

reservoir size, depths and capacity are available on all sites from the 

authors. 

Table 1.1 also shows the number of sites selected after the first 

screening of the sampled segments: Bond County had two, Clay County - 

three, Clinton County - one, Effingham County two out of five, Fayette 

County two out of seven, Hamilton County had none that we considered 

worth further analysis, Jasper County - three, Jefferson - four, Marion 

- three, Perry County - one, Richland County - one, Washington - two, 

Wayne - four and Franklin - three. The total was 30 sites. At these 

sites topographic maps were used to calculate the reservoir size, the 

cross section of the dam and the watershed area for water being 

collected in the dam. 

Then after studying the physical measurements, thirteen sites were 

selected out of the 30 initial sites to calculate cost of impoundment 

(See Table 1.3). The criteria used in making selections for cost 

calculations were based on the area of the impoundment, the acre feet 



Table 1.1. Stratified Random Sampling 
Counties are Strata, and Sampling Fraction within strata is 1 in 100 

with a section (square mile) the sampling unit 

Number of Sections Sections Section Selected 
County Sections Sampled Topographically for Cost Estimates 

Selected 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Bond 376 4 2 0 

Clay 47 1 5 3 1 

Clinton 505 5 1 

Effingham 486 5 2 

Fayette 696 7 2 

Hamilton 414  4 0 

Jasper 485 5 

Jefferson 475 5 

Mar ion 46 7 5 

Perry 358 4 1 1 

Richland 349 3 1 

Washington 538 5 2 2 

Wayne 703 7 4 3 

Franklin 4 0 1  - 4 - 3 
6 , 7 2 4  6 8 30 

Number of Sections in all Counties in the Claypan Area 6 , 7 2 4  
Number of Sections Sampled 6 7 

u I I Our Sampling Fraction is 6724-  = i b b  



Table 1.2. Engineering Work Based on Topographic Maps 
Completed on the Following Sampling Units 

Acre Acre Feet Length 
Legal Reservoir Feet of Water o f 
Description in of Water per Acre Dam in Depth 

County of Sampling Unit (Acres) Impounded of Reservoir Feet in Feet 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Bond S 33T4NR4W 124 1320 10.7 625 3 5 

S7T6NR3W 103 804 7.8 875 2 5 

Clay S29T3NR5E 86.8 482 5.6 500 15 
S5T4-5NR8E 58.9 487.5 8.3 48 8 2 1 
S1&12T5NR5E 463.5 5503 11.9 732 20 

Effingham SlT6NR6E 661.4 10778 16.3 1302 45 
S28T7NR7E 207.6 2642 12.7 651 30 

Fayette S4T6NR3E 160.4 2170 13.5 6 51 30 
S13T7NR2E 188.7 2240 11.9 6 5 1 2 5 

Jasper S12T7NR8E 443.5 6439 14.5 651 3 5 
S20T6-7NR10E 250 5256 2 1 814 4 5 
S4T6-7NR10-llE14W 95.2 461 625 15 

Clinton S28T2NR4W 91.8 689 7.5 5 

Jefferson S3T4SRlE 94.5 864 9.1 625 2 5 
S20T4SR4E 43.1 267 6.2 500 15 
S21T2SR2E 19.5 48 2.5 500 5 
S30T2SR4E 44.5 390 8.8 750 20 

Mar ion SlOT3NR3E 72.1 432 6 500 20 
S 3 3T3NR4E 61.6 518 8.4 562 2 5 
S35T4NR2E 118.3 1241 10.5 625 3 0 

Perry S29T4SR4W 221.2 1379 6.2 . 625 15 

Richland S20T3-4R14W 39.2 350 8.9 375 3 0 

Washington S23T3SR4W 112 1022 9.1 750 2 5 
S15T3SR3W 72.8 616 8.5 688 3 0 

Wayne S6T2-3SR8E 8.1 5 1 6.3 500 15 
S17TlSR6E 33.8 250 7.4 500 15 
S16TlSR7E 33.8 185.8 5.5 500 12.5 
S5TlNR6E 28.4 223 7.9 3 7 5 15 

Franklin S7T5SR2E 21.6 114.7 5.3 3 7 5 15 
S7T5SR2E 13.5 77.5 5.7 473.5 15 
S7T5SR2E 232.3 1644.5 7.1 625 2 5 
S19T5SR4E 40.5 232.5 5.7 6 2 5 15 
S18T7SR4E 191.8 2877 15 15 



of water expected to be stored in the impoundment, the acres of land 

consumed by the impoundment area, the length and cross-section of the 

dam, and the depth of the water. Preliminary cost estimates indicated 

that the capital cost of the reservoir, which would include the dam, a 

flood spillway and a drop box ranged from a low of $22 per acre foot of 

water stored to a high of $1294 per acre foot of water stored. The 

median is about $250 per acre foot of water stored. At 9.5% interest 

amortized over 30 years, the median cost would be $25 per year per acre 

foot of water stored. (Long term government bonds are now yielding 

9.5% return.) 

When private individuals look at alternative investments, normally 

several things are considered: the annual rate of return, the 

depreciation rate, the variation in return overtime or from year to 

year, the permanency of the asset and the potential resale or recovery 

of the asset value. For a depreciating asset which has little risk 

associated with the investment, the market shows that few investors are 

willing at least from a planning standpoint to accept less than the 

amortization rate covers both in the market. The eventual outcome, of 

course, may be different. The amortization rate covers both the 

interest rate and the depreciation so that the initial cost of the 

asset is fully recovered and the investor gets a competitive rate 

earned on his investment. With a permanent asset such as land which 

has no depreciation and may appreciate in value with increase in 

sectoral demand or increase in general inflation, the annual rate of 

return should be at least equal to the real rate of interest. The real 

rate of interst is the rate which individuals are willing to accept on 

a permanent asset in a stable economic environment where there is no 



Table 1.3. Estimated Costs of Potential Reservoir Sites 

Legal Drainage Acre Cost Per 
Description of Area in Feet Cost Per Total Acre Foot Count 

Sampling Unit Acres of Water Acre Cost of Water 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Clay S1&12T5NR5E 1248.5 5503. $242 302,137 5 5 

Fayette S13T7NR2E 348.8 2 240 143 49,874.4 2 2 

Jasper S12T7NR8E 5056.2 6439 396 2,002,255.2 3 10 

Jefferson S3T4SRlE 890.5 864 206 183,443 212 
S 20T4SR4E 541.6 267 167 90,447.2 338 
S21T2SR2E 385.6 4 8 148 57,068.8 1189 

Perry S29T4SR4N 4672.6 1379 382 1,784,933 1294 

Washington S23T3SR4W 936.4 1022 210 196,644 192 
S15T3SR3W 752.8 616 191 143,784.8 2 3 3 

Wayne S17TlSR6E 192.8 250 119 22,943.2 572 
S16TlSR7E 573.3 185 171 98,034.3 856 
S5TlNR6E 918.1 223 208 190,964.8 226 

Franklin S7T5SR2E 1432.1 1644 260 372,346 250 



inflation and no deflation. This has been shown to range from 3% to 4% 

in most economies. We assume 9.5% and 4% for the two rates of return 

for purposes of project analysis. 

The catchments which have less than 320 acre feet of water storage 

are also omitted from further analysis since it is assumed that twice 

as many acre feet of water are necessary on the average per acre foot 

of irrigation, so that in a drought year or following abnormally low 

recharge of the reservoir, there will be a reserve available. The 

minimum size of pivot irrigation system which gives preferred economic 

results is approximately 160 acres. This would mean that 320 acre feet 

of water storage would be needed in order to maintain a satisfactory 

reserve. In all the water reservoirs which are estimated by our 

sampling procedures, we have 19,707 acre feet of water available. This 

means that from these reservoirs approximately 9,854 acres could be 

irrigated even in years of drought on a supplemental basis each year 

with a reserve of one year with little or no recharge. 

The multiplier factor on our sampling procedure is 100. This means 

that 985,000 acres of land could potentially be irrigated in the 

Southern Illinois claypan area from surface catchment water if our 

random sample is representative of the area. 

The project leaders personally inspected the sites which seemed 

feasible for catchment after the cost analysis of all the sites was 

completed. A site in Washington County was selected for sedimentation 

analysis (see Chapter 2). 
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I f  we add t h e  pe r  a c r e  c o s t  f o r  water  source t o  t h e  o t h e r  v a r i a b l e  

and f i x e d  c o s t s ,  we g e t  a f e a s i b l e  range of  $67 t o  $109 pe r  a c r e .  I f  

we g e t  40 bushels  of a d d i t i o n a l  corn  from i r r i g a t i o n  and 25% of t h e  

a d d i t i o n a l  r e t u r n s  must go t o  cover o t h e r  marginal c o s t s  of producing 

t h e  h igher  y i e l d  such a s  seed and f e r t i l i z e r ,  then corn  a t  $2.23 per  

bushel  would break even a t  the  low c o s t  end and $3.64 pe r  bushel  corn 

would break even a t  t h e  upper end of t he  f e a s i b l e  c o s t  range.  

The c o s t  of  t he  l a s t  four  r e s e r v o i r s  given i n  Table 1 . 4  i s  f a r  

above any f e a s i b l e  economic range. They a r e  n o t  included i n  any 

f u r t h e r  a n a l y s i s .  For example, t he  $114.13 pe r  a c r e  water  source f o r  

t he  Wayne County s i t e ,  would r equ i re  $6 pe r  bushel  corn  and t h e  $172.53 

pe r  a c r e  water  source f o r  t he  Perry County s i t e  would r e q u i r e  $7.86 pe r  

bushel  c o r n ,  which is t o t a l l y  out  of  t he  realm of  p o s s i b i l i t y  wi th  t h e  

fo reseeab le  supply and demand r e l a t i o n s h i p s .  (See Table 1 . 4 )  



COST PER ACRE IN $ 



2. Analysis of Land Management for Supplemental Irrigation 
in Southern Illinois 

Sedimentation of water impoundments, and consequent reduction of 

capacity, has been a widespread, chronic problem in cropland areas of 

Illinois. In this section we analyze the extent to which land 

management changes that can reduce sedimentation are economically 

worthwhile in order to preserve water-holding capacity of the 

impoundment for irrigation. Table 2.1 presents a schematic description 

of the analytical procedures employed in this section. 

2.1 Microcomputer Budget Management Systems (MBMS) 

The MBMS computer software package (McGrann, Olson, Powell and 

Nelson) was used to generate budgets for different combinations of crop 

rotations and tillage practices under irrigation and dryland (no 

irrigation) conditions. MBMS provides systematic information storage 

for crop and livestock enterprise budgeting. It performs the necessary 

calculations for determining budget costs and returns, including costs 

of machinery, equipment, and irrigation systems. MBMS also provides 

total farm reports for fuel, labor, and machinery use. 

For this study, MBMS was used to generate budgets for 24 crop 

management systems, made up of 4 crop rotations (continuous corn - CC, 

corn-soybeans - CS, continuous soybeans - S, and double-cropped 

soybeans - DS), 3 tillage practices (conventional tillage - CTL, 

reduced tillage - RTL, and no till - NT), and 2 irrigation practices 

(irrigation - IRR, and no irrigation - NIRR). The crop rotations and 

tillage practices were chosen for the study because they are the ones 



Table 2.1.  A Schematic of Model Components 

MBMS 

Data: Crop y i e ld s ,  quant i t ies  and pr ices  of inputs l i k e  f e r t i l i z e r s ,  
pes t ic ides ,  herbic ides ,  seed, machinery and equipment, drying 
cos t s ,  labor ,  and management cos t s ,  and i r r i ga t i ons  cos t s  fo r  
d i f f e r en t  combinations of crop ro ta t ions ,  t i l l a g e  pract ices  and 
i r r i g a t i o n  pract ices .  

Compute: Budgets fo r  d i f fe ren t  management systems. 
Output: Total operating cost  f o r  each management system. 

I 
Data: Crop budgets ( t o t a l  operating costs)  from MBMS, s o i l  types and 

depths, crop y i e ld s ,  slope,  and r a i n f a l l  fo r  each Land Management 
Unit (LMU); baseline management pract ices .  

Compute: Erosion r a t e s  and long-term ne t  re turns  fo r  each management 
system available i n  each LMU. 

Optimize: Select  management pract ices  t ha t  achieve erosion r a t e s  a t  l e a s t  
cost  r e l a t i ve  t o  the basel ine .  

Output: Non-dominated management pract ices  f o r  each LMU. 
I 

I P 

SEDEC 

Data: SOILEC output,  physical and management in te r - re la t ionsh ips  
between W s ,  deposition points .  

Compute: Total sediment deposition f o r  a l l  feas ib le  combinations of l e a s t  
cos t  erosion management options a t  a l l  LMUs, allowing for  
in te r re la t ionsh ips .  

Output: Option l i s t s  of possible s e t s  of management pract ices  fo r  each 
t ransec t  together with t o t a l  sediment and t o t a l  ne t  re tu rns / to ta l  
cos t  fo r  each s e t  of management pract ices  i n  each option l i s t  fo r  
each t ransec t .  

I 
I Binarv Integer Programming Model 

Data: Total sediment and t o t a l  ne t  re turns  for  each s e t  of management 
systems i n  the option l i s t  fo r  edch t ransec t ,  reservoir  capacity.  

Compute: Total net  re turns  for  en t i r e  drainage area.  
Optimize: Select  management pract ices  on each t ransect  t h a t  maximize t o t a l  

ne t  re turns  fo r  drainage area without v io la t ing  reservoir  
capacity constra int .  

Output: Optimal management systems and associated t o t a l  net  re tu rn .  



most prevalent in Illinois. Corn and soybeans are the major irrigated 

crops in the state. Over half of the irrigated acreage in 1977 was in 

field and seed corn, while 19 percent was in soybeans, and there is 

every reason to believe that these figures have been rising in recent 

years. The soybean acreage included 1,067 acres of double-cropped 

soybeans, which can benefit greatly from irrigation during dry periods 

in July and August [Lah, Drablos, and Thorne]. The three tillage 

practices - conventional, reduced, and no tillages - are the most 

widely practiced systems in Illinois. 

Data used in MBMS in generating budgets for the different crop 

rotations and tillages included crop yields, quantities and prices of 

inputs like fertilizers, pesticides, herbicides and seed, machinery and 

equipment, drying costs and management costs. Data on input use and 

cost came from a variety of sources - Brownstown Experimental Station, 

U.S. Soil Conservation Service, Agricultural Prices Handbooks, etc. 

The key data are listed in Table 2.2. Irrigation costs for the 

center-pivot systems were estimated using information from January, 

1982 issue of Illinois Irrigation Newsletter. 

The base budgeting year was 1982, so the prices of inputs and 

outputs, yields, etc. were from that year. The total operating cost 

generated by MBMS for each of the 24 crop management systems was used 

in SOILEC (see the next section). 

2.2 SOILEC Model 

The SOILEC (Soil Conservation Economic) model [Eleveld, Johnson 

and Dumsday] was used to analyze the long-term economic and physical 

impacts of adopting alternative management systems for corn and 



Table 2.2. Selected Data Used for MBMS Budgets 

Quantity of Input Use 
Irriaated Non-irrigated 

Input Corn Soybean Double Crop Corn Soybean Double Crop 
Soybean Soybean 

Nitrogen 
Phosphate 
Potash 
Bladex 4L 
Aatrex 4K 
Lasso 
Diaz inon 
Sencor 4 
Tref lan 
Dual 
Poas t 
Benlate 50 
Paraquat 
Hoelon 
Surf lan 

Yield bu/a 149.8 43.4 28.7 87.8 36.7 20.6 

Source: Sipp, et.al., p. 28-29. 



soybeans. SOILEC is a long-run computer simulation model designed, among 

other things, to analyze the physical and economic trade-offs involved in 

management decisions to accomplish soil erosion control for row crops. For 

a given soil type, this model quantifies the on-site physical and financial 

consequences of soil erosion for alternative management systems versus a 

base system. The model simulates the soil losses and economic outcomes of 

each of the crop management systems over a one-year (short-term) or a 

50-year (long-run) planning horizon. 

The simulation model calculates annual net income per acre for each 

management system. These annual net incomes are then discounted by a 

specified discounting rate and summed to their present value at the 

beginning of the planning horizon. An estimate is also made of the 

remaining or salvage value of the land, which is also discounted to the 

present and included in the present value sum for each management system. 

The four basic relationships underlying the SOILEC model are - the 

Universal Soil Loss Equation (USLE) taken from Wischmeier and Smith (1965), 

discounted net returns, the relationship between yield and soil depth, and 

the relationship between costs and soil loss. The Universal Soil Loss 

Equation is used in the calculation of annual soil loss while the other 

three relationships are used in the projection of annual crop yields and the 

calculation of discounted net returns. 

The USLE is formulated as follows: 

where : 

A = the annual soil loss in tons per acre; 

R = the rainfall and runoff factor; 



LS = a calculated factor involving the slope of the field and the 
length of that slope; 

K = the soil erodibility factor; 

C = a cover and management factor determined by crop rotation and 
tillage system; and 

P = the support practice (vertical tillage, contour plowing, strip 
cropping, etc.) factor. 

The basic economic relationship in SOILEC involves discounted net 

returns. This relationship for the two-crop rotation case is: 

L PVNR = - t=l 
2 (1 + i)t , 

where : 

PVNR = the discounted net returns for a management system. 

t h 
'ti 

= the prices for the i crop; 

= the yield per acre for the ith crop at time t for the 
management sys tem; 

'ti = the cost for the ith crop in year t for the management system; 

i = the real rate of interest; 

t = time from year zero; and 

T = number of years in the planning horizon 

By summing net returns per acre for the two crops, and dividing by 

2, a rotation is represented as the simple average of net returns per 

acre. This average is discounted to present value terms. The sum of 

the PVNRfs for all years gives the present value of net returns over a 

planning horizon for a given management system. 



The third relationship underlying SOILEC relates crop yields and 

soil loss from erosion. This relationship for a given management system 

can be generalized as 

where : 

Yt = the yield for a crop in a given year T; 

f = is the yield function; and 

di = the depth of top soil lost in year i. 

As soil erodes over time, the total soil loss grows larger and yields 

decline. This reflects the assumption that soil erosion impacts 

long-term productivity causing it to decline. [See Bost (1980) for 

empirical results verifying this assumption]. 

The final relationship that forms the basis of SOILEC reflects 

efforts by farmers to maintain yields, in the face of lost productivity 

due to soil erosion, by increasing the use of inputs such as 

fertilizer. This results in increased costs for a particular crop in 

Equation (2), that is, 

t 

where : 

Ct = the cost in year t for a given crop and management system; and 

dt = as defined in Equation (2.2.3) 

Depending on local soil conditions, Ct may increase, decrease, or stay 

constant as dt increases. 



but one of the  management systems being considered a re  compared t o  a 

base management system and the  dominated and non-dominated systems 

indicated.  The determination of dominance i s  done by a cu t t ing  plane 

algorithm within the model using averages of annual ne t  revenues and 

annual s o i l  losses  fo r  the specif ied planning horizon f o r  each 

management system. A management system i s  dominated when the same or a 

lower annual s o i l  loss  can be obtained with the same or  a greater  

annual ne t  revenue. For example, i f  2 management systems have annual 

s o i l  losses  and ne t  revenues per acre  of 0.9 tons and $44.90, and 0 . 9  

tons and $42.90, respect ively ,  and i f  the annual s o i l  losses  a re  lower 

and the ne t  revenues greater  than those fo r  the base system, the former 

system w i l l  be chosen a s  the dominant one. Since both management 

p rac t ices  produce the same amount of annual s o i l  l o s s ,  the  one with a 

higher ne t  revenue w i l l  dominate the other .  The algorithm includes a 

dis tance function t h a t  makes it possible t o  specify a value fo r  

d i f ference i n  annual s o i l  loss  and net  re turns  between two management 

systems. I f  the ac tua l  difference i s  l e s s  than the specif ied 

di f ference,  the  two management systems a re  t rea ted  a s  i f  they a re  equal 

and not dominated. 

2.3 Study S i t e  Results from SOILEC 

For t h i s  study,  a s i t e  i n  S23T.3S.-R.4W near Oakdale, i n  

Washington County, was se lected fo r  fu r ther  analysis .  The area i s  

depicted i n  Figure 2 . 1 .  The s i t e  contains a drainage area  of 936.4 

acres .  This was par t i t ioned  in to  29 f i e l d s  of varying s i z e s .  The land 

base was subdivided such t ha t  each f i e l d  was associated with one 

surface drainage path ,  ca l l ed  a t ransec t .  For t h i s  s i t e ,  1 6  t r ansec t s  





were defined and the number of fields within transects varied from one 

to three. Corn and soybeans are the dominant crops in the area. 

The topographic information for this study site was developed from 

U.S. Geological Survey 7.5 minute contour maps. Farm boundaries and 

transects were identified from these maps, plat maps and aerial 

photographs obtained from the Agricultural Stabilization and 

Conservation Service in Washington County. Soil types, soil depths and 

productivity characteristics were obtained from the U.S. Soil 

Conservation Service (SCS). 

For each of the 29 fields within the 16 transects of the Oakdale 

site, 72 different management systems were analyzed using the SOILEC 

model. Since there was only one soil type - Cisne, for all the fields 

and the average slope - 1-2%, and average length of slope - 300 ft., 

were the same for all the fields, only two computer runs were made with 

the SOILEC model. The first run was done for the 36 non-irrigated 

management systems, made up of four crop rotations (continuous corn - 

CC, corn-soybeans - CS, continuous soybeans - S, and double-cropped 

soybeans - DS); three tillages (conventional tillage - CTL, reduced 

tillage - RTL, and no-till - NT), three mechanical control practices 

vertical (up and dowq-s-lope) cultivation - VT, contour cultivation - 
j , 

CN, and contour strip cropping - ST), and one irrigation practice 

(no-irrigation - NIRR). 

The second run was made with the 36 irrigated practices, comprising the 

same management systems listed above but with irrigation (IRR). 

The data used in SOILEC for the case study came from a number of 

sources. Yield data came from the Brownstown Experimental Station, 

while data on erosion factors came from U.S. Soil Conservation Service. 



Cost data were extracted from the MBMS budgets. Two discount rates - 

4.00% and 8.00% were specified. 

Two separate frontier analyses, one with only the non-irrigated 

management systems, and the other with irrigated practices only, were 

performed within the SOILEC model to determine the dominant practices 

on each field. Five non-irrigated practices and four irrigated 

practices respectively, were found to be dominant [see Tables 2.3 and 

2.41. 

The cumulative net present values of returns per acre for each of 

the 36 non-irrigated and the 36 irrigated management systems considered 

in the study, are presented in Tables 2.5 and 2.6. The tables show 

quite clearly that irrigated corn under the two corn rotations - CC and 

CS, and all three tillages - CTL, RTL, and NT, and all three mechanical 

control practices, VT, CN and ST is more profitable than non-irrigated 

corn under the same tillages and mechanical control practices. For 

soybeans, however, the opposite is true, that is, non-irrigated 

soybeans are more profitable than irrigated soybeans under the same 

tillages and mechanical control practices. 

2.4 SEDEC Model 

The SEDEC (Sediment Economics) simulation/optimization model 

[Braden, Johnson, and Martin] conjoins a farm profit function, an 

erosion function, and a spatial sediment movement function. The 

financial and erosion relationships are simulated using SOILEC, and the 

Universal Soil Loss Equation (USLE) is the basic erosion relationship. 

In SEDEC, a procedure developed by C.D. Clarke (1983) of the U.S. 

Soil Conservation Service (SCS) is used to simulate the sediment 



Table 2.3. Frontier Analysis for Non-Irrigated Systems 

REDUCT 1011 I N  EROSION COHPAFiED I4 ITH  6f iSE ROTAT 1flF.I .T II \.AGE SYSTEMS I CC CTL  
Al lD BASE MECI1AfaIICAL CON1 ROL PRACT I C E  ( S  1 r C f l  

U I SCQllElT RATE ( % l r 4.00 

ROTAT ION-  MECHANICAL USLE REMAItII I . I i3 t.IET REV. ANtJ. CST 
T I I -LAGE COEITROL FfiCTORS ANI'IIIC\I- CtING F'EH PER L lN lT  

EIO. SYSTEM PRACTICES L S  C P S O I L  I CiSS l l t J l T  AREA REDUCTN 
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . - -  ....---------_----I------------- 

(TCJlI/ f iC) ($/ACRE) (Qi/TOI.I) 

1 CC C T L  CN . .I79 .250 .60 2.1 19.39 0.00 0 

NT 
R l  L 
NT 
R T L  
NT 
R T L  
C T L  
R T L  
C T L  . 
C T L  
NT 
C T L  
R T L  
R T L  
IJT 
C T L  
141 
.CTL 
141 
R T L  
C T L  
NT 
t.1T 
R T L  
R T L  
CTL  
R T L  
R T L  
N T 
H T L  
C T L  
CTL  
CTL  
NT 
NT 

VT 
V T 
C 1.1 
CN 
6 T 
ST 
VT 
V T 
CN 
ST 
VT 
VT 
CN 
ST 
CIJ 
CN 
ST 
ST 
V T 
V T 
VT 
CIJ 
ST 
CN 
6 T  
6 T 
V T 
CN 
V T 
ST 
V I 
CN 
6 T  
CN 
ST 

VT UP-AND-DOWN-SLOPE (VERTICAL) CULTIVATION B 
CN - CONTOUR CULTIVATION 
ST - CONTOUR STRIP CROPPING D 
TR - TERRACING 
NA - NOT APPLICABLE 

78.60 M.A. 
77 -40 N.A. D 
68.77 -102.45 
67.52 -268.22 U 
66.77 -99.47 D 
65.52 -260.28 D 
61 .i15 N.A. D 
54.84 -98.i14 D 
51.24 1i.A. D 
49.24 E1.A. D 
47.67 -85.22 D 
47.36 t4.A. D 
44.90 -38.22 
42.90 -36.52 D 
37.72 -32.11 D 
37.52 t.1 . A . D 
35.72 -30.41 D 
35. 52 N.A. D 
16.63 -10.81 
13.92 -9.75 D 
9 .80 N.A. D 
6.65 -3.77 
4.65 -2.64 D 
3.94 -2.35 D 
1.94 -1 .16 D 

-2 .00 N.A. D 
-5. 00 N.A. D 

-14.94 17.81 D 
-15.45 l"J.7a D 
-16.94 2~1.19 D 
-19.39 138.67 D 
-19.39 21 .01 D 
-19.39 21.C11 D 
-19.39 13.60 D 
-19.39 13.60 D ------------------------ - BASE MANAGEMENT 
SYSTEM - DOMINATED MANAGEMENT 
SYSTEM 

NOTE - Nondominated management systems do not have any letters assigned to 
them. 



Table 2.4. Frontier Analysis for Irrigated Systems 

REDIJCT IOI4 I N  EROSl 014 COFIPARED U1TH BA5E ROTAT lnEI-T 11-LhGE SYSTEIIS: CC C7 L 
HI.ID BfiSE HECHkCIICfiL COII IROL F'FtkCT ICE (5) : CII 

D I SCUU14T RATE ( X I 3 4 .(:I0 ------------------------------------------------------------------------------ 

F:OTAT I0t.I- CIECHAPI I CAL USLE REHCI I C I  I t.IG IdET REV. AI,II.l. CST 
T ILLf tGE CONTROL FACTOFS At,lNU(iL CHEIG F ER PER Ut I I  T 

EIO. SYSTEM PRACTlCES L S  C P S O I L  1.0'35 UI.llT AREA REDUCTII 

1 cc CTL CN .179 .PXI .60 2.1 66.09 0.00 e 

2 CS RTL VT .I79 .OBO 1.00 , 1.1 
3 S RTL VT .I79 .I70 1.00 2.4 
4 C S  CTL VT ,179 ,310 1.00 4 . 3  
5 CS R 1 L  CN .I79 ,080 .60 .7 
6 S FIT VT .179 .17t:l I.!:II:I 2.4 
7 CS NT VT ,179 .(I30 1.00 .4 
B CS RTL ST .179. .Of31:1 .&[I .7 
9 S R I L  CIS el79 m170 a60 -- 1 . 4 .  

L O  CC RTL VT .179 ,630 I.I?I:I .4 
11 CS CTL CN -173 .310 .60 2.6 
12 S RTL ST ,179 e 170 .60 1.4 
13 S NT CEI ,179 el70 .60 1 .It 

14CS NT CEI. .179 .a30 .60 .3 
15 CS CTL BT ,179 a310 -60 2.6 
16. CC IJT VT .I79 .03U 1.t:lO .4  
17 5 EIT ST ,179 .170 .6C1 1.4 
18 CS NT ' ST .I79 ,030 .60 .3  
19 CC CTL VT .I79 - .250 1 .OO 3.5 
20 S CTL VT .I79 ,370 1 .ClCI 5.2 
21 cc RTL Cl4 .I79 .030 .60 .3 
22 CC RTL ST .I79 .030 . kt:) .3 
23 CC NT CN ,179 .030 .6Cl .3  
24 CC t4T ST ,179 ,030 .&(:I . 3  
25 CC C I L  ST 17V .250 .&(:I 2.1 
26 S CTL CH .I79 ,370 .6O 3.1 
27 S CTL ST .I79 .370 ,150 3.1 
20 DS RTL VT ,179 .I50 1.00 2.1 
29 DS CTL VT .179 .I40 1.00 2.0 
30 DS HTL. CtJ ,179 ,150 .60 1.3 
31 DS RTL ST .I79 . 1 .60 1.3 
32 09 CTL CN .I79 , .I40 ,645 1.2 
33 DS CTI, ST , 179 . I t  .6U 1.2 
3 4 D S  NT V r  1 7 9  .(If30 1.00 1 . 1  
35 DS NT CEI ,179 .Of30 .60 .7 
36 DS EIT ST 1 7 9  ,060 .60 .7 

---.--____-_-_-_--------------------------------------- 
VT - UP-AND-DOWN-SLOPE (VERTICAL) CULTIVATION B 
CN - CONTOUR CULTIVATION 
ST - CONTOUR STARIP CROPPING D ‘ 
TR - TERRACING 
NA - NOT APPLICABLE 

3s.W -34.62 
25.85 P1.A. D 
24.25 E1.A. D 
23.94 -16.78 
23.06 I4.A. D 
22.95 -13.68 
21.91 -15.38 D 
15.75 -23.76 D . 

15.30 -9.12D 
14.4% t4.A. D 
13.95 -20.78 D 
13.15 -19.59 D 
12.97 -7.03 
12.rt4 1.1 . fi . D 
11.97 -7.13 D 
11.15 -16.62 D 
10.77 -5.94 D 
9.814 I . .  D 
7.05 1.1 C\ . D 
5.32 -2.80 D 
3.32 -1 .BCI D 
1.98 -1.07 D 
- .02 .01 D 

..- t 8 r h  
L . .. .. I4.A. D 

-2.74 1I.A. D 
-4.74 1.1 . A . D 

-54. 18 1.1 . A . D 
-63.66 455.21 D 
-64.11 76.40D 
-66.07 78.74 D 
-66.09 71.61 D 
-66.C19 71.61D 
-66.09 67.52D 
-66.!N 46.33 D 
-66.09 46.33 D ------------------------ - BASE MANAGEMENT 
SYSTEM - DOMINATED MANAGEElENT 
SYSTEM 

NOTE - Nondominated management systems do not have any letters assigned to 
them. 



Table 2.5. 30-Year Cumulative Net Present Values 
for Non-Irrigated Management Systems 

Management System 

CC-CTL-VT-NIRR 
CC-CTL-CN-NIRX 
CC-CTL-ST-NIRX 
CC-RTL-VT-NIRX 
CC-RTL-CN-NIRR 
CC-RTL-ST-NIRX 
CC-NT-VT-NIRX 
CC-NT-CN-NIRX 
CC-NT-ST-NIRX 
CS-CTL-VT-NIRX 
CS-CTL-CN-NIRX 
CS-CTL-ST-NIRX 
CS-RTL-VT-NIRX 
CS-RTL-CN-NIRR 
CS-RTL-ST-NIRX 
CS-NT-VT-NIRX 
CS-NT-CN-NIRX 
CS-NT-ST-NIRX 
S-CTL-VT-NIRX 
S-CTL-CN-NIRX 
S-CTL-ST-NIRX 
S-RTL-VT-NIRR 
S-RTL-CN-NIRR 
S-RTL-ST-NIRR 
S-NT-VT-NIRX 
S-NT-CN-NIRX 
S-NT-ST-NIRX 
DS-CTL-VT-NIRX 
DS-CTL-CN-NIRX 
DS-CTL-ST-NIRR 
DS-RTL-VT-NIRR 
DS-RTL-CN-NIRX 
DS-RTL-ST-NIRX 
DS-NT-VT-NIRX 
DS-NT-CN-NIRX 
DS-NT-ST-NIRX 



Table 2 . 6 .  30-Year Cumulative Net Present Values 
for Irrigated Management Systems 

Management System 4.00% 8.00% 
- - - - - -  ($/a~) - - - - - 

CC-CTL-VT-IRR 
CC-CTL-CN-IRR 
CC-CTL-ST-IRR 
CC-RTL-VT- IRR 
CC-RTL-CN-IRR 
CC-RTL-ST-IRR 
CC-NT-VT-IRR 
CC-NT-CN-IRR 
CC-NT-ST-IRR 
CS-CTL-VT-IRR 
CS-CTL-CN-IRR 
CS-CTL-ST-IRR 
CS-RTL-VT-IRR 
CS-RTL-CN-IRR 
CS-RTL-ST-IRR 
CS-NT-VT-IRR 
CS-NT-CN-IRR 
CS-NT-ST-IRR 
S-CTL-VT-IRR 
S-CTL-CN-IRR 
S-CTL-ST-IRR 
S-RTL-VT-IRR 
S-RTL-CN-IRR 
S-RTL-ST-IRR 
S-NT-VT-IRR 
S-NT-CN-IRR 
S-NT-ST-IRR 
DS-CTL-VT-IRR 
DS-CTL-CN-IRR 
DS-CTL-ST-IRR 
DS-RTL-VT-IRR 
DS-RTL-CN-IRR 
DS -RTL- ST- IRR 
DS-NT-VT-IRR 
DS-NT-CN-IRR 
DS-NT-ST-IRR 



delivery process. Runoff and sediment are assumed to  move downslope along 

" t ransec ts" ,  across land management un i t s  (farm f i e l d s ) ,  toward a 

stream channel or impoundment. A t ransect  depicts a charac te r i s t ic  

overland drainage path for  water t ha t  has not formed in to  concentrated 

flow channels.Soi1 tha t  becomes eroded on one land management un i t  

(W) may s e t t l e  out downhill i f  decreasing steepness or dense 

vegetative stands cause water t o  lose  momentum. 

The SEDEC approach determines land management pract ices  t ha t  w i l l  

minimize the cost  required to  meet a specif ied level  of sediment 

deposited from cropland into  a watershed. Within the model, a p r o f i t  

maximization c r i t e r ion  i s  applied t o  ident i fy  s e t s  of non-dominated 

management prac t ices ,  f i r s t  on each land management un i t  and then on 

each t ransec t .  On each land management u n i t ,  only those management 

pract ices  t ha t  cannot be improved upon through higher p r o f i t s  or lower 

erosion r a t e s  are considered. A t  the t ransect  l eve l ,  only those 

management combinations tha t  cannot be improved upon through higher 

p r o f i t s  or lower sediment loads within each subdivision are  considered. 

The management pract ices  t ha t  are dominant on each t ransect  a re  viewed 

as  mutually exclusive nodes i n  a network flow problem. The combination 

of pract ices  on d i f fe ren t  t ransects  t ha t  yie lds  the highest  p r o f i t s  i s  

determined, as i s  the combination tha t  causes the lowest sediment 

loads. Then a branch and bound search algorithm i s  used to  f ind  the 

most p rof i tab le  combination tha t  meets the sediment load constra int .  

The optimal combination i s  iden t i f ied  when it i s  determined t h a t  no 

other s e t  of management pract ices  can possibly a t t a i n  higher p r o f i t s  

while sa t i s fy ing  the constra int .  



The SEDEC approach was adapted to the aims of this study by 

modifying the criteria for selecting the non-dominated sets of 

management systems at both the land management unit (LMU) and transect 

levels. For each LMU, profit maximization is now applied to identify 

only those management practices that cannot be improved upon through 

higher net revenues, lower erosion rates, or lower water use. At the 

transect level, only sets or combinations of management practices that 

cannot be improved upon through higher total net revenues and lower 

sediment loads or higher total net revenues and lower water use are 

included in the option list for each transect. The last criterion 

makes it possible for both irrigated and non-irrigated option lists to 

be included in the set of dominant practices. Also, for each option 

list on a transect, all the LMUs must share an irrigation facility or 

be non-irrigated. Since we are interested in determining the effect of 

total sediment loads from all transects on reservoir capacity and 

consequently, the effect on the choice of the optimal set of management 

systems, the watershed-wide sediment load constraint in the original 

SEDEC model was replaced by a reservoir capacity constraint. The 

revised model is described below. 

2 .5  A Binary Integer Programming Model 

The problem that remains is to find a procedure for choosing from 

amongst the enumerated sets of dominant management practices for each 

of the different transects, one and only one set for each transect that 

would maximize total net returns without violating the reservoir 

capacity constraint. 



Sediment deposited from transects into a reservoir reduces the 

reservoir water storing (holding) capacity and requires costly removal. 

If the accumulated sediment is not removed from the reservoir, the 

amount of water that would be made available from the reservoir for 

irrigation practices would get smaller and smaller with each passing 

year. This annual reduction in the total irrigation water will, in 

turn, affect the choice of management systems that maximizes total net 

returns for the entire drainage area 

Let k = 1, 2, 3, . . . ,  K represent transects in a watershed. Each 

transect is hydrologically independent in surface drainage of storm 

k water into a reservoir. Let i = 1, 2, 3, . . . ,  I represent farm fields 

or LMUs within transect k. Net returns per acre in field (i,k) is 

k 
denoted by W (x), where x E X, the set of management systems that are 

i 

applicable in the study area the study area. Let xo denote the vector 

of baseline management systems in the watershed. The change in net 

returns per acre from adoption of another management system x' on field 

i on transect k is 

Expression (2.5.1) may take on any sign because the elements of yo need 

not be profit maximizing. Assuming net returns are proportional to 

area for a specific soil and slope class, the overall change in profits 

k 
of moving from yo to y' is simply the sum of the r s, each multiplied 

i 
1 

by the respective area a : 
i 



Let RC be the reservoir capacity as measured by the maximum amount of 

water it can store and let sk(x) be a sediment delivery function for 

k transect k and Q (zk) be the amount of supplemental irrigation water 

k 
required by vector z of management practices on transect k. Finally, 

k 
Finally, let j = 1, . . .  J denote lists of nondominated management 

options for the fields on transect k. These lists are identified by 

the SEDEC model 

The management systems that maximize overall net returns without 

violating the reservoir capacity constraint constitute the solution to 

the following mathematical programming problem: 

K Jk 
Maximize TR = X " ak ' 'kj' Xkj k=l j=l 

Subject to: 

C X = x  
X2j9 

for all irrigated j; 
j =I 11 j=l 

Jk Jk Jk Jk Jk 
x = X x = x  X = X  X = X  

7jP 
for all irrigated j ; 

j =1 '1 j-1 4j j=l 5j j=l 6j j-1 (2.5.7) 

X = X  = XIOj , for all irrigated j ; (2.5.8) 
j=1 81 1 9j j=l 



Jk Jk 
- 
Jk 

Xllj = ,Z X12j - x X13j , for all irrigated j ; (2.5.9) 
j =1 j =1 j =1 

X14j = X15 = x X16j , for all irrigated j ; (2.5.10) 
j =1 j =1 j =1 

The objective is to maximize net returns from management of land 

in the study area. Constraint (2.5.4) requires that management systems 

use no more irrigation water than the reservoir capacity (RC) less the 

acre-inches equivalent of total sediment loads (m * Skj . Xkj). The 

constant m converts tons of sediment into acre-inches of reservoir 

capacity. S is the sediment load associated with the management 
k j 

option list j on transect k. 

Constraint equation (2.5.5) allows only one set of management 

system to be chosen for each transect, given the fact that all Xk must 
j 

be either zero or one, as specified in (2.5.11). Equations (2.5.6) - 

(2.5.10) establish the land areas covered by each center pivot 

irrigation system. All fields associated with the transects in each of 

the following sets must be treated alike in terms of irrigation: [l and 

21; [3, 4, 5, 6, and 7 1 ;  [ 8 ,  9, and 101; [ll, 12, and 131; and [14, 15, 

and 161. Reference can be made to Figure 2.1 to establish the 

locations of these transects. 

The choice variables in the above problem take on the discrete 

values, 0 or 1. Therefore, necessary conditions for a maximum cannot 

be derived using conventional differentiation techniques. In order to 

be optimal, however, the solution must approximate as closely as 

possible the conventional first order conditions for profit 



maximization. Within transects, management systems must be selected, 

such that the revenue from an additional unit of supplemental 

irrigation water is approximately the same for all fields in that 

transect. A similar condition should characterize optimal management 

system vectors in different transects. If net revenues from additional 

irrigation water is higher in some transects than in others, a profit 

maximization solution would emphasize management systems in the former 

areas. 

The zero-one integer optimization model, described above is static 

and does allow management to change over the planning horizon, nor does 

sediment accumulation in the reservoir alter its capacity. SOILEC 

takes into account the "time" element, by using averages over the 

entire planning horizon of annual net revenue changes and annual soil 

losses from each management system, but this is the only way in which 

time enters explicitly. 

The main purpose of this section is to determine the annual effect 

of sediment deposition on reservoir capacity and, thus, on the choice 

of irrigated and non-irrigated management practices over the entire 

planning horizon. Time, therefore, plays a very important role in this 

study and must be accounted for explicitly. To achieve this, it is 

assumed that at the end of every 5 years, the management choices would 

be re-evaluated to determine how much of the reservoir capacity has 

been lost to sedimentation and how that in turn would affect the choice 

of irrigated and non-irrigated management practices in subsequent 

years. 

In this study, we make an implicit assumption that the portion of 

the reservoir capacity that remains after irrigation usage and sediment 



deposition will be refilled with runoff and rainfall water sometime 

between the end of the farming season and the beginning of the 

following growing season. We do not consider year to year variation in 

precipitation. Also, we assume that irrigation does not affect sheet 

and rill erosion rates due to rainfall. 

2.6 Dominant Management Options 

The data on the 2 base management systems, 5 dominant 

non-irrigated practices, and 4 dominant irrigated practices were merged 

to provide 11 management systems. The base system for the 

non-irrigated options (CC-CTL-CN-NIRR) was selected as the base system 

for further analysis of the composite set of dominant options. For 

each of the 11 systems, data on net revenue change per unit area 

($/ac), remaining annual soil loss (tons/ac) and C and P factors 

provided by frontier analysis within SOILEC, together with data on the 

number of transects in the study area, number of farm fields, acres in 

each field within a transect, slope of each field within a transect, 

etc., were used in the modified SEDEC framework (discussed in section 

2.4) to select non-dominated sets of management practices for fields 

within each transect. For each transect then, an option list, made up 

of sets of possible management systems to be used on the fields within 

that transect is provided. Associated with each set of management 

systems in an option list are the total sediment loads (tons/yr) and 

total net returns from the adoption of that set of practices in that 

particular transect. 
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Table 2.7. Variation of Results with Reservoir Capacity 

Reservoir Objective Optimal Transect (No.) 
Capacity Function Management Associated with 
(ac-in) Value in $ Systems Optimal Practice 

12,264 66,445.75 CS-RTL-VT-IRR All 16 transects 

7,900 66,165.61 CS-RTL-VT-IRR 1,2,8,9,10,11,12,13,14,15,16 
S-NT-VT-NIRR 3,4,5,6,7 

6,000 65,879.89 CS-RTL-VT-IRR 1,2,8,9,10,11,12,13 
S-NT-VT-NIRR 3,4,5,6,7,14,15,16 

5,000 65,851.47 CS-RTL-VT-IRR 1,2,11,12,13 
S-NT-VT-NIRR 3,4,5,6,7,8,9,10 

4,000 65,565.75 CS-RTL-VT-IRR 1,2,11,12,13 
S-NT-VT-NIRR 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 4 , 1 5 , 1 6  

1,000 64,855.90 S-NT-VT-NIRR All 16 transects 

CS = Corn-Soybeans 
S - Continuous Soybeans 
RTL = Reduced Till 
NT = No Till 
VT = Up-and-Down-Slope (vertical) Cultivation 
IRR = Irrigation 
NIRR = No Irrigation 



2.7 Model Parameters 

The data on net returns and sediment loads from each set of 

management systems from the option list for each of the 16 transects 

were used in specifying the binary integer programming optimization 

model presentation in Section 2.5. Constraint (2.5.5) forced the model 

to choose one and only one set of management systems from the option 

list for each transect. Additional constraint equations (2.5.6 - 

2.5.10) were included to make sure that each of the 5 center-pivot 

systems that would serve the entire study area served only specific 

transects without overlapping - that is, no transect can be served by 

more than one center-pivot system. As a result of these constraints, 

if any one of the center-pivot systems is shut off because of water 

shortage, or any other reason, all transects served by it do not 

receive irrigation water. This constraint is required in order to be 

consistent with the dominance procedures used at the transect level. 

The APEX integer programming computer package was used to 

determine the optimal solution for the model. Q was taken as 8.0 

acre-inches (Lazarus and Scott; Sipp, Lembke, Boast, Thorne and Walker) 

and m as 0.0007 acre-inches/ton. 

2.8 Results 

The results (summarized in Table 2.8) indicate that when the 

reservoir capacity constraint is not binding, only one irrigated 

management system, CS-RTL-VT-IRR, is chosen for all 29 fields. At the 

other extreme, when the reservoir capacity constraint is very limiting, 

that is, when the reservoir is quite small, only one non-irrigated 



Table 2.8. Results of 5-Year Iterations. 

Conversion of Sediment 
Reservoir Optimal Transect (No.) 5 -Year Lo ad 
Capacity in Management Associated with Sediment into 
Acre-Inches Svs tems Optimal System Load in Tons Ac-In 

7,900.00 1. CS-RTL-VT-IRR 1,2,8,9,10,11,12,13,14,15,16 6,428.57 4.5 
2. S-NT-VT-NIRR 3,4,5,6,7 

6,000.009 1. CS-RTL-VT-IRR 1,2,8,9,10,11,12,13 . 
2. S-NT-VT-NIRR 3,4,5,6,7,14,15,16 

5,000.00 1. CS-RTL-VT-IRR 1,2,11,12,13,14,15,16 



practice, S-NT-VT-NIRR, is chosen for all 16 transects. In the in-between 

case where the reservoir capacity is not very limiting, a 

mix of irrigated and non-irrigated management practices is chosen in the 

optimal solution. In no case did sedimentation during the 30 year study 

period prompt a change in land management practices. 

Optimal solutions were obtained with arbitrarily chosen levels of 

reservoir capacity - 12,264, 7,900, 7,000, 6,000, 5,000, 4,000, 3,000, 

2,000, and 1,000 acre-inches. At each of these specified levels of 

reservoir capacity, the total sediment load associated with the optimal 

management practices was calculated. Total sediment load for five years 

under the optimal management set was then computed and converted into 

acre-inches of reservoir capacity. This figure was subtracted from the 

specified reservoir capacity and an optimal solution was found using the 

remaining reservoir capacity. Six iterations of this procedure were 

performed on each of the specified reservoir capacities, each time using the 

remaining reservoir capacity in constraint equation (2.5.4). At a reservoir 

capacity of 7,900 acre-inches, for example, 6 iterations were performed 

using 7,900, 7,895.5, 7,891, 7,886.5, 7,882, and 7,877.5 acre-inches, 

respectively. Sedimentation during the five year intervals accounted for 

the reductions in reservoir capacity. 

The optimal set of management practices included CS-RTL-VT-IRR on 

transects 1, 2 and 8 through 16, and S-NT-VT-NIRR on transects 3 through 7 

(Table 2.8). The optimal practices did not change over the 6 planning 

intervals, indicating sedimentation was not sufficient to bring about 

progressive management adaptations. The total annual sediment load 

associated with the above solution was 1,285.71 tons or 0.90 acre-inches and 

the 5-year total was 6,428.57 tons or 4.5 acre-inches. The solution would 



not change until the reservoir capacity falls to 6,519.36 acre-inches. Any 

small reduction in this amount would result in a new optimal solution. A 

0.01 reduction in reservoir capacity from 6,5519.36 to 6,519.35 acre-inches 

resulted in a new optimal solution. The total net return changed from 

$66,165.61 to $66,160.03 with CS-RTL-VT-IRR on transects 1 through 13 and 

S-NT-VT-NIRR on transects 14, 15, and 16. 

The results of some iterations performed with other specified levels of 

reservoir capacity are presented in Tables 2.7 and 2.8. The optimal 

solutions showed a mix of 2 practices, CS-RTL-VT-IRR and S-NT-VT-NIRR, on 

different transects with reservoir capacities ranging between 7,915.03 and 

1,398.54 acre- inches. With a reservoir capacity of anything above 7,915.03 

acre-inches, only CS-RTL-VT-IRR comes into the solution. Similarly, with a 

reservoir capacity of anything below 1,398.54 acre-inches, only S-NT-VT-NIRR 

appears in the optimal solution. 



3. Investment Analysis 

To determine the profitability of irrigating corn and soybeans on 

claypan soils in Southern Illinois, an investment analysis was carried out 

with different sizes of reservoir capacity. Five reservoir capacities - 

12,264.00, 7,900.00, 6,000.00, 5,000.00, and 4,000.00 acre-inches were 

investigated. 

The discounted cash flow method was used for the investment analysis. 

The present value of annual net income flows (annual cash flow less annual 

operating costs) from the set of optimal management systems chosen under 

each of the specified reservoir capacities was computed over the 30-year 

planning horizon at a discount rate of 4.00 percent. The resulting 

cumulative net present values for the different reservoir capacities were 

then compared to their respective total reservoir construction and 

irrigation system costs. (Summarized in Table 3.1) The results are 

presented in Table 3.2. 

To compute the total cost of the irrigation system, the reservoir 

construction cost per acre was projected from a cost curve employed by the 

U.S. Soil Conservation Service. (See Figure 3.1) The total drainage area 

of the study site (936.4 acres) is the independent variable in the cost 

relationship. To get the total cost of constructing a reservoir with a 

capacity of 12,264.00 acre-inches, the projected cost per acre of drainage 

area of about $210.00 was multiplied by 112 acres - the drainage area used 

up for the construction of the reservoir. The total construction cost came 

to (112) x ($210.00) = $23,520.00. Other irrigation costs included the cost 

of the 112 acres used for reservoir construction - $134,400.00, with a per 

acre land cost of $1,200.00 (1982, Census of Agriculture); the cost of 5 



Table 3.1. Reservoir Construction and Irrigation Costs for 
Reservoir Capacity of 12,264 Acre-Inches. 

Initial Investment 

5 Center-pivot systems 

Pump and gear head 

130-hp diesel motor 

Reservoir (25 ft deep) 

5280 ft of 6" aluminum pipe 

Cost of 112 acres of reservoir site 

Cost - 
$200,000.00 

35,000.00 

50,000.00 

23,520.00 

13,054.00 

TOTAL 

Source: Erickson, et.al. 



Table 3.2. Results of Investment Analysis 

Reservoir 30 yr Cumulative Tot a1 Net Net 
Capacity NPV from Optimal Cost of Return Return 
in ac- ins Management Reservoir to as Percent 

Systems Construction Investment of Total 
@ 4.0% Discount & Irrigation Irrigation 

Rate Sys tems Cost 
( $  x 1000) % 
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Figure 3.1. Reservoir Structure Cost per Acre By Size of Drainage Area 



center-pivot irrigation systems - $200,000.00 at $40,000.00 each (See Table 

3.1 for details.) For the other reservoir capacities, reservoir 

construction costs were estimated as linear proportions of the $23,520.00 

estimate for the reservoir size of 12,264.00 acre-inches. 

The results of the investment analysis (Table 3.2) indicate that at 

each of the five specified levels of reservoir capacity, the 30-year 

cumulative net present values of total returns at a real discount rate of 

4.00 percent was far greater than the cost of reservoir construction and 

irrigation systems. The net returns to investment increased with smaller 

reservoir capacities. At a reservoir capacity of 12,264.00 acre-inches, the 

net return to investment was $1,604,800.00 or 351.9 percent, while the net 

return for a reservoir size of 4,000.00 acre-inches was $1,719,000.00 or 

537.0 percent. The discount rate of 4.00 percent used in the analysis is a 

reasonable long-term average for real rates of return on financial 

investments. At discount rates higher than 4.00 percent, the cumulative net 

present value of total returns would be far lower than those in Table 3.2 

for each level of reservoir capacity. 
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