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ABSTRACT

In this work, a new technique to calculate the behavior of electromagnetic

fields in layered structures is presented. Based upon keeping track of re-

flections throughout the structure, this technique is a special case of the

method of moments. Analysis of layered scatterers, waveguides, and res-

onators is presented for structures possessing rectangular, cylindrical, and

spherical symmetry. In rectangular coordinates, exact formulas are presented

for calculating the group delay, group delay dispersion, and third-order dis-

persion upon reflection or transmission. For the first time, exact formulas

are derived for calculating the dispersion of a planar waveguide up to third

order. The algorithm has been implemented and subsequently validated by

testing it against analytic solutions.

In the second section of the thesis, a new method of constructing a cav-

ity is demonstrated. A microsphere is placed in between two high-reflecting

mirrors. Depending on the separation of the mirrors, the spheres were ob-

served to either lower or raise the lasing threshold. Models of the cavity were

developed and agree with observed data. By self-assembling spheres, a laser

array is demonstrated.
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CHAPTER 1

INTRODUCTION

Layered structures are ubiquitous in the field of optics. The most familiar

layered structure is the planar dielectric stack, used for mirrors, filters, and

anti-reflection coatings [1]. Further applications include dielectric resonators

[2, 3, 4]. If one of the layers is a metal, additional types of modes, known as

plasmonic modes, exist [5]. All of the types of modes have counterparts in

structures with cylindrical or spherical symmetry. Additionally, cylindrical

and spherical structures also have a resonator mode known as a whispering

gallery mode [4]. Furthermore, structures which do not appear to be layered

may be solved with layered techniques by dividing them into thin slices [6].

Transmission matrix, or T-matrix, theory is often used to calculate scat-

tering from layered structures [1]. The premise of the transmission matrix

method is to write a 2x2 matrix relating the amplitude of the forward and

backward traveling waves at one part of the structure with the amplitudes

in another part of the structure. While simple, this approach may result in

a loss of numerical accuracy [7]. To see why this is so, consider propagation

between two points separated by a distance L in a direction in which the field

is evanescent. Let E+
1 and E−1 be the magnitudes of the fields which decay

exponentially toward and away from the direction of point 2. The T-matrix

relating the fields at points 1 and 2 is:(
E+

1

E−1

)
=

(
eαL 0

0 e−αL

)(
E+

2

E−2

)
. (1.1)

Consider now the impact of an error in the relative magnitude of E+
2 and

E−2 . Some error is inevitable when using finite-precision arithmetic. When

the field is propagated from position 2 to position 1, E+
2 is amplified and E−2

is reduced by a factor of eαL. The relative error in the amplitude of E+
1 and

E−1 has, therefore, been amplified by a factor of e2αL. T-matrices, therefore,
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amplify noise.

T-matrix theory has also been used to find the propagation constants of

planar waveguides [8, 9]. Spectral methods [10], in which the solution is

expanded as a sum of basis functions, has also been used to determine the

propagation constants of waveguides. Spectral methods are well-suited to de-

termining the propagation constants in waveguides with continuously varying

refractive indices. However, the solutions will suffer from Gibb’s phenomenon

around locations where the refractive index is discontinuous [10]. While

the propagation constant may be nearly correct, the reconstructed electric

and magnetic fields would have oscillations near the discontinuous boundary.

This would be particularly unsuitable in calculating plasmon modes, where

the peak value of the field is often of interest.

In this work, a new method of calculating the field, based on accounting

for all reflections at interfaces, will be demonstrated. Due to its similarity to

Markov chains and Airy’s analysis [11], we refer to the new method as the

Markov-Airy technique. It is a special case of the method of moments [12].

By keeping track of reflections, we are always looking at forward propagating

waves which exponentially decay. In the Markov-Airy version of Equation

1.1, the relative error would be amplified by 1. The Markov-Airy method is

capable of solving scattering, resonator, and waveguide problems in rectan-

gular, cylindrical, and spherical coordinates.

Chapter 2 discusses the solution to Maxwell’s equations in uniform me-

dia in Cartesian, cylindrical, and spherical coordinates. It also derives the

scattering coefficients at the interface between two media. Chapter 3 utilizes

those reflection coefficients to calculate scattering from layered structures

comprising many layers. For planar structures, phase derivatives of the re-

flection coefficients are derived. In Chapter 4, waveguides and resonators

are modeled as two connected scatterers. The modes of the waveguides and

resonators are then found from the scattering of each element.

A new structure for a microresonator was demonstrated and is described

in Chapter 5 of this dissertation. The resonator is formed by placing a

polystyrene sphere between two highly-reflecting mirrors. The new structure

has interesting properties. For example, the output of the microlasers can be

critically dependent on the mirror separation. If the mirrors are moved suf-

ficiently far apart, lasing stops abruptly. Resonators based on this structure

may have uses as sensors.
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CHAPTER 2

FRESNEL COEFFICIENTS

In this chapter it will be shown how to solve Maxwell’s equations in infinite

media in various coordinates systems (Cartesian, cylindrical, and spherical).

For each coordinate system, it will be shown how to use these solutions to

calculate the reflection and transmission coefficients at boundaries between

different media. These coefficients will be used to build solutions to multilayer

problems in later chapters.

While reflection coefficients in Cartesian coordinates have been derived

previously from several sources [13], reflection coefficients for cylindrical and

spherical coordinates are, to the author’s knowledge, new. The derivation of

the reflection coefficients in Cartesian coordinates is presented to provide a

template for the derivation in a more familiar coordinate system.

2.1 Wave Equation in Homogeneous Media

Maxwell’s equations in differential form are:

∇× ~E = −d
~B

dt
(2.1)

∇× ~H =
d ~D

dt
+ ~J (2.2)

∇ · ~D = ρ (2.3)

∇ · ~B = 0. (2.4)

Maxwell’s equations are linear, and as a result, it is convenient to break a

problem into simpler parts and then add the solutions together. In particu-

lar, one may solve Maxwell’s equations one frequency component at a time

and combine all frequency components together after they have been solved

individually. To do this, we will use the concept of phasors. Assuming a e−jωt
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functional form for all components, Maxwell’s equations in phasor form are:

∇× ~E = jω ~B (2.5)

∇× ~H = −jω ~D + ~J (2.6)

∇ · ~D = ρ (2.7)

∇ · ~B = 0. (2.8)

From this point on, it will be assumed that field components are phasors.

Maxwell’s equations in differential form do not uniquely specify a wave

equation. To uniquely specify a solution, the constitutive relations and

boundary conditions must also be stated. The constitutive relations are

material parameters relating ~D to ~E and ~B to ~H. These equations may be

simply expressed as:

~D = ε̄ ~E (2.9)

~B = µ̄ ~H, (2.10)

where ε̄ and µ̄ are material properties known as the permittivity and the per-

meability, respectively. They express how a material responds to an incident

field ( ~E or ~H). The overbar indicates that in general, ε̄ and µ̄ are tensors.

In this case, a tensor would take the form of a 3×3 matrix. At optical fre-

quencies, the optical response of most materials is that same as that of free

space. Therefore,

µ̄ = Îµ0 = µ0, (2.11)

where Î is the identity operator and µ0 is the permeability of free space.

Frequently, the permittivity is expressed as a multiple of the permittivity of

the vacuum, ε0.

ε̄ = ε̄rε0 (2.12)

Here, εr is known as the relative permittivity.

If a space is divided into several regions, Maxwell’s equations can be solved

in each region individually. Boundary conditions constrain how the fields are

related at the interface between the regions. If ŝ is a vector normal to the
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boundary between two media, the boundary conditions may be expressed as:

ŝ× ~E = 0 (2.13)

ŝ× ~H = ~J. (2.14)

In source-free regions which do not support surface currents, ~J = 0. These

equations can then be interpreted to be a requirement that the tangential

electric and magnetic field must be continuous at boundaries.

To find a wave equation, we begin by substituting Equation 2.10 into the

right hand side of Equation 2.5 and taking the curl:

∇× (∇× ~E) = jωµ̄∇× ~H. (2.15)

Now substitute Equation 2.6 for ∇ × ~H to obtain and make use of Equa-

tion 2.9

∇× (∇× ~E) = ω2µ̄ε̄ ~E, (2.16)

and use the vector identity:

∇× (∇× ~E) = ∇
(
∇ · ~E

)
−∇2 ~E. (2.17)

It may be shown1 that, in a homogeneous medium, ∇
(
∇ · ~E

)
= 0. The

wave equation for a uniform medium is

∇2 ~E = −ω2µ̄ε̄ ~E. (2.18)

In this chapter, only nonmagnetic (µ̄ = µ0), isotropic (εx = εy = εz) materials

will be considered. Hence the tensors ε̄ and µ̄ may be replaced with scalars

ε and µ. Using the definition of relative permittivity in Equation 2.12, we

obtain:

∇2 ~E = −ω2µ0ε0εr ~E. (2.19)

It is known that an equation of the form ∇2A = −ω2

c2
A is an equation for a

wave which travels with phase velocity c. In vacuum, εr = 1, so by matching

1From Equations 2.7 and 2.9: ∇ ~D = ∇(ε ~E) = ~E · ∇ε + ε∇ ~E = 0, which implies

∇
(
∇ ~E

)
= ∇

(
~E · ∇ (ln ε)

)
. Finally ∇(ln ε) = 0 if ε is a constant.
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terms, we may identify the speed of light in vacuum as:

c2 =
1

µ0ε0
. (2.20)

The coefficients of ~E in Equation 2.19 have a physical interpretation. There

are four common ways of expressing them:

k2 =
ω2εr
c

=
ω2n2

c2
=

4π2n2

λ2
. (2.21)

The variable k is referred to as the wavenumber, has units rad/m, and is

interpreted as the amount of phase per unit length a wave accumulates as it

travels. The quantity n is known as the index of refraction. It is interpreted

as how much light is slowed when transiting through a material medium as

compared to vacuum. The index of refraction is related to the relative permit-

tivity by n2 = εr. These notations will be used interchangeably throughout

this chapter and thesis.

2.2 Cartesian Coordinates

2.2.1 Solution with Potential Methods

Although not difficult to solve directly, the solution of the wave equation in

Cartesian coordinates will be shown using potential methods because poten-

tial methods will be used in cylindrical and spherical coordinates. According

to Appendix C, the wave equation for TE modes is:

∇2 ~F =
ω2εr
c2

~F . (C.31)

Without loss of generality, we will solve for fields which are perpendicular to

the ẑ direction. Therefore, we choose ~F = ẑFz. Equation C.31 then becomes:

∇2(ẑFz) = ẑ
ω2εr
c2

Fz. (2.22)
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Expanding the scalar Laplacian, we obtain

∂2Fz
∂x2

+
∂2Fz
∂y2

+
∂2Fz
∂z2

=
ω2εr
c2

Fz. (2.23)

This differential equation in three variables may be solved with the separation

of variables technique. In this technique, it is assumed that

Fz(x, y, z) = X(x)Y (y)Z(z). (2.24)

The necessary condition for being able to do so is that it must be possible

for the ‘potential’ (V (x, y, z) ≡ ω2εr
c2

) to be written as the sum of functions,

each of which is dependent on only one of the coordinate variables. In the

Cartesian case, the potential must be expressible as: V (x, y, z) = Vx(x) +

Vy(y)+Vz(z). Inserting the hypothesis (Equation 2.24) into the wave equation

(Equation 2.22), we find:

Y Z
∂2X

∂x2
+XZ

∂2Y

∂y2
+XY

∂2Z

∂z2
=
ω2εr
c2

XY Z. (2.25)

Dividing through by XY Z we find

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
+

1

Z

∂2Z

∂z2
=
ω2εr
c2

. (2.26)

Because the leftmost term in the above equation depends only on x and is the

only term dependent on x, it must be constant with respect to x. If it were

not, then the value of that term could be changed by varying x. However,

since none of the other terms are dependent upon x, it will be impossible to

satisfy the equation at fixed y and z. For convenience, this constant will be

defined as −k2
x, which gives us the following differential equation:

∂2X

∂x2
= −k2

xX. (2.27)

The solution to this second-order differential equation is well-known to be:

X(x) = a1e
jkxx + a2e

−jkxx, (2.28)
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where a1 and a2 are constants to be determined by boundary conditions.

Similar arguments for Y (y) and Z(z) result in the relations:

Y (y) = b1e
jkyy + b2e

−jkyy (2.29)

Z(z) = c1e
jkzz + c2e

−jkzz, (2.30)

where b1, b2, c1, and c2 are more constants to be determined by boundary

conditions.

The total solution for Fz is therefore

Fz = (a1e
jkxxs + a2e

−jkxx)(b1e
jkyy + b2e

−jkyy)(c1e
jkzz + c2e

−jkzz). (2.31)

Precisely the same argument for Az, which obeys the same wave equation as

Fz, gives the same form for the magnetic vector potential.

Az = (a1e
jkxxs + a2e

−jkxx)(b1e
jkyy + b2e

−jkyy)(c1e
jkzz + c2e

−jkzz). (2.32)

The magnetic field is perpendicular to the ẑ direction for these solutions.

2.2.2 Interpretation of the Solutions

We will begin our interpretation of the solutions for the wave equations in

one dimension. Without loss of generality, let k2
x = k2

y = 0. Then consider

Equation 2.30 with c1 = 1 and c2 = 0. Returning from phasor notation to

the time-varying fields, we obtain the equation:

Z(z, t) = <{ejkzze−jωt} = cos(kzz − ωt). (2.33)

Looking at the argument of the cosine, it can be seen that a surface of

constant phase is traveling in the +ẑ direction with velocity ω
kz

. This solution

is therefore called a travelling wave. Equation 2.30 is a superposition of

a forward traveling wave with amplitude c1 and a backward propagating

wave with amplitude c2. A solution known as a standing wave occurs when

|c1| = |c2|; the solution is then Z(z) = 2c1 cos kzz. This solution is known as

a standing wave because the positions of the peaks do not appear to move

with time.

Generalizing to propagation in an arbitrary direction, it can clearly be seen
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that

Fz = a1e
jkxxsejkyyejkzz (2.34)

represents a wave traveling in the ~k = (kx, ky, kz) direction. Placing the

constants into Equation 2.23 yields:

k2
x + k2

y + k2
z = k2, (2.35)

which is known as the dispersion relation, where k is defined in Equation

2.21.

An interesting situation occurs when k2
x + k2

y > k2. In this case k2
z < 0

to satisfy Equation 2.35, and so kz must be imaginary. For convenience, we

define kz = jαz. Substituting this into Equation 2.34 yields

Fz = a1e
jkxxsejkyyej·jαzz = a1e

jkxxsejkyye−αzz. (2.36)

It can be seen that the field decays in the ẑ direction. Correspondingly,

the e−jkzz exponentially decays in the −ẑ direction. The field is said to be

evanescent.

A medium possessing optical loss or gain will have a complex relative

permittivity. The loss or gain may come from absorption or scattering. If k2

is complex, then by the dispersion relationship (Equation 2.35), at least one

of kx, ky, or kz must also be complex. For simplicity, let us again consider one-

dimensional propagation in the ẑ direction. The wavenumber kz = k′z + jk′′z

is complex. Note that at this point, the sign of k′′z has not been specified.

Inserting this into the form of the first term of Equation 2.23 gives:

Az = ejkzz = ejk
′
zze−k

′′
z z. (2.37)

The field is oscillating and exponentially decaying (or growing) in the ẑ direc-

tion if k′′z is positive (negative). There are two common methods of specifying

the loss (or gain) of a material: complex permittivity or complex refractive

index.

ε = ε′ + jε′′ (2.38)

or defining the complex index of refraction as:

n = n′ + jn′′. (2.39)
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Table 2.1: Summary of conventions for propagation in media with gain or
loss. These conventions are reversed when using ejωt conventions.

Loss Gain
k = k′ + jk′′ k′′ > 0 k′′ < 0
n = n′ + jn′′ n′′ > 0 n′′ < 0
εr = ε′r + jε′′r ε′′r > 0 ε′′r < 0

Equating

(n′ + jn′′)2 = ε′r + jε′′r , (2.40)

it is found that the complex permittivity and refractive index are related by:

ε′r = n′2 − n′′2 (2.41)

ε′′r = 2n′n′′. (2.42)

Furthermore, the real and complex propagation constants are:

k′ =
ωn′

c
(2.43)

k′′ =
ωn′′

c
. (2.44)

A negative n′′corresponds to an exponentially growing field. This is possible

in a material possessing optical gain, in which energy is transferred from the

medium into the field. It also must be noted that n′′ must be a function

of the intensity for all real media, because a real medium can only absorb

(or emit) a limited amount of power per unit volume. The sign conventions

are reversed if ejωt time dependence is considered. These conventions are

summarized in Table 2.1.

A field which is exponentially decaying may be evanescent, propagating in

a lossy material, or both. Planes of constant amplitude and constant phase

are not necessarily parallel [14].

2.2.3 Reflection Coefficients

When a wave is incident on a boundary between two media, it gives rise to

secondary scattered waves. In the incident medium, the scattered wave is said

to be reflected, while in the second medium, it is known as the transmitted

10



Table 2.2: Electric and magnetic fields of TEz solutions derived from the
electric vector potential given by Equation 2.47.

Ex −1
ε
∂Fz

∂y
0

Ey
1
ε
∂Fz

∂x
jkx
ε
ejkzzejkxx

Ez 0 0

Hx − 1
jωµε

∂2Fz

∂x∂z
kxkz
jωµε

ejkzzejkxx

Hy − 1
jωµε

∂2Fz

∂y∂z
0

Hz − 1
jωµε

(
∂2

∂z2
+ k2

)
Fz − k2x

jωµε
ejkzzejkxx

Table 2.3: Electric and magnetic fields of TMz solutions derived from the
magnetic vector potential given by Equation 2.48.

Ex − 1
jωµε

∂2Az

∂x∂z
kxkz
jωµε

ejkzzejkxx

Ey − 1
jωµε

∂2Az

∂y∂z
0

Ez − 1
jωµε

(
∂2

∂z2
+ k2

)
Az − k2x

jωµε
ejkzzejkxx

Hx
1
µ
∂Az

∂y
0

Hy − 1
µ
∂Az

∂x
− jkx

µ
ejkzzejkxx

Hz 0 0

Figure 2.1: Polarizations of the (a) TE and (b) TM waves. Circles indicate
a vector that comes out of the plane of the page, while x’s indicate a vector
into the plane of the page.

wave. Notice the terminology, ‘incident waves,’ which implies a traveling,

and not standing wave. For the purposes of solving multilayer problems, it

is possible to calculate and use reflection coefficients among standing waves

(sines and cosines). However, using waves that can clearly be interpreted as

traveling in a specific direction will actually have numerical advantages, as
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discussed in Chapter 3.

The argument of phase matching allows the direction of the transmitted

and reflected waves to be determined. Assume that the plane at the interface

of the two media is the x = 0 plane, shown in Figure 2.1. Let the incident

and transmitted sides of the boundary be labeled m and p, respectively.

Without loss of generality, let the wave be propagating in the x − z plane.

By symmetry, it can already be seen that the scattered waves must both be

plane waves also propagating in the x− z plane. If the wave incident on the

boundary has unit amplitude, then the incident, reflected, and transmitted

waves take the form ejkx,ixejkz,iz, rejkx,rxejkz,rz, and tejkx,txejkz,tz, respectively.

At the x = 0 plane, the equation for the continuity of the field is:

ejkz,iz + rejkz,rz = tejkz,tz. (2.45)

Dividing through by ejkz,iz, we obtain:

1 + rej(kz,r−kz,i)z = tej(kz,t−kz,i)z. (2.46)

The only way this equation may be satisfied for all z is if kz = kz,r = kz,t.

Therefore, kz is conserved upon reflection and transmission. This argument

is known as ‘phasematching.’ It is a powerful tool and will be used again in

cylindrical and spherical coordinates.

Another way to view phasematching is through the separation of variables

technique. Note that because the boundary between the two media is per-

pendicular to one of the coordinate axes, the ‘potential’ may still be written

as V (x, y, z) = V (x) + V (y) + V (z). Therefore, the technique of separation

of variables is still valid. In fact, V (x, y, z) = V (x). Equation 2.24 states

that F (x, y, z) = X(x)Y (y)Z(z), which makes it apparent that fields on both

sides of the boundary must share the same y and z dependence.

With the component of the propagation vector along ẑ known from phase-

matching, the component along the ẑ direction may be predicted. Letting

the magnitude of the propagation constants in medium 1 and 2 be k1 and

k2, the x̂ components are kx1 =
√
k2

1 − k2
z and kx2 =

√
k2

2 − k2
z . The di-

rection of the reflected and transmitted waves is, therefore, specified (as

(
√
k2

1 − k2
z , 0, kz) and (

√
k2

2 − k2
z , 0, kz),respectively). These statements are

equivalent to Snell’s law.
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All fields present in the reflection problem are of the following form:

Fz = F0e
jkzzejkxx (2.47)

Az = A0e
jkzzejkxx, (2.48)

where kx is replaced by kxm, −kxm, and kxp, respectively, for the incident,

reflected, and transmitted waves. The electric and magnetic field components

of the TE and TM waves are listed in Tables 2.2 and 2.3, respectively.

The boundary conditions of Maxwell’s equations (Equations 2.13-2.14)

state that the tangential components of the electric and magnetic fields must

be continuous at the boundary. For TEz fields, the equations expressing the

continuity of Ey and Hz are, respectively,

jkxm
εm

(
1− rTE,Fmp

)
=
jkxp
εp

tTE,Fmp (2.49)

− k2
xm

jωµεm

(
1 + rTE,Fmp

)
= −

k2
xp

jωµεp
tTE,Fmp . (2.50)

Solving these equations for rTE,Fmp and tTE,Fmp gives:

rTE,Fmp (kz, ω) =
kxp − kxm
kxp + kxm

(2.51)

tTE,Fmp (kz, ω) =
εpkxm
εmkxp

2kxm
kxp + kxm

. (2.52)

These reflection and transmission coefficients are not of the usual form given

in textbooks, which relate the amplitude of the reflected or transmitted elec-

tric field to that of the incident electric field. Instead, rTE,Fmp is the ratio of

Fz,r to Fz,i while tTE,Fmp is the ratio of Fz,t to Fz,i. To find the reflection and

transmission coefficients which relate the amplitudes of the electric field, we

take the ratios of the Ey field components:

rTEmp (kz, ω) = rTE,Fmp

Ey,r
Ey,i

=
kxm − kxp
kxm + kxp

(2.53)

tTEmp (kz, ω) = tTE,Fmp

Ey,t
Ey,i

=
2kxm

kxm + kxp
. (2.54)

Here Ey,i, Ey,i, and Ey,i are found by substituting appropriate values for Ey

in Table 2.2. Following a similar procedure for TMz waves, but this time

13



enforcing the continuity of Ez and Hy, we get the equations:

− k2
xm

jωµεm

(
1 + rTM,A

mp

)
= −

k2
xp

jωµεp
tTM,A
mp (2.55)

−jkxm
µ

(
1− rTM,A

mp

)
= −jkxp

µ
tTM,A
mp . (2.56)

Solving this equations for rTM,A
mp and tTM,A

mp gives:

rTM,A
mp (kz, ω) =

εmkxp − εpkxm
εmkxp + εpkxm

(2.57)

tTM,A
mp (kz, ω) =

2εpk
2
xm

kxp(εmkxp + εpkxm)
. (2.58)

These coefficients are the ratios of Az,r and Az,t to Azi. They may be con-

verted to express the ratio of the electric fields, but the calculation is not

simple because ~E contains two components for TM fields (x̂ and ẑ). The

reflection coefficients relating the amplitudes of the electric field are:

rTMmp (kz, ω) =
n2
pkxm − n2

mkxp

n2
pkxm + n2

mkxp
(2.59)

tTMmp (kz, ω) =
2nmnpkxm

n2
pkxm + n2

mkxp
. (2.60)

Equations involving the reflection and transmission coefficients in other sources

generally assume that the coefficients relate the amplitude of the electric

field. For that reason, we will use the reflection and transmission coefficients

of Equations 2.53-2.54 and 2.59-2.60. The conventions used for the direction

of the electric and magnetic fields are shown in Figure 2.1.

If n1 > n2, then the incident wave can excite a field which is evanescent

in the second medium. Because no power is transmitted into the second

medium, the magnitude of the reflection coefficient must be 1. The reflection

and transmission coefficients in this case are:

rTEmp (kz, ω) =
jkzm + αp
jkzm − αp

(2.61)

tTEmp (kz, ω) =
j2kzm

jkzm − αp
, (2.62)

where αp =
√
k2
z − k2

p. Similarly, for TM polarization, the reflection and

14



transmission coefficients become:

rTMmp (kz, ω) =
jn2

pkxm + n2
mαxp

jn2
pkxm − n2

mαxp
(2.63)

tTMmp (kz, ω) =
j2nmnpkxm

jn2
pkxm − n2

mαxp
. (2.64)

If e+jωt time dependence is used, the complex conjugate must be taken of

these expressions for both TE and TM polarizations.

2.3 Cylindrical Coordinates

2.3.1 TEz and TMz Fields

Solutions for TEz and TMz fields can be found using vector potentials of
~F = ẑFz and ~A = ẑA, respectively. Following Equation C.31 in Appendix

C:
∂2Fz
∂r2

+
1

r

∂Fz
∂r

+
1

r2

∂2Fz
∂φ2

+
∂2Fz
∂z2

+ k2Fz = 0. (2.65)

In a uniform space, the separation of variables technique may be used, i.e.

Fz(r, φ, z) = R(r)Φ(φ)Z(z). Substituting this into the above equation,

ΦZ
∂2R

∂r2
+ ΦZ

1

r

∂R

∂r
+RZ

1

r2

∂2Φ

∂φ2
+ ΦR

∂2Z

∂z2
+ k2RΦZ = 0. (2.66)

Dividing this entire expression by RΦZ, we obtain:

1

R

∂2R

∂r2
+

1

R

1

r

∂R

∂r
+

1

Φ

1

r2

∂2Φ

∂φ2
+

1

Z

∂2Z

∂z2
+ k2 = 0. (2.67)

The second to last term on the left of the above expression is the only term

dependent on z, and is a function of z alone. Similar to the reasoning near

Equation 2.26, this term must be a constant, which will be defined as −k2
z .

The resulting differential equation is then:

1

Z

∂2Z

∂z2
≡ −k2

z . (2.68)
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The general solution to which is

Z(z) = b1e
jkzz + b2e

−jkzz, (2.69)

where b1 and b2 are constants which will be determined later by boundary

conditions. Placing Equation 2.68 back into Equation 2.67 and multiplying

the entire expression by r2 yields

r2

R

∂2R

∂r2
+
r

R

∂R

∂r
+ (k2 − k2

z)r
2 +

1

Φ

∂2Φ

∂φ2
= 0. (2.70)

The last term in Equation 2.67 is a function of φ and is the only term in the

equation to depend on φ. Therefore, it must be a constant, which we will

define as −m2.
1

Φ

∂2Φ

∂φ2
= −m2. (2.71)

The solution of this equation is

Φ(φ) = c1e
jmφ + c2e

−jmφ, (2.72)

where c1 and c2 are constants determined by boundary conditions. Placing

Equation 2.71 into Equation 2.70, we find:

r2∂
2R

∂r2
+ r

∂R

∂r
+ ((k2 − k2

z)r
2 −m2)R = 0. (2.73)

This is Bessel’s differential equation, whose two linearly independent solu-

tions are defined to the be the Bessel functions:

R(r) = a1Jm(krr) + a2Ym(krr) (2.74)

with kr ≡
√
k2 − k2

z .

A complete solutions for the TEz and TMz fields are, respectively, of the

form:

Fz = (a1Jm(krr) + a2Ym(krr))(b1e
jkzz + b2e

−jkzz)(c1e
jmφ + c2e

−jmφ) (2.75)

Az = (a1Jm(krr) + a2Ym(krr))(b1e
jkzz + b2e

−jkzz)(c1e
jmφ + c2e

−jmφ).

(2.76)
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2.3.2 Interpretation of the Solutions

Equation 2.74 is not the only form of the R(r) solution. Because Maxwell’s

equations are linear, linear combinations of Jm and Ym are themselves solu-

tions. In particular, we choose

H(1)
m ≡ Jm(x) + jYm(x) (2.77)

H(2)
m ≡ Jm(x)− jYm(x). (2.78)

The resulting solution takes the form:

R(r) = α1H
(1)
m (krr) + α2H

(2)
m (krr). (2.79)

The functions H
(1)
m and H

(2)
m are known as the Hankel functions. They may

be interpreted as outwardly and inwardly propagating2 waves, respectively.

Which form of the solution is appropriate to use depends on the details of

the problem. Jm is finite at the origin while Ym becomes infinite. For any

physical solution, the field must be finite at all points, and therefore if the

region of solution contains the origin, Jm must be the solution. In outer shells

which do not contain the origin, it is convenient to use the Hankel functions,

H1
m and H2

m. Using Jm and Ym in shell regions still theoretically results in

the same solution; however, the interpretation as propagating waves is lost.

From a computational perspective, there are advantages to maintaining the

propagating wave interpretation.

The dispersion relationship in cylindrical coordinates is:

k2
r + k2

z = k2, (2.80)

which results from the definition of kr in Equation 2.73. If either k2
r or k2

z

is greater than k2
z , it will force the other variable to be complex. If k2

z < 0,

the situation is similar to that of planar coordinates. The field exponentially

decays in the ẑ direction. For k2
r < 0, many authors switch to modified Bessel

functions.3 However, this introduces needless complexity and special cases

for the formulas, so in this work, regular Bessel and Hankel functions will be

2In some texts, H
(1)
m is defined to be the inward-propagating wave and H

(2)
m the

outward-propagating wave. It is different here because of the e−jωt time dependence.
3Km(x) ≡ π

2 j
m+1H(1)(ix)
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Table 2.4: Electric and magnetic fields of TEz solutions derived from the
electric vector potential. Here Bm stands in for any one of the Bessel
functions Jm, Km, H

(1)
m , or H

(2)
m .

Er − 1
εr
∂Fz

∂φ
− jm

εr
Bm(krr)e

jkzzejmφ

Eφ
1
ε
∂Fz

∂r
kr
ε
B′m(krr)e

jkzzejmφ

Ez 0 0

Hr − 1
jωµε

∂2Fz

∂r∂z
−krkz

ωµε
B′m(krr)e

jkzzejmφ

Hφ − 1
jωµεr

∂2Fz

∂φ∂z
mkz
jωµεr

Bm(krr)e
jkzzejmφ

Hz − 1
jωµε

(
∂2

∂z2
+ k2

)
Fz − k2r

jωµε
Bm(krr)e

jkzzejmφ

Table 2.5: Electric and magnetic fields of TMz solutions derived from the
magnetic vector potential. Here Bm stands in for any one of the Bessel
functions Jm, Km, H

(1)
m , or H

(2)
m .

Er − 1
jωµε

∂2Az

∂r∂z
−krkz

ωµε
B′m(krr)e

jkzzejmφ

Eφ − 1
jωµεr

∂2Az

∂φ∂z
mkz
jωµεr

Bm(krr)e
jkzzejmφ

Ez − 1
jωµε

(
∂2

∂z2
+ k2

)
Az − k2r

jωµε
Bm(krr)e

jkzzejmφ

Hr
1
µr

∂Az

∂φ
jm
µr
Bm(krr)e

jkzzejmφ

Hφ − 1
µ
∂Az

∂r
−kr

µ
B′m(krr)e

jkzzejmφ

Hz 0 0

used with a complex argument. With a complex argument, H
(1)
m decays in

the +r̂ direction and H
(2)
m decays in the −r̂ direction, in analogy with the

plane wave case.

Once again, ejkzz represents a field propagating in the +kz direction. The

ejmφ term represents a wave traveling around the origin counter-clockwise and

the e−mφ term represents a term traveling clockwise. The value of m must

be an integer to ensure that the field is single-valued (Φ(φ0) = Φ(φ0 + 2π)).

2.3.3 Reflection Coefficients

The concept of reflection and transmission coefficients will now be extended

to cylindrical coordinates. The physics is complicated by the fact that, un-

like in Cartesian coordinates, in general cylindrical TEz and TMz modes mix

at the interface between two materials. Because the modes mix, instead of

two reflection coefficients (rTE and rTM), there will be four reflection reflec-
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tion coefficients (ree,rem,rme, and rmm).4 The same is true for transmission

coefficients.

Let there be a boundary between two materials at radius R. Let the wave

be incident from medium 1 into medium 1, with refractive indices n1 and n2,

respectively. By the phasematching argument presented in the plane wave

section, both the reflected and transmitted waves must vary with the same

kz and m. The incident, reflected, and transmitted waves take the following

form:

Az = Bm(krr)e
jkzzejmφ (2.81)

Fz = Bm(krr)e
jkzzejmφ (2.82)

for TE and TM waves, respectively. The field components corresponding to

these choices of Fz and Az are shown in Tables 2.4 and 2.5, respectively.

To find the reflection and transmission coefficients, we must solve the fol-

lowing matrix equation expressing the continuity of Ez, Hz, Eφ, and Hφ:
0 0

k2r1
jωµε1

Bm,r(kr1R) − k2r2
jωµε2

Bm,t(kr2R)
k2r1
jωµε1

Bm,r(kr1R) − k2r2
jωµε2

Bm,t(kr2R) 0 0

−kr1
ε1
B′m,r(kr1R) kr2

ε2
B′m,t(kr2R) − mkz

jωµε1R
Bm,r(kr1R) mkz

jωµε2R
Bm,t(kr2R)

− mkz
jωµε1R

Bm,r(kr1R) mkz
jωµε2R

Bm,t(kr2R) kr1
µ
B′m,r(kr1R) −kr2

µ
B′m,t(kr2R)


·Γpol = V pol

(2.83)

where using

V TE =


0

− k2r1
jωµε1

Bm,i(kr1R)
kr1
ε1
B′m,i(kr1R)

mkz
jωµε1R

Bm,i(kr1R)

 (2.84)

generates ΓTE = [ree tee rem tem]>, the reflection and transmission coefficients

4The naming convention used is that rem represents is the reflection coefficient from a
TE wave to a TM wave and so forth.
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with an incident TEz wave. Similarly, for TMz waves, using

V TM =


− k2r1
jωµε1

Bm,i(kr1R)

0
mkz

jωµε1R
Bm,i(kr1R)

−kr1
µ
B′m,i(kr1R))

 (2.85)

generates the reflection and transmission coefficients ΓTM = [rme tme rmm tmm]>.

Bm,i, Bm,i, and Bm,i are used as placeholders for the functions which are ap-

propriate to a given situation. For example, in looking at the reflection of a

wave propagating toward the origin, Bm,i would be H
(2)
m , Bm,r would be H

(1)
m ,

and Bm,t would be H
(2)
m (or Jm if medium 2 extended to contain the origin).

Solutions for REE, REM obtained by solving this 4x4 matrix equation do

not possess compact forms. It is generally more convenient to solve these

equations numerically. The reflection and transmission coefficients are the

ratios of the reflected or transmitted Az and Fz fields to the incident Az or

Fz field.

A special case occurs if either m = 0 or kz = 0. For TEz modes, Ez and

Hφ are zero in all layers. Similarly, Eφ and Hz fields are zero in all layers for

TM z modes. Looking at Equation 2.83, the problem may be separated into

equations for TE and TM polarizations. That is, pure TEz and TMz modes

are not mixed at boundaries if either m = 0 or kz = 0. In this case, there

are simple expressions for the reflection and transmission coefficients.

For TEz fields, expressions for the continuity of the Hz and Eφ components

of the magnetic and electric field are:

k2
r1

n2
1

[B0,i(kr1R) + rB0,r(kr1R)] = t
k2
r2

n2
2

B0,t(kr2R) (2.86)

kr1
n2

1

[
B′0,i(kr1R) + rB′0,r(kr1R)

]
= t

kr2
n2

2

B′0,t(kr2R). (2.87)

When these equations are solved, the resulting reflection and transmission
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coefficients are:

rTE = −
kr1

B0,i(kr1R)

B′
0,i(kr1R)

− kr2B0,t(kr2R)

B′
0,t(kr2R)

kr1
B0,r(kr1R)

B′
0,i(kr1R)

− kr2B0,t(kr2R)

B′
0,t(kr2R)

B′
0,r(kr1R)

B′
0,i(kr1R)

(2.88)

tTE = −n
2
2kr1
n2

1kr2

B0,i(kr1R)

B′
0,i(kr1R)

− B0,r(kr1R)

B′
0,r(kr1R)

kr1
B0,r(kr1R)

B′
0,r(kr1R)

B′
0,t(kr2R)

B′
0,i(kr1R)

− kr2B0,t(kr2R)

B′
0,i(kr1R)

. (2.89)

Similarly for TM z fields, the equations expressing the continuity of the

fields are:

k2
r1

n2
1

[B0,i(kr1R) + rB0,r(kr1R)] = t
k2
r2

n2
2

B0,t(kr2R) (2.90)

kr1
n2

1

[
B′0,i(kr1R) + rB′0,r(kr1R)

]
= t

kr2
n2

2

B′0,t(kr2R). (2.91)

The corresponding reflection and transmission coefficients are:

rTM = −
n2

2kr1
B0,i(kr1R)

B′
0,i(kr1R)

− n2
1kr2

B0,t(kr2R)

B′
0,t(kr2R)

n2
2kr1

B0,r(kr1R)

B′
0,i(kr1R)

− n2
1kr2

B0,t(kr2R)

B′
0,t(kr2R)

B′
0,r(kr1R)

B′
0,i(kr1R)

(2.92)

tTM = −n
2
2kr1
kr2

B0,i(kr1R)

B′
0,i(kr1R)

− B0,r(kr1R)

B′
0,r(kr1R)

n2
2kr1

B0,r(kr1R)

B′
0,r(kr1R)

B′
0,t(kr2R)

B′
0,i(kr1R)

− n2
1kr2

B0,t(kr2R)

B′
0,i(kr1R)

. (2.93)

2.4 Spherical Coordinates

Reflection and transmission coefficients will now be derived for spherical co-

ordinates. The theory is very similar to that of cylindrical coordinates.

2.4.1 TEr and TMr Fields

Referring to Appendix C, the eigenequation for both TE and TM modes is:

(
∇2 + k2

)
ψ = 0. (2.94)
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When the Laplacian is expanded in spherical coordinates, the resulting equa-

tion is:

1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
+ k2ψ = 0. (2.95)

Again, the technique of separation of variables will be invoked. Assume

ψ(r, φ, θ) = R(r)Φ(φ)Θ(θ). Placing this ansatz in Equation 2.95 and expand-

ing yields:

ΦΘ
1

r2

∂

∂r

(
r2∂R

∂r

)
+RΦ

1

r2 sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+RΘ

1

r2 sin2 θ

∂2Φ

∂φ2
+k2RΦΘ = 0.

(2.96)

Dividing through by R(r)Φ(φ)Θ(θ) yields:

1

R

∂

∂r

(
r2∂R

∂r

)
+ k2r2 +

1

Θ

1

sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

1

Φ

1

sin2 θ

∂2Φ

∂φ2
= 0. (2.97)

The two terms on the left of the above equation depend only on r and are

the only part of the equation dependent on r. By the familiar argument from

Equation 2.26, they must, therefore, be equal to a constant. In anticipation

of a future simplification, this constant will be defined as `(`+ 1)

1

Θ

1

sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

1

Φ

1

sin2 θ

∂2Φ

∂φ2
= `(`+ 1). (2.98)

Multiplying through by sin2 θ gives:

1

Θ
sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
− `(`+ 1) sin2 θ +

1

Φ

∂2Φ

∂φ2
= 0. (2.99)

The rightmost term on the left side of the above equation depends only

on φ and is the only term dependent on φ, so it again must be a constant.

Choosing the value −m2 for this constant, we obtain the following differential

equation:
1

Φ

∂2Φ

∂φ2
= −m2, (2.100)

which has the well-known solution

Φ(φ) = c1e
jmφ + c2e

−jmφ, (2.101)
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where c1 and c2 are constants to be determined by boundary conditions.

The remainder of Equation 2.99 is

1

Θ
sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
− `(`+ 1) sin2 θ −m2 = 0. (2.102)

Now define x = cos θ and y(x) = Θ(θ(x)). By making the proper substitu-

tions5 into the above equation, it may be transformed into

d

dx

[(
1− x2

) dy
dx

]
+

[
`(`+ 1)− m2

1− x2

]
y = 0. (2.103)

The above is the differential equation which defines the associated Legendre

polynomials.

y(x) = b1P
m
` (x) + b2Q

m
` (x). (2.104)

Then reversing the substitution, we recast the solution in terms of θ.

Θ(θ) = b1P
m
` (cos(θ)) + b2Q

m
` (cos(θ)) , (2.105)

where b1 and b2 are constants to be determined by boundary conditions.

Let us return to the left side of Equation 2.97. Recall the right side must

be a constant `(` + 1). The equation obtained for the radial dependence is

thus:
1

R

∂

∂r

(
r2∂R

∂r

)
+ k2r2 + `(`+ 1) = 0. (2.106)

Multiplying through by R and expanding the derivative on the left, we get:

r2d
2R

dr2
+ 2r

dR

dr
+
[
k2r2 + `(`+ 1)

]
R = 0. (2.107)

The solutions to this equation are defined to be the spherical Bessel functions:

R(r) = a1j`(kr) + a2y`(kr), (2.108)

where a1 and a2 are constants set by boundary conditions.

5Use sin θ =
√

1− x2 and dx
dθ = − sin θ to see that for an arbitrary function f(x),

df
dθ = df

dx
dx
dθ = − sin θ dfdx = −

√
1− x2 dfdx .
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The total solution for ψ is thus found to be:

ψ = [a1j`(krr) + a2y`(krr)] · [b1P
m
` (cos θ) + b2Q

m
` (cos θ)] · [c1e

jmφ + c2e
−jmφ].

(2.109)

However, from Appendix C, the auxiliary electric and magnetic vector po-

tentials are related to ψ by F r = rψF and Ar = rψA, respectively. So the

total solution for the electric and magnetic vector potentials are:

Fr = r [a1J`(krr) + a2Y`(krr)] · [b1P
m
` (cos θ) + b2Q

m
` (cos θ)] · [c1e

jmφ + c2e
−jmφ]

(2.110)

Ar = r [a1J`(krr) + a2Y`(krr)] · [b1P
m
` (cos θ) + b2Q

m
` (cos θ)] · [c1e

jmφ + c2e
−jmφ].

(2.111)

2.4.2 Interpretation of the Solutions

We begin interpreting Equations 2.110-2.111 by examining the angular com-

ponents. Rodrigues’s formula gives the ordinary Legendre polynomials:

P`(x) =
1

2``!

d`

dx`
(
x2 − 1

)`
. (2.112)

The associated Legendre polynomials of the first kind are:

Pm
` (x) =

(−1)m

2``!
(1− x2)m/2

d`+m

dx`+m
(
x2 − 1

)`
. (2.113)

It is clear from the derivative in the above equation that Pm
` (x) = 0 if m > `.

Unlike Legendre polynomials of the first kind, Legendre polynomials of the

second kind do not have a convenient analytical representation and can only

be expressed as a power series. However, they do have the property that if

m 6= 0, Qm
` (x)→∞ as x→ ±1.

Because Qm
` (cos θ) become infinite at the poles (where cos θ = 1), if the

region of solution contains either the positive or negative z axis, the solution

must consist purely of Legendre polynomials of the second kind, Pm
` (cos θ).

These are the only types of solutions that will be considered in this work. To-

gether, the angular components of the solution are the well-known spherical

harmonic functions.

Y m
` (φ, θ) = Pm

` (cos θ)ejmφ. (2.114)
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It can be shown that ` is the total angular momentum of the mode, while m

is the projection of the angular momentum on the z axis. All the spherical

harmonics with the same ` are in fact the same function, rotated about the

origin.

For the radial portion of the solutions, it is convenient to work with the

Riccatti-Bessel functions, defined as:

Ĵ`(x) = xj`(x) =

√
πx

2
J`+ 1

2
(x) (2.115)

Ŷ`(x) = −xy`(x) = −
√
πx

2
Y`+ 1

2
(x) (2.116)

Ĥ
(1)
` (x) = xh

(1)
` (x) =

√
πx

2
H

(1)

`+ 1
2

(x) (2.117)

Ĥ
(2)
` (x) = xh

(2)
` (x) =

√
πx

2
H

(2)

`+ 1
2

(x). (2.118)

Depending on the author, Ĵm or Ŷm may be referred to in the literature as

Sm and Cm, respectively. With this definition, Equations 2.110 and 2.111

become:

Fr =
[
a1Ĵ`(krr) + a2Ŷ`(krr)

]
· [b1P

m
` cos θ) + b2Q

m
` (cos θ)] · [c1e

jmφ + c2e
−jmφ]

(2.119)

Ar =
[
a1Ĵ`(krr) + a2Ŷ`(krr)

]
· [b1P

m
` cos θ) + b2Q

m
` (cos θ)] · [c1e

jmφ + c2e
−jmφ].

(2.120)

The interpretation of these functions is very similar to the cylindrical Bessel

functions. Ŷ` becomes infinite at the origin while Ĵ` does not. The functions

Ĥ(1) and Ĥ(2) represent outwardly and inwardly traveling waves.

2.4.3 Reflection Coefficients in Spherical Coordinates

Reflection coefficients in spherical coordinates are very much like those in

cylindrical coordinates with m=0. From phase matching considerations, `

and m must be conserved upon reflection or transmission. All of the fields,
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Table 2.6: Components of TEr field. Here B̂` stands in for any one of the
Riccati-Bessel functions Ĵm, K̂m, Ĥ

(1)
m , or Ĥ

(2)
m .

Er 0 0

Eθ −1
ε

1
r sin θ

∂Fr

∂φ
− jm
εr sin θ

B̂`(kr)P
m
` (cos θ)ejmφ

Eφ
1
ε

1
r
∂Fr

∂θ
1
εr
B̂`(kr)

d
dθ
Pm
` (cos θ)ejmφ

Hr − 1
jωµε

(
∂2

∂r2
+ k2

)
Fr − k2

jωµε

(
B̂′′` (kr) + B̂`(kr)

)
Pm
` (cos θ)ejmφ

Hθ − 1
jωµε

1
r
∂2Fr

∂r∂θ
− k
jωµεr

B̂′`(kr)
d
dθ
Pm
` (cos θ)ejmφ

Hφ − 1
jωµε

1
r sin θ

∂2Fr

∂r∂φ
−mk
ωµε

1
r sin θ

B̂′`(kr)P
m
` (cos θ)ejmφ

Table 2.7: Electric and magnetic fields of TMr solutions derived from the
magnetic vector potential. Here B̂` stands in for any one of the
Riccati-Bessel functions Ĵm, K̂m, Ĥ

(1)
m , or Ĥ

(2)
m .

Er − 1
jωµε

(
∂2

∂r2
+ k2

)
Ar − k2

jωµε

(
B̂′′` (kr) + B̂`(kr)

)
Pm
` (cos θ)ejmφ

Eθ − 1
jωµε

1
r
∂2Ar

∂r∂θ
− k
jωµεr

B̂′`(kr)
d
dθ
Pm
` (cos θ)ejmφ

Eφ − 1
jωµε

1
r sin θ

∂2Ar

∂r∂φ
−mk
ωµε

1
r sin θ

B̂′`(kr)P
m
` (cos θ)ejmφ

Hr 0 0

Hθ
1
µ

1
r sin θ

∂Ar

∂φ
jm

µr sin θ
B̂`(kr)P

m
` (cos θ)ejmφ

Hφ − 1
µ

1
r
∂Ar

∂θ
− 1
µr
B̂`(kr)

d
dθ
Pm
` (cos θ)ejmφ

incident, reflected, and transmitted, take the following form:

Fr = B̂`(kr)P
m
` (cos θ)ejmφ (2.121)

Ar = B̂`(kr)P
m
` (cos θ)ejmφ (2.122)

The field components corresponding to these two waves are given in Tables

2.6 and 2.7.

Consider the modes where m = 0. For these modes, the Eθ and Hφ com-

ponents are zero in all layers for TEr modes and the Eφ and Hθ components

are zero in all layers for TMr modes. As a result, TE and TM modes are

not mixed by reflection or transmission at boundaries, and pure TEr and

TMr modes exist. The TE reflection and transmission coefficients may be

found by writing equations for the continuity of the tangential electric and
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magnetic fields. The continuity equations for Eφ and Hθ are

1

n2
1

[
B̂`,i(k1R) + rTEB̂`,r(k1R)

]
= tTE

1

n2
2

B̂`,t(k2R) (2.123)

1

n1

[
B̂′`,i(k1R) + rTEB̂′`,r(k1R)

]
= tTE

1

n2

B̂′`,t(k2R). (2.124)

Solving these equations provides the reflection and transmission coefficients

for TEr modes, which are:

rTE = −
n1

B̂`,t(k2R)

B̂′
`,t(k2R)

− n2
B̂`,i(k1R)

B̂′
`,i(k1R)

n1
B̂`,t(k2R)

B̂′
`,t(k2R)

B̂′
`,r(k1R)

B̂′
`,i(k1R)

− n2
B̂`,r(k1R)

B̂′
`,i(k1R)

(2.125)

tTE =
n2

n1

B̂`,i(k1R)

B̂′
`,i(k1R)

− B̂`,r(k1R)

B̂′
`,r(k1R)

B̂`,t(k2R)

B̂′
`,i(k1R)

− B̂`,r(k1R)

B̂′
`,r(k1R)

B̂′
`,t(k2R)

B̂′
`,i(k1R)

. (2.126)

Similarly for TM fields, the continuity equations for Hφ and Eθ are

B̂`,i(k1R) + rTM B̂`,r(k1R) = tTM B̂`,t(k2R) (2.127)

1

n1

[
B̂′`,i(k1R) + rTM B̂′`,r(k1R)

]
= tTM

1

n2

B̂′`,t(k2R). (2.128)

Solving for the reflection and transmission coefficients, the results are:

rTM = −
n1

B̂`,i(k1R)

B̂′
`,i(k1R)

− n2
B̂`,t(k2R)

B̂′
`,t(k2R)

n1
B̂`,r(k1R)

B̂′
`,i(k1R)

− n2
B̂`,t(k2R)

B̂′
`,t(k2R)

B̂′
`,r(k1R)

B̂′
`,i(k1R)

(2.129)

tTM = −
n2

B̂`,i(k1R)

B̂′
`,i(k1R)

− n2
B̂`,r(k1R)

B̂′
`,r(k1R)

n1
B̂`,r(k1R)

B̂′
`,r(k1R)

B̂′
`,t(k2R)

B̂′
`,i(k1R)

− n2
B̂`,t(k2R)

B̂′
`,i(k1R)

. (2.130)

B̂`,i, B̂`,r, and B̂`,t are place holders for the actual functions which are

appropriate to a given situation. For example, in looking at the reflection

from an outer to an inner layer, B̂`,i would be Ĥ
(2)
` , B̂`,r would be Ĥ

(1)
` , and

B̂`,t would be Ĥ
(2)
` (or Ĵ` if medium p was the innermost layer).

The reflection and transmission coefficients derived for the m=0 are in fact

valid for any m. A simple argument of symmetry will prove this fact. The

reflection and transmission coefficients should not change if the coordinate
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system is rotated, as the physical wave is left unchanged. Recall that all

Y m
` (φ, θ) functions are equivalent, but rotated. The coordinate system can

then be rotated to transform in between them, and, therefore, the reflection

coefficients must remain unchanged.

2.5 Conclusion

In this chapter, the reflection and transmission coefficients at single interfaces

have been derived. In the next two chapters, it will be shown how to take

those reflection coefficients for structures which contain multiple interfaces

and use that knowledge to understand scattering, waveguides, and resonators.
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CHAPTER 3

ANALYSIS OF SCATTERING

3.1 Introduction

Multilayer dielectric coatings are an essential component of modern optical

technology. Dielectric mirrors with controlled dispersion characteristics must

be carefully designed for femtosecond lasers [15, 16, 17]. Coating design

techniques all go through a numerical optimization phase at some point in

the algorithm, requiring repeated calculation of properties such as reflection,

transmission, and dispersion [18, 19]. It is important in this design process

that these calculations be fast and accurate.

The most common method for analyzing multilayer structures is the trans-

fer matrix formalism [20] (also referred to as “transmission” or “ABCD”

matrices in the literature). While in many cases it may accurately calcu-

late the magnitude and phase of the reflection, finding phase derivatives

requires the use of discrete derivative approximations, which can be both

time-consuming and inaccurate. The transfer matrix formalism has been re-

cast into a coupled-mode theory [21], which was later refined into a method

which is both exact and scales linearly with the number of layers [22]. How-

ever, with any transfer matrix method, if loss is present or the field is evanes-

cent in any layers, the transfer matrix problem may become ill-conditioned,

resulting in a loss of accuracy.

In almost any introductory textbook on lasers, one may find an analysis

of the transmission and reflection of light by a Fabry–Perot etalon based

on Airy’s analysis [11]. In these analyses the reflected field is written as

a sum of multiply reflected amplitudes, each of which represents a portion

of the field which has made a different number of round trips through the

center medium. Previous work extending the reflection method to multilayer

systems [23, 7] has resulted in expressions for the total reflectivity which
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cannot be efficiently evaluated by computer and, in the case of Pai et al., are

not exact.

In this chpater it will be shown how to extend the Fabry–Perot analysis to

multilayer structures and how to modify the technique to compute the phase

derivatives of a structure exactly. The algorithm itself is analyzed, showing

its computation complexity and the posedness of the problem. A software

implementation of the new method is discussed.

3.2 Analysis

3.2.1 Mirror Reflectivity and Phase

Consider the three-layer dielectric structure shown in Figure 3.1a. The total

reflected field is found by summing the geometric series:

r = r12 + r23t12t12e
j2φ
(
1 + r21r23e

j2φ + r2
21r

2
23e

j4φ + . . .
)

= r12 +
r23t12t21e

j2φ

1− r21r23ej2φ
, (3.1)

where rmp = nm−np

nm+np
, tmp = 2nm

np+nm
, and φ is the phase accumulated propagat-

ing through the center layer.

The above analysis is difficult to directly extend to structures containing

more than three layers because it is necessary to sum over every possible path.

To keep track of the reflections, a state diagram may be constructed, shown

in Figure 3.1b. The diagram shows the amplitude and phase accumulated

as the field propagates to neighboring points. These amplitudes and phases

result from reflection, transmission, and propagation. The state diagram

may then be translated into a transition matrix, which relates the field at a

set of points in the mirror with the field at those same points after the light

has undergone a reflection or transmission. For the one-layer structure with
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Figure 3.1: (a) Physical picture of three layer dielectric structure (b)
Equivalent state diagram.

states labeled as shown in Figure 3.1b, the transition matrix is:

T =


1 r12 t21 0 0

0 0 0 0 0

0 0 0 r23e
jφ1 0

0 t12e
jφ1 r21e

jφ1 0 0

0 0 0 t23 1

 . (3.2)

Note that the exact positions of the points of the state diagram within the

layers are irrelevant. For convenience, the positions shown were chosen so

that T may be written as a product of diagonal matrix, containing the phase

terms, and a sparse matrix, which comprises the transmission and reflection

coefficients. Most of the frequency dependence comes from the variation of

the phase terms, while the reflection and transmission coefficients are weakly

dependent on frequency. Additional states may also be inserted anywhere in

the structure without affecting the calculated field at the original points.

The transition matrix analysis is highly analogous to the theory of Markov

chains (see Appendix A), from which the notation and several theorems used

31



in this analysis are taken. In Markov language, states 1 and 5 of Figure 3.1 are

known as absorbing states because after the field enters one of them, it may

not return to any other states. The remaining states are known as transient

states. The field in the transient states will eventually go to zero after a large

number of reflections, as all the field accumulates in the absorbing states.

Consider the submatrix formed by transitions among the transient states.

This matrix will be labeled the Q matrix. For the diagram of Figure 3.1, the

resulting matrix is:

Q =

 0 0 0

0 0 r23e
jφ1

t12e
jφ1 r21e

jφ1 0

 . (3.3)

For the purpose of calculating mirror reflectivity, the mirror will be ex-

cited by the rightward traveling wave immediately outside the first dielectric

layer. For simplicity, a unit excitation may be assumed E0 = (1, 0, 0...0)T .

The column vector begins with state 2 because only the transient states are

considered. The field after one step through the system is:

E1 = QE0 (3.4)

and in general, the field vector after k transitions is:

Ek = QkE0. (3.5)

The total field vector is the sum of the field after every step:

E(0) = E0 + E1 + E2 + . . .

=
(
IE0 +QE0 +Q2E0 + . . .

)
=

(
I +Q+Q2 + . . .

)
E0

= (I −Q)−1E0

= NE0, (3.6)

where N ≡ (I − Q)−1. The N matrix has the interpretation that the Nmp

element is the field at point m if the structure is excited with unit amplitude

at point p. The complex column vector E(0) is interpreted to be the strength

of the field at all of the points in the state diagram in Figure 3.1.
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The terms in the T matrix which couple the transient states to the ab-

sorbing states are referred to as the coupling matrix. In the example used so

far, the coupling matrix is:

C =

(
r12 t21 0

0 0 t23

)
(3.7)

The field at the two absorbing states of the mirror is:

Ert = CNE0, (3.8)

where Ert is a column vector comprising the reflected and transmitted fields.

This formalism may be simplified by adding two imaginary layers, one on

each end of the structure and with the same refractive index as the sur-

rounding media, as shown in Figure 3.2. Physically, the layers have no effect

because they have zero thickness. Mathematically, these two layers have the

effect of reducing the coupling matrix to

C =

(
0 1 0

0 0 1

)
. (3.9)

as r11 = 0 and t11 = t55 = 1. Pairs of states in Figure 3.2b are highlighted by

having red, green, orange, and blue outlines. Each of these pairs of states is

separated by zero distance and an interface with no change in the refractive

index. The electric fields are therefore identical for each pair of points. Effec-

tively, adding the zero-thickness layers created two transient states with the

same electric field as the absorbing states. The reflection and transmission

coefficients can therefore be read directly from the corresponding elements

of the E(0) vector.

R̄(0) =E
(0)
2 (3.10)

T̄ (0) =E
(0)
end. (3.11)

The subscripts index the vector E(0) (starting from 1).
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Figure 3.2: (a) Three-layer mirror structure with state diagram
superimposed on top of it. (b) Same mirror structure with zero-thickness
layers (indicated by the dashed lines) inserted outside the front and rear
boundary of the mirror. Because the change in refractive index is zero,
t11 = t55 = 1 and r11 = r55 = 0.

3.2.2 Mirror Dispersion

In applications involving short pulses, the second and higher-order deriva-

tives of the phase, which primarily determine how a mirror distorts pulses

[24], are as important as the magnitude of the reflectivity itself. The pri-

mary source of dispersion in a dielectric mirror is the structure of the mirror

(layer thicknesses and indices of refraction). In addition, the materials which

comprise the mirror add dispersion. The following analysis will include both

effects.

For this discussion, it will be assumed that index-matched, zero-thickness

layers, discussed at the end of the last section, have been inserted. This

allows one to read the reflection and transmission coefficients directly from
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E(0). Recall the vector of electric fields is given by:

E(0) = NE0. (3.12)

Taking derivatives of the above equation is the first step to finding the mirror

dispersion. The vector of the incident field, E0, is a constant with respect

to frequency and therefore its derivative is zero. Then we have only to find

the derivatives of N . Using the formula d
dx
A−1(x) = A−1 dA

dx
A−1, the first,

second, and third derivatives are:

E(1) = NQ(1)NE0

= NQ(1)E(0) (3.13)

E(2) = NQ(2)E(0) + 2NQ(1)NQ(1)E(0)

= NQ(2)E(0) + 2NQ(1)E(1) (3.14)

E(3) = NQ(3)NE0 + 3NQ(2)NQ(1)NE0

+3NQ(1)
(
2NQ(1)E(1) +NQ(1)NQ(1)E(0)

)
= NQ(3)E(0) + 3NQ(2)E(1) + 3NQ(1)E(2), (3.15)

where Equations 3.13, 3.14, and 3.15 have been rearranged to avoid redun-

dant calculations.

The derivatives of the matrix Q are simply the derivatives of the individual

elements of the matrix. Every nonzero element of the Q matrix takes the

form rmpe
jφmp or tmpe

jφmp , depending on whether the term is a reflection

or transmission term, respectively. Without loss of generality, consider a

reflective term, such as

Qmp = rmpe
jφmp . (3.16)

The derivatives of this term are:

Q(1)
mp = ejφmp

[
r′mp + jφ′mprmp

]
(3.17)

Q(2)
mp = ejφmp

[
r′′mp + j2φ′mpr

′
mp + (jφ′′mp − φ′2mp)rmp

]
(3.18)

Q(3)
mp = ejφmp

[
r′′′mp + j3φ′mpr

′′
mp + 3(jφ′′mp − φ′2mp)r′mp

+(jφ′′′mp − jφ′3mp − 3φ′mpφ
′′
mp)rmp

]
. (3.19)
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where the terms have been grouped by derivatives of rmp.

The derivatives of the reflection and transmission coefficients, valid at any

angle of incidence, will be discussed in Section 3.2.4. Here the derivatives of

the phase at normal incidence will be discussed. The phase of propagation

of the mpth element of the matrix is

φmp(ω) =
ωnmp(ω)Lmp

c
, (3.20)

where ω is the angular frequency of the light, Lmp is the thickness of the layer,

c is the speed of light in vacuum, and the index of refraction has been written

nmp(ω) to emphasize that is a function of frequency. Taking derivatives of

Equation 3.20, one finds:

φ′mp =
Lmp
c

(
nmp + ω

dnmp
dω

)
(3.21)

φ′′mp =
Lmp
c

(
2
dnmp
dω

+ ω
d2nmp
dω2

)
(3.22)

φ′′′mp =
Lmp
c

(
3
d2nmp
dω2

+ ω
d3nmp
dω3

)
(3.23)

and, in general,

φ(q)
mp =

Lmp
c

(
q
dq−1n

dωq−1
+ ω

dqn

dωq

)
. (3.24)

The functional dependence of the phase on ω comes primarily from the change

in wavelength with respect to frequency, which corresponds to the left term

in Equation 3.21. The right term corresponds to the change in index of

refraction with frequency, known as dispersion, which is a much smaller effect.

Dispersion also affects the derivatives of rmp and tmp, as will discussed in

Section 3.2.4. This is an even smaller effect.

As shown in Appendix B, the phase derivatives can be found from the

36



total derivatives by:

rω = R̄
(1)
ω,r̂ (3.25)

θω =
1

r
R̄

(1)

ω,θ̂
(3.26)

rωω = R̄
(2)
r̂ + rθ2

ω (3.27)

θωω =
1

r

(
R̄

(2)

ωω,θ̂
− 2rωθω

)
(3.28)

θωωω =
1

r

(
R̄

(3)

ωωω,θ̂
− 3rωθωω − 3rωωθω + rθ3

ω

)
, (3.29)

where R̄
(m)
ρ and R̄

(m)
θ are the parallel and perpendicular projections of the

change in reflectivity on the unperturbed reflectivity. Equations 3.26, 3.28,

and 3.29 represent exact formulas for the first three phase derivatives of the

mirror reflectivity.

3.2.3 Optimized Calculation

While the method described in the past two sections produces correct results,

it inefficiently requires calculating the full inverse of (I −Q). In this section,

it will be shown how to translate the formulas of the last two sections into the

form Ax = b, where A is a matrix and x and b are column vectors. Equations

of this form may be solved with sparse matrix methods, without the need

to explicitly calculate any inverse, significantly increasing the speed of the

calculation.

Recall Equation 3.6, where it was found that E(0) = NE0 = (I −Q)−1E0.

This equation can be altered by multiplying by N−1 = (I −Q) so that

(I −Q)E(0) = E0 (3.30)

is obtained. Here E0 (the input field) is known and E(0) is unknown. Simi-

larly, Equations 3.13-3.15 can be rearranged to yield:

(I −Q)E(1) = ∆Q(1)E(0) (3.31)

(I −Q)E(2) = ∆Q(2)E(0) + 2∆Q(1)E(1) (3.32)

(I −Q)E(3) = ∆Q(3)E(0) + 3∆Q(2)E(1) + 3∆Q(1)E(2). (3.33)
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Because of the sparse, nearly diagonal nature of I−Q, these linear equations

can be solved efficiently with a sparse matrix solver.

3.2.4 Reflectivity at Non-Normal Incidence

Consider a plane wave incident on a dielectric stack at an angle. Compared

with the theory reflection at normal incidence, there are two changes which

must be taken into account compared to the theory for reflection at normal

incidence: First, the reflection and transmission at each layer are altered,

and second, the phase from propagating through each layer changes.

Let the x̂− ẑ plane be the plane of incidence and without loss of generality,

let x̂ be perpendicular to the surface of the mirror. The angle of incidence, θ,

is specified in the first medium. It will be more convenient to work with kz0 =

n0 sin(θ), rather than θ. Due to phase-matching considerations, kz0 must be

the same in all layers. Fresnel’s equations for reflection and transmission

coefficients coefficients for ŝ polarized light are:

rTEmp (kz, ω) =
kxm − kxp
kxm + kxp

(3.34)

tTEmp (kz, ω) =
2kxm

kxm + kxp
, (3.35)

while the corresponding coefficients for p̂ polarized light are:

rTMmp (kz, ω) =
n2
mkxp − n2

pkxm

n2
pkxm + n2

mkxp
(3.36)

tTMmp (kz, ω) =
2nmnpkxm

n2
pkxm + n2

mkxp
, (3.37)

where m indexes each layer and kxm =
√
k2
m − kz0. This accounts for the

change in reflectivity at each interface with respect to angle of incidence.

Next we must account for how the phase of each layer changes at various

angles of incidence. The phase of propagating through the mth layer is:

φm = Lmkxm

= Lm

√
k2
m − k2

z0. (3.38)

The derivatives of the reflection and transmission coefficients and phase
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will now be discussed. These quantities are necessary to compute Equa-

tions 3.17-3.19. For the reflection coefficients, taking analytical derivatives

of Equations 3.34-3.37 results in very long expressions. For computational

purposes, it is convenient to define f as the numerator and g as the denomi-

nator (whose derivatives are obvious) and the combine the expressions to get

the total derivatives with the following expressions:

rmp =
f

g
(3.39)

r′mp =
f ′

g
− fg′

g2
(3.40)

r′′mp =
f ′′

g
− 2f ′g′ + fg′′

g2
+

2fg′2

g3
(3.41)

r′′′mp =
f ′′′

g
− fg′′′ + 3f ′g′′ + 3f ′′g′

g2
+

6f ′g′2 + 6fg′g′′

g3
− 6fg′3

g4
. (3.42)

The derivatives of Equation 3.38 are now taken with respect to frequency.

γ′m =
dφm
dω

= Lm
kmk

′
m − kz0k′z0

(k2
m − k2

z0)1/2
(3.43)

γ′′m =
d2φm
dω2

= Lm
[
k3
mk
′′
m − k2

z0k
′2
m − kz0k′′z0k2

m + 2kz0k
′
z0kmk

′
m − k2

z0kmk
′′
m

−k′2z0k2
m + k3

z0k
′′
z0

]
/(k2

m − k2
z0)3/2 (3.44)

γ′′′m =
d3φm
dω3

= Lm
[
3(kmk

′
m − kz0k′z0)3

− 3(k2
m − k2

z0)(kmk
′
m − kz0k′z0)(kmk

′′
m + k′2m − kz0k′′z0 − k′2z0)

+ (k2
m − k2

z0)2(kmk
′′′
m + 3k′mk

′′
m − kz0k′′′z0 − 3k′z0k

′′
z0)
]
/(k2

m − k2
z0)5/2,

(3.45)

where km, k′m, k′m, and k
(3)
m are defined in Equations 3.20-3.23. If the γm’s

from Equations 3.38-3.45 replace the φmp’s in Equations 3.17-3.19, then the

phase derivatives at non-normal incidence may be obtained. There is a sub-

tlety in using these equations: If dispersion is to be simulated at a fixed angle

of incidence, then the derivatives of kz0 must be retained, as the wavevector

and its projection onto the ẑ-axis increases with frequency. However, if dis-

persion is to be calculated at fixed kz0 (such as in calculations for a waveguide

structure), then all the derivatives of kz0 should be set to zero.
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3.2.5 Lossy Interfaces, Lossy Materials, and Anisotropic
Media

Scattering at interfaces is easily introduced into the Markov formalism. Nowhere

in the derivations above was it required that rij and tij be subject to the con-

straint: 1 + rmp = tmp, i.e. that all of the energy of an incident plane wave is

reflected or transmitted as plane waves. Likewise loss materials with a com-

plex index of refraction are easily introduced into the Markov formalism and

the appropriate reflection and transmission coefficients. Finally, anisotropic

media may be included by adding two additional states per layer. The reflec-

tion and transmission coefficients must be changed. The polarization states

will be coupled by propagation through the anisotropic layers.

3.3 Computational Results and Discussion

3.3.1 Computational Complexity

In this section the run time complexity of the algorithm will be examined.

For this section, let n be equal to the total number of layers in the mirror

structure and d be the order of the largest derivative to be calculated. The

matrix (I − Q) is a square, sparse matrix with a side dimension of 2n + 1.

All of its nonzero terms are contained within a pentadiagonal matrix. Hence

the number of nonzero terms is linear in the number of mirror layers

First, consider the näıve Markov method, in which the full N matrix must

be computed. Because the starting matrix (I-Q) is sparse, the inversion pro-

cess requires O(n2) floating point operations [25]. To find the dth derivative,

sums such as those in Equations 3.13-3.15 must be computed. The number of

terms in the sum is linear in the order of the derivative to be computed, but

all the d − 1 derivatives must be known, and because is matrix is full, each

multiplication takes O(n2) time. The total complexity is therefore O(n2d2).

For the improved algorithm presented in Section 3.2.3, one simply needs

to solve Equation 3.30, where E0 is known and E is unknown, which requires

O(n) time [25]. Computing the dth derivative involves computing sums like

those seen on the right sides of Equations 3.32 and 3.33. The number of

terms in these sums is linear in the order of the derivative being calculated
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and requires knowledge of the last d − 1 derivatives. In this case the ma-

trices are sparse, however, so that matrix multiplication and addition may

be accomplished in linear time. The computation complexity is therefore

O(nd2). For computing derivatives fourth order and lower, it has been found

that the time taken in solving the linear system overwhelmingly dominates

the time necessary to multiply the matrices. The solution of one linear sys-

tem is required per order of derivative. For low order derivatives then, the

computational complexity scales as O(nd).

3.3.2 Implementation and Validation

The Markov algorithm was implemented in MATLAB. It utilizes the built-in

sparse matrix solver, mldivide. The code is available at Matlab Central.1 In

order to examine the effects of various approximations, the program is capa-

ble of calculating phase derivatives of up to third order exactly, including the

derivatives of the reflection and transmission coefficients up to third order.

The implementation was validated by comparing output from the program

with analytical results, specifically, the predictions of the exact expression in

[20] for the reflection from a finitely repeating, two-layer structure. Compar-

isons between the two were extensive and have included variations in layer

thicknesses, refractive indices, angle of incidence, and polarization of the

optical excitation field.

Representative results are illustrated in Figure 3.3 for a periodic mirror

structure comprising 100 pairs of SiO2-TiO2 layers in which the SiO2 and

TiO2 layer thicknesses are 185 nm and 70 nm, respectively. This entire

mirror is assumed to be bounded by SiO2. Light is incident at 45◦ with p-

polarization. Panels (a), (b), and (c) of Figure 3.3 present the relative error,

in the 650-800 nm wavelength region, between the first, second, and third

phase derivatives (respectively) calculated by the Markov-Airy formalism

and those given by the exact expression given in [20] for the reflectivity of an

alternating two-layer mirror structure. It is evident that, for the first phase

derivative (Figure 3.3(a)), the difference between the result calculated by the

Markov method and that given by the analytic expression [20] is near the

limit of the precision of the machine. However, as the order of the phase

1http://www.mathworks.com/matlabcentral/fileexchange/47360-markov-airy-mirror-
zip
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Figure 3.3: Relative error between the phase derivatives calculated by the
Markov-Airy formalism and an analytic expression [20]. Results are given
for the: (a) first, (b) second, and (c) third phase derivatives, and a mirror
structure consisting of 100 pairs of SiO2/TiO2 flims. The thicknesses of the
SiO2 and TiO2 layers are 185 nm and 70 nm, respectively, and the entire
mirror structure is assumed to be bounded by SiO2.

derivative increases, the error associated with the difference between the two

theoretical formulations rises. The spikes which appear in the relative error

in Figure 3.3 occur at wavelengths where the exact value passes through zero.

More comprehensive tests of the Markov-Airy formalism were undertaken

with the goal of evaluating several approximations commonly adopted in the

literature when phase derivatives are calculated for an ultra-broadband mir-

ror. As one example, the design for a SiO2-Nb2O5, dispersion-compensated

mirror of [26] was adopted and the material parameters were assumed to be

those of [27]. Figure 3.4 plots the relative errors (| (approx−exact)
exact

|) in the phase

derivatives of under various approximations. Results are presented here for
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the 700-900 nm wavelength interval at normal incidence. For each of the

lowest three phase derivatives (Figure 3.4(a)-(c) for the first, second, and

third derivatives, respectively), the effect on the relative error of various as-

sumptions regarding the wavelength dependence of the refractive index (n)

or the reflectivity (r) of an individual mirror layer is illustrated by a separate

curve. In the figure, the first, second and third derivatives of n with respect

to optical frequency are denoted as n′, n′′ , and n′′′, respectively, and when

one derivative (such as n′′) is set to zero, all higher orders are neglected as

well. Similar comments apply to the derivatives of r.

One notices immediately in Figure 3.4 that ignoring the derivatives of n

to the same order as the order of the phase derivative in question results in

an unacceptably large error (10−2). Furthermore, neglecting r′ in the calcu-

lations is reasonable when determining the first and second phase derivatives

(Figure 3.4(a) and (b), respectively), but retaining r′ is essential when calcu-

lating the third order phase derivative. Similarly, the penalty resulting from

ignoring the second and third derivatives of r is generally small, typically

leading to a relative error of <10−3.

A more severe impact of neglecting higher derivatives of r is observed if

a broadband mirror has fewer layers. Consider, for example, a mirror com-

prising a SiO2-TiO2 quarter wave stack. If the angle of incidence is assumed

to be 45 degrees with s-polarization, the mirror has 3 layers (SiO2-TiO2-

SiO2), and the central wavelength for the mirror’s reflectivity is chosen to be

800 nm, then the influence of the r′′ and r′′′ on the accuracy of the calcula-

tions is magnified. Because this mirror is shorter than that of Figure 3.4, a

greater fraction of the dispersion supplied by the mirror is attributable to the

frequency-dependent characteristics of optical reflection and transmission at

the layer interfaces. This conclusion should be borne in mind when examin-

ing thin optical structures and, in particular, calculating the group velocity

and group velocity dispersion for a planar waveguide. It should also be noted

from Figures 3.4 and 3.5 that neglecting any of the derivatives of n leads to

large relative errors.
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Figure 3.4: Relative errors calculated for the: (a) first, (b) second, and (c)
third phase derivatives of the SiO2-Nb2O5 chirped mirror structure of [26].
For each phase derivative, the impact on the relative error of assumptions
made concerning the wavelength dependence of n or r for an individual
material layer is shown by separate curves. All calculations assume normal
incidence. In part (c), the n′′′ = 0 curve entirely covers the r′ = 0 curve.

3.3.3 Posedness of Problem

The approach underlying the transfer matrix method is first solving Maxwell’s

equations in each individual layer of a mirror and subsequently joining the so-

lutions through the boundary conditions. If a particular layer is lossy, or the

optical field is evanescent in that layer, then the field will comprise two waves,

one of which decays exponentially and another that grows exponentially. Er-

ror introduced to the calculated forward/backward ratio of the propagating

waves will also grow exponentially as the forward wave propagates through

the layer (and subsequent layers). In contrast, the Markov-Airy formalism
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Figure 3.5: Calculations, similar to those of Figure 3.4 for the relative
errors associated with phase derivative calculations (those for the first,
second, and third derivatives are shown in panels (a), (b), and (c)
respectively) but for a mirror comprising only 60 SiO2-TiO2 layer pairs.
The center wavelength was chosen to be 800 nm and the angle of incidence
in this case is assumed to be 45 degrees.

accounts for reflection and transmission at each layer interface. Since evanes-

cent and lossy optical fields decay exponentially in each layer, the associated

error will also not grow as the optical field traverses the mirror structure.

The posedness of a problem can be quantified by the condition number

[28] which represents an upper bound on the multiplication of error when

a linear system is solved. Furthermore, the log (base 10) of the condition

number is interpreted as an upper bound on the number of decimal digits

lost in performing computations on the system. In an effort to assess the

conditioning of both the transfer matrix and the Markov-Airy formalisms,

several additional mirror structures were examined. Figure 3.6 compares
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the number of digits lost in numerical simulations of a mirror comprising

200 SiO2/Ta2O5 layer pairs deposited onto a glass (n=1.5) substrate. The

calculations assume SiO2 and Ta2O5 layer thicknesses of 137.9 nm and 88.9

nm, respectively, and the angle of incidence is varied from zero to 90 degrees.

Results are shown for both TE and TM polarization of the incident optical

wave, and it is apparent that both the transfer matrix and Markov-Airy

methods are well-posed when the angle of incidence is < 70◦. At higher

angles, however, the Markov formalism continues to be accurate but the

condition number of the transfer matrix method is unbounded as the angle

of incidence approaches 90◦.

Figure 3.6: Comparison of the digits lost in computing the optical
characteristics of ultra-broadband mirrors with the transmission matrix
approach (shown in red), as opposed to the Markov-Airy formalism
described here (blue). Shown as a function of the angle of incidence, these
calculations assume the mirror comprises 200 SiO2/Ta2O5 layer pairs
deposited onto a glass (n=1.5) substrate. Incoming light is incident normal
to the multilayer mirror from air: (Top) TE polarization of the incident
optical wave, and (Bottom) TM polarization.
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3.4 Scattering in Cylindrical and Spherical

Coordinates

3.4.1 Introduction

The scattering formalism may also be used to calculate scattering from struc-

tures of cylindrical and spherical symmetry. There are several differences in

scattering from a cylindrical or spherical object as compared to a planar

structure. In planar structures, waves do not scatter among TE and TM

polarizations, but in structures of cylindrical symmetry, those consisting en-

tirely of isotropic materials, they do. Next, because structures of cylindrical

or spherical symmetry contain an origin (the ẑ-axis and origin, respectively),

there are no transmitted fields when calculating the scattering from a wave

propagating toward the origin. Finally, the ‘incident’ wave may comprise

components propagating in both the +r̂ and −r̂ directions. In calculating

the scattering from plane waves, the plane waves are expanded as summa-

tions of Bessel functions of the first type, which can in turn be written as

the sum of Hankel functions of the first and second kind.

In structures of both spherical and cylindrical symmetry, there are two

types of scattering to consider. The first type is scattering of a wave incident

on a shell from the inside. A sample structure and state diagram for this

type of scattering, shown in Figure 3.7a, looks very much like the planewave

version, with curved interfaces. The capital letters and thick lines indicate

that the reflection and transmission coefficients are matrices and that the

states are two-element vectors. The corresponding transition matrix for the

structure is:

Tout =



0 R12 T21 0 0 0

0 0 0 0 0 0

0 0 0 R23 T32 0

0 T12 R21 0 0 0

0 0 0 0 0 0

0 0 0 T23 R32


. (3.46)

The second type of scattering occurs when waves are incident from the outside

onto a structure which contains the origin. An example structure and state

diagram are shown in Figure 3.7b. The transition matrix for this structure
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is:

Tin =


0 R23 T32 0

0 0 0 0

0 0 0 R23

0 R23 R32 0

 . (3.47)

The fact that no transmitted wave exists does not imply that |r| = 1. If the

structure contains any lossy materials, the scattering will be less.

To solve for the reflection coefficients from these structures, the T matrices

must be converted into Q matrices, as was done in the planar case. Once

again, the technique of adding a zero-thickness layer to the structure, shown

in Figure 3.2 for planar coordinates, should be used.

Figure 3.7: (a) State diagram for scattering of an outward-propagating
wave. (b) State diagram for scattering of an inward-propagating wave. The
double lines indicate the two propagating (and intermixing) polarizations.

In spherical coordinates, as well as when m=0 or kz=0 in cylindrical co-

ordinates, polarizations do not mix at interfaces. In these cases, the state

diagrams and transition matrices may be separated into two independent

systems for TE and TM polarizations. The state diagrams will appear iden-

tical to those in Figure 3.7, and the transition matrices will be the same as

those in Equations 3.46 and 3.47, but with the vectors and matrices replaced

by scalar quantities. The appropriate excitation vectors for the outward and

inward waves are

E0,out = (0, 1, 0, | . . . 0, 0)T (3.48)

E0,in = (0, 0| . . . |0, 1, 0)T , (3.49)

respectively. When Equation 3.30 is solved, the reflection coefficient is E
(0)
2
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for the outwardly traveling wave and E
(0)
end−1 for the inwardly traveling wave,

using the same convention to index E(0) as in Equation 3.10.

An approach similar to that used in Equation 2.83 is adopted to calculate

the scattering for m 6= 0 in cylindrical coordinates. The structure is excited

separately with TE and TM waves to determine the coefficients ree, rem, rme,

and rmm. The appropriate excitation vectors are:

ETE
0,out = (0, 0|1, 0|0, 0| . . . |0, 0)T (3.50)

ETM
0,out = (0, 0|0, 1|0, 0| . . . |0, 0)T (3.51)

ETE
0,in = (0, 0| . . . |0, 0|1, 0|0, 0)T (3.52)

ETM
0,in = (0, 0| . . . |0, 0|0, 1|0, 0)T . (3.53)

For example, when QoutE
(0) = ETE

0,out is solved, ree and rem correspond to E
(0)
3

and E
(0)
4 , respectively.

At this point, we would like to step back and discuss the meaning of the re-

flection and transmission coefficients. Consider the scattering of an inwardly

traveling spherical wave incident on a structure of spherical symmetry. When

we say the scattering coefficient is rs, we mean that if the incident electric

vector potential has the form Fr = Ĥ
(2)
` (kr)Pm

` (cos θ)ejmφ, then the reflected

electric vector potential is Fr = rsĤ
(1)
` (kr)Pm

` (cos θ)ejmφ.

The theory of a plane wave scattering from a sphere is known as Mie theory

[29, 30]. A similar theory exists for scattering by cylindrical objects. In Mie

theory, the incident plane wave is written as an infinite sum of Riccati-Bessel

functions of the first kind (Ĵ`), and the scattered field is written as the sum

of Riccati-Hankel functions of the first2 kind Ĥ
(1)
` .

We seek to use the Markov theory of this section to calculate Mie scatter-

ing. To do so, let the reflection coefficient from Ĥ
(2)
` to Ĥ

(1)
` be rs and the re-

flection from Ĵ` to Ĥ
(1)
` be rmie. Consider an imaginary boundary, positioned

just outside the outermost boundary of the structure. Inside the boundary,

the radial part of the electric vector potential takes the form Ĥ
(2)
` (kr)+rsĤ

(1)
` .

Outside the boundary, it takes the form Ĵ`(kr) + rmieĤ
(1)
` . Using Table 2.6

2Sources that use ejωt time dependence will use Ĥ
(2)
` for the scattered field.
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to write the continuity equations for Eφ and Hθ, we find:

Ĵ`(kr) + rmieĤ
(1)(kr) = t

(
Ĥ(2)(kr) + rĤ(1)(kr)

)
(3.54)

Ĵ ′`(kr) + rmieĤ
(1)′(kr) = t

(
Ĥ(2)′(kr) + rĤ(1)′(kr)

)
. (3.55)

When Equations 3.54 and 3.55 are solved for rmie, the result, when simplified

by means of the Wronskian relations3 for Riccati-Bessel functions, is

rmie =
1

2
(rs − 1) . (3.56)

Equation 3.56 also applies for TM reflection coefficients. Furthermore, it

may be used to relate rs to rmie for spheres coated with layers of shells.

There is one last consideration when working in cylindrical and spherical

coordinates. When their argument is complex, H
(1)
m and Ĥ

(1)
` become very

small and H
(2)
m and Ĥ

(2)
` become very large. When calculating reflection and

transmission coefficients from inside a shell where the wave is evanescent, the

resulting reflection and transmission coefficients may be very large or small.

In such cases, not all numerical linear algebra packages will solve Equation

3.30 correctly. To remedy this problem, the fields may be renormalized.

As an example, consider a thin shell in cylindrical coordinates in which the

field is evanescent which extends from radius a to radius b. The outward

propagating part of the field is renormalized to H
(1)
m (ka)/H

(1)
m (ka) = 1 at the

r = a boundary and as H
(1)
m (kb)/H

(1)
m (ka) at the r = b boundary. Similarly,

for the inward propagating part of the field, the field is renormalized as

H
(2)
m (ka)/H

(2)
m (kb) at the r = a boundary and H

(2)
m (kb)/H

(2)
m (kb) = 1 at the

r = b boundary. To calculate the fields inside the structure, the rescaling

must be reversed.

3.4.2 Implementation and Validation

To demonstrate the correctness of the algorithm, code to calculate scatter-

ing from structures possessing cylindrical or spherical symmetry was imple-

mented in MATLAB. The calculated Mie reflection coefficients were com-

3W
{
Ĵ`(z), Ŷ`(z)

}
=1, W

{
Ĵ`(z), Ĥ

(1)
` (z)

}
=j, W

{
Ĵ`(z), Ĥ

(2)
` (z)

}
=−j,

W
{
Ĥ

(1)
` (z), Ĥ

(2)
` (z)

}
=−j2
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pared with the values from a formula valid for a single sphere [30]. A typical

result is shown in Figure 3.8, which presents the calculated Mie reflection

coefficients for TE waves. A similar graph exists for TM waves. Note that

the error is near the limit of the machine’s accuracy.

The code was more thoroughly validated than the one test case (an un-

coated sphere) would suggest. Zero thickness layers were added both inside

and outside the spheres. Mathematically, these layers should not affect the

result, but by adding them, they test the code’s ability to correctly create

transition matrices. Furthermore, the validation of the code for calculat-

ing the propagation constant in cylindrical waveguides and the frequency of

whispering gallery modes (to be discussed in Chapter 4) in spheres serves to

further validate the code.

3.5 Rigorous Coupled Wave Analysis

Scattering from arbitrary structures may be calculated with rigorous coupled

wave analysis (RCWA), which may be formulated in terms of the Markov-

Airy method. The theory of RCWA has been described in detail elsewhere

[6, 31], and the procedure is summarized here: 1) The structure is divided

into many thin layers, such that variations in the cross section in any layer

are much smaller than the wavelength. 2) The eigenmodes of propagation

are then calculated in each layer, commonly with planewave expansions. 3)

At the boundaries, scattering coefficients among the eigenmodes of the two

layers are computed. 4) The scattering coefficients of the individual layers

are combined to determine the scattering of the entire structure, as described

in Reference [31].

Step 4 above may be replaced with the Markov-Airy method. A state

diagram may be drawn and is shown in Figure 3.9. The transition matrix
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Figure 3.8: (a) Mie reflection coefficients for 400 nm light incident upon a
10 µm sphere with refractive index n=1.5. The red curve is the value while
the ‘+’ marks indicate the values computed by the Markov algorithm. (b)
The relative error between the two plots. The large values near ` = 0 are
the result of the reflection coefficient being nearly zero.

for the structure is:

T =



I R12 T21 0 0 0

0 0 0 0 0 0

0 0 0 R23e
jΦ T32e

jΦ 0

0 T12e
jΦ R21e

jΦ 0 0 0

0 0 0 0 0 0

0 0 0 T23 R32 I


. (3.57)

As compared to Equation 3.2, the most obvious difference is that all elements
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are matrices instead of scalars, which is indicated by the use of capital letters.

Rmp and Tmp describe the scattering among the various eigenmodes of two

layers at the boundary between them. The phase factor, Φ , is a diagonal

matrix, comprising the propagation constants of all of the modes multiplied

by the thickness of the layer. The Q matrix is defined similarly to Equation

3.3, representing the transitions between only transient states. The excitation

vector, E0, is computed by expanding the exciting fields in the basis of the

propagating eigenmodes. The field in the entire structure is found by solving

(I −Q)E(0) = E0, (3.58)

where E(0) is expressed in the eigenmode basis of all of the layers.

Figure 3.9: State diagram of RCWA scattering problem.

3.6 Conclusions

A new method for analyzing multilayer optical structures, such as chirped

grating mirrors for ultrafast laser applications, has been presented. Based on

the application of Markov chains to Airy’s analysis, the formalism is exact,

and the computational complexity of the technique scales linearly with both

the number of mirror layers and the order of the highest phase derivative to

be calculated. Exact expressions for the three lowest-order phase derivatives

have been presented, and the impact of simplifying assumptions regarding
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the frequency dependence of n and r have been discussed. Since femtosecond

and attosecond laser technology is placing ever-increasing demands on the

properties of optical components, the Markov-Airy formalism reported here

is promising for the design of multilayer mirror structures offering improved

dispersion characteristics.

An adaptation of the new method to cylindrical and spherical coordinates

has also been discussed. As with planar theory, calculating scattering with

the Markov-Airy method should be a better-posed problem than doing so

with the conventional T-matrix approach.
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CHAPTER 4

ANALYSIS OF WAVEGUIDES AND
RESONATORS

In Chapter 3, it was shown how one might calculate the scattering of free-

propagating light by a multilayer structure. In addition to scattering light,

multilayer structures may also guide light parallel to the layer interfaces

via reflection. These are known as waveguide modes, and may be lossy or

lossless. In structures with cylindrical and spherical symmetry, the light

may be waveguided back upon itself, creating a closed loop. These types of

modes are known as whispering gallery modes. In this chapter, the theory of

how to find waveguide and resonator modes will be discussed in rectangular,

cylindrical and spherical coordinates.

4.1 Lossless Waveguides

Eigenmodes of lossless waveguides propagate without changing shape or am-

plitude. For a waveguide to be lossless, it must be constructed from materials

which are not intrinsically lossy (do not absorb or scatter the light). Further-

more, such waveguides must possess at least one layer with a greater index of

refraction than that of the surrounding medium. With such a layer, it may

guide the light with total internal reflection.

At a fixed frequency, lossless waveguides possesses a finite number of dis-

crete modes, each of which is associated with a propagation constant k
(m)
z .

The propagation constant must be real because if it were complex, the field

would be exponentially growing or decaying along the ẑ direction, which is

in violation of energy conservation. All mode constants must fall into the

range
ωnsub
c

< k(m)
z <

ωnmax
c

, (4.1)

where nsub and nmax are the refractive indices of the substrate and the layer

having the highest index, respectively. If kx ≤ ωnsub

c
, the field would not be
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evanescent in the surrounding medium and if kz ≥ ωnmax

c
, the field could not

propagate in any layer. The solutions will be indexed by m and referred to

as kmx , with m = 0 corresponding to the largest propagation constant. The

physical significance of the mode index m is that it represents the number of

nodes in the solution field.

4.1.1 The Phase Method for Planar Waveguides

The structure of a planar waveguide is shown in Figure 4.1a. Layers of

materials are assumed to be infinite in both the ŷ and ẑ planes. Because the

index profile may be written as the product n(x, y, z) = nx(x)nz(y)nz(z), the

technique of separation of variables may be used.1 Without loss of generality,

the wave may be assumed to propagate in the ẑ direction. In this case, the

field will take the form E(x)ejkzz. Layer thicknesses and indices of refraction

are given and the problem is to find the propagation constants k
(m)
z as well

as the associated electric fields.

For any allowed mode of a planar waveguide, the round trip phase shift

in the transverse direction must be a multiple of 2π. The reason for this

conclusion is that the electric field must be single-valued. If this equation

is applied to a layer indexed by q in the waveguide, the dispersion relation

takes the form:

6 Ra(kz, ω) + 6 Rb(kz, ω) + 2φq(kz, ω) = 2πm, (4.2)

where Ra is the reflection from all of the layers above layer q and including

the phase of layer q, Rb is the reflection from all of the layers below layer q,

and m is the mode index. It will be convenient to choose the layer q which

has the highest index of refraction in the structure, to ensure the field is not

evanescent.

A waveguide may be pictured as two mirrors stuck together. As soon as a

wave is reflected out of one mirror structure, it immediately enters the other

mirror. This point of view enables us to use the results of Chapter 3 to find

the modes of the waveguide and their dispersion. To do so, an imaginary,

zero-thickness layer with an index of refraction greater than or equal to that

of the largest layer is inserted anywhere in the structure (it could even be

1See Section 2.2.1 for details
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Figure 4.1: (a) Planar waveguide with a superimposed Markov state
diagram. (b) The same waveguide showing an imaginary (indicated by the
dashed lines), zero-thickness layer inserted into one of the layers.
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outside the waveguide). This layer defines the boundary between the two

mirrors. Because the layer is of zero thickness, it will not affect the field

distribution and the phase term in Equation 4.2 is zero. The dispersion

relationship becomes

6 Ra(kz, ω) + 6 Rb(kz, ω) = 2πm. (4.3)

Figure 4.1b illustrates the use of Equation 4.3.

Total internal reflection occurs for both TE and TM waves. In planar

structures, polarization is not mixed by reflections at the boundaries. TE and

TM waveguide propagation constants may be located by solving Equation

4.3 with TE and TM reflection coefficients.

The need for the field to remain single-valued will remain even in lossy

waveguides and other coordinate systems. The technique of inserting an

imaginary, high-index layer inside the structure will be used throughout the

remainder of this chapter. Not only does this simplify the equations, but

it also makes the equations share the same form among various coordinate

systems.

4.1.2 Dispersion in Planar Waveguides

In addition to finding the propagation constants themselves, it is interesting

to examine how the propagation constants vary as a function of frequency

(group delay, group delay dispersion, and third order dispersion). These

quantities characterize how a waveguide will delay and temporally distort

light which propagates through it.

Consider the dispersion relations. For the phase method, the dispersion

relationship is:

f(kz, ω) ≡ 6 Ra(kz, ω) + 6 Rb(kz, ω) = 2πm. (4.4)

Because the propagation constant is constrained to be real, the propagation

constants may be found for by sampling f at fixed ω0 in the kz range specified

by Equation 4.1 and looking for intervals where the real and imaginary parts

of f change sign. While this method is simple, it has the disadvantage that

two closely spaced modes may be missed. The more general method to be
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discussed in Section 4.2 may be used. It deterministically finds all roots, but

at the cost of greater complexity and computational effort.

It is not generally possible to solve for the propagation constants as a func-

tion of frequency. To determine the dispersion, implicit partial differentiation

is adopted. For the mth mode, the group delay per unit length is:

dkz
dω

= − fω(k
(m)
z , ω0)

fkz(k
(m)
z , ω0)

. (4.5)

To find the group delay dispersion and the third order dispersion, the total

derivatives of Equation 4.5 must be found. The results are:

d2kz
dω2

=
2fkzfωfkzω − fkzkzf 2

ω − f 2
kz
fωω

f 3
kz

(4.6)

d3kz
dω3

= −f−5
kz

[
3f 3

ωf
2
kzkz + f 4

kzfωωω + 3f 2
kzf

2
ωfkzkzω − fkzf 3

ωfkzkzkz + 6f 2
kzfωf

2
kzω

−3f 3
kzfωfkzωω − 3f 3

kzfkzωfωω − 9fkzf
2
ωfkzkzfkzω + 3f 2

kzfωfkzkzfωω
]
.

(4.7)

For compactness, the arguments of the derivatives of f have been sup-

pressed. All expressions should still be evaluated at (k
(m)
z , ω0).

In order to use Equations 4.5-4.7, the phase and phase derivatives for reflec-

tion of the two ‘mirrors’ which comprise the waveguide must be calculated,

including partial phase derivatives. Following the reasoning in Sections 3.2.2

and 3.2.3, various partial derivatives are taken of Equation 3.12. The terms

are then rearranged to provide systems of equations, which, when solved,

yield the complex derivatives of the reflectivity vector. The derivatives with

respect to frequency are:

(I −Q)E(1)
ω = Q(1)

ω E(0) (4.8)

(I −Q)E(2)
ωω = Q(2)

ωωE
(0) + 2Q(1)

ω E(1)
ω (4.9)

(I −Q)E(3)
ωωω =Q(3)

ωωωE
(0) + 3Q(2)

ωωE
(1)
ω + 3Q(1)

ω E(2)
ωω . (4.10)

Analogous to those for frequency, the partial derivatives with respect to kz
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may be found by solving:

(I −Q)E
(1)
kz

=Q
(1)
kz
E(0) (4.11)

(I −Q)E
(2)
kzkz

=Q
(2)
kzkz

E(0)+ 2Q
(1)
kz
E

(1)
kz

(4.12)

(I −Q)E
(3)
kzkzkz

=Q
(3)
kzkzkz

E(0)+3Q
(2)
kzkz

E
(1)
kz

+ 3Q
(1)
kz
E

(2)
kzkz

. (4.13)

Finally, the systems of equations for finding partial derivatives are:

(I −Q)E
(2)
kzω

=Q
(2)
kzω
E(0) +Q

(1)
kz
E(1)
ω +Q(1)

ω E
(1)
kz

(4.14)

(I −Q)E
(3)
kzkzω

=Q
(3)
kzkzω

E(0) + 2Q
(2)
kzω
E

(1)
kz

+Q
(2)
kzkz

E(1)
ω + 2Q

(1)
kz
E

(2)
kzω

+Q(1)
ω E

(2)
kzkz

(4.15)

(I −Q)E
(3)
kzωω

=Q
(3)
kzωω

E(0) + 2Q
(2)
kzω
E(1)
ω +Q(2)

ωωE
(1)
kz

+ 2Q(1)
ω E

(2)
kzω

+Q
(1)
kz
E(2)
ωω .

(4.16)

Note that E
(2)
kzω

= E
(2)
ωkz

and Q
(2)
kzω

= Q
(2)
ωkz

. Although Equations 4.8-4.10

appear similar to Equations 3.13-3.15, they are different in that in the former

equation, Q
(1)
ω represents a partial derivative, whereas in Equations 3.13-3.15,

Q(1) represents a total derivative.

The partial derivatives of the matrices are given by the matrix formed by

taking the partial derivatives of the elements. Again, elements of the matrix

take the form of Equation 3.16. The derivatives of these elements are:

∆Q
(2)
kzω

= ejφ [rkzω + jφkzrω + jφωrkz + (jφkzω − φkzφω) r] (4.17)

∆Q
(3)
kzkzω

= ejφ
[
rkzkzω + j2φkzrkzω + jφωrkzkz +

(
jφkzkz − φ2

kz

)
rω

+2 (jφkzω − φkzφω) rkz +
(
jφkzkzω − 2φkzωφkz − φkzkzφω − jφ2

kzφω
)
r
]

(4.18)

∆Q
(3)
kzωω

= ejφ
[
rkzωω + j2φωrkzω + jφkzrωω +

(
jφωω − φ2

ω

)
rkz

+2 (jφkzω − φkzφω) rω +
(
jφkzωω − 2φkzωφω − φkzφωω − jφkzφ2

ω

)
r
]
,

(4.19)

where terms have been grouped by r derivatives.

To find the partial derivatives of the reflection and transmission coeffi-

cients, a strategy is followed that is similar to the one used in Equations

3.39-3.42. The reflection and transmission coefficients may be represented

by the quotient of two functions, with f as the numerator and g as the
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denominator. The partial derivative with respect to kz and ω is given by:

rkzω =
fkzωg

2 − fggkzω − fkzggω − fωggkz + 2fgkzgω
g3

. (4.20)

The expressions for the third order derivatives (kzkzω and kzωω) are too

large to be presented here.

The derivatives of the phase with respect to frequency are identical to the

formulae presented in Equations 3.43-3.45 with k′z0 = 0. The reason k′z0 is

zero is because, in the waveguide problem, kz and ω are treated as indepen-

dent variables. When simulating reflection at a fixed angle of incidence, as

was done in Chapter 3, kz0 was a function of ω. The partial derivatives with

respect to kz are:

γm = φm = (k2
m − k2

z)
1/2 (4.21)

γkz ,m =
dφm
dkz

= Lm
−kz

(k2
m − k2

z)
1/2

(4.22)

γkz ,m =
d2φm
dk2

z

= Lm
−k2

m

(k2
m − k2

z)
3/2
. (4.23)

Next, the partial derivatives of the phase with respect to kz and ω are

γkzω,m =
d2φm
∂kz∂ω

= Lm
kzkmk

′
m

(k2
m − k2

z)
3/2

(4.24)

γkzkzω,m =
d3φm
∂k2

z∂ω
= Lm

kmk
′
m (k2

m + 2k2
z)

(k2
m − k2

z)
5/2

(4.25)

γkzωω,m =
d3φm
∂kz∂ω2

= Lm
kz(k

3
mk
′′
m − k2

zk
′2
m − 2k2

mk
′2
m − k2

zkmk
′′
m)

(k2
m − k2

z)
5/2

. (4.26)

Once the complex derivatives of the reflection coefficients are determined

from Equations 4.8-4.16, they must be converted to phase derivatives for

use in Equations 4.5-4.7. Appendix B discusses the method for calculating
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partial derivatives of phase. The results are:

rkxω = R̄
(2)
kzω,r̂

+ rθkzθω (4.27)

θkzω =
1

r

(
R̄

(2)

kzω,θ̂
− rωθkz − rkzθω

)
(4.28)

θkzωω =
1

r

(
R̄

(3)

kzωω,θ̂
− 2rkzωθω − rωωθkz − rkzθωω − 2rωθkzω + rθkzθ

2
ω

)
(4.29)

θkzkzω =
1

r

(
R̄

(3)

kzkzω,θ̂
− 2rkzωθkz − rkzkzθω − rωθkzkz − 2rkzθkzω + rθ2

kzθω

)
.

(4.30)

4.1.3 Determinant Method for Planar Waveguides

First, the problem of waveguides will discussed with an extension to the

Markov analogy developed in the previous chapter. If a scattering multilayer

structure corresponds to a Markov chain with absorbing states, a waveguide

is a non-absorbing Markov chain. The problem of finding the waveguide

modes then reduces to finding the steady state solution of the transition

matrix. It is known that, since the field must not change upon reflection,

the eigenvalue of the transition matrix must be one. A diagram of a planar

waveguide is shown in Figure 4.1a with a state diagram superimposed on top

of it. As in Chapter 3, a transition matrix for the system may be formed. It

is given by:

Q(kz, ω) =



0 r23e
jφ1 t32e

jφ1 0 0 0

r21e
jφ1 0 0 0 0 0

0 0 0 r34e
jφ2 t43e

jφ2 0

0 t23e
jφ2 r32e

jφ2 0 0 0

0 0 0 0 r45e
jφ3

0 0 0 t34e
jφ3 t43e

jφ3 0


. (4.31)

Here |r21| = |r34| = 1, because for a lossless waveguide mode, the field must

be totally internally reflected inside the structure. Note that the matrix Q is

a function of both kz and ω, because both the phase and reflection coefficients

depend on those parameters. Because 1 must be an eigenvalue of a transition
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matrix for a guided mode,

f(kz, ω) ≡ det(I −Q(kz, ω)) = 0 (4.32)

for any mode. The above equation defines the dispersion relationship. The

propagation constants may be found by locating the roots of f , as was done

in Section 4.1.1. However, finding the determinant of large matrices is not

a numerically stable operation, making this technique unsuitable for many-

layered structures.

To calculate the derivatives of the propagation constant using Equations

4.5-4.7, it is necessary to find the derivative of a determinant. This may be

accomplished with Jacobi’s identity:

d

dx
|A(x)| = tr

(
adj(A(x))

dA(x)

dx

)
, (4.33)

where tr represents the trace, adj is the operation of taking the adjunct

(the transpose of the cofactor matrix), and dA(x)/dx is the matrix whose

elements are the derivatives of those in A(x). The cofactor matrix is relatively

computationally expensive to implement, i.e. O(n3).

Compared to the phase method for finding the modes of waveguides and

calculating the dispersion, the determinant method is slower and not numer-

ically stable for many-layered structures. This method has been discussed

here because the reasoning outlined above will allow us to write the dis-

persion relations for cylindrical waveguides and spherical whispering gallery

modes, which is not otherwise obvious because TE and TM modes intermix.

4.1.4 Phase Method for Cylindrical Waveguides

The theory of waveguides with cylindrical symmetry is broadly similar to

that of planar waveguides. A fictitious, high-index layer is inserted into the

structure. From inside this layer, the reflection coefficients toward and away

from the ẑ axis are calculated.

When m =0 in cylindrical coordinates, no scattering occurs between TEz

and TMz modes at the interfaces between materials and, as a result, the TE

and TM modes are unmixed and may be located separately using Equation

4.3. The derivatives of the scattering coefficients (Equations 2.88-2.89 and
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2.92-2.93) may be found with the same strategy presented in Equations 3.39-

3.42 and 4.20.

For m 6=0 modes, a solution is complicated by scattering between TEz and

TMz modes. The reflection coefficients toward and away from the ẑ-axis are

calculated and used to construct the non-absorbing transition matrix:

T (kz, ω) =

(
0 RA

RB 0

)
, (4.34)

where RA and RB are 2x2 matrices. When det(I − T ) is expanded, the

resulting eigenequation is:

0 = f(kz, ω) = ree,aree,b + rmm,armm,b + rem,arme,b + rme,arem,b

− (ree,armm,a − rem,arme,a)(ree,brmm,b − rem,brme,b)− 1. (4.35)

For constant ω, the propagation constants kz which satisfy Equation 4.35 are

the propagation constants of the eigenmodes.

Partial derivatives of Equation 4.35 may be found and inserted into Equa-

tions 4.5-4.7 in order to calculate the derivatives of kz. In cylindrical coordi-

nates with m 6= 0, finding derivatives of the Fresnel coefficients (ree, rem, rme,

and rmm) is not straightforward because a simple, closed-form expressions for

the coefficients do not exist. Instead, they are generated by solving Equation

2.83, repeated here symbolically:

Γ(0) = (M (0))−1V (0). (4.36)

Derivatives of Equation 4.36 are taken and listed below. The equations gen-

erated are solved to generate the corresponding derivatives of ree, rem, rme,

64



and rmm.

MΓ(1)
ω =M (1)

ω Γ(0) (4.37)

MΓ(2)
ωω =M (2)

ωωΓ(0) + 2M (1)
ω Γ(1)

ω (4.38)

MΓ(3)
ωωω =M (3)

ωωωΓ(0) + 3M (2)
ωωΓ(1)

ω + 3M (1)
ω Γ(2)

ωω (4.39)

MΓ
(1)
kz

=M
(1)
kz

Γ(0) (4.40)

MΓ
(2)
kzkz

=M
(2)
kzkz

Γ(0) + 2M
(1)
kz

Γ
(1)
kz

(4.41)

MΓ
(3)
kzkzkz

=M
(3)
kzkzkz

Γ(0) + 3M
(2)
kzkz

Γ
(1)
kz

+ 3M
(1)
kz

Γ
(2)
kzkz

(4.42)

MΓ
(2)
kzω

=M
(2)
kzω

Γ(0) +M
(1)
kz

Γ(1)
ω +M (1)

ω Γ
(1)
kz

(4.43)

MΓ
(3)
kzkzω

=M
(3)
kzkzω

Γ(0) +M
(2)
kzkz

Γ(1)
ω + 2M

(2)
kzω

Γ
(1)
kz

+ 2M
(1)
kz

Γ
(2)
kzω

+M (1)
ω Γ

(2)
kzkz

(4.44)

MΓ
(3)
kzωω

=M
(3)
kzωω

Γ(0) +M (2)
ωωΓ

(1)
kz

+ 2M
(2)
kzω

Γ(1)
ω + 2M (1)

ω Γ
(2)
kzω

+M
(1)
kz

Γ(2)
ωω.

(4.45)

4.2 Lossy Waveguides, Plasmons, and Resonators

In lossy resonators, individual modes maintain their shape as they propa-

gate, but they decay exponentially in amplitude as they travel through the

structure. There are two possible mechanisms which will result in a mode

being lossy: First, one or more layers may be made of an intrinsically lossy

material, as discussed in Section 2.2.2. Second, if no layer has an index of

refraction higher than that of the surrounding medium, then light will not be

trapped in the waveguide by total internal reflection. These modes, known as

leaky modes, are actually another way of looking at free-propagating modes

which scatter from the structure.

The mathematical manifestation of a lossy mode is a complex propagation

constant kz = k′z+jk′′z . A complex refractive index will result in a field which

decays exponentially with a length constant L = 2k′′z . The exponential decay

is expected as a generalization of Beer’s law.

Even with lossy modes, the round trip phase shift must still be 2π, so

Equation 4.4 remains valid. However, locating the roots of f by sampling

will not be successful. First, the search region is two-dimensional, compris-

ing the real and imaginary parts of the propagation constant kz (k′z and

k′′z ). The region will be computationally expensive to sample. Secondly, one
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cannot determine where f changes sign. The Delves-Lyness algorithm [32]

uses Cauchy’s argument principle and numerically calculated path integrals

to locate zeros in a closed region in the complex plane. This algorithm is

described in Appendix D. The use of this algorithm for finding roots was

first suggested by Chilwell and Hodgkinson [8] in 1984, and was used with

the traditional transition matrix algorithm.

4.2.1 Plasmonic Waves

A special type of guided wave, known as a plasmon, occurs at interfaces

between dielectrics and metals. The wave propagates along the interface

and is evanescent (exponentially decaying) in both materials. Physically, a

plasmon is a state which exists as a superposition between a photon and

a charge oscillation. Mathematically, the wave exists because the relative

permittivity of metals is negative.

The dispersion relationship for a plasmon is known to be:

kz =
ω

c

√
εdεm
εm + εd

, (4.46)

where εd and εm are the permittivities of the dielectric and metals, respec-

tively. Plasmon modes may only exist when the real part of εm is negative

and −<{εm} > εd. For modes defined by a single air-metal interface, only

TM modes exist. Both TE and TM modes may exist in structures comprising

many layers.

Formulas have been developed for plasmonic structures with up to three

layers [5] but, in general, no simple analytic solution exists for plasmon modes

with an arbitrary number of layers. The strategy for locating plasmon modes

will be to transform the plasmonic problem into an ordinary guided wave

problem. To do so, an imaginary zero-thickness, high-index layer is placed

inside the structure. Because the layer has zero thickness, it will not affect

the mode. In practice, all metals are lossy at optical frequencies and so it

is necessary to use the Delves-Lyness algorithm to locate the propagation

constants. Exact values for dispersion may be determined with the same

methods as those for ordinary guided modes (Equations 4.5-4.7). Although

we have shown this to be true for the planar case, the same mathematics will
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work to find plasmonic modes in layered cylindrical and spherical structures.

4.2.2 Resonator Modes

A resonator is a structure which confines light. In practice, the confinement

is temporary, as light is lost either from absorption inside the structure or

transmission out of the structure. Like leaky modes, resonator modes are not

a fundamentally different type of mode, but rather are simply another way

of looking at the scattering of light by a structure. The resonator problem

is to find a frequency ω such that the magnitude and phase of a wave are

unchanged by one round-trip through the resonator. Because the confinement

is temporary, the frequency must be complex so the field decays inside the

resonator as a function of time.

Resonator modes in planar structures occur at interfaces normal to the

boundaries between layers. If the fields did not travel perpendicular to the

surface, the power would ‘walk off’ any finite-sized structure. The field must

be single-valued and so the eigenequation is:

ra(ω)rb(ω) = 1. (4.47)

Equation 4.47 is similar to Equation 4.3, but instead of solving for kz, we are

solving for ω. In using the Delves-Lyness algorithm, we integrate in complex

ω space.

A simple resonator is formed by a planar slab of dielectric, surrounded

by two other materials. The reflection coefficients in this case are simply

the Fresnel reflection factors, which will be called r1 and r2. The roots of

Equation 4.47 are:

ω′m =
πc

nL
m (4.48)

ω′′ =
c

2nL
ln |r1r2|, (4.49)

where r1 and r2 are the two reflection coefficients, and L is the length of the

cavity.

A figure of merit for resonators is the quality factor, or Q-factor, of the

mode. The Q-factor is defined as Q = ω′/ω′′. It has several interpretations,

including: 1) being the ratio of the width of the resonance to the center
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frequency and 2) the number of oscillations which take place before the am-

plitude is damped to 1/e of their original amplitude.

4.2.3 Whispering Gallery Modes

Spheres possess a special class of resonator modes known as whispering

gallery modes (WGMs). Traditionally, the modes are viewed as light be-

ing guided around the circumference of the sphere by total internal reflec-

tion. There are two types of whispering gallery modes, TEr and TMr. The

procedure for finding the modes is the same.

To find the whispering gallery modes with the phase method, we can view

the sphere like any other resonator, with waves propagating in the +r̂ and

−r̂ directions. For a simple sphere, a high-index, zero-thickness layer is in-

serted immediately outside the sphere’s surface. Equation 4.47 is still the

eigenequation, but with ra interpreted as the inward reflection coefficient

and rb interpreted as the outward reflection coefficient from within the shell.

Because the confinement of light is only temporary, the frequencies which

satisfy the eigenequations must be complex, and so the Delves-Lyness algo-

rithm must be used to solve the problem. However, the theoretical loss from

spheres is extremely high (>1020 ) and in practice is limited by scattering

from within the material.

The traditional method for finding the eigenequation for whispering gallery

modes of a sphere is as follows: Because ` and m are conserved in structures

of circular symmetry, only the r-component of the field should be considered.

Because the inside of the sphere contains the origin, the field must take the

form Ĵ`. Outside the sphere, there may exist only a field propagating away

from the sphere, so the field must be of the formĤ
(1)
` . If the sphere has

radius a, then by enforcing boundary conditions at the sphere-air interface,

the eigenequations are found to be:

Ĵ ′`(k1a)

Ĵ`(k1a)
=
n2

n1

Ĥ
(1)′
` (k2a)

Ĥ
(1)
` (k2a)

(4.50)

for TE modes and
Ĵ ′`(k1a)

Ĵ`(k1a)
=
n1

n2

Ĥ
(1)′
` (k2a)

Ĥ
(1)
` (k2a)

(4.51)
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for TM modes.

4.3 Implementation and Validation

Programs implementing the various techniques discussed in this chapter were

coded in MATLAB. Both the algorithms and the code implementing them

are complex. To show that neither the theory nor the code are in error, the

results of the Airy-Markov calculation are compared with analytic solutions.

In general, such solutions exist only in simple form for very simple systems.

While the methods of this chapter will be validated against these simple,

analytic solutions, they are capable of solving problems with many more

boundaries. By creatively constructing test cases, the tests can be much

more general than they first appear. For brevity, only a sample of the test

cases are discussed.

Figure 4.2 shows the result of a validation test. The TE modes of a 250

nm thick planar waveguide, made of sapphire and surrounded by air on both

sides, were calculated by finding the roots of Equation 4.3. The solid lines

represent the propagation constants and the derivatives calculated with an

analytic formula. The red line represents the fundamental (zero nodes) mode

while the blue line is for the first excited (one node) mode. The blue mode

disappears around 720 nm because the first mode cutoff lies at longer wave-

lengths (it becomes a free-propagating mode). The black dots are the values

calculated with the Markov-Airy method and the agreement is excellent. The

maximum value for the relative error between the two methods is 10−14 for

kz, 10−12 for k′z, 10−10 for k′′z , and 10−8 for k′′′z , where primes represent total

derivatives with respect to ω.

The modes of a step cylindrical waveguide were also computed and com-

pared with an exact, analytical solution [30]. With zero-thickness shells

placed inside and outside of the central core, the Markov-Airy method agreed

with the analytic solution with a relative error of around 10−14.

Figure 4.3 shows an example of locating the modes of a resonator with the

Delves-Lyness algorithm. The resonator comprised a 1 µm thick slab with

an index of refraction of n = 2.4, and surrounded by air. The Delves-Lyness

algorithm was used to search for modes between 400 nm and 1200 nm. Panel

(a) shows the analytic locations of the roots with green x’s and the positions
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Figure 4.2: Plots of the dispersion of a 250 nm thick sapphire waveguide.
The units of the four plots from top to bottom are rad/µm, rad-fs/µm,
rad-fs2/µm, and rad-fs3/µm, respectively.

calculated with the Markov-Airy method with blue circles. Note the scale

on the y axis. In an effort to illustrate the accuracy of this computation in

calculating the root locations, the relative error in the magnitude is shown

in panel (b).

In testing various parameters of the cavity for Figure 4.3, it was found

that the implementation of the algorithm was unable to correctly calculate

Q-factors over 1015. The maximum Q-factor which could be calculated was

limited because the algorithm was implemented with standard double float-

ing point arithmetic, which is accurate to only 16 decimal digits. Greater

precision could be obtained by implementing the algorithm with arbitrary-
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Figure 4.3: (a) Location of resonances of a 1 µm thick slab resonator with
a refractive index of 2.4. The analytic positions are marked with green x’s
while the calculated positions are marked with blue circles. (b) Relative
error in the magnitude of the calculated position of the resonances, as
compared to the exact value.

precision arithmetic.

4.4 Conclusion

The problem of locating waveguide and resonator modes of layered structures

has been discussed. The eigenequations for all of the problems discussed

here take on a similar form (Equation 4.3 or 4.47). One notable exception is

finding the waveguide modes of a cylindrical resonator for which m 6= 0. In

that case, the eigenequation is that of Equation 4.35.

Arbitrary waveguide and plasmon modes have been calculated previously

with the T-matrix method [8, 9]. Because the method discussed in this

chapter is based on the Airy-Markov method, we would expect a benefit of

improved numerical stability. Additionally, this chapter is the first to present

exact formulas for the derivatives of kz with respect to ω. These derivatives

are expected to be of value when studying the interaction of plasmons with

ultrafast laser pulses.
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CHAPTER 5

MICROSPHERE-STABILIZED PLANAR
RESONATORS

5.1 Introduction

Researchers have long studied the whispering gallery modes of millimeter and

micron-sized spheres [33]. In this work an alternative method to creating a

resonator using microspheres is explored. Specifically, spheres are placed

inside a cavity formed by two planar mirrors, as seen Figure 5.1. A quantum

dot solution surrounds the sphere and acts as a gain medium. The spheres

can act inside the cavity as thick lenses. If the mirrors are sufficiently close

to one another, the spheres will stabilize the cavity and lower its threshold.

Conversely, when the mirror separation increases beyond a critical value, an

unstable cavity is formed which increases the threshold pump energy.

There are numerous potential applications for this system. By scanning

the mirror separation while pumping the quantum dots, it may be possible

to determine the distribution of sphere sizes by noting at what distances the

spheres stop lasing. Because of the low lasing threshold, large areas may

be pumped and imaged at once, which will enable the sphere size statistics

to be rapidly determined. Cytometry may be an additional application. A

fixed-mirror system has been shown to be capable of resolving morphology

in red blood cells [34]. Applications in sensing may also be envisioned.

5.1.1 Experimental Details

The optical cavity was formed by two high-performance dielectric mirrors

manufactured by CVI. They were rated for > 99.97% reflectivity at 633 nm at

normal incidence by the manufacturer. The actual reflectivity around 660 nm

(where lasing was observed) was smaller both because the peak wavelength

of the gain spectrum was away from the design wavelength of the mirror
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Figure 5.1: Diagram of cavity, not to scale. The transverse size of the
droplet was much larger than an individual sphere.

Figure 5.2: Photograph of cavity. The mirrors were brought apart so they
could be seen and needed to be much closer together for experiments. The
LED used for illumination has been removed for this picture.

and because exposure to water likely lessened the reflectivity of the mirror.

Reflectivity at the pump wavelength of 532 nm was approximately 40%.

Lower reflection at the pump wavelength would have been preferable, but

these mirrors could be purchased “off-the-shelf”.

Polystyrene microspheres were purchased from Spherotech. Three different
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diameter spheres were used: 75, 100, and 196 µm. The sphere diameters var-

ied approximately 5% around the mean value. They were shipped suspended

in water and with their surface functionalized with streptavidin. However,

nothing was bound to them during the course of experiments.

Quantum dots were chosen as the gain medium for the system. An 8 µM

solution (Qdot 655 ITK) of quantum dots was purchased from Life Technolo-

gies. The fluorescence spectrum was centered at 655 nm with a full width

at half maximum of 30 nm. A coating of carboxyl allowed the quantum

dots to be water soluble. There were several reasons for choosing quan-

tum dots instead of dyes. The primary reason is that dye degrades when

it is strongly pumped. After pumping, some dye molecules will be trapped

in the metastable triplet state, while other dye molecules will be rendered

permanently optically inactive [35]. In dye lasers, the problem is solved by

circulating the dye, but in this system with ∼100µm mirror separation, circu-

lation was impractical. Quantum dots do not suffer from photodegradation.

Secondly, dyes, with their relatively narrow absorption band, would have re-

quired customized mirrors for this experiment. In contrast, quantum dots

may be pumped at practically any wavelength shorter than their emission

band, which greatly relaxed the requirements for the mirrors.

Figure 5.2 shows a picture of how the cavity was mounted. The two mirrors

were mounted in stainless-steel optical mounts. The top mirror was mounted

on Newport 421 series linear translation stage with a micrometer drive. This

arrangement allowed the length of the cavity to be changed without (to first

order) affecting the focus. The stage was positioned so that both its internal

spring and gravity pulled downward together against the micrometer drive.

As gravity did not work to cancel the force of the spring, this made the

mounting more stable. The linear stage and the bottom mirror were in

turn mounted on a three-axis stage. The pump laser and the view from the

microscope were fixed, so the three-axis stage was used to bring the mirrors

into focus. The spheres were illuminated from below by a collimated LED.

A microscope was constructed to pump the spheres and analyze the light

emitted by them. The design of the microscope is shown in Figure 5.3. The

objective was a simple, plano-convex lens made with BK7 glass. It had a focal

length of 50 mm. The numerical aperture was 0.25, which gives a visible light

resolution of approximately 3.2 µm. After passing through the dichroic, light

was focused by a tube lens with a 200 mm focal length. After the tube lens,

74



the light passed through a band-stop filter to remove scattered pump light

and was incident on a 50/50 beamsplitter, which sent half the light onto a

CCD camera and the other half onto the entrance slit of a spectrometer.

The overall magnification of the system is 4X. The image of the smallest

resolvable feature was then 12.8 µm. Because the pixel size on the camera

was 4.65 µm, the resolution was limited by the optical system and not the

CCD pixel size. Optics in the lower two beam paths of the diagram are

used to align, control, and measure the pump light. Kinematic mirror #1

allows easy switching between the helium-neon (HeNe) laser for alignment

and the Nd:YAG laser for experiments. A neutral density filter-wheel allows

the power to be controlled. It has six filters of optical density 0, 0.1, 0.2, 0.4,

0.6, and 1.0. When the kinematic mirror #2 is removed, the pulse energy

may be measured. The center beam path is used for alignment and the

addition of lenses to focus or defocus the pump light.

The pump source for these experiments was a Spectra Physics Quanta Ray

Pro at 532 nm, attenuated to microjoule pulse energies. Pulses from this

laser had a pulse width of approximately 10 ns FWHM. Between the mirrors

of the cavity, the spot size of the pump had a diameter of approximately

75 µm. The spectrometer was a Princeton Instruments Acton 2750 0.75

m imaging spectrometer with a PI-MAX4 detector. The PI-MAX4 is an

intensified CCD (ICCD) detector, which is a CCD with a microchannel plate

amplifier mounted on top. Using voltage for control, gains of up to 100x can

be achieved with time resolution as small as 2.5 ns. The gain increased the

sensitivity, while gating reduced the noise by only recording when signal is

present.

5.1.2 Experimental Procedure

For alignment, the 550 nm longpass dichroic mirror was replaced by a 650

nm longpass dichroic to allow for the use of a HeNe laser for alignment.

The bottom mirror was installed first and adjusted to retroreflect the HeNe

laser. The top mirror was then installed and also adjusted to retroreflect the

alignment laser. Based on the distance from the mirrors to the alignment

aperture, the alignment error is estimated to be 3.4×10−4 rad.

Separately, 10 µL of a quantum dot solution and 1 µL of a sphere-containing
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Figure 5.3: (a) Diagram of microscope. The objective lens points into the
plane of the diagram. (b) Overhead view of actual microscope.

fluid were pipetted onto the bottom mirror. The spheres were shaken before

pipetting to place them into suspension. The micrometer controlling the
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stage on which the top mirror was mounted was then adjusted until the top

mirror came into contact with the droplet. A change in the transverse size of

the droplet was clearly visible, as the water adhered to both of the mirrors.

The imaging lens was installed and the YAG laser turned on. The alignment

of the mirrors could be further optimized by adjusting the top mirror to

maximize the intensity of the lasing. In practice, however, only very small

adjustments were necessary.

The relationship between the micrometer reading and the actual cavity

length was not repeatable after a new sample was loaded. This was because

the adjustment of the mounts to make the mirrors parallel to each other

altered the distance between the surface of the mirror and the post to which

the mount is attached. Instead, the distance between the mirrors was inferred

from the wavelength spacing between adjacent longitudinal modes (known

as the free spectral range) in the cavity. The relationship between the free-

spectral range and the mirror spacing is given by:

FSR (nm) =
λ2

0

2nL
, (5.1)

where λ0 is the center wavelength of the lasing, n is the refractive index of

the material between the cavity, and L is the length of the cavity. Equation

5.1 is only valid when no sphere is present.

After the mirrors were aligned, the last step before beginning experiments

was to establish a minimum mirror separation. The pump was focused onto

an area of the quantum dot solution with no spheres. The spheres were then

carefully brought together while monitoring the free spectral range with the

spectrometer. For each sphere size, a maximum value for the free spectral

range, above which the mirrors would be closer together than the sphere

diameters, was calculated. The top mirror was lowered until the free spectral

range was roughly 10% smaller than the maximum value. The reading on the

micrometer was noted and the experiments could begin. In data runs where

the cavity length was being scanned, the top mirror was always scanned up.

This was to eliminate any effects from backlash in the micrometer screw.

After each set of experiments, the spheres and quantum dots were rinsed off

the mirrors into a disposal container. The mirrors were then drag-and-drop

cleaned with lens paper, at least twice with water and twice with ethanol.

The mirrors were then covered with lens paper and left to dry on a gently
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heated hotplate (30 ◦C).

5.2 Data and Analysis

5.2.1 General Characteristics

Depending on the mirror separation, spheres have been observed to both

lower and raise the lasing threshold. As will be seen below, when the mirrors

are sufficiently far apart, the cavity formed with the sphere acting as a lens

becomes unstable and the modes suffer from high diffraction loss. The modes

of the planar cavity, however, are always marginally stable for any mirror

separation. In these situations ,the lasing is observed in between spheres, but

when the pump is brought over a sphere, the lasing shuts down. However,

when the mirrors are close together to form a stable cavity, the threshold

is dramatically lowered. Particularly with the 75 µm spheres with mirror

separations under 100 µm, it can be difficult to make a sphere-free area to

lase, while the spheres themselves lase easily.

Threshold pump energy was observed to be less than 0.1 µJ. Even at these

pump energies, the pulse still has sufficient energy to excite every quantum

dot in the pump volume. Pump pulse energies above 3 µJ generally resulted

in the spheres being damaged. Optical damage of the polystyrene spheres

from their own lasing modes was likely the cause. If the spheres were pre-

vented from lasing by having the mirrors far apart, then they could withstand

intense pump light, then lase again when the spheres were moved back to-

gether. The approximate diameter of the lasing mode inside the sphere was

10 µm.

Under excitation, the spheres generally appear as bright, homogeneous

circles, as shown in the upper left image in Figure 5.4. The uniformity

is the result of the spheres lasing in a superposition of transverse modes.

Sometimes, the spheres could be seen lasing in a single transverse mode.

The remaining pictures which make up Figure 5.4 show the same sphere at

different times. Possibly due to pump fluctuations, this particular sphere

would rapidly switch among transverse modes. These images demonstrate

that Gaussian modes are being observed from the spheres.
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Figure 5.4: Gaussian modes observed in a 75 µm sphere. Clockwise from
top left: An incoherent sum of modes, LG10 (‘donut’ mode), LG04, TEM12,
TEM10, TEM02.

5.2.2 Spectral Changes

As compared to a planar cavity, the presence of a sphere fundamentally mod-

ifies the lasing spectrum in two ways: First, it is well known that the trans-

verse modes of planar resonators are frequency degenerate [36, 37]. However,

higher-order transverse modes of non-planar resonators are frequency shifted

with respect to the TEM00 mode. Therefore, the spectrum of the cavity

with a sphere is much richer in lines. Secondly, the sphere (ns = 1.58) dis-

places water (nw = 1.33) in the cavity. The free spectral range (the distance

between adjacent longitudinal modes) would be expected to decrease.

The free spectral range with a sphere present may not be calculated by

simply replacing nL with the new optical thickness in Equation 5.1. The

change in the dielectric media at the sphere/water boundary creates internal

resonances in the cavity, which must be taken into account. The theory de-

scribed in Chapter 4 may be used to model the cavity. Assume the reflection

coefficient of the mirrors to be 1, for simplicity. Then, consider a point just

inside the sphere at the sphere/water boundary. The reflection coefficients

looking back into the sphere and into the water are

rs = ej2ksD (5.2)
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and

rw =
rsw − ej2kw(L−D)

1 + rswej2kw(L−D , (5.3)

respectively. Here rsw is the reflection coefficient of just the sphere/water in-

terface (starting in the sphere), ks is the magnitude of the propagation vector

in the sphere, kw is the magnitude of the propagation constant in water, D

is the diameter of the sphere, and L is the total separation between the mir-

rors. In order for the field to be single valued, the product of these reflection

coefficients must be 1. Therefore, the eigenequation for the resonances is:

ej2ksD
rsw − ej2kw(L−D)

1− rswej2kw(L−D = 1. (5.4)

Equation 5.4 can be solved numerically to determine the free spectral range.

Figure 5.5 shows a change in the free spectral range from 520 GHz to 440

GHz when a 200 µm sphere is placed between two mirrors 216 µm apart,

which is in agreement with theory.

In addition to the shrinking of the free spectral range, Figure 5.5 also shows

additional transverse modes, as predicted at the opening of this section. A

wider view of the change in the spectra with a different sphere is shown in

Figure 5.6. Once again, extra lines due to the transverse modes are present.

Analysis of the lines between 656 nm and 660 nm shows the expected shift

in the free spectral range from 800 GHz to 720 GHz.

5.2.3 Stability

A key property of laser resonators is stability. From a geometrical optics

point of view, a ray of light inside a stable cavity will stay within a finite

distance from the optical axis as it is reflected between the end mirrors of

the cavity. In an unstable cavity, any ray would go arbitrarily far from the

origin as it bounces between the end mirrors. A planar cavity, in which the

cavity comprises two planar mirrors with a uniform material in between, is

known to be ‘critically stable.’ While rays perfectly normal to the mirror

surface will not walk off, any other rays will walk away from the origin.

In the wave picture of light, only stable cavities support finite-sized Gaus-

sian modes [38]. These modes have low diffraction loss because the light is

confined around the optical axis and therefore traverses the pumped region
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Figure 5.5: Change in spectrum observed with a 200 µm diameter sphere
and the mirrors separated by approximately 216 µm.

Figure 5.6: Spectra observed from and a 140 µm planar cavity when the
pump beam excites just the cavity and when it strikes a 75 µm diameter
sphere in the cavity.
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Table 5.1: ABCD matrices of the elements inside the cavity.

Pr

(
1 r
0 1

)
Propagate distance r

Pw

(
1 w
0 1

)
Propagate distance w

Pcc

(
1 0

nw−ns

Rnw

ns

nw

)
From sphere into water

Pcv

(
1 0

nw−ns

Rns

nw

ns

)
From water into sphere

many times. In contrast, light in an unstable resonator will pass through

the pumped region only a few times before exiting the resonator. Diffrac-

tion losses increase as the parameters of a stable cavity are altered to bring

it closer to the limit of stability [36, 39]. Planar resonators, being on the

border between stable and unstable, suffer from high diffraction loss.

Without the microspheres, the cavities under observation would be planar

cavities. The spheres themselves act as thick lenses which, under the appro-

priate circumstances, focus diffracting light and stabilize the cavity. Cavity

stability can be analyzed with ABCD matrix theory [38, 37]. ABCD matrix

theory relates the distance and slope with respect to the optical axis at one

point in a paraxial optical system to another point. A list of the ABCD

matrices of the individual elements necessary to analyze the cavity is given

in Table 5.1. To determine stability, it is necessary to find the net ABCD

matrix for one round-trip through the cavity. The round-trip ABCD matrix,

starting from the center of the sphere and proceeding upwards, is:

Prt = PrPccPwPwPcvPrPrPccPcvPr. (5.5)

The condition for stability is that

0 ≤ A+D + 2

4
≤ 1, (5.6)

where A and D are the upper left element and lower right elements of Prt,

respectively. The term in the center of the inequality in Equation 5.6 is

known as the stability parameter.

A plot of the stability parameter as a function of the mirror separation for

each of the three sphere sizes used in these experiments is shown in Figure
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5.7. There is clearly a critical value of the mirror separation beyond which

the cavity becomes unstable. To demonstrate this phenomenon, individual

spheres were selected and their spectra observed as the mirrors were moved

apart. The ◦’s on the graph indicate specific mirror separations where las-

ing was observed, while x’s indicate mirror separations where lasing was not

observed. Cutoff was observed for the 100 µm spheres, but the exact mirror

separation at which it occurred was not recorded. The experiment was re-

peated with many more spheres than shown in the graph, but quantitative

data were not recorded. Even with the pump energy increased by a factor

of more than 30 over the observed threshold value for smaller mirror separa-

tions, the spheres could not be made to lase when the cavity length exceeded

the critical value.

Figure 5.7: Plot of the stability factor (Equation 5.6) as a function of the
mirror separation for the three different sphere diameters. The circles (◦)
indicate datapoints where a sphere was observed to lase while x’s indicate
mirror separations where a sphere could not be made to lase.

5.3 Temporal Narrowing

The pulses of light coming from planar resonators with and without spheres

were observed to be shorter than the pump pulse. If the light observed was
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due to fluorescence, the output light would be at least as long as pump pulse,

because fluorescence is a linear phenomenon. Therefore, the shortening of

pump pulse is interpreted as a further indication of lasing. Two typical plots

of intensity as a function of time are shown in Figure 5.8. In part (a), the

light from the cavity with a sphere is observed to turn on later. The delay

could represent the buildup time of the laser inside the cavity. Part (b)

shows that the pulse from the planar cavity is shortened much more than if

a sphere were present. Furthermore, intensity falls below that of the pump

both before and after the peak. A possible explanation is that due to the

much higher threshold of the planar cavity, it is only over threshold for a

short time window around the peak.

Figure 5.8: Plots of the intensity of light as a function of time when the
pump is focused: (a) on a sphere or (b) no a sphere with 1.5 µJ pump
pulses. All pulses have been normalized so their peak intensity is 1. The
large noise in the signal plot on the right is because the intensity is much
lower.

5.3.1 Laser Arrays

Sphere-stabilized planar cavities may be used to create large laser arrays.

Self-assembly techniques [40, 41, 42] have long been used to create two-

dimensional arrays of spheres. Large numbers of spheres can then be pumped
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simultaneously, using only modest pulse energies (recall that the threshold

for an individual sphere was observed to be < 0.1 µJ).

A simple array has been created for demonstration purposes. Many more

spheres than usual (3 µL of solution vs the normal 1 µL) were added to a

sample. The spheres were assembled by pulling the mirrors apart, which

decreased the cross sectional area of the droplet. As the droplet shrunk, the

spheres were held in the droplet by their adhesion to the water. The mirrors

were then pushed back together, slowly, to prevent the flowing quantum dot

fluid from moving the spheres. The pump laser was expanded on the sample

with a diverging lens, which increased the pump area to roughly 1.2 mm in

diameter. The pulse energy was increased to 19 µJ. The result is shown in

Figure 5.9. The picture on the left shows the spheres with LED illumination.

The picture on the right shows the same spheres with the pump laser on. The

bright spots all indicate lasing spheres. Note the lack of lasing in areas in

between spheres. Although the array of Figure 5.9 only shows approximately

80 spheres lasing simultaneously, there should be no difficulty in increasing

the number of spheres dramatically.

Figure 5.9: Left: An array of 75 µm spheres inside a planar cavity. Right:
The same array of spheres lasing upon being pumped with a 19 µJ pulse.
The bright spot above and to the right of the center is due to a damaged
detector.

5.4 Conclusion

A new type of laser cavity, formed with planar mirrors stabilized by micro-

spheres, has been demonstrated. The change in the spectrum of the planar
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modes due to the presence of the sphere has been discussed and is in good

agreement with theory. The maximum separation of the mirrors for the cav-

ities to be stable has been calculated and the results agree with experiments.

The lasing signal coming from the spheres has been observed to be temporally

narrower than the pump pulse, but further investigation will be required to

determine the exact cause. Finally, the ability to assemble the microspheres

into an array of microlasers has been shown.
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CHAPTER 6

CONCLUSION

A new method, based on Markov analysis, for calculating the interaction of

light with layered materials has been presented. The method was developed

in stages. First, the solutions for the fields in Cartesian, cylindrical, and

spherical coordinates were derived. Then, the reflection and transmission

coefficients at material boundaries were defined. Finally, the reflection and

transmission coefficients were used in transition matrices in order to solve

scattering, waveguiding, and resonator problems. Exact and numerically

stable formulas for calculating dispersion were also developed.

Compared to the traditional method of solving these problems (the trans-

mission matrix method) the Markov-Airy method is numerically more well-

posed. For this reason, the new method is less likely to give an inaccurate

result when calculations are performed with floating point arithmetic. The

relative error in these calculations, as found by testing against analytic solu-

tions, has been found to be on the order of machine epsilon (10−15). The code

implementing this functionality, including the validation files and examples,

has been made freely available on a public repository.1

Specific problems solved in this dissertation include determining the re-

flectivity of a mirror, including the first, second, and third phase derivatives,

which determine how a mirror will distort a short pulse. Furthermore, the

problem of calculating the dispersion of planar waveguides, including plas-

monic waveguides, has been solved in the general case. The exact formulas

for calculating the derivatives of the propagation constant with respect to fre-

quency are, to the author’s knowledge, the first ever presented. Cylindrical

waveguides were also discussed. Finally, planar resonators and whispering

gallery mode resonators were discussed.

In the second section of this thesis, a new laser structure was demon-

1http://www.mathworks.com/matlabcentral/fileexchange/47360-markov-airy-mirror-
zip
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strated. Spheres placed between two planar mirrors acted as lenses which

could stabilize or destabilize the cavity, depending on the mirror separation.

The lasing threshold is raised or lowered correspondingly. The mirror sepa-

ration at which the cavity became unstable was determined experimentally

for several sphere sizes, and found to be in excellent agreement with theory.

When the spheres made the cavity unstable, lasing did not occur at any

pump energy.

Gaussian modes have been observed emanating from the sphere-stabilized

cavities, both in the spatial profile of the beam and spectrally. Spatially, the

spheres generally lase in a superposition of transverse modes, but at times

they are observed lasing in a single transverse mode. By altering the lasing

parameters, such as pump area or sphere size, it may be possible to force

the spheres to lase in a single mode. Spectrally, the cavity always exhibits

multiple longitudinal modes, as would be expected from the inhomogeneously

broadened gain medium (quantum dots). When no sphere is present, the

spectral lines are evenly spaced in wavelength. When spheres are present,

many more lines are observed. The extra lines appear because transverse

modes are not degenerate for Gaussian modes, whereas they are for a planar

resonator.

The lasing signal has been observed to be temporally more narrow than

the pump which pumps the cavity. This is interpreted as a sign of lasing.

Modeling of the temporal narrowing and the output power was not possi-

ble because the mirrors have significant reflectivity at the pump wavelength.

The pump light was, in effect, passing through a Fabry-Perot cavity. Small

variations in the frequency spectrum of the pump laser could dramatically

affect how much light was absorbed, an effect that could not easily be mod-

eled. With new cavity mirrors which do not reflect at the pump wavelength,

it should be possible to perform a more detailed analysis of the system.

The new structure could be used to study the spheres themselves, or by

coating the spheres with binding sites, they could be used as sensors. The

new method could also allow inexpensive manufacturing of large arrays of

lasers with high mode quality.
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APPENDIX A

MARKOV CHAINS IN PROBABILITY

A Markov chain is a model for a stochastic process in which populations are

transferred among a finite number of states in discrete steps. The probability

of transitioning to a specific state in the next step of the process depends

only on the current state and does not depend on time.

The state of a Markov process can be represented by a column vector ~v.

The transition probabilities can be combined into a transition matrix T. The

element Tmp is the probability of transitioning from state p to state m in one

step of the Markov process. If the initial distribution among states is given

by v0, the distribution after the first step of the Markov process is:

~v1 = T~v0. (A.1)

It can easily be seen that after k steps of the Markov process, the distribution

among the states is:

~vk = Tk~v0. (A.2)

If a state returns to itself with unit probability and it is possible to arrive

at that state from at least one other state, it is known as an absorbing state.

The transition matrix of a Markov chain with L absorbing states and K non-

absorbing (transient) states can be written (possibly with some reordering of

the states) as:

T =

(
I C

0 Q

)
, (A.3)

where I is a L × L identity matrix, C is L × K matrix, 0 is a K × L zero

matrix, and Q is a K ×K matrix.

Given an initial distribution of probability among the non-absorbing states,

it is possible to calculate the final distribution of probability among the

absorbing states. The idea is to find the expected number of visits to each
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non-absorbing state. Q can be thought of as the transition matrix between

the non-absorbing states. The probability of being in each state after k steps

of the Markov process is given by the vector:

~vk = Qk~v0. (A.4)

The expected number of visits to each state is the sum of the probability

that a given state will be occupied at each step:

~v = (I + Q + ...+ Qn + ...)~v0 (A.5)

= (I−Q)−1v0 (A.6)

= N~v0, (A.7)

where N ≡ (I−Q)−1.

The probability of settling in an absorbing state is the sum of the proba-

bilities of being in each transient state at each step (the expected number of

visits) multiplied by the probability of transitioning from that state to the

absorbing state. The coupling from transient to absorbing states is encapsu-

lated in the C matrix. Therefore, the final distribution of probability among

the absorbing states is:

~a = CN~v0, (A.8)

where ~a is a L× 1 column vector.
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APPENDIX B

PHASE DERIVATIVES IN RADIAL
COORDINATES

The reflection coefficient is a complex vector with both a magnitude and

phase. The group delay, group delay dispersion, and third-order dispersion

are critical concepts when considering broadband reflection. These quantities

are the first, second and third derivatives, respectively, of the phase of the

reflection coefficient with respect to angular frequency. In this appendix, it

will be shown how to compute the phase derivatives of a complex function

from the total derivatives.

B.1 One-Dimensional Phase Derivatives

As a complex number, the reflectivity may be expressed in terms of its mag-

nitude and phase, which are both functions of ω as shown below:

R̄ = r(ω)ejθ(ω). (B.1)

The first, second, and third derivatives of Equation B.1 are:

R̄(1)
ω = [rω + jrθω] ejθ (B.2)

R̄(2)
ωω =

[
(rωω − rθ2

ω) + j(rθωω + 2rωθω)
]
ejθ (B.3)

R̄(3)
ωωω =

[
(rωωω − 3rωθ

2
ω − 3rθωθωω)

+ j(rθωωω + 3rωθωω + 3rωωθω − rθ3
ω)
]
ejθ. (B.4)

The quantities on the left are the derivatives calculated in Equations 3.13-

3.15. It is the phase derivatives (θω, θωω, and θωωω) which are generally of

interest, however.

To find the phase derivatives, one simply has to solve Equations B.2-B.4.

To do so, the real and imaginary components of R̄(m)e−jθ must be matched
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to the real and imaginary components inside the brackets on the right side of

Equations B.2-B.4. The real and imaginary components are defined as the

parallel (ρ̂) and orthogonal (θ̂) projections of the change in reflection onto

the unperturbed reflection:

R̄
(1)
ω,ρ̂ = Re{R̄(1)

ω e−jθ} (B.5)

R̄
(1)

ω,θ̂
= Im{R̄(1)

ω e−jθ}. (B.6)

Finally, the phase derivatives may be expressed as:

rω = R̄
(1)
ω,r̂ (B.7)

θω =
1

r
R̄

(1)

ω,θ̂
(B.8)

rωω = R̄
(2)
r̂ + rθ2

ω (B.9)

θωω =
1

r

(
R̄

(2)

ωω,θ̂
− 2rωθω

)
(B.10)

θωωω =
1

r

(
R̄

(3)

ωωω,θ̂
− 3rωθωω − 3rωωθω + rθ3

ω

)
. (B.11)

B.2 Two-Dimensional Phase Derivatives

The calculation of group velocity dispersion and third-order dispersion of

waveguides in Chapter 4 requires partial derivatives with respect to fre-

quency. Here the derivation proceeds the same as before, but the magnitude

and phase are now functions of both frequency and the transverse propaga-

tion constant, kz. That is,

R̄(kz, ω) = r(kz, ω)ejθ(kz ,ω). (B.12)
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The partial derivatives are:

R̄
(2)
kzω

= [(rkzω − rθkzθω) + j(rθkxω + rωθkz + rkzθω)] ejθ (B.13)

R̄
(3)
kzωω

=
[
rkzωω − rkzθ2

ω − 2rωθkzθω − rθkzθωω − 2rθωθkzω

+ j(2rkzωθω + rωωθkz + rkzθωω + 2rωθkzω + rθkzωω − rθkzθ2
ω)
]
ejθ

(B.14)

R̄
(3)
kzkzω

=
[
rkzkzω − rωθ2

kz − 2rkzθkzθω − rθωθkzkz − 2rθkzθkzω

+ j(2rkzωθkz + rkzkzθω + rωθkzkz + 2rkzθkzω + rθkzkzω − rθ2
kzθω)

]
ejθ.

(B.15)

Solving Equations B.13-B.15 for the partial derivatives with respect to

phase, we find:

rkxω = R̄
(2)
kzω,r̂

+ rθkzθω (B.16)

θkzω =
1

r

(
R̄

(2)

kzω,θ̂
− rωθkz − rkzθω

)
(B.17)

θkzωω =
1

r

(
R̄

(3)

kzωω,θ̂
− 2rkzωθω − rωωθkz − rkzθωω − 2rωθkzω + rθkzθ

2
ω

)
(B.18)

θkzkzω =
1

r

(
R̄

(3)

kzkzω,θ̂
− 2rkzωθkz − rkzkzθω − rωθkzkz − 2rkzθkzω + rθ2

kzθω

)
.

(B.19)
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APPENDIX C

AUXILIARY POTENTIALS

Although Maxwell’s equations may always be solved directly in terms of the
~E, ~B, ~D, and ~H fields, solving with auxiliary vector potentials can be more

convenient. From an educated guess of the form of the solutions, vector

potentials allow the individual components of ~E, ~B, ~D, and ~H to be rapidly

calculated. In this appendix, the electric and magnetic fields will be derived

from the auxiliary vector potentials.

C.1 Vector Calculus Primer

The derivation of solutions to Maxwell’s equations using vector potentials

uses theorems from vector calculus which are frequently unfamiliar. Some

important theorems are therefore presented here for later use in the actual

derivations. For illustrative purposes, let ~C and ~G be arbitrary vector fields

and ρ be a scalar field.

A vector field whose divergence is zero (∇~C = 0) is defined to be solenoidal.

If a vector field ~C is solenoidal, then there exists another vector field ~G such

that [43]:
~C = ∇× ~G. (C.1)

A vector field whose curl is zero (∇ × ~C = 0) is defined to be irrotational.

If a vector field ~C is irrotational, then there exists a scalar field ρ such that

[43]:
~C = ∇ρ. (C.2)

The fundamental theorem of vector calculus states that any smooth vector

field may be written as the sum of an irrotational and a solenoidal component.

~C = ~Csol + ~Cirr. (C.3)
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One final useful identity for simplifying the curl of the curl of a vector is:

∇× (∇× ~C) = ∇(∇~C)−∇2 ~C. (C.4)

Note the parentheses because the order in which the curls are taken is im-

portant.

For ease of reference, Equations 2.5 through 2.8 are reproduced below:1

∇× ~E = jω ~B (2.5)

∇× ~H = −jω ~D + ~J (2.6)

∇ · ~D = ρ (2.7)

∇ · ~B = 0. (2.8)

C.2 TM Modes

Equation 2.8 shows that ~B is a solenoidal vector field. We may, therefore,

define a vector ~A such that:

~BA = ∇× ~A (C.5)

or because most materials are non-magnetic at optical frequencies,

~HA =
1

µ
∇× ~A. (C.6)

The vector ~A is known as the magnetic vector potential. It is not a measur-

able field, but only a mathematical convenience. Inserting this into Equation

2.5, we obtain:

∇× ~EA = jω∇× ~A (C.7)

or

∇×
(
~EA − jω ~A

)
= 0. (C.8)

1Note the use of the e−jωt convention for time dependence.
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The vector on the left side of the previous equation is irrotational, so it may

be defined as the gradient of a scalar.

−∇ϕA ≡ ~EA − jω ~A (C.9)

or, solving for ~EA:
~EA = jω ~A−∇ϕA. (C.10)

Now, we insert Equations C.6 and C.9 into Equation 2.6 to obtain:

∇× (
1

µ
∇× ~A) = −jωε(jω ~A−∇ϕA). (C.11)

By use of vector calculus identities, we can simplify the left side of the above

equation to

∇(∇ · ~A)−∇2 ~A = ω2µε ~A+ jωµε∇ϕA. (C.12)

The curl of ~A is defined by Equation C.5, but the divergence is unspecified.

It is easy to see that any divergenceless vector may be added to ~A without

affecting the value of ~B (which is a physically measurable field and therefore

must be uniquely defined). We are free to choose any convenient value for

the divergence of ~A. This is known as setting the gauge.

In Cartesian or cylindrical coordinates, it is convenient to choose

∇ · ~A = jωµεϕA (C.13)

to simplify Equation C.12, which becomes

∇2 ~A =
ω2εr
c2

~A. (C.14)

This equation is convenient to solve in rectangular coordinates because∇2(x̂Ax) =

x̂∇2Ax, ∇2(ŷAy) = ŷ∇2Ay, and ∇2(ẑAz) = ẑ∇2Az. Similarly, in cylindrical

coordinates, ∇2(ẑAz) = ẑ∇2Az. However, the same pattern does not follow

for the r̂ and φ̂ components.

In spherical coordinates, there is no coordinate κ such that ∇2(κ̂Fκ) =

κ̂∇2Fκ, where κ ∈ {r, φ, θ}. To find a simple wave equation, it will be useful

to choose a different gauge. Choosing ~A = r̂Ar and expanding Equation
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C.12, we get

1

sin θ

[
− ∂

∂θ

(
sin θ

r

∂Fr
∂θ

)
− ∂

∂φ

(
1

r sin θ

∂Fr
∂φ

)]
= ω2µεFr − jωµε

∂ϕA
∂r

(C.15)

1

r sin θ

∂

∂φ

(
∂Fr
∂r

)
= − jωµε

r sin θ

∂ϕA
∂φ

(C.16)

1

r

∂

∂θ

(
∂Fr
∂r

)
= −jωµε

r

∂ϕA
∂θ

, (C.17)

where Equations C.15, C.16, and C.17 are the r̂, φ̂, and θ̂ components re-

spectively. Choosing

∇ · ~Ar = −jωµεϕF (C.18)

will satisfy Equations C.16-C.17. The r̂ equation then becomes

(
∇2 + k2

) Fr
r

= 0. (C.19)

This can be solved by defining ψA = Ar

r
. In the older literature, ψA is often

referred to as the Debye potential [44].

After Equation C.14 or C.19 has been solved, the electric and magnetic

fields corresponding to the TM fields components can be found from:

~EA = jω ~A− 1

jωµε
∇(∇ · ~A) (C.20)

~HA =
1

µ
∇× ~A. (C.21)

From Equation C.21, it is obvious that ~HA is perpendicular to ~A. Because

the magnetic field is perpendicular to the direction of ~A, these waves are

known as the transverse magnetic, or TM, waves.

C.3 TE Modes

The line of reasoning to find TE modes is the same as that for TM modes.

In a medium with no charge, Equation 2.7 shows that ~D is a solenoidal field.
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Therefore, there exists a vector ~F such that

~DF = −∇× ~F (C.22)

which, in a uniform medium, becomes:

~EF = −1

ε
∇× ~F . (C.23)

Inserting Equation C.22 into Equation 2.6, we obtain:

∇× ~HF = −jω(−∇× ~F ) (C.24)

or

∇× ( ~HF − jω ~F ) = 0. (C.25)

The vector on the left side of the previous equation is irrotational, so it may

be defined as the gradient of a scalar function:

∇ϕF ≡ ~HF − jω ~F . (C.26)

Solving for HF , we find:

~HF = ∇ϕF + jω ~F . (C.27)

Inserting Equations C.23 and C.27 into the left and right sides of Equation

2.5, respectively, a wave equation for the field ~F is obtained:

∇× (−1

ε
∇× ~F ) = jωµ(jω ~F +∇ϕF ). (C.28)

In a uniform material, 1
ε

may be factored out of the curl equation and the

result simplified to

(∇ · ~F )−∇2 ~F = ω2µε~F − jωµε∇ϕF . (C.29)

Once again, we are free to choose the gauge. In Cartesian and cylindrical

coordinates, it is convenient to set

∇ · ~F = −jωµεϕF (C.30)
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so that Equation C.29 becomes

∇2 ~F =
ω2εr
c2

~F . (C.31)

In spherical coordinates, there is no coordinate κ such that ∇2(κ̂Fκ) =

κ̂∇2Fκ, where κ ∈ {r, φ, θ}. To find a simple wave equation, it will be useful

to choose a different gauge. Choosing ~F = r̂Fr and expanding Equation

C.29, we find the r̂, φ̂, and θ̂ are, respectively

1

sin θ

[
− ∂

∂θ

(
sin θ

r

∂Fr
∂θ

)
− ∂

∂φ

(
1

r sin θ

∂Fr
∂φ

)]
= ω2µεFr − jωµε

∂ϕF
∂r

(C.32)

1

r sin θ

∂

∂φ

(
∂Fr
∂r

)
= − jωµε

r sin θ

∂ϕF
∂φ

(C.33)

1

r

∂

∂θ

(
∂Fr
∂r

)
= −jωµε

r

∂ϕF
∂θ

. (C.34)

Choosing

∇ · ~Fr = −jωµεϕF (C.35)

will satisfy Equations C.33-C.34. The r̂ equation then becomes

(
∇2 + k2

) Fr
r

= 0. (C.36)

This can be solved by defining ψF = Fr

r
. In the older literature, ψF is referred

to as the Debye potential [44].

Once either Equation C.31 or C.36, has been solved the electric and mag-

netic fields may be calculated via the expressions:

~EF = −1

ε
∇× ~F (C.37)

~HF = jω ~F +∇ϕF = jω ~F − 1

jωµε
∇(∇ · ~F ). (C.38)

From the Equation C.37, it is readily apparent that ~EF is perpendicular to
~F . The electric vector potential, therefore, generates transverse electric, or

TE, waves.
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APPENDIX D

DELVES ALGORITHM

The Delves algorithm [32] is a computational method used to find complex

roots of an analytic function within a bounded region. It was used by Chilwell

and Hodgkinson [8] in 1984 to locate the lossy modes a of a waveguide. This

appendix will explain the basic aspects of the Delves algorithm.

Figure D.1: Layout of the Delves algorithm. The zeros outside of the curve
C will not be located by the algorithm.

Let f(z) be an analytic function whose zeros are to be determined in

region R enclosed within a counterclockwise curve C, as shown in Figure

D.1. Furthermore, it is assumed that no poles of f occur within R. The

Delves algorithm comprises the following steps:

1. Calculate the number of zeros in R using Cauchy’s argument principle.

(a) If necessary, divide the region into smaller sub-regions so that each

subregion has only a limited number of zeros.

(b) If the curve C (or any sub-curves) passes too close to a root, move

it outwards for numerical stability.
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2. Use the argument principle to calculate the power sums of the roots in

each region.

3. Use the Newton-Girard formulas to construct in each subregion a poly-

nomial which has the same roots as f and solve them with a polynomial

root finding algorithm.

4. If the boundary curve was moved in step 1b, remove any excess zeros

which are outside the original boundary.

The first step of the algorithm is to find the number of zeros in R. The

argument principle [45] states that

N − P =
1

j2π

∮
C

f ′(z)

f(z)
dz, (D.1)

where N is the number of zeros and P is the number of poles. The integral

may be evaluated numerically to determine the number of zeros enclosed in

C. Delves and Lyness note [32] that this integral does not need to be carried

out to high precision because the result is known to be an integer.

In the second step of the algorithm, the region R is divided into subre-

gions, Ri, and both the internal and external boundaries are adjusted to

avoid numerical difficulties. In step 3 of the algorithm, a polynomial will be

constructed which possesses the same roots of f(z) within R (or the subre-

gions Ri). Numerical techniques will then be used to find the roots of this

polynomial (and hence the roots of f(z)). Algorithms to find the roots of

a polynomial become numerically unstable if the number of roots becomes

large. The region R is, therefore, recursively sub-divided until each region

Ri contains only a limited number of zeros (generally less than 5). A simple

example of this division is shown in Figure D.2.

Additionally, the boundaries Ci among the subregions Ri may need to be

moved to increase the accuracy of the calculation. If the curve C passes too

close to a zero, the integrand in Equation D.1 may become very large, poten-

tially causing a loss of precision when the integral is evaluated numerically

with floating-point arithmetic. Because at this point in the algorithm the ze-

ros are unknown, nearness to a zero is inferred from the value of f ′(z)/f(z)

becoming large. Delves and Lyness suggest several methods for how to move

the boundaries [32]. Many other methods may be invented. During this
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Figure D.2: Region R has too many zeros, so it is divided into subregions
R1 and R2. The boundary curves C1 and C2 remain oriented
counter-clockwise.

process, subregions may become overlapping, resulting in double-counting

of roots and the inclusion of roots outside the original region R. This is

remedied in the final step of the algorithm.

The third step of the algorithm is to construct and solve a polynomial with

the same zeros as f(z) in each subregion Ri. The polynomial is defined as

p(z) =
N∏
q=1

(z − zq) =
N∑
q=0

(−1)N+qpN−qz
q, (D.2)

where zq’s are the roots of the polynomial, N is the number of roots inside

Ri, and pq are the coefficients of the corresponding polynomial. For each

subregion, we must now calculate the power sums of the roots. A power sum

Sm is defined as the sum of the roots to the mth power:

S(i)
m ≡

∑
k

zmk . (D.3)
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Conveniently, the argument principle provides a method to calculate these

sums numerically:

Sm =
1

j2π

∮
C

zm
f ′(z)

f(z)
dz. (D.4)

The Newton-Girard formulas relate the coefficients of a polynomial to the

power sums of the roots of that polynomial. The coefficients of the polyno-

mial are:

p0 = 1 (D.5)

p1 = S1 (D.6)

p2 =
1

2
(p1S1 − S2) (D.7)

p3 =
1

3
(p2S1 − p1S1 + S3) (D.8)

p4 =
1

4
(p3S1 − p2S2 + p1S3 − S4). (D.9)

Finally, the roots of the polynomial may be found with a polynomial root

finder.
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APPENDIX E

BESSEL FUNCTIONS

When working cylindrical and spherical coordinates, equations will often arise

involving Bessel functions, modified Bessel functions, spherical Bessel func-

tions, Riccati-Bessel functions, and their derivatives. Many software packages

(such as MATLAB) do not have built-in libraries to evaluate these functions.

This appendix provides useful identities which allow the calculation of any of

these functions requiring only access to a mathematical package which can

compute the ordinary Bessel functions Jm(x) and Ym(x). The identities for

the first derivative of the Bessel functions and the definition for the Riccati-

Bessel functions have been collected from the Digital Library of Mathematical

Functions [46, 47].

E.1 Derivatives of Cylindrical Bessel Functions

Let Bm represent any linear combination of Jm, Ym, H
(1)
m , or H

(2)
m . Then, the

derivative of Bm is:

B′m(x) =

−B1(x) m = 0

1
2

[Bm−1(x)−Bm+1(x)] m 6= 0.
(E.1)

The second derivative of Bm is:

B′′m(x) =


1
2

[B2(x)−B0(x)] m = 0

1
4

[B3(x)− 3B1(x)] m = 1.

1
4

[Bm−2(x)− 2Bm(x) +Bm+2(x)] m 6= 0, 1.

(E.2)

Though only listed up to second order, derivatives of any order may be found

by using Equation E.1 recursively.
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E.2 Derivatives of Modified Bessel Functions

The modified Bessel functions, Im(x) and Km(x), are obtained from the

cylindrical Bessel functions, Jm(x) and Ym(x), by substituting jx for x. In

this section, let Bm(x) represent either Im(x) or (−1)mKm(x). Then, the

first derivatives of the modified Bessel functions are:

B′m(x) =

B′0(x) = −B1(x) m = 0

1
2

(Bm−1(x)−Bm+1(x)) m 6= 0.
(E.3)

The second derivatives are:

B′′m(x) =


1
2

(B2(x)−B0(x)) m = 0

1
4

(B3(x)− 3B1(x)) m = 1

1
4

(Bm−2(x)− 2Bm(x) +Bm+2(x)) m 6= 0, 1.

(E.4)

Similar to cylindrical Bessel functions, derivatives of modified Bessel func-

tions may be found to any order by using Equation E.3 recursively.

E.3 Riccati-Bessel Functions and Their Derivatives

The Riccati-Bessel functions occur in the solutions to wave equations in

spherical coordinates. In terms of cylindrical Bessel functions, they are de-

fined as:

Ĵm(x) =

√
πx

2
Jm+ 1

2
(x) (E.5)

Ŷm(x) = −
√
πx

2
Ym+ 1

2
(x) (E.6)

Ĥ(1)
m (x) =

√
πx

2
H

(1)

m+ 1
2

(x) (E.7)

Ĥ(2)
m (x) =

√
πx

2
H

(2)

m+ 1
2

(x). (E.8)
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The first derivatives of the Riccati-Bessel functions can likewise be expressed

in terms of Bessel functions.

Ĵ ′m(x) =

√
πx

2
J ′
m+ 1

2
(x) +

√
π

8x
Jm+ 1

2
(x) (E.9)

Ŷ ′m(x) = −
√
πx

2
Y ′
m+ 1

2
(x)−

√
π

8x
Ym+ 1

2
(x) (E.10)

Ĥ(1)′
m (x) =

√
πx

2
H

(1)′
m+ 1

2

(x) +

√
π

8x
H

(1)

m+ 1
2

(x) (E.11)

Ĥ(2)′
m (x) =

√
πx

2
H

(2)′
m+ 1

2

(x) +

√
π

8x
H

(2)

m+ 1
2

(x). (E.12)

Furthermore, the second derivatives are:

Ĵ ′′m(x) =

√
πx

2
J ′′
m+ 1

2
(x) +

√
π

2x
J ′
m+ 1

2
(x)−

√
π

32x3
Jm+ 1

2
(x) (E.13)

Ŷ ′′m(x) =−
√
πx

2
Y ′′
m+ 1

2
(x)−

√
π

2x
Y ′
m+ 1

2
(x) +

√
π

32x3
Ym+ 1

2
(x) (E.14)

Ĥ(1)′′
m (x) =

√
πx

2
H

(1)′′
m+ 1

2

(x) +

√
π

2x
H

(1)′
m+ 1

2

(x)−
√

π

32x3
H

(1)

m+ 1
2

(x) (E.15)

Ĥ(2)′′
m (x) =

√
πx

2
H

(2)′′
m+ 1

2

(x) +

√
π

2x
H

(2)′
m+ 1

2

(x)−
√

π

32x3
H

(2)

m+ 1
2

(x). (E.16)

E.4 Spherical Bessel Functions and Their Derivatives

Spherical Bessel functions also occur in the solutions to wave equations in

spherical coordinates. In terms of cylindrical Bessel functions and Riccati-

Bessel functions, they are defined as:
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1

x
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√
π

2x
Jm+ 1

2
(x) (E.17)
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The first derivatives of the Riccati-Bessel functions can likewise be expressed

in terms of Bessel functions:
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Furthermore, the second derivatives are:
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