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ABSTRACT 

 Part I of this dissertation describes the synthesis and characterization of solid, 

copolymeric, magnetic, fluorescent, core-shell, and hollow or foamed micron-sized silicone 

spheres prepared via ultrasonic spray pyrolysis (USP). Silicones are found in an amazing number 

of commercial products including cosmetics, sealants, adhesives, lubricants, medical devices, 

and even food. Despite the prevalence of bulk silicones in today’s society, the synthesis of 

silicone micromaterials has remained elusive. The same chemical and material characteristics 

that make silicones ideal for many commercial applications, namely hydrophobicity and low 

surface tension, cause the droplets in silicone-precursor emulsions to coalesce and aggregate 

upon curing. Conveniently, the aerosol created in USP, an industrially-scalable synthetic 

technique used to make relatively monodisperse sub-micron and micron-sized spheres, isolates 

silicone oligomers into individual droplets during curing.  

These USP prepared silicone microspheres range from ~500 nm to 2 µm in diameter and 

are prepared from commercial silicone kits and commercially available oligomers. Synthetic 

control over size, crosslinking density, composition, and swelling is shown. The solid USP 

PDMS microspheres are shown to be highly bioinert, are found to be taken into cell cytosol, and 

show impressive drug loading capacities (as high as 36% by weight). Functional silicone 

microspheres are obtained by simply adding the appropriate dopant (e.g., fluorescent dye, 

colloidal Fe3O4, polymeric or ionic salt core material) or changing the silicone oligomers of the 

precursor solution prior to nebulization. These results demonstrate the versatility and 

generalizability of this synthetic method and serve as a road-map for the fabrication of silicone 

microspheres with nearly any desired functionality. 
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Part II of this dissertation describes our efforts in the development of a fully integrated, 

disposable, and portable gas chromatography column and detector. There is a pressing need for 

rapid, portable, and inexpensive technology for the on-site detection of gaseous analytes. 

Significant progress has been made towards this goal through the miniaturization of gas 

chromatographs (GC), the most widely used method for analyzing complex gas mixtures. 

Typical GC microcolumns are made through a multi-step fabrication process, which requires 

hazardous reagents, complex equipment, and problematic stationary phase coating procedures. 

This section of the thesis explores, as an alternative: a microcolumn made from a single 

microtextured polymer composite that acts as both the structural support and stationary phase. 

This work marks the first molded gas chromatography microcolumn capable of separating 

mixtures of VOCs in minutes with baseline resolution (N > 1800 plates m-1) and contributes 

significantly to understanding which factors (e.g., polymer permeability, phase-separated 

structure) must be considered in the design of such microcolumns.  

Finally, this work also describes advancements in realizing colorimetric sensor arrays as 

microdetectors for gas chromatography. Because GC miniaturization necessitates extremely 

short columns (often < 3 m in total length), micro-GC systems suffer from incomplete 

separations and frequently have analytes which coelute. Sensor arrays have been proposed as 

microdetectors for micro-GC analysis in an attempt to ameliorate this problem. Described here 

are initial studies on optimization of colorimetric sensor arrays for use with GC including the 

development of a solvatochromic array for sensing organic solvents, an analysis of the effects of 

secondary factors on sensor array kinetics, and a proof of concept study sensing amines as they 

elute from a microcolumn. These advances provide a basis for further development of 

colorimetric sensor array microdetectors for use with GC.  
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PART I:  

SYNTHESIS AND APPLICATIONS OF SILICONE MICROSPHERES 

 



CHAPTER 1: 

SILICONE POLYMERS AND ULTRASONIC SPRAY PYROLYSIS 

 

1.1 Introduction 

 Silicones, polymers with a backbone of Si–O bonds, are widely used in the fields of 

chemistry and materials science. Of the silicone family, polydimethylsiloxane (PDMS) is the 

most commonly employed. The unique rheological properties, low glass transition temperature, 

optical transparency, temperature stability, high chemical resistance, biocompatibility/low 

toxicity, high gas permeability, and hydrophobicity of PDMS have made PDMS the material of 

choice for everything from gas chromatography stationary phase and microextraction materials 

to additives in shampoos, food, and lubricating oils to contact lenses, medical devices, and 

implants.1-3  

Surprisingly, only a handful of reports of microspheres made from silicones exist in the 

literature4-12 and traditional emulsion polymerizations of silicone spheres produce large, 

polydisperse microspheres. This is due, in large part, to the high viscosity and low surface energy 

of PDMS oligomers, which cause coalescence and aggregation during emulsion polymerizations, 

especially at the high temperatures necessary for polymer curing.  

Despite their difficult fabrication, many potential applications for PDMS microspheres 

have been suggested in the literature. Proposed uses include sensors,11, 13-14 actuators,8 and 

additives for polymer resins.5-6, 9 PDMS microspheres have also been suggested as materials for 

extraction and chromatography4-5 and biomedical applications including drug delivery and 
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controlled release.5-7, 10 These applications have not yet been well explored, arguably due to the 

lack of versatility and control inherent in past PDMS microsphere syntheses.  

In this dissertation, silicone microspheres ~1 µm in diameter were prepared via ultrasonic 

spray pyrolysis (USP), an aerosol processing technique that is simple, versatile, and industrially 

scalable.15-16 To our knowledge, this is the first industrially relevant and versatile synthesis of 

silicone microspheres in this size regime. An overview of the synthesis and applications of bulk 

and microstructured silicone polymers and an introduction to ultrasonic spray pyrolysis are 

provided in this chapter. 

1.2 Synthesis of Silicones 

 Silicone chemistry is a vast and incredibly diverse field of study; only the basics as they 

pertain to work within this dissertation are covered within this section. The Silanes and Silicones 

Handbook by Gelest17 and chapter titled Silicones in the Ullmann’s Encyclopedia of Industrial 

Chemistry18 are referenced extensively and should be read if a deeper understanding of silicone 

polymerization is desired.  

Silicone polymers, or polymerized siloxanes, are characterized by a repeating –Si(R)2–O– 

linkage in their polymer backbone. As with siloxanes, the local geometry of the tetravalent Si 

atom in polysiloxanes is approximately tetrahedral.19 Polysiloxanes may be composed of one or 

several types of silicone structural units, described in Table 1.1.18 The relative ratios of these 

structural units, abbreviated by the symbols, M, D, T, and Q for one, two, three and four Si–O 

linkages respectively, contribute significantly to the bulk polysiloxane properties, including 

viscosity, swelling, and opacity.  
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Table 1.1 Structural units found in polysiloxanes.18  

Starting Compound 
Structural Unit 

Application 
Symbol Functionality 

(CH3)3SiCl 
monochlorotrimethylsilane 

M 

 
monofunctional 

chain end in silicone 
fluids, trimethylsilyl 

protecting groups 

(CH3)2SiCl2 
dichlorodimethylsilane 

D 

 
difunctional 

linear siloxane 
polymers, silicone 

fluids, rubbers, 
elastomers 

CH3SiCl3 
trichloromethylsilane 

T 

 
trifunctional 

silicone resins for 
paints, impregnating 

agents, masonry 
protection 

SiCl4 
tetrachlorosilane 

Q 

 
tetrafunctional 

silicone resins 

 

In general, the D structural unit makes up a significant portion of a polyorganosiloxane’s 

structure. These can be broadly described as [R2SiO]n where R can be a number of different 

organic functional groups including methyl, phenyl or other aromatics, vinyl, hydride, hydroxyl, 

acetals, epoxides, cyanoalkanes, and fluorinated alkanes. The most prevalent functional groups 

are shown in Figure 1.1.18 Linear silicone oligomers can be linked together using these organic 

functional groups or directly between inorganic Si-O-Si backbones via an additional Si–O–Si 

linkage unit (i.e., T or Q) to produce solid, crosslinked polysiloxanes. The molecular weight of 

the silicone oligomers, identity of the organic functional groups, number of linkages, and type of 

linkages all contribute to the bulk properties of the resultant polysiloxane. 

H3C Si O
CH3

CH3

H3C Si O
O

CH3

H3C Si O
O

O

O Si O
O

O
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Figure 1.1 Common repeat units for polysiloxanes frequently found as homopolymers or in a 
copolymer with polydimethylsiloxane. (a) Polydiphenylsiloxane. (b) Polyphenylmethyl-siloxane. 
(c) Polymethylhydrosiloxane. (d) Polyvinylmethylsiloxane, (e) Polymethyltrifluoropropyl-
siloxane. (f) Polymethylalkylsiloxane.18 

1.2.1 Synthesis of Silicone Oligomers 

 The most common polyorganosiloxane is polydimethylsiloxane, shown in Figure 1.2. 

For this introduction, the synthesis of polydimethylsiloxane will be described. The synthesis of 

other polyorganosiloxanes follows similar synthetic procedures with starting organochlorosilanes 

that contain the functional group(s) of interest and will not be discussed in detail here.  

 

 

Figure 1.2 Structure of polydimethylsiloxane (PDMS). 
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Linear and cyclic polyorganosiloxanes are readily produced from the reaction of 

organodichlorosilanes with either water via hydrolysis or methanol via methanolysis. The 

hydrolysis of dimethyldichlorosilane will produce cyclics and linear hydroxyl-terminated 

oligomers according to the following chemical equations: 

n(CH3)2SiCl2 + nH2O        [(CH3)2SiO]n + 2nHCl    n=3,4,5, etc. 

m(CH3)2SiCl2 + (m+1)H2O        HO[(CH3)2SiO]mH + 2mHCl     m=4-100 

These reactions occur simultaneously; the resultant product is a mixture of cyclics and short 

chained linear oligomers. To some extent, the relative ratio of these can be tailored by adjusting 

reaction conditions; the ratio of cyclics to linear oligomers is confined between a 1:1 and 1:2 

ratio. As is apparent from the chemical equations, a significant about of HCl (~30%) is produced 

during hydrolysis, which is subsequently used in the production of methylchlorosilanes via the 

Rochow synthesis.20 The chain length of the polysiloxane oligomers can be widely varied by 

tailoring hydrolysis conditions including the equivalents of water present, any added capping 

agents (e.g., trimethylchlorosilane), and the addition or removal of HCl during polymerization.  

 Methanolysis of dimethyldichlorosilane is commonly employed in industrial plants where 

chloromethane is a desired byproduct. Similar to hydrolysis, in methanolysis both cyclic and 

linear species are obtained. The methanolysis of dimethyldichlorosilane proceeds according to 

the following chemical equations:  

     n(CH3)2SiCl2 + 2nCH3OH        [(CH3)2SiO]n + 2nCH3Cl + nH2O  n=3,4,5, etc. 

m(CH3)2SiCl2 + 2mCH3OH         HO[(CH3)2SiO]mH + 2mCH3Cl + mH2O  m=4-100 
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It is possible to remove one oligomer (i.e., linear or cyclic) during the reaction to drive 

production toward that oligomer. For example, if hydroxyl-terminated linear oligomers are 

desired, the heavier linear oligomers can be removed from the bottom of the reaction column as 

the reaction proceeds.  

 With both hydrolysis and methanolysis, it is necessary to separate cyclic low molecular 

weight polysiloxanes from linear polysiloxanes before polycondensation to higher molecular 

weight polysiloxanes is possible. This can be done via distillation or vacuum drying where the 

lower-boiling cyclic compounds are removed and recollected. The cyclic oligomers can then be 

used to make linear polysiloxanes via ring-opening polymerization, anionic polymerization, or, 

less commonly, cationic polymerization.  

 Polycondensation of low molecular weight linear oligomeric polysiloxanes is carried out 

in the presence of an acid catalyst with an appropriate organochlorosilane to act as a linker. The 

organochlorosilane is chosen based on the branching and functionality desired, but is generally 

high purity dimethyldichlorosilane, which produces high molecular weight hydroxyl-terminated 

linear polysiloxanes. Polycondensation of siloxane diols produces water as a byproduct, which 

must be removed as it is produced. To stop chain growth, the acid catalyst is neutralized using an 

amine. The final molecular weight of the resulting polysiloxane can be finely tuned via this 

synthetic method. 

1.2.2 Synthesis of Crosslinked Silicones (Silicone Rubbers) 

 Linear polysiloxane oligomers are frequently crosslinked to form a solid, extended, 3D 

network of polysiloxane units. Crosslinked silicones can have consistencies that vary between a 
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gel and hard plastic. The final consistency of the solid silicone is largely dependent on the 

crosslinking density. The chemical processes used to crosslink linear polysiloxanes are quite 

diverse. Briefly, linear polysiloxanes can be linked either through direct linkage of the Si–O 

backbone via an Si–O–Si bond or by chemistries associated with the organic functional groups 

on the polymer chain. In the case of the former, the Si–O–Si linkage can be formed through 

polycondensation of silicone diols with T or Q type organochlorosilanes/organoalkoxysilanes, 

through dehydrogenative coupling, or through the condensation cure of acetoxy, enoxy, oxime, 

alkoxy, or amine functionalized polysiloxanes with hydroxyl functionalized polysiloxanes.   In 

the latter, chemistries associated with reactive functional groups (e.g., addition cure of                    

Si–CH=CH2 with Si–H) are utilized to create linkages that connect polysiloxane backbones via 

an organic linker (e.g., Si–CH2–CH2–Si). An overview of the crosslinking methods most relevant 

to this work is given in the following sections.17  

1.2.2.1 Vinyl Addition (Platinum Catalyzed Cure) 

Polysiloxanes crosslinked via Pt catalyzed cure take advantage of hydrosilylation 

chemistry which proceeds according to the generalized chemical equation described in Figure 

1.3. Typically, polyvinylmethylsiloxane-co-polydimethylsiloxane copolymer or vinyl-terminated 

polydimethylsiloxane oligomer where vinyl equivalents range from <1%-50% are reacted with 

polymethylhydride-co-polydimethylsiloxane copolymer which have 15-50 mol% 

methylhydrosiloxane. The catalyst used is a zerovalent Pt complex commonly known as  

Karstedt’s Catalyst (Figure 1.4)21-24 which is used in concentrations of ~5-10 ppm. Usually, a 

two-part mixture is made in which Part A contains the vinyl functional polysiloxane and catalyst, 

and Part B contains the hydride functional polysiloxane. This is the same chemistry employed in 
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many commercially available room temperature vulcanizing (RTV) silicones such as Dow 

Corning’s Sylgard™ series, where the Pt catalyzed reaction readily proceeds at room 

temperature.25-26 

 

 

Figure 1.3 Generalized reaction mechanism for the addition cure (platinum cure) of vinyl 
functional siloxanes with hydride functional siloxanes. The Pt catalyst is an organoplatinum 
coordination complex in which the Pt is zerovalent, commonly referred to as Karstedt’s 
catalyst.25 

 

 

 

 

Figure 1.4 Structure of Karstedt’s catalyst, a zerovalent Pt catalyst with chelating and bridging  
vinylmethylsiloxanes used in the hydrosilylation crosslinking of polysiloxanes.23 
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 Importantly, no byproducts are formed with this curing method, which allows for good 

dimensional stability and makes this chemistry the gold-standard in the replication of molds and 

fabrication of parts. The Pt catalyst, however, is extremely susceptible to poisoning, and caution 

needs to be taken to avoid exposure to potential contaminants including amines, thiols, 

peroxides, chlorides, and Sn-containing compounds.27  

1.2.2.2 Dehydrogenative Coupling  

 Dehydrogenative coupling is most commonly used in the fabrication of silicone foams 

and the formation of water repellent thin film coatings.17 The reaction proceeds according to the 

chemical equation described in Figure 1.5 and is catalyzed by a variety of metal salt catalysts 

including bis(2-ethylhexanoate)tin, dibutyltin dilaurate, and zinc octoate. In this thesis, dibutyltin 

dilaurate (DBTDL), an organotin compound with a Sn(IV) center, is used exclusively.28 The 

structure of DBTDL is shown in Figure 1.6. As shown in Figure 1.5, the dehydrogenative 

coupling of hydride functional and hydroxyl functional siloxanes produces one mole equivalent 

of H2 gas. This is used as the in situ blowing agent in the formation of foamed silicone materials. 

As with other crosslinked silicones, the number of crosslinks (equivalent to the mol% of hydride 

and hydroxyl functional groups) influences the final silicone’s crosslinking density and structure. 

The presence of oxygen and moisture during cure also influences the final silicone’s properties. 

Similar to the Pt catalyzed RTV chemistries described in section 1.2.2.1, polymerizations using 

DBTDL are two-part systems mixed immediately before use. Polymerizations can be done at 

room temperature or elevated temperature depending on desired polymerization speed. Typical 

catalyst concentrations, ~50-5000 ppm, are much higher than for Pt cure systems. Generally, tin 

catalysts are less susceptible to poisoning than Karstedt’s catalyst. 
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Figure 1.5 Generalized reaction mechanism for the dehydrogenative coupling of hydroxyl 
functional siloxanes with hydride functional siloxanes. The Sn catalyst is an organotin 
coordination complex in which the Sn is tetravalent. 

 

 

 

 

 

Figure 1.6 Structure of dibutyltin dilaurate (DBTDL), the tin catalyst used in this thesis for 
dehydrogenative coupling.  
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1.2.2.3 Moisture Cure  

Although this chemistry is not directly used in this thesis, it is worth mention due to its 

widespread use in one-part and two-part moisture cure silicones (e.g., silicone sealant/caulk).17 

The condensation of silanols (Si–OH groups) proceeds rapidly and efficiently in either mildly 

acidic or basic conditions according to the chemical equation shown in Figure 1.7. For these 

materials, hydroxyl functional siloxanes are first reacted with excess functional silane (e.g., 

acetoxy functional silanes) which displaces the silanol groups. This prevents unwanted 

polymerization of the polysiloxanes and extends shelf life while leaving functional groups (e.g., 

acetoxy) on the siloxane chain that are readily hydrolyzed upon exposure to water. The uncured 

polysiloxanes are stored away from moisture until ready for use. Upon exposure to moisture 

(e.g., humidity in the air), the polysiloxane chains are hydrolyzed and rapid crosslinking ensues. 

Usually, crosslinking is catalyzed by titanates or other metal organics. In the case of alkoxy 

systems as described here, crosslinking is catalyzed by the same DBTDL catalyst commonly 

used for dehydrogenative coupling. Importantly, unlike the Pt cure RTV chemistries described in 

section 1.2.2.1, moisture cure silicones produce a significant volume of liquid byproducts 

including water, carboxylic acids (from alkoxy functional siloxanes), ketones (from enoxy 

functional siloxanes), alcohols (from alkoxy functional siloxanes), amines (from amine 

functional siloxanes), and ketoximes (from oxime functional siloxanes). These byproducts can 

influence final silicone structure and properties and cause significant shrinkage upon curing. 
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Figure 1.7 Generalized reaction mechanism for the polycondensation of hydroxyl functional 
siloxanes. This chemistry is the intermediate, but most relevant, step in the crosslinking of 
moisture cure silicones. 

 

 

1.2.2.4 UV Initiated Cure 

Silicone polymers can be crosslinked through cationic, anionic, or radical UV initiation 

via reactive functional groups on the polysiloxane backbone. These chemistries mimic UV 

initiated chemistries of similar organic polymers.29-33 Epoxy, mercapto, and acrylate functional 

siloxanes are most commonly found in UV curing silicone formulations. UV initiated cure is 

much less common than the curing mechanisms described in sections 1.2.2.1-3, and is used only 

for very specific applications including silicone-epoxy composites,34 membranes for fiber optics 

and sensors,35 and occasionally in soft lithography.36-37  
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1.3 Applications of Bulk Silicones 

 Silicones have been the center of much research over the past century. In 1904, Frederic 

Stanley Kipping noticed a polymeric byproduct obtained from the hydrolysis of chlorosilanes 

which he termed ‘silicone’.38-39 Kipping is known as the father of silicon chemistry and his 

research contributed significantly to James Franklyn Hyde’s development of the first useful 

industrial silicone material, an insulation material used by Corning Glass Works (Dow Corning 

Corp.).40-41 Since then, silicone chemistries and industrial applications of these materials have 

become increasingly diverse. An overview of silicone products and their uses is given in 

Table 1.2.42 This section will briefly describe the properties and applications of bulk silicone 

materials. 

 

 

Table 1.2 Silicone products and their uses.42  

Commercial product Use 

fluids: heat-stable liquids 
lubricants, water repellents, defoamers, release agents, 

surfactants 

filled fluids and gums 

valve lubricants, moisture proof sealants for electrical 

connectors, pressure-sensitive adhesives, personal care 

products 

grease: fluid and carbon black or soap nonflow lubricants, polishes 

resins: cross-linked materials 
electrical insulation, lubricant and paint additives, 

release formulations, water  repellents 

rubbers: fluids or gums and surface-treated electrical insulation, medical devices, seals, 

fillers; elastic with good tensile strength textile coatings, foams 
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1.3.1 Properties of silicones 

 Silicone polymers have unique properties that make them ideal for a wide range of 

applications. The –Si–O–Si– linkages within the inorganic backbone offer extreme flexibility in 

comparison to hydrocarbon analogues. Though Si and C are both Group 14 elements, the larger 

atomic radius and lower electronegativity of Si lead to a longer Si–O bond (1.62 Å versus 1.43 

Å)43 with a wider bond angle (130° versus 111°)43 and substantially higher ionic character. The 

partial ionic character of the Si–O bond means a higher bond dissociation energy and higher 

chemical and temperature stability. Si bonds generally have a much lower barrier to rotation 

compared to their carbon analogues which leads to better orientation of surface active groups. 

Silicones have one of the most open, flexible structures of any polymer with some of the highest 

free volumes and lowest glass transition temperatures (Tg ~ -120 °C).44 

 In addition, silicones have high gas permeability,3 are biologically compatible,1 have high 

optical clarity, and good dielectric properties.44 They are also biodegradable45 and hydrophobic 

(contact angle of water on PDMS film is ~110 °C).46 Silicone polymers’ high free volume causes 

substantial swelling (dependent on crosslinking ratio and chemical functionality) upon exposure 

to organic solvents, especially hydrocarbons.47 Silicone fluids (linear polysiloxanes) have low 

melting points and are non-flammable, which leads to a wide available temperature range for 

use. Through doping with phenyl substituents, polydimethyl silicone fluids can have pour points 

as low as -100 °C and can withstand temperatures up to 150 °C in air or 300 °C under inert 

atmospheres. This temperature range is much larger than is typical for petroleum oils.42 The 

properties of silicone polymers have been discussed extensively elsewhere; the interested reader 

should refer to references 48 and 49 for more information.48-49  
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1.3.2 Applications of Silicone Fluids 

 For this discussion, the term silicone fluid will refer to any linear liquid or semi-liquid 

polyorganosiloxane. Refer to section 1.2.1 for information about the synthesis of silicone fluids. 

The rheological properties of silicone fluids are determined by their molecular weight and 

chemical functionality. Unsurprisingly, the most common silicone fluid for industrial use is 

linear polydimethylsiloxane. Silicone fluids are used extensively in modern technology as 

coatings, lubricants, damping fluids, heat transfer fluids, release agents, etc.50 The biological 

compatibility of silicones allows for numerous applications in the medical,51-55 culinary,2 and 

cosmetic2 industry. Most commonly, silicone additives in food and cosmetics are used as an 

antifoaming agent. The low surface energy, water insolubility, and thermal and chemical stability 

of silicone fluids allow for effective foam prevention in the processing of foods, beverages, and 

beauty products (e.g., shampoos). The high gas permeability also makes silicones ideal additives 

to topical creams for both medical and cosmetic uses.  

Select products that contain silicone oils are shown in Figure 1.8. Coatings: Silicone 

additives are used in paint formulations to improve, for example, wetting, surface levelling, gloss 

and color, scratch resistance, adhesion, and processing.56 Lubricants: Silicone oils and greases 

are common lubricants. In the lab, silicone greases are used as a lubricant for glassware joints; in 

industry, silicone oils are used to reduce friction in metal or plastic automotive and 

manufacturing equipment. Silicone oils are generally preferred lubricants due to their wide 

temperature capability, oxidation resistance, and non-flammability.2 Release Agents: Their low 

surface tension, high heat stability, and oxidation resistance make silicone release agents ideal 

for use in molding metals, plastics, elastomers, and concrete.57   Personal Care Products: 

Silicone fluids are found in the majority of personal care products, including those for hair care, 
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hygiene, skin care, sun protection, and cosmetics. Advantages include antifoaming, wash off 

resistance, SPF enhancement, conditioning (i.e., a “silky” feel) low VOCs, and better color.2 

Medical: Silicone fluids are used in implants, topical creams, and in the repair of detached retina. 

In retinal detachment repair, the eye is filled with silicone oil which presses the retina back into 

place.51-55 Food additives: Silicone oils are used as an anti-foaming agent in the food and 

beverage industry. Silicone oils are especially common in fried fast food (e.g., McDonald’s 

chicken nuggets and Wendy’s French fries). The low water solubility, high heat stability, 

biocompatibility, and low surface energy make silicone oils ideal for these applications.2 

 

Figure 1.8 Examples of commercial products that contain silicone fluids. All images are under 
either public domain or creative commons licensure. 

Silicone 
Fluids
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1.3.3 Applications of Silicone Rubbers 

 For this discussion, the term silicone rubber will refer to any crosslinked 

polyorganosiloxane that retains its shape at room temperature and is elastomeric. Refer to 

section 1.2.2 for information about the synthesis of silicone rubbers. The industrial applications 

of silicone rubbers are as diverse as for silicone fluids. These include uses in coatings (to impart 

water repellency58-61 or act as an anti-fouling agent for surfaces immersed in seawater),2, 62 

adhesives,63 medical devices,1, 51, 64 mold making/lithography,65 gas chromatography stationary 

phases/microextraction materials,3, 66-67  oil remediation materials,68-70 microfluidics,71 sensors,72 

and even children’s toys (e.g., Silly Putty).73  

Figure 1.9 shows selected uses for silicone rubbers. Coatings: Silicone rubber can be 

used to coat almost any material. Textile fabrics, especially leather, can be immersed in uncured 

silicone polymer which is cured upon textile saturation (pictured). This imparts water repellency, 

resistance to UV, heat, and oxidative degeneration, and improved durability, flexibility, and 

adhesion while maintaining fabric breathability.2 Silicone coatings also prevent biological 

fouling of surfaces.2, 62 Adhesives: Perhaps the most famous example of silicone rubber used as 

an adhesive is 3M’s Post-it notes (pictured). The pressure sensitive silicone rubber adhesive 

allows for the paper to stick when pressed, but easily peel off without ripping the underlying 

paper.74 Silicone adhesives are also commonly used in the medical industry.75  Medical Devices: 

Silicone’s high biocompatibility, stability, and low Tg makes it an ideal material for medical 

devices and implants (e.g., pacemaker, catheter, hydrocephalic shunt (shown in image)).1-2, 51, 64  

Microfluidics: Over the past 20 years, PDMS has grown to be the most common microfluidic 

substrate. Its low cost, rapid cure, and ease of use have contributed to its widespread use. The 

high biocompatibility, gas permeability, and low elastic modulus make silicone rubbers ideal for 
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microfluidics probing biological specimens or those with valves, pumps, or multiple layers.71  

Mold Making: Silicone rubbers are commonly used to make high fidelity molds for plastic parts, 

ceramics, foods, etc. Their low cost, flexibility, low surface energy (i.e., low adhesion), ease of 

processing, chemical resilience, and wide temperature range have made silicone rubbers the 

material of choice for molding materials for hobbyists, chefs, researchers, and industry.65 Analyte 

Sorption: Silicone rubbers’ high hydrophobicity and gas permeability make it ideal for absorbing 

hydrophobic molecules. This has led to its use in GC stationary phases (pictured), 

microextraction materials, oil adsorption materials, and sensors.27, 40, 44, 63, 66, 70 

 

Figure 1.9 Examples of products that contain silicone rubbers. All images are under either public 
domain or creative commons licensure except the medical device image which was reproduced 
from reference 2. 

Silicone 
Rubbers
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1.3.3.1  Silicone Rubbers in Healthcare 

Silicone rubbers are used in medical devices that experience prolonged exposure to 

biological fluids and tissue (e.g., pacemaker, catheter, hydrocephalic shunt), as adhesives for 

medical patches, in pharmaceutical formulations, and even as a therapeutic agent (e.g., antacid, 

antiflatulent, and treatment of various urinary disorders).1-2, 51, 64, 76-77  The use of silicones in the 

medical field dates back to nearly 60 years ago when silicones were first used as coatings to 

prevent blood clotting78 and as tubing in biliary surgery.2 Silicones are generally classified as 

both biocompatible and biodurable. Biocompatibility is assessed by standards which account for 

the intended application and is defined as “the ability of a material to perform with an 

appropriate host response in a specific situation.”79 Biodurability is a measure of a material’s 

ability to withstand host interactions with minimal or limited effect on the material. This 

biocompatibility of silicones is thought to be related to silicones’ hydrophobicity, while its 

biodurability is attributed to thermal and chemical stability.80 For more information on silicone 

rubbers in the healthcare industry, the interested reader should refer to section 11.5 in 

Biomaterials Science80 or section 17 of the chapter Silicones in Industrial Applications in 

Inorganic Polymers2 and the references cited therein.  

Over the past 40 years, the development of controlled drug delivery and extended drug 

release systems has received much attention. These systems often use polymers, either as 

emulsions, hydrogels, microspheres, or in bulk form.81-83 Because of their prevalence in the 

healthcare industry, silicone polymers are an obvious choice for controlled release materials. 

Silicone polymers have been successfully incorporated into many extended drug release systems, 

most notably release of active pharmaceutical ingredients (APIs) from contacts84-86 and vaginal 

rings.87-88 Silicone microspheres (hundreds of micrometers in diameter) have been used as a
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Figure 1.10 Examples of silicone controlled release materials and their release profiles. 
(a) Silicone microspheres containing pH sensitive hydrogels (up to 35 wt%) loaded with up to 
15 wt% prednisolone (SEM in inset) are used as a model for pH-controlled gastrointestinal drug 
delivery. Drug release profile at various pH is shown. Drug release into 10 mL dissolution 
medium (GI fluid mimic) at 37 °C.89 (b) Ultrasound-triggered drug release system containing 
ibuprofen loaded (15 wt%) mesoporous silica microspheres embedded in PDMS elastomer film. 
Release profiles for ibuprofen from mesoporous silica, PDMS, and PDMS embedded with 
mesoporous silica are shown. Drug release into 20 mL PBS at 37 °C; ultrasonic irradiation was 
performed using an ultrasonic bath.90 (c) Cumulative percent drug release of acetaminophen 
from silicone elastomer matrix containing (×), 97.5% (+), 95% (♦), 90% (▴), 85% (■), and 80% 
w/w (●) acetaminophen. Means ± SD (n = 3). Drug release of acetaminophen:silicone tablets 
into 900 mL intestinal fluid simulant at 37 °C.91 (d) Silicone elastomer with dexamethasone 
crystals embedded (SEM on left, crystals shown with arrow) is used as a coating for cochlear 
implants. The drug release profile (right) of dexamethasone released from the silicone thin film 
(amount released/amount loaded x 100) shows dependence on the initial concentration of 
dexamethasone. Drug release into 500 mL artificial perilymph at 37 °C. 92 

 

a b
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gastrointestinal drug delivery material (Figure 1.10a),89 silica microspheres suspended in PDMS 

has been used as an ultrasound-triggered smart drug release material (Figure 1.10b),90 silicone 

adhesives have been used to delay drug release in tablets and transdermal patches (Figure 

1.10c),91 and doped silicone coatings have been used for extended drug release from implanted 

medical devices (e.g., cochlear implants, Figure 1.10d).92 

1.3.3.2 Silicone Rubbers as Absorbers 

 The high hydrophobicity and large free volume of silicone rubbers cause rapid and 

efficient uptake of hydrophobic small molecules, hydrocarbons, and other organics.47 In fact, the 

uptake of small hydrophobic molecules by bulk PDMS, including dyes and drugs, is a commonly 

reported problem for microfluidic applications.93-95 These sorption characteristics, however, 

make silicones ideal materials for technologies that rely heavily on selective and efficient analyte 

sorption, such as separation (e.g., chromatography), oil spill remediation, preconcentration (e.g., 

solid phase microextraction, SPME), and sensors.27, 40, 44, 63, 66, 70  

 Silicones are the most widely used stationary phases for gas chromatography. Gas 

chromatography stationary phases must satisfy specific requirements: they must be chemically 

inert, non-volatile, thermally stable, and have high, selective gas permeability. Additionally, the 

low surface tension of silicones makes thin film coatings relatively simple to achieve compared 

to alternative polymers. Silicone chemistry is well-developed, and tailoring silicone functionality 

to meet specific separation requirements is also easily done.96 Silicones are also used as 

preconcentrators for non-polar organic molecules in SPME (Figure 1.11a) and similar sorptive 

techniques; PDMS was one of the earliest extraction phases tested for use in SPME.3, 67 A more 
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thorough discussion of gas chromatography and silicone stationary phases can be found in 

section 4.2.3. 

 The same properties described above, especially the high gas permeability and selective 

sorption, have led to the use of silicones in gas separation membranes. Industrial applications 

that use polymeric gas separation membranes include air separation (enriching with O2 or 

obtaining high purity N2), hydrogen separation in petrochemical/oil refineries (H2/N2, H2/CH4, 

H2/CO), and separation of CO2 from natural gas in flue gas.97-98 Silicone rubbers are found today 

in membranes from Membrane Technology and Research (MTR) and Hemholtx Xentrum.99 The 

permeation of gases through these membranes is highly dependent on the side groups attached to 

the Si–O backbone. As substituents get larger, the inherent flexibility of the siloxane chains 

decrease, lowering the free volume within the polymer and decreasing the permeability. This is 

opposite to polyolefins and other organic polymers. As such, PDMS is more permeable to gases 

than silicones with bulkier substituents (diphenyl, trifluoropropyl, etc.).66, 100 

 The high absorption capacity of silicone polymers, especially for hydrocarbons, has led to 

the development of silicone materials for oil spill remediation. Recently, a porous PDMS 

“sponge” was synthesized using a dissolvable sugar or NaCl template (Figure 11b). The high 

surface area of the silicone sponge and high solubility parameter for hydrocarbons and organic 

solvents 47 allow for oil adsorption capacities between 200 wt% and 1100 wt% depending on the 

organic solvent tested. Moreover, because silicones are highly elastic, the absorbed oil is 

recoverable by simply squeezing the silicone sponge.101 Similar silicone “sponges” have been the 

subject of much research over the past several years.70, 102-104 The adsorption capacities, 

especially for low molecular weight hydrocarbons, of silicone sponges are some of the highest 

reported of oil spill remediation materials.105-111 
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Figure 1.11 Examples of applications for silicone rubbers that capitalize on the high absorption 
capacity of silicones. (a) Solid phase microextraction (SPME) device used for time weighted 
average sampling. The SPME fiber can be coated in polysiloxane.3 (b) Porous PDMS sponge 
used in oil spill cleanup. Image on right shows selective absorption of oil (dyed red) over water 
(clear). Image on left shows compressibility of silicone sponge; top image shows sponge fully 
compressed, bottom image shows sponge uncompressed.101 (c) Diagram of a sorption based 
sensor. Silicones can be used as the sorptive thin film. 112 
 

Silicones also have applications in sensing technology, especially gas-phase 

chemiresistive or refractive sensors, as permselective membranes to improve selectivity to target 

analytes, and as protective coatings for sensor components (e.g., fiber optics, LEDs) subject to 

extreme environments. 112-114 Most relevant to this work is the use of silicones as selective 

absorbers for analyte sensing. The high absorption capacity of gases and organics can cause 

a

b

c
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resistance changes and index of refraction/optical changes of sensor elements made from 

silicones (Figure 1.11c).115-116 Usually, sensors which rely solely on polymeric absorbers have 

limited limits of detection (> 1% sat. vap. pressure) and poor selectivity.117 A more detailed 

discussion of sensor elements and sensor arrays is given in sections 4.4 and 4.5. 

1.4 Silicone Micromaterials 

Common silicone microsphere synthetic methods can be broadly split into two 

categories: emulsion/suspension polymerization5-7, 9-10, 118-119 and a Stöber-like synthesis from the 

monomers dimethyldiethoxysilane and methyltriethoxysilane (MTES).14, 119-121 The former 

produces stable, solid microparticles of silicone rubber, the latter produces particles of weakly 

crosslinked silicone gels which are only stable in solution. Emulsion polymerizations that use 

common laboratory equipment (e.g., vortex shakers, mechanical stirrers) generally produce 

large, polydisperse microspheres in the tens to hundreds of µm range with multimodal 

distributions, Figure 1.12a & b.5-6, 119 PDMS spheres synthesized via the Stöber-like process are 

generally smaller in size; diameters can be in the hundreds of nm range, Figure 1.12c. These 

spheres are, however, fragile and can be dissolved in common solvents (e.g., ethanol).120-121 

Additionally, size control in this method is coupled directly to composition (i.e., concentration of 

MTES), and the silicone product has a large ratio of T:D structural units.120  
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Figure 1.12 Silicone micromaterials reported in the literature using common synthetic methods. 
(a) Size distribution and (inset) SEM of solid silicone microspheres prepared via a suspension 
polymerization of silicone oligomers with polyvinylalcohol as the suspension stabilizer. Vinyl-
terminated and hydride functionalized silicones were cured at 45 °C for 8 hours via a Pt catalyst 
with stirring speeds varying from 500-700 rpm.9 (b) Typical size distribution histrogram for solid 
silicone microspheres prepared via an emulsion polymerization of silicone oligomers with 
sodium dodecyl sulfate as the emulsion stabilizer. The emulsion of Dow Corning’s Sylgard 184 
in a ratio of 10:1 (Part A:Part B). Stirring speed started at 2000 rpm and was decreased to 500 
rpm and finally decreased to 110 rpm. The temperature was increased to 85 °C after the emulsion 
mixing speed had been decreased to 500 rpm.6 (c) Transmission electron micrograph of silicone 
gel microspheres prepared from a 1:1 volume ratio of dimethyldiethoxysilane and 
methyltriethoxysilane via a Stöber-like synthesis. Average particle size is 350 ± 110 nm.120 

 

Less common synthetic methods include the synthesis of liquid PDMS microspheres by 

rapid expansion of a supercritical solution,11 synthesis of crosslinked PDMS magnetic 

microspheres using a microfluidic channel (Figure 1.13a)8 formation of PDMS microparticles 

via grinding silicone tubing under liquid nitrogen,4 and “one-at-a-time” syntheses of PDMS 

a c

b
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microspheres curing individual droplets of silicone oligomers  (Figure 1.13b).14, 122 These 

methods are cumbersome, have a low production rate, produce relatively large microspheres 

(>100 µm to 1 mm in diameter), and have, therefore, gained little traction commercially.  

 

 

Figure 1.13 Examples of alternative synthetic methods for silicone microspheres. (a) Magnetic 
silicone microspheres prepared using a microfluidic channel. The microfluidic chip (top) is 
fabricated from PDMS and has a main channel 900 μm deep x 900 μm wide. Schematic 
illustration of the magnetic silicone microsphere fabrictation process (bottom) with optical 
microscopic image of core-shell magnetic silicone microspheres (inset). Uncured droplets were 
collected in a beaker of sunflower oil heated to 120 °C where the PDMS shell was rapidly cured. 
Microspheres ranged from ~75 µm to ~250 µm in diameter.8 (b) Silicone microsphere formation 
using a liquid electro-drawing 3D-lithography approach. A liquid PDMS droplet is placed on a 
glass substrate and a lithium niobate crystal, which is heated to create positive charge on the 
surface, is brought in contact with the droplet (top left). This causes a PDMS bridge between the 
glass and lithium niobate crystal to form (top right) which spontaneously creates a liquid PDMS 
bead at the bridge center (bottom left) that can then be cured using a thermal stimulus. An optical 
image of a PDMS bead with a 37 μm diameter is shown on the bottom right.122 

 

a b
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An industrially viable and versatile method for producing silicone micromaterials has 

remained elusive. Silicone rubbers have proved incredibly valuable as bulk materials, and we 

anticipate silicone micromaterials will prove equally valuable. An easily tunable method for 

producing silicone micromaterials in large quantity is necessary before the applications of 

silicone micromaterials can be appropriately explored. Additionally, a synthetic method which 

allows the formation of functional silicone microparticles (e.g., copolymeric, fluorescent, 

magnetic, etc.) would further facilitate the exploration of potential applications for silicone 

micromaterials. 

1.5 Ultrasonic Spray Pyrolysis (USP) 

 Ultrasonic spray pyrolysis (USP) is an aerosol synthetic technique (Figure 1.14a) which 

uses a piezoelectric transducer vibrating at ultrasonic frequencies (~ 1.65 MHz) to nebulize a 

liquid precursor solution into isolated droplets (Figure 1.14b). This fine mist is swept through a 

reaction zone (e.g., tube furnace) via a carrier gas where solvent evaporation, densification, and 

chemical reactions can take place. USP is a one-step, continuous, aerosol process that produces 

microspheres that are generally microns in diameter with relatively narrow size distributions and 

has been previously utilized to make microspheres of various materials, including porous 

silica,123  porous carbon,124-125 metal oxides and composites,126-128 and metal sulphides.129-130 

Within this chapter is an introduction to ultrasonic nebulization and an overview of materials 

made by ultrasonic spray pyrolysis. If more information on spray pyrolysis is desired, the reader 

is directed to the introductory chapters of references 131-134 and the references cited  

therein.131-134  
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Figure 1.14 Ultrasonic Spray Pyrolysis. (a) Typical reaction setup. (b) Photograph of an 
ultrasonic fountain produced at precursor solution surface during typical USP reaction 
conditions. 123 

 

1.5.1 Aerosol Generation  

 For spray pyrolysis techniques, how the aerosol is produced affects final particle size, 

product size distribution, and overall throughput. Specifically, the average particle diameter is 

directly related to average droplet diameter according to equation 1.1135 

𝐷𝐷𝑝𝑝 = � 𝑀𝑀𝐷𝐷𝑑𝑑
3𝐶𝐶

1000𝜌𝜌𝑝𝑝
�
1
3�
        (1.1) 

where Dp is the average particle diameter, Dd is the average droplet diameter, M is the molecular 

weight of the precursor, C is the concentration of the precursor, and ρp is the product density. 

Aerosols can be generated in a variety of ways,  for example, by jet, gas-assisted, rotary,135-136 
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electrostatic,137 ultrasonic,138-139 and vibrating orifice aerosol generators (VOAG). 140-141 Each 

method has its own advantages and disadvantages, as outlined in Table 1.3 

 

Table 1.3 Nebulization methods commonly used in spray pyrolysis.133, 135 

Nebulization 
Method 

Average Droplet 
Diameter (µm) 

Droplet Size 
Distribution 

Gas Flow 
Rate 

Droplet 
Delivery Rate 

Jet 10-1000 Broad Low High 

Air-assisted <1000 Broad High High 

Rotary 10-1000 Broad Low High 

Electrostatic 0.01-1000 Very Narrow Low Low to High* 

VOAG 20-400 Very Narrow Low Medium 

Ultrasonic 
(Nozzle) 

10-1000 Medium Low Medium 

Ultrasonic 
(Submerged) 

1-10 Narrow Low Medium 

*Small size has low delivery rate, large size has high delivery rate 
**VOAG: vibrating orifice aerosol generator 

 

 

 Ultrasonic nebulizers in USP use an ultrasonic transducer submerged within a liquid 

operating at frequencies between 1.6 MHz and 2.4 MHz. The ultrasound propagates through the 

liquid, and a standing capillary wave forms on the surface of the liquid.135, 138, 142-143 When the 

ultrasonic intensity is high enough, the crests of the waves are broken into droplets which are 

thrown into the air, producing the aerosol mist. The diameter of these droplets is determined by 

the Lang equation, equation 1.2138 

    𝐷𝐷𝑑𝑑 = 0.34 �8𝜋𝜋𝜋𝜋
𝜌𝜌𝑓𝑓2

�
1
3�     (1.2) 
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where Dd is the average droplet diameter, γ is the surface tension of the liquid, ρ is the density of 

the liquid, and 𝑓𝑓 is the frequency of the transducer. Typical droplet diameters are 2-3 µm for 

commercial systems. The advantages of nebulization using a submerged ultrasonic transducer are 

low gas and liquid flow rates, relatively narrow size distribution, small size, and moderate 

throughput.  

1.5.2 Materials Synthesized Using USP 

 USP has been used to make a wide variety of materials. The chemical composition, size, 

and morphology of the resultant product can be easily controlled by carefully selecting the 

concentration and identity of precursors in the nebulized solution. This section will describe 

various materials that have been successfully synthesized using USP. 

1.5.2.1 Inorganic 

USP has been used to synthesize metal oxides, ceramics (e.g., metal sulfides, nitrides, 

and carbides), and a variety of porous or microstructured inorganic materials. These materials 

include microspheres or films of metals,144-145 CaO,126 ZnO,146-148 Fe2O3,128, 149 MoO2,150 SiO2,123, 

151 TiO2,152-153 SnO2,154 LiMn2O4,155-156 PbO4,157 BiVO4,158 Bi2WO6,159 TiO2/SiO2,127 

Y3Al5O12:Ce,160 TiN,161 MoS2,130, 162 ZnS:Ni2+,129 sulfide photocatalysts,144 and selenides.163-164 

The typical reaction pathways for these materials are shown in Figure 1.15. Each droplet is very 

small, so heat transfer through the droplet is rapid. Evaporation of the solvent in the nebulized 

solution occurs quickly and can lead to selective precipitation of precursor at the edge of the 

droplet, forming hollow spheres. Porous or microstructured materials are easily synthesized in 

one of two ways: (1) in situ gas evolution or (2) sacrificial templating. Gas evolution, usually 
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from the decomposition of precursor components, can lead to porous, hollow, or even 

fragmented particles. Sacrificial templating with polymers, SiO2, or salts has been successfully 

used to make porous materials or, in extreme cases, nanowires, nanoplates, and other 

nanostrucutres.165-168 If the nebulized solution contains more than one precursor, phase 

separation can occur, producing core-shell morphologies. Examples of inorganic materials made 

using USP are given in Figure 1.16. 

 

Figure 1.15 Reaction pathways possible in ultrasonic spray pyrolysis. (a) General pathways for 
single component precursor solutions to produce porous (via in situ gas evolution), solid, hollow, 
and fragmented microparticles. (b) General pathways for multi-component precursor solutions to 
produce core-shell or porous (via sacrificial templating) microparticles. 
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Figure 1.16 Examples of inorganic materials synthesized using USP. (a) SEM and TEM (inset) 
of iron oxide microspheres with extremely high surface area (up to 300 m2/g) prepared by USP 
as reported by Overcash & Suslick. Microspheres prepared from nebulization of a solution of 0.2 
M Fe(NO3)3 and 0.2 M Na2CO3. Furnace temperature was 500 °C.128 (b) TEM and SEM (inset) 
of hollow metallic aluminum particles prepared by USP as reported by Helmich & Suslick. 1 M 
trimethylamine aluminum hydride in toluene was nebulized and sent through a furnace at 200 °C 
which contained TiCl4. 145 (c) SEM and TEM (inset) with electron diffraction pattern of 
hexagonal NaInS2 nanoplates prepared via salt-templated USP as reported by Mann, Wicker & 
Skrabalak. An aqueous solution of InCl3 · 4H2O and Na2S · 9H2O was nebulized and sent 
through a furnace at 625 °C. Nanoplates were isolated by washing to remove the NaCl salt 
tamplate. 166 (d) TEM and SEM (inset) of ball-in-ball SiO2:TiO2 microspheres prepared by USP 
as reported by Suh et al. An aqueous solution containing TiIV complex, colloidal silica 
nanoparticles, and a cobalt salt was nebulized and carried through a furnace at 700-900°C. The 
CoII facilitated phase separation producing the core-shell morphology and the silica in the 
resultant product was partially etched with HF to produce the porous titania shell and 
freestanding silica core.127 

 

a b
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1.5.2.2 Organic 

 The most successful and prevalent examples of organic materials synthesized by USP are 

porous carbons.124-125, 169-173 Examples of porous carbons synthesized by USP are shown in 

Figure 1.17 and 1.18. Of interest to this dissertation is the USP synthesis of polymers. USP 

polymerizations are infrequent in the literature. Most examples of USP which incorporate 

polymers have either used them as a sacrificial template151 or as components secondary to the 

inorganic material (e.g., as a binder).174-175  

 

Figure 1.17  SEMs of porous carbon microspheres prepared via USP as reported by Skrabalak & 
Suslick. Aqueous solutions of 1.5 M alkali metal chloroacetates or dichloroacetates are nebulized 
and pyrolyzed at 700 °C. The temporary salt template that forms during pyrolysis is removed by 
the aqueous workup. Different morphologies are observed for different alkali metal precursors 
(a) lithium chloroacetate; (b) sodium chloroacetate; (c) potassium chloroacetate; (d) lithium 
dichloroacetate; (e) sodium dichloroacetate; (f) potassium dichloroacetate.173 
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Figure 1.18 SEM (top) and TEM (bottom) of porous carbons prepared by USP as reported by 
Xu et al. Aqueous solutions of 1.0 M propiolates are nebulized and pyrolyzed at 700 °C. 
Different morphologies are observed for different propiolates (a and d) lithium propiolate; (b 
and e) sodium propiolate; (d and f) potassium propiolate. 

 

Aerosol polymerization, however, is a rapidly growing field with numerous examples of 

photopolymerized and heat-cured polymer microspheres.176-182 The reaction time in aerosol 

polymerization is generally much shorter than that is required for bulk cure. This reduced 

reaction time is offset by the much higher surface area to volume ratio, rapid heat transfer, and 

high photon depth of penetration relative to total material depth. As such, many polymerization 

mechanisms that are successful in bulk are amenable to aerosol polymerization with appropriate 

adjustments to reaction conditions. Examples of polymer microspheres produced using aerosol 

polymerization synthesis are shown in Figure 1.19.  
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Figure 1.19 Examples of materials prepared via aerosol polymerization. (a) SEM of 
monodisperse polyacrylate microspheres (scale bar not given, reported particle diameters 
between 5 μm and 50 μm were achieved) as reported by Esen & Scheiger. Aerosol of a 
commercially available photoactive multiacrylate polymerization formulation diluted in organic 
solvent was achieved with a vibrating-orifice generator and sent through a UV-fluorescent strip 
lamp.177 (b) SEM of crosslinked polydivinylether microspheres prepared via cationic 
photopolymerization of aerosol droplets formed via a spray nozzle as reported by Akgün et al. 
The aerosol was generated from a solution of monomer and photoinitiator without the addition of 
solvent. The reaction zone was a cylindrical quartz tube surrounded by six UV fluorescent tubes 
emitting between 270 and 360 nm.180 (c) SEM of polyacrylate “nanocaps” prepared via 
photoinitiated crosslinking of methylmethacrylate with 1,6-hexanediol diacrylate in the presence 
of a glycerol/ethanol solution as reported by Akgün et al. Aerosol photopolymerization was 
performed using a similar aerosol generator and photopolymerization reaction chamber as 
described in (b).176 (d) SEM of polyacrylate “mosaic nanostructures” prepared via photoinitiated 
crosslinking of 1,6-hexanediol diacrylate in the presence of a non-volatile solvent immiscible 
with the crosslinked acrylate as reported by Akgün et al. Aerosol photopolymerization was 
performed using a similar aerosol generator and photopolymerization reaction chamber as 
described in (b).176  

 

a

c

b
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1.6 Summary and Outlook 

 As this introduction has shown, silicones are an extremely important part of modern 

technology. Silicones are thermally and chemically stable even under harsh conditions, optically 

transparent, biocompatible, biodurable, hydrophobic, and environmentally benign. Silicones also 

have high gas permeability and low surface tension and are extremely inexpensive and easy to 

process. Silicone chemistry is well-developed and silicones with diverse and varied chemical and 

materials properties can be easily and efficiently prepared. These factors have led to the 

incorporation of silicones in an amazing number of products.  

Despite the prevalence of bulk silicones in today’s society, silicone micromaterials are 

nearly absent from the research or industrial community. The synthesis of silicone 

micromaterials has remained elusive, largely due to problems with the emulsion polymerization 

from silicone oligomers. The same chemical and material characteristics that make silicones 

ideal for the applications discussed in this section, namely hydrophobicity and low surface 

tension, cause the droplets in silicone emulsions to coalesce and aggregate upon curing. 

Conveniently, the aerosol created in USP isolates silicone oligomers into individual droplets 

during curing. This scalable synthetic process can be used to make silicone microspheres <10 µm 

for the first time in a versatile way, facilitating the exploration of the applications of these 

silicone micromaterials.  

Part I of this dissertation describes the synthesis and characterization of solid, 

copolymeric, magnetic, fluorescent, core-shell, and hollow micron-sized silicone spheres 

prepared via USP. Applications of these materials as extended release agents for 

pharmaceutically relevant compounds and as oil absorption materials are briefly explored.  
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CHAPTER 2: 

SILICONE MICROSPHERES FROM ULTRASONIC SPRAY PYROLYSIS 

 

2.1 Introduction 

This chapter is taken in part from the following reference: 

Rankin, J. M.; Neelakantan, N. K.; Lundberg, K. E.; Grzincic, E. M.; Murphy, C. J.; Suslick, K. 
S., Magnetic, Fluorescent, and Copolymeric Silicone Microspheres. Adv. Sci. 2015, 2, 1500114. 

This chapter describes the synthesis of solid silicone microspheres with diameters of 

~ 1 µm using ultrasonic spray pyrolysis (USP). These microspheres are prepared from 

commercial silicone kits and commercially available oligomers. Synthetic control over size, 

crosslinking density, composition, and swelling is shown. Also described is the development of a 

synthetic technique new to the Suslick group, ultrasonic spray photochemistry (USPh), which is 

similar to USP but uses low power, low illumination LED light strips to drive photochemical 

polymerizations within the reaction zone. USPh is used to make acrylate and silicone 

microspheres. The potential for polydimethylsiloxane (PDMS) microspheres prepared by USP as 

pharmaceutical extended release materials is also explored. The PDMS microspheres are shown 

to be highly bioinert, are found to be taken into cell cytosol, and show impressive drug loading 

capacities. Initial studies on the extended release of small organic molecules from silicone 

microspheres are also given.  

2.2 Experimental Methods 

2.2.1 Microsphere Synthesis 

As shown in Figure 2.1, a 1.65 MHz piezoelectric transducer is used to nebulize a 

precursor solution (c.f. section 2.2.2) into a mist of micrometer-sized droplets. The aerosol is 
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carried into and through a vertical heated furnace tube via an inert argon stream at 0.4 -1.0 slpm. 

The droplets act as micron-sized reaction vessels; the precursor solvent quickly evaporates and 

silicone oligomers, catalyzed by a Pt catalyst, crosslink in the heated furnace (300 °C). The 

polymerization of silicones happens very quickly, as the residence time in the furnace is only 

~40 seconds, and since each droplet acts as an individual reaction vessel, individual 

microspheres are produced. The cured silicone microspheres are collected in ethanol or hexane 

bubblers. The bubbler solvent dissolves the uncured precursors, and easily disperses the cured 

microspheres. Following collection, the microsphere suspension was centrifuged at ~5000 rpm 

for 60 minutes (Fisher Model 225 centrifuge) until the microspheres formed a pellet in the 

bottom of the centrifuge tube. The supernatant was decanted, fresh solvent (~40 mL) was added, 

and the microspheres were re-dispersed via sonication. This washing protocol was repeated three 

times; the washed microspheres were suspended in hexanes and stored. The resultant product 

was characterized via SEM, TEM, TGA, FTIR, and RAMAN. 

 

Figure 2.1 USP reaction setup developed by the Suslick group. Text reflects experimental 
parameters used in this work. 

Bubblers

Piezoelectric
transducer

Argon
(0.4-1.0 slpm)

1.7 MHz

Furnace
(300 °C)
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2.2.1.1 USP Reaction Setup 

All custom glassware was made by the School of Chemical Sciences Glassware Shop at 

the University of Illinois. The ultrasonic nebulizer (Figure 2.2a) was made by the University of 

Illinois School of Chemical Sciences Electronics Shop. The incorporated piezoelectric transducer 

(Figure 2.2b) operates at 1.65 MHz; the board and electronics are from APC International, Inc. 

(#50-1011). A variac is incorporated into the nebulizer to control the intensity of the generated 

wave; all work was done at maximum intensity.  

  

 

Figure 2.2 Photographs of (a) Custom build ultrasonic nebulizer used in USP reactions.  
(b) Piezoelectric transducer and electronic board housed in base of (a). Image adapted from 
http://www.americanpiezo.com/products_services/nebulizers.html. 
 

 

The nebulization cell (Figure 2.3a) is a modified 1 L, three neck round bottom flask with 

24/40 ground glass joints. A 57 mm O-ring flat flange (Chemglass, #CG-138-02) has been fused 

to the bottom. A polytetrafluoroethylene (PTFE) membrane, ~ 50 µm thick, is used to separate 

the precursor solution from the water bath to minimize impedance mismatch and maximize the 

propagation of ultrasound from the piezoelectric transducer to the surface of the precursor 
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solution. This film is held in place by a custom clamp (Figure 2.3b & c) made by the University 

of Illinois School of Chemical Sciences Machine shop. To assemble the six-level clamp, six 

socket head cap screws (¼ in O.D., 2 in length) are inserted into the six equally-spaced ¼ in 

holes of the brass ring (9 cm O.D., 6 cm I.D., 2 mm thick) so the heads of the screws are flush 

with the table top and the brass ring sits on top of them. Next, a PTFE ring with similar 

dimensions is placed on top of the brass ring, followed by a second PTFE ring (5.6 cm O.D., 2.8 

cm I.D., 7 mm thick) with O-ring groove (4 mm wide, 1.5 mm deep). An O-ring is nestled within 

the groove and the PTFE membrane is placed between the O-ring and the nebulization cell. 

Finally, two half circle PTFE rings and brass rings with the same dimensions as the first brass 

ring are placed, in that order, on top of the lip of the nebulization cell. The PTFE spacers protect 

the glass and provide some elasticity to ensure even pressure, while the brass rings offer rigidity 

to the clamp. Pressure on the clamp is provided by nuts and washers secured to the socket head 

cap screws (Figure 2.3). Following assembly, the nebulization cell is placed in the water bath of 

the ultrasonic nebulizer and air bubbles trapped underneath the PTFE film are removed. 

 
Figure 2.3 USP nebulization cell and clamp assembly. (a) Photograph of assembled USP 
nebulization cell and clamp. (b) Photograph of individual pieces of the custom clamp used for 
sealing nebulization cell. (c) Schematic of clamp assembly. 
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 A standard rotary evaporator bump trap with a ground glass 24/40 joint is placed 

immediately above the nebulization flask to catch and condense any large droplets or splashing. 

A custom ground glass 24/40 joint (Figure 2.4a) with a long stem is inserted into one sideneck 

of the flask and connected to the carrier gas tank via tubing. The gas flow rate is controlled via a 

rotameter. The long stem facilitates efficient transfer of the nebulized precursor up into the 

furnace tube. The other sideneck of the flask is stoppered and used for precursor solution 

addition via needle and syringe during reaction. 

 Immediately above the bump trap is a vertically oriented quartz furnace tube (35 mm 

O.D., 32 mm I.D., 40 cm length; Quartz Scientific, Inc.; Figure 2.4b) with a 24/40 male ground 

glass joint at one end and a 35/25 ground glass ball joint at the other. The furnace tube is 

surrounded by a vertically oriented furnace (Omega CRFC-212/120-C-A) which is controlled by 

a variac. The furnace can reach temperatures up to 1100 °C; the furnace temperature is 

monitored by a K-type thermocouple inserted between the furnace and furnace tube oriented so 

the tip of the wire is approximated 1/3 down the length of the tube at approximately the hottest 

region of the furnace. 

 Above the furnace is an L-shaped glass adapter with a 35/25 ground glass socket joint at 

one end and a hose connector protruding from the top at a 90 degree angle from the vertically 

oriented furnace held in place with a c-clamp. Tygon tubing (7/16 in O.D.; 5/16 in I. D.) is used 

to connect the USP reaction setup to a series of four bubblers used for product collection. Each 

bubbler (e.g., Chemglass #CG-4515; Figure 2.4c) is filled with ~ 50 mL solvent. Solvent is 

added to the bubblers during reactions if levels within the bubbler fall below the bottom of the 

stem. 
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Figure 2.4 Glassware used in USP reaction setup. (a) Carrier gas inlet. (b) Furnace tube. (c) 
Exemplary product collection bubbler. 

 

2.2.1.2 Precursor Solution 

Sylgard 184 polydimethylsiloxane (PDMS) precursor was purchased from Dow Corning 

as a two-part kit. Sylgard 184 PDMS microsphere precursor solutions contained the PDMS 

precursor in a 2:1 base : accelerator (i.e., curing agent) ratio in hexanes or toluene. Gelest PDMS 

microspheres were synthesized using a precursor solution containing 1.4 v/v % Polydimethyl-co-

polymethylvinyl siloxane (0.8-1.2 % vinyl equiv. (VDT-123, Gelest Inc); 7.0-8.0 % vinyl equiv. 

(VDT-731, Gelest Inc.); 48-52 % vinyl equiv. (VDT-5035, Gelest Inc.), 1.4 v/v % 25-35% 

methylhydrosiloxane-dimethylsiloxane copolymer (HMS-301, Gelest Inc.), 0.02 v/v% platinum-

divinyltetramethyl-disiloxane complex in xylene (SIP6831.2LC, Gelest Inc.) in toluene. 

Polydiphenyl-co-polydimethylsiloxane microspheres were synthesized using a precursor solution 

containing 1.9 v/v % 15-17% diphenylsiloxane-dimethylsiloxane copolymer vinyl terminated 

(PDV-1625, Gelest Inc.), 0.07 v/v% HMS-301, and 0.02 v/v % SIP6831.2LX in hexanes. 

Male 24/40
ground glass joint

Stem:  3” long
7 mm OD
5 mm ID

Hose
connection

a

Male 24/40
ground glass joint

35/25 ball joint

Quartz tube
35 mm OD
32 mm ID

40 cm

b c
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Polytrifluoropropyl-co-polydimethylsiloxane microspheres were synthesized using a precursor 

solution containing 1.4 v/v% 35-45% trifluoropropylsiloxane-dimethylsiloxane copolymer vinyl 

terminated (FMV-4035, Gelest Inc.), 0.7 v/v% HMS-301, 0.02 v/v% SIP6831.2LC in hexanes. 

Polydimethylsiloxane-co-poly(propylene oxide-ethylene oxide) microspheres were synthesized 

using a precursor solution containing 1.4 v/v% 30% non-silicone dimethylsiloxane-

vinylmethylsiloxane-(propylene oxide-ethylene oxide) block copolymer (DBP-V102, Gelest 

Inc.), 0.7 v/v% HMS-301, 0.02 v/v% SIP6831.2LC in toluene. All other reagents were purchased 

from Sigma Aldrich and used as received without further purification. 

 

2.2.2 Characterization 

2.2.2.1 Scanning Electron Microscopy 

Generally, scanning electron micrographs were obtained on a JEOL 7000F instrument 

operating at 10 kV with a medium probe current and a working distance of 10 mm. Samples 

were prepared by freeze drying a suspension of silicone microspheres in methylcyclohexane on a 

Si wafer or by dropcasting a dilute solution of silicone microspheres in hexane on a hot Si wafer 

(70 °C) followed by immediate solvent evaporation. Samples were mounted to the holder via 

carbon tape and sputter coated with approximately 10 nm of Au/Pd prior to analysis to prevent 

surface charging. Size distribution analysis was performed using Image J software. 

2.2.2.2 Thermogravimetric Analysis 

Thermogravimetric analysis of the PDMS microspheres was obtained using a TA 

Instrument Q50 TGA. A 2.21 mg sample was heated from 20 °C to 300 °C at a rate of 20 °C/min 

and 300 °C to 750 °C at a rate of 10 °C/min under air (60 mL/min).  

59 
 



2.2.2.3 Infrared Spectroscopy 

Infrared spectroscopic data was collected using a Perkin Elmer Spectrum 100 FTIR 

instrument using a diamond/ZnSe attenuated total reflection (ATR) accessory. Samples were 

dried in vac oven prior to analysis to ensure any absorbed solvents were removed. 

2.2.2.4 Raman Spectroscopy 

Raman was collected using a Nanophoton Raman-11 laser Raman microscope with a 

532 nm laser. Samples were prepared by freeze-drying a suspension of PDMS microspheres in 

methylcyclohexane on a Si wafer. The peak at 2906 cm-1, characteristic of a C–H stretching 

mode in PDMS,1  was used to map the regions of PDMS on the sample. Mapping was done by 

relative intensity of the area under the peak at 2906 cm-1. 

2.2.2.5 Size Distribution Histograms 

Size distributions were determined using the Image J software package, with total 

number of microspheres counted given as N. 

2.2.2.6 Swelling Coefficients 

To calculate swelling coefficients, microspheres suspended in hexane were centrifuged in 

pre-weighed 10 mL glass centrifuge tubes until a pellet formed at the bottom of the tube (~1 hour 

at 3000 rpm). The hexane supernatant was decanted, and the weight of the wet microspheres was 

monitored closely over time. The weight initially dropped rapidly (evaporation of the excess 

non-absorbed hexane), but suddenly and significantly slowed when the excess hexane had all 

evaporated. At this point, the weight of the swollen microspheres (i.e., microspheres and 
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absorbed hexane) was recorded. The height of the swollen pellet was also recorded. The 

microspheres were then completely dried in a vac oven to remove all absorbed solvent. The dry 

pellet was reweighed and its height remeasured. The heights were converted into an approximate 

volume by adding water in 10 µL increments to the cleaned and dried testubes until the meniscus 

reached the drawn lines. Volume and mass swelling coefficients were calculated according to 

equations 2.1-2.2. Volume swelling coefficients were used to calculate mass swelling 

coefficients according to equation 2.3 as a check for the mass swelling coefficients determined 

from weighed swollen and unswollen microspheres using equation 2.1. 

 

  𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆− 𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷
𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷

            (2.1) 

 

   𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆− 𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷

𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷
            (2.2) 

 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∗ =  𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣  �𝜌𝜌ℎ𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆
𝜌𝜌𝑃𝑃𝐷𝐷𝑃𝑃𝑆𝑆

�                    (2.3) 

 

where Svol is the volume swelling coefficient of the microspheres in hexane; VSwollen is the volume 

of microspheres swollen in hexane; VDry is the volume of dried microspheres; Smass is the mass 

swelling coefficient of the microspheres in hexane; mSwollen is the mass of microspheres swollen 

in hexane; mDry is the mass of dry microspheres; S*
mass is the mass swelling coefficient calculated 

from the volumes of swollen and dry microspheres; ρhexane is the density of hexane; and ρPDMS is 

the density of PDMS. 
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2.2.2.7 CHN Analysis 

CHN analysis was performed by the University of Illinois School of Chemical Sciences 

Microanalysis Laboratory using an Exeter Analytical, Inc. Model CE-440 CHN analyzer. 

 

2.2.3 Cell Viability and Microsphere Uptake 

 These experiments were done in collaboration with Elissa Grzincic, graduate student in 

Dr. Catherine J. Murphy’s lab at the University of Illinois at Urbana-Champaign.  

2.2.3.1 Cell Culture 

Metastatic human breast cancer cells of the MDA-MB-231 cell line (ATCC) were used 

for microsphere uptake and viability experiments. All live cell work was done in a sterile 

environment with sterile materials, and live cells were kept at 37°C and 5% CO2. Cells were 

cultured in phenol red-free high-glucose DMEM (Corning) with 1 mM sodium pyruvate 

(Corning), 10% fetal bovine serum (Gemini Bio-Products), 1% penicillin/streptomycin 

(Corning), 0.1 mM non-essential amino acids (Corning), and 2.5 μg/mL Fungizone (Gibco). 

2.2.3.2 Microsphere Uptake 

20,000 cells (in complete culture medium) were plated into the well of a 35 mm well 

glass-bottomed culture dish (MatTek Corporation). After incubation for 24 hours, the medium 

was replaced with 200 μL of the 1.5 mg/mL PDMS microsphere solution (in medium). These 

samples were incubated for another 24 hours, before washing five times with PBS (phosphate 

buffered saline solution) to remove free microspheres. Samples were then prepared for imaging, 

with multiple PBS washes between steps. Cells were first fixed with pre-warmed 4% (in PBS) 
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paraformaldehyde (Sigma) for 15 min. and permeabilized with 0.5% (in PBS) Triton X-100 

(Sigma) for 10 min. They were then stained for F-actin with 1:100 fluorescein phalloidin 

(Molecular Probes, 1 h incubation) and for cell nuclei with 300 nM 4’,6-diamidino-2-phenylidole 

dihydrochloride (DAPI, Molecular Probes, 30 min. incubation). Nile Red-labeled microsphere 

uptake was then imaged by confocal fluorescence microscopy using a Zeiss LSM 710 confocal 

microscope. 

2.2.3.3 Cell Viability 

20,000 cells (in complete culture medium) were plated into the well of 35 mm well glass-

bottomed culture dishes. Three separate cultures were made for each of the tested conditions. 

After 24 hours of incubation, the medium was replaced with 200 μL of the appropriate 

concentration of non-fluorescent PDMS microspheres (davg = 1.15 µm). After a second 24 hour 

incubation, cells were washed once with PBS and stained using a MarkerGeneTM 

Live:Dead/Cytotoxicity Assay Kit. The working solution (in PBS) contained 2 μM 

carboxyfluorescein diacetate for staining live cells, and 4 μM propidium iodide for staining dead 

cells. Samples were imaged by fluorescence microscopy using a Zeiss Axio Observer Z1 

inverted compound microscope. Five random spots in the cell layer were imaged for each 

sample.  

2.2.4 Small Molecule Loading and Release 

2.2.4.1 Loading Silicone Microspheres 

Silicone microspheres (1.25 – 2.5 mg/mL; davg ~1 µm) were suspended in a 10 - 50 

mg/mL solution of dye/drug in solvent. The solvent (e.g., CHCl3) for loading was chosen to 

63 
 



ensure microspheres would form a stable suspension, the small molecule used was highly 

soluble, and the silicone microspheres would swell.2 The loading suspension was put on the 

rotisserie overnight.  

2.2.4.2 Isolation Procedure 1 

The loaded silicone microspheres were isolated from the dispersion via centrifugation 

(3400 rpm, 2 hrs). The microspheres were washed three times with 10 mL cold water. Each 

washing consisted of adding the water to the centrifuge tube, inverting the tube several times, 

centrifuging at 3400 rpm for 30 minutes, and immediately removing the supernatant using a 

pipette.  

2.2.4.3 Isolation Procedure 2 

The loaded silicone microspheres were isolated from the dispersion though a modified 

extraction procedure. First the loading solvent was completely removed from the loaded 

microsphere/dye solution via vacuum drying. The dry microspheres and precipitated dye were 

then suspended in hexane via sonication in an ultrasonic bath. Dyes chosen for these studies had 

extremely limited solubility in hexane and high water solubility. 20 mL of distilled water was 

added to the hexane suspension and the two phase mixture was stirred using a 21 mm x 21 mm 

crosshead magnetic stir bar at 750 rpm for 5 minutes. After stirring, the aqueous layer was 

completely removed, 20 mL of fresh distilled water was added to the hexane suspension and the 

two phase mixture was again stirred at 750 rpm for 3 minutes. After stirring, the aqueous layer 

was completely removed and the hexane layer, which contained the loaded microspheres, was 

transferred to a glass vial for storage. 
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2.2.4.4 Small Molecule Release Studies 

After isolation, the loaded microspheres were suspended in 10 mL of phosphate buffered 

saline (PBS, Thermo Scientific, w/o calcium or magnesium) to a concentration of ~1-4 mg 

loaded microspheres mL-1. This suspension was put on the rotisserie and kept at 37 °C for the 

release experiments. At each time point, 1.0 - 2.0 mL of the PBS solution was removed and 

analyzed with UV/VIS. Fresh PBS was added to the suspended microspheres immediately to 

bring the total volume back to 10 mL. To quantify the total amount of dye/drug loaded into the 

silicone microspheres, loaded microspheres were suspended in ethanol, the solution isolated and 

analyzed via UV/Vis.  

2.2.4.5 UV/Vis Absorption Measurements 

UV/Vis measurements were taken using a Perkin Elmer Lambda 35 or Varian Cary 5G 

UV/Vis spectrometer. Measurements were taken with dual beam configuration using PBS as a 

blank reference. 

2.2.4.6 Release Curves and Total Loading Percentage 

Release curves were obtained via analysis of each time point by UV/Vis and back 

calculating the total amount that had released up to that time. The concentration of dye in 

solution at a given time point was calculated from the absorbance of the collected solution using 

calibrations obtained from standard solutions of known concentrations (equation 2.4). This line 

of best fit for the calibration curves had a forced (0,0) intercept. Because a total solution 

replacement was not done, this value reflects both the dye released from the microspheres since 
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the previous time point and the dye remaining in solution from the last time point (equation 2.5). 

The amount of dye released since the last time point was calculated from the equations 2.4-2.6 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝜆𝜆𝑚𝑚𝑚𝑚𝜆𝜆 = 𝑘𝑘[𝑑𝑑𝑑𝑑𝑑𝑑]𝑇𝑇𝑇𝑇          (2.4) 

 

[𝑑𝑑𝑑𝑑𝑑𝑑]𝑇𝑇𝑇𝑇+1 ∗ 𝑉𝑉𝑚𝑚𝑣𝑣𝑣𝑣 =  𝑚𝑚𝑑𝑑𝑑𝑑𝑒𝑒𝑠𝑠𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆
∗ + 𝑚𝑚𝑟𝑟𝑒𝑒𝑣𝑣𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑑𝑑𝑇𝑇𝑆𝑆+1   (2.5) 

 

𝑚𝑚𝑑𝑑𝑑𝑑𝑒𝑒
∗

𝑚𝑚𝑣𝑣𝑣𝑣𝑇𝑇𝑆𝑆
=  [𝑑𝑑𝑑𝑑𝑑𝑑]𝑇𝑇𝑇𝑇 ∗ 𝑉𝑉𝑚𝑚𝑣𝑣𝑣𝑣 −  [𝑑𝑑𝑑𝑑𝑑𝑑]𝑇𝑇𝑇𝑇 ∗ 𝑉𝑉𝑡𝑡𝑡𝑡𝑚𝑚𝑒𝑒𝑡𝑡𝑣𝑣𝑡𝑡𝑇𝑇𝑡𝑡         (2.6) 

 

where Absλmax is the measured absorbance of a given time point at the dye’s wavelength of 

maximum absorbance; k is a constant obtained from the calibration curve for a given dye (a 

combination of the dye’s molar absorptivity and the UV/Vis cell path length); [dye]Tn is the 

concentration of dye (mg mL-1) in solution at a given time point; Vsol is the total volume of 

release media (in these experiments this is 10 mL); m*
dye sol Tn is the adjusted mass of dye in 

solution (mg) at a given time point after removal of an aliquot for UV/Vis analysis; Vtimepoint is 

the volume of solution removed for a given time point (mL); and mreleased Tn is the mass of dye 

released since the previous time point (mg).  

The release curve is then just a summation of these values up to the time point of interest 

(equation 2.7). The total loading percentage is calculated similarly, all values are summed to 

give the total dye released (including the release into ethanol). The loading percentage can then 

be calculated by the equation 2.8. 
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𝑚𝑚𝑅𝑅_𝑡𝑡𝑣𝑣𝑡𝑡 =  ∑ 𝑚𝑚𝑟𝑟𝑒𝑒𝑣𝑣𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑑𝑑𝑇𝑇𝑆𝑆
𝑇𝑇
𝑇𝑇𝑇𝑇=1            (2.7) 

 

    𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿 % =  � 𝑚𝑚𝑅𝑅_𝑡𝑡𝑆𝑆𝑡𝑡
𝑚𝑚𝑆𝑆𝑆𝑆𝑒𝑒𝑙𝑙𝑆𝑆𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝑆𝑆𝑠𝑠𝑚𝑚ℎ𝑆𝑆𝐷𝐷𝑆𝑆𝑠𝑠

� ∗ 100                  (2.8) 

 

where mR_Tot is the total dye released since t = 0; Loading % is the loading percentage of dye in 

loaded microspheres; and mloaded microspheres is the mass of loaded microspheres at the start of the 

experiment. 

2.3 Solid Polydimethylsiloxane (PDMS) Microspheres 

2.3.1 Sylgard 184 PDMS Microspheres 

Silicone microspheres are easily synthesized using USP. Initially, Dow Corning’s 

Sylgard 184 (a commercially available 2-part PDMS kit which contains vinyl-terminated silicone 

oligomers, methylhydrosiloxanes, a Pt catalyst, 30-50% trimethylated silica, and various low 

molecular weight cyclic and linear polysiloxane oligomers) was used as the precursor and 

hexanes were used as the solvent. The recommended reaction conditions for bulk Sylgard 184 

were a 10:1 ratio of base (vinylsiloxanes): accelerator (methylhydrosiloxanes) and a curing time 

of ~2 hours at 70-100 °C. USP with this ratio and at this temperature, however, was not 

sufficient to produce solid crosslinked product. This is certainly due to the dramatically reduced 

reaction time of only 30-60 s. Increasing the crosslinker availability by decreasing the 

base:accelerator ratio from 10:1 to 2:1 and increasing the reaction temperature to 300 °C was 

sufficient to fully polymerize the individual droplets and produce crosslinked silicone 

microspheres. 
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SEM (Figure 2.5a) of the product shows well-formed microspheres with minimal 

agglomeration. FTIR of the dried product (Figure 2.5b) matches the IR spectrum of PDMS 

reported in the literature,3-4 and Raman mapping (Figure 2.5c & d) confirms the PDMS signal 

originates from the microspheres and not from any residual unreacted PDMS or non-spherical 

cross-linked PDMS. There is a slight vertical gradient for the Raman signal intensity (i.e., signal 

is more intense near the top of the image and less intense near the bottom of the image). This 

originates from a non-uniform z-displacement with respect to lateral position of the substrate 

during scanning. TGA (Figure 2.6) is also consistent with that of bulk PDMS.5 Mass loss before 

200 °C is minimal, mass loss between 200 °C and ~400 °C is attributed to the formation of 

volatile cyclosiloxanes, and loss above 400 °C is attributed to oxidation into silica and the 

formation of various silicon/carbon species.6 

 

Figure 2.5 Polydimethylsiloxane (PDMS) microspheres prepared using ultrasonic spray 
pyrolysis. (a) SEM of microspheres. Inset shows expanded view of microsphere. (b) ATR-FTIR 
spectrum of resulting product; peaks match literature values for PDMS.3-4 (c) Raman spectrum of 
product, C-H stretching peaks (2906 and 2963 cm-1) for PDMS are clearly evident.1 (d) Optical 
image of PDMS microspheres overlaid with Raman mapping showing the relative intensity of 
the C-H stretching peak (2906 cm-1, highlighted in (c)) as the intensity of red coloration.  
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Figure 2.6 Thermogravimetric analysis of polydimethylsiloxane microspheres. The TGA of the 
PDMS microspheres matches TGA of bulk PDMS.5  
 
 

The average particle size can be tuned by adjusting the concentration of PDMS in the 

precursor solution (Figure 2.7 & 2.8). We have made microspheres with average diameters as 

small as ~500 nm, obtainable by reducing the concentration of PDMS in the precursor solution to 

only 1 mg mL-1 (Figure 2.7). We expect the average microsphere diameter could be reduced 

even further by nebulizing more dilute precursor solutions; as shown in Figure 2.7, microspheres 

with diameters as low as ~100 nm are attainable. Higher concentrations of PDMS 

(> 100 mg mL–1), however, produce a precursor solution too viscous to nebulize. Nebulization of 

a 20 mg mL-1 precursor solution produced microspheres with an average diameter of 1.1 μm 

(Figure 2.8c & d). Reducing the concentration of PDMS in the precursor solution to 4 mg mL-1 

reduces the microspheres’ average diameter to 890 nm (Figure 2.8a & b), while increasing the 

concentration of PDMS in the precursor solution to 100 mg mL-1 increases the average diameter 

to 2.0 μm (Figure 2.8e & f). In all cases the relative standard deviation is ~30%. FTIR for all 

products were identical.  
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Figure 2.7 (a) Scanning electron micrograph and (b) size distribution of polydimethylsiloxane 
microspheres obtained with a 1 mg mL-1 PDMS in hexane precursor solution. 

 

 

Figure 2.8 Size control of polydimethylsiloxane (PDMS) microspheres. (a, c, e) SEMs of PDMS 
microspheres obtained with (a) 4 mg mL-1, (b) 20 mg mL-1, (c) 100 mg mL-1 PDMS in hexanes. 
(b, d, f) Size distributions of microspheres shown in (a, c, e), respectively.  
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2.3.2 Gelest PDMS Microspheres 

 Following the successful synthesis of silicone microspheres from Sylgard 184, we sought 

to design a synthetic method that allowed for more control over the chemical and materials 

properties of the resultant microspheres. Gelest, one of the leading suppliers for silanes and 

silicones, has an amazing number of relatively inexpensive silicone oligomers with various 

functional groups. A comparison of the different oligomers used for the fabrication of PDMS 

microspheres in this work is given in Table 2.1. 

 

Table 2.1 Composition of Silicone Oligomers used in this work for the Pt catalyzed synthesis of 
PDMS microspheres. 

 Compositiona % vinyl %H Fillers 

Sygard 184 
(Part A) 

Methylhydro-co-dimethyl; 
Trimethylated silica; 

Tetramethyl Tetravinyl cyclotetrasiloxane; 
Octamethylcyclotetrasiloxane 

Pt Catalyst 

-- unknown 
Silica 

(30-50%) 

Sylgard 184 
(Part B) 

Vinyl-terminated dimethyl; 
Tetra(trimethylsiloxy) silane;  

Trimethylated silica 
unknown -- 

VDT-123b Vinylmethyl-co-dimethyl 0.8-1.2% - none 

VDT-731b Vinylmethyl-co-dimethyl 7.0-8.0% - none 

VDT-5035b Vinylmethyl-co-dimethyl 48-52% - none 

HMS-301b Methylhydro-co-dimethyl - 25-35% none 
aSilicone oligomer unless otherwise specified          
bObtained from Gelest  
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 The USP synthesis of these Gelest microspheres was performed as described previously 

using toluene as a solvent instead of hexane. VDT (vinyl terminated): HMS (methylhydro) 

oligomer ratio was 1:1 in all cases. 20 µL of the Pt catalyst solution was used. It was found that 

toluene produced slightly smaller microspheres with narrower size distribution than those 

synthesized with hexane as the solvent. Hexane in the precursor solution rapidly evaporates from 

the bulk precursor solution. Toluene, in contrast, has lower vapor pressure, which corresponds to 

a more stable precursor solution concentration from the beginning to the end of the USP reaction. 

The resultant products were characterized by SEM, FTIR, and swelling coefficient in hexane. A 

comparison of the SEMs of each product is shown in Figure 2.9. All product obtained appeared 

spherical; the most noticeable difference among the formulations was the different surface 

texturing and the particle inhomogeneity and nonuniformity for the VDT-123 PDMS 

microspheres. These observations are likely a result of the much lower crosslinking for this 

formulation. 

 

Figure 2.9 SEMs of (a) Sylgard 184, (b) VDT-123 (Gelest), (c) VDT-731 (Gelest), (d) VDT-
5035 (Gelest) PDMS microspheres synthesized using USP in this work.  

a b

c d
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 Both swelling coefficient and CHN analysis of the Gelest PDMS microspheres follow 

what is expected for higher crosslinking from VDT-123 to VDT-731 to VDT-5035 as shown in 

Table 2.2. From these results, we can assume higher crosslinking density with a higher vinyl 

equivalent oligomer, as would be expected. FTIR of the resultant PDMS microspheres were 

essentially identical, suggesting bulk composition is similar among all formulations 

(Figure 2.10). Crosslinking in these formulations corresponds proportionately to the number of 

ethylene bridges, increasing the carbon content in the final product. Essentially any intermediate 

crosslinking density could be easily achieved by simply adding these oligomers as a binary or 

ternary mixture to the precursor solution. For example, an intermediate crosslinking product has 

been made by combining the VDT-123 and VDT-731 oligomers in a 1:1 ratio in the precursor 

solution. This product had an intermediate hexane swelling coefficient (Smass = 3.3) and identical 

FTIR as was expected.  

 

Table 2.2 Swelling coefficients and CHN analysis for Gelest PDMS microspheres. 

 Svol Smass S*mass 
C 

(mass %) 
H 

(mass %) 
N 

(mass %) 
VDT-123 17 11.7 11.6 27.3 7.7 ~0 

VDT-731 2 1.2 1.4 29.6 7.6 ~0 

VDT-5035 1.3 0.6 0.9 30.4 7.6 ~0 
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Figure 2.10 Comparison of FTIR Spectra of Gelest PDMS Microspheres. Inset shows expanded 
view of C–H stretches. 

 

The USP preparation of silicone microspheres produces particles with average diameters 

< 2 µm and narrow size distributions; because each precursor droplet acts as its own isolated 

micro-reactor, the chance of prepolymer coalescence and aggregation is reduced and the 

resultant product is smaller with narrower distributions as compared to product obtained using 

conventional synthetic methods. PDMS microspheres can be made from commercially available 

silicone oligomers using vinyl addition (platinum cure) chemistry. These microspheres have high 

swelling ratios, up to 17 times their volume in hexanes, and have potential applications in fields 

where uptake of organics or small molecules is desired (e.g., extended/controlled release, oil spill 

remediation, sensors). 
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2.4 Copolymeric Silicone Microspheres 

2.4.1 USP of Silicone Copolymers 

Doping of silicone polymers with other functional silicones (e.g., diphenylsiloxane) or 

different polymers (e.g., polyethylene glycol) is common for bulk silicones. These doped 

silicones can have improved properties compared to polydimethylsiloxane homopolymers. For 

example, doping with phenyl substituents can improve silicone temperature resistance, gas 

chromatography stationary phases commonly use trifluoropropyl, cyanopropyl, and other 

siloxanes to tailor separation for a given set of analytes, and poly(ethyleneglycol-

polypropyleneglycol) is commonly incorporated into bulk silicone formulations to improve 

hydrophilicity and wettability.  

To prove the versatility of our USP synthetic method, we have synthesized three more 

polar formulations of microspheres, made from (1) polydiphenyl-co-polydimethylsiloxane, (2) 

polytrifluoropropyl-co-polydimethylsiloxane, and (3) polydimethylsiloxane-co-poly(propylene 

oxide-ethylene oxide) (Figure 2.11). These microspheres were prepared using vinyl addition 

chemistry as described previously. SEMs of the resultant products (Figure 2.11b, d & f) show 

well-formed microspheres. FTIR of the resultant products (Figure 2.11a, c & e) show additional 

peak stretches in the regions expected for the added copolymers.  

We have found that silicone oligomers that would generally heat-cure in bulk are curable 

as microspheres in USP. This opens the possibility of tailoring silicone microspheres for 

selective absorption in sensors, as microextraction materials, in cosmetics, and as drug delivery 

vehicles. 

75 
 



 

Figure 2.11 Copolymeric silicone microspheres fabricated using ultrasonic spray pyrolysis.  
(a & b) ATR-FTIR and SEM, respectively, of polydiphenyl-co-polydimethylsiloxane 
microspheres. Peaks in (a) corresponding to the polydiphenylsiloxane chains are labeled; 
defining peaks include sharp bands at 1600 and 1430 cm-1 and a set of three bands in the 
fingerprint region at ~ 740, 720 and 700 cm-1 that have increasing band intensity with decreasing 
wavenumber.4 (c & d) ATR-FTIR and SEM, respectively, of polytrifluoropropyl-co-
polydimethylsiloxane microspheres. Peaks in (c) corresponding to the polytrifluoropropylsiloxyl 
chains are labeled; defining peaks include a peak at 1210, 1070, and 900 cm-1.4 (e & f) ATR-
FTIR and SEM, respectively, of polydimethylsiloxane-co-poly(propylene oxide-ethylene oxide) 
microspheres. Peaks in (e) corresponding to the poly(propylene oxide-ethylene oxide) regions 
are labeled; the stretches at 2870, 1375, and the shoulder at 1350 cm-1, which can be attributed 
to, respectively, a CH3 stretching mode, the symmetrical bending vibration of the methyl group, 
and the wagging vibration of the methylene group of  the poly(propylene oxide-ethylene oxide) 
chains.7 The FTIR spectra (a,c,e) show all characteristic peaks expected for 
polydimethylsiloxane. 
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2.4.2 Ultrasonic Spray Photopolymerization of Silicone Acrylates 

2.4.2.1 Ultrasonic Spray Photochemistry (USPh) 

 USPh is similar to USP, but uses one or more illuminated regions instead of a heated 

region to drive chemical reactions in the aerosol. This generalizable synthetic technique is used 

to make microspheres <10 µm in diameter from photocrosslinkable materials. In this technique, 

ultrasound is used to aerosolize a precursor solution consisting of, for example, polymeric 

monomers or oligomers, crosslinking agents, and a photoinitiator. The aerosol (micron-sized 

droplets) is carried through an illuminated region via an inert carrier gas, in which a 

photochemical reaction occurs (e.g., photopolymerization), with each individual droplet acting as 

an isolated reaction vessel. The solid, micron-sized product is collected (e.g., in bubblers) at the 

outlet of the illuminated region. One can also imagine a synthetic technique in which the 

precursor contains the reactants for two (or more) separate materials (e.g., two polymers) that 

react to different stimuli (e.g., heat and light or two (or more) separate wavelengths of light). The 

aerosol could then be carried through two (or more) reaction zones, each with a different 

stimulus (e.g., a tube illuminated with UV light and a furnace tube at elevated temperature). 

This process allows for the fabrication of micron-sized spheres at or near room 

temperature in an affordable and industrially relevant way. The biggest benefit over the closely 

related USP technique is that photochemical reactions proceed near room temperature, which 

facilitates the inclusion of heat sensitive materials either as a loaded species (e.g., drug or dye) or 

as a structural component. USPh also may open pathways for unique particle morphologies since 

the precursor solvent can persist during the photochemical reactions. Although spray 

photochemistry has received some attention in the literature,8-14 this is the first example of a 
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spray synthetic technique which uses inexpensive components (i.e., ultrasonic nebulizer and 

LED light strip) and is therefore worth mention here. This technique might be useful, for 

example, in creating polymeric microspheres that have a liquid core loaded with a drug or other 

small molecule (i.e., extended drug release or sensing material). Dual zone synthesis may prove a 

simple synthetic route in the creation of interpenetrated polymer networks (IPNs), which have 

already proven useful as a drug delivery material.15-16 

One potential reaction set-up is given in Figure 2.12a & b. The setup includes a 

piezoelectric transducer, a reaction flask which can be, for example, the three-necked modified 

round bottom shown here, a bump trap, at least one illuminated quartz (or glass) tube, and a 

means for product collection. In the experiments described here, the aerosol is carried via an 

inert Argon gas stream through a quartz tube illuminated with LEDs (superbrightLEDs.com, 

NFLS-UV300X) with a λmax of 405 nm (Figure 2.13a). The irradiance is dependent on the 

location within the illuminated region and varies from ~4.4-6.0 mW/cm2, determined 

experimentally. The setup used here incorporates a horizontal illuminated region, which was 

experimentally determined to minimize the occurrence of photochemical reactions in the un-

nebulized precursor solution (Figure 2.12a & b). In these experiments, the solid product was 

collected using a series of bubblers containing solvent (e.g., acetone, ethanol, water, 2-butanone). 

The illuminated region consists of a quartz tube with an internal diameter of ~ 3.5 cm and length 

of ~ 48 cm with a 5 meter LED light strip coiled around the outside (Figure 2.13b). The setup is 

also isolated from external light sources by covering all glassware with either black tape or 

aluminum foil. 
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Figure 2.12 An exemplary setup for an Ultrasonic Spray Photochemical (USPh) reaction. (a) 
Cartoon drawing of setup. (b) Reaction setup as realized in a laboratory setting. 

 

 

Figure 2.13 (a) Spectra of LED emission showing a peak wavelength of 405 nm. The spectrum 
was obtained using a diffuse reflectance probe (no illumination) and a Prime-XTM back-thinned 
CCD array spectrometer (2.5 nm resolution). (b) Photograph looking into illuminated quartz tube 
with coiled LEDs clearly visible. 
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2.4.2.2 Acrylates Synthesized Using USPh 

 As a proof of concept, we have utilized a number of different commercially available 

polyacrylate one part polymerization kits from Norland Optical Adhesives (NOA). These include 

a polyacrylate-polyurethane (NOA 84) and two different polyacrylate-polyester (NOA 72 and 

NOA 75) copolymers. In all cases, these polymerization kits contain a photoinitiator with a 

maximum absorbance between 320 nm and 450 nm. Nebulization of a 20 mg/mL precursor 

solution of a polyacrylate prepolymer mixture (i.e., NOA 84, 72, or 75) in acetone affords 

microspheres ~ 1 μm in diameter that contain a porous shell and dense core. SEM, FTIR, TEM, 

and size distributions are given in Figures 2.14, 2.15, and 2.16 for product obtained using NOA 

84, NOA 72, and NOA 75, respectively. Evidence of the shell is given in TEM analysis (Figure 

2.14d, 2.15f-h, 2.16d). The porous shell can be collapsed by either completely drying the 

microsphere (SEM of completely dried product and dried product suspended in acetone (Figure 

2.14e & f)) or from beam damage during SEM analysis (SEMs of single spheres directly under 

or slightly off-center from the 10 kV electron beam (Figure 2.15c & b, respectively)). The 

carrier gas was Argon at a rate of 0.4 slpm in all cases. This corresponds to a residence time of 

~40 seconds for the aerosol in the illuminated region and an energy density of ~0.35 J/cm2. This 

energy density is more than a factor of ten lower than specified by NOA for curing of their 

polymer formulations; however, the small size of our aerosol appears to facilitate curing even at 

this lower energy density. 
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Figure 2.14 Characterization for USPh product obtained from a 20 mg mL-1 NOA 84 in acetone 
precursor solution. (a) SEM of solid product showing well-formed microspheres with a 
magnified view of a single sphere (inset). (b) Size distribution analysis (as obtained from 
micrographs using Image J software) showing the total number of microspheres counted in the 
analysis (N), the average diameter (davg), the standard deviation (σ), and the median (Md). (c) 
FTIR of the obtained product. The strong peak present at 1732 cm-1 is attributed to the acrylate 
carboxyl group (C=O). The strong peak present at 1678 cm-1 is attributed to an amide group 
(C=O) stretch from the urethane backbone. (d) TEM of the obtained product showing porous 
shell surrounding dense core. (e) SEM of completely dried product showing partial collapse of 
microspheres and loss of spherical topography further suggesting the presence of a porous outer 
shell. (f) SEM of dried microspheres (from (e)) resuspended in acetone before the sample was 
dropcast for imaging, spherical morphology is regained.  
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Figure 2.15 Characterization for USPh product obtained from a 20 mg mL-1 NOA 72 in acetone 
precursor solution. (a) SEM of solid product showing well-formed microspheres. (b) SEM of 
single microsphere taken without direct exposure to the electron beam (c) SEM of single 
microsphere taken with direct exposure to the electron beam (10 kV) (d) Size distribution 
analysis (as obtained from micrographs using Image J software) showing the total number of 
microspheres counted in the analysis (N), the average diameter (davg), the standard deviation (σ), 
and the median (Md). (e) ATR-FTIR of the obtained product. (f-h) TEMs of the obtained product 
showing porous shell surrounding dense core, core shell appears thicker in this product than the 
other two (NOA 84 and 75). (f) A cluster of microspheres. (g) A magnified view of the porous 
shell from the microsphere in (h). (h) A single sphere. 
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Figure 2.16 Characterization for USPh product obtained from a 20 mg mL-1 NOA 75 in acetone 
precursor solution. (a) SEM of solid product showing well-formed microspheres with inset 
showing magnified view of single sphere. (b) Size distribution analysis (as obtained from 
micrographs using Image J software) showing the total number of microspheres counted in the 
analysis (N), the average diameter (davg), the standard deviation (σ), and the median (Md). (c) 
ATR-FTIR of the obtained product. (d) TEM of the obtained product showing porous shell 
surrounding dense core. 
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The nebulization of a 20 mg mL-1 NOA 84 in acetone precursor solution in this control yielded 
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NOA 84 in 2-butanone (b.p. = 80°C, compared to acetone b.p. = 56°C) was nebulized under 

identical experimental conditions. As expected, this reaction afforded product nearly identical to 

the product obtained with acetone as the precursor solvent. SEM, size distribution, and TEM of 

this product is given in Figure 2.17.  

 

 

Figure 2.17. Characterization for USPh product obtained from a 20 mg/mL NOA 84 in 2-
butanone precursor solution. (a) SEM of solid product showing well-formed microspheres. (b) 
Size distribution analysis (as obtained from micrographs using Image J software) showing the 
total number of microspheres counted in the analysis (N), the average diameter (davg), the 
standard deviation (σ), and the median (Md). (c) TEM of the obtained product showing porous 
shell surrounding dense core. 

 

 We have previously observed the ability to control particle morphology and size in 
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begins to evaporate, segregating to the droplet surface. The NOA 84 migrates with the acetone to 

the droplet surface because of the solubility mismatch of NOA 84 in acetone versus water, and 

polymerizes around the water droplet core. We speculate these microspheres are porous enough 

that the water later diffuses from the core, leaving a hollow cavity in the center (as indicated by 

the light region in the TEM shown in Figure 2.18). 

 

  

Figure 2.18 Characterization for USPh product obtained from a 20 mg/mL NOA 84 in a 1:1 
acetone:water precursor solution. (a) SEM of solid product showing well-formed microspheres. 
(b) Size distribution analysis (as obtained from micrographs using Image J software) showing 
the total number of microspheres counted in the analysis (N), the average diameter (davg), the 
standard deviation (σ), and the median (Md). (c) TEM of the obtained product showing 
polymerized shell surrounding hollow core. 
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of the resultant product showed peaks characteristic of PDMS; TEM shows uniform density 

throughout. Finely tuning the precursor oligomers, and especially photoinitiator, to match the 

output wavelengths of the LEDs should increase yield.28-30 Unfortunately, the components in 

photopolymerizable formulations (e.g., photoinitiator, peroxides) required acid bath treatment to 

completely remove from the glassware. Even very low concentrations of these components 

poison the Pt catalyst used in the USP of silicone microspheres.31  Regardless, the development 

of an inexpensive setup for ultrasonic spray photopolymerization capable of producing 

polymeric microspheres near room temperature is a useful advance to aerosol spray synthesis. 

This is the first example which successfully uses only a low intensity light source (LED lights) to 

drive photochemical processes in aerosols, which reduces both equipment and operating costs.  

 

 

Figure 2.19 SEM of silicone microspheres produced via USPh.  
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2.5 Cytotoxicity and Cellular Uptake of Silicone Microspheres 

2.5.1 Cytotoxicity Studies 

For biomedical applications, microspheres must have extremely low cytotoxicity. To this 

end, we have investigated the cytotoxicity of our USP Sylgard 184 PDMS microspheres.  Using 

the MDA-MB-231 human breast cancer cell line, cellular incubation (for 24 hours with the 

PDMS microspheres under the same conditions used for the uptake experiments) produced 

extremely high cell viability (99%), even at the highest concentration tested, 105 microspheres 

per cell (Figure 2.20). No statistical difference was seen among the four concentrations tested 

and the control; representative fluorescence images with live/dead staining are given in Figure 

2.20. This extremely low cytotoxicity is consistent with the excellent biocompatibility exhibited 

by bulk PDMS, which is the material of choice for many biomedical devices.32 

 
Figure 2.20 Ultrasonic spray pyrolysis polydimethylsiloxane (PDMS) microsphere cytotoxicity. 
(a) Cytotoxicity study; no statistically significant differences in cell viability are seen among the 
control and concentrations of PDMS microspheres ranging from 100 to 100,000 spheres/cell.  (b-
f) Representative fluorescence images of stained cells from polydimethylsiloxane microsphere 
viability experiments. (b) Control. (c) 100 spheres/cell. (d) 1000 spheres/cell. (e) 10,000 
spheres/cell. (f) 100,000 spheres/cell. Cells that are stained green are alive, cells that are stained 
red are dead. 
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2.5.2 Cellular Uptake Studies 

Nile red doped USP Sylgard 184 PDMS microspheres (c.f. section 3.3) were 

subsequently used for cell uptake experiments (Figure 2.21a & b). The fluorescent microspheres 

were isolated by centrifugation, washed with aqueous PBS, suspended in the culture medium, 

and incubated with metastatic human breast cancer cells (MDA-MB-231) for 24 hours before 

imaging with confocal fluorescence microscopy. The fluorescent microspheres are clearly 

evident in both brightfield (Figure 2.21a) and fluorescence (Figure 2.21b) images and are 

localized to the cell cytosol, without further penetration into the cell nucleus. We believe, 

therefore, that the USP PDMS microspheres are candidates both for biological imaging and 

potentially for delivery of small molecules into cells. 

 

 

Figure 2.21 Cellular uptake of Nile red doped USP Sylgard 184 PDMS microspheres. (a) Bright 
field image of cell that has taken up microspheres. (b) Fluorescent image of cell in (a). The cell 
membrane has been stained green, the cell nucleus has been stained blue, and the Nile red doped 
microspheres appear red. 

 

a b
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2.6 Extended Release of Small Molecules from Silicone Microspheres 

As mentioned earlier, the uptake of small hydrophobic molecules by bulk PDMS, 

including dyes and drugs, is a commonly reported problem for microfluidic applications.33-35 For 

drug delivery using microspheres, however, the strong sorption characteristics of PDMS could be 

advantageous. Extended release pharmaceuticals result in better patient compliance, fewer side 

effects, and better drug efficacy. Encapsulation of a drug in a host material can be used to tailor 

release rates (e.g., either constant or pulsatile release) for a specific application and can protect 

drugs from potentially destructive biological proteins and enzymes or protect the body from 

negative effects of the drug (e.g., from rapid release or release and absorption in an undesired 

area of the body).36 The high biocompatibility of silicones makes them a material of interest for 

these applications. To that end, we have studied the loading and release of several small 

hydrophobic molecules, drugs and drug mimics, to explore the potential of our silicone 

microspheres for drug delivery.  

2.6.1 Selection of Small Molecules 

The small molecules used for this study were chosen based on their strong absorption in 

the visible region (used to quantify release), their use in the medical field (or similarity to 

pharmaceutical agents (PA), esp. LogP),24, 33, 37-38 and their solubility in hexane, chloroform, and 

water (necessary for loading procedure). The relevant characteristics of each small molecule are 

given in Table 2.3. After careful screening, three dyes which span a wide range of LogP were 

chosen for further study, Rhodamine 6G (R6G), Acriflavine (Acri), and Methylene Blue (MB).  
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2.6.2 Selection of Silicone Microspheres 

Initially, three types of silicone microspheres were investigated for small molecule 

loading and release, Gelest PDMS-poly(propylene oxide–co–ethylene oxide) (DBP-V102; 

PDMS-PPO-PEO), Sylgard 184 PDMS microspheres, and low crosslinking density Gelest 

PDMS microspheres (VDT-123). A comparison of these silicone formulations is given in Table 

2.4. Initial studies (c.f. section 2.6.4) suggested that the loaded dye was released too rapidly, so 

further studies were done using the Gelest PDMS microspheres with higher crosslink density 

(VDT-731 and VDT-5035) discussed in section 2.3.2.  

Table 2.4 Silicone microspheres used in the extended release experiments described in this 
work. 

 Structure Fillers Relative Swelling  
(in hexane) 

DBP-V102 

 

None high 

Sylgard 184 

 

Trimethylated  
Silica (30-50%) 

low 

VDT-123 

 

None high 

VDT-731 

 

None medium 

VDT-5035 

 

None low 
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2.6.3 Small Molecule Loading 

2.6.3.1 Procedure 

 For these studies, we have loaded the dyes post-synthesis; for incorporation of expensive 

pharmaceutical agents (PA), this two-step loading procedure is preferred to avoid wastage and 

loss of the PA in the synthesis of the microsphere. The advantages and disadvantages of loading 

drugs during curing versus post-synthesis via polymer swelling have already been discussed in 

detail for hydrogel extended release materials.39 The procedure used to load silicone 

microspheres with a small molecule is described in detail in section 2.2.4.1 and mimics well-

established procedures used to load hydrogels with PAs. Briefly, the molecule of interest is 

dissolved completely in a solvent which readily swells PDMS (e.g., CHCl3).2 USP silicone 

microspheres are suspended in solution and the dye/silicone suspension is mixed at room 

temperature for 24 hours before isolation. Initially isolation of the loaded microspheres was done 

according to the procedure described in section 2.2.4.2. The obtained microspheres had very low 

loading percentages (e.g., ~0.5% for R6G loaded Sylgard 184 microspheres) and release was 

inconsistent among trials. Therefore, a modified extraction procedure (described in section 

2.2.4.3) was used for isolating the loaded microspheres in later trials. This procedure has several 

advantages, including (1) higher loading percentages (e.g., 6.3% for R6G loaded Sylgard 184 

microspheres), (2) better experimental consistency (e.g., more precise and accurate weight of 

loaded microspheres), (3) longer shelf life (loaded microspheres can be stored for weeks 

suspended in hexane with no detriment to release characteristics), and (4) lower standard 

deviation among trials. It should be noted that a control extraction was performed for each dye 

used in this study, in which Isolation Procedure 2 was carried out in its entirety with no silicone 
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microspheres present. For the three dyes chosen, R6G, MB, and Acri, the dye present in the 

hexane layer following the complete extraction was ~0 mg/L. 

 The loading and release of small molecules in silicone microspheres is a complex 

phenomenon with multiple interrelated variables. The loading % (and subsequent release) is 

determined by partition coefficients of the molecule of interest between the loading solvent and 

the silicone formulation and the silicone formulation and the release medium, in this case, PBS. 

These partition coefficients are dependent on the silicone formulation, small molecule identity, 

and loading/release solvent, and are therefore different for each molecule of interest. The amount 

the polymer formulation swells in the loading solvent will also significantly influence loading 

percentage. The extent of polymer swelling is determined by both the loading solvent used and 

the silicone formulation including factors like presence of fillers and crosslinking density.  

A schematic of microsphere loading is given in Figure 2.22. In this figure, a solid, dry 

silicone microsphere is shown on the left. This microsphere is suspended in a highly swelling 

solvent with dissolved drug/dye. The solution completely penetrates the solid microsphere filling 

the large free volume of the silicone with dye and solvent. Following loading, the solvent is 

evaporated. The solvent outside of the microsphere has a lower energy barrier for evaporation 

than the solvent inside the microsphere and therefore evaporates first, increasing the 

concentration of dye/drug in solution outside the microsphere and driving more dye into the 

swollen microsphere to establish equilibrium. As the microsphere dries, the structure contracts 

and captures the molecule of interest within the inter-chain free volume. 
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Figure 2.22 A schematic of the loading procedure used in this work to load small molecules onto 
silicone microspheres. 

2.6.3.2 Results 

The loading percentages for small molecules loaded onto silicone microspheres were 

highly variable and depended on the silicone formulation, molecule of interest, and loading 

solvent. Microspheres loaded in a more swollen state have higher loading percentages than less 

swollen derivatives. This is consistent with the proposed description of our loading procedure on 

the molecular level. For example, MB loaded onto the VDT-123 Gelest PDMS microspheres in 

50:50 EtOH:CHCl3 yields a loading percentage of ~3.9 ± 0.2%, while the same silicone 

microspheres loaded with the same dye in 100% CHCl3 (a higher swelling solvent than EtOH) as 

the solvent have a loading percentage of 36 ± 0.6%. This same trend was observed for pairs of 

other silicones and molecules of interest. Gelest PDMS microspheres with very similar 

formulations, but different crosslinking densities (VDT-123, 1:1 VDT-123:VDT-731, VDT-731, 

and VDT-5035) showed a significant decrease in MB loading percentage with increasing 

crosslinking density, loading percentages of 36 ± 0.6%, 10 ± 1.5%, 3.3 ± 0.3%, and 1.9 ± 0.3%,  

respectively, Figure 2.23. A plot of Smass versus loading percentage of Methylene Blue 

(Figure 2.24) shows a linear relationship following the form given in equation 2.9 

𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿 % = (3.06 ± 0.04) ∙ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚     (2.9) 

Solid Silicone 
Microsphere

suspend in swelling 

solvent with drug

Loaded 
Microsphere

remove solvent

wash product
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A fixed intercept of (0,0) was used (i.e., a formulation that does not swell, will have a loading 

percentage of zero), which seemed appropriate when considering the low LogP (i.e., high 

polarity) of the Methylene Blue dye.  

 

 
Figure 2.23 Photograph of Methylene Blue loaded (a) VDT-123, (b) 1:1 VDT-123:VDT-731 
(c) VDT-731, and (d) VDT-5035 Gelest PDMS microspheres suspended in hexane. All 
microspheres were loaded in CHCl3 following the loading and isolation procedures described in 
section 2.1.4.1 and 2.1.4.3, respectively. Loading percentages from Table 2.5 are overlayed. 
 

 
Figure 2.24 Plot of swelling coefficient (Smass) versus loading percentage of methylene blue for 
various Gelest PDMS microsphere formulations showing linear relationship. Line of best fit is 
shown in red; equation for line is given in inset.   
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Generally, the DBP-V102 Gelest PDMS-PPO-PEO formulation had the highest loading 

percentages except for R6G, which had the highest loading percentage with the Sylgard 184 

PDMS microspheres. These differences are likely due to the relative affinity for the dye with the 

silicone matrix (i.e., partition coefficient of dye between silicone and loading solvent or silicone 

and water) and the crosslinking density (which controls swellability). The trends observed 

among small molecules with different LogP and different silicone formulations are not easily 

predicted; more work is needed to fully understand the factors involved in loading small 

molecules on silicone microspheres.  

A list of loading percentages for different silicone formulations and molecules of interest 

is given in Table 2.5. Figure 2.25 shows corresponding photographs of loaded microspheres 

suspended in hexane for some of the combinations. Optimum loading percentages of 

pharmaceutically relevant materials are dependent on the drug identity, intended application, 

administration route, and biocompatibility of the host material. A loading percentage of > ~1-

5%36, 39 is a good cutoff for deciding the utility of a material for extended release; materials with 

loading capacities above ~15% are considered high loading capacity materials.40 Some of our 

examples here not only exceed the minimum 1-5% loading capacity, but approach or exceed 

loading capacities of 15%, suggesting that the correct silicone formulation may indeed be useful 

as a carrier for PAs. 
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Table 2.5 Summary of loading percentages for silicone microsphere formulations and molecules 
of interest. 

 Dye Solvent Loading (%) 

Sylgard 184 
(PDMS with  

trimethylated silica) 

MB
a
 

EtOH:CHCl3
d 0.4 ± 0.3 

CHCl3
e ---- 

R6G
b
 

EtOH:CHCl3 5.1 ± 1 
CHCl3 6.3 ± 1 

A
c
 CHCl3 2.1 ± 0.6 

DBP-V102 
(PDMS-PPO-PEO) 

MB EtOH:CHCl3 11.6 ± 0.6 
CHCl3 22 ± 2 

R6G EtOH:CHCl3 <1 
CHCl3 3.3 ± 0.3 

A CHCl3 12.6 ± 0.8 

VDT-123  
(PDMS) 

MB EtOH:CHCl3 3.9  ± 0.2 
CHCl3 36  ± 0.6 

R6G EtOH:CHCl3 <1 
CHCl3 <1 

A CHCl3 1.6 ± 0.5 

VDT-123:VDT-731 
(1:1) 

(PDMS 
MB CHCl3 10 ± 1.5 

VDT-731 
(PDMS) MB CHCl3 3.3 ± 0.3 

VDT-5035 
(PDMS) MB CHCl3 1.9 ± 0.3 

aMethylene Blue (LogP = -0.9) 
bRhodamine 6G (LogP = 2.67) 
cAcriflavine (LogP = 4.35) 
dLoading solvent is a 50:50 mixture of EtOH and CHCl3 
eLoading solvent is pure CHCl3 
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Figure 2.25 Photographs of silicone microspheres loaded with pharmaceutically relevant small 
molecules. Loaded dyes are given to the left of each row; silicone formulation given at the top of 
each row; calculated loading percentage is in front of relevant vial. All microspheres were loaded 
with a 50:50 mixture of EtOH and CHCl3 as the loading solvent. Concentrations are ~2 mg 
loaded microsphere mL-1 hexane. 
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2.6.4 Small Molecule Release 

PA release kinetics from polymer microspheres are complex and are dependent on a 

variety of factors, including microsphere composition, polymer biodegradability, polymer 

molecular weight, PA distribution, and partition coefficient of PA : microsphere.36, 41 These can 

be generally classified as factors associated with the microsphere matrix structure and factors 

associated with the chemical properties of the polymer and the drug. In most cases, release 

kinetics of a PA from a solid polymeric microsphere involves two main regimes. The first is an 

initial burst of PA from dissolution of the PA from the surface of the microsphere. The second 

regime is a slower and more stable release caused by diffusion of the PA through the polymer 

microsphere (and microsphere degradation if cleavable groups are incorporated into the polymer 

microstructure). Exemplary release profiles for bovine serum albumin from DLPLA (poly(DL-

lactide)) from Yang et al. are shown in Figure 2.26.42 Release kinetics can be variable; materials 

which exhibit near zero-order kinetics, complex mutli-step profiles, and near linear release after 

initial burst have been described.43-48  

 
Figure 2.26 Release of bovine serum albumin (BSA) from DLPLA microsphere made at 
different temperatures. BSA release is mainly from diffusion through pores within the 
microspheres.42 
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 The purpose of this study was to understand release of small molecules from different 

solid silicone microspheres in the hopes this would facilitate the intelligent design of more 

complex silicone microspheres (e.g., core-shell) for controlled release applications. Release 

curves were obtained from all combinations of loaded silicone microspheres described in 

Table 2.5 according to sections 2.2.4.4-2.2.4.6. For most combinations, rapid and complete 

release of the loaded small molecule within a few hours was observed. Release profiles for 

combinations shown in red in Table 2.5 are shown in Figure 2.27. As is expected, the initial 

burst phase of the release curve is more pronounced for lower crosslinking silicone formulations 

(order of crosslinking density, i.e., swelling ratio, progresses from the lines colored in black > 

red > green > blue).  

 If the release profiles are fit to a first order curve and t1/2
 calculated using the obtained 

rate constant, t1/2
 values are < 5 min for VDT-123 (blue line) and VDT-731:123 (green line). The 

release profile of VDT-731 (red line) suggests bimodal release kinetics, possibly from phase 

separation of silicone oligomers which result in regions of high and low crosslinking density. 

This would be very difficult to prove, as the chemical functionality is uniform throughout. This 

release curve was fit using a first order approximation for each regime (i.e., < 4 hrs and > 4 hrs). 

t1/2
 values are < 5 min for the regime between 0 and 4 hours and ~ 10 hours for the regime 

> 4 hrs. Only the silicone microsphere formulation with the highest crosslinking density 

(VDT-5035; black line) shows any indication of extended release behavior, t1/2 equal to ~ 3 hrs. 

The time frame for complete release (~30 hrs) is consistent with the amount of time orally 

ingested drugs remain in the body, but is certainly shorter than would be optimal for other 

administration methods (i.e., transdermal, parenteral).  
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 Of all dye/silicone combinations tested, VDT-123 silicone microspheres loaded with 

methylene blue in a 50:50 mixture of CHCl3 and EtOH, purple line in Figure 2.27, showed the 

most promising extended release kinetics. These microspheres released only ~50% of the total 

dye loaded in the first 10 hrs. An extended release profile is given in Figure 2.28; ~95% of total 

loaded drug is released within 150 hours. These results suggest that loading solvent is extremely 

important in release kinetics, but the loading solvent’s exact role is still unclear.  

 

 

Figure 2.27 Cumulative release profiles for methylene blue loaded VDT-123, VDT-731:123, 
VDT-731, and VDT-5025 silicone microspheres with standard error bars. Swelling coefficients 
(Smass) are given in the key. The purple line shows the release profile for VDT-123 silicone 
microspheres loaded with Methylene Blue using a 50:50 mixture of CHCl3 and EtOH as the 
solvent. All trials were done in triplicate with the exception of VDT-731:VDT-123 which was 
performed in duplicate. 
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Figure 2.28 Extended cumulative release profile for VDT-123 silicone microspheres loaded with 
Methylene Blue using a 50:50 mixture of CHCl3 and EtOH as the solvent (purple line in 
Figure 2.27).  

 

2.7 Conclusions and Future Directions 

Presented in this chapter is a simple, scalable, and continuous process for making micron-

sized silicone spheres using ultrasonic spray pyrolysis.49-50 Silicones are one of the world’s most 

important and widely implemented polymers; as such, microspheres made from this material are 

likely to create novel technologies and new science in a number of scientific disciplines. Prior to 

our results presented here, the main limitation to exploring the potential applications of silicone 

microspheres has been the exceptional difficulty of their synthesis. This method overcomes the 

limitations inherent in past polymerization techniques by isolating the silicone oligomers into 

micron-sized droplets during polymerization, therefore nearly eliminating the chance of 

coalescence and aggregation and dramatically reducing the average silicone microsphere size. 

Solid PDMS and copolymeric silicone microspheres with diameters ranging from <500 nm to 

~2 µm and a relatively narrow size distribution have been demonstrated. We have had success 
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producing microspheres from nearly any vinyl-functionalized siloxane which would normally 

polymerize in bulk, demonstrating the versatility of this synthetic technique.  

This chapter also introduces a new method for producing silicone and other polymeric 

microspheres near room temperature called ultrasonic spray photopolymerization. This technique 

utilizes inexpensive components, e.g., essentially a household humidifier and LED lights, to 

polymerize a nebulized solution of oligomers and photoinitiator. This technique is the first 

demonstration, to our knowledge, that uses an extremely low power source to drive these 

photochemical reactions, and provides a method for making polymeric microspheres that can 

include heat sensitive species or solvent. 

The USP silicone microspheres are easily taken into cell’s cytosol, have extremely low 

cytotoxicity even at a concentration of 100,000 spheres/cell, and have shown potential as drug 

loading and release materials. Loading and release of small molecules from the silicone 

microspheres is a complex phenomenon with multiple interrelated variables. One observed trend 

was that loading percentage increases with how much the loading solvent swells the silicone 

microspheres. This extent of swelling during loading is dependent on both silicone formulation 

and choice of loading solvent, and is shown to be a significant factor in loading percentage and 

release kinetics. The swelling coefficient in hexane (related to crosslinking density) of the 

microspheres (Smass) is shown to be linearly related to loading percentage if loading solvent is 

kept constant. Silicone microspheres were shown to load small molecules up to ~35 % by weight 

and in some instances release the small molecule slowly over time. More studies are needed to 

completely understand the factors that affect small molecule loading and release and to 

determine the optimum formulation(s) for use as an extended release material. 
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CHAPTER 3: 

FUNCTIONAL SILICONE MICROSPHERES 

 

3.1 Introduction 

 This chapter is taken in part from the following reference: 

Rankin, J. M.; Neelakantan, N. K.; Lundberg, K. E.; Grzincic, E. M.; Murphy, C. J.; Suslick, K. 
S., Magnetic, Fluorescent, and Copolymeric Silicone Microspheres. Adv. Sci. 2015, 2, 1500114. 

With the emerging interest in advanced materials, nanotechnology, and polymers, it is no 

surprise that polymeric microspheres are being incorporated in a wide variety of materials and 

technologies. Polystyrene and polyethylene are perhaps the two most common types of 

polymeric microspheres, and have applications ranging from biomedical or other analytical 

assays,1-3 drug delivery agents,4-7 and additives for polymer composites,8-9 cosmetics,10 ceramics, 

and paints.11-14 For some applications, solid polymeric microspheres are sufficient (e.g., solid 

polymethylsilesquioxane microspheres are used as an additive to cosmetics, especially 

foundation, as an oil absorber). Many applications, however, require microspheres with 

functional properties (e.g., colored, fluorescent, magnetic, core-shell, porous, etc.).15-16 

Microspheres used in biomedical assays are usually colored or fluorescent to facilitate 

imaging.16-17 Magnetic microspheres are easily separated and collected during pollution 

remediation or can be used as a multifunctional material in biomedicine for hyperthermia, 

controlled drug release, and imaging contrast enhancement.18-21 Core-shell microspheres (i.e., 

microcapsules) can be useful as controlled release materials for pharmaceuticals,19, 22-24 flavors, 

scents,25 or fertilizers.26-27 Hollow or porous microspheres are commonly used to reduce the bulk 

density of composites, in gastroretentive drug release, or to increase adsorption capacity for 
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pollution remediation.15, 28-30 To this end, we have investigated the versatility of our synthetic 

method, USP, to produce functional silicone microspheres. 

 This chapter details the synthesis of fluorescent, magnetic, core-shell, and hollow/porous 

silicone microspheres and explores how the choice of precursor components affects final particle 

microstructure and properties.31-32 These results demonstrate the versatility and generalizability 

of this synthetic method and serve as a road-map for the fabrication of silicone microspheres 

from aerosols with nearly any desired property. Now that an inexpensive and industrially 

relevant synthetic method has been achieved to make a wide variety of silicone microspheres, the 

potential applications for these materials are nearly endless. Briefly explored here, as an 

example, is the use of hollow silicone microspheres as an oil spill remediation material. 

3.2 Experimental Methods 

3.2.1 Microsphere Synthesis 

 USP synthesis was performed as described in section 2.2.1 with modifications made to 

the precursor solution as described within text. 

3.2.2 Characterization 

 All characterization techniques used that are not specifically addressed within this section 

were performed as described in section 2.2.2. 
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3.2.2.1 UV/Vis Diffuse Reflectance 

A Prime-X™ back-thinned CCD array spectrometer (2.5 nm resolution), Deuterium (30 

W)-Tungsten (5 W) light source, and fiber optic reflectance probe (Seven 400 μm illuminates 

and one 600 μm read fiber with a read diameter of 1 mm) was used to collect the UV/Vis diffuse 

reflectance measurements. Microspheres were analyzed using PVDF as a white background. 

Data was smoothed using a 20 point Savitzky-Golay smoothing filter and converted to a pseudo-

absorbance using the Kubelka-Munk equation. Data from 485.35-487.76 nm and 654.08-

657.89 nm was removed prior to analysis; these regions show distortion due to hydrogen 

emission lines characteristic of the deuterium light source. 

3.2.2.2 Fluorescence Imaging  

Fluorescence imaging was done using a Zeiss Axiovert 200M inverted research-grade 

microscope with a 41039 special yellow filter. Samples were prepared by drop-casting a 

suspension of the microspheres in hexane on to a glass cover slip with immediate heating at 

70 °C.  

3.2.2.3 Energy Dispersive Spectrometry  

 Energy dispersive spectrometry (EDS) line scans were obtained using a JEOL 7000F 

instrument equipped with a Thermo Electron EDS microanalysis system operating at 10 kV with 

a high probe current and a working distance of 10 mm. Samples were prepared by freeze drying 

a suspension of PDMS microspheres in methylcyclohexane on Cu foil. Samples were mounted to 

the holder via carbon tape and sputter coated with approximately 10 nm of Au/Pd prior to 

analysis to prevent surface charging. 
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3.2.2.4 Transmission Electron Microscopy 

 Transmission electron micrographs were obtained on a JEOL 2100 cryo microscope 

operating at 200 kV and equipped with a Gatan MatScan1kx1k progressive scan CCD camera. 

Samples were prepared by freeze-drying a suspension of PDMS microspheres in 

methylcyclohexane on a lacy formvar/carbon 200 mesh copper grid (Ted Pella, #01881) or on a 

carbon only film 200 mesh copper grid (Ted Pella, #01840). 

 Transmission electron micrographs taken at 1 atm were obtained on the microscope 

described above using the Hummingbird Scientific continuous flow liquid cell holder, which was 

briefly on-loan to MRL. The environmental cell was adapted to work for our analysis by sealing 

the liquid inlet/outlet with paraffin wax to ensure no gas leakage (safety precaution) and by 

orienting two 500 nm spacer chips against each other to create a gap 1 µm tall to place our 

sample. The spacer chips have a 50 nm thick SiN viewing window that is 50 µm x 200 µm and 

are also available from Hummingbird Scientific. To prepare a sample, one viewing window was 

placed window-down in the bottom half of the cell holder. A drop of silicone microspheres 

suspended in hexane was placed on the spacer chip so that the suspension could fill the viewing 

cavity. The sample was then dried completely using a holder-specific vacuum chamber. The 

second spacer ship was placed window-up on top of the prepared sample and held in place with 

the top half of the cell holder. The inlet and outlet tubing were sealed with paraffin wax and the 

assembled cell was tested for leaks using the holder-specific vacuum chamber prior to insertion 

into the TEM. 
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3.2.2.5 Elemental Analysis 

 Bulk elemental analysis was performed by the University of Illinois at Urbana-

Champaign School of Chemical Sciences Microanalysis Laboratory. CHN analysis was 

performed using an Exeter Analytical, Inc. Model CE-440 CHN analyzer. ICP-MS was 

performed using a Perkin-Elmer-Sciex Elan DRCe. 

3.2.2.6 Refilling Hollow Microspheres by Precipitation 

 Hollow microspheres (0.6 mg/mL) were suspended in a highly swelling solvent (e.g., 

THF) which contained the loading compound at saturation concentration. The vial was left on 

the rotisserie for 24 hours and then completely dried in a vacuum oven at room temperature. 

Loaded microspheres were resuspended in hexane and washed twice with 20 mL of DI water 

following the isolation procedure described in section 2.2.4.3. 

3.3 Fluorescent Silicone Microspheres 

There are two very different methods to incorporate a dye or fluorophore into these 

silicone microspheres:  one method is to include the dye in the initial USP synthesis, another is to 

incorporate the dye after microsphere synthesis using a swelling solvent.  For Nile red as an 

example, if the dye is included in the nebulized precursor solution, the dye cannot be extracted 

from the resulting microspheres (e.g., into ethanol).  If instead, the microspheres are post-

synthetically modified by incorporating Nile red dissolved in chloroform, for example, then 

leaching of the dye from the resulting microspheres will occur in ethanol. We speculate that the 

presence of the dye during crosslinking creates a doped polymeric structure where the dye is 

physically trapped within small crosslinked cavities. In contrast, loading the dye post cross-
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linking by using a highly swelling solvent creates a doped polymeric structure in which the dye 

is not well confined and can more readily diffuse and leach from the network, as was discussed 

in section 2.6.  

To create a silicone microsphere with fluorescence that persists through storage and use, 

we have included fluorescent dye in the nebulized precursor solution (Figure 3.1). As a proof of 

concept, we have produced PDMS microspheres doped with both hydrophobic and hydrophilic 

fluorescent dyes using USP. There are several experimental factors that must be considered in 

the production of silicone microspheres which incorporate organic molecules. For example, the 

loaded molecule must not decompose at the reaction temperatures necessary for polymerization; 

using an inert carrier gas prevents the oxidation of organics and raises the temperature stability 

of loaded molecules. Also, the precursor solvent must be carefully chosen to completely dissolve 

all precursors. In the case of hydrophobic dyes (e.g., Nile red), the organic solvents used 

previously, (toluene or hexanes) can be used. The issue is more complex for hydrophilic dyes 

(e.g., fluorescein), which are insoluble in hydrocarbons or aromatics. For these dyes, a binary 

mixture of miscible solvents that independently dissolve each precursor component is required. 

Simple benchtop experiments were used to determine optimum precursor formulations. 

 

Figure 3.1 Possible reaction pathway in the USP synthesis of fluorescent silicone microspheres.   
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To produce the fluorescent microspheres doped with Nile red, Nile red (0.062 M) was 

added to a 20 mg mL-1 Sylgard 184 precursor solution with hexanes as the solvent, and the USP 

synthesis was performed as described previously. The red colored microspheres were washed 

with 50 mL EtOH three times, washed with 50 mL hexanes three times, and stored dispersed in 

hexanes; these microspheres retained fluorescence even after washing and storage for >1 month 

in ethanol. The diffuse reflectance spectrum (Figure 3.2a) of the dried final product shows an 

absorption band at 522 nm that is absent in the non-fluorescent spheres, indicating the successful 

inclusion of Nile red. Fluorescence images (Figure 3.2b) of the Nile red doped microspheres 

show localized fluorescence. The non-fluorescent microspheres were also imaged, and as 

expected showed no measureable fluorescence. These microspheres were subsequently used for 

cell uptake experiments described in section 2.5.2. 

Silicone microspheres doped with the hydrophilic dye fluorescein were obtained through 

USP of a precursor solution containing 13.3 mg mL-1 Sylgard 184 and 0.4 mM fluorescein in a 

2:1 mixture of acetone:hexanes as the solvent. These microspheres exhibited bright green 

fluorescence, Figure 3.2c, as was expected. Fluorescein is extremely sensitive to photobleaching 

and oxidation.33 We speculated the silicone casing might protect the fluorescein dye from 

photobleaching in solution due to silicone’s high radiation resistance. We observed no significant 

improvement in photobleaching resistance for the fluorescein doped silicone microspheres, 

however, when examined using FRAP (fluorescence recovery after photobleaching).  
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Figure 3.2 Characterization of fluorescently labeled silicone microspheres. (a) Diffuse 
reflectance spectrum of Nile red doped PDMS microspheres (red) and non-fluorescent PDMS 
microspheres (black). Peak at 522 nm indicates successful inclusion of Nile red. 
(b) Fluorescence image of Nile red doped PDMS microspheres. (c) Fluorescence image of 
Fluorescein doped PDMS microspheres. 

3.4 Core-Shell Silicone Microspheres 

 For the synthesis of core-shell microspheres, the nebulized precursor solution contained 

both the reactants necessary to form crosslinked PDMS (i.e., silicone oligomers, crosslinking 

agents, and catalyst) and the relevant core material (Figure 3.3). When the aerosol mist reaches 

the heated reaction zone, the two immiscible components phase separate within the precursor 

droplet as the precursor solvent evaporates. During phase separation, the lower surface energy 

polymer, in these examples PDMS, preferentially wets the outside of the droplet forming a shell 

while the other material forms one (or several) central cores. The temperature of the heated 

reaction zone (200-300 °C) is sufficient to catalyze the addition polymerization and cross-linking 

of PDMS even in the short resident time (~40 seconds), which likely occurs concurrently with or 

shortly after phase separation and solvent evaporation, but is kept below the decomposition 

temperature of the internal core material. Silicone microspheres with a magnetic, polymeric, or 

ionic salt core have been prepared in this way. 
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Figure 3.3 Proposed reaction pathway in the USP synthesis of core-shell silicone microspheres.   

 

3.4.1 Magnetic Silicone Microspheres 

 Core-shell magnetic PDMS microspheres were formed by simply adding a commercially 

available colloidal suspension of 10 nm Fe3O4 nanoparticles (2% v/v Magna View Fluid, United 

Nuclear) to a 20 mg mL-1 silicone precursor solution (Sylgard 184). After USP under the same 

conditions as described in section 2.2, the resulting product was vacuum filtered through a 

0.22 μm Teflon filter, washed with three aliquots of 50 mL hexanes, and re-suspended in 

hexanes. The product was light brown in color and could be pulled from suspension using a 

magnet (Figure 3.4a). SEM of the magnetic microspheres shows similar surface topography and 

microsphere size to the non-magnetic microspheres (Figure 3.4b). An EDS line scan 

(Figure 3.4c) confirms the presence of both iron and silicon and shows a core-shell morphology 

in which an iron-rich core is surrounded by a ~200 nm PDMS shell.  TEM of the non-magnetic 

PDMS microspheres indicates the microspheres are uniform in density and composition 

throughout (Figure 3.4d), while TEM of the magnetic product clearly confirms the core-shell 
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morphology (Figure 3.4e). FTIR of the resultant product shows peaks characteristic of PDMS 

and oleic acid, suggesting the oleic acid chelated to the iron nanoparticles persists through the 

USP reaction. 

While the majority (~75%) of these magnetic core-shell microspheres has only a single 

iron core, there are some microspheres formed with multiple, smaller iron cores; microspheres 

having as many as six cores were observed (Figure 3.5). Additionally, the magnetic core size 

was easily altered by adjusting the concentration of the magnetic dopant in the precursor solution 

(Figure 3.6a & b). A slight reduction in average microsphere diameter was observed for the 

magnetic microspheres compared to non-magnetic microspheres obtained with the same 

concentration of PDMS in the precursor solution.  Similarly, a reduction in average microsphere 

diameter was observed for the magnetic microspheres with the smaller magnetic core 

(Figure 3.5c-e). Magnetic microspheres with smaller magnetic cores have a higher proportion of 

multi-core species, ~35%, than the larger core derivatives. The USP synthesis of magnetic 

PDMS and other silicone microspheres and potential applications of these materials are being 

more thoroughly explored by graduate student Nitin Neelakantan. 
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Figure 3.4 Magnetic core-shell polydimethylsiloxane (PDMS) microspheres prepared using 
ultrasonic spray pyrolysis. (a) Image of magnetic PDMS microspheres showing (left) 
microspheres dispersed in hexanes and (right) microspheres pulled from solution using a magnet.  
(b) SEM of magnetic PDMS microsphere on copper foil showing path of energy dispersive X-
ray spectral (EDS) line scan. (c) EDS linescan showing Si and Fe concentrations along the path 
line shown in (b). (d) TEM of PDMS microsphere (prepared without Fe3O4) showing uniform 
density and composition throughout the sphere. (e) TEM of magnetic microsphere showing core-
shell structure. 
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Figure 3.5 (a) Scanning electron micrograph of magnetic polydimethylsiloxane microspheres 
(accelerating voltage of 20 kV). Insets show expanded view of individual microspheres with 
EDS trace for iron shown in yellow. (b-d) Transmission electron micrographs of magnetic 
PDMS microspheres showing one, two, and many iron cores. 
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Figure 3.6 (a, b) Transmission electron micrographs of a magnetic polydimethylsiloxane 
(PDMS) microsphere obtained with a (a) precursor solution containing a 1:1 v/v ratio of PDMS 
(20 mg mL-1 hexane) to magnafluid and (b) precursor solution containing a 3:1 v/v ratio of 
PDMS (20 mg mL-1 hexane) to magnafluid. (c-e) Size distribution of PDMS microspheres 
obtained with a (c) 20 mg mL-1 PDMS in hexane precursor solution, (d) precursor solution 
containing a 1:1 v/v ratio of PDMS (20 mg mL-1 hexane) to magnafluid, (e) precursor solution 
containing a 3:1 v/v ratio of PDMS (20 mg mL-1 hexane) to magnafluid. 
   

3.4.2 Silicone Microspheres with Polymer Core 

Silicone encapsulated high molecular weight polystyrene (PS) microspheres were first 

investigated as a model system. For the synthesis of PS-PDMS core-shell microspheres, the 

nebulized precursor solution contained both the reactants necessary to form crosslinked PDMS 

(i.e., silicone oligomers, crosslinking agents, and catalyst) and dissolved polystyrene (PS) chains 

(MW = 35,000). The resultant USP product was collected in bubblers and TEM clearly shows 

core-shell morphology (Figure 3.7a) in which the non crosslinked PS core (low contrast) is 

surrounded by the crosslinked silicone shell (high contrast). SEM of the resultant product shows 

well-dispersed microspheres with minimal agglomeration and surface topography characteristic 
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of silicone microspheres (Figure 3.7b); FTIR analysis of the washed product contains both 

expected PDMS peaks and peaks at 3083, 3060, 3026, 2924,2850, 1601, 1493 and 1452 cm-1 

which are attributed to the PS core, Figure 3.7c.34 These microspheres were washed with 

hexane, ethanol, and acetone prior to imaging. Minimal dissolution of the non crosslinked PS 

core is observed with this washing procedure. 

 

Figure 3.7 Characterization of PS-PDMS core-shell microspheres synthesized using USP. 
Precursor solution contained a 22 mg mL-1 5:1 ratio of PDMS (Sylgard 184): PS (MW = 35,000) 
in toluene. (a) TEM of PS-PDMS core-shell microsphere showing a PS core (light region) 
surrounded by a silicone shell (dark region). (b) SEM of PS-PDMS core-shell microspheres with 
inset showing magnified view of a single sphere showing surface topography. (c) FTIR of PS-
PDMS USP product. The FTIR of pure PDMS microspheres has been subtracted from the PS-
PDMS spectrum to better visualize the subtle differences between the two products. Labeled 
peaks are characteristic of PS. 
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The PS core size is easily tunable by altering the PS:PDMS ratio present in the nebulized 

precursor solution. The volume percentage PS of the resultant product is approximately equal to 

the wt% of PS in the starting precursor solution (Table 3.1, Figure 3.8a-e). For low loading % 

PS, the apparent volume percentage PS in the final product is lower than expected. For these 

microspheres, the presence of multiple PS cores per microsphere is common. The volume 

percentages of PS were calculated from the relative diameter of the PS core (e.g., orange dotted 

line on Figure 3.8a) versus the diameter of the entire microsphere (e.g., red dotted line on 

Figure 3.8a) obtained from Image J analysis of TEMs. 

 

Table 3.1 Comparison of PS core size and microsphere diameter for PS-PDMS core-shell 
microspheres synthesized using USP from precursor solutions with different ratios of PDMS:PS. 

 Precursor Solution Final Product 

Ratio 
PDMS:PSa 

Total 
[polymer] 
(mg/mL) 

wt%b 

PDMS 
wt%b 

PS 

Average 
diameterc  

(nm) 

~Vol% 
PSc 

 22 100 0 850 ± 250 0 

10:1 22 91 9 815 ± 280 4.6 

7.5:1 22 88 12 810 ± 220 13.6 

5:1 22 83 17 800 ± 230 15 

3:1 22 75 25 830 ± 260 22 

2:1 22 67 33 800 ± 240 31 
a mass ratio of polymers in precursor solution 
b wt% of total polymer weight 
c determined from Image J analysis of TEMs 
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The average diameter of the resultant microsphere is not dependent on the starting ratio in 

the precursor solution, and is instead determined by the total concentration of polymer in the 

nebulized precursor solution (Table 3.1, Figure 3.9a-f). This synthetic method is generalizable 

and can be used to produce many other silicone encapsulated polymer microspheres including 

microspheres with liquid cores of low molecular weight polyethyleneglycol or polystyrene, 

(Figure 3.10a & b). Other silicone formulations (e.g., those discussed in sections 2.3.2 and 2.4) 

can also be used as encapsulation materials. The different chemical characteristics of the 

formulation (e.g., surface energy/hydrophobicity) can generate products that exhibit many 

smaller cores (Figure 3.10c) or in extreme cases composites with microstructuring at the tens of 

nm scale. 

 

 
 

Figure 3.8 Examples of transmission electron micrographs used to calculate approximate PS 
vol% in Table 3.1 for PS-PDMS core-shell microspheres synthesized using USP from precursor 
solutions with (a) 10:1, (b) 7.5:1, (c) 5:1, (d) 3:1, and (e) 2:1 ratios of PDMS:PS. Red dotted line 
in (a) shows representative measurement of microsphere diameter. Orange dotted line in (a) 
shows representative measurement of PS core diameter. 
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Figure 3.9 Scanning electron micrographs (top) and size distribution (bottom) for PS-PDMS 
core-shell microspheres synthesized using USP from precursor solutions with (a) pure PDMS 
and (b) 10:1, (c) 7.5:1, (d) 5:1, (e) 3:1, and (f) 2:1 ratios of PDMS:PS. Data corresponds to 
Table 3.1. 
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Figure 3.10 Transmission electron micrographs of core-shell microspheres with a PDMS shell 
(dark contrast) and polymer core (light contrast). (a) Liquid PS-PDMS core-shell microspheres 
synthesized using USP from a precursor solution with a 5:1 ratio of PDMS (Sylgard 184):PS 
(MW = 850) 22 mg mL-1 in toluene. (b) Liquid PEG-PDMS core-shell microspheres synthesized 
using USP from a precursor solution containing a 1:1 ratio of PDMS (Sylgard 184): PEG (MW = 
900) 22 mg mL-1 in toluene. (c) PS-PDMS core-shell microspheres synthesized using USP from 
a precursor solution with a 5:1 ratio of PDMS (Gelest VDT-123):PS (MW = 35,000) 22 mg mL-1 
in toluene. 

 

3.4.3 Silicone Microspheres with Ionic Salt Core 

A number of commercial applications rely on the microencapsulation of ionic salts with 

polymers.35-37 Polymer encapsulated ionic salts are commonly used materials for controlled 

release fertilizers26-27 and as food additives,35-36 for example. Controlled release fertilizers 

(CRFs) provide a number of environmental and economic advantages over traditional fertilizers 

such as ammonium nitrate. CRFs reduce plant and ecosystem toxicity caused by bursts of high 

ionic concentrations of fertilizer,27 reduce losses of nutrients, due to runoff and volatilization,38 

reduce time, labor, and energy costs by reducing the number of required applications,27 and 

lower the concentration of soil nitrate, preventing denitrification and reducing emissions of the 

greenhouse gas, nitrous oxide.39 The encapsulation of mineral food additives similarly offers 

many advantages, including reducing off-flavors, permitting time release, reducing unwanted 

b c
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reactions, and improving processing properties (esp. when added to dry powders). Specific 

examples of benefits from mineral encapsulation include improving color, odor, and shelf life of 

iron fortified products and preventing the coagulation of soy protein caused by the addition of 

calcium in calcium fortified soy milk.35 

The biocompatibility and biodegradation of silicones make them potential candidates as 

encapsulation materials for both of these applications. As shown in section 2.5, the USP PDMS 

microspheres have extremely low cytotoxicity, suggesting that mineral encapsulation using 

silicones would be similarly bioinert and a potential solution for flavor masking of food 

additives. In soil, PDMS chains undergo hydrolysis into individual monomers before microbial 

degradation into CO2 and inorganic silicate,40 suggesting that microencapsulated fertilizers 

would be environmentally benign. To this end, we have investigated the encapsulation of ionic 

salts, with particular emphasis on nitrates commonly used as fertilizers.  

 Because ionic salts are generally poorly soluble or insoluble in the solvents necessary for 

the USP of silicones, the microencapsulation of these materials has proven challenging. The 

encapsulation of small molecules or ionic salts was attempted via two different methods: (1) 

through direct nebulization of a precursor solution which contains both silicone oligomers and 

the loading compound and (2) by refilling already prepared USP silicone microspheres which 

contain internal void cavities (cf. section 3.5) with the loading molecule. Figure 3.11a shows 

exemplary TEMs of silicone microspheres with a Cu(NO3)2 salt core prepared by direct 

nebulization of a precursor solution that contained Sylgard 184 silicone oligomers and 

Cu(NO3)2 · 2.5 H2O (2:1 ratio by weight) in THF. Figure 3.11b shows exemplary TEMs of 

hollow Sylgard 184 microspheres that have been refilled with Cu(NO3)2 · 2.5 H2O by 

precipitation (cf. section 3.2.2.6). Both products appear green in color and the presence of Cu in 
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the microspheres has been confirmed by ICP, EDS, and FTIR. Similar experiments where 

CaNO3 · 2.5 H2O was used to refill hollow silicone microspheres were performed (Figure 3.11c) 

and the presence of Ca was confirmed by EDS and FTIR. As seen in the TEMs, the core size for 

ionic salt encapsulated microspheres is quite small in all cases and the nitrogen content was 

never above ~1% by weight as determined by CHN analysis.  

 For ionic salts insoluble in THF (e.g., KNO3 or NH4NO3), we attempted to form core-

shell microspheres directly through USP of a precursor solution with a surfactant (e.g., CTAB) 

added. In these cases, however, CHN analysis indicated no nitrogen present in the resultant 

product. Similarly, nebulization of a colloidal suspension of ionic salt (KNO3) particulates in a 

standard silicone precursor solution afforded a very low yield of silicone encapsulated product 

(Figure 3.11d). The majority of microspheres produced from this USP reaction showed no 

KNO3 core, with all microspheres larger than ~300 nm in diameter solid silicone. Further 

reducing the size of the ionic salt particulate may increase yield of encapsulated product. 

Silicone encapsulated ionic salts have many potential applications, but loading percentages of 

core materials would need to be improved before these applications could be pursued. Because 

of the low loading capacity, these materials were not pursued as CRFs. 

 

 

 

 

 

127 
 



 

 

 

Figure 3.11 Transmission electron micrographs showing examples of silicone encapsulated ionic 
salts. (a) PDMS encapsulated Cu(NO3)2 prepared by direct nebulization of a precursor solution 
with silicone oligomers and Cu(NO3)2 dissolved in THF; (b) PDMS encapsulated Cu(NO3)2 
prepared by refilling hollow microspheres by precipitation procedure described in section 
3.2.2.6. (c) PDMS encapsulated Ca(NO3)2 prepared by refilling hollow microspheres by 
precipitation procedure described in section 3.2.2.6. (d) Silicone encapsulated KNO3 prepared by 
direct nebulization of a precursor solution containing a colloidal suspension of KNO3 
microparticles in a silicone oligomer-toluene solution. 
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3.5 Silicone Microspheres with Internal Voids 

 Silicone microspheres with internal voids can be generated using two distinct approaches: 

(1) through sacrificial templating using a non-crosslinked polystyrene core and (2) through in 

situ hydrogen evolution via the Sn catalyzed condensation of hydroxy- and hydride-

functionalized silicone oligomers. Various morphologies with tunable core/cavity size and 

distribution are obtainable by altering the identity and concentration of the reactants in the 

precursor solution. For the purpose of this discussion, microspheres with one large internal void 

cavity will be referred to as hollow; microspheres with many small internal void cavities will be 

referred to as foamed. A comparison of the processes involved in the USP synthesis of hollow 

silicone microspheres and foamed silicone microspheres is given in Figure 3.12. 

 

 

Figure 3.12 Illustration of USP-based methods used to obtain silicone microspheres with 
internal void cavities. (a) Synthesis of hollow silicone microspheres via sacrificial templating. 
(b) USP synthesis of foamed silicone microspheres through the Sn catalyzed condensation of 
silicone oligomers.  
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3.5.1 Hollow Silicone Microspheres 

Hollow microspheres with approximately one large internal void cavity are obtained via 

sacrificial templating. The PS core of these microspheres is removed post synthesis by washing 

with acetone, a solvent which readily dissolves polystyrene and slightly swells PDMS 

(Figure 3.12a). The successful removal of the PS core is dependent on both polystyrene chain 

length and PDMS shell thickness. For example, regardless of shell thickness, the complete 

removal of a PS core that is 850 Da occurs almost immediately upon washing in acetone. In 

contrast, PS cores with a MW of 35,000 Da are difficult to remove. For microspheres prepared 

with a 2:1 ratio of PDMS (Sylgard 184): PS (MW = 35,000), diffusion of the large PS chains 

through the crosslinked PDMS shell occurs slowly. After prolonged exposure to acetone 

(3 days), the PS core has been reduced from ~31 vol% to ~8 vol% of the total microsphere 

(Figure 3.13). SEM of the unwashed microsphere shows particles with uniform, spherical 

particle morphology (Figure 3.14a), while SEM of the washed microsphere shows morphology 

consistent with a small solid spherical ball (i.e., the PS core) surrounded by a thin elastomeric 

PDMS shell that has collapsed to form a “skirt” around the core (Figure 3.14b & e). The 

number, extent, and speed of core removal are dependent on silicone formulation (e.g., 

crosslinking) and shell thickness. The thicker the shell, the less complete the PS core removal for 

a given amount of time exposed to acetone; for example, microspheres synthesized with a 10:1 

ratio of PDMS (Sylgard 184):PS (MW = 35,000), which had the thickest PDMS shells of all 

microspheres tested, showed incomplete PS removal even after Soxhlet extraction with toluene 

for 24 hours. 
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Figure 3.13 Transmission electron micrographs of PS-PDMS core-shell microspheres 
synthesized using USP from precursor solutions with 2:1 ratio PDMS (Sylgard 184): PS 
(MW = 35,000) as described in section 3.4.2. (a) Exposed to acetone for 15 minutes. (b) 
Exposed to acetone for three days. Diameters of microsphere (red dotted line) and PS core 
(orange dotted line) are given. PS core volume shrinks from ~31% to ~8% of the total 
microsphere volume. 

 

 
Figure 3.14 (a,b) Scanning electron micrographs of PS-PDMS core-shell microspheres 
synthesized using USP from precursor solutions with 2:1 ratio PDMS (Sylgard 184): PS 
(MW = 35,000) as described in section 3.4.2 and shown in Figure 3.13. (a) Exposed to acetone 
for 15 minutes. (b) Exposed to acetone for three days. (c-e) Cartoon of a cross-sectional view of 
(c) a core-shell microsphere similar to the one observed in (a) where the core and shell are in 
intimate contact, (d) a core-shell microsphere where the core has been partially removed and the 
shell is rigid, (e) a core-shell microsphere similar to the one observed in (b) where the core has 
been partially removed and the shell is elastomeric and thin, does not have the structural rigidity 
to maintain the spherical shape, and instead collapses and forms to the surface of the core with 
the extra material forming a thin “skirt” around the base.  
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If low molecular weight PS (~850 Da) is used in the USP synthesis, similar PS-PDMS 

core-shell microspheres as described in section 3.4.2, are produced, Figure 3.10a. The PS chains 

that make up the core of these microspheres are eight monomer units in length (compared to n ~ 

335 For PS that has a MW of 35,000) and, therefore, more readily dissolve in solvent and diffuse 

through the PDMS shell. Simply collecting the USP product in EtOH bubblers is sufficient to 

fully remove the PS core and produce silicone microspheres with hollow internal cavities. 

Unfortunately, visualizing these void spaces with traditional microscopy techniques is difficult 

because the thin elastomeric silicone shell readily collapses. SEM and TEM of these hollow 

microspheres show divots in the microsphere where the elastomeric silicone has collapsed into 

the internal void cavities (Figure 3.15a-d). The silicone shell in hollow microspheres with an 

internal void cavity larger than ~5-10% of the total microsphere volume does not have the 

rigidity necessary to prevent collapse (i.e., only microspheres made from a 10:1 ratio of 

PDMS:PS had void cavities clearly visible in TEM (Figure 3.15a & b)). 

We are confident the internal void cavity exists in all microspheres for several reasons: 

(1) FTIR of the resultant product shows only peaks characteristic of PDMS and does not show 

any peaks characteristic of PS (Figure 3.15e) and (2) these microspheres can be refilled with 

small molecules and ionic salts (section 3.4.3 and Figure 3.11b & c). The size of the internal 

void cavity can be adjusted by adjusting the size of the PS core (Figure 3.16). More complex 

characterization techniques (e.g., cryo-TEM or TEM in a liquid cell) may help visualize these 

void spaces directly; these were not pursued in this work. More rigid silicone shells, were 

obtained in subsequent experiments and the internal void cavity was visible by SEM for 

fractured microspheres (Figure 3.17). 
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Figure 3.15 Characterization of hollow silicone microspheres prepared via USP from precursor 
solutions with (a & b) 10:1 ratio and (c-e) 5:1 ratio PDMS (Sylgard 184): PS (MW = 850), 
22 mg mL-1 in toluene with subsequent core removal by washing. (a) Scanning electron 
micrograph of the 10:1 product with inset showing an expanded view of a single microsphere. 
Divots clearly evident where the elastomeric shell has partially collapsed. (b) Transmission 
electron micrograph of the 10:1 product with inset showing expanded view of a single 
microsphere showing partial collapse of microspheres; internal void cavities clearly visible as 
regions of lighter contrast within the darker silicone microsphere.  (c) Scanning electron 
micrograph of the 5:1 product with inset showing an expanded view of a single microsphere. 
Divots clearly evident where the elastomeric shell has collapsed. (d) Transmission electron 
micrograph of the 5:1 product showing collapse of microspheres. (e) FTIR of hollow 
microsphere product. The FTIR of pure PDMS microspheres has been subtracted from the 
hollow PDMS spectrum to visualize subtle differences between the two products. No PS peaks 
are present.  
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Figure 3.16 Examples of scanning electron micrographs of (a) solid PDMS microsphere, and (b-
e) hollow PDMS microspheres synthesized using USP from precursor solutions with (a) pure 
PDMS and (b) 10:1, (c) 5:1, (d) 3:1, and (e) 2:1 ratios of PDMS (Sylgard 184):PS (MW = 850), 
22 mg mL-1 in toluene. Increased dimpling/collapse is observed as the relative amount of PS (and 
therefore internal void space volume) increases. 

 

 

Figure 3.17 Example of hollow silicone microspheres obtained using higher crosslinking 
silicone (VDT-731) with a more rigid silicone shell. The internal void cavity, created from 
removal of a Cu(NO3)2 core, is clearly visible for a microsphere that fractured during washing. 

 

3.5.2 Foamed Silicone Microspheres 

Silicone microspheres with many small internal void cavities can be produced employing 

the same chemistry used to make bulk foamed silicones, the Sn catalyzed condensation of PDMS 

oligomers (section 1.2.2.2). For this synthesis, the nebulized precursor solution contains 

hydroxy-terminated (6.0 kDa; 13.3 mg mL-1) and polymethylhydrosiloxane (Gelest; HMS-301; 

6.7 mg mL-1) oligomers and di-n-butyldilauryl tin catalyst (Gelest; SND3260; 0.5 µL mL-1) in 

toluene. In the heated reaction zone, the precursor solvent evaporates and the polymerization of 
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PDMS occurs. A by-product of this reaction is H2 gas, which expands within the polymerizing 

PDMS and generates small bubbles, as shown in Figure 3.18b. SEM of the resultant product 

shows particles that are roughly spherical (Figure 3.18a), and TEM of the product at 

atmospheric pressure (done using a modified liquid cell holder, see section 3.2.2.4) clearly 

shows many small, internal void spaces within a single crosslinked PDMS microsphere 

(Figure 3.18b). These microspheres appear to have a dense silicone shell and can have one large 

internal void (for very small particles) or tens of small internal voids. We have attributed the 

dark particulates to a contaminant, precipitated Sn from the catalyst, or extremely dense silicone 

particles for which the evolved H2 escaped before the shell was fully cured. FTIR of the resultant 

product shows, as expected, all relevant peaks for PDMS as well as a peak at 2167 cm-1 and a 

broad stretch at ~3300 cm-1 characteristic of the Si–H and O–H stretch of unreacted functional 

groups from the methylhydrosiloxane and hydroxyl-terminated polydimethylsiloxane oligomers 

used.41  

 

 

Figure 3.18 Characterization of foamed silicone microspheres prepared via USP. (a) Scanning 
electron micrograph showing spherical morphology and characteristic topography. (b) 
Transmission electron micrograph of product at 1 atm showing internal “foamed” structure. (c) 
FTIR of product showing all peaks expected for PDMS as well as a band at ~3300 cm-1 and 
2167 cm-1, attributed to the O–H and Si–H stretching modes of unreacted functional groups. 
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The successful fabrication of foamed silicone microspheres is important for two reasons. 

First, it demonstrates that Sn catalyzed reactions are possible via this synthetic method, which 

opens up a number of new synthetic pathways, including dehydrogenation and condensation 

reactions. Second, it creates an interesting new silicone micromaterial previously unrealized.   

3.5.3 Oil Adsorption Using Hollow Silicone Microspheres 

 There is an urgent and pressing need for oil spill remediation materials to ameliorate the 

negative environmental effects of oil spills both offshore and inland.42-46 Remediation materials 

proposed to clean up oil spills include many different absorbent nanomaterials (e.g., carbon 

nanotubes, electrospun nanofibers, high surface area aerogels) which are favored over bulk 

materials due to their high surface area to volume ratio which leads to high absorption capacities 

and fast absorption kinetics.28, 47-48  Silicone micromaterials are particularly attractive due to 

silicones high oleophilicity and hydrophobicity, relatively inexpensive material cost, and high 

chemical and thermal stability. Porous absorption materials can store oils in pores, further 

increasing the total oil absorption capacity.28, 49-53 Our USP prepared hollow silicone 

microspheres (section 3.5.1) are potential candidates for oil remediation materials.  

To this end, we have tested USP prepared hollow silicone microspheres made from the 

silicone oligomers described in Table 2.1 for their absorption capacities (Smass) of different oils 

and organic solvents using the swelling procedures described in section 2.2.2.6.  The USP 

synthesis of these materials was performed with Ar gas flow rates of 1 slpm, which may have 

affected the PDMS-PS phase separation; more experiments are needed to confirm microsphere 

structure. Preliminary oil adsorption results are summarized in Figure 3.19. The mass of oil 

absorbed per gram of oil absorbent is dependent on the silicone crosslinking density, the oil 
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identity (i.e., both the density of the oil and the oil’s ability to swell silicone), and the internal 

void volume. The microspheres prepared from a precursor solution which should afford internal 

void cavities ~ 31% of the microsphere volume (i.e., 2:1 ratio of PDMS:PS (850 MW)) had 

higher Smass values than the solid silicone microspheres with the same crosslinking density. The 

foamed silicone microspheres had intermediate Smass values. Generally, for microspheres with 

internal void cavities (either foamed or hollow), the ratio of Smass to Svol for hexane was > 1.3, 

while for solid microspheres this value was < 0.75. The ratio of Smass to Svol for solid 

microspheres should be approximately equal to the density of hexane divided by the density of 

PDMS, or 0.7. The fact that this ratio increases above the value expected for solid PDMS 

suggests the presence of significant internal void volume within the silicone microsphere which 

is used as a reservoir to store excess oil or solvent. These measurements, however, need to be 

retaken due to high deviations in the Svol values.  

The highest oil absorption capacities we observe are ~10 g oil/g microsphere. Other oil 

absorbents reported in the literature range from ~ 4 to ~ 350 g oil / g absorbent depending on the 

identity of the oil and absorbent.28 Extremely high Smass values (> 100 g/g) are from highly 

porous aerogels which trap viscous oils in the pores. These materials have extremely low 

densities and therefore have low volume absorption capacities (Svol < 1.5) and are much less 

efficient at collecting low viscosity oils. In contrast, our hollow microspheres appear to have 

relatively uniform absorption among all oils tested and have impressive Svol values; as high as 17 

mL oil / mL microsphere (cf. section 2.3.2), which are some of the highest ever reported. Most 

polymeric oil absorbents have Smass values between 5 and 20 g/g and Svol values < 5 mL/mL.28 

With further optimization of our materials (i.e., reducing crosslinking density and increasing 
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total void volume), Smass values are expected to increase further. These experiments will be 

continued by graduate student Nitin Neelakantan. 

 
Figure 3.19 Solvent/oil adsorption by silicone microspheres with different crosslinking densities 
(cf. section 2.3.2) and different internal microstructure (i.e., solid, hollow, or foamed). Smass 
values are given. Trials were run in triplicate except the VDT-123 trials which were run in 
duplicate. 

 

3.6 Conclusions and Future Directions 

 USP has proven an incredibly versatile method for the fabrication of functional silicone 

microspheres. We have successfully demonstrated the synthesis of fluorescent, magnetic, core-

shell, hollow, and foamed silicone microspheres by simply adding the appropriate dopant (e.g., 

fluorescent dye, colloidal Fe3O4, polymeric or ionic salt core material) to the precursor solution 

prior to nebulization. Fluorescent microspheres can be made from nebulizing a precursor 
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solution doped with either hydrophobic or hydrophilic dyes as long as the precursor solvents are 

chosen to solubilize both silicone oligomers and the fluorescent dye. Magnetic microspheres, 

obtained from the nebulization of colloidal Fe3O4 in the standard silicone precursor solution, 

have core-shell morphology with a magnetic core which is tunable in size. Core-shell 

microspheres can be made using either organic or inorganic compounds as the core material, 

though we have had more success in this work synthesizing microspheres with organic (i.e., 

polymeric) cores. As with the magnetic microspheres, core size for microspheres with a 

polymeric core is tunable and depends on the ratio of silicone to core material in the precursor 

solution. 

 Microspheres with internal void cavities can be prepared using USP via two different 

approaches. The first approach, sacrificial templating, involves removal of the polystyrene (PS) 

core from USP prepared PS-PDMS core-shell microspheres by washing with a solvent in which 

PS is soluble. Successful and complete removal of the PS core is dependent on a variety of 

factors, including the molecular weight of the PS, the crosslinking density of the PDMS, the 

PDMS shell thickness, and the length of time the product is exposed to solvent during washing. 

We have found that PS-PDMS core-shell microspheres made from the nebulization of low 

molecular weight polystyrene (850 Da) have PS cores which are removed rapidly and completely 

by simply collecting the product in EtOH bubblers. The void cavity size is tunable by changing 

the size of the PS core and these void cavities can be refilled with small molecules, inorganic 

compounds, or solvent.  

The second approach for synthesizing microspheres with internal void cavities involves 

nebulization of hydride-functionalized and hydroxyl-terminated silicone oligomers with a Sn 

catalyst. Within the heated reaction zone, the dehydrogenative coupling of silicone oligomers 
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occurs and H2 gas is evolved. The resultant product is silicone microparticles which are roughly 

spherical and ~1 µm in diameter. These microparticles have a “foamed” structure with many 

small internal voids as visualized in TEM of the product at 1 atm. The successful USP synthesis 

of these Sn catalyzed foamed silicone microparticles demonstrates that the synthetic versatility of 

this method is not confined to only Pt catalyzed reactions, which opens up a number of important 

silicone chemistries (e.g., condensation cure). 

Finally, our USP hollow silicone microspheres were explored as potential oil spill 

remediation materials. Initial results are promising and suggest that both decreasing the 

crosslinking density and creating microstructure which includes internal voids increases 

hydrocarbon absorption capacity. Further experiments are needed to optimize the silicone 

microsphere crosslinking density and microstructure, but this work suggests that absorption 

capacities for optimized materials would be similar to those reported in the literature and might 

be especially impressive for light hydrocarbons. 
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CHAPTER 4: 

ADVANCEMENTS IN PORTABLE GAS SEPARATION AND  
SENSING TECHNOLOGY 

 

4.1 Introduction 

There has been considerable recent attention in the development of rapid and portable 

instrumentation for on-site measurement of gaseous analytes. Transporting samples (e.g., that 

have been collected during environmental field work or medical diagnosis) from on-site to a lab 

can be especially problematic as trace analytes may be lost during sampling and transport due to 

unwanted reactions or adsorptions.  Small portable instrumentation would allow for more 

accurate and effective measurements (sampling and analysis protocol can be adjusted for the 

analytes of interest during collection), time profiling, mapping, and routine monitoring of high 

risk areas (e.g., airports, stadiums, or on one’s person).  To this end, there have been many 

efforts in the on-site analysis of gas samples in an attempt to sense, identify, and monitor 

selected analytes or analyte mixtures.  

If interested in only a single analyte (e.g., a specific toxic industrial chemical, TIC), a 

single sensor (e.g., one sensitive to NH3) may be all that is required. If more than one analyte is 

of interest, sensor elements can be combined to form sensor arrays. The most successful and 

universal sensor arrays have been developed over the past decade by the Suslick research group 

and utilize cross-reactive, chemoresponsive colorants that change color upon exposure to 

analyte(s) of interest. This optical response pattern is unique for a given analyte or mixture, 

forming an olfactory-like response that can be stored as an electronic database and used for 

identification of unknown samples. This technology is rapid and portable (responses in seconds 
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to minutes from a handheld device the size of a large iPhone) and the sensor arrays themselves 

are inexpensive and highly sensitive. These colorimetric sensor arrays have proven extremely 

powerful at fingerprinting and identifying a wide range of gaseous analytes and mixtures at ppb 

to ppm levels, and are described in more detail in section 4.5.  

One caveat of sensor array technologies is that component by component analysis of 

complex gaseous mixtures is exceedingly difficult to achieve. In other words, colorimetric sensor 

arrays can determine if an unknown mixture is the same as a mixture within the database, but 

cannot determine the specific components present within the mixture.  For instances where on-

site analysis of gaseous analytes is desired, many components of interest might be present. For 

complete component by component analysis, an equally portable, rapid, and inexpensive device 

that can separate a complex mixture into individual components prior to array exposure is 

necessary.  

  Gas chromatography is the standard analytical technique used for separating and 

analyzing complex mixtures of volatile or semivolatile compounds. This widespread 

applicability has encouraged growing interest in the development and commercialization 

of portable gas chromatographs (GCs) and further miniaturization of GC columns 

(microcolumns)1 in both research2-9 and commercial10-11 laboratories. Conventional GCs 

are bulky, have high power consumption, and often have long analysis times. These 

factors have generally limited GCs to a laboratory environment making in situ analysis of 

field or environmental samples difficult. Ideally, GC miniaturization would yield a small, 

portable, and low power device that is also inexpensive and easily mass produced; indeed, 

an ultimate goal might well be the creation of a handheld unit with multiple inexpensive, 
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disposable components (e.g., microcolumn, detector) that could be used multiple times 

and then discarded.  

  In the past decade, significant progress has been made in microcolumn separation 

efficiency, but fabrication processes are essentially unchanged from that used by Angell 

and Terry in their original micro-GC system.12-13 In traditional microcolumn design, the 

column consists of a structural support (e.g., micromachined or photolithographed metal, 

silicon,1-7, 9, 12-14 or parylene15) with a separately applied thin film stationary phase (e.g., 

PDMS). Fabrication of these microcolumns is costly and cumbersome, requiring 

specialized equipment (e.g., plasma generator, cleanroom) and hazardous chemicals for 

lithographic etching.6, 8, 12 Even more problematic in column miniaturization is the 

deposition of the stationary phase,5, 7, 12, 16-18 which must produce a uniform thin coating 

that will not delaminate from the structural walls of the microcolumn.  

  The complexity and cost of fabrication could be substantially reduced if 

microcolumns were composed of a single polymer or composite that acts as both the 

structural material and stationary phase. Mold-based fabrication of polymers (i.e., the use 

of a reusable mold to shape liquid polymer as it sets) is easily scalable and associated 

with very low fabrication costs.14,15 In fact, most microfluidic devices and nearly all 

commercially available polymer products depend on some form of mold-based 

fabrication. A single standard industrial mold is able to template thousands of polymer 

pieces; in contrast, current microcolumn fabrication protocols require a patterned, 

micromachined piece for every microcolumn. To our knowledge, there are only two 

reports of microcolumns where the support and the stationary phase were the same 
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polymeric material, which unfortunately resulted in extremely limited separation 

efficiency.18-19 

Part II of this dissertation describes an alternative microcolumn fabrication method in 

which inexpensive, and even disposable gas chromatography microcolumns are produced via an 

easily scalable polymer molding process. The feasibility of a colorimetric sensor array as a 

disposable gas chromatography detector is also explored including the development of a 

colorimetric sensor array for organic solvents, the influence of secondary factors (e.g., array 

geometry and substrate) on array response and kinetics, and a proof of concept study utilizing a 

colorimetric sensor array to detect a series of amines eluting from a microcolumn. This work is 

the first step to a fully integrated, disposable, and portable gas chromatography column and 

detector (Figure 1a). This chapter gives an overview of basic chromatography theory, gas 

chromatography microcolumns, gas chromatography microdetectors, and colorimetric sensor 

arrays specifically as each relates to the work within this dissertation.  

 

Figure 4.1 Concept diagram of an inexpensive, disposable polymer microcolumn integrated with 
colorimetric sensor array, showing a cross-sectional scanning electron micrograph of the 
microcolumn’s sealed channels (scale bar = 250 μm). 
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4.2 Gas Chromatography  

          A gas chromatograph typically contains three major components, the inlet, column, and 

detector. A box diagram of a generalized GC with a wall-coated open tubular column (WCOT) is 

shown in Figure 4.2. In gas chromatography, a sample is introduced in the inlet, usually through 

injection, as a focused band. This band is swept through the column via an inert carrier gas called 

the mobile phase (e.g., He or H2). The column of the GC contains a sorbent called the stationary 

phase. This sorbent retains components within the analyte band and, importantly, has a variable 

affinity for each analyte within the injected mixture. At a given time an analyte molecule can be 

present in either the stationary phase or the mobile phase. As the names suggest, if a molecule is 

in the stationary phase (i.e., a thin film of semi-liquid polymer), the molecule is stationary, 

making no forward progress through the column. In contrast, if a molecule is in the mobiles 

phase, it moves longitudinally through the column at the same rate as the mobile phase. The 

distribution of molecules in the mobiles phase to stationary phase is described by the distribution 

constant or partition coefficient (K), described by equation 4.1 

𝐾𝐾 =  𝐶𝐶𝑠𝑠
𝐶𝐶𝑀𝑀

   (4.1) 

where Cs is the analyte concentration in the stationary phase and CM is the analyte concentration 

in the mobile phase. 

 Analytes which have high affinity for the stationary phase relative to the mobile phase are 

retained longer on the column than analytes which have low affinity for the stationary phase 

relative to the mobile phase. As the analyte band traverses longitudinally through the column, 

radial diffusion ensures analyte molecules interact with the stationary phase. As the analyte band 

passes through a given area within the column the sudden depletion of analyte within the mobile 
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phase causes molecules absorbed to the stationary phase to readily and quickly desorb. If the 

column and parameters are chosen appropriately, analytes within an injected mixture can be 

completely temporally resolved into discrete bands that have a roughly Gaussian distribution of 

analyte concentration with respect to time (i.e., longitudinal position) within the column. A 

cartoon depicting the separation of analytes within a WCOT column is given in Figure 4.3. 

These analyte bands are detected as they elute from the column via a detector, which is often 

connected to a computer for data output and analysis. This section gives an overview of common 

GC hardware (inlets, columns, and detectors) and describes some basic chromatography theory 

including the definition and calculation of various measures of separation efficiency (e.g., the 

number of theoretical plates, resolution, and tailing factor). 

 

Figure 4.2 Box diagram of standard benchtop gas chromatograph showing general arrangement 
of hardware. Column cross-section shown for wall-coated open tubular capillary column.  
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Figure 4.3 (a) Illustration of a typical separation for a dual component mixture (red and blue) for 
wall-coated open tubular columns. Illustrations progress from (top) the time of injection (t0) to 
(bottom) the time at which the final analyte elutes (t4). Black line shows distribution of analyte as 
would be observed by a GC detector at each position within the column. (b) Representative 
chromatogram of separation in (a) as would be recorded by the detector at the end of the column. 
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4.2.1 Inlets 

 The inlet, or injector, serves many functions in GC analysis. The inlet, of course, serves 

as the samples’ entrance to the GC column. The inlet also must vaporize volatile liquid samples 

and mix the analyte evenly and thoroughly with the incoming carrier gas, all while ensuring the 

sample enters the column in as narrow a band as possible without discrimination based on the 

chemical or physical properties of the sample components. Ideally, the entire injected sample 

would enter the column at a precise moment in time; practically, this is not possible. 

Development of GC inlets, therefore, has aimed at minimizing band width and maximizing band 

symmetry. For capillary columns, the column type most commonly used for routine analysis of 

volatile organic compounds (VOCs), inlets must also dramatically reduce the concentration of 

sample to prevent column overload. For GC analysis, the type of inlet and mode of injection are 

dependent on both sample and column type and must be chosen carefully to optimize 

performance.  

 The most common type of injector for use with a capillary column is the split/splitless 

injector (Figure 4.4).20 This injector can be operated in either a split mode or a splitless mode. In 

the split mode, the sample is diluted upon entrance into the injector by the carrier gas, which 

flows at approximately 50-100 mL min-1. The majority of this mixture is vented from the inlet, 

while only a small portion is carried onto the column, thus preventing column or detector 

overload. Split ratios can be calculated from equation 4.2 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟 =  (𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐹𝐹𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚)
𝐹𝐹 𝑐𝑐𝐶𝐶𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚

    (4.2) 
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where FSplit and FColumn are the outlet flow rates of the split vent and column, respectively. Split 

ratio values are typically between 1 : 20 and 1 : 500. The inlet temperature is kept high enough to 

immediately vaporize all sample components (generally between 250 and 300 °C). Even with 

heated inlets, there is discrimination due to differences in boiling point; for example, as boiling 

point increases for a series of alkanes the recovery rate (amount detected versus amount injected) 

decreases dramatically. Inlet liners, essentially glass tubes that nest inside the inlet, are used to 

prevent contamination and reduce band broadening. Inlet liners with small internal volume are 

best for reducing band broadening during injection, but can only accommodate small injection 

volumes.  

 

Figure 4.4 Diagram of a split/splitless injector.20  
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 If sample concentrations are very low, the split/splitless injector can be used in splitless 

mode. In splitless mode, the injector is kept cool and the vent valves are closed during sample 

injection. During injection, the sample components are concentrated at the entrance to the 

column. At some point after complete analyte transfer to the column, the column temperature is 

increased via temperature programming to initiate elution and the split vent is turned back on to 

empty the injector. This injection method requires more experience to perform correctly and low 

volatility compounds are lost during analysis.  

 Other types of injection methods include direct vaporization, cold on column (COC), and 

programmed temperature vaporization. These methods are selected only when dealing with non-

standard samples. Direct vaporization is useful for packed and megabore columns with high flow 

rates. Cold-on-column injection is useful for thermally labile or high boiling point compounds or 

for quantitative analysis of a sample with analytes that span a range of boiling points. The 

programmed temperature vaporization injector is essentially the same as a split/splitless injector 

except that the chamber can be temperature programmed.   

4.2.2 Columns 

 The most important piece of hardware for GC analysis is the column. Generally, columns 

consist of two components, an inert solid support and a stationary phase. These components can 

be arranged in many different ways, which distinguish the different types of columns, namely 

packed columns or open tubular columns. For packed columns, a relatively large diameter tubing 

(usually stainless steel or glass) is packed with a solid support coated in stationary phase. These 

columns are commonly used in GC of permanent gases and have little use in the analysis of 

complex mixtures of VOCs. Open tubular columns have stationary phase coated on the walls of 
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tubing with a relatively small internal diameter (~0.25 mm). Because flow is not as restricted in 

these columns, longer columns can be used without encountering problems with backpressure. 

These columns are used in the analysis of highly complex mixtures and usually afford very 

efficient separations. Open tubular columns can be further subdivided into wall-coated open 

tubular (WCOT) columns, support coated open tubular (SCOT) columns and porous layer open 

tubular (PLOT) columns. For WCOT columns a highly uniform thin (<1 µm – 5 µm) layer of 

liquid or semi-liquid stationary phase is deposited directly on the channel walls. For PLOT 

columns, a porous material, which acts as the stationary phase, is deposited as a thin layer on the 

walls of the column. For SCOT columns, the liquid stationary phase is coated on a porous 

support as a thin layer, and this binary system is then deposited on the walls of the column. 

WCOT columns are the most commonly employed in routine GC analysis and have the highest 

efficiencies of any column types. Because of the greater stationary phase loading in SCOT and 

PLOT columns, these columns have higher sample capacities than WCOT derivatives. Drawings 

of the internal cross-sections for each type of column are given in Figure 4.5 and important 

properties of the different types of columns are compared in Table 4.1. 

 

 

Figure 4.5 Cross-section of types of columns used in gas chromatography. 
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Table 4.1 Properties of select gas chromatography columns.21 

 Type of Column 

 Packed WCOTa SCOTb 

Length (m) 1 – 6 10 – 1000 10 – 100 
Inner Diameter (mm) 2 – 4 0.1 – 0.3 0.5 
Efficiency (plates/m) 500 – 1000 2000 - 5000 600 – 1200 
Sample Size (ng) 10 - 106 10 – 75 10 – 1000 
Pressure High Low Low 
a values are for fused silica WCOT 
b values for PLOT columns are similar 

 

4.2.3 Stationary Phases 

 Selection of a stationary phase is the most critical decision in GC analysis. Selecting an 

appropriate stationary phase is entirely dependent on the properties of the analyzed sample, and 

is generally based on literature, method development, and prior experience in the field. A good 

stationary phase must meet several criteria including good solubility of sample components, 

highly variable partition coefficients for sample components, good thermal stability, extremely 

low volatility, and no reactivity with sample components. This choice can be overwhelming, as 

>300 phases are commercially available and about 1000 have been described in the literature.22 

An initial estimate of an appropriate stationary phase can be obtained by considering the sample 

compounds chemical nature, i.e., polarity, but final selection is usually determined by trial and 

error.22-24 

 Stationary phases used in WCOT columns are called “liquid” stationary phases. In 

reality, these phases are usually crosslinked and bonded polymers above their Tg. Stationary 
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phases can be classified as non-polar, polar, or specialty phases. The retentive mechanisms are 

aligned with the chemical functionality of the stationary phase. Non-polar phases have no 

functional groups capable of specific interactions, and rely instead on dispersive forces for 

analyte retention. Analytes elute from non-polar columns according to their boiling points. Polar 

phases contain functional groups capable of specific interactions (e.g., H-bonding, dipole-dipole, 

acid-base) and can be used to separate compounds with similar or identical boiling points. 

Specialty phases are similar to polar phases, but may exhibit extreme selectivity to only one type 

of chemical functionality. Theses are generally developed to meet unique requirements or 

constraints determined by the analysis method or sample. Table 4.2 gives examples of common 

stationary phases, their class, and distinguishing features.22, 24 

 The most common and universal class of stationary phase for GC is silicones. Silicone 

polymers are discussed in detail in Chapter 1. Silicones are attractive GC stationary phases 

because of their high temperature stability, high gas permeability, chemical inertness, low 

volatility, low cost, well-understood synthesis, and processability. The most common silicone 

stationary phases are given in Table 4.3. The non-polar dimethylsilicone phase is the most 

widely used, general purpose, GC stationary phase due to its long column life and low bleed rate. 

As stationary phases increase in polarity, the thermal stability, efficiency, and shelf life decrease. 

Regardless, for certain analyses polar phases are necessary. Methylphenylsiloxanes with varying 

degrees of substitution are used to separate moderately polar samples, especially ones which 

contain aromatics. Trifluoropropyl silicones are used in the separation of analytes that contain 

lone-pair electrons (e.g., nitro, carbonyl, alcohol) which can interact with the high dipole 

moment of the trifluoropropyl group. Cyano groups are similarly selective for π-bonded groups 

(e.g., olefins, esters).22   
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Table 4.3 Structure, classification, and uses of common silicone stationary phases.22 

Chemical Structure Classification Uses 

100%  dimethyl 

      

Non-polar Boiling point separations 
(solvents, petroleum products, 
pharmaceuticals) 

  95%  dimethyl 
    5%  diphenyl 

 

Non-polar Boiling point separations 
(aromatics, falvors, aromatic 
hydrocarbons) 

  86%  dimethyl 
    7%  phenylmethyl 
    7%  cyanopropylmethyl 

 

Intermediate 
polarity 

Pesticides, alcohols 

  50%  dimethyl 
  25%  phenylmethyl 
  35%  cyanopropylmethyl 

 

Polar Triglycerides, phthalate esters 

100%  cyanopropyl 

         

Polar Fatty acid methyl esters, 
carbohydrates 

Si
CH3

CH3

O

100%

Si
CH3

CH3

O

95%

Si O

5%

Si
CH3

CH3

O

86%

Si
CH3

O

7%

Si
CH2

CH3

O

7%

C N
3

Si
CH3

CH3

O

50%

Si
CH3

O

25%

Si
CH2

CH3

O

25%

C N
3

Si
CH2

CH2

O

100%

C N
3

C N
3
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 The thickness of the stationary phase (df) is nearly as important in separations as the 

chemical structure. Film thickness directly affects retention times, sample capacity, resolution, 

and temperatures needed for analysis. If the stationary phase film is very thick, the resistance to 

mass transfer in the stationary phase is increased contributing to band broadening (cf. section 

4.2.4). As df increases, retention times increase, efficiency decreases, the temperature necessary 

for elution increases, sample capacity increases, and column inertness increases. In general, 

stationary phase film thickness is kept as thin as possible (usually < 0.4 μm) to keep efficiencies 

high. Stationary phases with high diffusivities (e.g., PDMS), however, can be deposited as 

thicker films (up to ~1 μm) without substantial loss in efficiency. Thick film columns (df ~ 1 – 

5 μm) are occasionally used for the separation of permanent gases, in analyses where column 

inertness is particularly important, or for samples which necessitate high sample capacity.22  

4.2.4 Detectors 

 Analyte identity and concentration must be carefully considered in detector selection. 

Nearly every means of gas detection has been used as a detector for gas chromatography; over 

100 different GC detectors have been described.24 The most common detectors are given in 

Table 4.4 along with their intended analyte class. 

 The purpose of a GC detector is to detect analytes as they elute from the column. The 

most important characteristics of the detector are, therefore, the speed of response (i.e., the time, 

in milliseconds, that a detector takes to respond to a 63.2% sudden change in signal) and the 

minimum limit of detection (MLD or LOD).23 The two most common detectors, thermal 

conductivity detector (TCD) and flame ionization detector (FID), are worth further discussion.  
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Table 4.4 Commercially available GC detectors and the analytes to which they are sensitive.23 

Detector Analytes 

Thermal Conductivity (TCD) Universal 

Flame Ionization (FID) Most carbon compounds 

Electron Capture (ECD) Halogenated Compounds 

Photoionization (PID) Aromatics 

Nitrogen/phosphorus (NPD) N-, P-, and halogen-containing compounds 

Flame Photometric (FPD) S- and P-containing compounds 

Atomic Emission (AED) Metals; halogens, C- and O-containing 
compounds 

Electroconductivity (ECD) S-, N-, and halogen-containing compounds 

Chemiluminescent S-containing compounds 

Radioactivity 3H- and 14C-containing compounds 

Mass Spectrometer (MSD) Variety 
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 TCD is nondestructive and sensitive to nearly any analyte; for these reasons TCDs are 

frequently used in GC analysis. Because the detector is nondestructive, TCDs will often be used 

in front of destructive detectors (e.g., FID) for dual output. In a TCD, resistance wires are heated 

to a temperature above the temperature of the surrounding gas. This hot wire loses heat to its 

surrounding at a rate dependent on the thermal conductivity of the surrounding gas (e.g., He). As 

the analyte in the eluent stream changes, the filament gets hotter (because the thermal 

conductivity of the analyte is less than the carrier gas), its resistance goes up, and a signal is 

produced and recorded. TCD is not very sensitive, but it is universal, simple, rugged, and 

inexpensive and is, therefore, the detector of choice for routine non-trace analysis.  

 The FID, the detector used in this work, is a destructive and highly sensitive detector. The 

FID has a small flame at its core that burns and ionizes analytes as they elute from the column, 

Figure 4.6. The ions produced are collected on a collector electrode and the signal current 

amplified. The FID has some of the highest sensitivities available, is nearly universal, and has 

high linearity. Some compounds not detectable by the FID; for example, the FID cannot detect 

hard to ionize gases and has difficulty detecting small compounds with no C–H bonds (e.g., He, 

Ar, O2, H2O, CO2, SiHCl3). Table 4.5 compares important parameters for TCD and FID. 

Table 4.5 Comparison of TCD and FID.24  
 TCD FID 

Classifications Concentration 
Bulk Property 
Universal 
Nondestructive 

Mass flow rate 
Specific Property 
Selective (only organics) 
Destructive 

Characteristics 
Sensitivity 
Detectivity 
Minimum Sample Size 
Linearity 

 
5000 mV·mL/mg 
10-10 g/mL 
10-8 g 
104 

 
10-2 C/g 
10-12 g/s 
10-10 g 
106 
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Figure 4.6 Schematic of FID detector.25 

 

4.2.5 Gas Chromatography Theory and Definitions 

 In this section, an overview of GC theory is given. An excellent comprehensive 

discussion of GC theory can be found in the book Quantitative Gas Chromatography by 

Guiochon and Guillemin.26 A representative chromatogram, which is a plot of the detector 

response (usually proportional to analyte flux) versus time, is given in Figure 4.7. Many 

fundamental parameters used to describe a chromatographic separation can be calculated using 

data collected from a chromatogram. Values obtained directly from chromatogram 

measurements are given in Table 4.6. 
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Figure 4.7 Representative chromatogram showing peaks resulting from retained component B 
and unretained component A. O marks the time of injection. Labeled parameters correspond to 
those listed in Table 4.6.22, 27 

 

 

Table 4.6 Parameters obtained directly from chromatogram. 

Abbreviation Parameter 
tm retention of CH4 (dead volume) 
tr retention time of analyte 
tr’ adjusted analyte retention time 
w1/2 width at half max 
a left half width at 5% height 
b width at 5% height 

 

 

 

w1/2

a b
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4.2.5.1 Retention Time 

 Analyte retention time, tr, measures the time an analyte spends on the column. This time 

is a reflection of both the dead volume (column holdup volume) and the time an analyte spends 

retained by the stationary phase. The dead volume is the amount of time it takes for any analyte 

to pass through the open space within the column, i.e., how long it takes to get from injector to 

detector based on column dimensions and flow rate. The dead volume, tm, is usually determined 

by injecting a component that has essentially no interaction with the stationary phase but can still 

be detected by the detector. CH4 is used to determine tm for chromatographic methods which 

employ columns with a PDMS stationary phase and FID detector. This value is independent of 

analyte identity, and is instead dependent entirely on the chromatographic method (i.e., flow rate, 

column diameter). A more representative value for analyte retention can be obtained by 

subtracting the dead volume time from the analyte retention time. The adjusted analyte retention 

time, tr’, is calculated from equation 4.3 

𝑠𝑠𝑟𝑟′ =  𝑠𝑠𝑟𝑟 −  𝑠𝑠𝑚𝑚  (4.3) 

 For routine GC analysis using previously developed methods, retention time (or adjusted 

retention time) is the most important piece of information contained within the chromatogram. 

This value is extremely consistent among different GC runs, as long as the GC method used is 

identical in all cases. Often only retention time is used to identify unknowns or screen for 

components of interest during routine analysis. 
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4.2.5.2 Measures of Separation Efficiency 

 For GC method development or for determining the utility of different GC components 

(e.g., columns), it is often useful to determine separation efficiency. Efficiency is a measure of 

the separation capabilities of a given GC system under a specific set of conditions, i.e., how 

likely two analytes will be fully and completely separated. Both retention time and band 

broadening (i.e., peak width) affect separation efficiency. Imagine a situation where two analytes 

elute from a column separated by some time, tAB. In one case, band broadening is minimized and 

the eluting peaks are quite narrow, Figure 4.8a. In another case, analytes experience significant 

band broadening during separation and the eluting peaks are relatively wide, Figure 4.8b. The 

separation efficiency, and thus the ability to qualitatively and quantitatively analyze the resulting 

chromatogram, is clearly better for the former case over the latter. In choosing hardware, 

stationary phase, and method parameters for GC analysis, it is essential to optimize separation 

efficiency, especially for analysis of complex samples with a large number of analytes. 

Separation efficiency can be described in many ways including with plate theory, rate theory, 

column resolution, and peak symmetry. 

 

Figure 4.8 Comparison of two different separations for a binary mixture. In both cases, analytes 
A and B have the same retention time (tr). (a) Separation with minimal band broadening. 
(b) Separation with excessive band broadening.  
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4.2.5.2.1 Plate Theory 

 Plate theory, though not an accurate depiction of chromatographic processes, is the 

simplest and most useful method for measuring column efficiency. First described by Martin and 

Synge in 1941,28 plate theory treats a chromatographic column similar to a distillation column. In 

this model, the chromatography column is divided into discrete plates or zones where an 

equilibrium event of the analyte between the mobile and stationary phase can occur. The more 

plates a column has, the more “equilibrium events” and the higher the efficiency. The number of 

plates (n) is the square of the retention of an analyte divided by the peak broadening (σ), as 

shown in equation 4.4. 

  𝑛𝑛 =  �𝑡𝑡𝑟𝑟
𝜎𝜎
�
2
   (4.4) 

In practice, the number of effective theoretical plates (neff or N) is often used, especially for early 

eluting peaks where tm contributes significantly to tr.  The equation for number of effective 

theoretical plates is given as equation 4.5. 

     𝑁𝑁 =  �𝑡𝑡𝑟𝑟
′

𝜎𝜎
�
2
      (4.5) 

This can be calculated directly from parameters obtained from the chromatographic 

output (Figure 4.7, Table 4.6) by defining σ in terms of peak width (w). This relationship is 

known for Gaussian peaks and changes equation 4.5 to equation 4.6 

    𝑁𝑁 = 16 � 𝑡𝑡𝑟𝑟
′

𝑤𝑤𝑏𝑏
�
2

=   5.54� 𝑡𝑡𝑟𝑟′

𝑤𝑤1
2�
�
2

    (4.6) 
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where wb is the width at the base of the peak and w1/2 is the width at half the peak height. 

Theoretical plate count is dependent on analyte retention; N increases with increasing retention 

time. Equation 4.6 is widely used as a measure of separation efficiency regardless of peak shape 

(cf. section 4.2.5.3.4). It is possible to calculate more exact measurements of theoretical plate 

count for asymmetric peaks. The interested reader is directed to the book chapter Theory of 

Chromatography in Principles and Practice of Modern Chromatographic Methods for more 

information.22 

 Plate number is dependent on column length: the longer the column, the higher N and the 

more effective separation. In order to facilitate comparisons between columns of different 

lengths, the concept of a height equivalent effective theoretical plate (H) was introduced. This 

value can be thought of as the “distance” between equilibrium events and is calculated by simply 

taking the ratio column length (L) to N, equation 4.7. 

𝐻𝐻 =  𝐿𝐿
𝑁𝑁

      (4.7) 

 The assumption in plate theory that equilibrium events happen in discrete regions along 

the column is obviously wrong. Moreover, plate theory fails to account for axial or radial 

diffusion and does not relate separation efficiency to stationary phase thickness or diffusivities of 

the mobile or stationary phase. A more rigorous theory, rate theory, was proposed to account for 

these pitfalls. Despite its inaccuracy, plate theory is still commonly used in chromatography 

because of how easy N and H are to calculate how useful N and H are for describing and 

comparing separation efficiencies.  
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4.2.5.2.2 Rate Theory 

 Rate theory, another model for chromatographic separation, was proposed in the mid-

1950s by J. J. van Deemter, F. J. Zuiderweg, and A. Klinkenberg.29 Unlike plate theory, rate 

theory accounts for contributions to band broadening caused by several different kinetic factors, 

namely eddy diffusion, longitudinal molecular diffusion, and resistance to mass transfer in the 

stationary phase and mobile phase. These factors are combined in an equation called the van 

Deemter equation to get a value for the total band broadening in a chromatographic separation, 

designated H. The van Deemter equation is given in equation 4.8  

𝐻𝐻 = 𝐴𝐴 + 𝐵𝐵
𝑢𝑢

+ 𝐶𝐶𝐶𝐶         (4.8) 

where A represents band broadening from eddy diffusion, B represents band broadening from 

longitudinal molecular diffusion, C represents band broadening caused by the resistance to mass 

transfer, and u is the linear velocity of the mobile phase. A, B, and C and the overall band 

broadening (i.e., H) can be theoretically plotted with respect to mobile phase linear velocity (u). 

Such a plot is termed a van Deemter plot, Figure 4.9. H versus u is usually plotted from 

experimental values (i.e., separation efficiencies calculated as described in section 4.2.5.2.1 at 

various linear velocities) rather than determined theoretically because individual contributions to 

band broadening are seldom known precisely. Importantly, the relative contributions of each 

term to overall band broadening is different for gas, supercricital fluid, and liquid 

chromatography due to the different analyte diffusion coefficients in gases, supercritical fluids 

and liquids and their differing densities and viscosities. This section will discuss the different 

factors that influence band broadening for gas chromatography. 
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Figure 4.9 Hypothetical van Deemter plot showing the relationship between overall band 
broadening (H) and the contributions to band broadening from eddy diffusion (A), molecular 
diffusion (B), and resistance to mass transfer (C) to linear velocity (u).22 
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 For GC, the most important contributors to band broadening are longitudinal molecular 

diffusion and resistance to mass transfer in the stationary phase. Eddy diffusion, the A term, 

describes the spreading of the analyte band caused by differences in flow paths which arise in 

packed columns. This term is near zero for open tubular columns where the stationary phase is 

deposited directly on the walls of the column and essentially there is only a single open pathway 

for analyte transport. 

 Longitudinal molecular diffusion, the B term, is a description of broadening caused by 

random motion of analyte molecules within the mobile phase. This term is a significant 

contributor to H in GC because typical analyte diffusion coefficients in gases are quite high 

(10-1 cm2 s-1 versus <10-5 cm2 s-1 for liquids). This diffusion corresponds to axial spreading of the 

band, and is dependent on the diffusion coefficient of the analyte in the mobile phase, the time 

the sample spends in the column, and the temperature and pressure of the column. This term is 

less important at high column flow rates because of the inverse proportion to linear velocity 

(equation 4.8). The B term has been suggested to take the form shown in equation 4.930 

𝐵𝐵 = 2𝛾𝛾𝐷𝐷𝑔𝑔          (4.9) 

where γ is an obstruction factor that is close to zero for open tubular columns, and Dg is the 

coefficient of molecular diffusion in the mobile (gas) phase.  

 Band broadening due to resistance to mass transfer in the mobile and stationary phase, 

the C term, is the most important factor, especially at high linear velocities. The C term can be 

further divided into resistance to mass transfer in the stationary phase (Cs) and resistance to mass 

transfer in the mobile phase (Cm). The Cs term accounts for the nonequilibrium distribution of 

analyte between the mobile and stationary phase which arises because the mobile phase is 
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constantly moving through the column. This is especially problematic for liquid stationary 

phases, where equilibrium retentive processes rely on analyte diffusion into and out of the 

permeable liquid.  It is this factor that favors extremely thin stationary phase films, where 

complete permeation into the film can be reached quickly. The Cs term has been suggested to 

take the form shown in equation 4.10 for WCOT columns26 

𝐶𝐶𝑠𝑠 = � 2𝑘𝑘′

3(1+ 𝑘𝑘′)2
 
𝑑𝑑𝑓𝑓
2

𝐷𝐷𝑆𝑆
�     (4.10) 

where k’ is the capacity factor, df is the stationary phase film thickness, and Dl is the coefficient 

of molecular diffusion in the stationary phase. The capacity factor, k’, is simply a ratio of the 

mass of analyte in the stationary phase to the mass of analyte in the mobile phase and can be 

calculated directly from parameters found in the chromatogram using equation 4.11 

 𝑘𝑘′ =  𝑡𝑡𝑟𝑟
′

𝑡𝑡𝑚𝑚
             (4.11) 

 The resistance to mass transfer in the mobile phase, Cm, accounts for band broadening 

due to nonuniform access to the stationary phase. This term is less important in GC because of 

the low diffusion coefficients in gases, but is still worth mention here. For WCOT columns, the 

column diameter is a major contributor to the Cm term. Decreasing the internal column diameter 

will increase the efficiency of the column. The Cm term has been suggested to take the form 

shown in equation 4.1226   

𝐶𝐶𝑚𝑚 =  
�1+6𝑘𝑘′+11𝑘𝑘′2�

96(1+𝑘𝑘′)2
 𝑑𝑑𝑐𝑐

2

𝐷𝐷𝑔𝑔
          (4.12) 

where dc is the internal diameter of the column. After eliminating the A term and substituting 

equations 4.12, 4.11, and 4.9 into equation 4.8, an equation specific for band broadening in 
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WCOT gas chromatography columns is achieved. This equation is called the Golay equation and 

is given in equation 4.1331 

𝐻𝐻 =  2𝐷𝐷𝑔𝑔
𝑢𝑢

+  
�1+6𝑘𝑘′+11𝑘𝑘′2�

96(1+𝑘𝑘′)2
 𝑑𝑑𝑐𝑐

2

𝐷𝐷𝑔𝑔
 𝐶𝐶 +  � 2𝑘𝑘′

3(1+ 𝑘𝑘′)2
 
𝑑𝑑𝑓𝑓
2

𝐷𝐷𝑆𝑆
� 𝐶𝐶   (4.13) 

In practice, rate theory is used very little for routine analysis. Most commonly, van 

Deemter plots are generated during method development to optimize flow rate, and therefore 

separation efficiency, for a particular column. Rate theory, however, more accurately describes 

the separation processes that occur during chromatographic separations and how band 

broadening is affected by controllable variables. This has led to a much more sophisticated and 

focused approach to determining optimum chromatographic method conditions and designing 

new chromatography columns. 

4.2.5.2.3 Resolution 

 Plate theory and rate theory both describe the extent of band broadening within a 

chromatography column. This provides an indication of overall column effectiveness, but does 

not tell anything about the likelihood two specific analytes will be separated. To determine the 

extent of separation for a given set of analytes, resolution (Rs) is used. This term takes into 

account both retention time and band broadening, and is calculated from equation 4.14. 

𝑅𝑅𝑠𝑠 = 2 𝑡𝑡𝑟𝑟2− 𝑡𝑡𝑟𝑟1
𝑤𝑤𝑏𝑏1+ 𝑤𝑤𝑏𝑏2

 = 1.17 𝑡𝑡𝑟𝑟2− 𝑡𝑡𝑟𝑟1
𝑤𝑤1 2⁄ 1+ 𝑤𝑤1 2⁄ 2

                   (4.14) 

An Rs value of 1.3 defines baseline resolution for Gaussian peaks. In general an Rs value of >1 is 

sufficient for most qualitative and quantitative analysis. The actual resolution value needed for 
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distinguishable separation of two analyte peaks is dependent on the relative intensities of each 

peak. 

4.2.5.2.4 Peak Symmetry 

 The discussion so far has been limited to perfectly Gaussian shaped peaks. In practice 

perfectly symmetric peaks are rarely achieved. In GC, both column overloading and nonlinear 

isotherms can lead to peak asymmetry as can functional groups acting as surface traps on the 

stationary phase or stationary phase support material. Overloading a column (i.e., injecting a 

larger amount of sample onto the column than can efficiently interact with the stationary phase) 

will result in a fronting peak, Figure 4.10a. This asymmetry can be easily remedied by 

decreasing the split ratio or injecting a smaller volume of sample. Tailing peaks (Figure 4.10b) 

arise from a number of different factors all of which can broadly be thought of as retention 

processes in competition with retention from bulk stationary phase partitioning. These include 

excessive dead volume, analyte adsorption to reactive functional groups, or non-uniformity in 

stationary phase film thickness.  

 

Figure 4.10 Examples of peak asymmetry commonly found in GC analysis. (a) Fronting peak 
(Tf < 1). (b) Tailing peak (Tf > 1). 
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 Resolution for asymmetric peaks will be lower than for perfectly Gaussian peaks. It is 

therefore useful to describe peak asymmetry. This can be done in two ways, either using an 

asymmetry factor (As), equation 4.15, or a tailing factor (Tf), equation 4.16. Both are simply 

measures of the peak’s left half width to right half width ratio.  

𝐴𝐴𝑠𝑠 =  𝑑𝑑
𝑐𝑐
           (4.15) 

𝑇𝑇𝑓𝑓 =  𝑏𝑏
2𝑎𝑎

            (4.16)  

where c is left half peak width at 10% peak height, d is the right half peak width at 10% peak 

height, b  is the width at 5% peak height (Figure 4.7, Table 4.6), and a is the left half peak width 

at 5% peak height (Figure 4.7, Table 4.6). Tf was used exclusively in this work to describe peak 

asymmetry. A Tf > 1 corresponds to a tailing peak and a Tf < 1 corresponds to a fronting peak. 

Ideally the Tf value would be as close to 1 as possible, but a Tf < 2 is generally acceptable for 

routine analysis. 

4.2.5.3 Extra-column Band Broadening 

 So far our discussion of separation efficiency has accounted only for band broadening 

that occurs within the column. In practice, band broadening occurs in all portions of GC 

hardware including the inlet, detector, connector tubing, and any unions or junctions. The total 

method efficiency, therefore, is a reflection of the sum of all band broadening effects. The total 

peak variance (𝜎𝜎𝑇𝑇𝑇𝑇𝑡𝑡𝑎𝑎𝑎𝑎2 ) is given by equation 4.17. 

𝜎𝜎𝑇𝑇𝑇𝑇𝑡𝑡𝑎𝑎𝑎𝑎2 =  𝜎𝜎𝐶𝐶𝑇𝑇𝑎𝑎𝑢𝑢𝑚𝑚𝐶𝐶2 + 𝜎𝜎𝐼𝐼𝐶𝐶𝐼𝐼𝐼𝐼𝑐𝑐𝑡𝑡𝐼𝐼𝑇𝑇𝐶𝐶2 +  𝜎𝜎𝐼𝐼𝐶𝐶𝑎𝑎𝐼𝐼𝑡𝑡2 +  𝜎𝜎𝑇𝑇𝑢𝑢𝑏𝑏𝐼𝐼𝐶𝐶𝑔𝑔2 +  𝜎𝜎𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐼𝐼𝑐𝑐𝑡𝑡𝐼𝐼𝑇𝑇𝐶𝐶𝑠𝑠2 + 𝜎𝜎𝐷𝐷𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐𝑡𝑡𝑇𝑇𝑟𝑟2    (4.17) 
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Extra-column band broadening can be significant, and must be considered in optimizing GC 

analysis. To account for this, the Golay equation can be modified to equation 4.18 

𝐻𝐻 =  2𝐷𝐷𝑔𝑔
𝑢𝑢

+  
�1+6𝑘𝑘′+11𝑘𝑘′2�

96(1+𝑘𝑘′)2
 𝑑𝑑𝑐𝑐

2

𝐷𝐷𝑔𝑔
 𝐶𝐶 +  � 2𝑘𝑘′

3(1+ 𝑘𝑘′)2
 
𝑑𝑑𝑓𝑓
2

𝐷𝐷𝑆𝑆
� 𝐶𝐶 +  ∆𝑡𝑡2𝑢𝑢2

𝐿𝐿(1 + 𝑘𝑘′)2
  (4.18) 

where ∆t is instrumental dead time, which includes dead volumes in the inlet, tubing, connectors, 

and detector and accounts for the finite time it takes to inject a sample and measure and receive 

the detector signal. For a more detailed discussion of extra-column band broadening, the reader 

is directed to  the book chapter Theory of Chromatography in Principles and Practice of Modern 

Chromatographic Methods.22 

4.3 Advancements in Portable Micro Gas Chromatography Columns 

 The development of extremely compact GC systems, often called microGC (µGC), has 

potential applications in the fields of biomedicine,32 environmental sciences,9, 33-35 and national 

defense.36  Angell and Terry were the first to conceptualize the idea of a microfabricated GC 

system at Stanford University in the mid 1970s.12-13 The instrument they developed consisted of 

a microcolumn etched into a 5 cm silicon wafer and coated with a thin film stationary phase. The 

resultant device showed poor separation efficiency and the microcolumn was eventually replaced 

with a shortened commercially available fused silica GC capillary column. Since this first study, 

there are a number of national laboratories, universities, and instrumentation companies working 

to develop a portable microGC system. Miniaturized instruments are being developed that follow 

Angell and Terry’s original conceptualization, constraining a fused silica or metal capillary 

column to a small area or flat plane,37 and that have microcolumns whose structure is etched in 

silicon, metal, or polymer.2-9, 12-14, 36-50  
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  Almost all microcolumns found in recent literature are prepared in the same way. This 

microcolumn fabrication process is complicated and requires the use of expensive equipment and 

hazardous reagents, contributing to very expensive microcolumns. The method consists of three 

main steps: (1) the column design is patterned onto a Si or metal wafer via lithography, (2) the 

patterned piece is sealed, and (3) the column is coated with a thin film stationary phase. 

Lithography requires specialized equipment and may require the use of a cleanroom or involve 

hazardous chemicals. For columns with rectangular cross-sections, the stationary phases will 

pool in the corners during the coating step, which leads to band broadening and poor separation 

efficiency.51 Some circular channeled devices have been reported that attempt to solve this 

problem; however, the channel etching steps are more complex in these cases.36, 39, 3, 5  

 Most commonly, a silicon or metal substrate is etched as a double square spiral or some 

other shape on a ~ 3 cm x 3 cm chip via a deep reactive ion etching process (essentially a 

modified Bösch process),15, 46 high powered lasers,52 or photolithography/e-beam lithography 

(i.e., wet chemical etching).14, 53-56 This method produces rectangular channels which are most 

commonly 150 μm wide and about 240 μm deep and up to 3 m long on a chip about the size of a 

quarter.13-14, 54-55 Figure 4.11 shows an example of microfabricated columns that consist of 0.25 

to 3 m long channels etched in silicon produced from efforts at the Engineering Research Center 

(ERC) for Wireless Integrated MicroSystems (WIMS) at the University of Michigan.6, 46  

Usually, these channels are sealed with glass bonded anodically and coated with a non-

polar (e.g., PDMS) or polar (e.g., poly(trifluoropropylmethyl)siloxane) stationary phase. The thin 

film stationary phase can be deposited via either static or dynamic coating. Static coating 

consists of submerging the channel in a solution of the stationary-phase substrate, sealing one 

end of the tube, evaporating the solution from the open end of the channel, and heating the 
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system to promote crosslinking of the polymer.50 For this coating method the microcolumn is put 

under vacuum during which any defect or leak causes column destruction. The coatings are 

usually about 100 - 200 nm thick and generally have 4,000 to 6000 theoretical plates m-1. 

Dynamic coating consists of pushing a plug of solvent and pre-polymer through the column 

while heating to promote crosslinking. This method is not preferred since it produces films with 

inconsistent and unpredictable thickness.57, 46  

 

 

Figure 4.11 (a) Photographs of silicon on glass microfabricated columns produced at the 
University of Michigan.6 (b) Scanning electron micrograph of 3 m long chip from (a) showing 
double spiral turnaround at center of the chip.46 (c) Cross-section of the etched channel structure 
with channel dimensions given.46 

a b

c

179 
 



 A number of microcolumns and micro-GC systems have been reported in the literature. 

Sandia National Labs has designed a GC system that incorporates a 100 μm wide by 

400 μm deep spiral channel that is 86 cm long and fits on a 1.44 cm2 silicon chip. This column 

has proven effective separation of 6 components in less than 1 minute. This microcolumn, 

surface acoustic wave sensors, and a micropreconcentrator have been integrated into an 

instrument called the μChemLab.2, 57  Work has also been done by Overton at Louisiana State 

University with Sandia National Lab58 on high aspect ratio nickel GC microcolumns that have 

now been integrated into a commercially available instrument called MicroFastGC.8, 46 A 

2 m long, 600 μm tall, and 50 μm wide column has successfully separated semivolatile and 

volatile compounds, capable of separating 7 chemical warfare agent simulants and interferents in 

less than 4 s. A 50 cm long version of this column has been shown to separate a mixture of four 

hydrocarbons in 2 s. 12, 20  

 There has been substantial research done by the University of Illinois at Urbana-

Champaign5, 47 4, 41, 59 and the University of Michigan6-7, 35, 46, 60-61 on developing prototypes of 

fully integrated micro-GC systems.  Through the ERC WIMS initiative, the University of 

Michigan has developed a functional prototype of a micro-GC device for the detection of 

trichloroethylene.9 This prototype incorporates two miniature diaphragm pumps, six 3-way 

microsolenoid valves, an integrated micropreconcentrator/focuser system, two microcolumns, 

and a chemiresistor array. Typical elution times are ~ 3 minutes and flow rates are ~ 1 L min-1.9  

 The microcolumns in this prototype were modeled from the etching and coating 

techniques described previously.50, 60 A square-spiral channel (length of 3m) with a rectangular 

cross-section of 150 μm x 240 μm is etched into silicon via a DRIE lithographic process 

(Figure 4.11). The mask used incorporates inlet and outlet ports (deactivated 250 μm I.D. fused 
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silica capillaries sealed with epoxy) and the wafer anodically bonded Pyrex. Additionally, Ti/Pt 

RTD and Cr/Au contact pads are evaporated onto the back of the wafer for programmed 

heating.60 The stationary phase is deposited according to a static coating procedure. The resulting 

film is 0.15 μm thick and the column achieves a theoretical plate count over 4000 plates m-1.60 

This is substantially better than previously reported techniques where film thicknesses were 

>1 μm.34, 50 Mixtures of up to 30 semi-volatile and volatile compounds can be separated, 

Figure 4.12.46, 61  

 

 

Figure 4.12 Separation of 15 VOCs on a 3 m long micocolumn produced by the WIMS µGC-
team at the University of Michigan with a 0.15 µm static-coated PDMS stationary phase.  
 

 

 

 Although these are not yet commercially available technologies, they show some of the 

most impressive and promising results of any microcolumn in the literature. Because of the 

complexity of microcolumn fabrication and coating, most reports of microcolumns in the 

literature fall well short of these theoretical plate counts and peak capacities. A recent article 
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describes a 1 m long dynamically coated microcolumn which produces poor separation of VOCs, 

likely caused by non-uniformity of the stationary phase (Figure 4.13).62  A recent review article1 

by Ohira and Toda details current advancements in preconcentration techniques, column 

development, and microdetectors for micro-GCs. The article gives a comprehensive list on page 

151 of microsystems for gas analysis complete with referencing articles, LODs, and features of 

the system. Many microcolumns have extremely limited utility because of their poor separation 

efficiencies. There are also microdevices for gas separation and sensing that use diffusion based 

microfluidics.63-64 These devices do not have a carrier gas pushing the analytes through the 

column but still rely on the difference in analyte interaction with the polymer coated channel 

walls and analyte diffusion rates. 

 

 

 
Figure 4.13 Exemplary separation of 15 VOCs for dynamically coated microcolumn.62 (1) 2-
butanone; (2) benzene; (3) trichloroethylene; (4) 1-propanol; (5)iso-octane; (6) toluene; (7) 
isobutylacetate; (8) methylisobutylketone; (9) 1,3-dimethylcyclohexane; (10) octane; (11) butyl 
acetate; (12) hexane-2-one; (13) 1-bromopentane; (14) cyclopentanone; (15) chlorobenzene. 
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 As stated in section 4.1, one way to dramatically reduce material and fabrication costs is 

to move towards an all-polymer microcolumn. If the microcolumn was composed entirely of one 

polymer or polymer composite, which acted as both the structural support and the stationary 

phase, common polymer processing techniques could be used for fabrication. This would 

eliminate the need for hazardous reagents and complex equipment and facilitate continuous 

processing and fabrication. If the stationary phase coating step could be avoided entirely, 

fabrication and processing would be even faster and more efficient, further reducing time, 

energy, and cost. This approach to microcolumns has been scarcely explored in the literature, 

and has shown little success prior to the work reported within this dissertation. 

 There have only been a few reports of microcolumns where the support and the stationary 

phase were the same polymeric material, which unfortunately resulted in extremely limited 

separation efficiency.18-19 In 2008, Malainou et al. reported a microcolumn made entirely from 

PDMS used for the separation of benzene and xylene. The columns were fabricated by casting 

and curing PDMS onto a Si/SU-8 lithographically patterned inverse mold, sealing the channels 

with a PDMS thin film on a polymethylmethacrylate support via oxygen plasma surface 

modification, and finally attaching tubing via Nanoport fittings. Two columns were tested with 

dimensions of 1 m length, 280 µm width, and either 30 µm or 50 µm depth (Figure 4.14a). The 

maximum separation efficiency, N = 360, was achieved with the 30 µm deep column at a 

working temperature of 85 °C, the retention times were ~0.9 min for benzene and ~2.8 min for 

xylene, with substantial peak tailing observed (Figure 4.14b). These microcolumns were only 

tested with the binary mixture of benzene and xylene and no further papers have been published 

on this, or similar, polymeric microcolumns.  
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Figure 4.14 PDMS microcolumn developed by Malainou et al. for the separation of gaseous 
analytes. (a) Scanning electron micrograph showing PDMS micrcoolumn structure and 
microchannels. (b) Chromatogram showing the separation of benzene and xylene at different 
temperatures.18 

 

4.4 Advancements in Gas Chromatography Microdetectors 

Detectors for gas chromatography must be much smaller in volume than the separation 

column to limit dead volume and extra-column band broadening. For miniaturized systems, this 

necessitates special design considerations to ensure adequately separated signals are obtained. 

Previously reported microdetectors for gas chromatography include chemiresistor arrays,9 micro 

thermal conductivity detectors,12 Fabry-Pérot based probes,65 surface acoustic wave 

microsensors,33 optical ring resonators,66-67 differential mobility spectrometers,35 and micro 

FIDs.59 In general, these technologies are expensive, power demanding, require auxiliary gases, 

and provide limited or no chemical identification. The most common commercially available 

microdetector are microTCDs, but the sensitivity of these detectors is low; LODs for 

microdetectors range from <1 to 40 ppbv.1  

a b
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Of particular interest to this work, is the use of sensor arrays as detectors for micro-GC 

separations. The shorter columns used in micro-GC limit separation capabilities; coelutions, 

therefore, are a significant concern in micro-GC analysis. Microsensor array detectors are an 

attractive solution to resolving coelutions and have been explored over the past decade by several 

research groups, most notably Zellers et al. with the WIMS initiative at the University of 

Michigan.33, 49, 68-73 The micro-GC system from the WIMS initiative at the University of 

Maryland uses an integrated array of eight chemiresistors as the micro-GC detector 

(Figure 4.15a).9, 49, 70-72, 74 These sensor elements record changes in resistance from analyte 

sorption onto interfacial films of monolayer covered Au nanoclusters and showed varied 

response patterns for different analytes (Figure 4.15b).49 Recently, the same group attempted to 

apply multivariate curve resolution methods to analyze microsensor data.72 Although the 

algorithms used were able to confirm the number and elution order of components in composite 

peaks in most cases, no quantitative analysis of binary composites was possible.  

 

Figure 4.15 (a) Photograph of a 2.2 x 2.2 mm2 chemiresistive array chip showing 8 sensors 
before coating (top right) and after coating with thiolate-monolayer-protected gold nanoparticles 
(MPN).74 (b) Relative response patterns from the first-generation chemiresistive sensor array 
with four sensing elements to toluene (top left), m-xylene (top right), n-nonane (bottom left), 
n-decane (bottom left). Responses at different split ratios (0:1; 4:1; and 8:1) are given.49  
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This work builds on the work by Sandia National Laboratories and University of 

Michigan in the early 2000s on SAW sensor arrays for use with GC analysis.2, 33, 49 These 

polymer-coated sensors produced response patterns from incoming analytes that were varied 

(Figure 4.16a). These patterns have been used with retention times to facilitate analyte 

identification for some basic binary coeluting mixtures.33  Fan et al. (also associated with the 

WIMS initiative) reported an interferometric sensor array which utilized sorptive polymer films. 

Again, array response patterns were varied (Figure 4.16b), but no pattern recognition analysis 

was attempted to identify unknowns or coeluting mixtures.67, 69 Strano et al. has also reported a 

chemiresistive array GC microdetector which incorporated functionalized single-wall carbon 

nanotubes; no chemometric exploration or pattern recognition analysis was performed.68  

 

 

Figure 4.16 (a) Array response patterns to 10 different vapors separated on a microcolumn and 
detected using a three-element SAW sensor array. Chromatogram given below sensor array 
patterns.33 (b) Normalized response patterns for organic solvents separated on a microcolumn 
and detected using a four element Fabry-Pérot cavity based optical sensor.69 
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Though the merits for sensor arrays as microdetectors are indeed convincing, there are 

still significant problems in sensor array technology and data analysis that must be addressed 

before identification and deconvolution of coeluting species will be possible. For example, all 

sensor array microdetectors in the literature rely on analyte physisorption for detection. As 

discussed in the following section (4.5), arrays which rely primarily on one chemical parameter 

for detection are generally limited in discrimination ability. Additionally, a meaningful and 

complete approach to data analysis for sensor array microdetectors is still needed before 

chemical identification of coeluting unknowns is possible. 

4.5 Colorimetric Sensor Array Technology 

 Inspired by human olfaction, sensor array technology (so called electronic or 

optoelectronic noses) has been the cornerstone of gaseous analyte detection and identification 

research for the past several decades.75-7879-83 The first sensor arrays were developed by Persuad 

and Dodd in 1982 and used semiconductor transducers to discriminate among a number of 

gaseous analytes.84 The need for more efficient, facile, and sensitive detection has led to the 

development of sensor arrays which utilize sensor elements that change color or fluoresce upon 

exposure to analyte vapors, so called colorimetric sensor arrays or the “optoelectronic nose”.76-77, 

82, 85-86 These color changes can be quantified using digital imaging and are dependent on the 

chemical identity and reactivity of the active center within the sensor. Because colorimetric 

sensor arrays can incorporate sensor elements which utilize a wide variety of chemical 

interactions, they are intrinsically more sensitive and selective than their electronic nose 

counterparts, which rely almost entirely on van-der-walls forces and physical adsorption to 

produce signal upon analyte exposure. Within this section, a background of colorimetric sensor 
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array technology is given, especially as it relates to the work enclosed within this dissertation. A 

more thorough review of sensor arrays, particularly optical sensor arrays, can be found in the 

recent review article published in Chem. Soc. Rev. by Askim, Mahmoudi, and Suslick titled 

“Optical Sensor Arrays for Chemical Sensing: the Optoelectronic Nose.”87 

4.5.1 Types of Sensors 

 A sensor responds to an input from the environment. This input can be any measureable 

characteristic, e.g., temperature, pressure, light, humidity, chemical reactivity, and the sensor 

output is ultimately a human-readable display, usually electronic.88-89 Chemical sensors, in 

particular, respond to the local chemical environment through either physical (e.g., molecular 

weight, vapor pressure) or chemical (e.g., acid-base, polarity, redox potential) properties.87 

Output from chemical sensors is generally electrical, thermometric, or optical. Electrical or 

electrochemical sensors involve changes in an electrical circuit upon interaction with analyte 

vapors. This manifests as a change in resistance, capacitance, current, or voltage.89-91 

Electrochemical sensors that have been described include metal oxide semiconductors,92 metal 

oxide semiconductor field effect transistors,93-95 conductive polymer sensors,75, 96-97 and acoustic 

wave sensors. 98 These sensors generally rely on weak, non-specific interactions (e.g., 

physisorption), which limits selectivity and discrimination ability.78, 80, 83, 87-89 Thermometric 

sensors respond to local temperature fluctuations caused by heat generation or consumption 

during chemical reactions. These sensors are frequently used in enzymatic reactions.88, 99 

 Most relevant to this work are optical sensors, i.e., sensors which use light to probe 

sensor response.87 The detection methods can be extremely varied; used in this work are 

detectors which measure changes in sensor absorbance, reflectance, or fluorescence (e.g., 
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scanners, cameras). For the colorimetric sensor arrays described here, a simple three color (i.e., 

RGB) imaging method is sufficient for analyzing sensor array response. An optical sensor 

element serves two main functions: (1) it must interact with incoming analytes and (2) a visible 

and recordable optical change (e.g., color) must occur and be coupled to the interaction. In many 

cases, e.g., pH-responsive dyes, both requirements are satisfied from the inclusion of only a 

single chromophore into the sensor element. In other cases, a highly specific molecular 

interaction may not produce a spectroscopic change, and a chromophoric or chromogenic 

ancillary compound can be added to the sensor element to act as a transducer.  

4.5.2 Colorimetric Sensor Array Design 

 At the center of colorimetric sensor array technology is the inclusion of many highly 

cross-reactive and generally non-specific sensor elements into a small region that can be 

analyzed simultaneously upon analyte exposure (Figure 4.17a). The response pattern obtained 

by this array of cross-reactive sensors is unique for a given odorant and can be used as a 

molecular fingerprint for subsequent detection and identification of that odorant (cf. 

section 4.5.3, Figure 4.17b). This concept of molecular fingerprinting necessitates an array 

which includes sensor elements that span a large chemical reactivity space and incorporate 

sensors which respond separately to weak or strong intermolecular interactions (Figure 4.18). 

Equally important to molecular fingerprinting is the inclusion of both sensors which are highly 

cross-reactive (i.e., respond to non-specific chemical reactivity) and those which are specific for 

one analyte or analyte class. If sensors are chosen correctly, the resultant sensor array is highly 

sensitive and able to differentiate a huge number of even closely related analytes.76-77, 82, 85-87, 100-

110 
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Figure 4.17 (a) Photograph of an exemplary colorimetric sensor array that contains 36 spots in a 
6 x 6 arrangement. (b) Image of a 36 spot colorimetric sensor array before exposure (left) and 
after exposure to ammonia at its immediately dangerous to life and health concentration (IDLH). 
Difference map (right) showing response pattern of the imaged array. Largest color changes are 
outlined in gray. For purposes of display, the color range is usually expanded when generating 
the difference map.87 

 

Figure 4.18 The range of intermolecular interactions and the corresponding semi-quantitative 
energy scale.87 
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 Colorimetric sensors can be classified based on the chemical reaction that produces the 

color change. These sensor classes include (1) Lewis acid/base; (2) Brønsted acid/base; (i.e., 

pH); (3) solvatochromic/vapochromic; (4) redox active; (5) chromogenic (Figure 4.17a). For 

this work, solvatochromic interactions are important and are discussed in detail in section 6.2. 

Lewis acid/base sensors include metal ion containing dyes (e.g., metalloporphyrins) which show 

significant color changes upon ligation. Brønsted acid/base sensors are typical pH indicators 

which change color upon (de)protonation at specific pKa values. Redox active sensors include 

colorants that show large color changes at specific redox potentials. These sensors can either be 

coupled to pH or independent of pH. Chromogenic sensors incorporate chemical compounds 

which produce color from aggregation, dispersion, or colloid formation. This includes simple 

precipitation reactions such as the precipitation of brown PbS from a colorless spot printed from 

a formulation containing Pb(C2H3O2)2 upon exposure to H2S vapor.  

 Careful selection of chemoresponsive colorants is only one component of sensor array 

design. Equally important to array functionality are secondary factors including array geometry, 

substrate, and colorant immobilization method. These design considerations are discussed in 

detail in section 6.3. The colorimetric sensor arrays developed by Suslick et al. are printed on 

membranes (e.g., polymer thin films) using a robotic pin printer as shown in Figure 4.19. This 

printing protocol ensures rapid and scalable array fabrication and excellent within batch and 

among batch array reproducibility.87  
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Figure 4.19 Photograph of Nanoprint robotic pin printer (top) and slotted pin print-head 
(bottom) used to print arrays. Print-head and pins are customizable and can be tailored to print 
arrays in different geometries (i.e., linear) or sensors with different geometries (i.e., bars instead 
of spots).87 

 

4.5.3 Data Processing and Statistical Analysis  

 Colorimetric sensor arrays are digitally imaged (e.g., using a flatbed scanner or camera) 

before and during exposure to an analyte. A response pattern for each analyte is obtained via a 

digital subtraction of an image of the array before exposure from the array during or after 
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exposure: RGB values after exposure minus RGB values before exposure for each pixel. The 

array, imaging system, and light source are fixed during exposure to ensure consistency in 

illumination and reduce noise. The averaged RGB values of the center of the spot are typically 

used to avoid noise resulting from spot edge artifacts. This digital subtraction yields a response 

vector with 3N dimensions (where N equals the number of spots) unique for that analyte. This 

digital vector is used to describe and compare analyte responses both qualitatively and 

quantitatively through difference maps, hierarchical cluster analysis (HCA), principle component 

analysis (PCA), and other pattern recognition algorithms (e.g., linear discriminant analysis 

(LDA) and support vector machines (SVM)). The discussion in this section will be limited to the 

techniques used in this work: difference maps, HCA, and PCA. 

4.5.3.1 Difference Maps 

 Difference maps as shown in Figure 4.17b left, are a way to visually represent and 

qualitatively compare array response patterns. The color values used to generate difference maps 

are the absolute values of the differences and the color space is usually expanded to facilitate 

visualization of subtle differences among response patterns.  

4.5.3.2 Hierarchical Cluster Analysis (HCA) 

 HCA is a statistical clustering technique which, in its most basic form, pairs nearest 

neighbor points into a single cluster whose centroid becomes a new point that is subsequently 

clustered to its nearest neighbor in an iterative fashion.111-112 The distance between points is 

calculated using Euclidean distance (ED) according to equation 4.19 

𝐸𝐸𝐷𝐷 =  (∆𝑅𝑅12 +  ∆𝐺𝐺12 +  ∆𝐵𝐵12 +  ∆𝑅𝑅22 + ⋯+  ∆𝐵𝐵𝐶𝐶2)1 2�    (4.19) 
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where ∆R, ∆G, and ∆B are the difference values for the red, green and blue channels respectively 

and n is the number of spots in the sensor array. The clustering method most commonly used is 

Ward’s method, which minimizes within cluster variance. The clusters are plotted on a 

dendrogram where points or clusters are connected based on proximity (Figure 4.20). The x-axis 

of the dendrogram is a measure of cluster dissimilarity or ED between clusters. In other words, 

there are two important things to consider when interpreting a dendrogram: (1) connectivity, 

which gives information about what species/samples are similar to each other and (2) magnitude 

of dissimilarity. The arrangement of samples/species on the y-axis simply shows connectivity. 

HCA dendrograms provide a convenient and easy to interpret representation of the highly 

complex dataset obtained with sensor arrays and are, therefore, used as a measure of the 

discrimination ability of a given array. An exemplary dendrogram for the separation of 100 

common VOCs at full vapor pressure is given in Figure 4.21.103  

 

 

Figure 4.20 Schematic representation of hierarchical cluster analysis on an imaginary set of data 
showing clustering of nearest neighbors in two-dimensions (left) and the corresponding 
dendrogram (right).87 
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Figure 4.21 Dendrogram obtained from hierarchical cluster analysis of colorimetric sensor array 
responses to 100 VOCs at saturated vapor pressure. Analytes with similar chemical reactivity 
cluster together.77, 87, 103 

 

4.5.3.3 Principle Component Analysis (PCA) 

 The dimensionality of data obtained from a sensor array is not necessarily determined by 

the number of sensor elements included within the array. Many electronic nose technologies 

primarily use physisorption of analytes to generate array response. In these cases, even for sensor 

arrays which contain a large number of sensors, the dimensionality of the array response is 

essentially entirely dependent on analyte hydrophobicity and the variance among the data is 

predominantly a one-dimensional quantity. PCA is a dimensional reduction technique which can 
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be used to maximize the variance of the data set in as few transformed dimensions as possible. In 

PCA, the initial potentially correlated dimensions are linearly combined to form a new 

orthogonal set of dimensions. These eigenvectors, or principle components, are defined to 

maximize the amount of variance in as few dimensions as possible and are ranked in order of 

contribution to the total variance of the dataset. PCA provides an easy to interpret way of 

displaying sample set variability and can be used to determine how many different parameters 

(e.g., different chemical reactivities) a sensor array is truly probing. Typically, one is interested 

in the number of dimensions needed to encompass >95% of the total variance (Figure 4.21). In 

the case of electronic noses that rely solely on physisorption, PCA would reveal only one 

principle component encompassing 95-99% of the total variance. PCA is a powerful tool for 

evaluating the depth of chemical reactivity space probed by any given array; for most 

applications, arrays with high dimensionality are desirable because they will successfully 

discriminate among a larger number of analyte classes than arrays with low dimensionality.  

 
Figure 4.22 Scree plots obtained from PCA of (a) colorimetric sensor array responses to 100 
VOCs at saturated vapor pressure103 and (b) a colorimetric sensor array responses to 14 natural 
and artificial sweeteners.107 It takes 22 dimensions to encompass >95% variance in (a), while 
only 2 dimensions are needed to encompass >95% variance in (b). It can be inferred that the 
array used in (a) probes a larger chemical reactivity space than the array in (b).87 
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4.5.4 Applications of Colorimetric Sensor Arrays 

 Since their conceptualization by Rakow and Suslick in 2000,85 colorimetric sensor arrays 

have successfully differentiated among VOCs,103, 105 amines,113-116 explosives,106, 117-120 toxic 

industrial chemicals,100-102, 104, 121 bacteria and fungi,110, 122 cancer metabolites,123-125 foods and 

beverages,107-109, 126-128 and aqueous analytes.129-131 These applications have been thoroughly 

reviewed elsewhere87 and are discussed briefly in Chapter 6 of this dissertation. 

4.6 Summary and Outlook 

There is a pressing need for rapid, portable, and inexpensive technology for the on-site 

detection of gaseous analytes. Significant progress has been made towards this goal through the 

miniaturization of gas chromatographs, the most widely used method for analyzing complex gas 

mixtures. At the heart of GC miniaturization is the microcolumn. Typically, microcolumns are 

made through a multi-step fabrication process which requires hazardous reagents, complex 

equipment, and problematic stationary phase coating procedures. Traditional microcolumns have 

two separate materials which act as the structural support (e.g., micromachined metal or silicon) 

and the stationary phase (e.g., a thin film of PDMS). An alternative to traditional microcolumns 

would be to instead make a microcolumn out of a single polymer or polymer composite that acts 

as both the structural support and stationary phase. Prior to this work, a functional all-polymer 

microcolumn of this form had yet to be realized. These polymer microcolumns could lead to 

dramatically reduced fabrication and materials costs.  

Nearly as important to micro-GC performance is the microdetector. Because 

miniaturization necessitates extremely short columns (often < 3 m in total length), micro-GC 

systems suffer from incomplete separations and frequently have analytes which coelute. Sensor 
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arrays with chemiresistive, SAW, and Fabry-Pérot sensor elements have been used as 

microdetectors for micro-GC analysis in an attempt to ameliorate this problem. Response 

patterns from the sensor arrays are clearly distinguishable for various analytes, but there has been 

only marginal success in using the array response to identify individual components of 

coelutions. Colorimetric sensor arrays, developed by Suslick et al. a decade ago, have proven a 

powerful, sensitive, and inexpensive technology for the detection of various gaseous analytes. 

These arrays probe a large chemical reactivity space, yielding higher discrimination ability than 

other electronic nose technology, i.e., those that rely primarily on physisorption. The use of a 

colorimetric sensor array as a micro-GC detector has yet to be explored.  

Part II of this dissertation describes our efforts in developing a new class of polymer 

microcolumn which are fabricated using common polymer processing techniques from a self-

segregating polymer composite.132-133 Advancements in realizing colorimetric sensor arrays as 

microdetectors for gas chromatography including the development of a solvatochromic array for 

sensing organic solvents,134 an analysis of the effects of secondary factors on sensor array 

kinetics,135 and a proof of concept study sensing amines as they elute from a microcolumn,133 are 

also described.  
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CHAPTER 5: 

THE DEVELOPMENT OF A DISPOSABLE GAS CHROMATOGRAPHY 
MICROCOLUMN 

 

5.1 Introduction 

This chapter is taken in large part from the following references: 

Rankin, J. M.; Suslick, K. S. Microcolumn for use in gas chromatography. U. S. Patent 
Application 14/477060, Sept. 4, 2014. 

Rankin, J. M.; Suslick, K. S., The development of a disposable gas chromatography 
microcolumn. Chem. Commun. 2015, 51, 8920-8923. 

This chapter details efforts made in the development of a disposable polymer 

microcolumn for gas chromatography. These microcolumns differ from traditional microcolumns 

in that there is no separately applied thin film stationary phase. They can, therefore, be made 

using common polymer processing techniques, resulting in a microcolumn inexpensive enough 

to be disposable. This chapter describes how polymer permeability and microstructure influence 

the separation efficiencies of molded microcolumns. Additionally, we describe the first molded 

gas chromatography (GC) microcolumn capable of separating mixtures of VOCs in minutes with 

separation efficiencies approaching traditional microcolumns from the literature (N > 1800 

plates m-1). This microcolumn consists of a single microtextured siloxane-epoxy thermoset 

polymer composite which acts as both the structural material and the stationary phase. 

Importantly, the polymer composite spontaneously phase separates into siloxane-rich (stationary 

phase) and siloxane-poor (structural material) domains. Characterization and optimization of 

microcolumns made from this formulation are given. Initial studies on the use of polymer 

microspheres as a GC stationary phase for similarly molded polymer microcolumns are also 

described.  
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5.2 Experimental Methods 

5.2.1 General Notes 

Polymeric materials were two-part flexible epoxies (3M DP-190, DP- 125, and DP-105) 

and a polydimethylsiloxane two-part kit (Dow Corning Sylgard 184). Commercial polymer 

microspheres were obtained from Kobo Products Inc. (MST-203, Silica Shells SH, MSP-HEM-

812, Diasphere KS-1000). All other reagents were purchased from Aldrich and used without 

further purification. 

5.2.2 Scanning Electron Microscopy 

Scanning electron micrographs were obtained on a JEOL 7000F instrument operating at 

10 kV with a medium probe current and a working distance of 10 mm. Samples were mounted to 

the holder via carbon tape and sputter coated with approximately 10 nm of Au/Pd prior to 

analysis to prevent surface charging. 

5.2.3 Atomic Force Microscopy 

Atomic force micrographs were obtained on an Asylum Research MFP-3D instrument 

operating in tapping mode. Scans were done in air using a Tap300Al-G tip. Samples were 

subjected to the same fabrication procedure and conditions as the polymer microcolumns but 

were cast and cured against a piece of polychlorotrifluoroethylene (PCTFE; Kel-F) polished flat 

instead of the microcolumn mold. 
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5.2.4 Time of Flight-Secondary Ion Mass Spectrometry 

 TOF-SIMS experiments were done using a PHI TRIFT III instrument with a pulsed 

liquid metal Au1
+ ion gun (3 nA, unbunched). A typical scan size was 50 microns with 32 sec 

analysis time. Positive secondary ions with a mass range of 0-2000 amu were acquired, and 

charge compensation was used. Samples of the described siloxane/epoxy composite were cast 

and cured in a PCTFE microcolumn mold as usual. Once removed from the mold, portions of the 

channel wall were sectioned and fully cured at 70 °C prior to analysis. 

5.2.5 Microcolumn Fabrication 

 The microcolumn fabrication process is outlined in Figure 5.1a and consists of four 

steps: (1) a reusable mold with an inverse of the desired design is produced; (2) using the mold, a 

thermoset polymer is cast, cured, and removed to yield a polymer replica with the desired 

channel design; (3) the channel is sealed with a polymeric thin film; (4) the inlet and outlet are 

connected to fused silica capillary tubing for connection to gas flow and detector. The mold was 

made by micromachining PCTFE or poly ether-ether ketone (PEEK) with the negative relief of a 

serpentine channel design (Figure 5.1a Step 1, Figures 5.1b & c). Micromachining was chosen 

over lithography for mold fabrication because micromachining is relatively fast and does not 

require a cleanroom or hazardous chemicals. The PCTFE and PEEK molds are highly durable, 

showing no signs of defects after > 50 uses. Additionally, the molds do not require silanization 

or treatment with a release agent to aid in cured polymer removal, another advantage over molds 

made from metals, silica, or photoresist via lithography.  

After fabricating the mold, the microcolumns are made by casting the uncured thermoset 

polymer into the PCTFE or PEEK mold, degassing under vacuum, and curing (Figure 5.1a 
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Step 2). Our typical microcolumns consist of a rectangular channel that is 1 m long, 250 μm 

wide, and 500 μm tall (Figure 5.2a & b). Column dimensions were chosen based on the 

dimensions of similar “traditional” microcolumns in the literature, so comparisons of 

performance might be more relevant.1-11 

 After curing, the columns are removed from the mold, sealed, and further cured 

(Figure 5.1a Step 3, Figure 5.2d). Finally, polyimide coated fused silica capillary tubing is 

inserted into the tapered column inlet and outlet (Figure 5.2c), secured using the thermoset 

polymer (Figure 5.1a Step 4), and connected to a conventional HP-5890 Series II GC/FID 

(flame ionization detector) system for evaluation. Each step of the fabrication process is 

described in detail in the sections 5.2.5.1-5.2.5.4. 

 

 

Figure 5.1 (a) Schematic of the fabrication process, showing a cross-sectional view of each step. 
(b) PCTFE mold fabricated in step 1, which has removable sidewalls and a serpentine channel 
design. (c) Expanded view from B, scale bar = 0.5 mm. 
 

(1)

(2)

(3)

(4)

A B

C
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.  

Figure 5.2 Exemplary SEM images of the molded polymer microcolumn. (a) Channel cross-
section. (b) Channel turns.  (c) Channel inlet or outlet. (d) Cross-section of microcolumn sealed 
with thin film. Scale bars = 250 µm.  

 

5.2.5.1. Mold Fabrication 

 Micromachining was used to fabricate a polymer mold (e.g., from PEEK or PCTFE) with 

the negative relief of the final column design. Representative images of the SurfCam CAD/CAM 

blueprints for these molds are given in Figure 5.3. The mold channels are rectangular in cross-

section and spaced 400 µm apart. The inlet and outlet extend to the edge of the mold and are 

450-600 µm wide, and the sidewalls are positioned > 1 cm from the channel features. During 

fabrication, the channel features and surrounding 3-4 mm are machined without end mill pickup 

(area shown in yellow on the images in Figure 5.3) to ensure the replica has a smooth surface for 

sealing. In a separate step, the rest of the mold (area shown in teal in Figure 5.3) is milled 

smooth. To ensure the channels are contact the thin film first in the sealing step, it is important 

the z-plane of the teal section be 30-100 µm higher than the yellow section.  
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Figure 5.3 SurfCam images of the patterns machined into PCTFE or PEEK to make the reusable 
plastic molds. (a) 250 µm x 450 µm x 1m serpentine channel design. (b) 100 µm x 450 µm 
x 3.1m serpentine channel design.  

 

5.2.5.2. Replica Molding 

For microcolumns made from polydimethylsiloxane (PDMS), the mold was replicated 

using Dow Corning’s Sylgard 184 two-part kit. The pre-polymer base and accelerator (parts B 

and A, respectively) were mixed in a 10:1 m/v ratio, degassed in a vacuum oven for 20 minutes, 

poured into the mold, degassed again, and cured at 100 °C for 45 minutes. After cooling, the 

PDMS replicas were removed from the mold by hand.  

The flexible epoxies adhered to the PEEK molds, so the PCTFE molds were used 

exclusively. For these formulations, the accelerator, epoxy base, and organosilane were mixed in 

the appropriate ratio and the mold was filled with the uncured polymer mixture. For the most 

commonly used formulation (10 wt% diethoxydimethylsilane in DP-190), the epoxy component, 

part B, of DP-190 (3.00 g) was first mixed with diethoxydimethylsilane (720 μL) for one hour 

using a magnetic stir bar. This mixture (2.58 g) was added to the accelerator component, part A, 

of DP-190 (1.86 g) and mixed well. The mold was filled with the polymer mixture and the 

polymer was degassed in a vacuum oven at 40 °C until all bubbles were removed (time is 

formulation dependent) then cured for 24 hours at 70 °C. The cured epoxy was allowed to cool 

a b 
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for one hour at room temperature, the sidewalls of the mold were unscrewed and removed, and 

the column was peeled carefully from the mold by hand. 

5.2.5.3. Sealing 

To seal the PDMS microchannel, a 100 µm PDMS film (10:1, Sylgard 184) was cast on a 

glass slide (1” x 3” standard microscope slide for 1 m design and 3” x 4” slide for 3.1 m design) 

using a spin-coater at 1,000 rpm for 60 seconds and subsequently cured at 100 °C for 45 minutes. 

After activating the surfaces with a Tesla coil (i.e., atmospheric plasma), the film and PDMS 

channel were lightly pressed together by hand while visually checking for defects and air 

bubbles, and then the bonded pieces were cured at 100 °C for 45 minutes.   

 To seal the epoxy microchannel, a film was made by spreading 0.15 g uncured 3M DP-

125 flexible epoxy (with or without organosilane additive) on a glass microscope slide with a 

spatula (1” x 3” standard microscope slide). The glass slides are merely used as a convenience, 

and the film could be cast on a piece of PCTFE and then removed after curing to form a free-

standing device. The films were left at room temperature for 2.5 hours, during which the film 

self-leveled. The epoxy microchannels were lightly pressed by hand against the tacky film while 

visually checking for defects and air bubbles. The bonded pieces were immediately placed in an 

oven and cured at 70 °C for 12 hours.  

 Microcolumns sealed with polymer films with the same composition as the polymer 

channels demonstrate more uniform separations than those sealed with polymer films which 

differ in composition. For example, our typical DEDMS doped microcolumns had more 

symmetric peaks and higher separation efficiencies when sealed with a DEDMS doped epoxy 

film than when sealed with an undoped epoxy film (Figure 5.4).  
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Figure 5.4 Comparison of 250 μm x 500 μm x 1 m 10 wt% DEDMS doped DP-190 
microcolumns sealed with (black) an undoped epoxy film and (red) a 10wt% DEDMS doped 
epoxy film. u = 35 cms-1, oven isothermal at 35 °C. Columns cured at 70°C. 
 

5.2.5.4. Tubing Connections 

 NanoPortTM fittings are traditionally used to connect tubing to microfluidic devices; 

however, these fittings are expensive and would significantly increase the cost of the 

microcolumn. Polyimide coated fused silica capillary tubing (IDEX; 8 cm long, 360 μm O.D., 

150 μm I.D.) was inserted into the inlet and outlet (450 μm width, 5 mm length) for connection 

to the GC injection and detector ports. The tubing was sealed with PDMS for PDMS devices or 

DP-125 for the flexible epoxy devices. The finished microcolumn was cured at 70 °C for one 

month before testing. The optimum duration of curing (~20 to 30 days) was experimentally 

determined (section 5.4.5). 

5.2.6 Microcolumn Testing 

All experiments were performed using an HP 5890 Series II GC/FID (Figure 5.5). The 

carrier gas was helium set to a column head pressure of ~1 psi. Microtight unions (IDEX; part 

#P-772) were used to connect the microcolumn to fused silica capillary tubing (IDEX; 360 μm 
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O.D., 150 μm I.D.) connected to the injection port and FID detector. The presence of a single 

flow path was confirmed from the symmetry of the methane peak. The linear velocities for each 

experiment were calculated from the retention time of the unretained methane peak. The split 

ratio for all experiments was 500:1, the inlet temperature was 250 °C, and the FID detector 

temperature was 300 °C. All injections were done manually, and injection volumes were 

~0.3 μL. Linear velocities were chosen based on experimentally derived Golay plots of each 

microcolumn. When possible, linear velocities closest to the Golay minimum (~30-40 cm s-1) 

were used. Sometimes pressure requirements limited the available linear velocities, in which case 

the attainable velocities nearest the Golay minimum were used. Data was collected at a rate of 

20 Hz using Chemstation software (Rev. A.10.02), and peak finding and data analyses were 

performed using OriginPro 8.5. 

 
Figure 5.5 Image of HP 5890 Series II GC/FID instrument used to evaluate microcolumns. The 
microcolumn is attached to the GC/FID system using two Nanoport fittings and fused silica 
capillary tubing. 
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5.2.7 Cure Time Studies 

 For determining the effect of cure time on column performance, standard DEDMS doped 

epoxy microcolumns (250 μm x 500 μm x 1 m; 10 wt% DEDMS doped DP-190) were tested 

after curing at 70 °C for various time intervals. Separations were performed in triplicate at a 

linear velocity of 45 cm s-1 and temperature of 35 °C. Efficiencies were calculated from the 

decane peak. 

5.2.8 Reproducibility and Shelf-life 

 For the reproducibility and shelf life experiment, a 250 μm x 500 μm x 1 m; 10 wt% 

DEDMS doped DP-190 microcolumn was cured at 70 °C for thirty days before analysis and was 

stored at 70 °C between time points. An elevated storage temperature was chosen to accelerate 

any potential polymer degradation. All trials were performed at room temperature with a linear 

velocity of 45 cm s-1 and in triplicate. Multiple trials run within one day produce consistent 

retention times with low standard deviation. 

5.2.9 Microsphere-Embedded Polymer Formulations 

 Microsphere-embedded microcolumns were obtained by casting and curing uncured 

epoxy on a 400 µm x 400 µm x 1 m serpentine PDMS mold coated with microspheres. These 

molds were obtained from a micromachined PCTFE mold with a 400 µm x 400 µm rectangular 

channel (inverse of the molds used for doped epoxy microcolumn fabrication). Microspheres 

come in a dry powder; mold coverage is obtained by coating the mold with a layer of 

microspheres and knocking off all excess by lightly tapping the back of the mold several times. 

Adhesion between the mold and microspheres is sufficient to produce a relatively uniform 
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coating. This fabrication method is outlined in Figure 5.6. Microcolumn assembly (i.e., sealing) 

and curing procedures are the same as described in section 5.2.5. 

5.2.10 Microsphere-coated Microcolumns 

 Microsphere-coated microcolumns were obtained by casting and partially curing (70 °C 

for 1 hr) epoxy on a 400 µm x 400 µm x 1 m serpentine PDMS mold (described in 

section 5.2.9). The partially cured epoxy microcolumn is then coated with microspheres; channel 

coverage is obtained by coating the epoxy with a layer of microspheres and knocking off all 

excess blowing house air over the coated column. Adhesion between the epoxy and microspheres 

is sufficient to produce a relatively uniform coating. This fabrication method is outlined in 

Figure 5.7. Microcolumn assembly (i.e., sealing) and final curing procedures are the same as 

described in section 5.2.5. 

 

 

 

 

 

 

 

 

221 
 



 

 

 

 

Figure 5.6 Schematic for the fabrication of microsphere-embedded microcolumns. Images 
represent a cross-sectional view of microcolumn. 

 

 

 

 

Figure 5.7 Schematic for the fabrication of microsphere-coated microcolumns. Images represent 
a cross-sectional view of microcolumn. 
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5.3 Polymer Choice 

For conventional GC columns, the choice and thickness of stationary phase polymer is 

critical for efficient separation. A film that has low analyte affinity or is too thin results in poor 

separations with analytes coeluting in the first several seconds after injection. A film that has 

very high analyte affinity or is too thick results in very broad analyte bands and very long 

retention times. Because a polymer molded microcolumn has no coated thin film stationary 

phase, material permeability must be considered. A microcolumn made from a polymer that is 

too permeable (e.g., PDMS), will yield very broad analyte bands, poor resolution, and extremely 

long retention times (cf. section 5.3.1). Alternatively, a microcolumn made from a polymer that 

is too impermeable (e.g., epoxy) has poor resolution, low peak capacity, and very short retention 

times (cf. section 5.3.3). An ideal polymer microcolumn would be made from a polymer 

composite that self-segregates into permeable and impermeable surface domains upon curing 

where the dimensions of the permeable surface domains are of micron size. The phase-separation 

of polymer mixtures during curing, and the surface segregation of one component in a two-

component polymer formulation have been observed previously in various polymer 

composites.12-14 Polymer processing characteristics must also be considered. To avoid formation 

of gas bubbles in the curing polymer (which create flow path imperfections, band broadening, 

and multiple peaks per component, cf. section 5.3.2), a proper polymer precursor must have a 

low viscosity and a cure time sufficient to permit degassing (e.g., >30 min). 

The proposed separation process of analytes for traditional thin film microcolumns, 

highly permeable single-polymer microcolumns, impermeable single-polymer microcolumns, 

and phase-separated dual-polymer microcolumns is illustrated in Figure 5.8a-d. For a 

conventional thin-film column (Figure 5.8a), the impermeable structural support limits analyte 
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diffusion to a depth equal to the film thickness. In contrast, as shown in Figure 5.8b, a highly 

permeable polymer (e.g., PDMS) microcolumn has no impermeable barrier to stop analyte 

diffusion, and analytes penetrate far into the polymer matrix, producing a chromatogram with 

broad peaks and long retention times. An impermeable polymer microcolumn (e.g., epoxy) relies 

only on surface interactions for analyte retention, causing analytes to elute too quickly for 

meaningful separation. The intent here is the creation of a new class of chromatographic 

separation using a phase-separated polymer column (Figure 5.8c), where the permeable domains 

are generally confined within a non-permeable matrix and analyte permeation is restricted to the 

top few microns, mimicking a traditional thin film column. 

 

 

Figure 5.8 Illustrations depicting analyte interaction with (a) a traditional thin-film column, (b) a 
highly permeable polymer (e.g., PDMS) column, (c) an impermeable (e.g., epoxy) column, and 
(d) a phase separated polymer column. 

 

5.3.1 PDMS Microcolumns 

 PDMS is an obvious choice for a disposable polymer microcolumn because it is 

inexpensive, commercially available, has excellent processability, and can replicate small 

microchannels with high fidelity (e.g., microfluidic devices).15-18 The only literature reports of 

polymer microcolumns fabricated in the same way we propose in this work (i.e., no separately 

applied stationary phase) are indeed made from PDMS.9, 19 PDMS microcolumns were 

successfully obtained using the fabrication procedure described in section 5.2.5. An exemplary 

PDMS microcolumn with a serpentine microchannel of rectangular cross-section (250 µm wide 

a b dc
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x 500 µm tall) is shown in Figure 5.9. The microchannel has been filled with a solution 

containing red dye for visualization. Unfortunately, microcolumns made from PDMS were 

limited in separation capability, due to the high gas permeability of siloxane polymers. Our 

PDMS microcolumns successfully separated methane, butane, and pentane; however, the 

retention times were long, peaks were broad with significant tailing, and resolution was poor 

even for longer microcolumns (Figure 5.10). Separations also required elevated temperatures 

and temperature programming. Alkanes of a higher molecular weight than n-pentane would not 

elute as a detectible peak from the column even at elevated temperatures. These results are 

consistent with the separations achieved by similar PDMS microcolumns in the literature (cf. 

section 4.3).  

 

 

 

 

Figure 5.9 Photograph of typical PDMS microcolumn (250 µm x 500 μm x 1 m; serpentine). A 
solution of red dye has been used to fill the microchannels for visualization. 
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Figure 5.10 Separation of methane, butane, and pentane using PDMS microcolumns with 
microchannel geometries of (a) 250 µm x 500 μm x 1 m and (b) 100 µm x 500 μm x 3.1 m 
PDMS microcolumns. (1) methane, (2) butane, and (3) pentane. Linear velocity is 16 cm s-1 and 
25 cm s-1, respectively. Oven temperature programmed (a) 30 °C for 1 minute, ramp at 
20 °C min-1, hold at 100 °C, and (b) 40 °C for 10 minutes, ramp at 20 °C min-1, hold at 100 °C. 

 

To better understand diffusion of analytes within the PDMS microcolumn, an 

approximate stationary phase film thickness (df) was calculated. For microcolumns made from 

highly permeable polymers (e.g., PDMS) with no impermeable support, analyte diffusion into 

the stationary phase is not necessarily limited to any specific depth and is, instead, governed by 

experimental parameters (e.g., temperature). Calculation of the “effective film thickness” for our 

PDMS microcolumns gives insight into the limitations and capabilities of microcolumns made 

from a single highly permeable polymer. The effective film thickness (deff) can be calculated 

using a series of equations from basic GC theory and geometry (equations 5.1-5.4) using values 
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obtained empirically, calculated, or estimated from the literature. Empirically determined 

parameters were obtained from an isothermal elution (40 °C) of n-pentane on a 100 µm (w) x 

500 μm (d) x 3.1 m (l) serpentine PDMS microcolumn. Parameters used in the calculation of deff 

are given in Table 5.1. Importantly, this approach assumes that analyte retention is almost 

entirely due to interaction with the stationary phase (i.e., k’ equals the ratio of the moles analyte 

in stationary phase over moles analyte in mobile phase).20-21 

 𝑘𝑘′ =  𝑡𝑡𝑟𝑟− 𝑡𝑡𝑚𝑚
𝑡𝑡𝑚𝑚

        (5.1) 

     𝑘𝑘′ =  𝑅𝑅 𝑇𝑇 𝜌𝜌
𝛾𝛾∞ 𝑃𝑃0 𝑀𝑀

 𝑉𝑉𝐿𝐿
𝑉𝑉𝑔𝑔

            (5.2) 

                                𝑉𝑉𝑔𝑔 = 𝑤𝑤 ∗ 𝑑𝑑 ∗ 𝑙𝑙            (5.3) 

            𝑉𝑉𝐿𝐿 = 310�4𝑑𝑑𝑓𝑓 + 0.106𝑑𝑑𝑓𝑓�           (5.4) 

The effective film thickness for this PDMS microcolumn was estimated to be >100 µm, 

suggesting that analyte permeation into the bulk PDMS is significant (i.e., analyte interaction is 

not limited to the stationary phase material near the channel walls). This method for film 

thickness calculation also assumes perfectly Gaussian peaks, which we do not observe. 

Alternatively, if we assume that the main contributor to band broadening is resistance to mass 

transfer in the stationary phase (Cs), a safe assumption since the separation is occurring at a 

linear velocity higher than the uopt., a modified version of the Golay equation (cf. section 

4.2.5.2.2, equation 4.13) can be used to calculate film thickness from the experimentally 

observed theoretical plate count. Using equations 5.5 and 5.6 and the values in Table 5.2, deff is 

estimated to be ~250 µm.  
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Table 5.1 Parameters used in the calculation of the effective stationary phase film thickness 
using equations 5.1-5.4. Values which are unstylized were determined experimentally or reflect 
experimental parameters; values in italics were estimated from the literature; values in bold were 
calculated using equations 5.1-5.4.  

Parameter Definition Value 

tr solute retention time 40 min 

tm unretained component retention time 0.215 min 

k’ column capacity factor 185 

R universal gas constant 0.0821 atm L mol-1 K-1 

T temperature 313 K 

P0 vapor pressure of solute at 313 K 1.053 atm 

ρ density of stationary phase 1030 g L-1 

γ∞ activity coefficient of solute in stationary phase at 
infinite dilution1 0.00494 

M molecular weight of stationary phase 100,000 g mol-1 

l length of microcolumn 310 cm 

w width of microchannel 0.01 cm 

d depth of microchannel 0.05 cm 

Vg volume of gas phase 0.15 cm3 

VL volume of liquid phase 0.484 cm3 

deff stationary phase film thickness >100 µm 
 

 

𝐻𝐻 = 𝑙𝑙

�5.54� 𝑡𝑡𝑟𝑟
𝑤𝑤1 2�

�
2

�

       (5.5) 

𝐻𝐻 =  2𝑘𝑘′

3(1+𝑘𝑘′)2
 𝑑𝑑𝑓𝑓

2

𝐷𝐷𝑙𝑙
 ū             (5.6) 
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Table 5.2 Parameters used in the calculation of the effective stationary phase film thickness 
using equations 5.5-5.6. Values which are unstylized were determined experimentally or reflect 
experimental parameters; values in italics were estimated from the literature; values in bold were 
calculated using equations 5.5 and 5.6.  

Parameter Definition Value 

tr solute retention time 40 min 

w1/2 full width half max 15 min 

H height equiv. to a theoretical plate 8 cm 

k’ column capacity factor 185 

Dl 
diffusion coefficient of solute in stationary 

phase1 9.5 x 10-6 cm2 s-1 

ū linear velocity 30 cm s-1 

deff film thickness ~250 µm 
 

From these two calculations, the effective film thickness of the stationary phase (i.e., 

analyte permeation depth) is estimated to be between ~100 and 250 µm, which is much higher 

than typical PDMS stationary phase film thicknesses (~0.1 - 5 µm). This data suggests that the 

permeability of PDMS is simply too high to be used as in a single polymer microcolumn. 

Microcolumns made from polymers with lower permeability were fabricated in an attempt to 

achieve increased separation efficiencies.  

 

5.3.2 Epoxy Microcolumns 

Epoxies have lower gas permeability compared to PDMS. Flexible epoxies are 

commercially available from 3M, are relatively easy to process, and readily release from the 

PCTFE molds. Their compositions are detailed in Table 5.3. Microcolumns fabricated from the 

DP-105 flexible epoxy show shorter retention times, smaller peak widths, marginally higher 
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separation efficiencies, and greater peak capacity than PDMS columns of the same design. 

Additionally, epoxy microcolumns require lower head pressures and temperatures than PDMS 

alternatives. These observations are consistent with the expected differences in analyte 

separation for microcolumns made from polymers with different permeabilities, shown in 

Figure 5.8. A common parameter used to molecularly describe analyte retention on a 

microcolumn is the fraction of molecules in the stationary phase at a given time, (Q). This ratio 

is related to the column capacity factor (k’) according to equation 5.7.21 A comparison of the 

percentage of pentane in the stationary phase for the PDMS microcolumn versus the DP-105 

microcolumn further confirms that analyte interaction with the PDMS microcolumn is 

substantially higher than that for DP-105 microcolumns (99% versus 25%). A summary of the 

separation characteristics for microcolumns made from PDMS and DP-105 is given in Table 5.4. 

𝑄𝑄 = 1 −  � 1
1+𝑘𝑘′

�     (5.7) 

Given the appropriate experimental conditions, microcolumns made using the DP-105 

flexible epoxy could separate mixtures of low molecular weight alkanes, as shown in 

Figure 5.11a. Peak resolutions (Rs) are still <<1 and are unsuitable for routine GC analysis. 

These microcolumns have channel imperfections (i.e., bubbles/indentations in contact with the 

gas flow channel) as seen in Figure 5.11b, which contribute dead volume and increase band 

broadening. These imperfections cause split peaks (low molecular weight alkanes) and broad 

tailing peaks (high molecular weight alkanes) (Figure 5.11a). These imperfections were caused 

by the inability to fully degas the DP-105 epoxy before it entered the gel phase, which happens 

in only ~5 min at room temperature.  

 

230 
 



 

 

 

Table 5.3 Components for part A (accelerator) and part B (epoxy base) for 3M flexible epoxies 
DP-105, DP-190, and DP-125. All values given as wt%. 

 DP-105 DP-190 DP-125 
A B A B A B 

4-4-(1-methylethylidene)biscyclo-
hexanol with (chloromethyl) oxirane - 70-80 - 30-40 - 15-40 

Poly(bisphenol A-co-epichlorohydrin) - 20-30 - 60-70 - 60-85 

(3-glycidyloxypropyl)trimethoxysilane - 0.5-1.5 - 0 - 0 

Mercaptan Polymer (trade secret) 60-70 - - - - - 

Polyamine-polymercaptan blend (trade 
secret) 30-40 - - - - - 

Bis(dimethylaminoethyl)ether 1-3 - - - - - 

1,8-diaxabicyclo[5.4.0]undec-7-ene 0.5-1.5 - - - - - 

Aliphatic polymer diamine 
C-18 unsatd, dimers, polymers w/ 
4,7,10-trioxatridecane-1,13-diamine 

- - 70-90 - 70-90 - 

4,7,10-trioxatridecane-1,13-diamine - - 10-30 - 10-20 - 

Calcium trifluoromethanesulfonate - - 1-5 - 1-10 - 

Toluene - - <=0.98 - <1 - 
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Table 5.4 Comparison of separation characteristics for a 250 µm x 450 μm x 1 m PDMS 
microcolumn and a 250 µm x 450 μm x 1 m DP-105 flexible epoxy microcolumn. Separations 
were run at similar linear velocities, but the PDMS microcolumn was temperature programmed 
and the DP-105 column was run at 0 °C. 

 PDMS  
(temp-programmed) 

DP-105  
(0 °C) 

head pressure 7.25 psi 1 psi 
tr 

(pentane) 4.69 min 0.098 min 

w1/2 
(pentane) 4.93 min 0.0153 min 

Na  5 (pentane) 25 (decane) 
Rs 

(butane-pentane) 0.5 0.5 

% pentane in stationary phase 
(Q) 99% 25% 

  a N (effective theoretical plate count) was calculated from the longest retained analyte so comparisons between the 
columns might be more meaningful. 

 

 

 

Figure 5.11 Microcolumns made from DP-105 flexible epoxy. Microcolumn was 1 m long and 
has a cross-section geometry of 250 x 500 µm. (a) Separation of n-alkanes on DP-105 polymer 
microcolumn, u = 50 cm s-1, F = 3.8 mL min-1, isothermal at 35 °C. (1) n-pentane, (2) n-hexane, 
(3) n-heptane, (4) n-octane, (5) n-nonane, (6) n-decane. (b) Optical micrograph of the DP-105 
column showing bubbles in contact with the gas flow path. 
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To remedy the flow path imperfections, DP-190, a low viscosity flexible epoxy with a 

longer cure time (90 minute tack-free time), was examined as a replacement for the DP-105 

epoxy (5 minute tack-free time). Imperfections were successfully eliminated via degassing the 

monomers and the mixed DP-190 epoxy in a vacuum oven at 40 °C. Optical micrographs of the 

channel (Figure 5.12a & b) confirm channels are uniform, with high conformity and without 

defects. The presence of a single flow path was confirmed via the injection of methane on the 

DP-190 epoxy microcolumn (Tf = 1.02). The permeability of this polymer, however, was not 

sufficient to facilitate analyte retention and separation; this column was unsuccessful in 

separating a mixture of n-alkanes at room temperature (Figure 5.12c).  

 

Figure 5.12 Microcolumns made from DP-190 flexible epoxy. Microcolumn was 1 m long and 
have a cross-section geometry of 250 x 500 µm. (a & b) Optical micrographs of microcolumn 
made using DP-190 flexible epoxy. (a) Image of channel turns, defect free pathway is evident. 
(b) Enlarged view of channel showing the transfer of micromachining detail. (c) Separation of 
n-alkanes on DP-190 polymer microcolumn, u = 65 cm s-1, F = 4.9 mL min-1, isothermal at room 
temperature. (1) n-pentane, (2) n-hexane, (3) n-heptane, (4) n-octane, (5) n-nonane, (6) n-decane. 
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5.3.3 Doped Epoxy Microcolumns 

One way to satisfy the processing and permeability criteria described above is to dope an 

easily processed, relatively impermeable polymer (e.g., 3M’s DP-190 flexible epoxy) with a 

polymer that has strong interactions with gaseous analytes (e.g., siloxanes). To this end, 

microcolumns were made from DP-190 epoxy doped with 10 wt% of a number of siloxane 

additives (Table 5.5) and their separation efficiencies for a mixture of n-alkanes were compared. 

Microcolumns were cured for 12 hours prior to characterization. As shown in Figure 5.13, 

microcolumns made using DP-190 doped with 10 wt% diethoxydimethylsilane (DEDMS) 

achieved the highest plate counts. This formulation was used in all subsequent experiments. 

Further discussion of the characterization and optimization of these microcolumns is given in 

section 5.4. 

 
Figure 5.13 Effective theoretical plate count for 250 μm x 500 μm x 1 m 10 wt% organosilane 
doped DP-190 epoxy micro-columns. u = 35 cms-1, oven isothermal at 35 °C. No organosilane 
(No OS), ethoxytrimethylsilane (ETMS); phenyltrimethoxysilane (PhTMS); 
propyltrimethoxysilane (PTMS); octyltriethoxysilane (OTES); dodecyltriethoxysilane (DTES); 
(3-glycidoxypropyl)triethoxysilane (GTES); (3-glycidoxypropyl)dimethylethoxysilane 
(GDMES); diphenyldimethoxysilane (DPhDMS); diethoxydimethylsilane (DEDMS). 
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Table 5.5 Organosilanes used as additives in doped epoxy microcolumns. 

Abbreviation Name Structure 

ETMS Ethoxytrimethylsilane 

 

 
 

PhTMS Phenyltrimethoxysilane 

 
 
 
 

PTMS Propyltrimethoxysilane 

 

 
 

OTES Octyltriethoxysilane 
 

DTES Dodecyltriethoxysilane 

 

GTES (3-glycidoxypropyl)triethoxysilane 

 

GDMES (3-glycidoxypropyl)dimethylethoxysilane 

 

 
 

DPhDMS Diphenyldimethoxysilane 

 
 

DEDMS Diethoxydimethylsilane 
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5.4 Characterization and Optimization of Doped Epoxy Microcolumn 

5.4.1 Formulation Discussion 

By doping diethoxydimethylsilane (DEDMS) into a nonpermeable flexible epoxy, a 

microcolumn that capitalizes on the phase-separation and surface segregation phenomenon 

(cf. section 5.3) has been successfully created. We propose that this formulation affords a micro-

textured composite which contains permeable domains confined within an impermeable network 

(Figure 5.8). In this composite, the siloxane-rich domains act as the stationary phase of the 

microcolumn while a siloxane-poor epoxy network serves as the structural support.  

 Polymerization reactions of the organosilane (DEMDS) and epoxy components are given 

in Figure 5.14.22-24 As discussed in section 5.3.3, microcolumns made with epoxies doped with 

various organosilanes were initially screened for n-alkane separation efficiency. During this 

screening process, DEDMS was found to produce microcolumns with the longest analyte 

retention relative to peak width (i.e., the highest N) of the additives tested. This formulation 

produces a phase-separated composite, as demonstrated by the AFM phase contrast image 

(Figure 5.15). This phase separation appears to occur between an epoxy-rich phase and a 

siloxane rich-phase (i.e., the polymerizations are largely independent). One byproduct of the 

polymerization of epoxy is HCl, which is known to catalyze the condensation of alkoxysilanes.24-

25 Alkoxysilanes form Si–O–Si bonds due their stability relative to Si–O–C or Si–N–C bonds.25 

The condensation of DEDMS forms cyclic and oligomeric dimethylsilicones, similar to the well-

known condensation of dichlorodimethylsilane (section 1.2.1).26-27 The product may or may not 

contain covalent linkages between the epoxy-rich and siloxane-rich regions.  
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During the formulation screening process described in section 5.3.3, a system in which 

cross reactions between the epoxy monomer and siloxane monomer were possible was also 

examined. When 3-(glycidoxypropyl)dimethyethoxysilane (GDMES) is used as the organosilane 

dopant, coupling of the glycidoxypropyl group to the majority phase epoxide occurs. For the 

resulting polymer, phase separation is not observed and the retention time of analytes eluting 

from columns made from the linked polymer give very broad peaks similar to microcolumns 

made from a single permeable polymer. The epoxy functionality on the organosilane additive 

inhibits phase segregation of the siloxane and epoxy domains, and instead produces a more 

uniform polymer with higher gas permeability.  

 

 

 

Figure 5.14 Polymerization reactions for the (a) epoxy (DP-190) and (b) organosilane 
(DEDMS) composite.22-24 

 

EtO Si
CH3

OEt
CH3

Diethoxydimethylsilane
DEDMS

acid or base
+ EtOHSi

CH3
O

CH3

Si
CH3

CH3

O

n

PDMS

O O
RR

N
OH

N O

O O

NOH

OH OH
RR

Cl O

H2N O
O

O NH2

+

+

R = or

+ HCl

Epoxy

a

b

237 
 



The cure time of the flexible epoxy (DP-190) is ~7 days, which allows the small 

organosilane monomers, cyclics, and oligomers to diffuse to the surface. The surface preference 

of the siloxane species over the epoxy species is caused by the differences in the 

epoxy/organosilane surface energies. The siloxane film “thickness” may be tunable by 

shortening or lengthening the cure time of one or both components of the thermoset composite, 

which should change the diffusion characteristics of the siloxane through the polymerizing epoxy 

network and lead to either thicker or thinner siloxane-rich domains at the channel surface. One 

may hypothesize that the materials properties of the “structural” component of the thermoset 

composite (e.g., cure time and organosilane diffusivity) are more important than the chemical 

characteristics. Therefore, the epoxy component could hopefully be changed to another polymer 

with similar materials properties but less surface functionality to reduce wall activity and 

improve the separation of polar analytes (e.g., amines, alcohols, etc.). Further studies are needed 

to elucidate the optimum polymer formulation. There were no significant differences in column 

performance among microcolumns made with 5 wt%, 10 wt%, and 20 wt% DEDMS doping in 

flexible epoxy. This is consistent with the hypothesis that the surface segregation of the 

polymerized DEDMS is independent of bulk organosilane concentrations.  

5.4.2 AFM Analysis 

The AFM phase contrast image (Figure 5.15) shows two domains with distinctly 

different materials properties: a softer domain (lighter regions) and a rigid domain (darker 

regions). The siloxane-rich domains are expected to be softer than the cured epoxy (the monomer 

used to form PDMS is diethoxydimethylsilane, DEDMS, which has no ability to crosslink); as 

such, the lighter regions have been attributed to the siloxane-rich phase. Surprisingly, even 

though the bulk doping percentage of the DEDMS is 10 wt%, ~50% surface coverage (analyzed 

238 
 



using the ImageJ software package from NIH) of these softer domains is observed. AFM phase 

images of formulations with 5 wt%, 10 wt% and 20 wt% doping showed similar surface 

coverage. This is consistent with the hypothesis that siloxane species phase separate and migrate 

preferentially to the surface.  

 

 
Figure 5.15 AFM tapping-mode phase image showing the microtexture of a flexible epoxy 
doped with diethoxydimethylsilane (10 wt%); softer (lighter) domains are seen within a more 
rigid (darker) matrix. 
 

5.4.3 TOF-SIMS Analysis 

The TOF-SIMS spectra of the channel surface (Figure 5.16) shows characteristic peaks for 

polydimethylsiloxane.28 The presence of peaks at 207, 221, and 281 demonstrate that 

condensation of DEDMS has indeed occurred (M/Z value of DEDMS+ is 147 amu); the boiling 

point of DEDMS is 114 °C, and without polymerization to a higher boiling point (lower vapor 

pressure) oligomer, the organosilane species would have evaporated during microcolumn 

fabrication. 
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Figure 5.16 TOF-SIMS of a flexible epoxy doped with diethoxydimethylsilane (10 wt%) 
microcolumn wall; characteristic peaks for poly(dimethylsiloxane) are labeled with m/z values.28 

 

5.4.4 Chromatographic Performance 

To probe the separation performance of a doped epoxy microcolumn (250 μm × 500 μm 

× 1 m), a mixture of n-alkanes, C5–C10, was injected onto the column. At room temperature, the 

components are easily separated in less than 180 seconds, showing six well-resolved peaks with 

baseline or near baseline resolution for all analytes (Figure 5.17a). The peak capacity (the 

number of equally well-resolved peaks that can be distinguished between two defined retention 

times) is 22 between methane and decane. All peak shapes are more than adequate with tailing 

factors (Tf) well below two (Tf = 1.45 for the worst tailing alkane, decane), and the effective 

number of theoretical plates (N) is >400 m−1 as measured by the decane peak using the full width 

at half maximum. Separation of a mixture of eight VOCs (including ketones, aromatics, 

aldehydes, and halogenated alkanes) has also been achieved isothermally at 35 °C 

(Figure 5.17b); high boiling point analytes such as 1-nonanal (b.p. 195 °C) can be eluted 

relatively quickly (<5 min) even without temperature programming.  

 

m/z
0 50 100 150

0

1.0

2.0

3.0

4.0

Co
un

ts

59
43 147

73

28a
x104

200 250 300

221 281207

240 
 



 
Figure 5.17 Chromatograms obtained using a diethoxydimethylsilane doped epoxy 
microcolumn. (a) Separation of n-alkanes at room temperature using a 1 m long microcolumn 
with a cross-section of 250 µm width x 500 µm height at room temperature (u = 30 cms-1 = 
linear velocity; F = 2.3 mL min-1 = flow rate); inset shows an expanded scale of the separation 
and resolution of the earliest analytes during 0 to 15 s. (b) Separation of eight VOCs  using 
microcolumn in (a) at 35 °C (u = 40 cms-1; F = 3 mL min-1). (1) n-pentane, (2) n-hexane, (3) n-
heptane, (4) n-octane, (5) n-nonane, (6) n-decane, (7) acetone, (8) 1,1,1-trichloroethane, (9) 
trichloroethylene, (10) ethylbenzene, (11) 1,2-dichloro-benzene, and (12) nonanal (inset).  
 

5.4.5 Effect of Cure Time on Column Performance 

 
Additional insight into the separation characteristics can be gained by monitoring the 

separation efficiency of a microcolumn with respect to cure time. Figure 5.18 shows that 

separation performance continues to improve with cure time until ~25-30 days when the 

efficiency plateaus. The microcolumns are usable prior to the 20 to 30 day mark, but suffer in 

terms of performance. This aging might be due to the time necessary for the DEDMS to 

polymerize to sufficiently long oligomeric chains that stationary phase material is not lost during 

analysis. As cure time is increased, microcolumn off-gassing during initiation of mobile phase 
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flow decreases dramatically. The observed trend for cure time is also consistent with the 

hypothesis that the epoxy regions further crosslink and harden, becoming less permeable to 

analytes, as the microcolumn cures. Before the microcolumn is fully cured, two separation 

mechanisms are active: (1) interaction between the analytes and siloxane-rich domains, and (2) 

interaction between analytes and epoxy domains. Competing separation mechanisms yield broad, 

tailing peaks with long retention times. As the epoxy domains harden, the microcolumn 

separation is increasingly governed by the analyte interaction with the siloxane-rich domains. 

This results in an increase in separation efficiency, and a decrease in retention time, peak width, 

and peak tailing (Figure 5.19).  

 
Figure 5.18 Effect of cure time on separation of n-alkanes at room temperature using a 1 m long 
microcolumn with a cross-section of 250 µm width x 500 µm height (u = 45 cm s-1 = linear 
velocity) (a)  Retention time of decane peak versus cure time. (b) Full width at half maximum of 
decane peak versus cure time. (c) Effective theoretical plate count calculated using data in (a) 
and (b) versus cure time. 
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Figure 5.19 Chromatograms showing the effect of cure time on separation of n-alkanes at room 
temperature using a 1 m long microcolumn with a cross-section of 250 µm width x 500 µm 
height (u = 45 cms-1 = linear velocity). Chromatograms correspond to data in Figure 5.18. (1) n-
pentane, (2) n-hexane, (3) n-heptane, (4) n-octane, (5) n-nonane, (6) n-decane. 
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5.4.6 Temperature Programming 

The polymer formulation used in these microcolumns is capable of temperature 

programming up to 50 °C. The flexible epoxy’s Tg is 45 °C. At temperatures higher than 50°C, 

the tr of analytes separated using this microcolumn continue to decrease, but the w1/2 begins to 

increase, reducing separation ability (Figure 5.20). At higher temperatures, the epoxy phase is 

no longer fully impermeable to analytes and begins contributing to the overall separation 

mechanism, which leads to wider and less symmetric peaks (Figure 5.21). A “structural” 

polymer with a higher Tg as a replacement to the flexible epoxy used here would likely improve 

the temperature programming capabilities.  

 
 
 

 
Figure 5.20 Effect of oven temperature on separation of n-alkanes using a 1 m long 
microcolumn with a cross-section of 250 µm width x 500 µm height (u = 35 cms-1 = linear 
velocity); (a) retention time of decane peak and (b) full width at half maximum of decane peak. 
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Figure 5.21 Chromatograms showing the effect of oven temperature on separation of n-alkanes 
using a 1 m long microcolumn with a cross-section of 250 µm width x 500 µm height 
(u = 35 cms-1). (0) methane; (1) n-pentane, (2) n-hexane, (3) n-heptane, (4) n-octane, (5) n-
nonane, (6) n-decane. Tailing factors (Tf) are given. 
 

5.4.7 Shelf-life and Reproducibility 

Little change in analyte retention and column separation efficiency is observed over the 

50 day time period. Observed fluctuations are caused in part by changes in the injector-column-

detector connections, which occur every time a microcolumn is removed and reconnected 

(Figure 5.22). Microcolumn performance is consistent among microcolumns made using the 

same initial mold (i.e., same channel dimensions) and polymer formulation (Figure 5.23). 

Differences in relative peak heights are due to injection inconsistencies. 

0 60 120 180 240 300
Time (s)

60 °C

45 °C

25 °C
Tf = 1.6

Tf = 3.6 

Tf = 4.5

53 4
2

610

6

4 53

21

6

4 53

2
1

245 
 



 
Figure 5.22 Retention times of various n-alkanes eluted from a 1 m long doped epoxy 
microcolumn with a cross-section geometry of 250 x 500 µm. All trials were performed at room 
temperature, with u = 45 cm s-1, F = 3.4 mL min-1, and in triplicate (standard deviation shown). 

 

 

 

 
Figure 5.23 Separation of n-alkanes at room temperature using two different 1 m long 
microcolumns with a cross-section of 250 µm width x 500 µm height at room temperature 
(u = 30 cms-1; F = 2.3 mL min-1). Chromatograms obtained using a diethoxydiemethylsilane 
doped epoxy microcolumns. (1) n-pentane, (2) n-hexane, (3) n-heptane, (4) n-octane, (5) n-
nonane, (6) n-decane. 
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5.4.8 Effect of Column Geometry 

For a given stationary phase and film thickness (or in this case, a given polymer 

formulation), changing column geometry often results in dramatic changes in separation 

efficiency. We have compared a Fermat spiral design with a channel width of 250 μm and 

serpentine designs with channel widths of 400 μm or 100 μm to the original serpentine 

microcolumn with 250 μm wide channels. All microcolumns were 1 m in length and contained a 

microchannel with a rectangular cross-section 500 μm in depth. SurfCam images of the different 

microcolumn geometries are given in Figure 5.24. 

 

 
Figure 5.24 SurfCam images for molds with various microchannel geometries. (a) 400 µm width 
x 500 µm depth x 1 m serpentine channel. (b) 100 µm width x 500 µm depth x 1 m serpentine 
channel. (c) 250 µm width x 500 µm depth x 1 m Fermat spiral channel. 
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Separation efficiencies for a mixture of n-alkanes separated on a DEDMS doped DP-190 

microcolumn of each design at room temperature (u = 55 cm s-1) were compared. 

Chromatograms for separations on each microcolumn are given in Figure 5.25. Linear velocity 

could not be reduced to a value closer to the Golay minimum because of head pressure 

limitations of the benchtop GC. Separation efficiencies and retention times were similar for the 

250 μm x 500 μm x 1 m microcolumns of a serpentine and Fermat spiral design 

(Figure 5.25a & b). Increasing the channel width from 250 μm to 400 μm also did not 

significantly affect separation efficiency, but did decrease retention times (Figure 5.25a & c). 

Decreasing the channel width from 250 μm to 100 μm increases the theoretical plate count from 

N = 190 plates m-1 to N  >1800 plates m-1; retention times for analytes also universally increased 

(Figure 5.25a & d; Table 5.6). This can be explained by the decrease in cross-sectional area and 

the switch to a high aspect ratio (≥5:1) channel, which both increase the frequency and 

uniformity of analyte/stationary phase interaction.29-30 The observed trend in retention times 

(increasing with decreasing channel width) supports this hypothesis. Subsequent experiments 

suggest there may be differences in phase separation caused by either chemical or structural 

differences at the surface of the mold, both of which have been cited in the literature as affecting 

phase-separated microtexture of polymer composites. Proving this has been extremely 

challenging because of the complex topography and chemical structure of the microcolumn; 

more experiments are needed to elucidate the reason for the observed increase in separation 

efficiency. 
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Figure 5.25 Chromatograms showing n-alkane separation obtained using DEDMS doped epoxy 
microcolumns of various geometries and cross-sections. u = 55 cms-1, oven at room temperature. 
(a) 250 µm width x 500 µm depth x 1 m serpentine channel; (b) 250 µm width x 500 µm depth x 
1 m Fermat spiral channel; (c) 400 µm width x 500 µm depth x 1 m serpentine channel. (d) 
100 µm x 500 µm x 1 m serpentine channel. (1) n-pentane, (2) n-hexane, (3) n-heptane, (4) n-
octane, (5) n-nonane, (6) n-decane. 
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Table 5.6 A comparison of retention times (tr) and full width at half maximum (w1/2) values for 
n-alkanes separated using DEDMS doped epoxy microcolumns at optimized experimental 
conditions. Chromatograms shown in Figures 5.17a and 5.25d.  

 methane n-pentane n-hexane n-heptane n-octane n-nonane n-decane 

(s) tr  tr w1/2  tr w1/2 tr w1/2 tr  w1/2 tr w1/2 tr w1/2 

250 µm x 500 µm x 1 m 
(Figure 5.17a)a,b 3.7 4.1 0.32 5.7 0.61 10.4 1.2 23.3 2.7 58.8 6.4 157 17.9 

100 µm x 500 µm x 1 m 
(Figure 5.25d)a,c 2.4 3.2 0.19 5.0 0.28 10.1 0.54 24.0 1.3 62.5 3.4 173 9.7 

a  Manual injections of ~ 0.3 µL of n-alkane mixture; 500:1 split ratio; injection temperature 250 °C 
   Flame ionization detector (FID) used; FID temperature 300 °C 
   Column held at room temperature (~23 °C) 
b Linear velocity (u) = 30 cm s-1; F = 2.3 mL min-1 
c Linear velocity (u) = 55 cm s-1; volumetric flow rate at outlet (F) = 1.7 mLmin-1 

 

5.5 Microspheres as GC Stationary Phase 

The domain texturing shown in these microcolumns can be mimicked using polymer 

microspheres embedded in an impermeable polymer matrix. A number of polymer microspheres 

are available commercially (e.g., polymethylsilesquioxane (PMSQ), polymethylmethacrylate 

(PMMA), polystyrene (PS)), and less common polymer, polymer composite, and coated polymer 

microspheres can be synthesized in the lab via emulsion or spray techniques (e.g., ultrasonic 

spray pyrolysis). 

PMSQ-embedded DP-190 microcolumns were made using PMSQ spheres that were 

10 µm (Kobo Products; Diasphere KS-1000) or 2 µm (Kobo Products; MST-203) in diameter. 

Microcolumns that contained a single layer of PMSQ spheres embedded in the DP-190 at the 

column surface were obtained. These microcolumns were fabricated by making a PDMS mold 

from a PEEK master, coating the PDMS mold with PMSQ spheres, and finally casting, 

degassing and curing DP-190 flexible epoxy (cf. section 5.2.9). The microcolumn body was 
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sealed with a partially cured thin film of DP-125 epoxy and attached to fused silica capillary 

tubing as described in section 5.2.5. To ensure embedded microspheres are exposed at the 

surface of the polymer composite formulation, a low surface energy polymer (e.g., PDMS) must 

be used as the mold material. Casting and curing on alternative polymers (e.g., PCTFE), results 

in a polymer composite where the microspheres are below the surface of the flexible epoxy and 

not exposed to analytes in the gas stream (Figure 5.26a & b). A typical embedded PMSQ 

microsphere has an exposed area with a diameter ~10-20% of the total sphere diameter 

(Figure 5.26 c & d). SEMs of a PMSQ microsphere-embedded DP-190 microcolumn are shown 

in Figure 5.27a.  

 

Figure 5.26 SEMs (a & c) and AFM tapping-mode height contrast images (b & e) for PMSQ 
microsphere (davg = 10 µm) embedded DP-190 epoxy composites cast against (a & b) PCTFE 
and (c & d) PDMS mold material. Light contrast areas in SEMs correspond to PMSQ 
microspheres (confirmed by EDS mapping of Si signal). 
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The separation efficiency of PMSQ-embedded DP-190 microcolumns was tested using a 

mixture of octane, nonane, and decane and is shown in Figure 5.27b & c. Separation efficiency 

is poor and retention times are very short. To determine if the poor separation efficiency was 

caused by a lack of analyte interaction with the PMSQ microspheres from too little of the 

microsphere exposed or from the PMSQ material itself, microcolumns were made where the 

spheres were coating the channel walls (cf. section 5.2.10). SEM images of the PMSQ-coated 

DP-190 microcolumns are given in Figure 5.28a. This method afforded channel walls with a 

relatively uniform single layer coating of PMSQ spheres where nearly the entire sphere was 

exposed, mimicking a PLOT column. This configuration afforded similar separation efficiencies 

as PMSQ-embedded microcolumns, as shown in Figure 5.28b. This data suggests that PMSQ 

(Smass ~ 0.5) does not have an appropriate analyte affinity to act as a GC stationary phase. 

Microcolumns coated with microspheres of various materials were fabricated using the 

coating procedure described in section 5.2.10. Silica/dimethicone/PMSQ microsphere (3 µm 

diameter, Smass ~5, Kobo products SILICA SHELLS-SH) coated columns afforded better 

separation than the PMSQ-coated columns, as shown in Figure 5.29a. PMMA microsphere 

(10 µm diameter, Smass ~3, Kobo products MSP-HEM-812) coated columns also afforded better 

separation than the PMSQ-coated columns, as shown in Figure 5.29b. The separations (N = 145 

for Silica/dimethicone/PMSQ-coated and N = 120 for PMMA-coated) of the alkane mixture 

show baseline resolution and very short retention times, even for higher MW alkanes (e.g., 

decane). This could prove useful in the separation of higher MW compounds, which still needs 

to be investigated. Analyte retention for these microcolumns is still insufficient to facilitate 

meaningful separations for low MW compounds. For this reason, we have begun to investigate 

PDMS microspheres as potential materials for our microcolumn stationary phase. 
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Figure 5.27 PMSQ microsphere-embedded DP-190 epoxy microcolumn. (a) SEM of channel 
cross section of 10 μm PMSQ spheres embedded into DP-190 epoxy. Insets show expanded view 
of PMSQ “stationary phase” (right), top-view of channel bottom showing potion of PMSQ 
spheres exposed at surface (middle) and side-view of channel wall showing portion of PMSQ 
spheres exposed at surface (left). (b and c) Chromatograms showing separation of octane, 
nonane, and decane using PMSQ embedded microcolumns. (b) 10 μm diameter PMSQ spheres 
(c) and 2 μm diameter PMSQ spheres; u = 26 cm s-1; ~0.3 μL injected; 500:1 split; column 
isothermal at RT. Channel square cross-section (400 μm width x 400 μm depth) with total length 
equal to 1 m. 
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Figure 5.28 PMSQ microsphere-coated DP-190 epoxy microcolumn. (a) SEM of channel cross 
section of DP-190 epoxy microcolumn coated with 2 μm PMSQ spheres. Insets show expanded 
view of PMSQ “stationary phase” (right), top-view of channel bottom showing distribution of 
PMSQ spheres at surface (middle) and expanded view of channel wall showing PMSQ 
sphere/epoxy interface (left). (b) Chromatograms showing separation of octane, nonane, and 
decane using PMSQ coated microcolumns. u = 26 cm s-1; ~0.3 μL injected; 500:1 split; column 
isothermal at RT. Channel square cross-section (400 μm width x 400 μm depth) with total length 
equal to 1 m. 

 

Microcolumns coated with PDMS microspheres (synthesized in lab using USP, cf. 

Chapter 2) were also studied. Initially, a coated column was made by drop casting a suspension 

of Sylgard PDMS microspheres in EtOH onto a partially cured DP-190 microcolumn. The 

separation of a mixture of alkanes is given in Figure 5.29c. The retention times for this column 

are significantly longer than other microsphere-coated columns and the peaks are very broad, 

indicating a highly agglomerated microsphere coating, which was confirmed by SEM. It has 
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proven difficult to achieve a uniform coating of PDMS microspheres on the channel walls using 

either an embedding or coating fabrication method. Higher crosslinked PDMS microspheres 

(e.g., Gelest VDT-731 or VDT-5035; section 2.3.2) agglomerate less in powder form, and may 

produce more uniform coatings than the Sylgard 184 PDMS microspheres used here.  

 
Figure 5.29 Chromatograms of octane, nonane, decane separation using polymer microsphere-
coated DP-190 columns (a) Silica/dimethicone/PMSQ microsphere-coated column.  (b) PMMA 
microsphere-coated column. (c) Sylgard 184 USP PDMS microsphere-coated column.  
u = 30 cm s-1; ~0.3 μL injected; 500:1 split; column isothermal at RT. Channel square cross-
section (400 μm width x 400 μm depth) with total length equal to 1 m. 
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5.6 Conclusions and Future Directions 

 In this chapter, we have demonstrated a new approach to microcolumn fabrication. The 

use of microtextured polymer composites has allowed us to easily fabricate gas chromatography 

microcolumns through molding from a micromachined master. These microcolumns have no 

separately applied thin film stationary phase: the polymer composite phase-segregates into 

structural and functional domains. Importantly, we have demonstrated that homopolymer 

formulations produce microcolumns with limited separation capabilities. Microcolumns made 

from PDMS were shown to be impractical for routine GC analysis because of PDMS’s high gas 

permeability. Alternatively, impermeable polymer microcolumns (i.e., epoxies) showed poor 

analyte retention, resulting in low separation efficiencies. An epoxy microcolumn doped with 

diethoxydimethylsilane (PDMS monomer) was shown to have the appropriate processing 

characteristics to afford replica molded microchannels with high conformity and without defect 

and the compositional phase-separated microtexturing needed to facilitate separation of analytes 

without a separately applied stationary phase coating. This inexpensive and disposable GC 

microcolumn was capable of separating mixtures of VOCs with baseline resolution in seconds to 

minutes with separation efficiencies of N  >1800 plates m-1.  

For comparison, optimized traditional microcolumns previously reported in the literature 

range from ~500 to 5000 plates/m.10, 31-41 Though not the top preforming microcolumn, our 

microcolumns are able to separate simple mixtures at a substantially decreased cost, and may 

find utility where an initial rapid, inexpensive, and cursory analysis of field samples is necessary 

(e.g., military, overseas, or educational applications). It is expected that further optimization of 

the channel dimensions, polymer composition, and polymer microstructure will lead to 

substantial improvements in column efficiency. Similarly, fabrication of compact multi-meter 
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length microcolumns is entirely feasible by our polymer molding process.  Although this 

microcolumn is inexpensive enough to be used once and discarded, multiple uses over a period 

of 50 days does not significantly change the microcolumn’s performance. 

 The doped epoxy microcolumns developed here are not without drawbacks. The two 

most significant drawbacks are the tailing of highly polar analytes and the inability to operate our 

microcolumns at elevated temperatures. Both these limitations are likely caused by the choice of 

impermeable polymer (i.e., flexible epoxy) used in our formulation. A base polymer with a 

higher Tg and fewer reactive functional groups (e.g., a polyolefin) may fix these problems. 

Regardless, this work marks the first step in the exploration of disposable separation technology 

that employs microtextured phase-separated composites. We have demonstrated that efficient 

separations of VOCs are possible using all-polymer microcolumns and have made significant 

strides in understanding what factors (e.g., polymer permeability, phase-separated structure) 

must be considered in the design of such microcolumns. We have also begun exploring the use 

of polymeric microspheres as a GC stationary phase for our polymer molded microcolumns. This 

work will be continued by graduate student Jordan Hinman. 

 

5.7 References 

(1) Collin, W. R.; Serrano, G.; Wright, L. K.; Chang, H.; Nuñovero, N.; Zellers, E. T., 
Microfabricated gas chromatograph for rapid, trace-level determinations of gas-phase 
explosive marker compounds. Anal. Chem. 2013, 86, 655-663. 

(2) Grall, A. J.; Zellers, E. T.; Sacks, R. D., High-Speed Analysis of Complex Indoor VOC 
Mixtures by Vacuum-Outlet GC with Air Carrier Gas and Programmable Retention. 
Environ. Sci. Technol. 2000, 35, 163-169. 

(3) Lu, C.-J.; Steinecker, W. H.; Tian, W.-C.; Oborny, M. C.; Nichols, J. M.; Agah, M.; 
Potkay, J. A.; Chan, H. K. L.; Driscoll, J.; Sacks, R. D.; Wise, K. D.; Pang, S. W.; 

257 
 



Zellers, E. T., First-generation hybrid MEMS gas chromatograph. Lab Chip 2005, 5, 
1123-1131. 

(4) Lu, C.-J.; Whiting, J.; Sacks, R. D.; Zellers, E. T., Portable gas chromatograph with 
tunable retention and sensor array detection for determination of complex vapor mixtures. 
Anal. Chem. 2003, 75, 1400-1409. 

(5) Angell, J. B.; Terry, S. C.; Barth, P. W., Silicon Micromechanical Devices. Sci. Am. 
1983, 248, 44-55. 

(6) Terry, S. C.; Jerman, J. H.; Angell, J. B., A gas chromatographic air analyzer fabricated 
on a silicon wafer. IEEE Trans. Electron Devices 1979, 26, 1880-1886. 

(7) Agah, M.; Potkay, J.; Sacks, R.; Wise, K. High-Performance Separation Microcolumn 
Assembly And Method of Making Same. U. S. Patent 20040255643A1, Dec. 23, 2004. 

(8) Lorenzelli, L.; Benvenuto, A.; Adami, A.; Guarnieri, V.; Margesin, B.; Mulloni, V.; 
Vincenzi, D., Development of a gas chromatography silicon-based microsystem in 
clinical diagnostics. Biosens. Bioelectron. 2005, 20, 1968-1976. 

(9) Malainou, A.; Vlachopoulou, M. E.; Triantafyllopoulou, R.; Tserepi, A.; Chatzandroulis, 
S., The fabrication of a microcolumn for gas separation using poly(dimethylsiloxane) as 
the structural and functional material. J. Micromech. Microeng. 2008, 18, 105007. 

(10) Radadia, A. D.; Morgan, R. D.; Masel, R. I.; Shannon, M. A., Partially buried 
microcolumns for micro gas analyzers. Anal. Chem. 2009, 81, 3471-3477. 

(11) Serrano, G.; Reidy, S. M.; Zellers, E. T., Assessing the reliability of wall-coated 
microfabricated gas chromatographic separation columns. Sens. Actuators B 2009, 141, 
217-226. 

(12) Hariharan, A.; Kumar, S. K.; Russell, T. P., Surface segregation in binary polymer 
mixtures: a lattice model. Macromolecules 1991, 24, 4909-4917. 

(13) Bates, F. S., Polymer-Polymer Phase Behavior. Science 1991, 251, 898-905. 

(14) Kumacheva, E.; Li, L.; Winnik, M. A.; Shinozaki, D. M.; Cheng, P. C., Direct Imaging of 
Surface and Bulk Structures in Solvent Cast Polymer Blend Films. Langmuir 1997, 13, 
2483-2489. 

(15) Seethapathy, S.; Górecki, T., Applications of polydimethylsiloxane in analytical 
chemistry: A review. Anal. Chim. Acta 2012, 750, 48-62. 

258 
 



(16) Andriot, M.; Chao, S. H.; Colas, A.; Cray, S.; de Buyl, F.; DeGroot, J. V. J.; Dupont, A.; 
Easton, T.; Garaud, J. L.; Gerlach E.; Gubbels, F.; Jungk, M.; Leadley, S.; Lecomte, J. P.; 
Lenoble, B.; Meeks, R.; Mountney, A.; Shearer, G.; Stassen, S.; Stevens, C.; Thomas, X.; 
Wolf, A. T., Silicones in Industrial Applications. In Inorganic Polymers, Gleria, R. D. J. 
M., Ed. Nova Science Publishers: 2007; pp 61-161. 

(17) Abbasi, F.; Mirzadeh, H.; Katbab, A.-A., Modification of polysiloxane polymers for 
biomedical applications: a review. Polym. Int. 2001, 50, 1279-1287. 

(18) Nge, P. N.; Rogers, C. I.; Woolley, A. T., Advances in Microfluidic Materials, Functions, 
Integration, and Applications. Chem. Rev. 2013, 113, 2550-2583. 

(19) MacNaughton, S.; Sonkusale, S., Single chip micro GC with integrated heterogeneous 
nanomaterial sensor array for multiparameter gas sensing. In Solid-State Sensor, 
Actuator, and Microsystems Workshop, Transducers Research Foundation, Inc.: Hilton 
Head, SC, June 6-18, 2014; pp 211-215. 

(20) Ahuja, S., Chromatography and Separation Science. Academic Press: San Diego, 
California, 2003. 

(21) Poole, C., Gas Chromatography. Elsevier Inc.: Waltham, MA, 2012. 

(22) Klein, L. C., Sol-Gel Optics: Processing and Applications. Springer: New York, 1994. 

(23) Pascault, J.-P.; Williams, R. J. J., General concepts about epoxy polymers. In Epoxy 
Polymers: New materials and innovations, Pascault, J.-P.; Williams, R. J. J., Eds. Wiley-
VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp 1-12. 

(24) de Buyl, F., Silicone sealants and structural adhesives. Int. J. Adhes. Adhes. 2001, 21, 
411-422. 

(25) Brinker, C. J.; Scherer, G. W., The Physics and Chemistry of Sol-Gel Processing. 
Academic Press, Inc.: San Diego, CA, 1990. 

(26) Moretto, H.-H.; Schulze, M.; Wagner, G., Silicones. In Ullmann's Encyclopedia of 
Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA: Berlin, 2000. 

(27) Arkles, B., Larson, G. L., Ed., Silicon Compounds: Silanes  & Silicones, 5000A, 3rd ed. 
Gelest Inc: Morrisville, PA., 2013. 

(28) Timko, M. T.; Yu, Z.; Kroll, J.; Jayne, J. T.; Worsnop, D. R.; Miake-Lye, R. C.; Onasch, 
T. B.; Liscinsky, D.; Kirchstetter, T. W.; Destaillats, H.; Holder, A. L.; Smith, J. D.; 

259 
 



Wilson, K. R., Sampling artifacts from conductive silicone tubing. Aerosol Sci. Technol. 
2009, 43, 855-865. 

(29) Sumpter, S. R.; Lee, M. L., Enhanced radial dispersion in open tubular column 
chromatography. J. Microcol. Sep. 1991, 3, 91-113. 

(30) Bhushan, A.; Yemane, D.; Overton, E. B.; Goettert, J.; Murphy, M. C., Fabrication and 
preliminary results for LiGA fabricated nickel micro gas chromatograph columns. J. 
Microelectromech. Syst. 2007, 16, 383-393. 

(31) Lambertus, G.; Elstro, A.; Sensenig, K.; Potkay, J.; Agah, M.; Scheuering, S.; Wise, K.; 
Dorman, F.; Sacks, R., Design, Fabrication, and Evaluation of Microfabricated Columns 
for Gas Chromatography. Anal. Chem. 2004, 76, 2629-2637. 

(32) Lambertus, G.; Sacks, R., Stop-Flow Programmable Selectivity with a Dual-Column 
Ensemble of Microfabricated Etched Silicon Columns and Air as Carrier Gas. Anal. 
Chem. 2005, 77, 2078-2084. 

(33) Lambertus, G. R.; Fix, C. S.; Reidy, S. M.; Miller, R. A.; Wheeler, D.; Nazarov, E.; 
Sacks, R., Silicon Microfabricated Column with Microfabricated Differential Mobility 
Spectrometer for GC Analysis of Volatile Organic Compounds. Anal. Chem. 2005, 77, 
7563-7571. 

(34) Potkay, J. A.; Lambertus, G. R.; Sacks, R. D.; Wise, K. D., A low-power pressure- and 
temperature-programmable micro gas chromatography column. J. Microelectromech. 
Syst. 2007, 16, 1071-1079. 

(35) Lindner, D., The μChemLab™ project: Micro total analysis system R&D at Sandia 
National Laboratories. Lab Chip 2001, 1, 15N-19N. 

(36) Reidy, S.; George, D.; Agah, M.; Sacks, R., Temperature-programmed GC using silicon 
microfabricated columns with integrated heaters and temperature sensors. Anal. Chem. 
2007, 79, 2911-2917. 

(37) Reidy, S.; Lambertus, G.; Reece, J.; Sacks, R., High-performance, static-coated silicon 
microfabricated columns for gas chromatography. Anal. Chem. 2006, 78, 2623-2630. 

(38) Lee, C. Y.; Sharma, R.; Radadia, A. D.; Masel, R. I.; Strano, M. S., On-Chip Micro Gas 
Chromatograph Enabled by a Noncovalently Functionalized Single-Walled Carbon 
Nanotube Sensor Array. Angew. Chem. Int. Ed. 2008, 47, 5018-5021. 

260 
 



(39) Masel, R. I.; Radadia, A. D. Micromachined Gas Chromatography Columns For Fast 
Separation of Organophosphonate and Organosulfur Compounds and Methods for 
Deactivating Same. U. S. Patent 20090211452A1, Apr. 10, 2009. 

(40) Masel, R. I.; Radadia, A. D.; Shannon, M. Column Design For Micro Gas 
Chromatograph. U. S. Patent 8123841B2, Feb. 28, 2012. 

(41) Radadia, A. D.; Masel, R. I.; Shannon, M. A.; Jerrell, J. P.; Cadwallader, K. R., 
Micromachined GC columns for fast separation of organophosphonate and organosulfur 
compounds. Anal. Chem. 2008, 80, 4087-4094. 

 

261 
 



CHAPTER 6: 

TOWARDS A COLORIMETRIC SENSOR ARRAY MICRODETECTOR  
FOR GAS CHROMATOGRAPHY 

 

6.1 Introduction 

This chapter is taken in large part from the following references: 

Rankin, J. M.; Zhang, Q.; LaGasse, M. K.; Zhang, Y.; Askim, J. R.; Suslick, K. S., 
Solvatochromic sensor array for the identification of common organic solvents. Analyst 2015, 
140, 2613-2617. 

LaGasse, M. K.; Rankin, J. M.; Askim, J. R.; Suslick, K. S., Colorimetric Sensor Arrays: 
Interplay of Geometry, Substrate and Immobilization. Sens. Actuators B. 2014, 197, 116-122. 

Rankin, J. M.; Suslick, K. S., The development of a disposable gas chromatography 
microcolumn. Chem. Commun. 2015, 51, 8920-8923. 

 Colorimetric sensor arrays, described in detail in section 4.5, are a powerful analytical 

tool for on-site identification of gaseous analytes. The colorimetric sensor arrays developed 

previously in the Suslick lab are optimized for highly reactive gases (e.g., toxic industrial 

chemicals, acids, bases)1-5 with exposure times of several minutes. In contrast, samples 

commonly analyzed by gas chromatography include organic species with “low reactivity” (e.g., 

alkanes, aromatics, ketones, alcohols, etc.) and GC detectors are only exposed to these species 

for milliseconds or seconds (i.e., essentially the band width of the analyte of interest). Therefore, 

a significant re-optimization of the colorimetric sensor arrays is necessary before studies on the 

utility of a colorimetric sensor array as a microdetector for gas chromatography is possible. This 

re-optimization must include: (1) the development of sensor spots responsive to “low reactivity” 

organic solvents; (2) the development of an experimental setup and array design which allows 

for sub-second temporal resolution of array response; (3) the optimization of sensor array spots 
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for rapid response to analytes of interest; (4) the adaptation of current senor array technology to 

facilitate hyphenation with a micro gas chromatography column. This chapter describes the 

progress that has been made towards these goals including (1) the development of a 

solvatochromic sensor array for the identification of common organic solvents,6 (2) a study on 

the interplay of geometry, substrate and immobilization on colorimetric sensor array response,7 

and (3) a proof of concept study describing a colorimetric sensor array microdetector hyphenated 

to a gas chromatography microcolumn.8  

6.2 Solvatochromic Sensor Array for Organic Solvents 

6.2.1 Introduction 

The use of a colorimetric sensor array to differentiate among poorly-reactive analytes 

(e.g., common laboratory solvents) below their saturation concentration has proved challenging. 

Solvatochromic sensors can be sensitive to a large number of less reactive species, respond 

reversibly, and have previously proven useful for gas sensing in the literature.4, 9 Most studies, 

however, have used solvatochromic sensors to detect analytes at high concentrations and over 

long time spans. Therefore, it is necessary to optimize a solvatochromic sensor or sensor array 

specifically for use as a micro-GC detector. 

Solvatochromic compounds change color in response to a change in polarity of the local 

environment, an effect caused by a polarity difference between the chromophore’s ground and 

excited state,10-12 and are, therefore, commonly used to probe solvent polarity.10-15 

Solvatochromic dyes can be broadly classified as exhibiting either positive solvatochromism, 

where the ground state is less polar than the excited state, or negative solvatochromism, where 

the ground state is more polar than the excited state.10 Historically, these color-changing dyes 
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have been studied in liquid phase and characterized using UV/Vis absorption spectroscopy; some 

recent work, however, has used individual solvatochromic dyes in solids (e.g., films of dyes 

entrapped in porous, semi-liquid, or polymer matrices).16-17 18-20  Colorimetric sensor arrays 

previously utilized in our lab have included only one or two solvatochromic sensor spots; the 

response of an optimized array of many solvatochromic dye solid-state sensors has not been 

previously examined.  

 We report here a colorimetric sensor array that utilizes solvatochromic dyes in semi-

liquid matrices to differentiate eleven common organic solvents. Importantly, the solvatochromic 

dyes serve a dual function: (1) to change color with a change in local polarity and (2) to facilitate 

the measurement of physical changes in their matrix caused by solvent sorption. The array 

response can be monitored using an ordinary flatbed scanner, providing a convenient means of 

detection.1, 5, 21 We are also able to decouple these two types of response through a comparison of 

the RGB (red, green, and blue) reflectance with full spectral reflectometry data of representative 

sensor spots. This work demonstrates a method to discriminate among analytes that have limited 

chemical reactivity and also provides a cautionary tale for colorimetric sensing in general: 

observed changes in RGB values may reflect physical rather than chemical interactions between 

the sensor and the analyte, especially at high analyte concentrations. 

6.2.2 Experimental Methods 

6.2.2.1 Array Preparation 

Colorimetric sensor arrays were prepared as described elsewhere;22 briefly, 

solvatochromic dyes were dissolved in dilute solutions of a volatile solvent containing both the 
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dye and a highly viscous liquid and then printed on porous polypropylene membranes using a 

robotic pin printer. After evaporation, the dyes were held in a semi-fluid state dissolved in the 

viscous matrix supported by the membrane. A summarized list of dyes is shown in Table 6.1. 

Seven commonly used solvatochromic compounds (four positive solvatochromic and three 

negative solvatochromic dyes11, 15, 23-24) were chosen. 

The eighteen spots were printed on polypropylene membrane (0.2 μm pore size, 

Sterlitech Corporation). Seven solvatochromic dyes, including four positive solvatochromic dyes 

(Nile Red, Disperse Orange 25, Disperse Orange 3, and Phenol Blue) and three negative 

solvatochromic dyes (Merocyanine 540, Reichardt’s Dye and 1-Ethyl-4-(2-

hydroxystyryl)pyridinium iodide), were used. All dyes and solvents were reagent grade, obtained 

from Sigma-Aldrich, and used without further purification.  

For colorimetric sensor array printing, the formulations were loaded into an 18–hole 

Teflon ink well (40 µL). Sensor arrays were printed using an array of 18 floating slotted pins 

arranged linearly; pins were dipped into the ink well and brought into contact with the 

polypropylene membrane, transferring to membrane ~400 μm diameter spots of each 

formulation. The printing protocol for spots used in the collection of diffuse reflectance spectra 

is the same as above except larger diameter floating slotted pins were used to print ~1 mm 

diameter spots (equivalent to the approximate read diameter of the reflectance probe). Once 

printed, all arrays were stored in a glove bag under nitrogen for more than 3 days to ensure 

evaporation of solvent vapors. 
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Table 6.1 A summary of solvatochromic dyes and their categories. 

Number Solvatochromic 
Category 

Dye name  
(abbreviation)  Molecular Structure  

1 positive Nile Red (NR)  

 

 

2 positive Disperse Orange #25 
(DO25)  

 

 

3 positive Disperse Orange #3 
(DO3)  

 

 

4 positive N,N-Dimethylindoaniline  
(Phenol Blue, PB)  

 

 

5 negative Merocyanine 540 (M540)  

 

 

6 negative Reichardt’s Dye (R)  

 

 

7 negative 
1-Ethyl-4-(2-

hydroxystyryl)pyridinium 
Iodide (EHPI) 
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6.2.2.2 Analyte Testing 

Three mass flow controllers were used to control the total flow rate passing over the 

colorimetric sensor array. The total flow rate was 500 sccm and the analyte concentration was 

10% (v/v) the saturated vapor pressure. The analyte concentration was obtained by flowing 

nitrogen at 50 sccm through a bubbler with 40 ml of pure solvent.  Using another mass flow 

controller, this saturated stream was diluted with dry nitrogen for a total flow of 500 sccm. 

Typically, a dry nitrogen control stream (500 sccm) was passed over the array for two minutes, 

followed by five minutes of analyte flow. Images of the array were collected using a flatbed 

scanner after 2 min of dry nitrogen and after 5 min of analyte exposure.  The RGB values for the 

pixels corresponding to the center two-thirds of each spot were averaged to avoid spot edge 

artifacts using a customized software package, SpotFinder (iSense). All experiments were run in 

quintuplicate. 

6.2.2.3 Statistical Analysis  

For each trial, a color change profile was obtained by subtracting the RGB values of the 

“before” image (2 min dry nitrogen) from the “after” image (5 min analyte). This yields a 54-

dimensional vector (i.e., 18 changes in red, green, and blue values) that quantitatively describes 

the color change of the array upon exposure to an analyte; this vector, or color pattern, is unique 

for each analyte. The color change profiles were compiled into a library database; standard 

chemometric analyses including principal component analysis (PCA) and hierarchical cluster 

analysis (HCA) were performed on the database using a multi-variance statistical package 

(MVSP, Kovach Computing Services). For all HCA, minimum variance (i.e., Ward’s method) 

was used for classification. 
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6.2.2.4 Diffuse Reflectance Spectra 

 Diffuse reflectance spectra were obtained using a B&W tek Prime-X spectrometer with 

2.5 nm resolution, a reflectance accessory from StellarNet, Inc. with seven 400 µm illuminating 

fibers and a 600 µm read fiber in a 7 around 1 configuration and a deuterium/tungsten light 

source (190-1100 nm). Each spectrum was processed by first removing 4 points (from 485.35-

487.76 nm) and 8 points (from 654.08-659.42 nm) due to the presence of hydrogen emission 

lines (characteristic of the deuterium light source), which would distort the signal in those 

regions. Next, each spectrum was put through a 20-point Savitzky-Golay smoothing filter. 

Figure 6.4a was also normalized from 0-1 to more clearly illustrate the observed wavelength 

shift. 

6.2.3 Sensor Array Development  

Because solvatochromic compounds are sensitive to the polarity of the local environment, 

the starting color of a spot containing a solvatochromic dye is highly dependent on the matrix 

(i.e., the dye’s local environment). In order to maximize interaction between analytes and a 

solvatochromic dye (or for that matter, any indicator), one must minimize interactions between 

the ground state of the dye and its surrounding matrix. The matrix, therefore, must be chosen 

carefully; a poorly matched matrix will diminish spot response. In choosing an appropriate 

matrix, the inherent chemical properties of the dye (e.g., ground state polarity, potential for 

hydrogen bonding)10, 25 must be considered.  

 Generally, positive solvatochromic dyes were dissolved in relatively polar matrices (i.e., 

glycerol or ionic liquid) and negative solvatochromic dyes were dissolved in relatively nonpolar 

matrices (i.e., methylsiloxanes), as listed in Table 6.2. To enhance chemical diversity of the 
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responses of the sensors, dyes were dissolved in multiple matrices, i.e., polar, nonpolar, and 

medium polarity (i.e., benzyl butyl phthalate, BBP). In addition, matrices with differing 

intermolecular forces (e.g., H-bonding, dipole-dipole) will sorb different classes of analytes 

preferentially, thus affecting the response profile from each formulation. As given in Table 6.3, 

an array of 18 sensor spots using seven solvatochromic dyes among four matrices was generated. 

Our use of different formulations for the matrices of the solvatochromic dyes is analogous to the 

use of multiple polymers of different polarities in sensor arrays.26-29  

Even in an instance where there is no direct dye-analyte interaction, a sensor spot may 

still show a change in RGB values through sorptive effects.  When an analyte is present at high 

concentration, its sorption into a semi-liquid matrix may change the properties of the matrix 

(e.g., viscosity, refractive index).  Viscosity changes may cause blooming of the spot (i.e., a 

diffusion of the spot edge) making the spot larger but less intensely colored.  Changes in the 

refractive index of the spot can change the intensity of light reflected from the surface.30-31 These 

effects manifest as a change in color intensity (i.e., a change in RGB values from digital images 

of the spot). Changes in RGB values, whether due to wavelength shift of the dye, blooming of 

the sensor spot, or alteration of the spot’s refractive index, can be used to facilitate analyte 

identification and discrimination. The matrices used in this study were chosen to maximize both 

solvatochromic and sorptive responses. 
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Table 6.2 A summary of matrices and their concentrations for printing. 

Name Class Composition Concentration 
(v/v% in MEa) 

A polar hydrogen 
bonding Glycerol 10 

B polar hydrophobic 
(ionic liquid) 

1-Butyl-3-methylimidazolium 
Hexafluorophosphate 10 

C relative nonpolar 
hydrophobic Benzyl Butyl Phthalate 30 

D non-polar 
hydrophobic Dow Diffusion Oil 10 

a ME = 2-methoxyethanol 

 
 
 
 
Table 6.3 A complete list of solvatochromic dye-matrix combinations. 

 

 

  

Spot # Dye Amount (mg)  Matrix 
1 NR 1 A 
2 NR 1 B 
3 NR 1 C 
4 DO25 5 A 
5 DO25 5 B 
6 DO25 5 C 
7 DO3 10 A 
8 DO3 10 B 
9 DO3 8 C 
10 PB 3 A 
11 PB 5 B 
12 PB 3 C 
13 M540 1.5 C 
14 M540 1.5 D 
15 R 15 C 
16 R 15 D 
17 EHPI 2 C 
18 EHPI 4 D 
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6.2.4 Array Response to Common Organic Solvents 

 For this work, eleven common solvents with polarities evenly distributed over a wide 

range of ET(30) values11 were chosen as analytes. Table 6.4 lists these analytes and their ET(30) 

values. Arrays were exposed to a gas stream (500 sccm) containing a given analyte at 10% the 

saturation concentration in dry nitrogen. Images were processed according to previously 

described procedures;1, 4-5, 32-33 a more detailed explanation of experimental protocols and data 

processing can be found in section 6.2.2. 

 

Table 6.4 Summary of chosen analytes and their empirical ET(30) values. 

  Analyte Name ET(30) 
(kcal·mol-1) 

1 Benzene 34.3 
2 1,4-Dioxane 36.0 
3 1,1,1-Trichloroethane 36.2 
4 Tetrahydrofuran 37.4 
5 1,2-Dibromoethane 38.3 
6 Acetone 42.2 
7 Dimethyl Formamide 46.2 
8 Dimethyl Sulfoxide 45.1 
9 1-Hexanol 48.8 
10 Ethanol 51.9 
11 Water 66.1 
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 Difference maps are a useful tool for qualitatively visualizing how an array changes color 

when exposed to a given analyte. Representative difference maps showing the unique response 

pattern to each analyte after 5 minutes exposure are shown in Figure 6.1; responses were 

measured in quintuplicate on separate arrays. Using the raw digital data, a hierarchical cluster 

analysis (HCA) was performed to quantify differentiability among analytes (Figure 6.2). There 

is clear discrimination among all eleven solvents, showing no misclassifications for 62 trials. 

HCA generates a dendrogram that provides a quantitative analysis of response similarity among 

hierarchically-ranked clusters. Sensors with similar response patterns, as determined by the 

distance between individual trials in the 54 dimensional space (i.e., ∆RGB values of 18 spots), 

will cluster together. Thus, the connectivity of an HCA diagram shows “what resembles what” 

and the Euclidean distance at which clusters are grouped shows “by how much.” 

  

Figure 6.1 Difference maps showing the colorimetric sensor array response to eleven analytes at 
10% of their saturation vapor pressure after 5 min of exposure (averages of five trials each are 
shown). A color range of 1.5 - 8.5 was expanded to 8-bit color range (i.e., 0-255) for 
visualization. A complete list of the 18 sensor spot formulations can be found in Table S6. 
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Figure 6.2 Hierarchical cluster analysis of the colorimetric array response to 11 common organic 
solvents and the control. The 11 analytes were run in quintuplicate and the dry N2 control was 
run in septuplicate. The HCA used minimum variance (i.e., Ward’s method) for clustering.  No 
misclassifications were observed among the 62 trials. 

 

 Principal component analysis (PCA), when applied to chemical sensor arrays, gives an 

approximation of the dimensionality of the chemical-property space being probed by the array. 

Often, sensor arrays require only 1 or 2 dimensions to capture 95% or even 99% of the total 

variance among responses. This lack of dimensionality indicates the sensor array is actually 

probing only one or two chemical parameters with hydrophobicity typically predominant.  This 
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plot (Figure 6.3) shows that our solvatochromic sensor array requires a total of six dimensions to 

reach 95% variance and therefore probes a larger number of chemical interactions than most of 

the electronic nose literature. This high dimensionality is not surprising; multiple factors 

influence array response, including solvent polarity (i.e., solvatochromism), acid-base 

interactions (both Brønsted and Lewis), relative stability of dye-analyte interactions versus dye-

matrix interactions, analyte-matrix affinity (i.e., partition coefficient), hydrogen bonding between 

dyes and analytes, and the physical properties of the matrix after analyte sorption. 

 

 
Figure 6.3 Scree plot of the principal components from PCA from 11 analytes and a N2 control. 
Six dimensions are required to define 95% of the total variance. 
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6.2.5 Factors that Influence Array Response 

To decouple the changes in RGB values caused by a wavelength shift (i.e., due to 

analyte-dye interaction) from those caused by sorptive effects (e.g., refractive index changes or 

spot blooming), we have analyzed the full spectral reflectometric response of two representative 

spots (spot #15, Reichardt’s dye in BBP, and spot #3, Nile red in BBP) using a diffuse 

reflectance probe. Figure 6.4 shows the pseudo-absorbance spectra in Kubelka-Munk (K-M)34 

units and raw images of representative sensor spots that exhibit color changes caused by either: 

(1) a solvatochromic wavelength shift (Figure 6.4a&b, spot #15 exposed to ethanol) or (2) 

sorptive effects (Figure 6.4c&d, spot #3 exposed to benzene). When a sensor spot acts as a 

solvatochromic probe, a color change is observed in the raw images and a wavelength shift is 

seen in the absorbance spectrum. When only spot blooming or refraction effects are present, the 

peak wavelength is unchanged, and only a change in absorbance intensity is observed. The raw 

images in Figure 6.4d show a blurring of the spot, especially around the edges, due to the 

blooming of the dye spot caused by analyte sorption; refractive index effects are likely also 

present.  

This multidimensional array response has been further demonstrated by comparing the 

array response of analytes with similar polarities (i.e., ET(30) values). Our solvatochromic array 

showed clearly differentiable responses when exposed to three analytes (pyridine, 

cyclohexanone, and 2,4-dimethyl-3-pentanol)  with ET(30) values of ≈ 40 kcal·mol-1 and three 

analytes (decane, cyclohexane, and 2-methylbutane) with ET(30) values of ≈ 31 kcal·mol-1 

(Figures 6.5 and 6.6). The difference maps showed no strong correlation between response and 

ET(30),  and analytes with similar polarity do not necessarily cluster together. These results 

confirm that our colorimetric array is probing more than just analyte polarity. Importantly, these 
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arrays clearly show both chemical (i.e., color changes from dye-analtye interactions) and 

physical (e.g., dye diffusion) changes of the sensor spots when exposed to solvent vapors as 

shown in Figure 6.7.  

 

 

Figure 6.4 (a) Diffuse reflectance spectra and (b) raw images of Reichardt’s dye in BBP (Spot 
#15) before (black) and after (red) 5 minutes exposure to 10% saturated ethanol vapor showing 
the wavelength shift. (c) Diffuse reflectance spectra and (d) raw images of Nile red in BBP (Spot 
#3) before (black) and after (red) 5 minutes exposure to 10% saturated benzene vapor. Both spots 
exhibit changes in RGB values under the respective experimental conditions: in Reichardt’s dye 
this is mostly due to solvatochromic shifts in wavelength of absorbance, but in Nile red it is only 
due to sorptive effects. 
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Figure 6.5 Hierarchical cluster analysis of the colorimetric array response to two groups of three 
common organic solvents with similar ET(30) values (given in kcal mol-1) at 10% of their 
saturation vapor pressure after 5 min of exposure. Each analyte was run in triplicate. The HCA 
used minimum variance (i.e., Ward’s method) for clustering.  Clustering appears independent of 
ET(30) and even analytes with the same ET(30) value are clearly separable, further demonstrating 
the colorimetric array probes more than just solvent polarity. 

 
 

 

Figure 6.6 Difference maps showing the colorimetric sensor array response to two groups of 
three common organic solvents with similar ET(30) values (given in kcal mol-1) at 10% of their 
saturation vapor pressure after 5 min of exposure (averages of three trials each are shown). A 
color range of 1.5 - 8.5 was expanded to 8-bit color range (i.e., 0-255) for visualization. 
Response patterns show no obvious correlation to the analytes’ ET(30) value. 
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Figure 6.7 A typical array response for the solvatochromic sensor array. This particular 
experiment shows the response to 2,4-dimethyl-3-pentanol at 10% of its saturation vapor 
pressure. Top: difference map after 5 min exposure with color range of 1.5 - 8.5 expanded to 8-
bit color range (i.e., 0-255) for visualization. Middle: raw image before exposure. Bottom: raw 
image after 5 min exposure. Given below the images is the assignment of the primary reason for 
changes in RGB values:  color changes are attributable to both chemical (i.e., analyte-dye 
interactions) and physical (i.e., spot blooming and refractive index alteration) changes. 
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Colorimetric sensor arrays utilize cross-responsive, chemically responsive dyes to 

generate a composite, olfactory-like response unique to a given odorant that can be quantified by 

digital imaging.3, 5, 22, 36, 41-45 The colors of such dyes are affected by a wide range of 

intermolecular interactions between analyte and dye, including Brönsted and Lewis acid-base, 

hydrogen bonding, dipolar, and π-π interactions. In contrast, other array technologies rely on the 

weakest and least specific interactions between sensor and analyte (i.e., van der Waals and 

physical absorptions).22, 36, 46-48 While colorimetric sensor arrays have proven a powerful 

approach toward detection and differentiation of chemically diverse analytes, one encounters the 

problem of optimizing the inclusion of a large number of chemically diverse dyes into the sensor 

array without compromising desired functionality. Therefore, understanding the interplay of 

factors such as solid support and immobilization method on sensor response is central to 

improvements in the field. 

Available solid supports for colorimetric sensor arrays are abundant in number, nature, 

and structure. The necessary properties of a solid support include optical transparency or high 

reflectivity, homogeneous structure, and general chemical compatibility.35  For vapor sensing, an 

accessible substrate microstructure and high surface area enhance analyte diffusion to and high 

loading of the chromophore; hydrophobicity of the substrate will also help to reduce the effects 

of ambient humidity.4, 41-42, 49 Organic polymer supports, such as cellulose derivatives or 

polyvinylidene difluoride, have been common substrates for many recent optical sensors because 

they satisfy many of these criteria and are, in general, commercially available with several types 

of microstructures.  Inorganic substrates, such as glass, fused silica, or silica gel, are also widely 

used; while they are dimensionally stable (resistant to swelling) and chemically inert, they may 

also have limited surface area and porosity.  
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Dye immobilization can be used to protect colorants in humid environments, mediate the 

transfer of dyes onto a solid support, prevent leaching into the sample medium, enhance the 

modulation of the optical properties, and improve analyte diffusion to reaction centers.38, 50-51 

Two common immobilization materials are organically modified silanes (ormosils) and 

semiliquid films of plasticizers or polymers. Ormosils can be tailored through the appropriate 

choice of sol-gel precursors and provide matrices with a range of hydrophobicity, nanoporosity, 

and surface area.1, 21, 52-54 Plasticizers and polymers serve to solubilize the dye, facilitate analyte 

access to the reactive chromophores where analyte-colorant interaction occurs, and can act as 

selective sorbents, enhancing analyte selectivity.55-56 Semi-liquid formulations have a similar 

range of potential polarities as ormosil matrices, but lack hierarchical porosity and high surface 

area. 

We have previously described colorimetric sensor arrays22, 41-42 that can successfully 

differentiate among volatile organic compounds,4 toxic industrial chemicals (TICs),1-3 

beverages,32, 57-58 and bacteria.59 We have successfully employed both impermeable films (e.g., 

polyethylene terephthalate, PET) and permeable membranes (e.g., polyvinylidene difluoride, 

PVDF) as substrates, and used ormosils, polymers and plasticizers for dye immobilization. In 

this work, we explore the effect of array geometry, substrate, and immobilization method on 

sensor response. The response homogeneity, time, and magnitude of a new one-dimensional 

(linear) array configuration are compared to that of the previously reported two-dimensional  

(6 x 6) array configuration.3 Additionally, we have chosen to examine six substrate materials: 

two impermeable (i.e., glass slides and PET), two paper (i.e., printer paper and chromatography 

paper with large pore silica gel (SG81)), and two porous polymer membranes (i.e., 

polypropylene (PP) and PVDF). To explore the effect of immobilization method on dye 
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reactivity, we compare the response of eight dyes immobilized either in previously optimized 

ormosil or as optimized plasticizer formulations. Reported here is a semi-quantitative evaluation 

of the influence of these secondary factors on colorimetric sensor array response, quality, 

consistency, and sensitivity. 

6.3.2 Experimental Methods 

6.3.2.1 Materials  

All reagents were of analytical grade and used without any further purification. Certified, 

premixed gas tanks were obtained from Matheson Tri-Gas through S.J. Smith. Substrates used 

included pre-cleaned glass slides (Gold Seal; thickness: 0.93-1.05 mm, size: 3x1”), PET 

(McMaster-Carr; thickness: 0.004 in.± 0.0004 in), SG81 chromatography paper (Whatman), 

multi-use paper (GP Spectrum), PP membrane (Sterlitech Corporation; thickness: 130-170 μm, 

pore size: 0.22 μm) and PVDF membrane (VWR Scientific, Batavia, IL; thickness: 165 μm, pore 

size: 0.45 μm). 

6.3.2.2 Formulation Preparation 

 Sol-gel solutions were prepared according to previous methods.3, 21, 54 Briefly, sol-gel 

formulations were prepared by acid-catalyzed hydrolysis of solutions containing commercially-

available silane precursors and low concentrations of surfactant dissolved in low volatility 

solvents. The surfactant acts to reduce capillary stress and improve print quality and the low 

volatility solvents act as porogens on the nanometer scale. The plasticizer formulation was 

prepared by adding tetraethylene glycol (10 wt%) to 2-methoxyethanol and stirring overnight.4 

The sol-gel or tetraethylene glycol solutions were added to chemoresponsive indicators 
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(Table 6.5) and mixed thoroughly by shaking. If appropriate, 1 M solutions of t-butylammonium 

hydroxide (TBAH) or p-toluenesulfonic acid (TsOH) in water were added immediately before 

printing. 

6.3.2.3 Array Printing  

Formulations with chemoresponsive dyes were loaded into a Teflon ink well containing 

either a 6 x 6 or a 3x12 pattern of ~50 μL holes. An ArrayIt NanoPrint LM60 Microarray Printer 

(ArrayIt Corporation, Sunnyvale, CA) holding an array of floating slotted pins (delivering ~100 

nL each) was used to robotically print arrays by dipping into the ink well and transferring to the 

PVDF membrane. For 6 x 6 arrays, all 36 spots were printed in one pass; linear arrays were 

printed in three passes, 12 at a time, in an interleaved linear pattern. Before use, ormosil arrays 

were stored in a nitrogen filled glove bag for three days and plasticizer arrays were stored first 

under vacuum at room temperature for 24 hours and then in a nitrogen filled glove bag for two 

days. 
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Table 6.5 List of chemically responsive colorants. 

Spot # Name 
Amount of Dye Added 

(mg/mL) 
Ormosil Plasticizer 

1 5,10,15,20-tetraphenylporphyrinatozinc(II)   
2 5,10,15,20-tetrakis(2,4,6-trimethylphenyl)porphyrinatozinc(II)   
3 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinatozinc(II)   

4 5,10,15,20-tetrakis(2,4,6-
trimethylphenyl)porphyrinatocobalt(II)   

5 5,10,15,20-tetraphenylporphyrinatocadmium(II)   
6 5,10,15,20-tetraphenylporphyrinatochromium(III) chloride   
7 Bromophenol Blue + TBAH   
8 Methyl Red + TBAH 4.0 1.8 
9 Chlorophenol Red + TBAH 4.0 2.0 

10 Nitrazine Yellow + TBAH 4.0 2.0 
11 Bromothymol Blue + TBAH 4.0 10.0 
12 Thymol Blue + TBAH   
13 m-Cresol Purple + TBAH   
14 Zn(OAc)2 + m-Cresol Purple + TBAH   
15 HgCl2 + Bromophenol Blue + TBAH   
16 HgCl2 + Bromocresol Green + TBAH   
17 Pb(OAc)2   

18 1-[4-[[4-(dimethylamino)phenyl]azo]phenyl]-2,2,2-
trifluoroethanone + TsOH   

19 α-Naphthol Red + TsOH   
20 Tetraiodophenolsulfonephthalein   
21 Fluorescein 2.0 2.0 
22 Bromocresol Green 4.0 20 
23 Methyl Red   
24 Bromocresol Purple   
25 Bromophenol Red 4.0 6.5 
26 Rosolic Acid   
27 Bromopyrogallol Red   
28 Pyrocatechol Violet   
29 Nile Red 0.5 0.4 
30 Disperse Orange #25   
31 4-(4-Nitrobenzyl)pyridine + N-Benzylaniline   
32 4-[2-[4-(dimethylamino)phenyl]ethenyl]-2,6-dimethylpyrylium   
33 LiNO3 + Cresol Red   
34 Acridine Orange Base   
35 AgNO3 + Bromophenol Blue   
36 AgNO3 + Bromocresol Green   

Spot numbering from left to right in linear arrays. 
Bold: colorants used in the comparison of the plasticizer vs. ormosil linear arrays. 
TBAH: tetrabutylammonium hydroxide. 
TsOH: p-toluenesulfonic acid. 
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6.3.2.4 Experimental Procedure  

 Gas mixtures were prepared according to previous methods.3 Briefly, MKS mass flow 

controllers were used to achieve gas streams with the desired concentration (50 ppm NH3 or 100 

ppm SO2), flow (500 sccm) and relative humidity (50% RH) by mixing the appropriate amount 

of stock gas with wet (100% RH) and dry (0% RH) nitrogen gas. An MKS MultiGas analyzer 

(model 2030) was used in-line to verify gas concentrations. A diagram of the setup is shown in 

Figure 6.8. Arrays were exposed to a control stream (50% RH N2) for three minutes followed by 

four minutes of an analyte stream. A Canon EOS 5D Mark II digital camera with a 100 mm 

macro lens was used to capture high definition video (30 fps) of the arrays lit with white LED 

strips (“natural white”, SuperBrightLEDs.com). A custom imaging system, fabricated by the 

University of Illinois School of Chemical Sciences Machine Shop, was developed. This system, 

shown in Figure 6.9, held the light source, array, and camera in position during imaging to 

minimize within trial and between trial noise caused by inconsistencies in lighting, focus, or 

movement. Sorbothane damping semicircles were placed underneath the setup at each corner to 

minimize vibrations. During trials, the system was isolated from ambient light using black felt. 

The camera is centered above the array with the lens 16 cm away from the top of the holder. The 

lights are positioned 3 cm from the top of the holder and each strip is 5 cm off center 

(Figure 6.9). 
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Figure 6.8 Gas mixing rig used for exposure of colorimetric sensor arrays. The box labeled 
“switch” is a three-way solenoid valve, which allows for venting and rapid exchange of the 
control to analyte lines.  
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Figure 6.9 Photographs of the imaging system developed for sub-second temporal resolution 
with relevant dimensions. (a) Fully assembled set-up for video recording the sensor array 
response. (b) The underside of the top piece of the black box with lights assembled. (c) The 
bottom half of the assembly. (d) The colorimetric sensor array stand with a holder assembled. 
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6 x 6 arrays were contained within an injection molded disposable cartridge (dimensions 

of 22 x 22 x 4 mm), as used in previous studies (Figure 6.10a).3-4, 21 Linear arrays were tested 

within flow cells machined from Teflon or aluminum with channel dimensions of 1.6 x 0.5 x 

57 mm and 3 x 0.6 x 57 mm, respectively (Figure 6.10b & c). In both designs, an O-ring is 

placed in a groove around the channel and compressed by a glass slide to create a leak-free seal. 

Reflective substrates (PP, PVDF, SG81 and paper) were placed on the bottom of the aluminum 

holder channel and secured with silicone grease if necessary. Translucent substrates (glass slides 

and PET) were printed or secured to the glass slide and placed within the flow path of the Teflon 

holder.  

To compare the linear and 6 x 6 array geometries, arrays of 36 identical spots of 

bromocresol green immobilized in an ormosil, were printed on PVDF in either a linear or 6 x 6 

pattern. Arrays were exposed to NH3 and run in quintuplicate. Substrate comparison was 

performed using arrays of 36 TICs responsive ormosil spots (Table 6.5) printed on each 

substrate. Arrays were exposed to either NH3 (all substrates) or SO2 (PP and PVDF) and run in 

septuplicate. To compare dye immobilization materials, arrays of select dyes were printed using 

either ormosil or plasticizer formulations and exposed to NH3 or SO2 as described previously. 

These experiments were run in septuplicate. 
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Figure 6.10 Photographs of the assembled array holders used in the work. (a) 6 x 6 holder. (b) 
Teflon linear holder for translucent substrates. (c) Aluminum linear holder for reflective 
substrates. 
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6.3.2.5 Image Processing and Data Analysis  

GOM Media Player software was used to extract one still frame per second from video 

captured at 1920 x 1080 resolution (full HD). Images were processed using a customized 

software package, Spotfinder (iSense), which averaged the red, green and blue (RGB) values of 

an eight-pixel diameter area in the spot center. ΔRGB values were obtained by taking the 

difference of the RGB values from the before-exposure (i.e., after three minutes of nitrogen 

flow) and after-exposure images (i.e., after four minutes of analyte flow). This defines a  

108-dimensional vector, i.e., 36 ΔRGB values, with each dimension ranging from -255 to +255 

for eight-bit color imaging. The array response at a given time point is depicted pictorially using 

difference maps, an image generated from the ΔRGB absolute values for each spot in the array.  

The ΔRGB values at a given time point can be combined into a Euclidean distance, 

defined by equation 6.1  

 𝐸𝐸𝐸𝐸𝑡𝑡 =  (∆𝑅𝑅12 +  ∆𝐺𝐺12 +  ∆𝐵𝐵12 + ∆𝑅𝑅22 + ⋯+  ∆𝐵𝐵𝑛𝑛2)𝑡𝑡
1
2�    (6.1) 

where n is the number of spots under consideration and t is the time. To generate a response 

profile for a given analyte, the average Euclidean distance (𝐸𝐸𝐸𝐸���� for n = 36) at a given time point 

is plotted with respect to time. From this data, response time (defined here as the time necessary 

to reach 90% of the maximum ED) and relative standard deviation (RSD) is calculated. A map of 

the flow path at a given time point was generated by subtracting the 𝐸𝐸𝐸𝐸���� value of the least 

responsive spot from the 𝐸𝐸𝐸𝐸���� value of each spot in the array (n =1). The ormosil and plasticizer 

formulations were compared using the equation 6.2. 

  �𝐸𝐸𝐸𝐸
����𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝− 𝐸𝐸𝐸𝐸����𝑜𝑜𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝�
�𝐸𝐸𝐸𝐸����𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+ 𝐸𝐸𝐸𝐸����𝑜𝑜𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝�

               (6.2) 
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6.3.2.6 Scanning Electron Microscopy 

 Scanning electron micrographs were obtained on a JEOL 7000F instrument operating at 

15 kV with a medium probe current and a working distance of 10 mm. Samples were mounted to 

the holder via carbon tape and sputter coated with approximately 10 nm of Au/Pd prior to 

analysis to prevent surface charging. 

6.3.3 Results and Discussion 

6.3.3.1 Geometry Comparison  

The flow path analysis of a 6 x 6 vs. a linear array holder is shown in Figure 6.11. For 

the 6 x 6 array holder, the gas stream follows a U-shaped path traversing from the inlet, along the 

back wall, to the outlet. In contrast, a relatively homogeneous flow path is observed with the 

linear array holder. The inhomogeneous flow path in the 6 x 6 array holder contributes to a lower 

overall response, higher RSD, longer response time and less uniform array response (i.e., range 

of spot ED values) (Table 6.6). Spots in the 6 x 6 array that show the highest variation in color 

change are in locations where small differences in array position between trials brings the spot 

into or out of the analyte stream (Figure 6.12). 

Table 6.6 Comparison of 6 x 6 and linear array exposed to ammonia at PEL (50 ppm). 

 6 x 6 Linear 
Average Euclidean distance (ED)a 

of 36 sensors 571 621 

Relative standard deviationa (%) 6.1 0.79 
Average time for 90% of total response 

after equilibration (s) 31 23 

Range in EDa,b at 10 s 30.8 15.3 
afrom quintuplicate trials after 240 s analyte exposure. 
bmaximum ED minus minimum ED among all sensors after 10 s exposure. 

290 
 



 

Figure 6.11 Analysis of flow path for square vs. linear arrays.  (a) Photograph of the 6 x 6 
square array in cartridge showing the gas flow path. (b) Photograph of the linear array in holder 
showing the gas flow path. (c) Color coding of the spot to spot variation of sensor response 
(where ED����spot is the Euclidean distance from the ΔRGB values of each spot, and ED����min is the 
Euclidean distance of the sensor spot with the minimum change in color.) (d) Graphic depiction 
of gas flow inhomogeneity for 6 x 6 square vs. linear arrays at 1 s, 10 s, and 240 s upon exposure 
to NH3 at PEL (50 ppm).  

 

 

Figure 6.12 Euclidean distance and standard deviation values for each spot in the (a) 6 x 6 and 
(b) linear arrays used in the flow path analysis.  
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6.3.3.2 Substrate Comparison 

6.3.3.2.1 Spot Quality 

Spot quality was evaluated based on uniformity, size, and printing consistency.  A 

qualitative ranking of the substrates, from highest to lowest, is 

PVDF~PP>PET>Glass>SG81~Paper (Figure 6.13). Spots printed on PVDF were well formed, 

evenly colored and consistent among arrays in both color and size. The spots printed on PP were 

similar in quality but with a slightly more noticeable “coffee-ring effect.” We speculate this may 

be mitigated by using a different surfactant, surfactant concentration, or solvent. Most spots 

printed on PET exhibited similar uniformity and consistency; however, some were very small 

(e.g., spot 18) or showed a spider-web effect (e.g., spot 19). The color and size of spots printed 

on glass were inconsistent.  

The paper substrates produced the poorest quality arrays. Spots on both SG81 and paper 

were relatively uniform in size and color, but were inhomogeneous throughout, largely due to the 

macroscale surface texture of the papers themselves combined with significant spreading due to 

capillary action. This was especially problematic for spots printed on printer paper and uncoated 

chromatography paper (not shown), where the spots were so large that they abutted or 

overlapped adjacent spots. 
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Figure 6.13 Raw images and difference maps for arrays printed on various substrates exposed to 
(a-f) NH3 (50 ppm) and (g and h) SO2 (100 ppm). (a) Glass slide, (b) polyethylene terephthalate, 
(c) printer paper, (d) SG81 chromatography paper, (e) polypropylene membrane, (f) 
polyvinylidene difluoride membrane, (g) polypropylene membrane, (h) polyvinylidene difluoride 
membrane. For each substrate (a-h), the top image is the array before exposure, the middle 
image is after exposure, and the bottom is the difference map (red value minus red value, green 
minus green, blue minus blue). For display purposes, the color ranges of these difference maps 
are expanded from five to eight bits per color (RGB range of 2-33 expanded to 0-255). 
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6.3.3.2.2 Array Response 

A comparison of arrays printed with ormosil immobilized dyes on each substrate is given in 

Table 6.7 for response to NH3 and SO2 at 50 and 100 ppm, respectively their PEL and IDLH. 

The total ED with respect to time for the arrays upon exposure to NH3 and SO2 are given in 

Figure 6.14.  

 
Table 6.7 Comparison of analyte response of arrays printed on various substrates. 
 NH3 (50 ppm)  

 
 

SO2 (100 ppm) 
 

 
 Glass PET Paper SG81 PP PVDF PP PVDF 
Average Euclidean 
Distancea 199.7 166.2 72.0 218.1 228.0 314.6 135.7 165.3 

Relative Standard 
Deviationa (%) 8.0 4.8 11.4 4.4 1.1 1.5 1.2 9.9 

Response Time (s) 173 143 91 31 12 23 4 68 

Noiseb 0.655 0.614 0.898 0.920 0.591 0.555 0.546 0.646 
a septuplicate trials after 240 s analyte exposure  
bstandard deviation of the residuals from a linear regression of the control response for all non-saturated channels over all trials 

 

 

 
Figure 6.14 Euclidean distance versus time graph for ormosil arrays printed on various 
substrates exposed to (a) NH3 (50 ppm) and (b) SO2 (100 ppm). 
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Upon exposure to NH3 or SO2, arrays printed on PVDF showed a significantly higher 

total response than those printed on other substrates. There were spot dependent changes in 

signal observed that correlate to differences in initial spot color among substrates (Figure 6.13); 

this may be reflective of variations in the acid/base properties and chemical functionality of each 

substrate. We suggest this could largely be overcome by optimizing the dye formulations for 

each substrate (e.g., through the addition of small amounts of acid or base before printing). The 

decrease in signal for the PET and glass slide arrays is dominated by the larger distance between 

the array and the reflective white background (i.e., the Teflon holder), which could be 

ameliorated by increasing the illumination.  

Upon exposure to NH3, arrays printed on impermeable substrates (glass and PET) 

showed a slower response time relative to the porous substrates (Paper, SG81, PP and PVDF), 

which we attribute to slower diffusion of the analyte through the ormosil matrix caused by 

reduced hierarchical porosity. The RSD, a major limiting factor in the arrays’ potential for 

discriminating among analytes, was significantly lower for arrays printed on porous polymer 

substrates:  e.g., the NH3 responsive spots printed on PP and PVDF were more consistent 

between printings of arrays than those printed on other substrates. Arrays printed on the paper 

substrates showed significantly higher noise due to inhomogeneity within the spots as discussed 

in section 6.3.3.2.1. 

When exposed to SO2, arrays printed on PP and PVDF membranes had very different 

response profiles (Table 6.7 and Figure 6.14b). Arrays on PP were two to three times faster to 

respond than arrays on PVDF for both NH3 and SO2.  The faster reaction times for sensors on PP 

correlates with the SEM images of spots printed on PVDF and PP (Figure 6.15) that show 

increased porosity and surface area for the dye-coated PP versus PVDF. In addition, PVDF 
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arrays had higher RSD (and thus poorer reproducibility) than PP arrays, which suggests the 

printing consistency of the SO2 responsive spots was worse on PVDF. 

 

 

Figure 6.15 Scanning electron micrographs of ormosil spots printed on (a) polyvinylidene 
difluoride (PVDF) and (b) polypropylene (PP) membranes. 

 

6.3.3.3 Formulation Comparison 

Figure 6.16 shows a comparison of the relative responses of each plasticizer and ormosil 

spot printed on PP and PVDF membranes upon exposure to NH3 or SO2. In general, the 

plasticizer formulations were favored on PP, whereas the ormosil formulations were favored on 

PVDF. There were exceptions, however, and the most responsive dye/formulation combination 

was dependent on both dye identity and substrate (Table 6.8). When printed on PP, the SO2 

sensitive spots showed a universal increase in response when immobilized in a plasticizer versus 

ormosil matrix.  This trend was not observed with the spots printed on PVDF, and all but 

bromothymol blue + TBAH showed a higher response when immobilized in ormosils. The 
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higher signal for the plasticizer immobilized dyes was likely due to improved spot uniformity 

and color intensity (Figure 6.17), apparent in the before and after images of the bromothymol 

blue + TBAH on both PP and PVDF. Spot response was not solely dependent on dye 

concentration, as many of the plasticizer spots were more sensitive despite a lower dye 

concentration (e.g., methyl red + TBAH).  The Nile red and fluorescein dyes (NH3 sensitive) 

showed a much higher response when immobilized in ormosils versus plasticizer, and the before 

images showed a discrepancy in the starting color of these dyes when immobilized in plasticizer 

versus ormosil. We speculate this may be due to non-optimal spot pH or differences in matrix 

polarity. Array-to-array reproducibility was similar between ormosil and plasticizer immobilized 

dyes (Table 6.8). 

 
Figure 6.16 Comparison of plasticizer and ormosil immobilized colorants printed on 
polypropylene and polyvinylidene difluoride (PVDF) and exposed to SO2 (100 ppm) or NH3 
(50 ppm). 
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Table 6.8  Average Euclidean distances and standard deviations for dyes immobilized in 
plasticizers or ormosils. The most responsive formulation/substrate combination for each dye is 
shown in red. 

 Polypropylene  
 

 

PVDF 
 

 
 Plasticizer Ormosil Plasticizer Ormosil 
Methyl red + TBAH 65.9 ± 1.6 42.0 ± 6.1 51.2 ± 2.1 70.5 ± 4.8 

Chlorophenol red + TBAH 128.2 ± 4.1 69.2 ± 6.9 54.3 ± 1.7 76.7 ± 6.6 

Nitrazine yellow + TBAH 166.2 ± 6.4 96.1 ± 2.3 56.3 ± 2.6 114.2 ± 4.8 

Bromothymol blue + TBAH 185.4 ± 4.1 35.1 ± 2.9 136.8 ± 4.3 44.6 ± 8.7 

Fluorescein 56.0 ± 1.4 60.5 ± 6.3 29.4 ± 1.6 96.6 ± 5.6 

Bromocresol green 185.1 ± 6.6 114.2 ± 6.2 197.0 ± 8.1 132.7 ± 6.0 

Bromophenol red 136.7 ± 6.5 89.6 ± 2.0 77.2 ± 2.8 108.4 ± 6.0 

Nile red 1.6 ± 0.3 6.0 ± 0.8 10.7 ± 1.9 21.2 ± 1.7 
 

 
 

 

Figure 6.17 Raw images and difference maps for arrays of plasticizer (a and c) and ormosil  
(b and d) immobilized colorants printed on polypropylene (a and b) or polyvinylidene 
difluoride (c and d) membranes upon exposure to SO2 (100 ppm) or NH3 (50 ppm). Within the 
images for each formulation: (top) image of array before exposure, (middle) image of array after 
exposure, and (bottom) difference map. For display purposes, the color ranges of these difference 
maps are expanded from five to eight bits per color (red, green and blue range of 2-33 expanded 
to 0-255). 
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6.4 Array Hyphenation to Microcolumn 

6.4.1 Introduction 

As discussed in section 4.4, previously reported microdetectors are generally expensive 

or power demanding, and most do not provide chemical identification.60-65 Chemiresistor sensor 

arrays have previously been utilized as microdetectors for gas chromatography; they do provide 

some chemical information and have shown some promising results for deconvoluting co-

elutions.66-67 We have previously reported disposable, highly sensitive colorimetric sensor arrays 

for the detection and identification of VOCs and toxic gases.2-5, 22 This technique, although 

exceptional at fingerprinting complex mixtures,22, 32-33, 59 cannot produce a component-by-

component mixture analysis. Coupling a microtextured polymeric microcolumn and a 

colorimetric sensor array may prove useful as an inexpensive, even disposable, technology for 

component-by-component analysis and chemical identification of mixtures. This section 

describes the advances made in experimental methods, flow holder, and data analysis necessary 

to demonstrate a respectable proof of concept for a disposable GC microcolumn-colorimetric 

detector unit.  

6.4.2 Experimental Methods 

6.4.2.1 Colorimetric Sensor Array 

The colorimetric sensor arrays were prepared as described previously.3 The colorimetric 

sensor array consisted of a series of eight spots following the pattern: sensor 1,2,3,4,1,2,3,4, 

where sensor 1 is α-naphthyl red + p-toluenesulfonic acid, sensor 2 is 

tetraiodophenolsulfonephthalein, sensor 3 is fluorescein, and sensor 4 is bromocresol green. 
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These amine sensitive spots were chosen for this initial proof-of-concept because they have been 

fully optimized in previous work. For a more universal gas chromatography detector, the 

colorimetric sensors included in the sensor array would be tailored for analytes of interest (e.g., 

using derivatives of spots described in section 6.2).  

We have previously demonstrated these colorimetric sensors are unaffected by water 

vapor and do not need to be calibrated before use.3 Printing quality is sufficient that 

inconsistencies in array response among arrays can be accounted for by subtracting the “before-

exposure” image of the array from the “during-exposure” image. The sensor spot is saturated 

after sufficient analyte exposure; therefore we ensured that the injection volume used in these 

experiments was small enough to allow for visualization of all eluting analytes from the 

microcolumn. 

6.4.2.2 Experimental Procedure 

The colorimetric sensor array response was monitored using a Canon EOS Mark II full 

frame CMOS digital SLR camera in HD video mode and a 100 mm macro lens with the custom 

imaging system described in section 6.3.2.4. The array holder, Figure 6.18 & 6.19, was 

micromachined out of white PET. The gas flow channel was 1 cm long, 200 µm deep, and 

400 µm wide. Two 370 µm diameter through-holes were drilled through the back of the holder 

into each end of the flow path to accommodate polyimide coated fused silica capillary tubing 

(IDEX; 360 µm O.D., 150 µm I.D.). These acted as the inlet and outlet for the holder. A leak free 

connection was made using Nanoport fittings (IDEX, N124S) (Figure 6.18b). Immediately 

surrounding the channel was a recess to accommodate a PDMS O-ring made in lab from Dow 

Corning’s Sylgard 184. PDMS is translucent, did not interfere with imaging, and was sufficiently 
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elastomeric to provide a leak-free seal when pressure was applied. To seal the channel, pressure 

was applied to a glass microscope slide (outline shown in red in Figure 6.18c) via two clips and 

the lip of the holder. 

 

Figure 6.18 Images of the CSA holder. (a) Front view of unassembled holder. (b) Side view of 
unassembled holder showing Nanoport fittings (blue). (c) Assembled holder with PDMS o-ring, 
array and glass slide. The red dashed line shows the outline of the glass slide used to seal the 
channel. 
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6.4.2.3 Image Processing and Data Analysis 

GOM Media Player software was used to extract still frames every 33 ms from the HD 

video. In these images, the spots in the array are approximately 20 pixels in diameter. Spotfinder 

software (iSense) was used to average the RGB values for a circular area with an eight-pixel 

diameter in the spot center. A pixel-by-pixel digital subtraction of a before-elution image from 

video images during elution generates a 24-dimensional color-change vector (i.e., 8 ΔRGB 

values) dependent on exposure time, analyte identity, and analyte concentration. The Euclidian 

distance (ED) of the color change is defined by equation 6.3. 

𝐸𝐸𝐸𝐸 =  (∆𝑅𝑅12 +  ∆𝐺𝐺12 +  ∆𝐵𝐵12 +  ∆𝑅𝑅22 + ⋯+  ∆𝐵𝐵82)1 2�    (6.3) 

The values obtained from the Spotfinder software were then smoothed using 11-point adjacent 

averaging. The slope was calculated for the smoothed values using equations 6.4-6.6 

𝑅𝑅𝑛𝑛′ =  (𝑅𝑅𝑛𝑛− 𝑅𝑅𝑛𝑛−4)
𝑡𝑡𝑛𝑛− 𝑡𝑡𝑛𝑛−4

      (6.4) 

𝐺𝐺𝑛𝑛′ =  (𝐺𝐺𝑛𝑛− 𝐺𝐺𝑛𝑛−4)
𝑡𝑡𝑛𝑛− 𝑡𝑡𝑛𝑛−4

      (6.5) 

𝐵𝐵𝑛𝑛′ =  (𝐵𝐵𝑛𝑛− 𝐵𝐵𝑛𝑛−4)
𝑡𝑡𝑛𝑛− 𝑡𝑡𝑛𝑛−4

      (6.6) 

where (tn – tn–4) is equal to 1.33 seconds. Using these slope values, an ED of the slope response 

was calculated and plotted with respect to time in Figure 6.20.  

Limits of detection (LODs) were obtained based on a single point calibration of the array 

response data following data analysis. LODs are expressed in terms of an analyte’s injection 

mass (i.e., mass injected on column) and are estimated using equation 6.7 
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𝐿𝐿𝐿𝐿𝐸𝐸 =  3𝜎𝜎𝑚𝑚𝐴𝐴
(𝑆𝑆𝐴𝐴− 𝑆𝑆𝐵𝐵)      (6.7) 

where σ is the standard deviation of the baseline noise, mA is the mass injected onto the column 

(i.e., injection mass adjusted for split flow), SA is the signal at the peak maximum for a given 

analyte using the slope vs. time trace, and SB is the averaged baseline signal. SA, SB, and σ are 

determined from the channel with the highest signal to noise ratio (G1, G1, and R4 for 

propylamine, triethylamine, and piperidine, respectively).  

Analyte concentrations in the peak can be estimated using equation 6.8 

    [𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]𝑎𝑎𝑡𝑡 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 =  (22.4∗ 𝑚𝑚𝐴𝐴)
(𝑀𝑀𝑀𝑀𝐴𝐴∗𝐹𝐹∗𝑡𝑡)     (6.8) 

where [analyte]at sensor is the average concentration of a given analyte over the entire peak in 

ppmv, mA is the mass injected in nanograms onto the column (i.e., injection mass adjusted for 

split flow), MWA is the molecular weight of the analyte, F is the volumetric flow rate of the 

mobile phase at the sensor array in mL s-1, and t is the peak width in seconds. 

6.4.3 Results and Discussion  

We explore here the integration of a colorimetric sensor array with our disposable 

microcolumn for the separation, detection, and identification of amines as an example. Power 

consumption and size of readers for optical imaging can be minimal, and several battery powered 

handheld prototypes for field analysis using colorimentric sensor arrays have been developed by 

our lab, suggesting this technology might be useful for the analysis of field samples.  

To probe the feasibility of a colorimetric sensor for GC, a mixture of three amines was 

injected onto microcolumn described in section 5.4 at room temperature, and the response of the 
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eluent was recorded with either an FID or a colorimetric sensor array. Figure 6.20 shows the 

time derivative ED versus time response profile of the array; as expected, a jump in array 

response is observed as each analyte elutes from the column. The array response is dependent on 

analyte concentration, and therefore one expects the largest change in ED to occur when the 

highest concentration of analyte passes over the detector (i.e., at each analyte’s retention time). 

The resulting chromatogram from the colorimetric sensor array response, calculated by taking 

the time derivative ED of the values obtained from equations 6.4-6.6, is strikingly similar to that 

obtained using an FID detector (Figure 6.20). Amines are prone to hydrogen bonding to 

surfaces, especially those with surface functionality, as is present in our epoxy formulation, 

which causes broadening in GC elutions, as we observe. Use of a different impermeable polymer 

as an alternative to the flexible epoxy could diminish such tailing.   

 
Figure 6.20 Comparison of detectors for the separation of amines at room temperature using a 
DEDMS doped epoxy microcolumn (250 µm wide, 500 µm deep, 1 m long). (a) Flame 
ionization detector: FID signal vs. time, u = 30 cm s-1; F = 2.3 mL min-1.  (b) Colorimetric sensor 
array: Euclidean distance of the slope response vs. time, u = 30 cm s-1; F = 2.3 mL min-1. (1) 
propylamine, (2) triethylamine, and (3) piperidine. 
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The FID and colorimetric sensor array chromatograms are quantitatively similar with 

minor differences due to the larger volume of the sensor array detector used in these studies. We 

observe some band broadening due to the relatively large volume of the sensor array flow cell, 

the data processing methods used, and the sequential arrangement of the colorimetric spots. We 

expect the broadening to be significantly reduced with optimization of the array and array holder. 

Spot response in this case is dependent on both spot identity and spot position; the current 

arrangement of spots also contributes significantly to band broadening. Figure 6.21 shows the 

analyte response for each spot on the colorimetric sensor array. The time at which a given 

analyte responds is offset to later times for spots further downstream, which leads to band 

broadening in the compiled response. These effects may be remedied by switching to 

colorimetric “bars” that are side-by-side and aligned parallel to gas flow. 

As can be seen in Figure 6.21b-i, all spots respond to the amine mixture, and the spots 

with the highest responses are different for each analyte suggesting the array may be useful in 

providing chemical classification or identifying chemical unknowns. The time derivative of ED 

is shown in Figure 6.20 as a simple visualization of the overall array response and would not be 

used in either the chemical identification of unknowns or the calculations of LODs. For these 

single channel data, ∆R, ∆G, and ∆B values, would be used.  

The LODs of these three amines from injections of known amounts with known flow 

rates through the microcolumn were calculated using equation 6.7. For propylamine, 

triethylamine and piperidine, the calculated method LODs (i.e., mass injected on column) are 10, 

10, and 35 ng, respectively. The method LODs calculated using the FID detector data are 3, 1, 

and 8 ng, respectively, which is only a minor improvement over our non-optimized colorimetric 

array. The largest contributor to noise in our imaging technique is movement of the imaging 
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device (i.e., camera) with respect to the array.7 A substantial improvement in noise, and therefore 

significantly lower LODs, is expected with an imaging device configuration where the imager 

(e.g., photodiode or color contact image sensor) is completely immobile with respect to the array. 

Previous amine testing, using a colorimetric sensor array for the detection and identification of 

toxic industrial chemicals, after 5 minutes of exposure gave an extrapolated LOD around 

40 pg mL-1.2-3 LODs in this work are consistent with those results, given the few second 

exposure times inherent for a GC detector.  Using equation 6.8, the peak concentrations are 

found to be ~100 ppmv. These results demonstrate a respectable proof of concept for a fully 

disposable gas chromatography microcolumn-colorimetric array detector. 

 
Figure 6.21 Response profile for CSA detector. Comparison of ED response profile and slope 
response profile for (a) all spots, (b) spot 1, (c) spot 2, (d) spot 3, (e) spot 4, (f) spot 5, (g) spot 6, 
(h) spot 7, (i) spot 8. (1) propylamine, (2) triethylamine, (3) piperidine.  The injection of the 
amine mixture onto the doped epoxy microcolumn defines t = 0. u = 30 cm s-1; F = 2.3 mL min-1.  

a

0 20 40 60 80 100
0

50

100

150

200

250

300

Eu
cl

id
ia

n 
D

is
ta

nc
e 

(a
.u

.)

Time (s)

1

2

3

ED

Slope ED

20

0

15

10

5

Slope Euclidean D
istance (a.u./s)

100
0

100

150

0 20 40 60 80
Time (s)

50

b
1

2

100
0

100

150

0 20 40 60 80
Time (s)

50

c

1

2

100
0

100

150

0 20 40 60 80
Time (s)

50

d

2

100
0

100

150

0 20 40 60 80
Time (s)

50

e

3
2

ED
(a.u.)

ED
(a.u.)

ED
(a.u.)

0

15

10

5

Slope ED
(a.u./s)

0

15

10

5

Slope ED
(a.u./s)

0

15

10

5

Slope ED
(a.u./s)

0

15

10

5

Slope ED
(a.u./s)

ED
(a.u.)

100
0

100

150

0 20 40 60 80
Time (s)

50

100
0

100

150

0 20 40 60 80
Time (s)

50

f

2
3

100
0

100

150

0 20 40 60 80
Time (s)

50

g

2

100
0

100

150

0 20 40 60 80
Time (s)

50

h i

0

15

10

5

Slope ED
(a.u./s)

0

15

10

5

Slope ED
(a.u./s)

0

15

10

5

Slope ED
(a.u./s)

0

15

10

5

Slope ED
(a.u./s)

ED
(a.u.)

ED
(a.u.)

ED
(a.u.)

ED
(a.u.)

307 
 



6.5 Conclusions and Future Directions 

  This chapter details advancements made toward the use of colorimetric sensor 

arrays as gas chromatography microdetectors. These include (1) the development of 

solvatochromic sensor spots for the analysis of “low-reactivity” organic solvents, (2) the 

development of an array imaging system and data analysis protocol capable of sub-second 

temporal resolution of array response, (3) an in-depth study of how secondary factors like 

substrate, geometry, and immobilization method affect array kinetics, and (4) a 

preliminary experiment showing the feasibility of using colorimetric sensors as GC 

detectors. 

  We have examined solvatochromic dye-matrix combinations printed on a 

polyvinylidene difluoride membrane as an inexpensive, disposable colorimetric sensor 

array and demonstrated their ability to discriminate among eleven common solvents at 

10% saturation concentration. Hierarchical cluster analysis shows no misclassifications 

among 62 trials, and PCA shows the colorimetric sensor array has high dimensionality, 

demonstrating the potential to discriminate among even closely related analytes. This 

observed high dimensionality is not surprising, as the composite array response reflects 

not only changes in spots’ absorbance maxima (e.g., from a change in local polarity), but 

also changes in the intensity of reflectance (e.g., from spot blooming or index of 

refraction changes). Although these effects can be decoupled using full spectral data, care 

must be taken in interpreting ∆RGB values, particularly at high analyte concentrations:  

apparent changes in RGB values may be due to both analyte-dye interactions (which will 

change both intensity and wavelength of light absorbance) and/or to changes caused by 
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analyte sorption (which include both refractive index changes and blooming of semi-fluid 

spots).  

 Through the development of an imaging system capable of real-time monitoring, this 

work has also demonstrated the importance and interdependence of geometry, substrate, and 

immobilization method on colorimetric sensor array response and response kinetics. 

Linearization of the array provides many benefits, including a more uniform response, a higher 

overall signal, a shorter response time, and better reproducibility. Additionally, a linear array has 

greater experimental versatility than a two-dimensional array (e.g., linear arrays are suitable for 

kinetic measurements and may be imaged with one-dimensional (line) scanners at much higher 

scan rates). Arrays printed in ormosil formulations on impermeable substrates have longer 

response times than those printed on permeable substrates, likely caused by a lack of hierarchical 

porosity and limited analyte diffusion through the sensor spot. The difference in response time of 

the less-porous PVDF arrays and the more-porous PP arrays provides further evidence of the 

importance of substrate porosity in sensor response time. Cellulose substrates have intermediate 

response times, but also have higher noise due to their highly textured surface. Arrays printed on 

porous polymer membranes exhibited the fastest reaction times, the best reproducibility, and the 

lowest noise. The optimum immobilization matrix is highly dependent on dye identity, 

formulation, and substrate. In general, plasticizer formulations were preferred for PP while 

ormosil formulations were preferred for PVDF.  

 Finally, a first generation microdetector flow cell was developed for hyphenation of a 

colorimetric sensor array to a microcolumn. This column-detector unit was able to successfully 

separate and identify a mixture of three amines. Though rudimentary, these results suggest that 

the response time and sensitivity of colorimetric sensor spots can be sufficient to detect analytes 
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in GC analysis. Importantly, a new data analysis protocol was presented that converts the array 

response profile to a form that closely resembles typical chromatographic output and can be 

manipulated mathematically using fundamental chromatography equations. These advances 

provide a basis for further development of colorimetric sensor array microdetectors for use with 

GC. Significant progress, however, is still required before a colorimetric sensor arrays will be 

useful in real-world GC analysis. These advancements would include optimization of existing 

formulations for analytes of interest, modification of microdetector cell and printing geometry to 

reduce band broadening, and development of a more stable imaging configuration to limit 

fluctuations in array position and reduce noise. After an optimized microdetector is achieved, 

research on array response to sequential analytes will be needed to determine if response profiles 

can be used to gain chemical information for analytes as they elute from the column (either as a 

coelution or a single species). 

 

6.6 References 

(1) Feng, L.; Musto, C. J.; Kemling, J. W.; Lim, S. H.; Suslick, K. S., A colorimetric sensor 
array for identification of toxic gases below permissible exposure limits. Chem. Commun. 
2010, 46, 2037-2039. 

(2) Feng, L.; Musto, C. J.; Kemling, J. W.; Lim, S. H.; Zhong, W.; Suslick, K. S., 
Colorimetric sensor array for determination and identification of toxic industrial 
chemicals. Anal. Chem. 2010, 82, 9433-9440. 

(3) Lim, S. H.; Feng, L.; Kemling, J. W.; Musto, C. J.; Suslick, K. S., An optoelectronic nose 
for the detection of toxic gases. Nat. Chem. 2009, 1, 562-567. 

(4) Janzen, M. C.; Ponder, J. B.; Bailey, D. P.; Ingison, C. K.; Suslick, K. S., Colorimetric 
sensor arrays for volatile organic compounds. Anal. Chem. 2006, 78, 3591-3600. 

310 
 



(5) Rakow, N. A.; Suslick, K. S., A colorimetric sensor array for odour visualization. Nature 
2000, 406, 710-713. 

(6) Rankin, J. M.; Zhang, Q.; LaGasse, M. K.; Zhang, Y.; Askim, J. R.; Suslick, K. S., 
Solvatochromic sensor array for the identification of common organic solvents. Analyst 
2015, 140, 2613-2617. 

(7) LaGasse, M. K.; Rankin, J. M.; Askim, J. R.; Suslick, K. S., Colorimetric sensor arrays: 
Interplay of geometry, substrate and immobilization. Sens. Actuators B 2014, 197, 116-
122. 

(8) Rankin, J. M.; Suslick, K. S., The development of a disposable gas chromatography 
microcolumn. Chem. Commun. 2015, 51, 8920-8923. 

(9) Krech, J. H.; Rose-Pehrsson, S. L., Detection of volatile organic compounds in the vapor 
phase using solvatochromic dye-doped polymers. Anal. Chim. Acta 1997, 341, 53-62. 

(10) Reichardt, C.; Welton, T., Solvents and solvent effects in organic chemistry, 4th ed. 
Wiley-VCH: Weinheim, Germany, 2011. 

(11) Reichardt, C., Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 
2319-2358. 

(12) Buncel, E.; Rajagopal, S., Solvatochromism and Solvent Polarity Scales. Acc. Chem. Res. 
1990, 23, 226-231. 

(13) Katritzky, A. R.; Fara, D. C.; Yang, H. F.; Tamm, K.; Tamm, T.; Karelson, M., 
Quantitative measures of solvent polarity. Chem. Rev. 2004, 104, 175-198. 

(14) Martinez-Manez, R.; Sancenon, F., Fluorogenic and chromogenic chemosensors and 
reagents for anions. Chem. Rev. 2003, 103, 4419-4476. 

(15) Machado, V. G.; Stock, R. I.; Reichardt, C., Pyridinium N-Phenolate Betaine Dyes. 
Chem. Rev. 2014, 114, 10429-10475. 

(16) Macquarrie, D. J.; Tavener, S. J.; Gray, G. W.; Heath, P. A.; Rafelt, J. S.; Saulzet, S. I.; 
Hardy, J. J. E.; Clark, J. H.; Sutra, P.; Brunel, D.; di Renzo, F.; Fajula, F., The use of 
Reichardt's dye as an indicator of surface polarity. New J. Chem. 1999, 23, 725-731. 

(17) Tavener, S. J.; Clark, J. H.; Gray, G. W.; Heath, P. A.; Macquarrie, D. J., Reichardt's dye 
as a probe for surface polarity of chemically and thermally treated silicas. Chem. 
Commun. 1997, 1147-1148. 

311 
 



(18) Rottman, C.; Grader, G. S.; DeHazan, Y.; Avnir, D., Sol-gel entrapment of ET(30) in 
Ormosils. Interfacial polarity-fractality correlation. Langmuir 1996, 12, 5505-5508. 

(19) Ichimura, K.; Aoki, K.; Akiyama, H.; Horiuchi, S.; Nagano, S.; Horie, S., Properties of 
core-shell structured nanopowders of molecular crystals fabricated by dry grinding. J. 
Mater. Chem. 2010, 20, 4312-4320. 

(20) Ichimura, K.; Funabiki, A.; Aoki, K., Solid-state Solvatochromic Behavior of Reichardt's 
Dye Crystals Hybridized with Silica Nanoparticles. Chem. Lett. 2010, 39, 586-587. 

(21) Lim, S. H.; Kemling, J. W.; Feng, L.; Suslick, K. S., A colorimetric sensor array of 
porous pigments. Analyst 2009, 134, 2453-2457. 

(22) Askim, J. R.; Mahmoudi, M.; Suslick, K. S., Optical sensor arrays for chemical sensing: 
the optoelectronic nose. Chem. Soc. Rev. 2013, 42, 8649-8682. 

(23) Bae, S. Y.; Arnold, B. R., Characterization of solvatochromic probes: simulation of 
merocyanine 540 absorption spectra in binary solvent mixtures and pure solvent systems. 
J. Phys. Org. Chem. 2004, 17, 187-193. 

(24) Deye, J. F.; Berger, T. A.; Anderson, A. G., Nile Red as a Solvatochromic Dye for 
Measuring Solvent Strength in Normal Liquids and Mixtures of Normal Liquids with 
Supercritical and near Critical Fluids. Anal. Chem. 1990, 62, 615-622. 

(25) Rao, C. N. R.; Singh, S.; Senthilnathan, V. P., Spectroscopic Studies of Solute-Solvent 
Interactions. Chem. Soc. Rev. 1976, 5, 297-316. 

(26) McCaig, H. C.; Myers, E.; Lewis, N. S.; Roukes, M. L., Vapor Sensing Characteristics of 
Nanoelectromechanical Chemical Sensors Functionalized Using Surface-Initiated 
Polymerization. Nano Lett. 2014, 14, 3728-3732. 

(27) Martínez-Hurtado, J. L.; Davidson, C. A. B.; Blyth, J.; Lowe, C. R., Holographic 
Detection of Hydrocarbon Gases and Other Volatile Organic Compounds. Langmuir 
2010, 26, 15694-15699. 

(28) Zhang, J.-T.; Wang, L.; Luo, J.; Tikhonov, A.; Kornienko, N.; Asher, S. A., 2-D Array 
Photonic Crystal Sensing Motif. J. Am. Chem. Soc. 2011, 133, 9152-9155. 

(29) Park, J.; Groves, W. A.; Zellers, E. T., Vapor Recognition with Small Arrays of Polymer-
Coated Microsensors. A Comprehensive Analysis. Anal. Chem. 1999, 71, 3877-3886. 

312 
 



(30) Donnelly, J. F.; Massa, N. M., Light: Introduction to optics and photonics. The New 
England Board of Higher Education: Boston, MA, 2007. 

(31) Pilla, P.; Cusano, A.; Cutolo, A.; Giordano, M.; Mensitieri, G.; Rizzo, P.; Sanguigno, L.; 
Venditto, V.; Guerra, G., Molecular Sensing by Nanoporous Crystalline Polymers. 
Sensors 2009, 9, 9816-9857. 

(32) Suslick, B. A.; Feng, L.; Suslick, K. S., Discrimination of complex mixtures by a 
colorimetric sensor array: Coffee aromas. Anal. Chem. 2010, 82, 2067-2073. 

(33) Zhang, Y.; Askim, J. R.; Zhong, W.; Orlean, P.; Suslick, K. S., Identification of 
pathogenic fungi with an optoelectronic nose. Analyst 2014, 139, 1922-8. 

(34) Hapke, B., Theory of reflectance and emittance spectroscopy, 2nd ed. Cambridge 
University Press: Cambridge, 2012. 

(35) Guillermo, O.; Moreno-Bondi, M.; Garcia-Fresnadillo, D.; Marazuela, M., The Interplay 
of Indicator, Support and Analyte in Optical Sensor Layers. In Frontiers in Chemical 
Sensors, Orellana, G.; Moreno-Bondi, M., Eds. Springer: Berlin Heidelberg, 2005; Vol. 
3, pp 189-225. 

(36) Diehl, K. L.; Anslyn, E. V., Array sensing using optical methods for detection of 
chemical and biological hazards. Chem. Soc. Rev. 2013, 42, 8596-8611. 

(37) Zhu, Z.; Garcia-Gancedo, L.; Flewitt, A. J.; Xie, H.; Moussy, F.; Milne, W. I., A Critical 
Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and 
Graphene. Sensors 2012, 12, 5996-6022. 

(38) Jeronimo, P. C. A.; Araujo, A. N.; Montenegro, M. C., B.S.M, Optical sensors and 
biosensors based on sol-gel films. Talanta 2007, 72, 13-27. 

(39) Costa-Fernández, J. M.; Sanz-Medel, A., Air moisture sensing materials based on the 
room temperature phosphorescence quenching of immobilized mercurochrome. Anal. 
Chim. Acta 2000, 407, 61-69. 

(40) Rottman, C.; Grader, G.; De Hazan, Y.; Melchior, S.; Avnir, D., Surfactant-Induced 
Modification of Dopants Reactivity in Sol−Gel Matrixes. J. Am. Chem. Soc. 1999, 121, 
8533-8543. 

(41) Suslick, K. S.; Bailey, D. P.; Ingison, C. K.; Janzen, M.; Kosal, M. E.; McNamara III, W. 
B.; Rakow, N. A.; Sen, A.; Weaver, J. J.; Wilson, J. B.; Zhang, C.; Nakagaki, S., Seeing 
smells: development of an optoelectronic nose. Quim. Nova 2007, 30, 677-681. 

313 
 



(42) Suslick, K. S.; Rakow, N. A.; Sen, A., Colorimetric sensor arrays for molecular 
recognition. Tetrahedron 2004, 60, 11133-11138. 

(43) Suslick, K. S., An Optoelectronic Nose:“Seeing” Smells by Means of Colorimetric 
Sensor Arrays. MRS Bull. 2004, 29, 720-725. 

(44) Salinas, Y.; Ros-Lis, J. V.; Vivancos, J.-L.; Martínez-Máñez, R.; Aucejo, S.; Herranz, N.; 
Lorente, I.; Garcia, E., A chromogenic sensor array for boiled marinated turkey freshness 
monitoring. Sens. Actuators B 2014, 190, 326-333. 

(45) Soga, T.; Jimbo, Y.; Suzuki, K.; Citterio, D., Inkjet-Printed Paper-Based Colorimetric 
Sensor Array for the Discrimination of Volatile Primary Amines. Anal. Chem. 2013, 85, 
8973-8978. 

(46) Torsi, L.; Magliulo, M.; Manoli, K.; Palazzo, G., Organic field-effect transistor sensors: a 
tutorial review. Chem. Soc. Rev. 2013, 42, 8612-8628. 

(47) Grinthal, A.; Aizenberg, J., Adaptive all the way down: Building responsive materials 
from hierarchies of chemomechanical feedback. Chem. Soc. Rev. 2013, 42, 7072-7085. 

(48) Tamayo, J.; Kosaka, P. M.; Ruz, J. J.; San Paulo, A.; Calleja, M., Biosensors based on 
nanomechanical systems. Chem. Soc. Rev. 2013, 42, 1287-1311. 

(49) Kemling, J. W.; Qavi, A. J.; Bailey, R. C.; Suslick, K. S., Nanostructured Substrates for 
Optical Sensing. J. Phys. Chem. Lett. 2011, 2, 2934-2944. 

(50) MacCraith, B. D.; McDonagh, C. M.; O'Keeffe, G.; McEvoy, A. K.; Butler, T.; Sheridan, 
F. R., Sol-gel coatings for optical chemical sensors and biosensors. Sens. Actuators B 
1995, 29, 51-57. 

(51) Steinberg, I. M.; Lobnik, A.; Wolfbeis, O. S., Characterisation of an optical sensor 
membrane based on the metal ion indicator Pyrocatechol Violet. Sens. Actuators B 2003, 
90, 230-235. 

(52) Lukowiak, A.; Wieslaw, S., Sensing abilities of materials prepared by sol-gel technology. 
J. Sol-Gel Sci. Technol. 2009, 50, 201-215. 

(53) Podbielska, H.; Ulatowska-Jarza, A.; Muller, G.; Eichler, H. J., Sol-Gels for Optical 
Sensors. In Optical Chemical Sensors, Springer: Erice, Italy, 2006; pp 353-385. 

(54) Kemling, J. W.; Suslick, K. S., Nanoscale porosity in pigments for chemical sensing. 
Nanoscale 2011, 3, 1971-1973. 

314 
 



(55) Levitsky, I.; Krivoshlykov, S. G.; Grate, J. W., Rational Design of a Nile Red/Polymer 
Composite Film for Fluorescence Sensing of Organophosphonate Vapors Using 
Hydrogen Bond Acidic Polymers. Anal. Chem. 2001, 73, 3441-3448. 

(56) Johnson, R. D.; Bachas, L., Ionophore-based ion-selective potentiometric and optical 
sensors. Anal. Bioanal. Chem. 2003, 376, 328-341. 

(57) Zhang, C.; Suslick, K. S., Colorimetric sensor array for soft drink analysis. J. Agric. Food 
Chem. 2007, 55, 237-242. 

(58) Zhang, C.; Bailey, D. P.; Suslick, K. S., Colorimetric sensor arrays for the analysis of 
beers: A feasibility study. J. Agric. Food Chem. 2006, 54, 4925-4931. 

(59) Carey, J. R.; Suslick, K. S.; Hulkower, K. I.; Imlay, J. A.; Imlay, K. R. C.; Ingison, C. K.; 
Ponder, J. B.; Sen, A.; Wittrig, A. E., Rapid identification of bacteria with a disposable 
colorimetric sensing array. J. Am. Chem. Soc. 2011, 133, 7571-7576. 

(60) Kim, S. K.; Chang, H.; Zellers, E. T., Microfabricated gas chromatograph for the 
selective determination of trichloroethylene vapor at sub-parts-per-billion concentrations 
in complex mixtures. Anal. Chem. 2011, 83, 7198-7206. 

(61) Terry, S. C.; Jerman, J. H.; Angell, J. B., A gas chromatographic air analyzer fabricated 
on a silicon wafer. IEEE Trans. Electron Devices 1979, 26, 1880-1886. 

(62) Shopova, S. I.; White, I. M.; Sun, Y.; Zhu, H.; Fan, X.; Frye-Mason, G.; Thompson, A.; 
Ja, S.-j., On-column micro gas chromatography detection with capillary-based optical 
ring resonators. Anal. Chem. 2008, 80, 2232-2238. 

(63) Scholten, K.; Fan, X. D.; Zellers, E. T., Microfabricated optofluidic ring resonator 
structures. Appl. Phys. Lett. 2011, 99, 141108. 

(64) Lambertus, G. R.; Fix, C. S.; Reidy, S. M.; Miller, R. A.; Wheeler, D.; Nazarov, E.; 
Sacks, R., Silicon Microfabricated Column with Microfabricated Differential Mobility 
Spectrometer for GC Analysis of Volatile Organic Compounds. Anal. Chem. 2005, 77, 
7563-7571. 

(65) Bae, B.; Kim, J.; Yeom, J.; Chen, Q.; Ray, C.; Shannon, M., Development of a portable 
gas analyzer using a micro-Gas Chromatograph/Flame Ionization Detector (micro-
GC/FID) for NASA's environmental missions. In 42nd International Conference on 
Environmental Systems, American Institute of Aeronautics and Astronautics: San Diego, 
California, 2012; pp 1-6. 

315 
 



(66) Lu, C.-J.; Whiting, J.; Sacks, R. D.; Zellers, E. T., Portable gas chromatograph with 
tunable retention and sensor array detection for determination of complex vapor mixtures. 
Anal. Chem. 2003, 75, 1400-1409. 

(67) Lee, C. Y.; Sharma, R.; Radadia, A. D.; Masel, R. I.; Strano, M. S., On-Chip Micro Gas 
Chromatograph Enabled by a Noncovalently Functionalized Single-Walled Carbon 
Nanotube Sensor Array. Angew. Chem. Int. Ed. 2008, 47, 5018-5021. 

 

 

 

316 
 


	Rankin.Title Page
	Abstract, Dedication, Acknowlegments, and TOC_final_edited
	PART I_TITLE
	CHAPTER 1_final_textref_edited
	CHAPTER 2_final_textrefs_edited
	CHAPTER 3_final_textrefs_edited
	PART II_TITLE
	CHAPTER 4_final_textrefs_edited
	CHAPTER 5_final_textrefs_edited
	CHAPTER 6_final_textrefs_edited

