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Abstract 
Gravity is one the principle forces in the universe, its power always apparent, giving us three-dimensional 
creatures a constant sense of “up” and “down”. We propose the use of a metric for applying gravity, or 
similar “pulling” forces, to social environments by weighting and reordering set network structures where 
links cannot be added, but nodes may be rearranged. We begin by introducing gravity in social networks, 
describe previous web applications and uses, and then briefly experiment with the metric within a 
classroom setting. To that point, we describe and design requirements to effectively apply our metric to 
classrooms, as well as other social spaces. Finally, we assert that by flavoring network structures with our 
so-called “gravity”, we make those structures inherently more navigable in terms of personality similarity, 
and perhaps indirectly, communication and learning. 
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1 Introduction 
Optimizing community and social networks often refers to the addition of links to increase density 
(Entwisle, Faust, Rindfuss, & Kaneda, 2007), connect similar nodes (Newman & Dale, 2007), or improve 
information flows (Haythornthwaite, 1996). Some social settings, however, do not allow for additional links 
due to a set structure. An example of these structures are networks based on physical proximity wherein 
individuals seated, or living within a set distance from one another are considered to have a link to one 
another. Many of these physical structures such as an office, classroom, or living arrangement cannot be 
easily arranged to increase density, but can be optimized by reordering based on a strategic weighting of 
nodes. Grid-based physical structures and other networks, as they exist, are self-contained entities with a 
somewhat uncontrollable structure; they are taken for what they are, not necessarily as how they could 
be. What if, however, these previously un-touched structures were modified in an attempt to create 
something different, perhaps, something better? 
 If such a statement were to be considered, it may first be pertinent to describe what “better” in the 
means of a social network may be. In our terms for this particular discussion, we consider a network 
structure to have improved if it is inherently more navigable according to a pre-defined algorithm which 
will be explained in later sections. We argue that by utilizing and expanding on preexisting techniques, it 
may be possible to analyze and re-arrange various networks to fit a structure that is more inherently 
navigable by its very nature. 
 When thinking about navigating non-graph structures in real-world spaces, it becomes quickly 
apparent that there are number of common techniques for navigating new, unknown spaces. For 
example, when travelling around a new city, tourists may be guided, or pulled, toward landmarks such as 
statues and other recognizable objects (Werner, Krieg-Brückner, Mallot, Schweizer, & Freksa, 1997). 
Along the way, these same tourists may pass other less recognizable, yet memorable stores, buildings, or 
other landmarks that may aid navigation in the future. 

 
 Navigation within non-geometric spaces like networks of people in social environments, however, 
is inherently more difficult. Unlike the somewhat static and unchanging historical landmarks that may be 
observed in a physical space, the same affordances are not necessarily given to social networks. Our 
research is guided by a desire to optimize social environments and we posit the following exploratory 
questions: How do we determine which people are most important to personal goals or interests? If a 
person is more central within a social environment, are they still placed in a position optimal for navigation 
to and from themselves? In what circumstances would we want to navigate the network of a social 
environment? 
 One proposed scenario in which this type of network could be useful is in the organization of 
classroom spaces, or in the formation of location-based teams. In these situations, network structures 
may have formed arbitrarily, or with little premeditation and do not necessarily need to be maintained if 
they are not producing results, especially in a work environment. In such instances, it may be beneficial to 
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optimize the network in a way that will increase productivity. We argue that this is one of the most likely 
applications of our work. 
 To begin addressing the proposed questions, we apply the concept of gravity within the realm of 
social networks to aid navigation through these structures. This artificial form of gravity is intended to 
“pull” travelers through a network structure in the most efficient manner possible, with a minimal number 
of steps and no backtracking. We assert that this concept is applicable to certain kinds of social networks 
that may benefit from reorganization, such as classroom desk spaces or co-working business spaces. 
 In the following sections, we first explain the concept of artificial gravity within network structures 
in more detail. Following this, we present a brief study involving the manipulation of a classroom social 
network, and discuss our findings. 

2 Related Works 

2.1 Gravity 
As water flows downhill towards a water basin or lake, we wish to be able to guide people in a similar 
manner through a social network structure. To further this metaphor, we also address that this method 
would be most akin to hiking along an unknown trail, and following the aforementioned water flowing to a 
basin without prior knowledge of its existence. Thus, we introduce the concept of gravity in social network 
spaces. To explain this concept in more detail, some new sets of terminology are required. Firstly, we 
deem that a graph is a gravity graph or gravitationally flavored if navigation from any node of the graph to 
any other node can be achieved in the shortest number of geodesic hops possible by a “weighted”, hop-
by-hop decision of which node to select next on the path to the final node, with backtracking not being an 
option (much like gravity, we can only fall). Figure 1 and Figure 2 demonstrate this definition by means of 
comparing on contrasting a non-gravitationally flavored graph with a gravitationally flavored graph. 

 In the case of this graph (found in Figure 1), an individual attempting to navigate from 
Node 2 to Node 4 is drawn on a path from Node 2, followed by Node 3, followed by Node 1, and finally, 
Node 4 (distance of 3). We call this the gravity path. Gravity paths are created one node at a time, 
assuming no prior knowledge of the graph structure. To delve into the example above in more detail, 
when originating from Node 2 (and attempting to navigate to Node 4), an individual attempting to navigate 
the structure would have two possible “next hops”, Node 3 or Node 1. At this stage of the navigation, a 
simple algebraic function is exploited: summation. Numeric-wise, Node 3 is only of “distance” 1 (4-3) to 4, 
while Node 1 is “distance” 3 (4-1) from Node 4. However, the true shortest path from Node 2 to Node 4 is 
Node 2 to Node 1, and then Node 4 (distance of 2). We will continue to refer to this as the shortest path. 
Because the gravity path and shortest path between these two sets of nodes is not the same, this graph 
is not gravitationally flavored. 

 
Figure 1. An example of a Non-Gravitationally Flavored Graph 
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Figure 2 presents a graph with the exact same physical structure as Figure 1, albeit with some of the 
nodes having modified locations (Node 3 and Node 1 have switched locations). By performing this 
modification to the placement of the nodes, this structure is now properly gravitationally flavored. If 
attempting to get from any node to any node, the shortest paths between these nodes will be identical to 
the gravity paths between these nodes. 

 
Figure 2. An example of a Gravitationally Flavored Graph 

2.1.1 The Algorithm 
The algorithm used to complete these gravity graph calculations is simple, but extremely greedy. It works 
by generating all possible permutations of paths that could exist for any permutation of the graph 
structure. It then performs a recursive walk through each of these paths and conducts comparisons 
between shortest paths and gravity paths. Due to its recursive and complex nature, this algorithm 
operates at a horrendous O(n3) and becomes highly unstable when working with networks greater than 
size ~12 in its current state. It is a future goal of this project to make modifications to allow the algorithm 
to function on larger networks, and with greater speed. 

2.1.2 The Utility 
The gravity algorithm used to exist in a simple C shell, taking a text file of a network’s adjacency matrix as 
its input. However, this was deemed to be non-user friendly, so a utility called Grapher was developed 
in 2009 to facilitate the design and manipulation of graphs (Dailey, Elder, & Perri, 2009). Building 
on this, a re-vamped version of Grapher was released in 2011 which featured the ability to run a ported 
version of the gravity algorithm on user-drawn graphs (Dailey, Whitfield, Weidman, & Denmead, 2012). 
With this version of the software also came the ability to generate websites from modified graphs for 
purposes of testing, which will be discussed in the next section. 

2.1.3 Previous Experiments 
This concept of modifying graph structures to perform navigation is not entirely novel. Previous works 
have utilized the concept to construct web pages to test how truly navigable these structures were (Dailey 
et al., 2012). To conduct this study, a series of webpages were created that were either gravitationally 
flavored, not gravitationally flavored (but hypothetically flavorable), or non-gravitationally flavorable 
graphs in a variety of sizes. 
 Participants were then “placed” inside of these web spaces and asked them to traverse the entire 
structure of the site, and then return to the page they were randomly started on. The webpages 
themselves were designed to be somewhat memorable, with each page having its own distinct 
background color, as well as an accompanying word. An example of this is shown in Figure 3. 

 
Type of Graph Mean Steps 

Flavored 24.32 
Not Flavored 28.77 
Unflavorable 29.41 

Table 1. Results of Initial Navigation Study 

 The initial results were promising, and are shown in Table 1. As was the hope with the study, it 
was found that website structures which were based on gravitationally flavored graphs were easier to 
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navigate than non-flavored graphs. This helps to support the notion that having a gravitationally flavored 
graph inherently makes navigation of that graph easier (Dailey et al., 2012). 
 

 
Figure 3. Example of constructed website navigation 

 Beyond constructing websites and testing navigational theories within networks, other work has 
been done to more formally define gravity graphs, specifically in terms of certain kinds of graphs which 
are unflavorable. These are graphs that, regardless of any permutation, are unable to ever be 
gravitationally flavored. One of the most common kinds of unflavorable graphs is that of a wheel, circle, or 
cycle (Miller, Weidman, & Denmead, 2013). 
 Understanding which structures are and are not gravitationally flavorable is relatively important as 
it may preclude certain networks from being modified with our gravity algorithm. As we continue to work in 
this area moving forward, we intend to more clearly define structures and features which make certain 
networks more easily gravitationally flavorable. 

2.2 Ranking Nodes 
While a number of social network concepts are based on ties between nodes, for the case of our work, 
we are only interested in characteristics of nodes. This is primarily due to the fact that the gravity 
algorithm in question was never intended to take the weight of edges into account. Beyond this also 
comes the issues of determining what unique identifiers (numbers) should be used to define each of the 
nodes in our social network graph. For the gravity algorithm to work correctly, each node must have its 
own independent, non-zero value. So, what value should we choose to properly represent each node in 
the network? 
 At the start of this line of inquiry, we considered using some of the more common forms of social 
network centrality that would allow a network to be arranged based on some existing network properties. 
However, these more traditional forms presented many problems based on our aforementioned criteria. 
One classical approach for ranking centrality did show some promise: eigenvector centrality. This type of 
centrality is based on the amount of “influence” each node has in a network. Each node is ranked 
relatively in relation to the other nodes in the network (Bonacich, 2007). In the case of several networks 
which we tested, eigenvector centrality was, in fact, able to produce unique values, albeit in decimal form. 
As our gravity algorithm is designed to run on whole numbers, we simply bumped the decimal point on 
each eigenvector centrality (e.g. 0.180 became 180). 
 Examining other means of ranking individuals in a social network required venturing outside of 
more classical methods. While the field of literature in this area is surprisingly sparse, there are a number 
of proposed techniques to developing ranking systems for individuals in a number of scenarios. 
One of the more commonly explored environments for ranking individuals in a network comes from 
crowdsourcing networks, where finding expertise is critically important. Somewhat different than 
traditional social networks, there are several proposed methods for ranking the expertise of individuals. 
One method involves creating a score based on a user’s availability, activity level, and expected ability to 
provide information as these attributes relate to a specific task (Schall, 2012). In such crowdsourcing 
networks, these techniques tend to create better collaborations on projects than more traditional methods. 
 Similar to ranking individuals in online collaborative spaces, other techniques have been 
introduced to help organize physical workplace structures. As a possible area where this algorithm may 
be useful, workplace structures are of interest, so we thought it prudent to explore methods of providing 
numerical labels to those within such a network. One method, specifically, proposed to calculate a score 
for each individual within a working group by measuring both their sociability and achievements (Yang, 
Shen, Kou, Nie, & Yu, 2014). While this ranking system was found to have its applications, it was shown 
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that these rankings were time sensitive, and much better suited for recognition tasks than organization 
structure construction. 
 One of the primary reasons we are interested in optimizing organizational structure is to optimize 
information flow through a given network. Previous work has demonstrated that by using algorithms 
based on prediction and ranking, it may be possible to predict how information will disseminate through 
complex networks (Song, Chi, Hino, & Tseng, 2007). By incorporating this model, it becomes more 
possible to predict how efficiently information will move through a network. 
 As a final inspiration for our own ranking model, we chose to explore how authors are ranked in 
digital library management systems. Within certain circles of the academic community, the topic of 
ranking authors has become popular, with no clear answer in place for deciding how to rank these 
individuals. Similar to some of the previously mentioned expertise recommendation networks, the goal of 
these analyzed author networks is to find individuals with the most knowledge about a particular topic. 
Some of the foremost researchers on this topic recommend using a method that incorporates multiple 
pieces of data such as the venues where the author has spoken, paper citations in certain topic, and the 
number of citations of the author by others (Gollapalli, Mitra, & Giles, 2011). 

2.2.1 Our Ranking System 
After exploring several alternative ranking methodologies for grouping individuals, we propose our final 
ranking system for the purposes of our gravity work. As each different type of network we wanted to 
explore contained a number of similar elements, we chose to create a unified system for measuring 
characteristics of those within each network. 
  Previous work has shown that when students are asked to self- arrange where they sit in a 
classroom, their personality variables play a major role in where these students end up sitting (Weinstein, 
1985). Considering this concept, we used a modified version of the Meyers-Briggs personality test in 
order to construct our ranking system (Myers, 1962). This test traditionally uses a series of statements 
that are selected by the test-taker in a binary fashion. At the end of the survey, each of the totals from the 
binary comparisons are totaled and used to construct a personality profile. While this traditional way of 
constructing each personality profile is effective at the individual level, we found it difficult to produce 
significantly different personality profiles within a larger group. 
 As each individual’s ranking is required to be unique in order for our algorithm to work, we chose 
to create a variation on the Myers- Briggs test to allow for a more refined or polarized personality score. 
To accomplish this, rather than have our participants respond to each personality item with a binary 
response, we asked them to pick which statement they agreed with more, and then instructed them to 
respond with how strongly they agree with the selected statement on a scale from 1 to 100. This allowed 
us to not only generate accurate Meyers-Briggs personality test results (many of our participants reported 
that their personality types were the same as the traditional test), but we were able to tease out a diverse 
set of personality metrics that we could use to “rank” the individuals within our observed social networks. 
We ultimately decided to rank individuals within each social network within different personality 
dichotomies. For example, we would consider one network ranking scheme based on extroverted 
personality scores, or in another networking ranking, we would rank people based on their intuition 
scores. 

2.3 Classroom Arrangements 
Beyond working with hypothetical network structures, we were also very interested in applying the 
principles of gravity to a classroom setting. Oftentimes, classrooms are arranged at the discretion of the 
students, or in some form of systematized fashion created by an instructor. We sought to explore whether 
or not a classroom arranged by our gravity algorithm would create a more engaged classroom setting. As 
it has been previously shown that learning in any particular situation is partially dependent on physical 
and psychological contexts in which learning takes places (Jenkins, 1974), it seems apparent to be ever-
thinking of ways to improve the layout of a classroom. Perhaps the most classical classroom setup, 
oftentimes desks are arranged in even rows and columns in a grid-like fashion (McCorskey & McVetta, 
n.d.). 
 The physical layout of classrooms has been covered extensively in the past, with a focus on 
physically modifying classroom structures to better suit particular lecture styles. For example, some 
professors who claim to facilitate a more discussion-based classroom opt to use a U-shaped class setup, 
as opposed to the traditional row formation (McCorskey & McVetta, n.d.). 
 Within different room arrangements, the behaviors of students have been observed from a grade 
school level, all the way through the collegiate level in an attempt to elicit unique and revealing 
responses. One study explored students’ seating preferences contrasted with how territorial these 
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students were about their own seats. Interestingly, unlike work grounded in non-row classroom layouts, it 
was found that certain students preferred to have seats at the end of rows, as they had a need to define 
their own territory (Kaya & Burgess, 2007). 
 Beyond territorial-based questions, other researchers have concerned themselves with 
understanding how students communicate in classrooms, through different physical setups. Within grade 
school environments, some research has shown that forming classrooms in a circle, or semicircle lead to 
greater classroom participation than the standard row-based classroom (Marx, Fuhrer, & Hartig, 2000; 
Rosenfield, Lambert, & Black, 1985). 
 When considering classroom arrangements, others have looked beyond the physical layouts, and 
instead, focused on the students themselves and how they are seated in an instructional setting. One 
study found that students who tended to sit in seats with greater access to instructor communication 
tended to have more aggressive, assertive, or competitive personalities (or were, in general more 
extroverted) (Totusek, Staton-spicer, Totusek, & Staton-spicer, 1982). 
 Along a similar line of personality comparison, some research has focused on social status as a 
means of analyzing seating arrangements. While perhaps not as applicable to large college seminars, 
work conducted in elementary and middle school classrooms shows that those students who were 
considered more “likeable” or “popular” tended to sit in the center of a classroom (Yvonne H.M. van den 
Berg & Cillessen, 2015). Likewise, when asked to seat themselves in the classroom, those that were 
more popular or likeable were more desired to be sat by within the classroom (Yvonne H.M. van den Berg 
& Cillessen, 2015). 
 As an extension to the previously mentioned study, further work was conducted to see if likeability 
or popularity could be manufactured in a classroom merely by proximal association within new seating 
arrangements. Perhaps unsurprisingly, it was found that previously “unliked” children, after a period of 
several weeks, became much more “liked” by those around them, suggesting that classroom structure 
itself can play a role in modifying attributes of a network (Yvonne H M Van Den Berg, Segers, & 
Cillessen, 2012). 
 This desire to modify observed networks structures, and then proceed to modify them based on 
some set of principles is clearly not a new concept. However, previous work seems to demonstrate a 
greater call to understand how these classroom network structures form, not necessarily taking an action 
to make them better. Even further than this, it seems as though the practice of using algorithms based on 
attribute data of those in a classroom to re-arrange a classroom are even less common. 
 One clear example of this stems from a group of researchers in Japan, who crafted a genetic 
algorithm based on observed behaviors between students (Shin-Ike & Iima, 2011; Shin-ike & Iima, 2012). 
The initial results from their work are promising, with students reporting a greater liking of their modified 
seating arrangements, and creating a greater sense of comfort in their classrooms (Shin-Ike & Iima, 
2011). 
 In a similar mindset to this, we sought to take knowledge gleaned from these many resources 
related to classroom organization and re-organization, and create something new. As such, our 
classroom analysis model was based on personality constructs, and we sought to work in a classroom 
that was not necessarily a row-based room. This served as the foundation for our own algorithmic 
analysis. 

3 Methods 
As a means of grounding, to explore the effects of our gravity algorithm, we aimed to analyze two 
different forms of networks to determine how they would change if we would apply gravity to them. The 
two types of networks chosen were randomly generated networks, as well as an actual social network. 
The randomly generated networks, as well as the eigenvector centralities on all of the networks was 
performed in UCINET (Borgatti, Everett, & Freeman, 2002), and all of the gravity calculations were 
performed in Grapher. 

3.1 Classroom Reorganization 
One of our primary goals after working with the initial concepts of this algorithm was to bring it into the 
real world, so to speak. Thus, we worked within a classroom in our college of 16 students in a first-run 
attempt of using the algorithm to modify a classroom structure. To determine our original class structure, 
we observed the way in which the classroom was setup and filled out a seating chart where each student 
was assigned a unique ID that was randomly generated, and not tied to any attribute of that person. 
However, simply creating a seating chart was not enough. To make the classroom structure resemble a 
social network, it was necessary to construct ties between the students in a logical way. 
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 To accomplish this, we chose to place ties between students who sat next to each other (to the 
right or left of the student, where applicable), as well as with those seated immediately around them in 
terms of in front, or behind the students. The resulting social network that arose from our small class 
structure is shown in Figure 4. 
 

 
Figure 4. Preliminary Class Structure 

 After constructing the social network of our classroom, we administered our previously described, 
Myers-Briggs modified personality test to everyone in the classroom. At the end of the personality test, we 
also posed several questions to the students asking them to rank aspects of their current class 
arrangement. These questions included items that asked the students to rank how much they “liked” the 
people they sat around, how well they were able to keep on task in the current classroom arrangement, 
how likely they were to stay focused in the current arrangement, as well as how likely they would be to 
socialize outside of the classroom with those who sat around them. These brief questions were intended 
to be our measures for determining how much the students could discern a difference between classroom 
layouts after we modified the room using our algorithm. 
 

 
Figure 5. Modified Classroom Network Structure 

 After analyzing the surveys of all of the students, we performed an analysis of the network and 
were able to find a compatible network arrangement that suited the needs of our algorithm. This modified 
network is shown in Figure 5. Once the modified network structure was found, we then proceeded to re-
arrange the students in our classroom for one class session and measure their feedback on the new 
seating arrangements. They were asked a similar array of questions from the original survey, following a 
pre-test/post-test question style. 
 Limited in scope, and therefore in results, we mention and discuss the initial results from this 
classroom study as a means to frame discussion for future work in this area, with our proposed algorithm. 
Rather than present clear results, we work to present a newly developed, still not fully tested framework 
that shows great promise as a potential classroom organizational tool. 

4 Results 
After allowing our designated classroom to experience their modified arrangement, we captured their 
opinions of their new classroom setup. We were primarily interested in how well these individuals “liked” 
those who were sitting around them, how these individuals would affect how well each participant could 
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focus or concentrate on classroom discussions, how much the participant might socialize with these 
individuals outside of the classroom, as well as how much shared commonality they might share with their 
new seatmates. 
 For each of these comparisons between the original classroom setup, and the gravity-modified 
classroom, we ran a series of paired-sample t-tests to determine any significant differences between the 
two setups. 
 When asked how well our participants “liked” those who were sitting around them in the new 
classroom arrangement, we found that our participants reported liking those around them more in the new 
classroom setup over the original, though not significantly [t(14) = -1.21, p = .22]. 
 When asked how much the new seating arrangement would keep the students on-task during 
class, we found that there was no difference in staying on-task when comparing the original and gravity 
arrangements [t(14) = -.425, p = .68]. Likewise, it was found that there was no significant difference in the 
ability of our participants to focus on the classroom discussion in the new layout, as compared to the 
original [t(14) = .315, p = .76]. 
 Prior to conducting this study, we had assumed that individuals would arrange themselves in the 
classroom based on how well they may have known their classmates previously. When testing for this, 
we did find that people tended to socialize more with individuals in the original classroom setup, when 
compared with our gravity arrangement, though not significantly [t(14) = -1.05, p = .31]. 
 Finally, we had thought that by organizing our classroom based on an extrovert/introvert 
personality profile, that we would place students together that had hypothetically similar personality 
styles. We were able to find that people felt they had more in common with the individuals around them in 
our gravity-arranged classroom, though again, not significantly [t(14) = -1.38, p = .19]. 

5 Discussion 
For many of our classroom network re-arrangements, we were able to find a number of results that would 
support our gravity arrangement being preferable over the original classroom structure. However, we 
were unable to determine any of these results significantly. While these original results make us optimistic 
of our algorithm’s ability to organize a classroom, we are not certain if we can make any assertions at this 
time. 
 In the future, it may be worth running several iterations of each social network, possibly based on 
different personality constructs. Perhaps using extroversion/introversion did not give us a sensitive 
enough difference between individuals in the classroom to find significant differences. We also argue that 
more time would be required in different arrangements before a significant difference could be observed. 
Without this extended period of time, it would be difficult to truly understand the effect of the changed 
structure. Finally, it may be worth performing the study earlier on in a semester, before members of the 
classroom become comfortable with any new people sitting around them. We would like to run this study 
in the future over a period of several weeks to explore these questions more. 
 Beyond discussing the outcomes of our limited study, we would now like to shift the focus to the 
discussion of the gravity algorithm, and its potential applications and uses. From its inception, the concept 
of gravity in abstract spaces has always been difficult to work with due to the computational power it 
requires. However, as technology has become more powerful, and we continue to optimize the algorithm, 
we believe the time is right to unleash to concept to a wider audience. 
 Because the algorithm is able to accept any number-based ranking system into consideration, we 
argue that is an extremely open and accessible tool to re-arrange network structures based on an almost 
infinite number of attributes. We could choose to analyze social networks based on personalities, 
popularity, age, attractiveness, monetary income, and more, so long as the data is quantifiable. This 
demonstrates, to us, that the gravity algorithm is widely applicable to a number of different analyses. 
Regardless of how limited our original study was, the validity of the algorithm is once again shown to have 
tremendous scope. Originally used to construct websites, we have been able to retrofit the gravity 
algorithm to work with any kind of network, even human networks. 
 With this gravity algorithm, it is now possible to analyze and re- organize a wide array of network 
structures in terms of information flow. In the future, we would like to work with corporations, local 
business, and more. The use of this algorithm could potentially open new areas of corporate 
organizations, placing and ranking individuals on how effectively they can work as part of a group or team 
in relation to the network as a whole. 
 We ultimately wish to show with this paper, that this concept of gravity within social networks is a 
feasible design for application in networks with set structures. Winston Churchill said, ‘We shape our 
buildings, thereafter they shape us.’ This is typically the narrative of social networks as well. With the 
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potential to reshape that narrative, through the structuring of social networks, we challenge the typical 
narrative and welcome future research and new and creative applications. Through this algorithm, we 
could strengthen education in classrooms, or make group work meetings flow more smoothly and 
effectively. We argue that the gravity algorithm is primed and nearly ready for use, and thus we present 
our gravity concept to be received and reviewed by the community. 
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