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Abstract

Within computer science, the term provenance has multiple meanings, due to differ-
ent motivations, perspectives, and assumptions prevalent in the respective communities.
This chapter provides a high-level “sightseeing tour” of some of those different notions
and uses of provenance in scientific workflows and databases.
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1 Provenance in Art, Science, and Computation
The Oxford English Dictionary (OED) defines provenance as “the place of origin or ear-
liest known history of something; the beginning of something’s existence; something’s ori-
gin.” Another meaning listed in the OED is “a record of ownership of a work of art or an
antique, used as a guide to authenticity or quality.”

In the fine arts, the importance of this notion of provenance can often be measured
with hard cash. For example, one of Picasso’s Les Femmes d’Alger sold for nearly $180
million in May 2015 at Christie’s in New York; a new record for a painting at an auction. In
contrast, La Bella Principessa sold for less than $20,000 in 2007, despite the fact that some
attribute it to the great Leonardo da Vinci (Figure 1(a)). However, there is no documented
chain of custody prior to the 20th century, so the drawing’s incomplete provenance record
is insufficient to establish its authenticity. It is now up to “provenance sleuths” to try and
determine whether or not the drawing was really created by da Vinci – in which case it
could rival the value of Les Femmes d’Alger.

(a) (b)

Figure 1: Provenance in the Arts and Sciences: (a) La Bella Principessa, portrait by Leonardo da
Vinci. Or is it? It could be worth well over $100 million dollars, if enough provenance were available
to verify its authenticity. (b) Grand Canyon’s rock layers are a record of the early geologic history of
North America. The ancestral puebloan granaries at Nankoweap Creek tell archaeologists about the
much more recent human history. (By Drenaline, licensed under CC BY-SA 3.0)

Scientists often have to be expert provenance sleuths themselves. As part of conducting
their science they may, e.g., analyse the stratigraphy of the Grand Canyon in order to reveal
the geologic history of the planet (Figure 1(b)), or study the fossil record preserved in rock
layers or the molecular record inscribed in the DNA of species to reconstruct phylogenies
and assemble the tree of life. Empirical evidence plays a crucial role in the scientific method
and is a form of provenance that is everywhere around us, from the cosmic microwave
background left behind by the Big Bang, to the recurrent laryngeal nerve we share with all
tetrapods [Wed11] – clear evidence of our common lineage with all life [Dob73].
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Figure 2: “Hockey stick” graph from [MRY14] (adapted in turn from [MZH+08]) showing tem-
perature changes of the Northern Hemisphere from observations (red) and proxies (black) relative to
the 1961–1990 average temperature (gray 0◦ F line).

1.1 Transparency and Reproducibility in Science
It is long standing practice to cite your sources in scientific publications. However, as sci-
ence has become increasingly computational and data-driven [HTT09], and more interdis-
ciplinary and collaborative, new requirements and opportunities have emerged for research
articles. The U.S. Global Change Research Program (USGCRP) has developed the Global
Change Information System (GCIS) [GCI15] that links global change information across
many federal agencies. An important product of USGCRP is the National Climate Assess-
ment (NCA) report [MRY14] which summarizes impacts of climate change on the U.S.,
now and in the future. To facilitate transparency and usability of the NCA, ambitious trans-
parency goals have been set, ranging from basic source traceability (references to papers)
to the use of data citations and metadata, all the way to traceable processes and software
tools, with the ultimate goal to support full reproducibility of all NCA content [TFM+13].

Data provenance, the lineage and processing history of data, is of critical importance
for transparency, to assess data quality [Sad13], and for computational reproducibility.
Consider, e.g., the famous “hockey stick” graph in Figure 2, showing temperature changes
over the last 1700 years. Similar to La Bella Principessa, the value of such a chart may
depend on its provenance, in particular, on the quality of the data that went into it, and the
soundness of the computational method used to create the final result. As scientists provide
detailed provenance information, e.g., what proxy records where used to reconstruct past
temperature data and how those proxies where processed to derive a temperature, other
scientists can evaluate and assess the results and the validity of the findings.

In a recent article, Hill et al. [HDD+15] make a strong case for data provenance for
science. They cite a study by Eisenman et al. [EMN14] that argues that the Antarctic sea
ice extent was probably not growing nearly as fast as thought, and that “much of this [ice]
expansion may be a spurious artifact of an error in the processing of the satellite obser-
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Figure 3: Screenshot from data.globalchange.gov, showing a rainfall vs temperature scatter plot for
Texas between 1895 and 2012 (upper right); provenance metadata (center) with links to the source
data (highlighted oval) and software (highlighted rectangle) used to create the plot [Ste13].

vations.” Hill et al. also report that ESIP1 seeks to accelerate the implementation of new
approaches to track all details necessary to demonstrate data validity and to ensure scientific
reproducibility using a Provenance and Context Content Standard (PCCS) [HDD+15].

The third NCA report provides some of the much needed provenance and context in-
formation through the related GCIS system. Figure 3 depicts a screenshot showing rainfall
vs temperature data. Metadata provided for the scatter plot in the upper right of the fig-
ure includes its spatial extent (lower right) and its temporal extent (the years from 1895 to
2012). Last not least, provenance links to the original dataset and software are highlighted
in this HTML metadata view as well. By pushing one of the buttons at the bottom of the
screen, this metadata can also be exposed in one of several other machine-readable formats,
including JSON, YAML, Turtle, and RDF. While this rich metadata and provenance infor-
mation is clearly useful and required for transparency, the compilation of this information
for the report and the GCIS system required an extraordinary three-year effort by a team
of more than 300 experts [MRY14]. As more and more workflow tools and scripting envi-
ronments become “provenance-enabled”, the capture, sharing, and querying of provenance
information in support of reproducible science should become easier as well.

2 Provenance in Scientific Workflows
A scientific workflow is a description of a process for accomplishing a scientific objec-
tive, usually expressed in terms of tasks and their dependencies [LBM09]. Such workflows
aim to support computational science and accelerate scientific discovery in various ways,
e.g., by providing process Automation, Scalable execution, Abstraction, and Provenance
support (ASAP for short) [CVDK+12]. The latter, i.e., the automated tracking of prove-

1The Federation of Earth Science Information Partners
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connected and through which the quality information is propagated. Finally, the dataset is visualized through Google 
Maps to help curators visualize the result and potentially highlight other unsolved quality issues.  

Collaborative, User-Interactive Features. Some quality issues may not be solved automatically based on the 
available services and instead may require intervention by human domain experts. The example workflow shows 
how participation of multiple human curators can be interwoven with automatic curation steps to yield a semi-
automatic, collaborative workflow that can address more complex quality problems. To support such human-
interactive features, Google cloud services are integrated for data sharing, display and editing: the to-be-curated data 
is imported into a Google spreadsheet and shared with a set of curators, who are notified about their curation 
assignment by email or SMS text message. The set of curators, their email addresses, and their areas of expertise are 
themselves defined in a master (“curation dispatcher”) spreadsheet. After receiving their curation tasks, curators can 
evaluate and edit the assigned data records in their online spreadsheets, providing the corrected data and any further 
comments or justifications. The Kepler workflow regularly polls the status of the online spreadsheets until the 
curators submit their revisions, resulting in updates to one or more workflow instances. When the required number 
of results have been received, a final curation summary report is generated. It consists of a synthesis of proposed 
changes, remaining problems, and expectations about proposed actions to be taken on the original dataset. This 
report again is imported into a Google summary spreadsheet for final human review. 

As demonstrated by the Kurator prototype, Google cloud services, especially spreadsheets, can greatly simplify 
complex data handling in distributed, multi-user curation workflows. In particular, the Kurator package provides a 
new, innovative manner to invoke human experts as actors in a workflow, using automatic email requests, followed 
by asynchronous result submission by the human experts back into the running workflow via cloud-based 
spreadsheets (for further illustration, see the demonstration video [1]). Through the use of the Kepler Kurator 
package executable tasks and steps that users would normally perform outside of Kepler can now also be 
orchestrated by Kepler programmatically. Kepler actors in the Kurator package are reusable to assemble workflows 
with different curation purposes or for datasets with different features or quality problems. Moreover, the actors are 
designed to be highly configurable, e.g., the dataset-clustering actor can be configured with a specific clustering 
algorithm and the georeference-validation actor can be configured to use different georeferencing services [2,7]. 

 

Input DataSet (csv)

GeoLocate IPNI FNA

Filtered Push
Network

Google Cloud ServiceHuman Curation Visualization In Google Map Kepler Provenance Browser
 

Fig. 1. Specimen data curation example workflow 

2.2. Example Curation Workflow and Collection-Oriented Modeling and Design  

Dataflow-oriented scientific workflow technologies, including Kepler workflows, tend to involve “complex 
wiring” of actors for process control and often require adaptors or “shims” [8] for data format transformations, data 

Figure 4: Kepler data curation workflow for specimen data [DCM+12]. The workflow graph itself
represents prospective provenance. The trace graph (retrospective provenance) depicted in the lower
right can be viewed with a separate application; see Figure 5.

nance is often considered one of the key advantages of using a workflow system for process
automation [DBE+07, Bow12].

Common processing examples include data formatting, subsetting, cleaning, and anal-
ysis. Compute-intensive workflows often result from computational science simulations,
e.g., running climate and ocean models, or other simulations from particle-physics, chem-
istry, biology, to ecology, astronomy, and cosmology [LAB+09]. Scientific workflows
can be simple, linear chains of tasks, but more complex dataflow graphs are also com-
mon [MBZL09].

2.1 Workflows as Prospective Provenance
Figure 4 depicts an example scientific workflow for the semi-automatic curation of speci-
men collections data [DCM+12], implemented using the Kepler scientific workflow system
[LAB+06]. In Kepler, computational steps execute independently from one another and are
implemented by so-called (software) actors (green boxes in Fig. 4). These actors are con-
nected via dataflow channels that are typically implemented using FIFO (first-in first-out)
buffers, i.e., in such workflows data elements can be executed in pipeline-parallel mode,
similar to the way a UNIX pipeline executes. The workflow in Figure 4 reads as input a
CSV file containing specimen records from a natural history collection. Such biodiversity
datasets may require time-consuming, manual data curation steps. Using workflow tools, a
number of data quality control measures and repair suggestions can be processed more ef-
ficiently. Here, the workflow checks various fields of the data records as they are streamed
through the process pipeline, e.g., the plausibility of geolocation information (where a spec-
imen was collected), the scientific name of the specimen, and the flowering time (for plants
an additional check on the collection date). Further downstream, human actors are involved
in checking the records flagged by upstream computational steps [DCM+12]. The final
steps of the workflow display record locations on a map and output a provenance graph
that can be queried and explored in a separate provenance browser [BMR+08, ABL10a].
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Figure 5: Kepler Provenance Browser [BMR+08, ABL10a]: A retrospective provenance graph
(recorded earlier, during workflow execution) is displayed and can be navigated forward and back-
ward in time via VCR-like control buttons (bottom).

The curation workflow graph depicted in Figure 4 provides an overall description of
the processing steps that a data record will undergo when subjected to the workflow. In
this way, workflows are a form of prospective provenance: the workflow graph captures
the general method or “recipe” of how data products of a workflow are processed. When a
computational method is documented in this way, as a workflow graph, users can already
make certain inferences about the general method and about the result data produced by
it. For example, from the graph in Figure 4 we see that the flowering time validation step
(FNA) may use the improved geolocation data (GeoLocate) or a validated scientific name
(IPNI/gni) since those upstream actors may have updated a record by the time it reaches the
FNA step. Conversely, as the FNA actor lies downstream from GeoLocate and IPNI/gni,
it cannot possibly influence the latter. Thus, while detailed dependency and lineage infor-
mation between concrete data products is available only after workflow execution, some
lineage information, in particular about the independence of steps can be obtained prior to
execution, by querying the workflow graph. If a workflow graph contains further configu-
ration information, e.g., which XML elements of a data stream are processed at each step,
then a more detailed prospective provenance graph can be inferred as well [ZL10].

2.2 Retrospective Provenance from Workflow Execution Traces
Prospective provenance, in the form of a workflow graph, constitutes a first valuable knowl-
edge artifact, documenting a computational method or workflow. Many workflow systems
also allow users to record provenance information at runtime, i.e., they capture retrospec-
tive provenance that can be queried, analyzed, and visualized to gain a deeper understand-
ing of how certain results were obtained as the workflow executed. Figure 5 depicts a
screenshot of the Kepler Provenance Browser [BMR+08, ABL10a], showing retrospective
provenance from a run of a specimen curation workflow similar to the one in Figure 4.
Selected nodes and incident edges are highlighted to indicate which upstream step has
generated a data item, and which downstream step(s) read it. Note that a single actor in
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Figure 6: A homomorphism h from trace T to workflow W guarantees structural validity. Work-
flow-level constraints induce temporal constraints ≤f and ≤d on traces [DKBL12].

a prospective provenance graph can give rise to multiple invocations in the retrospective
provenance graph, e.g., DataFuser(1) and DataFuser(2) in Figure 5 are two dis-
tinct invocations of a single DataFuser actor. Each invocation usually operates on its
own data items (beige circles). Similarly, a single channel between connected actors in the
workflow graph (prospective provenance) is often traversed by multiple data items which
then appear as “data bundles” in the execution trace (retrospective provenance graph), as
seen in Figure 5.

2.3 Models of Provenance and Scientific Workflows
In 2006 the scientific workflow community organized the first “Provenance Challenge”
workshop to better understand the capabilities of different workflow systems and approaches
[MLA+08]. The first workshop led to a number of follow-up challenge events (all set up
to be informative rather than competitive), ultimately leading to the definition of the Open
Provenance Model (OPM) [MFF+08, MCF+11], which in turn informed the development
of the W3C PROV standard [MMB+12]. Much work in the scientific workflow com-
munity then focused on engineering challenges, e.g., the efficient storage [HA08, CJR08,
ABML09], navigation [ABL09], and querying [ABL10b, ABL12] of provenance. When
working with provenance in scientific workflows, the distinction between prospective and
retrospective provenance is important. However, neither OPM nor its PROV successor deal
with this distinction. One could argue that both OPM and PROV focus on retrospective
provenance, but the underlying definitions are rather vague on that point.2 As a result, dif-
ferent extensions to OPM and PROV have been developed that allow users to work with
both prospective and retrospective provenance and relate both kinds of information in a
single model [GG11, MDB+13].

2.4 Relating Retrospective and Prospective Provenance
It is often desirable to combine trace-level retrospective provenance and workflow-level
prospective provenance in a single, uniform representation. Such a model should also

2For example, [MMB+12] states that “provenance is defined as a record that describes the people, institutions,
entities, and activities involved in producing, influencing, or delivering a piece of data or a thing.”
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Figure 7: Cycles (a) in workflow W and (b) in trace T . A cycle (feedback loop) in a workflow is
not uncommon, but in a trace it suggests a temporal inconsistency [DKBL12].

accommodate temporal information whenever available. This can be achieved with a
semistructured data model, consisting of labeled, directed graphs of the formG = (V,E,L),
with vertices V , labels L, and labeled edges E ⊆ V × L × V . In the following, we view
workflows (prospective provenance) W and traces (retrospective provenance) T as sub-
graphs of G. Similarly, a temporal model consists of labeled edges, modeling one or more
“before” relations ≤R.

Figure 6 shows a workflow W (top) and a trace T (bottom). By linking a trace to
the workflow that generated it, important information can be obtained via the constraints
of the combined model: If data item y is written into output container Y as a result of
invocation a of actor A on input item x in X , then the writing of y cannot happen before
x is read. Therefore, this firing constraint at the level of the workflow model W induces a
corresponding temporal constraint on the trace T , i.e., tread(x) ≤f twrite(y). Similarly, the
data constraint at the Y container in W induces another temporal constraint at the trace
level: before item y can be read by invocation b of actor B, this item must first have been
written by some invocation a of A, i.e., twrite(y) ≤d tread(y).

In [PMGF15] the authors use temporal information about the duration of interactions to
exclude data dependencies that would violate temporal causality (if process A first writes
y, then reads x, then y does not depend on x).

Structural and Temporal Constraints. The execution of workflow W in Figure 7(a)
might have produced the trace T in Figure 7(b). To check whether T is indeed a possible
instance of W , we link T ’s nodes and edges to W via a mapping h (as in Figure 6). For ex-
ample, the edges x read→ a and a write→ y in T (x was read and y was written by invocation a),
have correponding edges X in→ A and A out→ Y in the workflow W , linking data containers
X and Y to the actor A. In Figure 7, T is structurally valid with respect to W , but other
inconsistencies due to temporal constraints can still arise. For example, a cycle in T usu-
ally indicates an inconsistent trace: if read and write observables are temporally or causally
linked, a strict partial order is implied and a cycle should not be observable. On the other
hand, a cycle in W is usually not a concern. It simply means that W has a feedback loop,
which is a rather common workflow pattern: loops in W are “unrolled” in T , leading to
acyclic trace graphs T . In [DKBL12] we have formalized structural validity of a trace T
via a homorphism h : T → W and shown that it can be checked using a simple Datalog
query.3 In [KMB15] a formal, temporal semantics of OPM is developed and it is shown
that the original inference rules for OPM are sound but incomplete. In [DRL13] we have

3Here, we are not searching for a graph homorphism, but simply test whether the given mapping h : T →W
is a homorphism.
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Figure 8: Hamming workflow variants (a) H1 (“one loop”) and (b) H3 (“three loops”). Retro-
spective provenance can be used to spot inefficient, redundant workflow computations: (c) trace T1

(“Fish”) obtained by running H1 and (d) trace T3 (“Sail”) from H3. The many redundant lineage
paths of the DAG in (c) match the regular path query (x2 | x3 | x5)∗, while the unique paths in the
tree (d) satisfy the pattern (x2∗ · x3∗) · x5∗.

developed a rule-based implementation (inspired by [KMB15]4) that allows provenance
model engineers to experiment with different temporal semantics, expressed as constraints
over the provenance model.

Example: Hamming Numbers. Consider the two variant workflowsH1 andH3 in Figure
8(a) and 8(b) that compute Hamming numbers5 [Dij81, Hem88]

H = {2i · 3j · 5k | i, j, k ≥ 0}

incrementally, i.e., as an ordered sequence 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, . . . While both
workflows contain the same nodes (i.e., actors and data containers), they are wired slightly
differently, which makes a big difference as it turns out. The data containers Qi are queues
(FIFO buffers); Q8 is the distinguished output, where the Hamming numbers will appear
in the correct order. M1 and M2 are merge actors, i.e., processes which take two ordered

4. . . or rather an earlier version from 2010: our 2013 paper could not have been influenced by a 2015 paper,
nicely illustrating the very point of temporal constraints.

5also known as regular numbers
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input sequences and merge them into an ordered output sequence. If presented with the
same item in both streams, the output stream will only contain one copy of the element,
so duplicates are removed. The actors X2, X3, and X5 multiply their inputs with 2, 3, and 5,
respectively. The sample-delay actors S2, S3, S5 are used “to prime the pump”: initially (i.e.,
before reading any input), they output the number 1 to get the loops started. Subsequently,
they simply output whatever they receive as an input. By design, the Hamming workflows
H1 and H3 define an infinite output stream, i.e., these processes can “run forever”.

Figure 8 shows two provenance traces T1 (Fish) and T3 (Sail) for Hamming numbers
n ≤ 1000, corresponding to the workflow variants H1 and H3. To save space, the trace
graphs show each invocation of a multiplication actor x2, x3, and x5 as a colored edge
(green, blue, and red, respectively). By querying the trace graph, the answer relation can
be obtained as a set of edges d1

p→ d2, linking data items to each other, with the (implicit)
label p denoting the actor invocations (multiplication factors) used. Note that while the
workflow graphs in Figure 8 are cyclic, as expected, the trace graphs are acyclic. The
trace-level retrospective provenance yields valuable information: In Figure 8(c) Hamming
numbers n can be produced in many different ways (if n contains all three factors 2, 3,
and 5, its in-degree is always three). As a result, the provenance graph T1 is not a tree,
but a DAG (directed acyclic graph). In contrast, in Figure 8(d) every Hamming number
n is produced in one way only (there is a unique path from 1 to n), i.e., without creating
unnecessary duplicates. Thus, unlike T1, trace T3 is a tree.

This example demonstrates another use of relating retrospective and prospective prove-
nance, i.e., differences in the trace graphs T1, T3 can be used to explain the performance
differences of the workflows H1 and H3 that generated them. Similarly, [KLS12] uses ret-
rospective provenance to compare the efficiency of different variants of a transitive closure
query. Other works making use of the relationships between prospective and retrospective
provenance include [KSB+10, BML12, DBK+14, DBK+15, MBBL15].

3 Provenance in Databases
When comparing data provenance in workflows and in databases, the former is usually con-
sidered a form of coarse-grained provenance, while the latter is considered fine-grained
provenance. Indeed, provenance from workflows often captures observables at the level
of files read and written by workflows or scripts [MBBL15]. In contrast, provenance in
databases aims to answer record-level questions, e.g., which tuples (rows) in the input ta-
bles contributed to a particular output tuple and how [CCT09]. Along another dimension,
workflow provenance is sometimes called black-box provenance, whereas database prove-
nance is considered white-box provenance [CCBD06, Tan07, Bow12]. This distinction
is motivated by the fact that in workflows, the computational steps or actors are usually
considered “black boxes” whose inner workings are not accessible or not relevant.6 Con-
versely, as we shall see below, a database query can be considered a “white box”, since
its inner workings are readily available and analyzable [BT07, CCT09]. There are also
approaches that combine workflow and database provenance, e.g., [ADD+11].

6However, workflow systems such as Kepler [LAB+06] support nested workflows, so it is possible to open
these “grey boxes” [BL05, DBE+07, BCBDH08]. Similarly, fine-grained provenance from script-based work-
flows can be captured via profiling tools [MBC+14].
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Database Provenance Questions. In the following, we consider the most widely-used
and best studied database model, i.e., the relational model [AHV95]. But the basic princi-
ples usually also apply, mutatis mutandis, to other database models and queries, e.g., over
semistructured (XML) data.7 Consider a query answer A = Q(D), i.e., an output table
A resulting from the evaluation of a query Q on an input database D. Let t ∈ A be a
result tuple from the answer. In a database context, we would like to answer provenance
questions such as:

What is the lineage of t, i.e., which specific subset(s) of tuples from the input D were
used to produce t? Similarly, we might want to know why t is in the result and how ex-
actly t was obtained from the tuples in its lineage. The notions of lineage, why-, and
how-provenance (among others) have been formalized, studied in detail, and compared
thoroughly [CCT09]. Before we illustrate these different notions with a running example,
we first give a brief (and necessarily incomplete) overview of some key publications and
milestones in database provenance.

3.1 A Brief History of Database Provenance
The idea of propagating annotations from sources through queries to results is at the core
of many current database provenance approaches, but also had early precursors such as
[WM+90], which proposed a model to carry along source attributions through queries. An-
other early approach which does not rely on annotations is described in [WS97]. Database
research on provenance became mainstream through important, workflow-like applications
in data warehouses [CWW00]. Data warehouses periodically retrieve and integrate infor-
mation from multiple sources using extract-transform-load (ETL) scripts, and then make
the integrated information readily available for online analytical processing (OLAP) [CD97].
In data warehousing and other information integration scenarios, it is often crucial to be
able to trace the lineage of data from output tables back to the sources where the data
originated. In this way, data quality problems can be detected, localized, and eventually
resolved.

An influential paper by Buneman et al. [BKT01] developed the why-provenance model,
refining another influential model by Cui et al. [CWW00] for tracing lineage in data ware-
housing applications. The provenance semiring8 framework developed by Green et al.
[GKT07] (and applied in a data sharing and information integration context [GKT10])
marks a milestone in provenance research, as it subsumes many earlier provenance models
and embeds them in a single, unified framework.

All provenance models mentioned so far aim at explaining, at various levels of detail,
why and how a query answer t ∈ Q(D) came about. Thus, these database approaches
aim to relate outputs back to the inputs on which they depend, i.e., at a high level, they
resemble retrospective provenance models for workflows. The database community has
also studied an intriguing new question, i.e., why is t /∈ Q(D)? This missing answer
problem is also known as why-not provenance [CJ09] and is an area of active research

7For example, [DT03, BGVK+06] show how XML queries can be reduced to relational queries.
8In abstract algebra, a semiring is a structure (K,+, ·, 0, 1) with binary operations “+” (addition) and “·”

(multiplication) over an underlying set K satisfying, for all x, y, z ∈ K, these axioms: x + y = y + x;
x+0 = 0+x = x; x · 1 = 1 ·x = x; x · 0 = 0 ·x = 0; x · (y+ z) = x · y+x · z; (x+ y) · z = x · z+ y · z.
If x · y = y · x, the semiring is commutative. Instead of x · y we can write xy.
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thop(S, T ) :− hop(S,U), hop(U, V ), hop(V, T ).

thop := πS,T ( ρT→U (hop)
on ρS→U,T→V (hop)
on ρS→V (hop) )

SELECT h1.S, h3.T
FROM hop h1, hop h2, hop h3
WHERE h1.T = h2.S
AND h2.T = h3.S ;

(a)

hop(S,U)

JOIN

hop(U,V) hop(V,T)

JOIN

tmp(S,U,V)

tmp(S,U,V,T)

PROJECT

thop(S,T)

(b)

Figure 9: Three-Hop (thop) query [KG12], expressed in (a) Datalog (top), the Relational Algebra
(middle), and SQL (bottom). (b) This query can also be considered a “mini-workflow” combining
three copies of the hop relation via joins (denoted on in the algebra), followed by a projection (denoted
π) to yield the output relation thop.

[HH10, TC10, GP10, ADT11, KLZ13, BHT15, tCCST15]. We will return to this question
briefly in Section 3.4.

The comprehensive survey by Cheney et al. [CCT09] classifies data provenance ap-
proaches into two broad categories called lazy and eager, respectively. In the lazy (or
non-annotation) approaches, provenance is computed only on demand by examining and
analyzing the input data D, the answers A, and the query Q. No changes are made to any
of these. In contrast, the eager (or annotation-based) approaches use an annotated input
database D′ which is then evaluated using a rewritten “provenance-enabled” query Q′ in
order to obtain an answer table A′ with provenance annotations. In the remainder of the
paper, we focus on eager provenance approaches. In Appendix A we illustrate the exact
nature of Q′ and the provenance-annotated query answers A′ via prototypical implementa-
tions of the running example discussed next.

Mixed forms combining aspects of eager and lazy approaches exist, e.g., [CWW00].
Several systems such as Perm [GMA13], GProM [AGR+14], Ariadne [GEFT14], and
PROV-Trace [SGB15] compute provenance on demand through provenance-enabled replay
of operations. These systems therefore do not fit neatly into the two categories proposed in
[CCT09]: On one hand, they appear lazy since provenance is not captured when evaluating
a query but only later, if and when provenance is explicitly requested. On the other hand,
the technique used for computing provenance is based on provenance-enabled queries that
propagate annotations, i.e., the eager approach. The GProM system stands out since it is the
first to support provenance tracking for updates (and transactions) based on MV-semirings,
an extension of the semiring model with embedded multiversion history [AGK+16].
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Figure 10: Three-Hop Example [KG12]: (a) The hop relation (blue) stores possible links in a
network. The thop query (center) returns an output relation (red) consisting of all pairs (S, T ) that

can be connected by three hops S
hop→ U

hop→ V
hop→ T (bottom). Typical provenance queries are: Why

is thop(a, b) in the output, and how has thop(a, b) been derived from the input? (b) The provenance-
annotated input is processed via a rewritten thop query, returning a provenance-annotated output that
answers those questions: The provenance polynomial p2q + q2r that annotates the thop(a, b) edge
(bottom) means that there are two distinct ways from a to b using three hops: by using the p hop
twice and the q hop once (p2q), or alternatively, by q, r, and q again (q2r).

3.2 Running Example: The Three-Hop Query (thop)
Consider a database table hop that stores possible links between nodes in a network
[KG12]. We might want to know which pairs of nodes are reachable with precisely three
hops. Figure 9 shows this thop (Three-Hop) query in alternative but equivalent notations:
as a Datalog query, a relational algebra query, and a SQL query. Finally, Figure 9(b) shows
the same query in the form of a (relational algebra) operator tree. Using operator trees al-
lows us to view a database queryQ as a kind of workflowWQ (or prospective provenance),
and apply notions and techniques from Section 2. As mentioned before, the processing
steps (actors) in workflows are usually considered black boxes. In contrast, in database
queries, the semantics of query operators is completely known and available for analysis
and query rewriting, making them white box actors that support fine-grained provenance
capture. Now consider the thop query from Figure 9 applied to a concrete input databaseD
as depicted in Figure 10(a). The input relation hop is shown as a directed graph (with blue
edges). From this, the query computes a new graph (with red edges), shown at the bottom
of Figure 10(a). Note that the hop input graph has no direct link from a to c, while the thop
result graph has such as link.

Typical provenance queries are: Why is some tuple t in the output relation thop, and
how has it been derived from the input relation hop? Consider the result tuple t = (a, b) in
thop. What is the lineage of t, i.e., what are the hop tuples that contributed to the derivation
of the result thop(a, b)? Looking at the hop graph, we see that one can go from a to b using
different edges from the input hop table, e.g., use the self-loop a → a twice, followed by
the hop a→ b, for a total of three hops. Another solution is to use a→ b, then b→ a, and
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thop S T Lin(X) Why(X) Trio(X) B[X] N[X]
a a pqr p+ pqr p+ 2pqr p3 + pqr p3 + 2pqr
a b pqr pq + qr pq + qr p2q + q2r p2q + q2r
a c pqs pqs pqs pqs pqs
b a pqr pr + qr pr + qr p2r + qr2 p2r + qr2

b b pqr pqr pqr pqr pqr
b c qrs qrs qrs qrs qrs

(a)

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

B

most informative

least informative

Figure 6: Provenance hierarchy. A path downward from(b)

Figure 11: Three-Hop Example (cont’d): (a) Provenance-annotated thop answer with five kinds
of provenance. (b) The hierarchy among provenance models [KG12]: the finest-grain model N[X]

subsumes other models such as Trio(X), Why(X), and Lin(X) below. For example, the Lin(X)

model for thop(a, b) only states that the hop edges p, q, r are in the lineage, while the N[X] model
states exactly how those edges need to be combined.

finally a→ b one more time.
Figure 10(b) shows the same input database Dhop with a small but important modifi-

cation: the edges in the hop relation are annotated with unique identifiers from an un-
derlying set (or namespace) X = {p, q, r, s}. Thus, we can explain why thop(a, b) is
in the answer simply by referring to the named edges: p, p, q is a three-hop from a to
b, and q, r, q is another three-hop, i.e., a

p→ a
p→ a

q→ b is the first solution, and
a

q→ b
r→ a

q→ b is the only other solution. A shorthand for the provenance-annotated
result is thus “thop(a, b) : p2q + q2r”. The provenance polynomial p2q + q2r states why
and how the query answer thop(a, b) was obtained from the hop input table. The addition
“+” in the provenance polynomial corresponds to a logical disjunction (∨) since there are
two solutions to go from a to b using exactly three hop edges. Each solution consists of
a product “·” of input tuples, corresponding to a logical conjunction (∧), i.e., p · p · q and
q · r · q. In the underlying provenance semiring [GKT07], the product and sum operations
are commutative, hence the shorter polynomial representation p2q + q2r can be used.

3.3 The Great Unification: Provenance Semirings
The representation of database provenance using abstract polynomials over annotated input
databases was developed by Green et al. in [GKT07]; an introduction and overview is given
in [KG12]. It is beyond the scope of this paper to elaborate on the details of that framework
and its theoretical results (e.g., the “Fundamental Theorem”). However, using the running
example, we can get a first idea of the elegance and power of the semiring approach. Fig-
ure 11(a) depicts the thop answer table with its six output tuples (corresponding to the six
red thop edges in Figure 10). Each of the tuples in the provenance-annotated answer A′

carries a provenance annotation which is obtained by executing a rewritten query Q′ on
an annotated input database D′ (see also Appendix A). The most fine-grained provenance
annotations are shown in the right-most column containing polynomials over the prove-
nance semiring N[X]. The other columns correspond to coarser provenance abstractions:
e.g., B[X] is the semiring of Boolean provenance polynomials, Trio(X) is the provenance
semiring used in the Trio system [BSHW06], while Why(X) and Lin(X) correspond to the
why-provenance and lineage model in [BKT01] and [CWW00], respectively.
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The lattice in Figure 11(b) shows the degree of “informedness” of the different prove-
nance models (i.e., how “fine-grained” they are, relative to one another): as one moves
down the lattice, provenance information becomes coarser. In our example, the N[X]
provenance of thop(a, b) is p2q+q2r telling us (i) that there are exactly two ways to obtain
the answer, and (ii) what those two ways are (one way uses the p edge twice and q once; the
other uses q twice and r once). When looking instead at B[X], the coefficients are dropped
from the polynomial, e.g., the provenance of thop(a, a) is p3+2pqr in N[X], but becomes
p3 + pqr in B[X]. Similarly, in Trio(X), exponents are dropped, in Why(X) coefficients
and exponents are dropped, and in Lin(X) only the (flat) union of tuples pqr remains to
describe the lineage of thop(a, a), i.e., these three edges were used in the derivation, but it
is not stated how they need to be put together to derive a three-hop from a to a.

The “Fundamental Theorem” [KG12] intuitively states that for positive relational al-
gebra queries one can swap the order of query evaluation and application of a semiring
homorphism. For example, consider an input database with annotations p, q, r, . . . that rep-
resent Boolean variables that can be either true or false, indicating whether the so-annoted
tuple is or isn’t true in the modeled world. In order to explore the answers to a query Q
in different possible worlds (i.e., under different truth assignments to the Booleans), we
could run the query Q once for each such possible world. Alternatively, we can execute the
provenance-enabled query Q′ once (and for all) to obtain provenance polynomials in N[X]
as depicted in Figure 11(a). To obtain the different possible worlds, we then just reinter-
pret the provenance-polynomials as Boolean expressions (“·” as “∧” and “+” as “∨”) and
simplify those Boolean expressions. Both routes (Boolean assignment followed by query
evaluation or vice versa) will yield the same result.

Appendix A contains another example, where the input annotations represent tuple car-
dinalities in the relational model with multiset (bag) semantics. We can evaluate the query
under the bag semantics to obtain the result cardinalities (Fig. 15(c) and 15(d)). Alter-
natively, we can “plug in” the input cardinalities into the abstract provenance polynomi-
als in Fig. 15(b) and then evaluate those polynomials to arrive at the same numbers as in
Fig. 15(d).

3.4 Unifying Why and Why-Not Provenance through Games
The elegant and powerful provenance semiring approach by Green et al. [GKT07, KG12]
subsumes and situates many earlier database provenance models. However, one shortcom-
ing of those approaches is that they are limited to positive queries only, i.e., they cannot
handle queries with negation. On the other hand, if a provenance approach can be devised
that can answer queries with negation, then such an approach would also solve the missing
answers or why-not provenance problem: Asking why is thop(c, a) not in the answer is
then equivalent to asking: why is ¬thop(c, a) true over the given database. Figure 12(a)
depicts a solved provenance game for thop(a, a). This approach was developed by Köhler
et al. [KLZ13] and contains the provenance semiring approach as a special case, see Fig-
ure 12(b). The key idea is to view query evaluation A = Q(D) as a game between two
players who argue whether or not tuple t ∈ A.9 The game can be defined in such a way

9Query evaluation games [Hod13] have been considered before, e.g., by Hintikka [Hin96]. However, the
idea of using games for provenance was inspired more recently by revisiting the game normal form [FKL97] for
well-founded Datalog.
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Figure 12: Why (and how) is thop(a, a) in the query answer? (a) The solved provenance game
[KLZ13] shows that one can find three different instances of the thop Datalog rule that are satis-
fied. (b) The solved game DAG can be abstracted and expanded into a tree to yield the provenance
polynomial for thop(a, a): p3 + 2pqr. (Product “·” shown as “×” here.)
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∃ a,b ∃ a,c ∃ c,a ∃ c,c∃ b,c ∃ b,b∃ b,a∃ a,a ∃ c,b

Figure 13: Why-not provenance for thop(c, a) using provenance games [KLZ13]. The
graph enumerates all (failed) attempts to prove thop(c, a) using the thop query over the
given hop database. This structure can also be used to propose changes to the database
such that thopc(c, a) will be in the answer.

that whoever is right about the claim can force a win [KLZ13]. Then the provenance (or
justifications) for a claim about t ∈ A can be obtained from a solved game graph such as
the one in Figure 12(a).

A key advantage of this approach is that it treats why and why-not provenance uni-
formly: Figure 13 depicts a solved query evaluation game establishing why thop(c, a) is
not in the answer. The solved game graph contains the equivalent of all failed proof at-
tempts using the rules of the query (corresponding to failed SLD(NF) trees [AD94]) and
can be used, e.g., to determine how the given database can be “fixed” so that thop(c, a)
becomes true after all.
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4 Conclusions
Provenance is a flourishing research topic in many subdisciplines of computer science. The
scientific workflow community has contributed to the development of the Open Provenance
Model (OPM) and its W3C successor PROV [Mor10]. As described in this chapter, two
main forms of provenance can be distinguished in workflows, i.e., prospective and retro-
spective provenance. When combined in a single model of provenance (possibly enriched
with temporal information), powerful provenance queries can be answered. The database
community has developed another set of provenance models which abstract tuple deriva-
tions through relational queries (or Datalog rules). The provenance semiring model intro-
duced by Green et al. [GKT07] elegantly subsumes many earlier provenance models for
positive queries. Why-not (or missing answer) provenance is an active area of research.

In this brief tour, many interesting topics in workflow provenance and database prove-
nance could not be covered; e.g., see [MPB10, MLB+10, ZL10, KRZ+11] and [MGMS10,
SB15], respectively. For overviews and surveys on provenance and workflow see, e.g.,
[DBE+07, Mor10, Bow12, CVDK+12]. For further reading on provenance in databases,
[CCT09] provides an excellent starting point.
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Scientific workflow and provenance support for assembling the tree of life. In Prove-
nance and Annotation of Data and Processes (IPAW), pp. 70–77. Springer Berlin Hei-
delberg, 2008.

[Bow12] S. Bowers. Scientific workflow, provenance, and data modeling challenges and ap-
proaches. Journal on Data Semantics, 1(1):19–30, 2012.

[BSHW06] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs: Databases with
uncertainty and lineage. In Proceedings of the 32nd international conference on Very
large data bases, pp. 953–964. VLDB Endowment, 2006.

[BT07] P. Buneman and W.-C. Tan. Provenance in Databases (Tutorial Outline). In SIGMOD,
pp. 1171–1173. ACM, 2007.

[CCBD06] S. Cohen, S. Cohen-Boulakia, and S. Davidson. Towards a model of provenance and
user views in scientific workflows. In Data Integration in the Life Sciences (DILS), pp.
264–279. Springer, 2006.

[CCT09] J. Cheney, L. Chiticariu, and W. Tan. Provenance in databases: Why, how, and where.
Foundations and Trends in Databases, 1(4):379–474, 2009.

[CD97] S. Chaudhuri and U. Dayal. Data warehousing and OLAP for decision support. ACM
Sigmod Record, 26(2):507–508, 1997.

[CJ09] A. Chapman and H. Jagadish. Why not? In SIGMOD, pp. 523–534. ACM, 2009.

18



[CJR08] A. P. Chapman, H. V. Jagadish, and P. Ramanan. Efficient provenance storage. In
Proceedings of the 2008 ACM SIGMOD international conference on Management of
data, pp. 993–1006. ACM, 2008.

[CVDK+12] V. Cuevas-Vicenttı́n, S. Dey, S. Köhler, S. Riddle, and B. Ludäscher. Scientific
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A Query Rewriting for Provenance Annotations

% hop(X,Y) relation with unique tuple-ids p,q,r,s:
hop(a,a, p).
hop(a,b, q).
hop(b,a, r).
hop(b,c, s).

% Rewritten Three-Hop Query:
thop_aux(X,Y, P) :- 
        hop(X,U, P1), hop(U,V, P2), hop(V,Y, P3),
        P = P1*P2*P3.

% For each X,Y pair, aggregate all provenance annotations.
thop(X,Y, Ps) :-
        bagof( P, thop_aux(X,Y, P), Ps ).

% Backtracking loop to generate all thop(X,Y) with provenance:
:-      thop(X,Y, Ps), format("thop(~w,~w) : ~w~n", [X,Y,Ps]), fail    
    ;   true.

(a)

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.0.2)
Copyright (c) 1990-2011 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- [thop].[thop].
thop(a,a) : [p*p*p,p*q*r,q*r*p]
thop(a,b) : [p*p*q,q*r*q]
thop(a,c) : [p*q*s]
thop(b,a) : [r*p*p,r*q*r]
thop(b,b) : [r*p*q]
thop(b,c) : [r*q*s]
% thop compiled 0.00 sec, 8 clauses
true.

?-

(b)

:- use_module(library(lists)). % for arithmetic list sum

% hop(X,Y) multiset with cardinalities:
hop(a,a, 1).
hop(a,b, 4).
hop(b,a, 2).
hop(b,c, 3).

% Rewritten Three-Hop Query: 
thop_aux(X,Y,  N) :- 
        hop(X,U, N1), hop(U,V, N2), hop(V,Y, N3),
        N is N1*N2*N3.

% For each X,Y pair, aggregate all provenance annotations:
thop(X,Y, Ns) :-
        bagof( N , thop_aux(X,Y,N), Ns ).

% Backtracking loop to generate all thop(X,Y) with provenance:
:-      thop(X,Y, Ns), sumlist(Ns,S), % arithmetic list sum
        format('thop(~w,~w) : ~w~n', [X,Y,S]), fail
    ;   true.

(c)

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.0.2)
Copyright (c) 1990-2011 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- [thop2].[thop2].
%   library(error) compiled into error 0.00 sec, 79 clauses
%  library(lists) compiled into lists 0.00 sec, 179 clauses
thop(a,a) : 17
thop(a,b) : 36
thop(a,c) : 12
thop(b,a) : 18
thop(b,b) : 8
thop(b,c) : 24
% thop2 compiled 0.01 sec, 190 clauses
true.

?-

(d)

Figure 14: Three-Hop Example [KG12] prototypically implemented in SWI-Prolog: (a) The input
relation hop is annotated with unique tuple-ids. The rewritten view thop aux adds the symbolic
product P = P1 · P2 · P3, combining the provenance annotations Pi of all hop tuples being joined.
Aggregation with bagof/3 (instead of setof/3) is used to collect all provenance. (b) Running the
code from (a) generates the provenance polynomials. (c) Similar to (a) but now hop is a multiset with
cardinality annotations. The provenance of the thop result is calculated as the sum of the arithmetic
product of the input cardinalities. (d) Running the code from (c) generates the result cardinalities.

The key ideas behind the query rewriting in the semiring annotation approach [GKT07] can
be nicely illustrated using some simple prototypical implementations.10 Figure 14 depicts
two variants of the three-hop query [KG12] used earlier in the paper. The first variant
(Figure 14(a)) uses unique tuple-ids and a symbolic representation of the product operation
in the N[X] semiring. Lists of such products are used to represent the sum of products form
in Figure 14(b). In Figure 14(c) the same query is used, but now hop represents a multiset
(bag semantics), so tuples are annotated with cardinalities (how many times a tuple is in the
multiset). The resulting cardinalities in the thop result relation are obtained by computing
the sum of the arithmetic products of the cardinalities of hop tuples being joined to obtain
the annotated thop tuples. The use of bag semantics (via the built-in aggregation predicate
bagof/3, rather than setof/3) is essential to obtain the correct cardinalities.

10The example code is available from github.com/idaks/tour-de-provenance
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.mode column

.header on 

CREATE TABLE hop (S text, T text, P text);

INSERT INTO hop VALUES ("a","a", "p");
INSERT INTO hop VALUES ("a","b", "q");
INSERT INTO hop VALUES ("b","a", "r");
INSERT INTO hop VALUES ("b","c", "s");

CREATE VIEW thop AS 
    SELECT h1.S, h3.T, h1.P||'*'||h2.P||'*'||h3.P AS P
    FROM   hop h1, hop h2, hop h3
    WHERE  h1.T = h2.S AND h2.T = h3.S ;

SELECT   S, T, group_concat(P, ' + ') 
FROM     thop 
GROUP BY S, T;

(a)

$ sqlite3 -init thop.sql sqlite3 -init thop.sql 
-- Loading resources from thop.sql
S           T           group_concat(P, ' + ')
----------  ----------  ----------------------
a           a           p*p*p + p*q*r + q*r*p 
a           b           p*p*q + q*r*q         
a           c           p*q*s                 
b           a           r*p*p + r*q*r         
b           b           r*p*q                 
b           c           r*q*s                 

SQLite version 3.8.11.1 2015-07-29 20:00:57
Enter ".help" for usage hints.
sqlite>

(b)
.mode column
.header on 

CREATE TABLE hop (S text, T text, P number);

INSERT INTO hop VALUES ("a","a", 1);
INSERT INTO hop VALUES ("a","b", 4);
INSERT INTO hop VALUES ("b","a", 2);
INSERT INTO hop VALUES ("b","c", 3);

CREATE VIEW thop AS 
    SELECT h1.S, h3.T, h1.P * h2.P * h3.P AS P
    FROM   hop h1, hop h2, hop h3
    WHERE  h1.T = h2.S AND h2.T = h3.S ;

SELECT   S, T, sum(P) 
FROM     thop 
GROUP BY S, T;

(c)

$ sqlite3 -init thop2.sql sqlite3 -init thop2.sql 
-- Loading resources from thop2.sql
S           T           sum(P)    
----------  ----------  ----------
a           a           17        
a           b           36        
a           c           12        
b           a           18        
b           b           8         
b           c           24        

SQLite version 3.8.11.1 2015-07-29 20:00:57
Enter ".help" for usage hints.
sqlite>

(d)

Figure 15: Three-Hop Example [KG12] prototypically implemented in SQLite via query rewritings:
(a) the rewritten view thop adds a column that symbolically“multiplies” the provenance of the hop
tuples being joined; (b) running the aggregation query from (a) yields the provenance polynomials
from N[X]; (c) variant similar to (a) but for bag semantics; (d) running the aggregation from (c)
yields the expected multiplicities.

In Figure 15 the same thop query with provenance is implemented in SQLite, again
first using provenance polynomials over the N[X] semiring (using symbolic tuple-ids, rep-
resented as strings). The second variant in Figure 15(c) and 15(d) uses multiset semantics
where tuple cardinalities are represented numerically in an additional column. The result
cardinalities are then obtained via a summation over the (arithmetic) products of thop an-
notations.
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