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ABSTRACT

With the advent of big data, modern businesses face an increasing need to store and process large volumes of

sensitive customer information on the cloud. In these environments, resources are shared across a multitude

of mutually untrusting tenants increasing propensity for data leakage. With the recent spate of high-profile

data exfiltration attacks and the emergence of critical vulnerabilities such as Heartbleed and Shellshock,

coupled with increasing use of clouds in all aspects of our daily lives, this problem stands to grow further in

severity.

In this thesis, we present a novel network-based covert channel that can arise in the context of shared

network resources in data-center environments even in the presence of network monitors regulating flow

destinations with NAC policies and VLAN-based isolation mechanisms. Through a series of experiments on

diverse network hardware (including SDNs) and commercial clouds such as EC2 and Azure, we demonstrate

that our network-based channel achieves orders of magnitude greater bit rates than reported in any recent

literature. Furthermore, we present an information-theoretic framework to model and study the channel.

Using this model we derive an upper bound on the information rate of the channel and propose a coding

scheme that nearly achieves this upper bound. Additionally we introduce some techniques to make the

covert channel robust to noise, and empirically study its performance in the presence of realistic cross-

traffic. Finally, we discuss several avenues for mitigation, and demonstrate the effectiveness of our schemes

both empirically and mathematically.
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CHAPTER 1

INTRODUCTION

Third party clouds are becoming increasingly popular for outsourcing computation and data storage. A

broad spectrum of corporations now store and process sensitive data on commercial clouds such as Amazon’s

EC2, Microsoft’s Azure or the HIPAA-compliant ClearData Cloud [22]. Companies that deal with credit

ratings, such as Experian [4], health care providers, such as BioMedix [2] and Barrow Neurological Institute

[2], and military organizations, such as the United States Department of Defense [3] and the CIA [1], all

have migrated (or are currently in the process of migrating) their computational infrastructures to the cloud,

achieving the benefits of economies of scale, reducing IT costs, and improving reliability and other desirable

properties of computation.

Given the sensitivity of user data, it is imperative for cloud providers to ensure that data remains private

and isolated. Unfortunately, the very nature of the cloud is multi-tenant, and hence this data protection be-

comes a serious challenge. Sharing the same infrastructure between multiple tenants is crucial for achieving

economies of scale via cost savings arising from shared management, statistical multiplexing and efficient

utilization of a limited set of resources [46]. This necessity of sharing infrastructure leads to the danger

of information leakage between tenants, which can be highly detrimental and can result in major costs for

businesses [9, 14, 21, 12, 10]

This problem becomes more severe given the emergence of massive cyberespionage-based malware

ecosystems such as GhostNet[11], ShadowNet[6] and Axiom[18]. These global crime rings systematically

compromise machines in governments and organizations, with the single and solitary objective of leaking

out confidential data (often hosted on data centers), either openly or in most cases via stealthy covert chan-

nels to avoid detection and traceback. The discovery of critical vulnerabilities, such as Heartbleed [19] and

ShellShock [20], on a regular basis has further exacerbated the situation by providing attackers a broad spec-
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trum of “entry points” into target machines. The only remaining challenge for data thieves is to somehow

exfiltrate the data by bypassing network-based monitors, which is why network-based covert channels, in

particular, have reemerged as a major cause for concern especially in the cloud arena.

In light of these challenges, cloud operators resort to partitioning of resources using virtualization tech-

nologies, such as hypervisors, VPNs, Network Virtualization Platforms [8] etc. However, researchers re-

cently demonstrated [46, 54, 52, 51] that despite being logically isolated at the host level, VMs sharing the

same machine can still leak sensitive information via covert and side channels. Many mitigation schemes

have since been proposed that can provide significant protection against these attacks either at the host level

[50, 36, 7, 56, 51] or via network-based appliances that deploy a clever combination of network monitoring,

access control, firewalls etc. to prevent leakage even if the machine is compromised.

In this thesis, we demonstrate how to leak out data even with all the aforementioned host and network-

based security mechanisms deployed. Our covert channel achieves very high bit rates in the presence of

real-life cross traffic whilst remaining undetectable. We test its practicality on commercial clouds such

as EC2 and Azure and demonstrate orders of magnitude greater bit rates than any previous work in the

data center networks domain. Furthermore, to build a more complete understanding of the problem, we

construct a formal analytical model of the channel, and present an information-theoretic upper bound on

the bit rate of the channel along with an optimal scheme, which nearly achieves the upper bound. We

also analyze the difficulty of detecting our covert channel by estimating the Hurst exponent in the presence

of cross traffic. For enshanced robustness to noise, we introduce Forward Error Correction (FEC) using

Low-Density Parity-Check (LDPC) codes [27]. Our “smart” decoding algorithm maintains high bit rates by

adapting to the characteristics of the cross traffic. To mitigate our covert channel, we present an approach,

which leverages live migration techniques to dynamically reposition flows and VMs reducing the leakage

rates substantially.

The rest of the thesis is organized as follows: We begin with Chapter 2 covering the related works,

followed by a discussion of the channel construction in Chapter 3. The mathematical model of our channel,

analysis on bounds, and the decoding and thresholding schemes are presented in Chapter 4. Chapter 5

describes our experimental evaluation followed by a discussion of our mitigation schemes in Chapter 6. We

present some additional aspects and limitations of our work in Chapter 7, and finally we conclude in Chapter

8.
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CHAPTER 2

RELATED WORKS

A large body of literature deals with the study of Inter-Packet Delay-based (IPD) covert channels over

traditional protocols such as IP/TCP or HTTP with a comprehensive survey available here [55]. However,

there has been very little work to date that studies covert channels specifically in the context of modern,

cross-machine data center networks operating under Software Defined and traditional networks. It is not

clear how well traditional IPD channels will work in the cloud domain given the fact that cloud vendors

employ strict isolation mechanisms and the infrastructure is significantly more complex (e.g., load balancers

and anti-DDoS network boxes) with different sharing semantics. Additionally, the distinctive nature of

network traffic in clouds, high processing speeds of the network infrastructure and the use of SDNs leaves

many unanswered questions, which have not yet been explored. Sadeghi et al. [47] present the design of

an IPSec-based VPN, which attempts to thwart covert channels arising from sharing of resources across

LANs. However, their end-host based approach does not mitigate our attack, as it does not prevent delay

variations from being transmitted across flows, which is exploited by our attack. Bates et al. [24] recently

proposed a network-flow watermarking scheme that borders our work. However, this work focuses on

determining co-residency as opposed to covert channels. The threat model we consider is also harder in the

sense that cross-tenant communication between trusted and untrusted tenants is strictly forbidden meaning

that cross-Virtual Network routing is disallowed. Furthermore, we develop a formal analytical model of

our channel to study its characteristics and come up with information theoretic bounds on the leakage rate,

which is not considered in these prior works. Additionally our work also encompasses various network

environments such as SDNs, which, to the best of our knowledge, have never been explored in any work

previously. Kanuparthy et al. [34] employ the same basic principle as ours however their work is not targeted

towards building high speed covert channels in data centers, rather they argue the accuracy of the approach
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and demonstrate some degree of success in general internet routing domains and as an application of their

approach mention covert channels. Some researchers have also proposed timing-based covert channels

that attempt to mimic legitimate traffic patterns [26] to blend in with the non-malicious traffic. Others have

focused more on provable undetectability of covert channels in independent and identically distributed (i.i.d)

traffic [48, 39] – these works are geared primarily towards reducing detectability of covert channels, which

are orthogonal but could be applied to our channel.

On a related plane, researchers also demonstrated host-based covert and side channels on commercial

clouds and virtualized environments [52, 46, 54, 53]. These channels were based on low level hardware,

such as the processor cache and the system bus, in order to thwart any software-based isolation mechanisms

deployed by the cloud vendor. Although these channels were primarily presented as side channels, an

adversary may conveniently use the same mechanisms to covertly send data to colluding VMs on the same

server as demonstrated by Xiao et al. [53]. Many mechanisms have since been proposed to detect and thwart

these channels, such as modified cache architectures and dedicated servers [50, 36, 7, 45], however none of

these schemes can thwart our channel because of the novelty of our work and the use of a medium, which is

highly multiplexed across a multitude of different tenants.
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CHAPTER 3

CHANNEL CONSTRUCTION

Our scheme requires the existence of a party “inside” the trusted domain to leak out information to recipients

outside. We use the term insider to refer to such a party, which could be for example a malware (which has

infiltrated a trusted machine) or a disgruntled employee that wishes to leak out information. We refer to any

other entity colluding with the insider (but not part of the trusted network) as an outsider.

We start by proposing a unidirectional construction for the channel where information can only flow

in one direction, from the insider to the outsider. We note however, that bidirectional channels can be

established by extending the same scheme, see Section 7.3.

Shared Link L

Switch S1 Switch S2

Node T1

(Trusted Network)

Node U2

Node T2

(Trusted Network)

Node U1

Logically Isolated Network NT

Logically Isolated Network NU

Figure 3.1 Set up for the covert channel. Nodes from the Trusted and the Untrusted Network sharing
network resources.
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3.1 Construction for Unidirectional Channel

Our channel is a timing-based, cross-Virtual Network (cross-VN) covert channel that relies on the underlying

shared network resources in the data center to transfer data between logically isolated virtual networks. We

consider the scenario where a switch or a shared network resource is handling traffic from two different flows

belonging to two different logical networks with software isolation guarantees in place. We characterize

these virtual networks in a manner such that nodes from a particular virtual network can only route to nodes

within that network (as would be realized with, for example, VLAN-based isolation). In other words inter-

VN routing is prohibited. For simplicity both networks have two nodes each as shown in Figure 3.1. Nodes

T1 (insider) and T2 are part of a trusted network Nt, which is separated logically from network Nu, which

essentially belongs to another tenant located in the same data center. Nodes U1 and U2 (both outsiders)

are part of this other tenant’s virtual network. The two networks are co-located in that they share the same

network infrastructure, i.e., switch S1 and S2 connected by a link L. A Additionally, consider two flows

in the network such that flow F1 is a flow from T1 to T2 and flow F2 is a flow from node U1 to U2. We

call F1 the insider flow and F2 the outsider flow. For simplicity, switch S1 can be modeled as an infinite

buffer server that is serving jobs from two separate clients. In such a scenario, T1 will use the insider flow

to induce delays in to the outsider flow since both flows are sharing the underlying network. Node U2 can

extract the covert message by measuring the amount of latency experienced by its packets belonging to the

outsider flow. This key insight, displayed in Figure 3.2 can be used by colluding nodes, on two different

virtual networks to pass information between the two logically separated entities. For instance, the insider

can increase or decrease its traffic through the shared link in order to signal a ‘1’ or a ‘0’ bit. As a result,

even when nodes are not allowed to route to each other directly, an outsider, would still be able to infer the

traffic pattern of the insider resulting in information leakage from the trusted to the untrusted domain. The

bidirectional channels can be established by extending the same scheme.
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L
S1 S2Infected Machine T1

U2

T2

U1

.6 7 8 9543 n. . . .1 2 .9 . . .876 . n4 531 2

Receiver observes delays

Bursty Traffic (Signaling 0 or 1)

Sender sends without delays

Covert Channel

Figure 3.2 The insider (Infected Machine T1) encodes the covert messages in the form of bursts. This
in turn induces delays into the outsider flow observable by the receiver (U2).
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CHAPTER 4

MODEL AND ANALYSIS

Our timing covert channel can be modeled as a first-in-first-out (FIFO) queue shared by two packet processes

initiated by users T1 andU1 respectively (Figure 4.1). Consider time is discretized into slots, and each packet

requires one slot to service. At each time slot, both T1 and U1 can send at most one packet, which enters

the queue at the beginning of the time slot. Though T1 and U1 are not allowed to communicate directly,

because their packets share the same queue, T1 can encode messages in the arrival times of its packets,

which are passed onto U2 (a partner of U1) via queuing delays. Ideally, if U1 sends a packet every time slot,

the capacity of this covert channel can reach 1 bit per time slot; at each time slot T1 simply idles to send

a bit ‘0’ or sends a packet to signal a bit ‘1’. However, this is not feasible in practice because the packets

would be dropped due to the instability of the queue. Hence, we analyze the capacity and coding scheme in

the timing covert channel under the restriction that the total packet arrival rate does not exceed the service

rate; i.e., the queue is stable.

Scheduler

!

�

(S1)

T1

U1 U2

Figure 4.1 Timing covert channel in a shared queue. T1 and U1 both send packets to a scheduler, and
communicate through a covert channel created in the shared queue; T1 encodes a message on packet
arrival times, and U2 (a partner of U1) decodes this information from queuing delays of her packets.
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4.1 An Upper-bound on Channel Capacity

Assume T1 wants to send one of M different messages during N time slots. It randomly picks a message

m ∈ {1, · · · ,M} (each message is chosen with probability 1
M ), and encodes it into a length N binary

sequence, {δ1, · · · , δN}. At slot i, T1 sends a packet if δi = 1, and stays idle otherwise. To receive

this message, U1 sends n packets to the scheduler during the N time slots, among which n′ packets leave

the queue by time N . Denote U1’s arrival times by {A1, · · · , An}, and the departure times up to time N

by {D1, · · · , Dn′}. Naturally, Dn′ ≤ N and n′ ≤ n. U1 and U2 estimate T1’s transmitted message as

m̃ ∈ {1, · · · ,M} from the queuing delays calculated from {A1, · · · , An′} and {D1, · · · , Dn′}. During this

encoding/decoding process, the information rate from T1 to U2 is characterized by logM
N , assuming that the

decoded message matches with the sent message, i.e., the error probability Pe = P (m 6= m̃) is zero.

From Fano’s inequality [28, Theorem 2.11.1], the information rate and error probability are related as

follows:
logM

N
≤ 1

1− Pe
I (m; m̃)

T
, (4.1)

where I (m; m̃) is the mutual information. Mutual information characterizes the reduction in uncertainty of

the original message m after observing the decoded message m̃. This is clear from the definition of mutual

information: I (m; m̃) = H (m)−H (m|m̃), where H (·) denotes the entropy function.

Note in this encoding/decoding process, data is actually processed across the following Markov chain:

m→ δ1, · · · , δN → A1, · · · , An′ , D1, · · · , Dn′ → m̃, (4.2)

whereX → Y means that random variable Y is a function of random variableX . Applying data processing

inequality [28, Theorem 2.8.1], which states the information contained in a random variable can not increase

after processing, we have

I (m; m̃) ≤ I (δ1, · · · , δN ;A1, · · · , An′ , D1, · · · , Dn′) . (4.3)

Due to the deterministic unit time FIFO service order, U1 and U2 know the length of shared queue at

time Ak from the queuing delay Dk−Ak. Therefore, they can learn the number of jobs T1 has sent between

each pair of U1’s consecutive jobs, Ak and Ak+1. This means,
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I (δ1, · · · , δN ;A1, · · · , An′ , D1, · · · , Dn′) ≤
n′∑
i=1

H (Xi) , (4.4)

where Xi =
∑Ai+1

j=Ai+1 δj . Define h (µ, l) to be the maximum entropy of a random variable X , which takes

values in {0, 1, · · · , l} and has mean lµ. It can be shown that h (µ, l) is a concave function of both µ and l.

Thus, from Jensen’s inequality [37, (9.1.3.1)], we have

∑n′

i=1H (Xi)

n′
≤ h

(
λ,

1

ω

)
, (4.5)

where the average packet arrival rate of T1, λ =
E[

∑N
i=1 δi]
N , and the rate of U1, ω = n

E[An]
, where E [·]

denotes the expectation value of a random variable.

Combining (4.1), (4.3), (4.4) and (4.5), we derive an upper-bound on the information rate of covert

messages from T1 to U2:
logM

N
≤ ω logM

n′
≤ sup

λ+ω≤1
ωh

(
λ,

1

ω

)
. (4.6)

Solving the above maximum numerically, we get the max information rate, namely the capacity of the covert

channel, as 0.8377 bit per time slot, from which we can estimate the bandwidth of our covert channel; e.g., if

the link bandwidth is 1Gbps and packet size is 64KB, an upper-bound on the bandwidth is about 1.72Kbps.

4.2 An Achievable Coding Scheme

In this section, we present a coding scheme for communication over the covert channel. As mentioned

above, to achieve the highest information rate, U1 must send a packet in every time slot, but this will result

in instability of the queue and hence is not feasible. Therefore, we divide every N time slots to 2 phases.

Phase 1 has K slots, and Phase 2 has the remaining N −K slots.

Phase 1: At each time slot, U1 sends a packet, and T1 either sends a packet or idles with equal proba-

bility.

Phase 2: This phase is designed to keep the queue stable. U1 sends a packet every s time slots, where

s ≥ 2. In every s time slots, T1 takes one of three possible actions with equal probability. He either idles,

sends a packet at the first slot, or sends packets in all s slots.

The information rate of this scheme is K
N × 1 + N−K

N × log 3
s bit per time slot, and the total arrival rate

10



Time
An Empty 

Queue

U1T1

U2Packets         receives 

Packets         sends (blue) Packets         sends (red) 

(a) An empty queue case

Time
Queued

with 2 packets

U2Packets         receives 

U1T1 Packets         sends (blue) Packets         sends (red) 

(b) A non-empty queue case

Figure 4.2 Effect of queue on the covert channel. When U1 and T1 both send a packet in one time
slot, we assume U1’s packets get serviced first. (a) Given an empty queue in the start, the packet sent
by T1 (the red block on the top) will not affect the timing pattern of packets received by U2; hence
the message sent by T1 cannot be decoded. (b) If the queue is not empty in the start (e.g., with 2
packets buffered), U2 can detect the packet sent by T1 from an extra slot of delay (the grey block at
the bottom), and thus decode the sent message.

to the queue is K
N × 3

2 +
N−K
N × s+4

3s . Maximizing the information rate subject to not exceeding arrival rate

1 (keeps queue stable), we have s = 2 and K = 0 (Phase 1 is eliminated). The resulting information rate

is 0.793 bit per time slot (which is very close to the upper bound), and the coding scheme is as follows: U1

sends a packet every 2 time slots. In every 2 time slots, T1 takes one of three possible actions with equal

probability; idling, sending 1 packet, or sending 2 packets.

In order for U2 to decode T1’s message, it should be able to distinguish between T1’s three actions. This

requires the queue to be non-empty, as illustrated by the example in Figure 4.2. Ensuring that the queue is

non-empty requires more coordination in terms of sending packets between T1 and U1, which renders the

implementation of the covert channel more complex.

Another scheme, which does not require such coordination, is the following 2-phase mechanism.

Phase 1: At each time slot, U1 sends a packet, and T1 either sends a packet or idles with equal proba-

bility.

Phase 2: Both U1 and T1 idle completely.

The overall information rate using this scheme is K
N bit per slot (the covert channel is utilized only

during Phase 1), and the total packet arrival rate is 3K
2N . To maintain the stability of the queue, we require

that 3K
2N ≤ 1. This implies the maximum information rate of this scheme is 0.67 bit per time slot, achieved

by picking K
N = 2

3 . The information rate of this scheme is close to the achievable scheme discussed earlier

and does not require the receiver to distinguish between T1’s three actions, which in turn simplifies the

encoding/decoding, hence we employ this in our experiments.
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4.3 Decoding Scheme

In IPD channels like ours, to decode individual bits as either a zero or a one two problems need to be

addressed. Firstly determining the threshold value is very important. Bits whose delay lies above the

threshold value are decoded as one and those below are decoded as zero. Secondly, the issue of bit marking

where we need to mark packets belonging to the same bit, i.e., where a particular bit starts and where it ends

(syncing the sender and the receiver). We address the two issues separately below:

4.3.1 Threshold Calculation

The optimal thresholding value can be determined using a brute force scan, which requires the original string

of bits to minimize the error. As the original string is not known to us, we use the mean of the dataset for

simplicity. However, due to the changing nature of the cross traffic, such as a flash crowd, a solitary global

mean gives poor results as shown in our evaluation in Section 5. Our scheme solves this problem by splitting

the message up. Instead of performing the analysis above on a large stream of n-bits, the decoder splits up

the stream into multiple regions where a region is a sequence of bits with uniform cross traffic across. This

“region marking” is performed over the entire bit sequence at the decoding side with no assistance from the

sender. The decoder takes the first i bits in the message and calculates their mean m1. Then the second i

bits are taken and their mean m2 is compared against mean m1. If both values are “close” to each other

(half a standard deviation in our case) then the first 2i bits are marked as one big region with one threshold

value to decode the bits else the two regions are marked as separate regions. The process of comparing the

mean of each subsequent set of i bits with the last marked region continues until the entire message has been

iterated and all the regions have been marked. Afterwards a separate threshold value is used for each region

reducing the overall error by limiting the contamination of flash crowds and sudden variations in cross traffic

to specific regions.

4.3.2 Bit Marking

The second major issue in IPD channels is that of bit marking. In our scheme, the duration of the on-

off interval is known beforehand to both the sender and the receiver. The sender starts off by sending a

preamble signal (predetermined sequence of bits), which effectively syncs the two. The preamble signal

is also used by the receiver to determine the average number of packets in the on and off intervals. This

12



gives the algorithm reference points of what latencies and numbers to expect. To identify each bit, it keeps

cumulating the packet delays that it observes and if the cumulative delay crosses the duration of the on (or

off) interval and the number of cumulated packets are “close” to the average number of packets observed in

the on (or off) interval of the preamble sequence then the cumulated packets are all marked as belonging to

the same bit. This process keeps the sender and the receiver in sync. However, since the cross traffic keeps

changing, the number of packets in an interval might increase or decrease (e.g., packet drops from queue

buffering) resulting in cascading errors. To cater to this change, a third parameter is introduced, which is the

mean of the current region. Empirically, we observed that the mean of a region is inversely proportional to

the number of packets in the on-off interval. This can be understood intuitively as well since a higher mean

represents higher traffic loads and a higher probability of packet loss. The relationship between the number

of packets and the mean was found to be linear in nature. Hence, before the decoding algorithm marks the

bits in a region it adjusts its expectations for the number of packets by taking into account the mean of that

region.
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CHAPTER 5

EVALUATION

Multiple distinct testbeds and commercial clouds were used for a thorough experimental evaluation. We first

explain all environments here and then present the main results from a few them in the interest of space.

The first testbed was a cluster comprising six machines set up in a dumbbell topology with three ma-

chines on each end and two disjoint paths connecting the two sub-clusters together. All links were 1Gbps and

the switches were 8-Port Non-Blocking Gigabit GREENnet Full-Duplex Switches (Model # TEG-S80Dg).

In this paper we refer to this testbed as the cluster. The second testbed was our in-house cloud [5], which

is an SDN-based (OpenFlow [40]) testbed. It is composed of 176 server ports and 676 switch ports, us-

ing Pica8 Pronto 3290 switches via TAM Networks (running Open vSwitch [16]), NIAGARA 32066 NICs

from Interface Masters, and servers from Dell. It is called Ocean Cluster for Experimental Architectures

in Networks (OCEAN) so we simply refer to it as OCEAN here. Results for the Emulab Network Emula-

tion Testbed [13] were also gathered along with extensive simulations on Network Simulator-2 (NS-2) [15],

both of which allowed us to test various topologies (Fat Tree, VL2 etc.) with varying sizes. Finally, we

successfully demonstrated the practicality and seriousness of our channel by testing it on EC2 and Azure.

We implemented the coding scheme presented in Section 4.2 but did not incorporate error-correction.

We discuss our modified algorithm, which performs Forward Error Correction (FEC) on the decoded bits in

Section 7.4. Our results here were achieved using an alternating bit sequence for visual clarity however, we

also tried arbitrary bit sequences (such as private keys) and achieved very similar results.

Wherever needed, cross-traffic was generated using network traces from actual data center traffic dumps

[25], normalized for our set up so as to cater to link speeds and bandwidth availability. The generated cross-

traffic turned out to be a mix of temporally-spaced TCP and UDP flows with different durations and sizes.

During flow extraction, we filtered out extremely small micro flows as they did not affect the experimenta-
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(b) With Cross-Traffic

Figure 5.1 1s are represented by an on interval and 0s are represented by an off interval. Alternating
1s and 0s and as were sent. The red line is the threshold line below which we decode a zero and above
it is a one.

tion in any way and sped up the empirical analysis considerably. The volume of cross-traffic generated in

all experiments was in correspondence to what was observed in the actual traffic dumps.

5.1 Waveform Experiments

Figure 5.1a shows the first set of experiments that we conducted. Following the set up shown in Figure 3.2,

we used node T1 (encoder) to send a message containing a sequence of alternating 1s and 0s. This bit

sequence was encoded in the form of alternating on-off intervals for a UDP flow, which in turn induced

corresponding latency variations into the constant stream of packets (also UDP) being sent from node U1

to node U2 (which was the decoder). Figure 5.1a shows the latency between successive UDP packets (of

the outsider flow) as seen by node U2. We conducted an additional series of experiments with actual cross

traffic as shown in Figure 5.1b and still observed high bit rates and low percentage error.

The waveform for similar experiments on OCEAN running at 268 bits/s can be seen in Figure 5.2. We

deployed our custom Floodlight Controller [17] and experimented with various topologies. We found that

our covert channel works equally well, and in some cases better than traditional networks, in an SDN envi-

ronment even for very large topologies. In fact we got higher bit rates on OCEAN because of faster packet

processing at the switches and the server. The relationship between percentage error and bit rate in OCEAN,

was found to be very similar to the cluster case however the spike in percentage error appeared on higher bit
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Figure 5.2 Waveform for OCEAN running at 268 bits/s.

rates because of more advanced NICs on the servers.

5.2 Distribution Functions

To measure the distribution of packet delays during the on-off intervals we plot the distribution functions.

Figure 5.3 shows that during the on interval packets tend to cluster around two values, which are both above

the threshold latency induced by an on interval. A similar phenomenon can also be seen for the off interval

where packets primarily group around two latencies. This intra-interval latency gap does not affect our

results in any way, as these values fall well above or below the threshold value used by the decoder. We

believe this latency gap is a function of the packet size as we observed fluctuating values with different

combinations of packet sizes. This is why we see four “steps” (instead of two) in Figure 5.4, which plots

the Probability Distribution Function for our data sets.

5.3 Percentage Error vs Bit Rate and Message Splitting

Table 5.1 explores the relationship between percentage error and bit rate. The channel becomes harder to

decode, as bit transitions become packed more tightly together. If we continue reducing the on-off interval
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Figure 5.3 Cumulative Distribution Functions.

Bit Rate Error without Cross Traffic Error with Cross Traffic (No
Message Splitting)

Error Cross Traffic + Mes-
sage Splitting

100 0 % 3.30 % 0 %
200 0 % 42.80 % 0 %
500 0 % Error > 80 % 8.68 %

Table 5.1 Our channel performs at very high speeds in the absence of noise. However, as cross traf-
fic increases the error rates spike but our adaptive decoding scheme coupled with message splitting
almost removes the entire error.

then beyond a point (region 2) the error rate spikes. We noticed this upward spike for both cross-traffic

and without cross-traffic experiments at almost the same bit rate, suggesting that in Region 2 the errors

are because of the limitations of the hardware (the NIC can not send and receive packets at such small

intervals). On the other hand, in Region 1 all error incurred is solely because of the cross-traffic. The table

also highlights the benefits of our message splitting mechanism. The substantial difference between the error

values for the decoded message with and without message splitting shows the effectiveness of our decoding

scheme.
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5.4 Effect of Packet Size

Since the participants of the covert channel have the ability to tune the size of packets we decided to check

the effects of this parameter as well. We observed that packets that are too small fail to induce noticeable

latency into the packets of the outsider flow resulting in a very high percentage of errors. On the other

hand, using very large packets results in the capture of the channel by the insider flow, causing packets from

the outsider flow to starve and eventually get dropped as the queue fills up. We found that packets with

size around 16KB worked the best and induced visible latencies while keeping the percentage error to a

minimum. This phenomenon is captured in Figure 5.5.

On-Off Interval Upper-Bound Encoding Scheme Empirical Bit Rate

0.5 1.6754 1.34 1.34
0.1 8.377 6.7 6.633
0.02 41.885 33.5 31.49
0.01 83.77 67 61.975
0.005 167.54 134 122.61

Table 5.2 Table comparing theoretically determined bit rates to empirically achieved goodput (bit rate
adjusted for error).
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Figure 5.5 We kept the bit rate constant at 268 bits/s and ran experiments for packets sizes ranging
from 4KB to 32KB with 4KB steps and observed that the lowest percentage error is achieved at 16KB
packet size.

5.5 Theoretical vs Empirical Bit Rate

To measure the empirical performance of our channel, we compare the empirically measured goodput (bit

rate adjusted for error) of the channel against the bit rates determined theoretically from the upper-bound

and the simple scheme mentioned in Section 4. As seen in Table 5.2, the goodput was observed to be close

to the theoretically calculated bit rates in all experiments, highlighting the applicability of our analytical

model to practice.

5.6 Effect of Total Traffic Load/Network Condition

To measure how network conditions affect our channel we performed a series of experiments increasing

link utilization by 20% before each run. We observed a constant upward shift in the average delay of

packets at the receiver however, since the increase is roughly uniform it does not interfere with the decoding

process. Figure 5.6 illustrates this step-wise increase. We conclude that our channel can function efficiently

in varying network conditions irrespective of the degree of traffic load.
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Figure 5.6 Eeffect of traffic load.

5.7 Detectability of the Covert Channel

Several studies [38, 29] have suggested that under normal conditions, network traffic exhibits self-similarity

whereas this property is lost during anomalous conditions such as malicious intrusions and resource exhaus-

tion attacks [44]. While a Cumulative Distribution Function (CDF) can be used to flag such anomalous

traffic patterns, the Hurst exponent (H) is typically used as a measure for determining self-similarity. For

a self-similar process the Hurst exponent takes a value between 0.5 and 1, and the degree of self-similarity

increases as the value approaches 1. To measure how anomalous our channel seems to a network profiling

tool we measured the Hurst exponent in the presence of background traffic under different bit rates. Figure

5.7 shows that even for bit rates as high as 200 bits/s our covert channel blends in nicely with the cross-traffic

as the Hurst exponent stays well above the threshold value for self-similarity. It is worth mentioning here

that even though it seems from our graphs that the waveform is very distinct and easily recognizable, it is

only because we are transmitting a bit sequence with alternating ones and zeros, which is not the case with

actual covert messages.
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Figure 5.7 The observed value for the Hurst exponent consistently stays above the self-similarity
threshold value indicating that it is hard to profile our channel.

5.8 Effect of Queuing Policy and Hypervisor

To study the sensitivity of our covert channel to different queuing schemes, we conducted simulations on

NS-2, which enabled us to study a broader set of queuing policies than is possible with hardware switches,

some of which do not implement or give access to configuration of multiple queuing strategies. So far, our

results were based on switches using FIFO queuing. In this particular experiment we tried Stochastic Fair

Queuing (SFQ) [41], Fair Queuing (FQ) [43], Drop Tail (DT), Random Early Detection (RED) [30] and

Deficit Round Robbin (DRR) [49]. Figure 5.8 shows some waveform results that we obtained. Surprisingly

we found that our channel works extremely well in almost all schemes that we tried. We found that RED

and DT behaved remarkably similar to each other so we show one graph representing both of them.

Building on this result, we contend that the underlying hypervisor design does not affect our channel.

The virtual switch (residing on the host) uses one of the aforementioned policies and as shown above they

don’t have any negative effect on the channel’s performance. Similarly, another entity that could potentially

disrupt the channel is the hypervisor scheduler. Here again, we point out that since we managed to run all

our experiments on a wide variety of different hypervisors (Xen, VMWare’s vSphere, VirtualBox, Amazon’s

customized Xen, and Azure’s Hyper-V) without any modification to the code or channel semantics, we are

21



0 15 30
0.2

0.35

0.5

(a) SFQ
D

el
ay

 (
m

ill
is

ec
on

ds
)

0 15 30
0.2

0.3

0.4

(b) RED/DT

0 15 30

0.3

0.7

1.1

(c) FQ

Time (milliseconds)
0 15 30

0.2

0.35

0.5

(d) DRR

Figure 5.8 Waveform simulations for various queuing schemes.

confident that the underlying hypervisor design, particularly the scheduler, does not influence our channel

in any way.

5.9 Microsoft Azure and Amazon EC2

Apart from testing our covert channel in a synthetic environment, we performed experiments on EC2 and

Azure as well. To set up our channel on these commercial environments we had to successfully achieve

link sharing on the insider and outsider flows. This was mainly achieved through hit and trial however, we

tried to increase our chances of link sharing by provisioning senders and receivers very carefully in these

clouds. Specifically, the documentation of EC2 hints at the fact that inter-availability zone traffic could

share underlying resources. Hence we provisioned the senders and the receivers on neighboring availability

zones while keeping each sender-receiver VM-pair on the the same Virtual Private Cloud (VPC). This greatly

increased our chances of achieving coresidency on links in EC2. A similar argument holds true for achieving

link-sharing in Azure but again some hit and trial is needed.

For these experiments, we performed serveral different runs at different times of the day and noticed that
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Figure 5.9 Waveforms for commercial clouds.

even though the effect of cross-traffic was noticeable, our channel performed decently. Figure 5.9(i) shows

one such run at 100 bits/s for Azure and Figure 5.9(ii) shows the waveform for EC2 at 100 bits/s. We also

noticed that for different types of instances our results varied. For example, the compute-optimized instances

gave us better results compared to instances with very limited resources. Intuitively, it can be argued that

instances with more resources, particularly higher network bandwidth and presumably better NICs, should

improve our results. This is because our channel depends on how fast we can send packets and how much

we can send. The aforementioned effect has been captured in Figure 5.10 for Azure. A similar trend was

observed in EC2 with “larger” instances performing much better.

5.10 Emulab Testbed

We created a 3-level Fat Tree comprising 135 nodes on Emulab and tested our covert channel on it. We

found that the channel worked flawlessly. The result for a particular run of the channel at 67 bps is presented

in Figure 5.11. We also tried other topologies such as VL2 [32] and received encouraging results, which

were similar to the Fat tree so we omit them here. These experiment and others done on OCEAN over large
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Figure 5.11 Waveform obtained from our covert channel setup on Emulab.

data center topologies highlight the fact that our covert channel operates at high bit rates irrespective of the

topology and the network environment (SDNs or traditional networks).
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CHAPTER 6

MITIGATION

Many researchers in the covert channel community argue that covert channels can never be eliminated from

a system in their entirety [55, 33, 42] unless sharing is done away with altogether [46]. For this reason we

present a mitigation scheme that primarily aims to rate-limit the capacity of the covert channel by essentially

minimizing the time spent on shared resources rather than eliminating the virtualization (or multiplexing)

infrastructure.

Our mitigation scheme is built on top of two key insights. Firstly, data centers are typically over-

provisioned in terms of the number of paths between two communicating hosts to cater for link or switch

failures [32]. Secondly, data centers often employ high-speed load balancers (hashing 5-tuple flow IDs

onto different outbound interfaces) to ensure efficient link utilization and to reduce link congestion [32].

However, such static load balancing may increase the attacker’s ability to establish co-location; by repeatedly

modifying the 5-tuple the attacker can cycle through a set of paths until one shared with the outsider is

attained. With these insights in mind, we developed a scheme that involves dynamically migrating flows in

order to reduce the amount of time spent on the same underlying resource while minimizing modifications

to the load balancing infrastructure. The basic idea is to select a candidate flow after it has been scheduled

on a particular link and migrate it to a different path dynamically and repeatedly (if possible), ideally node-

disjoint or at least edge-disjoint, based on the characteristics of a flow or the current state of the resource

being shared. It is important to note here that reallocation of flows should not be done too quickly so as

to maintain stability of transmission. We explain various different mechanisms that can be employed, in

combination, depending on the circumstances. For instance if a trustworthy tenant is scheduled alongside

an untrusted tenant, the flows of the untrusted tenant could be assigned a more aggressive hopping scheme.

We present some schemes for hopping and their performance in the section below:
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6.1 Path Hopping

If multiple node-disjoint paths are available between the insider and outsider’s flows, changing the path

of either of the flows would eliminate the sharing and severely limit the capacity of the channel. This

“post-load balancing” migration of the flow can be achieved with simple modifications to the load balancing

strategy. With network virtualization platforms in place, there is also an opportunity to migrate entire virtual

networks around. LIME[35] is one such example where overlay networks are migrated to a distinct or

partially distinct set of physical resources. In order for the load balancer to migrate a flow, we first need to

decide which flow to migrate (flow selection). We then need to decide on a location where we move the flow

to (flow placement). We present some alternate simple schemes for both problems below:

6.1.1 Flow Selection

Similarity-Based Selection: SDNs give us the ability to query real time traffic statistics from each switch.

If two flows are found to be similar in terms of their link utilization (or other such metrics), we simply swap

them with each other so as to minimize the effect of hopping on the other flows. If either of the swapped

flows happens to be a participant in the covert channel, the channel will break down.

Timed Selection: In this scheme we associate a timer with each flow and whenever the timer expires we

migrate the flow to another path.

Random Selection: The system has a global timer and when the timer expires a (weighted) coin is flipped

for each flow. If the coin lands on its head then we migrate the flow, else we leave the flow as it is.

6.1.2 Flow Placement

Random Placement: Select the destination path randomly from a set of paths.

Anti-Social Placement: Select the destination path that is least crowded (in terms of the number of flows

or the link utilization). Such live migration also has the effect of alleviating congestion.

Quick Selection: Select the destination path that gives the least downtime.

26



mixed unmixed

3(k � 1)

4k

4k � 3

4k

3

4k

k + 3

4k

Figure 6.1 The Markov chain of state of the covert channel applying Random hopping and Random
Placement.

6.2 Location Hopping

Our mitigation scheme also has the potential of mitigating cross-VM covert and side channels [46, 52, 51].

Migrating one of the VMs to a different server would eliminate any sharing. We call this process “location

hopping” and all schemes mentioned in the previous section can be applied to the context of VMs directly.

6.3 Performance Analysis of the Mitigation Schemes

We analyze the performance of two of the proposed schemes below, namely Random Hopping and Timer-

Based Hopping (for flow selection) joined together with Random Placement (for flow placement). Assume

there are in total k paths available for selection, and define state mixed to be the case when the two flows

reside on the same path (the covert channel exists), and state unmixed to be the case when they are sched-

uled onto different paths (the covert channel is eliminated).

Random Selection + Random Placement: In this mitigation scheme, every time the global timer fires, each

flow is migrated with probability 1
2 , and the destination path of the migration is randomly selected from the

k paths. As a result, the state transition of the covert channel can be described by the Markov chain in
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Figure 6.1, from which it is easy to show on average for 1
k of time, the system stays in state mixed, i.e., the

covert channel exists.

Timed Selection + Random Placement: In this scheme, the channel state may change whenever either

flow’s timer fires. Suppose the current state is mixed, and the timer of one flow fires, then the probability

of this flow being allocated a different path rather than staying on the one shared by the other flow (and the

channel state is changed to unmixed) is k−1
k . The same transition probability holds when the timers of both

flows are fired. The Markov chain in Figure 6.2 illustrates this state transition. We can again show that the

system stays in state mixed for 1
k of time on average.

6.4 Results of Path Hopping on OCEAN

We implemented the schemes described above and show the performance of Random Selection + Random

Placement in Figure 6.3. The region where the sharing took place can be seen in the start followed by three

intervals of solitary placement for both the insider and outsider flows (although we are only showing the

outsider flow here). We noticed downtimes on the orders of tens of milliseconds mostly to a couple hundred

of milliseconds at times. Given these low downtimes we believe that we can hop more frequently if a tenant
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reputation system is in place and the tenant has a low reputation score. This would ensure that the tenant’s

flows keep moving around in the data center, which in turn would induce an unstable covert channel (if the

insider does manage to restart sharing somehow).
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Figure 6.3 Random Selection + Random Placement Mitigation Scheme: The graph clearly shows
the regions where the flows are overlapping and the covert channel is operational and how hopping
reduces the bit rate. The three long peaks are the downtimes we witnessed during the hopping.
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CHAPTER 7

DISCUSSION AND LIMITATIONS

We now discuss and analyze several additional aspects of our channel, and mention some limitations of our

study.

7.1 Clock Synchronization

Clock de-synchronization can be a problem in timing-based covert channels. Researchers have used various

mechanisms to address this issue such as with the use of self-clocking codes [52]. In order to keep things

simple, we re-sync our sender and receiver after every k-time units by sending a predefined sequence of bits

(e.g., Barker Code [23]) which is known to both the encoder and decoder before-hand. Anytime the decoder

sees this pattern of strings it resets its clock as soon as the sequence terminates thereby re-syncing with the

sender.

7.2 Effect of Load Balancing

Load balancing can play a pivotal role in reducing bit rates of timing-based covert channels as we demon-

strated both analytically and empirically in Section 6. However traditional static load balancing (e.g., con-

sistently hashing 5-tuple flow IDs onto outbound interfaces), which is the dominant form of load balancing

in clouds today, fails to deliver a meaningful impact on covert channels as it does not directly reduce the

likelihood the insider will share a network queue with the colluding outsider. In fact, static load balancing

may increase the attacker’s ability to establish a channel—by repeatedly modifying the 5-tuple the attacker

can cycle through a set of paths until one shared with the outsider is attained.
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Bit Rate % Error Without
LDPC

Code Rate =3/4 Code Rate =3/5 Code Rate =1/2

100 0 0 0 0
200 0 0 0 0
500 8.68 8.4 10 5

Table 7.1 A comparison of percentage error in the received bits with and without the use of FEC.
Various values for LDPC code rates (k/n) are shown for reference.

7.3 Case for the Bidirectional Channel

Thus far we have focused exclusively on unidirectional covert channels, as performance and properties of the

bidirectional case are very similar. We note that establishing a bidirectional channel can provide more power

to the adversary. For example, the outsider can provide control information back to the insider, improving

transmission speed and error tolerance (as they can precisely indicate which data blocks are lost due to

transmission error, and request retransmission), and potentially reduce data transmission requirements (as

they can just request certain blocks of interest, or perform interactive exploration of the private data). The

construction of the bidirectional channel is quite similar to the unidirectional version, with the difference

that now the system has four flows (2 insider flows and 2 outsider flows), 1 pair in each direction with each

insider flow inducing delays into the outsider flow.

7.4 Dealing with Errors

A particular property of our channel is the fact that delay-based errors can only manifest themselves in the

zero bits of a message sequence. Since cross-traffic, or any other type of noise, can only add to the latency

we never see a one bit fall below the threshold and get flipped into a zero. Hence the one bits always stay

error-free (not accounting for packet loss), which leaves us the zero bits in the string. There are several error-

correction schemes that could be used, however we have chosen Low-Density Parity-Check (LDPC) codes

[31] on our bit sequence to perform Forward Error Correction (FEC). LDPC codes have found renewed use

in many network protocols including 802.11 standard and 10GBase-T Ethernet primarily because of high

speed encoding/decoding features. In our case, Node T1 encodes a k-bit message to form a n-bit encoded

block where n >k. U2 will be able to successfully decode the message using any k correctly received

bits, implying that now U2 can tolerate up to n-k losses for every block. Ideally, the redundancy should

31



be in proportion to the prevailing error-rate on the channel and the nature of the data being encoded. The

“Optimized Decoding Algorithm” that performs the decoding is presented in Algorithm 1 and the results

are shown in Table 7.1. We have not tried other error-correction schemes that might be more suitable for our

case so we list this as a limitation of our work.

Algorithm 1 Optimized Decoding algorithm
1: Decoded Bits = {}
2: Corrected Bits = {}
3: Packet Delays= {All observed packet delays}
4: Tmin=min(Packet Delays)
5: Tmax=max(Packet Delays)
6: for i in Packet Delays do
7: for j=Tmin to Tmax do
8: Bin=Packet Delays(i, i+ k)
9: # where k is the length of the bit subsequence

10: [errorj , bitsj ] =Decode(Bin, j)
11: Error = errorj
12: Bits = bitsj
13: end for
14: # get index of minimum error
15: Indexmin=min(Error)
16: Decoded Bits=Bits(k)
17: i = i+ Indexmin

18: end for
19: Corrected Bits = LDPC Decoder(Decoded Bits)
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CHAPTER 8

CONCLUSION

Software-isolated virtual machines and networks create the illusion of a personally-owned computing ma-

chine with a secure communication channel. However, the shared physical resources underlying the vir-

tualized isolation present the opportunity for malicious data transfer.In this paper, we highlight a growing

trend in covert channels and present novel ways of compromising the private data of a user by exploiting

the weaknesses that go hand-in-hand with the flexibility that virtualization has to offer. We present a discus-

sion on cross-VN covert channels and analyze their channel capacity. We propose a defensive scheme that

reduces the effects of these channels by decreasing the time spent on shared resources and complicating the

ability of the attacker to “map out” the network.
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