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ABSTRACT 

Motivated by the persistent interest in different nanoparticles added to various polymer matrices, 

the Polymer Reference Interaction Site Model (PRISM) theory is extended and applied to study 

the thermodynamics, statistical structure, and miscibility of diverse polymer nanocomposites 

(PNCs). Under chemistry-matched conditions and in the absence of interfacial attractions 

between a spherically smooth nanoparticle and the matrix fluid, the polymer-induced depletion 

attraction is dominant and induces entropic phase separation. The depletion attraction can be 

potentially reduced by modifying the nanoparticle surface topography as recently observed in 

experiments. Two types of surface-modified nanoparticles have been considered in this thesis – 

(1) spheres with ordered roughness on the surface and (2) soft polymeric nanoparticles with 

surface fluctuations and fuzziness. Monte Carlo integration and other computational techniques 

have been developed to compute the effective interactions between such particles. The 

morphologically diverse particles introduce additional length scales, making the physics non-

monotonic, subtle, and rich. The common advantage with using either of the particles is reduced 

contact aggregation and enhanced miscibility. Optimal surface corrugation and/or particle 

softness allow monomer penetration resulting in favourable (entropic) mixing. However, high 

enough degree of corrugation/softness can also result in destabilization by excluding the polymer 

from its interior.  

 Another route of developing new nanocomposites is by tuning the polymer-particle 

interfacial chemistry. Prior work has established three states of spatial organization, namely 
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depletion, steric stabilization and bridging, depending upon the effective interfacial attraction 

strengths. Introducing polymer chemical heterogeneity via the use of AB copolymers offers 

additional control over the equilibrium structure. Specifically, two types of copolymers are 

considered – (1) random copolymers (RCP) of disordered sequence and (2) ordered, alternating 

multiblock copolymers (MBCP). Quantum chemical calculations are combined with the polymer 

liquid state theory to predict structure and miscibility. The chain connectivity, monomer 

sequence, copolymer composition and differential wettability results in unique frustration in the 

system leading to novel states of organization of the polymer around the nanoparticles. In the 

context of strongly attractive nanoscopic fullerenes, this results in improved miscibility relative 

to the corresponding homopolymers. For some of the systems studied, maximum dispersion is 

predicted at an intermediate copolymer composition due to packing correlations and differential 

wetting effects with favourable comparison to experiments.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and Goal 

Nanoparticles are widely added to polymers to create nanocomposites with improved 

mechanical, optical, thermal and properties
1-6

. The small size of the nanoscopic fillers results in 

strongly enhanced interfacial area compared to conventional composites. The interfacial 

characteristics of the resulting polymer nanocomposite (PNC) are a complex function of the 

system chemistry, polymer and nanoparticle architecture, temperature, solvent quality, etc. A 

thorough understanding of the interfacial microstructure is therefore required to control the 

properties of PNCs.   

 The study of how polymers mediate effective interactions between particles in a dense 

liquid or melt is a challenging problem of fundamental interest in statistical mechanics. In its 

general context of melts and solutions, it is also of high importance for a plethora of 

technological situations such as in tire manufacturing, oil recovery, paints and cosmetics, as well 

as in diverse biological systems
7-15

. One of the key hurdles in many applications is the strong 

direct inter-particle attractions due to unbalanced van der Waals interactions and entropic 

polymer-mediated depletion attractions which make it very challenging to disperse the particles 

in the polymer matrices at desired levels of loading. The over-arching aim of this thesis is to 
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understand the conditions that determine the PNC statistical structure and particle miscibility, 

and identify the features of the polymer matrix and particle that can be tuned to achieve this goal. 

 The ability to spatially disperse particles in PNCs in a thermodynamically stable manner 

is sensitive to structural correlations which depend on controllable features of the 

macromolecules and nanoparticles. The most obvious parameters that can be varied are the 

nanoparticle shape, size and polymer-particle interfacial cohesion. Much recent simulation
16-21

, 

experimental
1-3, 22-26

 and theoretical
27-33

 work has focused on the simplest case of spherical 

nanoparticles in a homopolymer melt wherein the polymer and particle chemistry and particle 

size are manipulated to achieve diverse effective interactions, microstructural organizations, and 

degree of miscibility. 

 In the absence of adsorption between the polymer and the particle, the polymers induce 

the nanoparticles to come close spatially in order to gain free volume and maximize their 

translational and excess packing entropy. This leads to an effective attraction between the 

nanoparticles known as “depletion” attraction
34-36

 leading to particle aggregation and potentially 

macrophase separation and/or non-equilibrium physical gelation
37

. The pioneering work on 

depletion by Asakura and Oosawa (AO)
34-36

 addressed how a dilute solution of small polymer 

coils (radius of gyration, Rg) mediate an entropic attraction between two very large hard spheres 

(diameter D=2R) or surfaces. Polymers were modeled as small spheres with no internal 

conformational degrees of freedom which can pass through each other but not penetrate the 

particles. This strongly nonadditive excluded volume model results in an entropic, purely 

attractive potential of mean force (PMF) between the particles
35, 36

 with a strength at contact that 
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scales linearly with polymer concentration and a range determined by polymer size. The AO 

model suffers from three major limitations: (i) very dilute polymer solution, (ii) very small 

polymers compared to the particle size (Rg << R), and (iii) neglect of all internal polymer 

conformational degrees of freedom. One or more of these simplifications very often fails 

depending on the physical situation.  This has motivated the development of improved theories 

aimed at diverse aspects of the problem which include scaling arguments
38, 39

, lattice and 

continuum mean field approaches
40-42

, integral equations
43-46

, and density functional theories
47

. 

Simulations and liquid state theory have long established that at high fluid densities the depletion 

potential is oscillatory with short range barriers and repulsive regions due to local packing 

correlations
48

, which potentially might “stabilize” particles (presumably kinetically) against 

aggregation
40, 49

.  

  Due to the presence of strong packing correlations and a wide range of length scales in a 

dense melt, the theoretical study of depletion effects in polymer nanocomposites is a relatively 

recent activity. Over the last decade, the microscopic Polymer Reference Interaction Site Model 

(PRISM) integral equation theory
50, 51

 (to be discussed in Chapter 2) has been developed and 

widely applied for the simplest case of PNCs discussed above. It explicitly takes into account 

chain connectivity and intermolecular pair correlations over all length scales. Extensive 

comparisons with scattering experiments and simulations have been performed
20-24

.  

Despite this progress, much remains to be understood about the elementary depletion 

problem in polymer melts especially in the regime of large particle-to-monomer size asymmetry 

ratio and whether there is a uniquely macromolecular component of the effective inter-particle 
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potential of mean force (PMF). Answers are sought for questions like (1) how do the PMF 

minima vary with the polymer molecular weight? (2) What is the importance of maintaining 

realistic constant pressure conditions on depletion? (3) Are the (PMF) features completely local 

as true for the related problem of a polymer melt confined between two parallel plates? 

 One far less explored approach of reducing or eliminating depletion-induced clustering is 

to modify the particle surface by incorporating roughness. In practical materials, the latter is 

often unavoidable. Since rough spheres present less exclusion volume to the matrix than their 

smooth analogs, a diminished contact depletion is expected. The fact that particle roughness can 

attenuate depletion attraction was experimentally demonstrated by Stroock et al for plates and 

cylinders
52, 53

 where they found different states of aggregation as a function of the particle shape, 

roughness and also the concentration of the depleting solvent. Mason et al exploited this effect 

and by introducing roughness on only one side of platelets, achieved side-specific attractions 

between the platelets
54, 55

. They observed that depending upon the surface morphology (shape 

and height of asperities), the entropic depletion attraction can be either suppressed or enhanced. 

Others have also tried to “engineer entropy” by exploiting the differences between smooth and 

rough surfaces to assemble colloidal particles at specific sites
56, 57

. Our interest in heterogeneous 

surface topography was partially inspired by experiments on the stabilization of phospholipid 

liposomes in suspensions using charged nanoparticles
58

. Generally liposomes in suspensions tend 

to fuse rendering many of their applications inefficient. Zhang and Granick
58

 showed that by 

covering 25% of the liposome surface with nanoparticles, improved stability of such particles 

was achieved. While this class of materials serves as a major motivation, our aim is to investigate 

a more generic and broader class of ordered surface heterogeneity, e.g. rigid but rough carbon 
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black nanoparticles
59

, nanoparticle-stabilized emulsions (Pickering emulsion – fig 1.1d)
60-62

, and 

raspberry-shaped colloids
63-65

. The surface morphology can be viewed as rigid hemispherical 

beads on a smooth core. Thus, a multi-scale modeling approach is needed to fully understand the 

role of surface morphology at roughly the monomer length scale which is most relevant to 

polymer mediated depletion attraction forces between nanoparticles. 

 Going beyond the hard bumpy surface morphology, there are other diverse ‘soft’ particles 

in materials science and biology. These are generally deformable objects that form an important 

class of materials at the interface between polymers, and colloids. Examples of such particles are 

many-armed star polymers
66, 67 

(fig 1.1a), polymer-grafted nanoparticles
68-73

 (fig 1.1b), cross-

linked nano or microgels
2, 74, 75

 (fig 1.1c), micellar diblock copolymers
76, 77

, etc. The viscoelastic 

behaviour of such particles is exploited industrially to formulate food or personal care products 

and to process high performance materials such as films, coatings, solid inks and ceramics. An 

added advantage of using such particles is the ability to control the particle softness and size by 

tuning external parameters like temperature, pH, solvent quality, and intrinsic structural 

characteristics such as the length and density of grafts (for grafted nanoparticles) and 

crosslinking density (for cross-linked nanogels). It has been long established that 

thermodynamically stable nanoparticles can be obtained in homopolymer melts when the 

nanoparticles are densely covered by polymer grafts of molecular weight comparable to or 

greater than that of the matrix
68-73

. The ‘wetting-to-dewetting’ transition for such PNCs is 

therefore a function of the relative graft-to-matrix molecular weight and the surface graft density. 

Microgels/nanogels
2, 74, 75

 are cross-linked polymeric particles that are receiving 

increasing attention due to their unique advantages for polymer-based drug delivery system
74

. 
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Their sizes can be tuned from nanometer to micrometers, they offer large surface area and 

provide an interior network for the incorporation of biomolecules. Microgels have become one of 

the most popular soft systems to study because of the relative ease of their synthesis as well as 

the convenience of manipulating their softness by varying the amount of crosslinking or 

temperature. Recent experiments illustrate the (unexpected) possibility of dispersion of cross-

linked polystyrene nanogels in chemically matched dense polymer matrix of linear polystyrene
2
. 

The particle diameters range from ~ 5 nm to 7 nm depending upon the pre-polymer molecular 

weight and degree of cross-linking. The Kratky plots obtained from neutron scattering data in 

solution show a shift towards a hard particle-like nature for heavily cross-linked nanogels (20 

mol % crosslinker)
2, 78

. Depending on the cross-linking density, the nanogels can be semi-

impenetrable with interfaces that are fuzzy and/or fluctuating. This makes them distinctly 

different from both hard smooth and rough nanoparticles.    

 There are multiple length scales associated with nanogel particles, such as the monomer 

diameter, the solid core diameter and the graded interface of finite width. Concerted efforts 

towards a systematic characterization of these multi scale particles have been made
75, 79, 80

. 

Classic soft repulsive Hertzian pair potentials are often used to describe the center-of-mass 

interactions between two microgels
81

 but these do not explicitly take into account the width of 

the fuzzy corona relative to the core and monomer diameter. This necessitates 

theoretical/computational techniques to calculate the bare potentials between the particles and 

between a particle and a monomer, which can then be combined with statistical mechanical 

approaches such as PRISM theory to predict the equilibrium structure and miscibility of the 

resulting PNC.  
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Many theoretical challenges and key questions remain open for the PNCs based on the 

novel soft fillers described above, some of which are the following. (1) What is the role of 

different length scales on nanoparticle dispersion in concentrated monomeric solvents and dense 

polymer melts? (2) On the nanometer scale, does the nanoparticle surface softness perturbatively 

modify the states of organization and miscibility found for hard fillers, or do qualitatively new 

and unique behaviors emerge?    

 The contact depletion attraction can also be countered by incorporating appropriate 

enthalpic interfacial attraction between the polymer and the particle via tuning system chemistry. 

Prior work shows that interfacial attraction can either lead to miscibility by forming a stabilizing 

adsorbed layer around the particle (steric stabilization) or create “bridged” polymer-particle 

complexes
25, 26, 30, 31, 51

. The polymer architecture or monomer sequence in chemically 

heterogeneous macromolecules is another knob that can be tuned to yield better control of the 

equilibrium structure of the PNCs. An AB copolymer of myriad sequences (see fig 1.2) offers 

physical and/or chemical heterogeneity that can potentially lead to new packing structures. 

Recent experiments have demonstrated the potential of using AB random copolymers (RCP) to 

significantly improve the (still non-equilibrium) spatial dispersion of CNTs based on either non-

covalent electron donor-acceptor interactions
82, 83

 between fillers and polymer or hydrogen-

bonding with oxidized carbon nanotubes
84, 85.

 Intriguingly, it was found for most systems, but not 

all, that optimal dispersion is achieved at an intermediate RCP composition corresponding to a 

subtle “window of miscibility”. Also, for spherical, nanoscopic fullerene molecules, recent 

experimental-computational chemistry studies again suggest that AB random copolymers of 

intermediate composition can afford for many systems major improvement of dispersion relative 
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to homopolymer behaviour based on electron donor-acceptor C60-polymer attractions
86

.  

However, a fundamental statistical mechanical understanding of this behavior is lacking and may 

be subtle for multiple reasons including: (i) the strong (compared to thermal energy) and 

spatially short range nature of C60-C60 and C60-polymer attractions, and (ii) nonrandom packing 

and local surface segregation of A and B monomers around the fullerene which are sensitive to 

quenched copolymer sequence disorder and (iii) the small nature of the nanoparticle. These 

interfacial packing effects may mediate subtle PMFs. 

 Beyond the differential wettability in the RCP context, polymer architecture or monomer 

sequence offers an additional route for tuning effective interactions and controlling nanoparticle 

spatial organization. Multi-block copolymers (MBCP) are ubiquitous in natural biopolymers, but 

precise control of the sequence of synthetic monomers has proven to be more difficult although 

recent progress has been made
87-89

. Periodically sequenced MBCPs introduce a new parameter – 

the length of each block. Using a disordered MBCP liquid (i.e., no global micro-phase 

separation) in lieu of a homopolymer raises numerous questions. (1) What is the role of chemical 

heterogeneity on the polymer-mediated state of organization of the nanoparticles? (2) Can one 

achieve better miscibility by replacing the sequence disorder in a RCP melt by the tunable 

sequence order in a MBCP melt? (3) What is the effect of the block length of the MBCP relative 

to the size of the particle? (4) Does the MBCP molecular weight have the same effect on the 

equilibrium structure and dispersion as that of a RCP or a homopolymer? (5) How do the 

answers to the above questions change if one were to use a realistic, weakly micro-phase 

separated MBCP? At present, to the best of our knowledge, there are neither systematic 

simulations nor experiments on PNCs of hard nanoparticles in MBCP melts. 
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 Simulations are an obvious choice to probe the equilibrium behaviour of PNCs. But brute 

force Molecular Dynamics or Monte Carlo techniques are often not possible owing to 

equilibration difficulties presented by dense melts of long chains, the wide range of length scales, 

and the large particle-monomer size asymmetry ratio. The common tool used in this thesis to 

predict the thermodynamic structure of the above-mentioned diverse systems is the microscopic 

PRISM theory. However, depending upon the chemical and physical nature of these systems, this 

liquid state theory needs to be coupled with additional modeling strategies to (1) render the 

results chemically predictive and (2) simplify the systems tractability by coarse graining some 

degrees of freedom. To this end, we have combined computational techniques like quantum 

chemical calculations, Monte Carlo Integration and coarse-graining methods using experimental 

scattering information and pure polymer liquid equation of state data, with PRISM theory to 

achieve quantitative and qualitative predictions of equilibrium structure and miscibility. 

1.2 Dissertation Overview 

Chapter 2 presents the microscopic PRISM that is central to this thesis. Chapter 2 also briefly 

presents some of the PRISM-predicted (and experimentally verified) results on the simplest 

system of dilute smooth nanoparticles in homopolymer melts that is essential background for 

understanding the more physically and chemically complex systems studied in this thesis. Each 

subsequent chapter addresses a chemically and physically distinct PNC. Fig 1.3 schematically 

represents a brief overview of the dissertation. 

 In Chapter 3 we apply numerical polymer integral equation theory to study the entropic 

depletion problem for smooth hard spheres dissolved in flexible chain polymer athermal melts 
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and concentrated solutions over an exceptionally wide range of polymer radius of gyration to 

particle diameter ratios (Rg/D), particle-monomer diameter ratios (D/d), and chain lengths (N) 

including the monomer and oligomer regimes
90

. Calculations are performed based on a 

calibration of the effective melt packing fraction that reproduces the isobaric dimensionless 

isothermal compressibility of real polymer liquids. Three regimes of the polymer-mediated inter-

particle potential of mean force (PMF) are identified and analyzed in depth. A novel finding is a 

long range (of order Rg) repulsive, exponentially decaying component of the depletion potential 

emerges when polymer coils are smaller than, or of order, the nanoparticle diameter. A weak 

long range and N-dependent component of the monomer-particle pair correlation function 

identified as the origin of the long range repulsive PMF. Implications of our results for 

thermodynamics and miscibility are discussed. 

 In Chapter 4 we employ a hybrid Monte Carlo integration plus integral equation theory 

approach to study, for the first time, how dense fluids of small nanoparticles or polymer chains 

mediate effective entropic depletion interactions between topographically rough particles where 

all interactions are pure hard core repulsion
91

. The corrugated particle surfaces are composed of 

densely packed beads which present variable degrees of topographic roughness and free volume 

associated with their geometric crevices. This pure entropy problem is characterized by 

competing ideal translational and both favorable and unfavorable excess entropic contributions.  

Surface roughness generically reduces particle depletion aggregation relative to the smooth hard 

sphere case. However, the competition between ideal and excess packing entropy effects in the 

bulk, near the particle surface, and in the crevices results in a non-monotonic variation of the 

particle-monomer packing correlation function as a function of the two dimensionless length 
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scale ratios that are a measure of effective surface roughness. As a result, the inter-particle 

potential of mean force, second virial coefficient, and spinodal miscibility volume fraction vary 

non-monotonically with the surface bead to monomer diameter and particle core to surface bead 

diameter. A miscibility window is predicted corresponding to an optimum degree of surface 

roughness that destroys depletion attraction entirely. Variation of the (dense) matrix packing 

fraction can enhance or suppress particle miscibility depending upon the amount of surface 

roughness. 

 Chapter 5 studies, for the first time, the effective interactions, spatial organization and 

miscibility of dilute spherical nanoparticles in non-microphase separating, chemically-

heterogeneous, compositionally-symmetric AB multiblock copolymer melts of varying monomer 

sequence
92

. The dependence of nanoparticle wettability on copolymer sequence and chemistry 

results in inter-particle PMFs that are qualitatively different from homopolymers. An important 

prediction is the ability to improve nanoparticle dispersion via judicious choice of block length 

and monomer adsorption-strengths which control both local surface segregation and chain 

connectivity induced packing constraints and frustration.  The degree of dispersion also depends 

strongly on nanoparticle diameter relative to the block contour length. Small particles in 

copolymers with longer block lengths experience a more homopolymer-like environment which 

renders them relatively insensitive to copolymer chemical heterogeneity and hinders dispersion. 

Larger particles (sufficiently larger than the monomer diameter) in copolymers of relatively short 

block lengths provide better dispersion than either a homopolymer or random copolymer. The 

theory also predicts a novel widening of the miscibility window for large particles upon 

increasing the overall molecular weight of copolymers composed of relatively long blocks. We 
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hope that our predictions will motivate further experimental and simulation work for 

nanoparticles dissolved in sequence-ordered, chemically-heterogeneous, non-microphase 

separating MBCP melts. 

 In Chapter 6 we combine PRISM theory and computational chemistry methods to study 

the interfacial structure, effective interactions, miscibility and spatial dispersion mechanism of 

fullerenes dissolved in specific random AB copolymer melts characterized by strong non-

covalent electron donor-acceptor interactions with the nanofiller
93

. A statistical mechanical basis 

is developed for designing random copolymers to optimize fullerene dispersion at intermediate 

copolymer compositions. Pair correlation function calculations reveal a strong sensitivity of 

interfacial packing near the fullerene to copolymer composition and adsorption energy mismatch. 

The potential of mean force between fullerenes displays rich trends, often non-monotonic with 

copolymer composition, reflecting a non-additive competition between direct filler attractions 

and polymer-mediated bridging and steric stabilization. The spinodal phase diagrams are in 

qualitative agreement with recent solubility limit experimental observations on three systems, 

and testable predictions are made for other random copolymers
86

.  The distinctive non-

monotonic variation of miscibility with copolymer composition is found to be primarily a 

consequence of composition-dependent, spatially short-range attractions between the A and B 

monomers with the fullerene and nontrivial pair correlations. A remarkably rich, polymer-

specific temperature dependence of the spinodal diagram is predicted which reflects the thermal 

sensitivity of spatial correlations which can result in fullerene miscibility either increasing or 

decreasing with cooling. The calculations are contrasted with a simpler effective homopolymer 
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model and the random structure Flory-Huggins model. Miscibility predictions of fullerenes in 

RCP are also quantitatively compared to those in MBCP melts discussed in Chapter 5.  

The focus of Chapter 7 is cross-linked, soft polymeric nanoparticles that have an 

irregular, fluctuating surface formed due to loops, strands and chain ends. When dissolved in a 

chemistry-matched polymer matrix, the soft nanoparticles have demonstrated enhanced 

miscibility
2
 compared to smooth hard spheres which aggregate due to entropy-dominated 

depletion forces
90

. Modeling such fuzzy particles is challenging due to the disordered and 

random morphology at the particle interface. The crosslinked nanoparticles of tunable softness 

are modeled statistically using particle form factors obtained from small angle neutron scattering 

experiments. The model yields effective interactions between two fluctuating particles, and one 

fuzzy particle and a monomer. Using these effective interactions, PRISM theory is employed to 

study the structure and miscibility of soft nanogels in monomer fluids and homopolymer melts. 

The monomer-particle pair correlations exhibit increasing polymer penetration in the nanogels 

with increasing surface fuzziness leading to improved dispersion of the particles, contrary to the 

depletion attraction induced between hard spheres by non-adsorbing polymers. However, beyond 

a certain degree of fuzziness, the polymers are excluded from the surface and the particles tend 

to aggregate. The miscibility of soft nanogels is thus a non-monotonic function of both particle 

softness and size. Increasing the matrix degree of polymerization tends to destabilize the system. 

Chapter 8 concludes the dissertation by briefly sketching outstanding open issues and 

possible future directions. 
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1.4 Figures 

 

Figure 1.1 Schematic diagram of some members of the soft particle family – (a) Star Polymer, 

(b) Polymer grafted nanoparticle, (c) Cross-linked nanogel, (d) Particle-stabilized emulsion. The 

boxed particles are of particular interest in this thesis. 
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Figure 1.2 Various polymer architecture considered in this thesis. 
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Figure 1.3 Schematic of the dissertation overview. 
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CHAPTER 2 

THEORY AND BACKGROUND 

2.1 PRISM Theory 

The Polymer Reference Interaction Site Model Theory (PRISM)
1-3

 is a statistical mechanical 

integral equation theory that can be used to numerically predict the pair structure and 

thermodynamics of polymer nanocomposites (PNC). In this chapter, we review basics for the 

simplest case studied in great detail previously by others – a binary mixture of homopolymers 

and structureless smooth spherical nanoparticles. 

2.1.1 Model 

A polymer is modeled as a conformationally ideal freely jointed chain (FJC) of N 

spherical interaction sites or monomers of size d and fixed bond length l as shown schematically 

in figure 2.1. Unless otherwise stated, the persistence length is (4 / 3)l d  which is 

representative of flexible polymers and the monomer (or segment) diameter 1d  is adopted as 

the unit of length. Relative to the monomer diameter d, the nanoparticles are spheres of diameter 

D. In the limit of dilute nanoparticles considered mainly in this thesis, the total system volume 

(packing) fraction is given by 3

6
t pd


  where p is polymer site number density. Throughout 

this thesis, the subscript p denotes a polymer monomer while n denotes a nanoparticle. All 
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dimensions are in units of monomer diameter unless otherwise mentioned. All energies are in 

units of the thermal energy Bk T .  

 The mean statistical shape of a molecule composed of multiple sites (labeled i) is 

described by its site-site intramolecular pair correlation function matrix ( )ij r . For a freely 

jointed chain, the intramolecular pair correlation function in Fourier space is given by
4
: 

  
1 2 2 1 1 1

,

( ) ( ) (1 ) [1 2 2 ]
N

N

p ij

i j

k N k f f N f N f                                        (2.1) 

where sin( ) /f kl kl . The chain statistics in the dense melt are taken to be unperturbed 

(conformational ideality) by the presence of nanoparticles. Possible non-ideal nanoparticle-

induced conformational changes have previously been argued to be perturbative
2, 5, 6

. The 

statistical packing of each polymer segment is taken to be identical corresponding to pre-

averaging chain end effects. A chemically heterogeneous AB copolymer is described by three 

intramolecular correlation functions, one for each type of site and a cross term which describes 

how the two types of sites are connected. The intramolecular correlation functions for multi-

block and random copolymers are given in chapters 5 and 6, respectively. For a structureless 

spherical nanoparticle, one trivially has ( ) 1n k  .   

2.1.2 Interactions Potentials 

Intermolecular interactions are given by pair decomposable site-site potentials Uij(r). 

Monomer-monomer interactions are taken to be hard-core. For the simplest case of smooth 
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nanoparticles, the monomer-nanoparticle and particle-particle interactions are hard core with an 

exponential attraction added for some systems:  

            
( ) ,

0,

ppU r r d

r d

  

 
       (2.2a) 

           
( )/

( ) ,

,nn

nn

r D

nn

U r r D

e r D
  

  

  
      (2.2b) 

           
( )/

( ) ,

,c pn

pn c

r r

pn c

U r r r

e r r
  

  

  
      (2.2c) 

where ( ) / 2cr D d   is the monomer-nanoparticle distance of closest approach (contact). The 

parameters ij and ij are the strength and range of the exponential site-site attractive potentials. 

For chemically heterogeneous species, the forms of the potentials are the same but the strength or 

range can be different for different sites. The shape of the exponential attraction is similar to the 

attraction calculated by Henderson and coworkers between a Lennard-Jones particle and a 

colloid represented by a continuum of Lennard-Jones particles
9, 16, 17

. The chemistry of the model 

enters via the ij and ij . Given that the polymer interactions are hard core, pn represents the net 

enthalpic gain of transferring a monomer from the pure melt to the surface of the particle. The 

shortest range studied, 0.25pn d  , mimics a specific attraction such as hydrogen bonding or 

charger transfer, while 0.5pn d  or 1 are relevant to a generic van der Waals attraction
9
. 
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 For the rough and soft particles discussed in chapters 4 and 7, respectively, the inter-

particle and particle-monomer interactions are computed using different techniques as discussed 

later. 

2.1.3 PRISM Equations for Homopolymer Nanocomposites 

PRISM theory is an extension of the Reference Interaction Site Model (RISM) for rigid, 

small molecules to polymers
2
. Each molecule is composed of sites and given the site densities, 

interactions and intramolecular correlations, the theory can be used to predict the intermolecular 

pair correlation functions. The PRISM theory is based on the matrix generalized Ornstein-

Zernike
7
 or Chandler-Andersen

8
 integral equations which relate the site-site intermolecular pair 

correlations, C, and intramolecular pair correlations,  , as
2
: 

     ( ) ( ) ( ) ( ) ( )H k k C k k H k                                                  (2.3) 

Here,  ( ) ( ) 1ij i j ijh r g r   ,  ij i j ij     , and j is the number density of sites of type j. 

In the dilute particle limit 
3

p d is the only relevant dimensionless density. Under the standard 

PRISM theory approximation
2
 for homopolymers of treating all polymer sites as statistically 

equivalent (no explicit chain end effects), equation 2.3 reduces to three uncoupled, sequentially 

solvable integral equations
9
: 

( ) ( ) ( )[ ( ) ( )]

( ) ( ) ( )

pp p pp p p pp

p pp pp

h k k C k k h k

k C k S k

  



 


        (2.4) 

  
h

np
(k)  C

np
(k)S

pp
(k)

         (2.5)
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h

nn
(k)  C

nn
(k)  (k)

        (2.6) 

2

2
( )

( ) ( ) ( )
( )

np

p np pp p

pp

h k
k C k S k

S k
             (2.7)

 

One sees from equation 2.6 that the polymer-mediated PMF between particles is determined by 

polymer correlations around an isolated particle and the pure melt collective density fluctuations.  

Hard-core interactions imply exclusion constraints in real space inside the distance of 

closest approach: ,( ) 0,ij ij cg r r r  . Approximate closures relating ( )ijh k , ( )ijC k and the site-site 

pair potentials, ( )ijU r , render the theory mathematically solvable. Prior work has established the 

site-site Percus-Yevick approximation for p-n and p-p correlations, and the Hypernetted Chain 

approximation for n-n correlations, are good closures for nanocomposites
10

.  Outside the distance 

of closest approach, rij,c,  these are given by
11

: 

                                       ( )
( ) 1 ( )ijU r

ij ijC r e g r


                                                     (2.8a) 

    ( ) ( ) ( ) ln ( )nn nn nn nnC r U r h r g r                                          (2.8b)                                                                                                                                                                                                                     

where 
1( )Bk T    is the inverse thermal energy. The integral equations are solved numerically 

using the inexact Newton method
12, 13

.  

Of primary interest is the polymer-mediated interparticle potential of mean force (PMF):  

                                   ( ) ln ( )nn nnW r g r                                                         (2.9) 
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which quantifies the change in system free energy to bring two particles from infinitely far apart 

to a separation r. Physically, in a dense liquid the PMF is intimately related to changes of the 

excess free energy of the intervening fluid which is connected with packing correlations. In the 

dilute particle regime of present interest the virial approach to computing the spinodal phase 

separation corresponds to a particle miscibility limit volume fraction of
14

:  

 
1

28c tB


                                                   (2.10) 

where the normalized second virial coefficient is  

                               

( ) 2

02
2

( ) 22,

0

( 1)

( 1)

nn

nn

W r

U rbare

e r dr
B

B
B

e r dr











 







                                        (2.11) 

  More rigorous calculations of spinodal demixing curves based on the simultaneous 

divergence of all k = 0 partial collective structure factors, ( 0)MMS k   , at arbitrary 

nanoparticle loading have been performed based on established numerical methods
12, 15

. All the 

miscibility trends discussed in this thesis remain qualitatively the same (and quantitatively 

similar for 0.2c  ), and thus the virial results are reliable at the level of accuracy of interest in 

the present study. 

2.2   Background  

PRISM theory has been widely applied to study model homopolymer-nanoparticle mixtures
9, 10

. 

In the absence of any attraction between the polymer and the particle (or when 1pn  ), the 
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particles aggregate due to entropic depletion
9, 10, 14

 resulting in strong negative PMF minima at 

contact (figure 2.2). Attractive interactions between the hard sphere and the polymer are 

important in order to achieve some degree of miscibility. At higher values of ( 3 )pn Bk T  , the 

enthalpy gain of the polymer segments adsorbing on the particle surface will compete with the 

depletion attraction resulting in “bridging” where a layer(s) of polymer is shared between two 

nanoparticles forming polymer-particle complexes (figure 2.2). The bridging PMF is repulsive at 

contact followed by a minimum at a monomer diameter distance. When the polymer-particle 

attraction strength is intermediate ( ~ 1 2pn Bk T  ), the polymers adsorb on the particle forming a 

repulsive layer that frustrates macro-phase separation. This state is known as steric stabilization 

and is a compromise between the entropically-driven depletion and high enthalpy-dominated 

bridging. The corresponding PMFs for these three states of spatial organization as well as their 

schematic cartoons are shown in figure 2.2. 

Figure 2.3 shows the spinodal solubility limit of nanoparticles in a homopolymer melt as 

a function of interfacial cohesion strength pn  at fixed range of 0.5pn d  , particle-monomer 

size asymmetry ratio D/d = 5, polymer chain length N = 100 and total packing fraction 0.4t  . 

The spinodal solubility limit is computed from the particle PMF using equations (2.9) and (2.10) 

and is defined as the critical volume fraction beyond which spinodal macro-phase separation is 

predicted. The two spinodal curves at low and high interfacial adsorption pn  denote phase 

separation induced by depletion and bridging, respectively. The window between the two 

spinodal curves is the miscible region where the particles are sterically stabilized.  
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 It is intriguing that a relatively simple system of hard spheres in homopolymer melt can 

lead to such complex physics. This suggests that more novel and tunable states of structural 

organization and miscibility/dispersion strategies can be realized by using more complicated 

components, like chemically heterogeneous polymers of different architecture or non-smooth 

nanoparticle surface morphology. 
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2.4 Figures 

 

Figure 2.1 Schematic of a polymer nanocomposite (PNC) of smooth hard spheres in a 

homopolymer melt. 
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Figure 2.2 Potential of Mean Force (PMF) between dilute hard spheres of size D/d = 5 in a 

homopolymer melt of N = 100 at a packing fraction of 0.4t  at various polymer-particle 

interaction strengths pn and interfacial attraction range of 0.5pn d  . 
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Figure 2.3 Spinodal phase diagram of dilute hard spheres of D/d = 5 in a homopolymer melt of N 

= 100, packing fraction 0.4t   and 0.5pn d  as a function of pn . 
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CHAPTER 3 

MULTI-SCALE ENTROPIC DEPLETION PHENOMENON IN 

OLIGOMER AND POLYMER LIQUIDS
1
 

3.1  Introduction 

The most elementary question concerning polymer nanocomposites (PNC) is the potential of 

mean force (PMF) between two dilute hard spheres dissolved in a nonadsorbing polymer liquid. 

This defines the basic “entropic depletion” problem which has been the subject of many 

theoretical
1-13

, simulation
14-24

 and experimental
25-35

 investigations, in diverse parameter regimes. 

For physically distinct reasons, the depletion interaction can be net attractive which induces 

particle clustering and potentially macrophase separation and/or nonequilibrium physical 

gelation
36

.   

We have applied PRISM theory to study the entropic depletion problem in melts and 

concentrated solutions over an exceptionally wide range of polymer-particle size ratios (Rg/D) 

(figure 3.1), particle-monomer size ratios (D/d ~ 1-100), and chain lengths (N=1-10
6
) or 

equivalently the ratio Rg/d. Calculations are performed for experimentally relevant ranges of 

packing fraction (or dimensionless isothermal compressibility) and (flexible) chain persistence 

lengths. The above range of parameters far exceeds what has been previously studied 

                                                 
1
 This chapter is drawn in its entirety from a previous publication. Reprinted (adapted) with permission from D. 

Banerjee and K. S. Schweizer, J. Chem. Phys. 142, 214903. Copyright 2015 American Institute of Physics. 
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theoretically, and is not feasible using simulation (where typically D/d<5-10, N<100-500) due to 

equilibration difficulties and system size limitations. Our goal is to perform calculations with 

models that are consistent with the equation of state (EOS) of real polymer liquids. As we shall 

show, to properly address the influence (direction and magnitude) of chain length on depletion 

phenomena under isobaric conditions requires such an approach.  

3.2 Model Calibration via the Dimensionless Density Fluctuation Amplitude   

Repulsive interactions generically dominate packing correlations in one-component 

nonassociated liquids, including polymer melts
37, 38

. This motivates the minimalist hard core 

model of interactions. However, thermodynamic (k=0) properties are sensitive to chemistry-

specific attractions. We take this into account in an effective manner and build models consistent 

with the EOS of polymer liquids by requiring the dimensionless compressibility (Spp(k=0)=S0) to 

agree exactly with the experimental behavior at fixed pressure. This thermodynamic property is 

given by
39

: 

    
0( 0)
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p pp p pp

S k S k T
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                             (3.1) 

Here, the above defined S0 is proportional to the amplitude of the long wavelength density 

fluctuations of the pure polymer melt,  χT is the isothermal compressibility directly related to the 

EOS via:  
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and ( )ppg r is the interchain site-site pair correlation function which has a long range correlation 

hole component on the Rg scale
40 

due to the combined consequences of chain connectivity and 

excluded volume.
 
The second line of Eq(3.1) makes explicit how S0 is determined at high N by a 

subtle quantitative competition between two very large terms of opposite sign. The negative 

second term scales linearly with N due to the correlation hole, and nearly cancels the first 

intrachain contribution resulting in the small value of S0 typical of a nearly incompressible 

liquid. (see Fig. 3.2a
41

). Such a near cancellation must be influenced by the value of N since it 

modifies the correlation hole part of gpp(r) which, in turn, also influences local packing and the 

magnitude of gpp(r) on the length scale of intermolecular potentials, as seen in Figs. 3.3a and 

3.3b. This physical mechanism results in a liquid density that grows with N under isobaric 

conditions, which experimentally saturates at an approximate chain length of N=100 (see Fig. 

3.2b inset).  

The density (S0) is also well known to increase (decrease) modestly with cooling (Fig. 

3.2), but S0 is largely insensitive to N at fixed temperature due to a compensation of growing 

density and decreasing compressibility under isobaric conditions. This near constancy is 

illustrated in Fig. 3.2 for chemically diverse polymer liquids: polydimethylsiloxane(PDMS), 

polystyrene (PS) and polyethylene oxide (PEO). One sees over a wide range of temperature and 

chemistry that S0~0.07-0.2. Calculations for moderately higher values of S0 mimic concentrated 

polymer solutions
41

, and lower values mimic liquids under applied pressure. 

The above discussion has motivated our “calibration strategy” for performing 

experimentally-relevant isobaric-isothermal calculations for different values of N: the effective 
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(“bare”) packing fraction of our model, ηt , is adjusted to maintain a fixed S0. A modest range of 

the latter is explored to mimic the known experimental variation of S0 with chemical structure 

and temperature for diverse polymers. Examples of how the effective packing fraction computed 

this way varies with N are shown in the main frame of Fig 3.2b. With increasing chain length, 

higher packing fractions are needed to attain the same dimensionless compressibility. The initial  

increase is roughly logarithmic before saturating for large N. For increasing values of S0, the 

trend is the same but the corresponding packing fractions quantitatively decrease, as they must. 

  The predicted densification of pure polymer melts with increasing N under iso-S0 

conditions is in qualitative agreement with experiment but is quantitatively too large (inset of 

Fig. 3.2b)
42

. This over-prediction could have many origins such as the simple chain and/or 

interaction potential model adopted and/or the theoretical approximations. Based on prior work, 

the most obvious candidate is the use of an ideal random walk description of polymers which 

implies the physical volume a chain takes up is smaller than it should be due to self-overlaps
43

. 

The latter effect increases with N before ultimately saturating. In essence, we are avoiding an a 

priori treatment of this aspect by adopting the calibration procedure whereby the model effective 

packing fraction value serves only to reproduce the correct experimental behavior of S0 of real 

polymer liquids. Unless stated otherwise, all calculations are performed in this iso-S0 manner. 

As relevant background, Figure 3.3 presents representative calculations of the real space 

polymer site-site pair correlation function and corresponding collective static structure factor for 

N=1010,000. Results based on constant S0 (Fig 3.3a) and fixed packing fraction (Fig 3.3b) are 

shown. Qualitatively, the trends with N for structure are identical, but signifcantly weaker for the 
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more realistic iso-S0 results. One clearly sees the long range correlation hole deepens and 

extends in range with N, and emerges at an inter-monomer  separation of ~4d
41, 43

. One also sees 

how the presence of the elongating correlation hole with N and the iso-S0 constraint conspire to 

reduce the pair correlation function locally (small r) before the long chain limit is achieved. The 

inset of Fig. 3.3b shows how fixing the bare packing fraction of the theory results in an 

unrealistic massive growth (factor of 7) of S0 with increasing N. Within the framework of 

PRISM theory and ideal chain models this is additional support for not using constant packing 

fraction models if one is interested in experimental realism.  

3.3   Depletion Potential of Mean Force 

In this section we study the polymer-induced PMF over all length scales as a function of D/d, N, 

S0 and backbone stiffness. Figure 3.4 shows results for a  large nanoparticle of D/d = 80 in a melt 

of fixed S0 = 0.2 over a 5 orders of magnitude variation of N, including the monomer limit and 

the 2Rg>D long chain regime.  The key features of the PMF can be divided into three main 

regions (as marked in the plot) which we refer to as the contact (I),  local or inner barrier (II), and 

long range (III) regimes. We discuss each region separately, and identify trends as a function of 

D/d and N. The relatively weak quantitative dependences on S0 and chain persistence length are 

briefly discussed. 

3.3.1 Contact Attraction  

  The PMF at contact in Figure 3.4 (lies outside the plot scale) is negative corresponding to 

an induced attraction between nanoparticles.  It quantifies the tendency for particle aggregation, 
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and plays a dominant role in thermodynamic miscibility. In a melt, this most local feature of the 

PMF is related to the short monomer or density fluctuation correlation length scale, which grows 

modestly with increasing polymer density or decreasing S0
14

. The leading order physical origin 

of the depletion attraction in melts is not the same as in dilute solutions where polymer 

translational and/or conformational entropy is a key driving force. Rather, in a dense melt with 

oscillatory local packing correlations (see Fig. 3.3), when two particles are brought spatially 

close the preferred local packing of the polymer liquid is frustrated thereby raising the excess 

free energy (here entropic) of the liquid providing the driving force for particle clustering. As N 

increases, there are two major changes in the melt: (i) a longer range correlation hole regime, and 

(ii) a higher density under isobaric conditions. Both suggest a stronger depletion attraction.  

The above physical expectation is confirmed in Figure 3.5 which shows in a log-linear 

format the negative minimum of the PMF at contact normalized by D/d as a function of chain 

length. There are several interesting trends. (i) The attraction strength significantly grows 

initially as roughly a logarithmic function of N which is identical to the change of melt density, 

as verified by cross plotting (not shown) min

nnW versus effective packing fraction under iso-S0 

conditions. (ii) Scaling the PMF minimum by D/d nearly collapses all the curves except in the 

monomer limit. More quantitatively, such linear scaling holds well provided that the particle-

monomer size asymmetry is significant, i.e., D/d ≥ 4-5, in accordance with prior findings
11

. 

Physically, a particle that is large compared to the polymer density-density correlation length 

appears to the melt on the most local scales that defines the contact PMF as a “flat surface”. (iii) 

The slope of the logarithmic regime is nearly independent of D/d, which again suggests its origin 
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is the logarithmic variation of density. (iv) For high enough N, the PMF minimum logarithmic 

growth breaks down at N ~ 150 ± 50 , independent of D/d, polymer persistence length, or S0 

value (not shown). This buttresses our argument that melt EOS effects are the origin of this 

behavior. (v) At high enough N, the scaled PMF contact value saturates at a value roughly 

independent of D/d.  

The dimensionless melt isothermal compressibility was held fixed at S0=0.2 in Fig. 3.5. 

Figure 3.6 shows the consequence of varying this polymer-specific parameter over the wide (in 

practice) range of 0.1 to 0.5. Qualitatively the N-dependent trends remain the same, however, 

quantitatively the attractive minima are quite different. With decreasing S0,  the local pair 

correlations in the melt are enhanced resulting in a stronger driving force to aggregate particles. 

The PMF minima deepen by a factor of 5.3 from low N=1 to high N=10
5
, and a factor of 2.3 for 

S0=0.1; if we extrapolate our calculations to S0=0 (i.e., a hypothetical incompressible fluid), this 

factor attains the near unity value of 1.4. The long chain asymptotic scaling of the PMF 

minimum with dimensionless compressibility is found to approximately be an inverse power 

law, ~ (1/S0)
1/2

 . Though the latter is an empirical deduction based on numerical calculations, 

interestingly it agrees with the analytic thread model analysis in the Appendix A since 

  
S

0

1/2 3  which has a clear physical origin. 

The dashed curve in Fig. 3.6 shows the effect of increasing chain persistence length on 

the depletion attraction. Increasing stiffness at fixed packing fraction is known to enhance 

interchain packing and reduce the dimensionless compressibility
44

. Therefore, to maintain a fixed 

S0, the melt density must decrease, resulting in a weaker  PMF attraction with increased l/d. We 
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note that polymer chemistry (precise values of l/d, S0) does not affect the universality of the 

N~150±50 crossover or the general qualitative trends of the PMF. 

3.3.2 Local Barriers 

In general one expects repulsive barriers in the PMF to emerge in dense liquids when 

particles are separated by a small distance that is incommensurate with the length scale of the 

intervening liquid packing correlations (integer multiples of d). Figures 3.4 and 3.7 show that 

just beyond the contact attractive minimum of the PMF a repulsive “inner” barrier occurs under 

melt polymer conditions. Even for the N=1 atomic fluid there is a substantial barrier of height FB 

~ 4.5 kT. Strikingly, the barrier height is a non-monotonic function of chain length N, or 

equivalently the ratio D/Rg. It initially grows with N when Rg < R/2, then  goes through a 

shallow maximum, and ultimately saturates as 2Rg >> D (see inset of fig 3.7). In Figure 3.4, we 

note that D/d=80 is commensurate in size with a chain of N=5400, and the repulsive barrier 

height peaks for N=1000 before its decreases.  Note also that for the smallest chain of N=10 

there is an increase of 2kBT in the barrier height relative to the N=1 monomer fluid, and this 

jump more than doubles when N=1000.  

Equilibrium thermodynamics and aggregation behavior are undoubtedly controlled by the 

local (contact) part of the PMF. However,  the emergence of repulsive barriers significantly 

greater than the thermal energy may allow an alternative nonequilibrium kinetic mechansim for 

avoiding depletion-induced aggregation. Such a repulsive barrier has been discussed in prior 

diverse studies of (usually) semidilute or concentrated solutions
9, 11, 22, 45, 46, 47

. Experimental 

evidence for this phenomenon was suggested by Ogden and Lewis
47

 who observed improved 
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suspension stability at low polymer concentration which they attributed to the presence of a 

repulsive barrier arising before complete exclusion of polymers from the region between two 

colloids. However, no prior theoretical study we are aware of has found a non-monotonic 

variation of the barrier height with N or the large logarithmic-like N-dependences predicted by 

PRISM theory under model isobaric melt conditions.  

The non-monotonicity of the repulsive barrier height with N emerges when Rg ~ R/2. 

Thus, while thermodynamic stability is best for the N=1 atomic fluid, kinetic stability is best 

achieved by a polymer with Rg ≈ R/2.  The physical origin of the non-monotonicity is rather 

subtle as discussed in the following section. The main frame of figure 3.7 shows the growth of 

the repulsive barrier with particle diameter at fixed chain length N=1000 and packing fraction ηt 

= 0.42 (S0 = 0.2). The barrier height grows almost linearly with the size asymmetry ratio D/d, a 

well understand trend for the local features of the PMF of large enough particles in a dense 

liquid
11

. Barriers of significant height emerge at larger interparticle separations as the particle 

diameter increases. An overall important feature is that barriers become non-negligible in a 

practical sense (>kBT) only when the size asymmetry reaches D/d=10 corresponding to a ~10 nm 

nanoparticle.  

The inset of figure 3.7 shows the primary barrier height, FB, normalized by particle size 

as a function of 2Rg/D. Two physical regimes are seen corresponding to roughly 2Rg/D > 1 and 

2Rg/D < 1. In the N → ∞ limit, the particle can sense only the interior of self-similar polymer 

coils leading to a collapse of the primary barrier if D/d > 10.  In the limit where the particles are 

much larger than the polymer, the primary barrier decreases from its maximum value as the 
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polymer-particle size ratio decreases. This 2Rg/D dependent non-monotonicity is manifested in a 

slight shift of the location of the barrier peak with decreasing 2Rg/D. The non-monotonic barrier 

height change and the concomitant peak in the inset are absent for particles smaller than of order 

D/d=10. 

3.3.3 Long Range Repulsion 

  The idea of a long range (Rg scale) component of the depletion potential under 

equilibrium dense, nearly incompressible, melt conditions has historically not been expected. For 

example, deGennes
48

 argued that for the seemingly related problem of a polymer melt confined 

between two parallel plates, the range of fluid density oscillations orthogonal to the confining 

surface is of the order of the liquid density correlation length. This implies the solvation pressure 

or surface force (analog of the PMF) is short range. However, replacing curved nanoparticles by 

surfaces is only a priori valid, even qualitatively, if Rg<<R. This question of a long range 

component of the PMF in melts would not seem to be amenable to resolving via simulation since 

it requires very long chain melts and very large particles relative to the monomer size. 

Figure 3.4 shows we do find a long-ranged repulsive tail of the PMF (regime III) of 

amplitude that is nearly a constant for 2Rg ≤ D. Rescaling the horizontal axis in Fig. 3.4 by Rg 

demonstrates that its range is of the order of Rg for all chain lengths (Fig 3.8a).Figure 3.8b shows 

the functional form is a simple exponential:  
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where h=r-2D is the inter-particle surface-to-surface separation, and α and λ are numerical 

factors. The log-linear plot as a function of h/2Rg for D/d=34.4 shows linear behavior to a good 

approximation with a nearly universal slope of ~0.2-0.25 for the different curves implying a 

constant λ; numerically, this corresponds to a range of 2λRg ~ Rg/2, only modestly larger than the 

pure melt correlation hole range. The overlap of the PMF curves for D/d=80 and D/d=34.4 

implies the following four  important facts. (i) The amplitude of the long ranged part the PMF 

scales with D/d, the same scaling found for local features of the PMF. (ii) The amplitude of the 

tail appears to be nearly independent of N (ln α ≈ -3.5 ) as long as 2Rg ≤ D. (iii) For chains much 

larger than the particle size (2Rg>>D), the amplitude becomes extremely small and effectively 

disappears on the scale of the plot; in detail, we find (not shown) the tail amplitude decreases 

strongly as (D/2Rg)
4
 ~ N

-2
. (iv) For the atomic fluid and short polymers (N ≤ 20), the PMF is 

spatially short-ranged and oscillatory with no long-ranged repulsive feature given the lack of 

separation between local and polymer size scales. 

 We now can return to the question of why the inner repulsive barrier (regime II) is a non-

monotonic function of 2Rg/D (see Fig. 3.7). The reason is that this feature occurs on an 

intermediate length scale that falls between the local contact regime I and the long range 

repulsive tail (regime III), and thus its behavior reflects the interplay of their different underlying 

physics. Specifically, the EOS effects that control the most local regime I is the leading order 

reason why the barrier height initially grows logarithmically with chain length. However, for 

long enough chains the EOS effects saturate, and given the inner repulsive barrier “rides” on top 

of the long range tail of the PMF, the barrier then gradually decreases at very high N due to the 

reduced amplitude of the long range tail when 2Rg>D.   
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In summary, we have found a coupling between the local and macromolecular scale 

effects in the depletion potential of hard spheres dissolved in dense polymer melts.  A repulsive 

tail of the PMF of range of order Rg exists for all chain lengths but its amplitude becomes 

negligibly small when the polymer is much larger than the particle size (2Rg >> D). Recall that 

we have pre-averaged explicit chain end effects, and the chains are conformationally ideal. A 

speculative physical interpretation of the long range tail is that it is as if a droplet of the liquid of 

size Rg (correlation hole scale) is mediating an effective repulsion between the larger particles 

(fig 3.1). On the other hand, when 2Rg>>D, the particle “sees” only the interior of such a droplet 

where the individual polymer chains, and their interchain pair correlations, obey self-similar  

(~1/r) spatial correlations. In this regime, the long range tail amplitude is negligibly small. 

Mathematically, within PRISM theory this tail feature must arise from the cross correlation 

function, hpn(r), which enters the polymer-mediated depletion potential. From eqns (2.6) and 

(2.7), one sees the essential quantity is the monomer-particle direct correlation function. It is this 

object that enforces the impenetrability constraint that the connected sites of polymer chains 

cannot be in the interior of the hard sphere. This suggests a search for the precise technical origin 

of the long range part of the PMF should focus on this quantity, as done in section 3.4. Finally, 

consistent with physical expectations, we have found that the long-ranged PMF tail is not 

affected by the EOS calibration strategy (not shown) and remains qualitatively unchanged under 

fixed melt packing fraction conditions. 

3.4   Polymer-Nanoparticle Interfacial Correlations  
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We now briefly study how polymers statistically pack around isolated particles as quantified by 

the site-site monomer-particle pair correlation function, gpn(r). This quantity is of general 

interest, and is the origin of the N-dependences of the PMF predicted by PRISM theory. 

We have examined in detail the nonrandom part of the pair correlation function, 

( ) ( ) 1pn pnh r g r  . As an example, we present calculations for D/d = 80 at fixed S0=0.2 as a 

function of polymer chain length, N.  Generically, gpn(r) has a contact peak followed by local 

oscillations on the monomer diameter scale (not shown). For any chain length, we find that the 

curves seem to collapse, but the first peak is a weakly non-monotonic function N with a 

maximum value when Rg < D/2. The latter is a consequence of melt EOS effects.  

   Figure 3.9 shows that at larger monomer-particle separations there is a long-ranged tail 

of the interfacial correlation. We have verified that its range is set by Rg with an amplitude that 

varies non-monotonically with N or equivalently 2Rg/D. The amplitude appears very weak on the 

scale of Fig. 3.9, but it is well known that small changes in the polymer-particle pair correlations 

can have strong consequences on the particle-particle PMF
3, 9, 11, 13

. This long range tail in nearly 

incompressible melts is a new discovery, and at a technical level is the origin within PRISM 

theory of the long range tail in the PMF. Physically, it presumably reflects the fact that there is a 

weak macromolecular component to the constraint of impenetrability of a monomer with a 

curved hard sphere due to chain connectivity. The sharp drop of the amplitude when 2Rg>D is 

identical to what was found in section 3.3.3 for the PMF, and the physical reason is presumably 

the same as suggested there. 
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It is natural to ask whether the long range feature in the interfacial correlation function 

(and consequently the interparticle PMF) is unique to a dense polymer melt. To answer this, we 

have studied this problem for semidilute solutions (see Appendix A) based on two levels of chain 

modeling:  (1) the analytic Gaussian thread model, and (2) full numerical PRISM calculations for 

nonzero monomer diameter chains. The thread model by construction sets the monomer diameter 

to zero resulting in a vanishing contact value of the polymer-particle correlation function and no 

density oscillations in the collective structure factor. The thread model does not predict the weak 

long range repulsion in the PMF in semidilute solutions. In contrast, full numerical PRISM 

theory does predict a nonzero polymer density at the particle surface and a long range repulsive 

tail in the PMF; the latter ultimately vanishes continuously only as the polymer density 

approaches zero. These results are discussed in detail in the Appendix A. Our analysis 

establishes the common physical origin of the long range PMF repulsion in melts and semidilute 

solutions is a nonzero polymer density at the nanoparticle surface and the long range component 

of the polymer-particle pair correlation function associated with chain connectivity.     

3.5   Miscibility and Thermodynamics 

We now present a few calculations of the particle second virial coefficient 

2 2, 2,/nn HSB B B which determines the miscibility limit volume fraction under dilute conditions. 

We also discuss the possible relevance of kinetic stabilization via repulsive barriers. 

Figure 3.10 presents calculations of the normalized second virial coefficient for particles 

of size D/d=5 in a polymer matrix of chains with persistence length l/d = 4/3. Results are shown 
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at various fixed dimensionless melt compressibilities. Recall that negative values of the second 

virial coefficient imply phase separation will occur and positive values imply complete 

miscibility. Following the PMF calculations trend, the 2B curves have a sigmoidal-like 

dependence on chain length. For very short polymers and a “high” concentrated-solution-like 

value of S0=0.5, the miscibility decreases very slowly up to N~10. It then decreases much faster 

with increasing (intermediate) N, eventually saturating in the long chain limit.  This trend is 

amplified for a less compressible melt of S0=0.2 or 0.1. The massive difference in the second 

virial coefficients for different S0 values stems primarily from the difference in the polymer 

packing fractions required to maintain the constant dimensionless compressibility constraint.   

For the least compressible system of S0=0.1, the negative second virial coefficient at N=1 

hints that the system is never completely miscible, unlike when S0=0.2 and 0.5. The second virial 

coefficient changes sign at N=10 for S0=0.5, implying that for very short polymers, the particles 

are completely miscible. For S0=0.2, 2B is positive only for N=1 and 2 and becomes negative for 

N ≥ 3. The transition from positive to negative B2 depends not only on the dimensionless 

compressibility S0, but also on D/d since the PMF grows with this quantity.  

In terms of numbers, the spinodal volume fraction in the long chain limit is ~6% and 1% 

for S0=0.5 and 0.2, respectively, for the D/d=5 system of Fig. 3.10. Alternatively, if one asks at 

what chain length is 1% miscibility attained we find N~60 and 20 for S0=0.2 and 0.1, 

respectively. Recall that S0 is a nonuniversal function of polymer chemistry and temperature. 

Increasing D/d greatly decreases the solubility limits given the exponential connection between 

the second virial coefficient and the PMF. 
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The monotonic dependence of 2B on N emphasizes that thermodynamic miscibility is 

dominated by the local (contact) contribution of the PMF. While regimes II and III of the PMF 

also, in principle, contribute to the quantification of dispersion, their weak non-monotonic 

dependence on N is masked by the strong primary attractive minimum.  

An interesting question is nonequilibrium stability and dispersion. Recall that for big 

enough particles in dense long chain melts, large repulsive barriers are predicted in the PMF at 

short interparticle separations (Fig. 3.7). These could potentially kinetically frustrate aggregation 

and phase separation, stabilizing the dispersion in analogy with charge stabilization in colloidal 

suspensions.  For example, from Fig. 3.7 we find that in the long chain limit the primary 

repulsive barrier height is ~ 0.12 D/d in thermal energy units. Thus, given a typical monomer 

size of d~1 nm, for a 100 nm particle there is a high ~12 kBT barrier. This raises the striking idea 

that by increasing polymer chain length one might kinetically achieve particle stabilization. Note 

that, in analogy with charged colloids that also experience a very strong van der Waals attraction, 

the contact attraction strength is even larger; from Fig. 3.6, we find Wmin/kBT~ -D/d for S0~0.25. 

Of course, in real long chain melts there are potential complications such as entanglements and 

adsorption. 

A prior simulation study of spherical particles (D/d~5) in a (largely) nonadsorbing bead-

spring polymer melt under isobaric conditions was performed by Smith et al
20

. They found that 

the tendency for particle aggregation was enhanced with increasing chain length. Their systems 

were simulated initially in the NPT ensemble that yielded equilibrium reduced densities of ρpd
3
 = 

0.63, 0.68 and 0.70 for N = 5, 10 and 20, respectively; in all cases they found a negative second 
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virial coefficient. Given the simulation and theoretical models are not identical, to make a fair 

qualitative comparison of the N-dependences we normalize the second virial coefficient with the 

shortest chain (N=5) value as: 2, 2 2( ) ( ) / ( 5)nnB N B N B N  . The simulation values of 

2, ( )nnB N are given in Table 3.1 along with our predicted values. We do not want to over-

emphasize the quantitative comparison but rather the similar qualitative, even semi-quantitative, 

variation of the second virial coefficient with N under melt-like conditions found in simulation 

and theory. 

3.6   Summary 

We have employed PRISM theory to study polymer-mediated entropic depletion interactions 

between two hard spheres dissolved in a dense polymer melt or concentrated solution. Our new 

insights derive from studying this problem within the context of model isobaric conditions, and 

over an unprecedented wide range of polymer-particle size ratios (Rg/D), particle-monomer size 

ratios (D/d), and chain lengths (N, up to 10
6
) or equivalently Rg/d. Given a typical segment size 

of d~ 1-1.5 nm, our calculations are relevant to nanoparticles as large as ~100 nm, and polymers 

with end-to-end mean distances as large as ~2 microns. Such length scales are far beyond the 

ability of direct simulation, but are highly relevant to experiment, including systems of 

biophysical relevance. 

Motivated by the desire to mimic the experimental equation of state behavior of real 

polymer liquids at atmospheric pressure, we have formulated an iso-dimensionless 

compressibility calibration procedure for selecting the polymer packing fraction that enters the 
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theory. We find that this “calibration” or mapping procedure is essential to realistically capture 

chain length effects in polymer melts and the depletion problem in real nanocomposites.  

We have identified and analyzed three key features of the PMF on different length scales. 

On the most local scale of the contact value of the PMF that dominates the second virial 

coefficient and thermodynamic miscibility, we find the well-known and understood near 

universal linear scaling of the strength of depletion attraction with D/d, and a nonperturbative 

logarithmic increase up to N~ 100 which ultimately saturates in the long chain limit. The latter 

increase is due to the growth with N of the effective packing fraction under iso-S0 conditions. It 

implies that even in dense melts with their short density correlation lengths, the isobaric 

constraint and corresponding liquid densification results in a major loss of miscibility as 

polymers become longer, an equation of state effect. Polymer chemistry (and to zeroth order, 

temperature) enters via the value of S0. As the latter decreases, the depletion contact attraction 

quantitatively increases, but there are no qualitative changes of any of the dependences on D/d or 

N; a similar invariance of the qualitative aspects to chain persistence length is found. Qualitative 

consistency of the predicted chain length dependence (N=5-20) of the 2
nd

 virial coefficient with a 

simulation
20

 has been demonstrated. 

The second key feature of the PMF is just beyond contact there is a repulsive entropic 

barrier of height that again grows linearly with D/d for the same physical reasons the contact 

minimum does. The barrier can attain values far in excess of thermal energy for experimentally 

relevant (large) nanoparticle sizes and polymer chain lengths. This raises the possibility of 

entropic kinetic stabilization of nanoparticles. Moreover, for relatively large nanoparticles 
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(D/d>10) the barrier is a non-monotonic function of chain length which becomes quantitatively 

more pronounced with increasing D/d. The barrier initially grows significantly and roughly 

logarithmically with N for all particle sizes at a rate that is nearly independent of D/d. A 

maximum is attained when the geometric criterion Rg ~ R/2 is reached, and beyond that the 

barrier height decreases weakly and ultimately saturates when 2Rg>>D. Non-negligible 

secondary barriers can emerge for large enough particles and long enough chains. New physics 

beyond just EOS effects underlie this non-monotonic variation of the repulsive barrier height 

with 2Rg/D.  

 The third key feature of the PMF is perhaps the most striking given it was not apparently 

anticipated in dense melts. A long range (of order Rg) repulsive component of the depletion 

potential emerges when the polymers are smaller than, or of order, the particle diameter. This 

feature is also present in semidilute solutions (see Appendix A1) although the Gaussian thread 

model misses it completely
49

. Hence, this tail requires both particle curvature relative to 

macromolecular size, and nonzero monomer volume that results in a nonzero contact value of 

both gpp and gpn. On general grounds, and based on its exponential dependence of interparticle 

separation with a decay length of order Rg, we speculate there is a qualitative connection to the 

melt correlation hole idea as generalized to the problem of how polymers pack around hard 

particles. As the polymer becomes larger than the particle, this long range feature decreases 

extremely rapidly and becomes negligible. Its origin within the theory is traced back to a weak 

Rg-scale component of the monomer-particle pair correlation function associated with how chain 

connectivity influences this packing problem.  The predictions of PRISM theory for this long 



 

56 

 

range repulsion in semidilute solutions, and the similarities and differences compared to the melt 

behavior, is addressed in the Appendix A2. 

The practical consequences of the long range repulsive PMF feature seem very small for 

equilibrium thermodynamics, but might be relevant to dynamics. Concerning its technical 

reliability to the approximations of the version of PRISM theory we employ, our largest concern 

is that the theory does not allow polymer conformation to vary in a spatially inhomogeneous 

manner for that part of the melt near or between the particles. This approximation is difficult to 

avoid in any integral equation approach for nanocomposites formulated at the level of pair 

correlations
9
, and represents an open future direction of research. However, a priori we cannot 

think of an argument for why this effect would qualitatively modify the prediction of PRISM 

theory for the long range feature of the PMF. 

 Concerning experimental implications, we see two major ones. First, the dispersability of 

nanoparticles in polymer melts clearly decreases with growing chain length under isobaric 

conditions
50, 51

. Whether this involves nonequilibrium effects (adsorption, entanglements, 

gelation) or is an equilibrium phenomenon is not well understood. Our calculations establish 

what is expected based on isobaric equilibrium conditions for the foundational problem of 

nonadsorbing polymers and a model nanocomposite controlled entirely by entropic packing 

effects. Second, the prediction that large repulsive barriers can emerge for big enough 

nanoparticles and long chains suggests the idea that spatial dispersion might be achieved 

kinetically by increasing the size of polymers and particles, counter to what happens under 

equilibrium conditions. This would be a new strategy that complements the now well known 
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strategies for dispersion based on controlling the polymer-particle adsorption strength
9, 11, 12, 13

 or 

coating particle surfaces with grafted brushes
52-54

.  
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3.8   Figures 

 

Figure 3.1 Cartoon of the three physical regimes based on the ratio Rg/D. 
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Figure 3.2a Experimental dimensionless isothermal compressibility
67

 as a function of chain 

degree of polymerization (N) for PDMS, PS and PEO melts at the indicated temperatures and 1 

atm pressure. 
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Figure 3.2b (Main) PRISM-predicted pure polymer melt packing fraction as a function of N 

required to maintain the indicated constant dimensionless compressibilities. (Inset) Experimental 

change of density of a PDMS melt with molecular weight at different temperatures and 1 atm
67

. 
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Figure 3.3a (Main) Polymer melt interchain site-site pair correlation function, gpp(r), for various 

chain lengths based on the “calibration strategy” for S0 = 0.2. (Inset) The corresponding 

dimensionless collective static structure factors. 
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Figure 3.3b Analog of Fig.3a but at a fixed melt total packing fraction of ηt = 0.4 (no 

calibration). 

. 
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Figure 3.4 Potential of mean force (units of thermal energy) between two particles of size 

asymmetry ratio D/d = 80 at the indicated chain lengths and fixed S0=0.2. The attractive minima 

at contact (off scale) in units of the thermal energy are -39 (N = 1), -67 (N = 10), -95(N = 1000), 

-99 (N = 5400) and -101 (N = 10000), respectively. 
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Figure 3.5 Potential of mean force contact minimum normalized by the size asymmetry ratio  as 

a function of N and various values of D/d with S0=0.2. 
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Figure 3.6 Potential of mean force contact minimum for fixed D/d=10 and chain persistence 

lengths of l/d = 1.333 (solid) and 1.5 (dashed) as a function of N at various values of 

dimensionless compressibility S0. 
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Figure 3.7 (Main) Potential of mean force for N = 1000 and S0=0.2 at the indicated values (see 

inset legend) of D/d which range from 10 to 100. (Inset) Primary barrier height (regime II) 

normalized by the particle diameter as a function of 2Rg/D for various values of the size 

asymmetry ratio D/d. 
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Figure 3.8a The long-ranged repulsive tail of the potential of mean force (regime III) for D/d=80 

and S0=0.2 at the indicated chain lengths. 
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Figure 3.8b Log-linear plot of the normalized long-ranged part of the PMF as a function of the 

interparticle surface-to-surface separation at the indicated chain lengths for D/d=34.4 (solid) and 

80 (dashed) and S0=0.2. 
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Figure 3.9 Non-random part of the site-site polymer-particle pair correlation function for D/d=80 

and S0=0.2 at the indicated chain lengths. Note that the result for N=10
4
 is long-ranged but the 

amplitude is extremely small. For the N=1000 (2Rg ~ 34.4) system, the curve goes to zero at an 

inter-surface separation of ~ 35d. 
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Figure 3.10 Normalized second virial coefficient for D/d=5 as a function of chain length N for 

different dimensionless compressibilities S0. 
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N (Simulation
20

) 2,nnB  (PRISM) 2,nnB  

5 1 1 

10 1.9 1.95 

20 3 3.4 

 

Table 3.1 Comparison of Theory and Simulation Virial Coefficients as a Function of N. The 

normalized second virial coefficient defined as 2, 2 2( ) ( ) / ( 5)nnB N B N B N  . Simulation results 

are from ref. [20]. For the PRISM calculations, l/d = 1.333 and S0 = 0.2. The individual 2 ( )B N  

are all negative. 
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CHAPTER 4 

ENTROPIC DEPLETION IN COLLOIDAL SUSPENSIONS AND 

POLYMER LIQUIDS: ROLE OF NANOPARTICLE SURFACE 

TOPOGRAPHY 

4.1   Introduction 

The study of how small nanoparticles or polymers mediate effective entropic depletion 

interactions between particles or colloids in liquid media is a problem of enduring relevance to 

colloid science, polymer science, materials science, and biological systems
1-4

. The most 

elementary question concerns the potential of mean force (PMF) between two dilute spheres in 

non-adsorbing media where all interactions are repulsive hard core. This is a pure entropy 

problem, and the nonideal aspects vary depending on the system and concentration regime. The 

basic problem is theoretically well understood for large smooth hard spheres dissolved in a fluid 

of smaller hard spheres
5-7

 as discussed in Chapter 3. If the matrix is a dense polymer solutions or 

melts, the physics is much richer and depends on additional length scales
8-16

. Though there are 

some surprises in polymeric media regarding the non-contact form of the depletion potential, 

much recent progress has been made using a variety of theoretical methods and the problem is 

now well understood. If excluded volume interactions are additive, excess entropy favors contact 

aggregation of the large spheres. However, often depletion attraction leads to macroscopic phase 
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separation which is undesirable. Multiple complementary strategies have been developed to 

counteract this including tuning chemistry to favor limited matrix-particle adsorption
17-20

, 

attaching chain molecules to provide steric stabilization
21-24

, and introducing frustration based on 

sequence-designed AB copolymers
25-29

.  

The other avenue to avoid clustering of fillers is to modify the surface morphology of the 

particles by incorporating roughness compared to the conventional smooth spheres. Some recent 

experiments have demonstrated the fact that particle roughness can attenuate depletion 

attraction
30-36

. Studying the effect of surface roughness on the depletion interaction between two 

fillers in a solvent or polymer solution/melt is a relatively recent phenomenon. In reality, the 

surfaces of colloidal particles fabricated via different techniques are not exactly smooth on the 

molecular level. This provides the motivation to study the effect of the surface imperfection or 

disorder on the classical depletion force. Rough spheres have less overlapping volumes than 

smooth hard spheres and are therefore potential candidates to diminish the strong attractive force 

at contact. Examples of ‘rough’ particles include rough carbon black nanoparticles
37

, 

nanoparticle-stabilized emulsions (Pickering emulsion)
38-40

, and raspberry-shaped colloids
41-43

.  

The above discussion motivates our present theoretical work which is aimed at 

systematically exploring how regular surface roughness modifies the pure entropic packing 

problem underlying depletion phenomena. The problem is subtle and rich due to the presence of 

multiple excess entropy contributions which compete and can vary widely (even in sign) 

depending on length scales. Figure 4.1 shows the model we study - regularly surface corrugated 

colloids dissolved in “monomer” (or nanoparticle) suspensions and polymer melts. Beyond the 
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translational and packing entropic effects present for smooth hard spheres, for such structured 

colloids (or “raspberry” particles) the presence of surface crevices introduces new physical 

considerations associated with placement entropy (matrix particles exploring the crevices), 

changes (frustration) of fluid packing in the confined crevice space, and possible non-additive 

effects associated with the overlap of crevices on two colloids close in space. Per Figure 4.1, the 

corrugated systems are characterized by two dimensionless length scales, D/ and /d. For a 

minimalist model of a polymer liquid, two additional length scale ratios enter (in units of the 

monomer diameter), Rg/d and l/d, where Rg is the polymer radius of gyration and l the chain 

persistence length. Our goal is to study all these realizations with a single theoretical approach.  

There are rather limited prior theoretical and simulation studies of entropic depletion for 

colloids with non-smooth surfaces.  Kostoglou and Karabelas
44

 calculated the effective potential 

between two rough surfaces by considering the surface topography to be sinusoidal with a 

specific amplitude and wavelength. Others
45-47

 have computed the interaction force between a 

rough spherical particle and a smooth flat surface but the focus was on how roughness reduces 

van der Waals attraction. Our interest differs from these studies in that we focus on dense 

nanoparticle matrix fluids and polymer melts. For such systems, simulation is extremely difficult 

because of long equilibration times or very low acceptance probabilities due to the high total 

packing fraction, large size asymmetry between monomers and fillers, and/or polymer 

connectivity constraints. We thus adopt well-established integral equation theory (IET) methods. 

However, using IET to treat the entire problem is also difficult computationally, and for 

asymmetric systems as in Fig. 4.1 numerical solutions are sometimes unattainable. Thus, for this 

reason, and given our desire to broadly explore the relevant parameter space, we adopt a coarse 
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grained hybrid approach. Specifically, Monte Carlo integration is employed to construct colloid-

colloid and colloid-monomer effective potentials at the center-of-mass level, which are then used 

in IET to compute liquid structural correlations and miscibility limits. This hybrid approach has 

been successfully used recently in the very different context of statistical fractal aggregates 

dissolved in polymer melts
37

. 

4.2   Model and Effective Pair Potentials 

Figure 4.1 shows the model studied. The rough colloids are characterized by a core diameter, D, 

and the diameter of densely packed spherical bumps is  A pair of such particles are dissolved 

in a monomer fluid of hard spheres of diameter d, or a liquid of flexible polymers of degree of 

polymerization N composed of these same monomers. Thus, depending upon the choice of the 

solvent, there are either 3 or 4 length scales, and hence 2 or 3 dimensionless ratios, that 

characterize the packing problem. In addition, the matrix fluid packing fraction t enters, which 

is taken to be a value representative of dense melts or concentrated solutions.  

We first construct a coarse-grained model which removes the explicit surface bump 

degrees of freedom in the spirit of prior studies of soft colloids, e.g. many arm stars, crosslinked 

microgels, block copolymer micelles, and fractal aggregates
37, 48-52

. We determine the effective 

pair potentials that incorporate colloid roughness in an average manner. The well-established 

integral equation methods are employed to predict the equilibrium structure.  

4.2.1 Particle Model and Effective Pair Potentials 
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 The corrugated “raspberry” particle of Figure 4.1 is composed of Nb surface spherical 

interaction sites of diameter  centered on, and densely covering, the core (diameter D) surface. 

The ratio /D   characterizes the static corrugation, while the relative roughness perceived by a 

monomer of diameter d is quantified by the ratio / d .  Due to geometrical constraints, there are 

only a limited set of options for /D   such that the surface is densely covered
53

. We study here 

Nb = 72, 128, 282 and 650, corresponding to /D  = 5, 7.8, 10 and 15, respectively
53

. Standard 

Monte Carlo integration is employed to determine the effective pair potential between the centers 

of two particles, 
  
U

nn
(r) , and between a monomer and a rough particle, ( )mnU r , by fixing their 

center-to-center distance and averaging over all orientational degree of freedom. All elementary 

site-site potentials are pure hard core. The technical and computational details are identical to 

prior work for disordered fractal aggregates
37

.  

The nanoparticles can rotate and adopt different orientations characterized by two angles 

  and . The conditional configurational partition function for two particles at fixed CM 

separation r is written as an integral over the two angles of rotations of each particle, where the 

energy is a function of these angles: 

   1 2 1 2( , , , , )

1 2 1 1 2 22

1
( ) sin sin

(4 )

E rZ r d d d d e          



                            (4.1) 

which is computed using standard multi-dimensional integration methods akin to an elementary 

Monte Carlo integration: 
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where ( 1,n , 2,n , 1,n , 2,n ) are uniform random numbers that fall in the permissible integral 

limits.  

The probability to find two particles separated by a distance in the interval r and r+dr is 

( )2 2( ) 4 4 ( )nnU r
P r r e dr r Z r dr

 
  where ( )nnU r is the desired effective potential between the 

two corrugated particles. Exploiting the spherical symmetry in our model, the potential can then 

be written as: 

    2

1 2

( ) ln ( )

1
ln sin sin

4

nn B

B

noc

U r k T Z r

k T
M


 

 

 
   

 


                                   (4.3) 

where ‘‘noc” stands for ‘‘non-overlapping configurations’’. We use the following rule to define 

overlapping configurations: any part of particle 1 (core or bead) overlaps with any part of 

particle 2 (core or bead). Here the summation is equivalent to counting “noc” because 0E  for 

‘noc’ and E  otherwise. The effective interaction between the rough particle and the 

monomer/solvent molecule ( )mnU r  is similarly computed using the same procedure as described 

above.  

The main frame of Figure 4.2 presents the effective particle-monomer potentials for fixed 

core size /D  at various bead-to-monomer ratios, / d . Their general functional form is a 

finite range, soft repulsion which depends on / d . The repulsion onset shifts to smaller 
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separations as the surface beads become larger relative to the monomers, and the potential shape 

approaches a bare hard-core interaction as the monomer size grows. Increasing the bead size 

relative to the monomer provides more interstitial space for monomers to explore without 

violating the non-overlap criterion, and thus the effective interactions become softer with 

increasing / d . 

  Figure 4.3 shows the particle-monomer pair potentials at two ratios / 1d  and 4 for 

three core sizes. At a fixed / d , as /D  grows from 5 to 10 the repulsion become less soft 

since the surface topography is smoother. From the cross potentials of Figs. 4.2 and 4.3, the 

distance of closest approach between the rough particle and monomer, eff

cr , can be deduced. For a 

smooth hard sphere, this is trivially ( ) / 2eff

c cr r D d   . For a rough sphere, its value reflects 

the degree to which a monomer can penetrate the particle surface layer. From the ( )mnU r plots, 

we find that eff

cr for / 4d   is 10.515, 16.05 and 20.5d for / 5D   , 7.8 and 10, respectively.    

The inset to Fig. 4.2 shows the particle-particle pair interactions for three core sizes. The 

effective interaction becomes zero when the two outer shells (an imaginary sphere enveloping 

the surface bumps) first touch. Then, as the two particles approach closer, the beads on one 

particle can explore to some degree the crevice of the other particle, and a soft repulsion grows. 

Eventually with decreasing inter-particle separation ( )nnU r diverges. 

4.2.2 Coarse-grained Model 

We adopt a center-of-mass (CM) description where the surface bumps enter only via the 

effective potentials described above which are then employed in the relevant IET. For polymers, 

monomers are connected into chains using the same ( )mnU r determined for the monomer fluid. 
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There are several reasons for adopting this coarse graining approach versus numerically using 

IET for colloids that explicitly retain the surface beads as distinct interaction sites. First, 

implementing the latter involves a minimum of six nonlinear integral equations which prior 

work
37, 43, 54

 has found are very difficult to numerically solve, and sometimes it is impossible (no 

convergence) due to the high degree of interaction size and packing asymmetry. Second, the 

adoption of a reduced degree of freedom model is generalizable to even more complex colloidal 

particles. 

 Structural pair correlations thus follow from solving three integral equations for the pair 

correlation functions,
  
g

ij
(r) . In our notation, the subscript ‘p’ and ‘m’ denote a polymer and 

monomer site, respectively, while ‘n’ labels a rough nanoparticle. For the monomer fluid, we 

employ standard Ornstein-Zernike (OZ) theory
55, 56

 with the Percus-Yevick (PY) closure for m-

m and m-n correlations and the hypernetted chain (HNC) closure for n-n correlations
57

. Use of 

the latter has been shown to be successful for soft repulsive colloids and polymer 

nanocomposites
48, 58

. It also guarantees the positivity of the n-n pair correlation function which 

can becomes an issue in packing problems that have entropic dewetting aspects, as is relevant 

here. For polymer melts, we employ the Polymer Reference Interaction Site Model (PRISM) 

theory. 

4.3   Monomer Solvent : Structural Correlations 

Much of the new physics that emerge from excess packing entropy effects for rough colloids is 

present in the monomer liquid or small nanoparticle suspension (N=1) case. Thus, we first study 
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this system in detail in sections 4.3 (correlation functions) and 4.4 (miscibility limit). With this 

foundation, the consequences of polymer connectivity are established in section 4.5.  

A key variable is the total matrix fluid packing fraction, ηt. Increase of the latter is known 

to enhance depletion for smooth particles. Our interest is dense polymer melts (including the 

monomer and oligomer regimes) and concentrated nanoparticle suspensions. Thus, we perform 

calculations for two values of packing fraction: 0.4 (melt) and 0.226 (concentrated solution). 

More generally, reducing packing fraction significantly weakens the local packing short range 

order in the suspending fluid, which is of interest to explore with regards to its consequences for 

depletion attraction between rough colloids.  

4.3.1 Competing Entropic Effects 

To place our new results for rough particles in context, we first recall basics of the 

problem for smooth particles. For both monomeric and polymer fluids, the depletion attraction 

strength at contact grows with increasing particle size as ~ D/d and also with increasing fluid 

packing fraction. The latter trend is deeply related to the origin of depletion attraction in dense 

melts which is optimization of excess packing entropy of the correlated matrix fluid. For 

polymers, contact depletion attraction monotonically and significantly grows with chain length 

due to conformation restrictions on packing, ultimately saturating for long enough chains.  

To set the stage for physically interpreting our numerical results, we discuss the various 

competing excess entropic packing effects one expects due to the surface protrusions or 

roughness associated with the crevices (Fig. 4.1). The crevices present extra space for the matrix 
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particles to explore. Consequently, the gain in “free volume” of the depletants realized by 

clustering the larger particle is smaller relative to a smooth particle. This translational entropy 

argument implies that surface roughness can be harnessed to reduce depletion. The importance of 

this source of entropy obviously depends on the relative sizes of the surface bumps and fluid 

particles, and to some extent the particle core radius. If translational entropy was the only 

consideration, then increasing the surface bump size would monotonically improve miscibility. 

However, we shall show that interfacial roughness can enhance or inhibit depletion depending 

upon system variables. This indicates the presence of a competing entropic effect which is the 

matrix fluid packing in the crevices. The frustration of the ability of the fluid particles to layer in 

a bulk-like manner due to their confinement in the crevice can hinder dispersion. Additionally, 

close to the particle surface, the solvent particles perceive the colloid as a sterically ‘patchy’ 

surface composed of alternating hard bumps and relatively softer, solvent-filled crevices. The 

packing of the matrix particles near these two types of surface regions will be different and their 

manifestations for miscibility cannot be a priori guessed.  

The three spatial regions of matrix packing near a rough particle surface discussed above 

are sketched in Fig. 4.1c to highlight the complexity of the packing problem relative to the 

smooth particle case. The packing frustration of the matrix particles in the curved and confined 

space of the crevices costs excess entropy relative to matrix particles remaining in the bulk. This 

can result in a type of “entropic de-wetting” which enhances depletion. Physically, we argue that 

the competition of favorable and unfavorable consequences of crevices raises the possibility of a 

non-monotonic dependence of entropy-driven clustering tendency on the relative length scale 

ratios. Trivial limits would seem to be when the matrix fluid particles are vanishingly small (a 
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continuum solvent limit) and the opposite case whence fluid particles for steric reasons do not 

“see” the crevices and the rough particle appears as effectively smooth.  The above discussion is 

largely focused on the most elementary problem of how the matrix fluid packs around a single 

colloid. For the PMF question, the two rough particles are held at fixed (close) separation and the 

combined translational and crevice-related packing entropies may lead to subtle and unexpected 

non-monotonic excess entropy effects. 

The rich competing physics in monomer fluids remains present in polymer melts, but the 

extra constraints of chain connectivity might be expected to result in stronger depletion attraction 

will increasing with N, as found for smooth hard spheres. This indeed is the qualitative trend we 

find below based on our numerical calculations. However, there are subtle aspects that emerge 

concerning precisely how chain connectivity impacts the favorable and unfavorable crevice 

entropy effects. 

4.3.2 Monomer-Particle Interfacial Correlations 

The statistical packing around an isolated particle is quantified by the monomer-particle 

cross correlation function, ( )mng r . For a smooth hard sphere, it peaks at the distance of closest 

approach ( ( ) / 2)cr D d   followed by oscillations on the monomer scale indicating layering. 

Figure 4.4 shows results for / 10D    rough particles at 0.4t  (main) and 0.226 (inset). The 

effective distance of closest approach, eff

cr , for each surface bead size can be read off from the 

corresponding monomer-particle pair potential discussed in section 4.2.1. When the monomer is 

larger than the bead ( / 0.5d  ), ( )mng r looks similar to that of a smooth hard sphere except 
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that the first peak occurs at an inter-surface separation of 0.125d. As the bead size is increased 

to / 2d  , the packing correlation becomes much more diffuse and the fluid locally dewets as 

indicated by  the first peak of ( )mng r significantly shifting outwards, broadening, and decreasing 

in amplitude; there is a small hint of a non-zero value at contact ( eff

cr r ). As the surface beads 

become even larger, ( )mng r at contact increases, implying enhanced accessibility of the crevices 

to the monomers, and the non-contact first maximum decreases even further for 

   / d  3.Therefore, the primary ( )mng r  peak (both contact and non-contact) changes non-

monotonically with / d indicating that, in contrast to a smooth hard sphere with well-developed 

layering, for rough spheres the pure solvent packing entropy in the crevice ( ( ) / 2eff

cr r D    ) 

and beyond ( ( ) / 2r D   ) competes with free volume entropy in a complex manner .   

  The inset of Fig. 4.4 shows analogous results at the lower fluid packing fraction 

0.226t  . Qualitatively, the subtle non-monotonic trends are still present But quantitatively the 

peak heights are lower, and again decrease with increasing / d .  

Figure 4.5 compares the interfacial correlation functions of a smooth sphere with a rough 

sphere of / 10D    for two surface bead sizes / 0.5d  (main) and / 7d  (inset). A hard 

sphere analogous to a raspberry particle of / 0.5d  has a diameter of D/d=5, and its 

( )mng r peaks at contact followed by monomer scale oscillations. The latter features remain for 

rough particles when the surface bumps are smaller than the monomers, at both fluid packing 

fractions (solid and dashed lines). However, the peak for the raspberry particle occurs at 

( ) / 2r D d   which is greater than the effective closest distance of approach eff

cr . 
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Effectively, the monomers which are larger than the surface beads “see” the particles as a smooth 

sphere of diameter ( ) / 2D  and do not probe the tiny crevices.  Differences between ( )mng r  of 

a smooth hard sphere and a rough particle of / 7d  are much starker (inset). The peak occurs 

at the distance of closest approach in both cases, but for the rough sphere, the peak height is 

significantly reduced due to the lack of accessible free space and monomer length scale 

oscillations beyond contact are totally absent. Here the combined packing entropy dominates 

over the excess free volume. The rough sphere ( )mng r  also exhibits a correlation hole feature 

(local density less than bulk value) of spatial range ~ / 2 . At / 2eff

cr r   , ( )mng r displays a 

small peak followed by very weak oscillations on the scale of density fluctuation correlation 

length of the bulk liquid. The non-zero contact value at eff

cr indicates that the monomers do 

explore to a limited extent the surface corrugation. This effect is concomitant with the near-

destruction of the monomer scale layering. Thus, rough particles introduce geometric packing 

frustration in the packing of the monomer fluid near its surface  which is sensitive to crevice size 

relative to monomer diameter.  

4.3.3 Inter-Particle Potential of Mean Force 

A representative example of the PMF for smooth hard spheres in a fluid of 0.226t  is 

shown by the blue dotted curve on Figure 4.6a. Strong contact aggregation occurs, with well 

defined oscillatory features on the monomer size scale.  The PMF minima min

nnW scale linearly 

with particle size D/d
11, 17

 as indicated by the triangular points in the inset. The main frame of 

Figure 4.6a also shows the PMF between rough particles of / 10D    where the surface 

corrugation is less than or equal to monomer diameter, i.e. / 1d  . When the monomer is twice 
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the bead diameter ( / 0.5d  ), the rough particle appears as a near-smooth hard sphere with an 

attraction well of -2.6kBT at 1.091D that  is quantitatively close to its smooth hard sphere analog; 

corrugation effects are still essentially absent. When   / d 1, the monomer effectively still 

perceives the rough particle as smooth but now with a larger diameter compared to the case 

of / 0.5d  , which explains the more attractive PMF.  

Increasing the roughness to / 1d  , monomers begin to strongly sense the ordered 

surface topography as indicated by the PMFs in Fig. 4.6b. To maximize free volume, monomers 

now explore the crevices leading to a reduction of the depletion contact attraction when 

/ 2d  . Remarkably, for / 4d   the depletion attraction is completely destroyed leading to a 

purely repulsive PMF! This behavior is intimately related to the interfacial correlations in Fig. 

4.4 where one sees that for    / d  3 the monomers pack in a much more disordered fashion 

around the particle. However, this effective repulsion does not persist with further increase of the 

corrugation. Rather, for / 5d  , we find that the PMF trend reverses again, and contact-like 

depetion attraction re-emerges and grows in depth as    / d varies from 6 to 8. For such high 

bead-to-monomer ratios, this enhanced crevice accessibility is countered by the lack of bulk-like 

layering in the crevice as seen in the ( )mng r curves in the inset of Fig. 4.5. This effect of non-

layering in the crevice presumably favors tighter interparticle contacts leading to more depletion 

attraction.   

The PMFs in Figs. 4.6 discussed above are for a matrix fluid 0.226t  . The green 

dashed curve in Fig. 4.6b shows the corresponding PMF for / 6d   if 0.4t  . Increasing 

t results in a very different PMF which is now weakly repulsive. This massive reduction of 
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depletion attraction is a consequence of the enhanced exploration of the crevices by monomers, 

as indicated in the pair correlation functions in Fig. 4.4. 

The inset of Fig. 4.6a provides a clearer picture of the non-monotonic changes of the 

PMF with    / d  by plotting the attractive well depth as a function of / d for rough particles 

and versus D/d for the corresponding smooth hard spheres. The latter displays stronger 

attractions that grow linearly with particle diameter. In sharp contrast, the attractive strength of 

the raspberry particles is a doubly non-monotonic function of corrugation, first intensifying from 

/ 0.5d  to 1, then weakening up to / 5d  , and then reversing again.  This complex 

behavior arises from the non-monotonic variation of the interfacial pair correlation function with 

   / d . 

Figure 4.7 shows the PMF for three core sizes at two different surface bead sizes. When 

the bead and monomer diameters are equal, increasing the core size results in a monotonically 

deepening of the attractive PMF akin to depletion in smooth hard sphere systems
5, 11, 17

. On the 

other hand, in the / 5d  corrugated regime (inset), the trend is non-monotonic. Decreasing the 

bead size relative to the core implies an increase of /D  and the particle appears smoother to 

the monomer. Therefore, as /D  is decreases from 15 to 10, the attractive strength between the 

particles is reduced from -4.3kBT to -0.41kBT. One would expect that decreasing /D  further 

would continue this trend. However, we find that the PMFs for / 10D   and 7.8 are roughly the 

same, with very weak depletion attractions, but then becomes more attractive for / 5D   . This 

non-monotonic PMF variation occurs in the window 2 / 10d   with effective attractions 

between the rough spheres minimized when / 7.8D    or 10. The non-monotonicity for 
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  5 D / 10 can be traced back to the behavior of the interfacial pair correlation function 

behavior where maximum penetration of solvent monomers into the crevices is predicted when 

/ 7.8D   or 10 depending upon the specific value of / d  (not shown). Thus, the multiple 

competing entropies in the problem result in an optimum amount of roughness that maximizes 

particle dispersion.    

The variation of the primary PMF attraction minimum as a function of core size, bead 

size and fluid packing fraction is summarized in Fig. 4.8. Per Fig. 4.6a, these minima for rough 

particles are a doubly non-monotonic function of bead size, and the dependence on core size 

depends on / d . At 0.226t  , in the classic depletion regime ( / 1d  ), the PMF minima 

decrease with increasing /D  , but it varies non-monotonically in the    d corrugated regime. 

For / 2d  , the minima become more shallow upon increasing / 5D   to 7.8, attain a 

minimum depth at either / 7.8D   or 10, and then become more attractive again for 

/ 15D   (not shown). Thus, the PMF minimum is a non-monotonic function of both surface 

roughness and core size. For denser liquids ( 0.4t  ), the changes of the PMF minima depend 

on bead size. In the near-smooth particle limit ( / 1d  ), increasing packing fraction leads to a 

more attractive PMF in a manner similar to smooth hard spheres (see inset). However, in the 

rough sphere regime for / 5D   (dashed blue curve), increasing the fluid density weakens the 

PMF attraction, even resulting in a transition from an attractive to repulsive PMF in the window 

of 3 / 7d  . These variations of the PMF attraction depth are vastly different than the simple 

behavior predicted for smooth hard spheres in the inset of Fig. 4.8. 

4.4   Monomer Solvent: Miscibility 
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We now present representative calculations of the particle second virial coefficient which 

determines the miscibility limit volume fraction under dilute conditions. Spinodal phase 

separation is controlled by the PMF. Thus, all the trends discussed in section 4.3 provide a 

physical basis for understanding the miscibility behavior discussed below. 

Figure 4.9 shows the non-dimensionalized second virial coefficient at 0.226t  (main 

frame) and 0.4 (inset). For a fixed core size of / 10D    in the less dense solvent, the second 

virial coefficient initially decreases as the bead size grows from 0.5 to 1d. Beyond    / d 1, 

miscibility increases until    / d  6 . The rough particles are completely miscible in the window 

of 2 / 6d  where
2B is positive and nearly equal to the pure hard sphere value of unity. The 

virial coefficient also appears to be independent of the core-to-bead ratio in this window. 

For / 6d  , the miscibility trend reverses, and the virial coefficient becomes negative for the 

smaller core particle. For particles with a large core ( / 10D   ), the behavior is qualitatively 

similar but the miscibility window is wider since second virial coefficient becomes negative only 

for / 8d  .  

Taken as a whole, the main frame of Fig. 4.9 establishes three regimes determined by the 

size of the bead relative to the monomer.  (i) If / 1d  , the monomer does not perceive the 

corrugation, and the smooth particle trend of increasing particle size enhancing depletion 

attraction occurs resulting in destabilization
11, 17, 59

. (ii) An intermediate regime, 2 / 6d  . 

Here, surface beads are large enough to allow monomers to explore particle crevices leading to 

enhanced stability or positive
2B . (iii) Large asymmetry regime, / 7d  , where strong particle 

clustering re-emerges via a new mechanism that appears to be a subtle competition of opposing 
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effects. Here the large crevices are accessible to monomers, but beads on different particles can 

effectively inter-digitate (in an average statistical sense). Figure 4.9 also shows that the 

miscibility window after first widening as   D /   grows from 5 to 10, undergoes a dramatic 

narrowing for / 15D   . This non-monotonic variation of 
2B  with /D   and / d  is a subtle 

consequence of the particle PMF, which in turn is related to the spatial organization of the 

solvent around the rough particles, as discussed in section 4.3.   

The inset of Fig. 4.9 shows analogous results in the denser 0.4t   fluid. An increase of 

solvent density has opposing effects determined by the bead-to-monomer size ratio. When 

/ 1d  (off scale), the second virial coefficient becomes exceedingly negative with 
2B = -13, -

60, -229 for / 0.5d  , and -214, -2039, -45361 for / 1d  , for the three core sizes of 

/ 5D   , 7.8 and 10, respectively. This trend is in accordance with prior studies
5, 6, 11, 14, 15, 60

. 

On the other hand, increasing t from 0.226 to 0.4 necessarily leads to more solvent particles in 

the crevices, which provides a more repulsive contribution to the  PMF that explains the 

predicted widening of the miscibility window when / 10d  for / 7.8D   and 10.    

The virial spinodal volume fractions of the rough (  D /  5 ) and smooth particles are 

reported in Table 4.1 at the two liquid packing fractions. Our virial-level estimates are expected 

to be reliable only up to 0.2 0.25c   . At lower fluid density, total dispersion (
2 0B  ) of the 

rough particles is predicted if / 6d  , after which miscibility drops. For the analogous smooth 

spheres, complete miscibility is observed only until / 5D d  . Upon further increase of particle 

size, we find that miscibility decreases. Interestingly, in contrast to smooth hard spheres, the 
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effect of the total packing fraction on the rough sphere systems depends upon their surface 

topography. When the bead size is small compared to the monomer, i.e., the depletion-like 

regime, one sees from the Table 4.1 that increasing fluid density decreases the spinodal volume 

fraction. Contrary to this smooth hard sphere like behavior, miscibility improves with increased 

packing fraction for the rough particles with sufficiently large bead-to-monomer diameter ratios. 

These trends are qualitatively similar for core sizes of /D  = 7.8, 10 and 15 (not shown). Thus, 

we conclude that adding ordered roughness to the particle surface improves dispersion provided 

the corrugation scale is larger than the monomer diameter, / 1d  . Also, unlike conventional 

depletion for smooth particles, increasing the liquid density can impart more miscibility to the 

raspberry composites.  

4.5   Polymer Melts 

In this section we employ the identical iso-dimensionless-compressibility calibration method to 

mimic isobaric-isothermal melt conditions
11

. A realistic melt dimensionless compressibility of 

  
S

0
 S

mm
(k  0)  0.17 is used, and the corresponding packing fractions for N=1, 10, 10

3
, 10

4
 and 

10
5
 are 0.226, 0.317, 0.4, 0.4355 and 0.4475, respectively.  

Representative calculations of the second virial coefficient as a function of chain length 

are shown in Fig. 4.10 for / 5D    and 2 / 6d  . The most obvious trend is that the rough 

particles become less dispersed as N increases. This is the expected conformational frustration 

effect whereby increasing chain length hinders the ability of polymers to penetrate the interstices 

of the particles and pack in an efficient manner. For a polymer as short as N=10, the window of 
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miscibility (or, positive
2B ) shrinks to 3 / 5d   compared to the monomeric solvent where 

there is complete miscibility for 2 / 6d  . In the near hard sphere limit of / 2d  , the 

virial coefficients monotonically decrease with N and assume large negative values that lie 

outside the scale of the plot. 

Figure 4.11 shows the effect of chain length when the bead size relative to the core is 

reduced to / 10D   . At a fixed / d , the second virial coefficient again decreases with N. 

Similarly as before, the window of miscibility narrows from 2 / 8d   for N=1, to 

4 / 5d   for N=10
3
. Strikingly, even for chains as long as N=10

4
 ( / 54.4gR d  ), there is one 

bead-to-monomer ratio ( / 4)d   for which total miscibility is predicted. This establishes the 

fundamentally local nature of the excess entropy effects that lead to this striking non-monotonic 

behavior. 

We emphasize that all the qualitative trends discussed above persist without the iso-

compressible calibration strategy (not shown). Quantitatively, upon repeating the above 

calculations at fixed 0.4t   for all values of N, we find the virial coefficients again decrease 

with N but quantitatively more rapidly than the corresponding iso-compressible case.  

Since the second virial coefficient is calculated from the particle PMF, it is instructive to 

examine how the latter changes with N. For a particle with / 10D   , the PMFs for N=1, 10, 

100, 1000 are shown in Figure 4.12 at fixed / 1d   (main) and 4 (inset). The / 1d   result is 

in the depletion-like regime where the PMF minima decrease logarithmically with N
11

. The 

attractive minimum is followed by monomer scale oscillations indicating liquid layering. On the 
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other hand, the variation of the PMF with chain length at / 4d  (inset) is very different.  From 

Fig. 4.11, we know that this is the bead size at which the system is completely miscible for all 

chain lengths. In the solvent (N=1) limit, the PMF does not look much different from the bare 

particle potential,
  
U

nn
(r) , implying that no work or free energy penalty is required to bring the 

particles from infinitely far apart to a separation r. Increasing N from 1 to 100 results in the 

emergence of a weak barrier of spatial range roughly proportional to the polymer radius of 

gyration. Increasing the chain length further, a weak attractive minimum in the PMF emerges, 

followed by a long-ranged repulsive barrier. In contrast, the attractive component of the PMF of 

rough particles for / 5D    and / 4d   deepens monotonically with N (not shown) which 

leads to a monotonic decrease of 
2B  with chain length.   

4.6   Summary 

We have developed a hybrid Monte Carlo plus integral equation theory approach to study the 

interfacial packing correlations, potentials of mean force, and thermodynamic miscibility of 

rough raspberry particles dissolved in chemically-matched concentrated monomeric fluids and 

polymer melts controlled entirely by entropic considerations.  Broadly, our results provide a 

basis for understanding, and potentially exploiting in materials applications, the subtle ability to 

counter entropic depletion attraction and phase separation by introducing surface roughness. 

Dramatic qualitative changes of the packing correlations are predicted relative to smooth hard 

spheres as a consequence of competing translational and crevice packing entropic effects. The 

changes in statistical spatial organization vary non-monotonically with the two dimensionless 

length scale ratios: surface bead to monomer diameter, and particle core to surface bead 



97 

 

diameter. Connecting monomers into chains results in large quantitative, but not qualitative, 

changes of trends, with depletion attraction always enhanced with growing chain length.   

For certain windows of parameter space or length scale ratios, surface corrugation and 

excess free volume result in a favorable driving force for mixing which can effectively compete 

with the unfavorable depletion attraction, resulting in a major enhancement of nanoparticle 

dispersion, and even in complete miscibility and a repulsive PMF. Overall, miscibility as 

quantified by the second virial coefficient is a complex, non-monotonic function of the two 

dimensionless length scales ratios in monomer fluids, resulting in “miscibility windows” that 

optimize particle dispersion. Increasing the monomeric packing fraction from 0.226t  to 0.4 

diminishes the solubility in the depletion-like regime where particles tend to aggregate, but 

widens the miscibility window in the rough particle regime where monomers sense crevices.  

To the best of our knowledge, this is the first systematic theoretical study of the role of 

nanoparticle static surface corrugation on packing correlations, potentials of mean force, and 

miscibility in the purely athermal entropic regime. We focused here on very dense liquid-like 

matrices, and nanoparticles that have close-packed and regularly arranged bumps. Lower surface 

coverage particles can be easily studied, and represents another knob to tune miscibility, 

effective interactions, and assembly. A natural extension of our work is to include surface 

fluctuation (coherent/incoherent fluctuation) of the beads, which is relevant to systems like intra-

molecularly crosslinked polymer nanoparticles. Another direction is to break chemical symmetry 

and allow a local interfacial attraction between the surface beads and monomers. Finally, the 

ability to compute structural correlations for these rough particles can provide crucial input to 
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developing force-level theories for the slow dynamics and kinetic arrest in suspensions 

composed non-smooth surface particle suspensions. 
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4.8   Figures 

 

Figure 4.1a Schematic of the corrugated raspberry particle with a core diameter of D and bead 

(corrugation) diameter of . 
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Figure 4.1b Schematic depicting the three step hybrid computational approach for raspberry 

particles in a polymer liquid. (a) CM level effective interaction between particles (b) CM level 

effective interaction between a particle and a monomer, and (c) the effective, coarse-grained 

two-component system. 
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Figure 4.1c Schematic depicting distinct solvent packing states near a (i) smooth sphere and (ii) a 

rough particle. The red spheres represent the matrix particles that can explore the rough particle 

crevice. The blue and green spheres indicate fluid particles that feel the solid smooth bump and 

the softer solvent-filled interface, respectively.  
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Figure 4.2 (Main) Effective interaction between a monomer and a rough particle for various bead 

sizes / d at a fixed core of / 5D   . (Inset) Effective interaction between two rough particles 

of core sizes / 5D   , 7.8 and 10.     
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Figure 4.3 Effective interaction between a monomer and a rough particle of core size 

/ 5D   (solid), 7.8 (dotted) and 10 (dashed) at the indicated surface bead sizes. 

 

 

 

 

 



108 

 

 

Figure 4.4 Cross correlation function for dilute rough particles of size / 10D    in a monomeric 

solvent (N=1) of total packing fraction 0.4t  (main) and 0.226 (inset). The axes labels for the 

inset are the same as the main plot. 
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Figure 4.5 Cross correlation function for dilute rough particles of size / 10D    in a monomeric 

solvent (N=1) of total packing fraction 0.4t  (solid) and 0.226 (dotted) for bead sizes 

/ 0.5d  (main) and / 7d  (inset) and their corresponding hard spheres. The peak value of 

gmn(r) for D/d=70 is 4.85. The axes labels for the inset are the same as the main plot.  

 

 

 



110 

 

 

Figure 4.6a (Main) Potential of mean force between dilute rough spheres of size / 10D   at the 

indicated surface bead sizes (less than the monomer diameter) in a monomeric solvent of total 

packing fraction 0.226t  . Dotted curve is the corresponding PMF of dilute hard spheres of size 

D/d=5. Inset shows the PMF minima of corrugated particles as a function of bead size / d  

(circles) and for smooth hard spheres as a function of particle diameter D/d (triangles). 
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Figure 4.6b Potential of mean force between dilute rough spheres of size / 10D   at the 

indicated surface bead sizes (greater than the monomer diameter) in a monomeric solvent of total 

packing fraction 0.226t   (solid) and 0.4 (dashed).   
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Figure 4.7 Potential of mean force between dilute rough spheres of surface bead size 

/ 1d  (main) and 5 (inset) at different core diameters in a monomeric solvent of total packing 

fraction 0.226t  . The axes labels for the inset are the same as the main plot.    

 

 

 

 



113 

 

 

Figure 4.8 (Main) PMF minima (units of thermal energy) of corrugated particles as a function of 

bead size and different core diameters in a monomeric solvent of total packing fraction 

0.226t  (solid) and 0.4 (dashed). Inset shows PMF minima of smooth hard spheres at the 

indicated packing fractions. The axes labels for the inset are the same as the main plot.   
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Figure 4.9 Normalized second virial coefficient for rough particles of different core sizes in a 

monomeric solvent (N=1) of total packing fraction 0.226t  (main) and 0.4 (inset). The axes 

labels for the inset are the same as the main plot.   
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Figure 4.10 Normalized second virial coefficient for rough particles of size / 5D   as a 

function of surface bead size in a polymer melt of various chain lengths and fixed 0 0.17S  . 
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Figure 4.11 Analog of Fig. 4.10 for particles of size / 10D   .  
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Figure 4.12 Potential of mean force between dilute rough spheres of size / 10D   at surface 

bead size / 1d  (main) and 4 (inset) in a polymer melt of various chain lengths and 

fixed 0 0.17S  . The axes labels for the inset are the same as the main plot.  
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/D   / d  /D d  

c  

0.226t   0.4t   

Raspberry HS Raspberry HS 

5 0.5 2.5 

Miscible 

Miscible  

0.024 0.059 

 1 5 0.001 0.003 

 2 10 0.12 

Miscible Immiscible 

 3 15 0.013 

 4 20 0.001 

 5 25 

Immiscible 

 6 30 

 7 35 0.33 

 8 40 0.11 

 

Table 4.1 Comparison of the rough and smooth sphere spinodal solubility limits c in solvents of 

packing fraction 0.226t  and 0.4. Systems with solubility limit of < 10
-4

 are deemed 

immiscible while those with > 0.5 are assumed miscible.   
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CHAPTER 5 

CONTROLLING EFFECTIVE INTERACTIONS AND SPATIAL 

DISPERSION OF NANOPARTICLES IN MULTIBLOCK 

COPOLYMER MELTS
1
 

5.1 Introduction 

In the context of polymer nanocomposites, a recent experimental discovery is that improved 

particle dispersion can be achieved by using chemically heterogeneous, amorphous copolymers
1
. 

Specifically, AB random copolymers (RCP) of intermediate composition, where the A and B 

monomers display different wettability with the particle, results in major improvement of the 

dispersion of fullerenes relative to both the corresponding pure homopolymers. 

Beyond chemical heterogeneity in the RCP context, polymer architecture or monomer 

sequence offers an additional route of tuning effective interactions and controlling nanoparticle 

spatial organization. Periodically sequenced block copolymers are ubiquitous in natural 

biopolymers, but high synthetic control of the monomer sequence has proven to be difficult 

although recent progress
2-4

 have opened up a new vista in biology and nanotechnology. 

Traditionally, nanoparticles of different sizes have been added to diblock copolymers that form 

                                                 
1
 This chapter is drawn in its entirety from a previous publication. Reprinted (adapted) with permission from D. 

Banerjee and K. S. Schweizer, J. Polym. Sci. Part B: Polym. Phys, 53, 1098-1111. Copyright 2015 Wiley 

Periodicals, Inc., A Wiley Company. 
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well-defined microdomains in order to achieve unique structures and properties that depend upon 

the preferential segregation of the particles in one of the microdomains
5-8

. Most theoretical 

efforts in this area have focused on the order-disorder transition and crystalline BCP 

morphologies
9-11

. 

The goal of this article is to address a different problem that to the best of our knowledge 

has not been studied. Specifically, how do dense disordered liquids of MBCP’s mediate effective 

interactions between nanoparticles of significant size as a function of differential and absolute 

wettability, particle versus monomer size ratio, and block length. We will show that multiple 

new physical behaviors emerge as the latter experimentally-relevant variables are changed which 

are qualitatively different than that found previously for tiny particles in RCP melts
12

.   

5.2  Multi-block Copolymer Model 

For a AB copolymer based on the standard pre-averaging of chain end and junction effects
13

, 

there are two types of chemically inequivalent sites, and hence three intramolecular probability 

distribution functions or partial structure factors, ωij(k). Each copolymer is an ordered sequence 

of alternating A and B blocks of equal length, R, corresponding to the fraction of A sites in a 

chain of fA= 0.50, with Q blocks such that the chain degree of polymerization is N  QR . For 

example, a MBCP of R=2 implies a chain of A-A-B-B-A-A-B-B-… sequenced-monomers. Per 

prior work
14-17

, the polymer is modeled as a freely-jointed-chain (FJC) of (unless stated 

otherwise) N = 100 segments where each site has a hard core diameter d and the chain 
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persistence length  l  4d / 3, a typical value for flexible polymers
13

. The total packing fraction is 

fixed at a dense melt-like value of 0.4t  .  

We consider composition symmetric MBCP melts of various block lengths of R = 1 

(alternating copolymer), 5 and 10, which correspond to 100, 20 and 10 blocks, respectively 

(figure 5.1). The corresponding block contour lengths are 1d, 5d and 10d respectively. Previous 

work found that even longer blocks (fewer blocks Q) yield reduced stability in the pure melt
18, 19

. 

The corresponding ( )ij k ,  are
20

 : 
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Particle-particle and monomer-monomer pair potentials are taken as purely hard core. 

Thus, in the absence of nanoparticles, the copolymer is equivalent to an athermal homopolymer 

melt. This choice precludes the possibility of polymer microphase separation, thereby cleanly 

isolating the effects of the monomer-particle differential adsorption. All enthalpic effects then 

enter only via the effective polymer-particle site potential, modeled as hard core repulsion with 

an exponential attraction: 

    
( )/

( ) ,c jnr r

jn jn cU r e r r



 

                                            (5.3) 
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where j = A or B and ( ) / 2cr D d   is the closest distance of approach between the species j 

and a nanoparticle. The parameter jn is the attraction strength between a monomer of type j and 

filler and quantifies the net effective change in energy when a monomer is transferred from the 

bulk melt to the surface of the nanoparticle.  

Of course, for typical experimentally realizable polymers the interactions between the 

like and unlike monomers cannot be exactly the same. However, the “full” problem would 

involve at a minimum 6 different energy parameters, ij , along with other dissimilar polymer 

chain structural parameters such as the persistence length and monomer diameter
12

. To render the 

large parameter space manageable, we study the consequences of differential polymer adsorption 

on nanoparticle organization based on a minimalist model which has been shown to successfully 

predict the miscibility of C60 in RCP melts
1
 as discussed in chapter 6. In that work, the ranges of 

the interfacial attraction of A and B monomers are set equal, a simplification shown to be 

reliable as long as the absolute range is chosen to be representative of real systems
12

.  This 

success is physically plausible when the A and B monomers are chemically quite similar but 

experience very different attractions with the nanoparticle. The simplified model may also be 

valid if the particle-monomer attraction strength is much larger than the differences in monomer-

monomer interactions, and local clustering of A and B monomers is weak in the pure melt, as 

recently found for the C60-RCP systems
1, 12

.  

 The A-B interactions were set to zero on purpose to allow us to focus entirely on the 

consequences of differential nanoparticle surface segregation on nanoparticle dispersion and 
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miscibility without any interference of microdomain formation in the pure copolymer melt. We 

briefly study the influence of microdomain formation on our results in section 5.6. 

5.3  Interfacial Correlations 

This section presents representative calculations of the monomer-particle pair correlations in 

MBCP melts of different copolymer block lengths R in three different regimes, (D,B), (D,S) and 

(B,S), for distinct ranges of attractions and large (D/d = 10) and small (D/d = 1) particles.  Two 

monomer-nanoparticle pair correlation functions, Ang  and Bng , quantify how A and B monomers 

statistically organize and locally segregate around a particle in the copolymer melt. Calculations 

for D/d=10 hard spheres in a multiblock melt of An = 0.1 and Bn = 3 (D-B regime) and pn = 

0.25d at different block lengths R are shown in Figure 5.2a. For any block length, the contact 

value is greater for the more strongly adsorbing B monomers, with peak heights that grow 

significantly from 14.8 to 20.8 with increasing R. The trend is opposite for the A monomers 

where, despite being dewetting, A monomers are still constrained to be close to the particle 

surface because of chain connectivity. The fact that the Ang  contact values are much less than the 

corresponding Bng  contact values (for R=10 less than unity) imply that A monomers are 

preferentially depleted from the immediate vicinity of the nanoparticles. One can quantify this 

proximal environment by calculating the number of nearest neighbors (i.e., number of A and B 

monomers) in the first solvation shell around the particle. The number of B-neighbors can be 

calculated from the cross pair correlation function Bng as: 
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    24 ( )
solv

c

r

B B Bn

r

N r g r dr                                                               (5.4) 

where 
3 3

6 3
B t B tf

d d
    

 
 is the bulk number density of the B monomers, rc is the distance 

of closest approach between the particle and monomer, and rsolv is the location of the first 

minima in ( )Bng r . The analogous value of NA can be calculated similarly from Ang . For the 

parameters of Fig. 5.2a (D/d=10, An = 0.1, 
Bn = 3), B monomers in the first solvation shell 

comprise 60, 81 and 95 percent for R=1, 5 and 10, respectively. Therefore for R=1, there is 

nearly an equal mix of A and B monomers around the particle, while when R=10 an almost 

“pure” B-type environment exists in the immediate proximity of the particle. For all block 

lengths, as the monomer-particle surface separation increases beyond contact, the Ang and Bng  

curves cross, and then re-cross, after characteristic distances. This signifies that while B 

monomers are preferentially found near the surface, the block length R constrains the A 

monomers to necessarily be “close” to the sequence connected B monomers. The curve crossing 

separation grows with block length, occurring at 0.18, 0.38 and 1.4d for R = 1, 5 and 10, 

respectively, implying that a “purer” local environment of only B monomers extends farther 

from contact as R grows.   

The analogous cross-correlation results for the two corresponding homopolymers with 

attraction strengths of pn = 0.1 and 3 are plotted in the inset of Fig. 5.2a, which provide a 

“reference state” to understand the effect of multiblock architecture on the spatial correlations. 

The png  curves are qualitatively similar to the MBCP systems discussed above, but the contact 
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peaks in MBCP are quantitatively very different with peak heights now of 2.5 and 13.3, 

respectively. The latter value for the bridging case is much less than the corresponding Bng  

values of any of the MBCP systems studied, while the pure depletion contact value of 2.5 is only 

slightly greater than all the MBCP Ang  peaks shown in Fig. 5.2a. These quantitative differences 

imply that the large differential adsorption of monomers in a MBCP results in the near dewetting 

of A monomers, effectively pushing the attractive B monomers closer to the particle surface 

relative to a bridging homopolymer.   

 Fig. 5.2b shows analogous results for very small particles of size D/d = 1. The png trends 

are qualitatively similar as found in Fig. 5.2a for D/d =10, but both contact values are strongly  

reduced as a consequence of the much smaller nanoparticle surface area, and the crossing of the 

Ang  and Bng  profiles occurs at distances farther from the particle surface.  The percentage of B 

monomers in the first solvation shell is 64, 92 and 100 for R=1, 5 and 10, respectively. Thus, 

achieving a “mixed” or “pure” environment in the immediate vicinity of the particles is a 

function of the size asymmetry ratio D/d and copolymer block length, R. The larger D/d is, the 

more “mixed” is the local environment around a particle. This trend will be shown to be 

important in understanding particle miscibility. 

5.4 Nanoparticle Potential of Mean Force 

We now study the MBCP mediated PMFs for the systems discussed in section 5.3 as a function 

of polymer-particle interactions εpn (in the regimes of D, S, B). Recall this quantity is determined 
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by how the polymer layering around an isolated particle is changed as two nanoparticles are 

brought to a surface-to-surface separation of h = r-D
14, 15

. 

5.4.1 Role of Chemical Heterogeneity 

Figure 5.3 shows the PMF between two hard spheres of size D/d = 10 in a MBCP melt 

where the A and B monomers are attracted to the particle with strengths An = 0.1 and 
Bn = 3 

(i.e., D-B) and pn = 0.25d. The abundance of B monomers near the surface leads to a large 

repulsion (6 – 10kBT) at contact followed by a bridging minimum at an interparticle surface 

separation of one monomer diameter. However, with increasing separation the usual monomer 

scale oscillations observed for a pure homopolymer bridging system in Chapter 2 (Fig. 2.2) are 

replaced by a large amplitude, broad repulsive barrier or shoulder that extends over several 

monomer diameters, the range of which is controlled by the block length. This long range 

repulsion arises from the difference in the layering tendencies of A and B monomers. From 

enthalpic considerations, the particles prefer to be surrounded by B monomers, while entropy 

favors spatially randomizing the ‘dewetting’ A monomers. However, the steric constraints of A-

B block connectivity frustrate this packing state resulting in the repulsion at longer distances. 

Smaller block lengths MBCP’s experience less adsorption of the sticky monomer, resulting in a 

shallower bridging minimum which completely vanishes for the R=1 alternating copolymer. 

Thus, for a R = 1 copolymer in the D-B regime, both the depletion aggregation and bridging 

minimum attraction features disappear resulting in an effective sterically-stabilized repulsive 

PMF.  
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A higher value of R also implies that the more sticky B monomers are followed in close 

spatial proximity by a larger number of ‘nearly-dewetting’ A-type monomers which intensifies 

both the range and amplitude of the longer range repulsive feature of the PMF. If the range of the 

barrier is defined as the distance at which the repulsion equals 1kBT, then we find that the range 

scales as the ratio of the block end-to-end distance,  1 1

2 2

( ) 1

( ) 1

R R

R R









,for block lengths 

greater than unity. A direct correlation between the barrier height and block length is, however, 

not found, and the barrier heights are 3.4, 5.6 and 6.9 in thermal energy units for R = 1, 5 and 10, 

respectively. Physically, the attractive B monomers try to maximally cover the particle surface. 

Chain connectivity induces the R depleting A monomers to follow the adhesive B monomers, but 

the former do not spread spatially to allow the immediately-following attractive block to get 

closer to the particle surface and wet maximum area. The regions of aggregated dewetting A 

monomers give rise to the broad repulsive barriers in the PMF, thereby explaining the correlation 

of its range with the block radius of gyration. These features render the PMFs in the MBCP melt 

very different from those in homopolymer melts of pn = 0.1 or 3. The dashed black curve in 

Fig. 5.3 further emphasizes this point by showing the PMF between the two particles in a 

hypothetical ‘average’ homopolymer melt of attraction strength ( ) / 2pn An Bn    . At 

separations less than 1d, the average homopolymer PMF closely follows the R = 1 alternating 

copolymer curve. However, it bridges more strongly than the alternating polymer and at larger 

separations the repulsive barriers present for the MBCP systems vanish, and are replaced by 

weak monomer scale oscillations as expected for a homopolymer.  
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As a secondary trend in Figure 5.3, we note that for the R=10 multiblock copolymer the 

second barrier becomes higher than the first barrier. Qualitatively, this is a consequence of the 

simultaneous presence of strong bridging and a longer-ranged repulsive barrier in the copolymer-

mediated PMF. We also note that the high barriers in MBCP melts of intermediate block lengths 

R = 5 and 10 might kinetically prevent particles from forming bridged complexes and frustrate 

equilibrium demixing.   

When the attraction strengths of A and B monomers with the filler are An = 1.5 and 

Bn = 3 we find that the PMF is a competition between bridging and steric stabilization (B-S). A 

plot is not shown for this case since the PMFs are qualitatively the same as that found in the D-B 

regime (Fig. 5.3), albeit with modest quantitative differences. Specifically, the repulsive barrier 

is quantitatively reduced because the A monomers are now more wetting, the approximate 

relation between barrier range and block radius of gyration observed for the D-B case no longer 

accurately holds, and the barrier range for R=10 is ~10% smaller because the stabilizing A 

monomers, unlike the depleting ones, prefer to layer around the particles to cover maximum 

surface. The barrier heights for R = 5 and 10 are now reduced to 1.6 and 4.5, respectively, 

compared to 5.6 and 6.9 for the D-B system of Fig. 5.3. 

When An = 0.1 and Bn = 1.5, the depleting A monomers compete with the steric 

stabilizing (or optimally adsorbing) B monomers (D-S regime) as shown in the inset of Figure 

5.4. At short distances, the B monomers preferentially layer around the particles. The PMF at 

contact is very weak, in strong contrast with the corresponding homopolymers (Fig. 2.2). A 

broad repulsive barrier is again present, but is much weaker with a height ~1.5 - 2 kBT. Contact 
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aggregation is slightly reduced, while the bridging minima deepen with increasing R. The 

presence of the weak bridging feature is surprising given the monomer energetics are in the D-S 

regime. Qualitatively unlike the D-B system the repulsive shoulder does not grow monotonically 

with block length given the barrier height for R=10 is less than that for R=5.  

The main plot in Figure 5.4 establishes the role of attraction range on the PMF keeping 

all the parameters from the inset the same. When the range is increased from 0.25 to 0.5d, many 

(not all) of the features previously discussed above are magnified by roughly a factor of 2 or 

more. However, the attractive bridging minima at 1d for R=1 and 5 vanishes, while for R=10 it is 

reduced in depth from -1.66 to -1 kT. The physical reason is that by increasing block length, the 

copolymer can more effectively induce both steric stabilization and entropic depletion. Enhanced 

stabilization increases the contact repulsion of the PMF, and enhanced depletion results in a 

larger non-contact repulsive barrier. The reduction of the bridging-like minimum is a subtle 

consequence of these simultaneous and competing changes. 

5.4.2 Role of particle radius of curvature  

The calculations above were performed for D/d=10 (Figs 5.3 and 5.4) and D/d=5 (not 

shown but qualitatively identical to the D/d=10 results) where the particle surface is close to a 

flat wall on the most local scale of the monomer diameter and short melt density correlation 

length. To explore the role of particle size and surface area, the main panel of Figure 5.5 shows 

the PMF between two small hard spheres of D/d = 1 for An = 0.1 and Bn = 3 (D-B case). For 

each of the three block lengths shown, large and nearly equal contact and bridging minima are 

observed. A long-ranged attraction is present out to a distance of 2d for R=5 and 10, and an 
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extremely weak repulsive shoulder emerges beyond this separation for R ≥ 5. The average 

homopolymer curve in this case is also quite different compared to any of the MBCP results. The 

physical basis for these differences compared to the large particle case is suggested in Figure 5.6. 

Specifically, two small nanoparticles can come very close in space to increase the resulting 

surface area for the bridging B monomer adsorption. The polymer can then pack around the two 

particles held at contact. Increasing the block length allows polymers to effectively “wrap” 

around the particles even more strongly, thereby deepening the minima at contact and at a 

separation of 1d. However, this effect is expected to saturate when copolymers of longer block 

lengths are used because of the relative insensitivity of the small particles to the longer block 

lengths. This trend of increasing contact aggregation of particles with R is in sharp contrast to 

what we find for large particles (Fig. 5.3) of D/d ≥ 5 where increasing the block length enhances 

repulsion at contact and induces a strong and long-ranged repulsive barrier. Therefore, the 

particle size relative to the block length is a key factor in understanding the PMF of nanoparticles 

in a MBCP melt.  

For An = 0.1 and Bn = 1.5 (D-S regime), the PMFs in the inset of Figure 5.5 indicate  

weak contact aggregation followed by weak attractive minima that extend to a distance of nearly 

2d for the larger block lengths. Increasing the block length results in deeper attractions, which 

again is qualitatively opposite to what is found for the larger particle. Though not shown, this is a 

recurrent observation even in the B-S regime where An = 1.5 and Bn = 3. 

5.5   Miscibility and Chain Length Effects 
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We now compute spinodal phase diagrams at the virial level which follows from Eqs (2.10) and 

(2.11) and the particle PMF. Figure 5.7 shows results in the representation of the critical particle 

volume fraction versus the A-monomer-particle attraction strength An , where
Bn  is fixed at 

1.5 and D/d=10. The inset (main frame) shows calculations for an attraction range pn = 0.25d 

(0.5d). As An is varied widely from 0 to 5, our primary interest is the low An  (D-S) and high 

An  (B-S) regimes. The black dashed curve is the spinodal curve of the corresponding 

homopolymer nanocomposite as a function of polymer-particle interfacial attraction strength 

where now An pn  .  

The absence of any colored solid curves in the low An  range indicates that a MBCP of 

block lengths R = 1, 5 and 10 provides complete miscibility when one of the monomers is 

dewetting and the other is stabilizing. Thus, incorporating 50% steric stabilizing monomer 

dramatically improves dispersion and prevents phase separation that would otherwise be induced 

in a pure depleting homopolymer melt. The regime of high An  where bridging competes with 

steric stabilization leads to more complex trends that are a function of the MBCP block length 

and attraction range. For the shorter attraction range R = 5 system, the spinodal curve shifts to 

the right relative to the homopolymer, implying improved dispersion. In contrast, the longer 

R=10 block length system exhibits reduced miscibility relative to the homopolymer, although the 

presence of a large repulsive barrier for this system might kinetically prevent the particles from 

accessing the deep attractive bridging minimum in the PMF (see Fig 5.3). The R=1 alternating 

copolymer is conspicuous by the absence of a spinodal curve implying no phase separation for 
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any 0 5An   provided 
Bn = 1.5. However, it is important to remember that this is the virial 

calculation and applicable only for Φc < 0.2-0.25. Thus, for the attraction range pn = 0.25d, a 

MBCP of any block length 10R   provides more nanoparticle miscibility than a homopolymer 

in the D-S regime. In contrast, in the B-S regime, the block length determines whether 

nanoparticle dispersion is enhanced or reduced relative to the homopolymer, with R=5 showing 

improved miscibility, R=10 worse, and the alternating block copolymer maximum miscibility. 

The phase behavior in the D-B regime (not shown) is qualitatively the same as in the B-S 

regime discussed above. Though perhaps surprising, it is expected based on the PMF 

calculations and conclusively demonstrates that adding 50% depleting monomers to a bridging 

system drastically improves miscibility compared to a homopolymer-based nanocomposite 

provided the block length is judiciously chosen.  

Figure 5.7 also shows miscibility results for a random copolymer. Relative to the 

homopolymer, miscibility increases in the D-S region, but is reduced in the B-S regime. The 

differential wettability and chain connectivity constraints that results in improved miscibility for 

the MBCP has the opposite effect for a 50-50 RCP where even in the presence of sequence 

disorder there exist locally blocky segments of A or B monomers. We surmise that these random 

blocks generate a more locally “pure” environment comparable to the R=10 MBCP, and 

therefore less miscibility is predicted in the B-S region. Even in the D-B regime (not shown), the 

RCP yields less miscibility than both the homopolymer and MBCP. 
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The main frame of Figure 5.7 shows results for large particles (D/d=10) at fixed 
Bn = 

1.5 but with a longer attraction range of pn = 0.5d. Increasing the spatial range improves 

dispersion for homopolymers, i.e., widens the miscibility window
15

, and similar behavior is 

found for a MBCP. Recall that for pn = 0.25d, only the R=1 MBCP provided complete 

miscibility in the range of 0 5An  . But if pn is increased to 0.5d, both R=1 and 5 provide 

complete dispersion in the same range of
Bn , while the RCP and R=10 multiblock still display 

less miscibility relative to the homopolymer. Overall, increasing the attraction range only 

quantitatively magnifies the generic miscibility trends. 

Figure 5.8 illustrates the influence of nanoparticle size (D/d=1 vs. 10) on spinodal phase 

boundaries for the MBCP and homopolymer at fixed Bn = 1.5 and pn = 0.25d. For 

homopolymers the miscibility window narrows as the particle-monomer size asymmetry ratio 

grows. This behavior is in complete contrast to that of the multiblock copolymer of any block 

length where increasing the particle size from D/d = 1 to 10 leads to widening of the miscibility 

window. This trend reflects physics unique to sequence ordered multiblock copolymers where 

chain connectivity creates “mixed” or “pure” local environments around the nanoparticles 

depending upon the particle-monomer size asymmetry ratio. Increasing the particle size leads to 

a more “mixed” environment of A and B monomers between two nanoparticles close in space 

which further frustrates the preferential packing of one of the monomers on the particle surface 

thereby yielding improved miscibility. Maximum surface heterogeneity is achieved by R=1, and 

thus the difference in the miscibility for the two particle sizes is the largest for this block length 

and gradually decreases with increasing R. 
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The miscibility results in Figures 5.7 and 5.8 were calculated for a fixed chain length of 

N=100 and ηt=0.4. One can ask what is the effect of chain length on miscibility under 

experimentally realistic isobaric conditions, or equivalently to a good approximation, at constant 

dimensionless polymer melt isothermal compressibility S0 = Spp(k=0) (proportional to the 

amplitude of the long wavelength density fluctuations)
22

. Equation of state effects dictate that the 

polymer density ρp must change with N in order to hold S0 fixed, however, the incremental 

change in density N for N>100 is small
22

. To hold S0 fixed at a realistic melt value of 0.17, ηt is 

changed from 0.4 to 0.4355 when N increases from 100 to 1000.  

Figure 5.9 shows the miscibility of particles of size D/d=10 in MBCP melt (fixed 

βεBn=1.5) of various molecular weights. For high values of An , i.e., in the B-S regime, 

increasing N from 100 to 1000 can have a dramatic effect depending upon the polymer 

architecture. For the alternating copolymer of R=1, increasing N reduces miscibility. This trend 

of destabilization with increasing molecular weight has been observed in melts of 

homopolymer
15, 22

 as well as random copolymer
12

. In sharp contrast, increasing chain length 

from N=100 to 1000 in melts of MBCP of length R=5 and 10 enhances miscibility. This increase 

of spatial dispersion for particles with D/d ≥ 3 and R=5 or 10 is due to the enhanced repulsion at 

contact and reduced bridging minimum at a monomer distance separation in the PMF (plot not 

shown). This increased stability for longer polymer chains appears to be a new finding.  

However, as N increases beyond ~ 10
3
-10

4
, the miscibility trend reverses and the critical volume 

fraction Φc decreases with N. We find these N-dependent miscibility trends are qualitatively 

similar in all three differential wetting regimes (DB, DS, SB). However, for a small nanoparticle 
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of D/d=1, the miscibility decreases with N irregardless of the polymer sequence and architecture 

(homopolymer, RCP, MBCP). This is consistent with the idea that longer block lengths provide a 

homopolymer-like “pure” environment to small particles; prior studies established that 

increasing homopolymer molecular weight reduces miscibility for any particle size
15, 22

.  

5.6   Effect of Finite Repulsion between Unlike Monomers 

Our desire to minimize parameter space, and focus solely on the consequences of differential 

surface segregation of copolymers near nanoparticles, led us to removing microdomain 

formation from the problem via setting all MM  to zero.  In practice, an experimentally more 

realistic choice is to introduce a weak repulsion between the unlike A and B monomers to mimic 

a positive chi-parameter. This enlarges parameter space and presumably introduces additional 

richness to the problem. In this section we perform sample calculations that address this aspect 

using a weak AB  repulsion of -0.2 (negative implies repulsion per equation 5.3) and compare 

the results to the analogous behavior when 0AB  . The spatial range of the AB repulsion is 

identical to that of the monomer-particle attractions. 

The main plot of Figure 5.10 compares the polymer-polymer (A-A or B-B since they are 

identical by symmetry) structure factors for MBCPs melts of block lengths R=5 and 10 to those 

of the corresponding homopolymer. The tendency for forming microdomains is indicated by the 

peak at small wavevectors. One sees that the homopolymer melt structure factor has ordering 

only on the local monomer diameter scale (kd ~ 6). In contrast, the MBCP melt with 

0.2AB    show tendencies of weak microphase separation. This low wavevector peak for 
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R=10 is more than double in height than that of the R=5 system and is slightly shifted to a lower 

wave vector. Though not shown, increasing the repulsion between A and B enhances the peak 

height at a fixed block length, as expected. 

The inset of Fig. 5.10 shows the real space site-site pair correlation functions of the 

MBCP melt compared to the reference homopolymer analog. The ( )AAg r = ( )BBg r  correlation 

function is modestly more peaked than the homopolymer due to clustering of like monomers. For 

this same reason, the peak of the cross correlation ( )ABg r is smaller than that of the 

homopolymer. 

Figure 5.11 shows miscibility results when nanoparticles of D/d=10 are dissolved in the 

weak microdomain forming copolymer melt of block length R=10. Here, Bn is fixed at 0.1kBT 

and An is varied to span the three regimes of depletion, steric stabilization and bridging. For 

the MBCP melt with finite repulsion, the miscibility window is shifted to the left compared to 

the case of 0AB  , implying enhanced solubility or dispersion in the D-D regime; however, 

miscibility is reduced in the D-B regime as well as the S-B (not shown) regime. Changing the 

particle size from D/d=10 to 1 does not qualitatively alter any of these trends. Thus, increasing 

the repulsion between A and B monomers only serves to modestly exaggerate quantitatively the 

miscibility trends obtained in prior sections.  

To understand the origin of the shift of the miscibility window, we study the effect of 

AB on the nanoparticle PMF shown in Fig. 5.12 for (i) 0.5An  , 0.1Bn  (main) and (ii) 

2.5An  , 0.1Bn  (inset). In the D-D regime where the interfacial attractions of both A and 
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B are weak corresponding to the depletion regime (though unequal in magnitude), the added 

energetic frustration associated with a nonzero 
AB  reduces the attraction between the particles 

at contact. This leads to an overall increase of miscibility in the limit of low An as seen in fig. 

5.11. On the other hand, when one of the monomers is in the bridging regime, A-B monomer 

repulsion results in an enhanced repulsion at contact of the particle PMF, a larger amplitude and 

long-ranged repulsive shoulder, and a stronger bridging minimum at a monomer diameter 

separation. This implies that compared to the case of 0AB  , the stronger adsorbing A 

monomers are preferentially segregated more towards the particle surface leading to enhanced 

bridging attraction. This diminishes the thermodynamic miscibility of the nanocomposites. 

However, the slight increase in the height of the long-ranged barrier could lead to greater kinetic 

stabilization of the particles. The analogs of Figures 5.11 and 5.12 have also been computed for 

the shorter block lengths of R=1 and 5 (not shown), and the results are qualitatively similar to 

that shown for R=10.  

5.7 Summary 

Polymer integral equation theory has been applied to study the structure, effective interactions 

and miscibility of nanoparticles in ordered sequence blocky MBCP melts where one monomer is 

more strongly adsorbing than the other. Chemical heterogeneity associated with differential 

nanoparticle wettability coupled with tunable MBCP architecture results in qualitative changes 

of effective interactions and the degree of spatial dispersion compared to homopolymer or 

sequence-disordered RCP systems. A key determining factor for miscibility is the size of the 

particle relative to the block contour length. 
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Beyond the effect of differential adsorption, interfacial packing correlations of the MBCP 

is sensitive to both nanoparticle size and block length. Smaller particles (D/d = 1) with larger 

block lengths exhibit a “purer”, more homopolymer-like local environment, making them 

relatively insensitive to the inherent chemical heterogeneity of the copolymer matrix. On the 

other hand, a more “mixed” environment is obtained around the larger particles (D/d = 10), 

forcing the particles to be differentially wetted by the adsorbing blocks. Chain connectivity 

introduces frustration in the sense that the non-adsorbing monomer block is always close in 

space to the adsorbing block resulting in a large amplitude, long-ranged repulsive barrier in the 

PMFs.  

The highly variable local environment around the particles has strong implications for 

dispersion. The chemical heterogeneity of the alternating polymer (R=1) is most strongly sensed 

by the particle, resulting in high solubility.  Increasing the block length shrinks the miscibility 

window. Qualitatively unlike a homopolymer, increasing particle size by a factor of 10 in a 

MBCP melt can lead to improved miscibility in both the S-B and D-B regimes. The most 

dramatic effect is seen in the D-S regime where spinodal demixing is completely destroyed. The 

tighter adsorption of B and weaker layering of A around the nanoparticle leads to local surface 

segregation, but the steric constraint of the less adsorbing A segment attached to every B 

segment frustrates the preferential packing of the B block on the surfaces of the two 

nanoparticles close in space leading to the dramatic enhancement of miscibility. Increasing the 

overall MBCP chain length for block lengths of R=5 and 10 results in a surprising initial 

widening of the miscibility window for the larger particles. This trend is opposite to what is 

observed for the R=1 alternating copolymer, the RCP, and homopolymers when D/d ≥ 3.   
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The effect of introducing a weak repulsion between the A and B monomers which 

mimics the tendency for microdomain clustering was briefly studied.  The latter can lead to 

either reduction or improvement of thermodynamic miscibility depending upon the strengths of 

the competing A-n and B-n polymer- particle interfacial attractions. 

The overarching outcome of our work has been to provide physical insight into the rich 

and complex interplay of particle size, block length, and the absolute and differential monomer-

particle adsorption energetics on interfacial packing correlations, the copolymer-mediated 

nanoparticle PMF, and miscibility. Many of the trends are not easily “guessed” due to the 

nonadditive interplay of coupled entropy-enthalpy correlation effects. As one specific example to 

further emphasize this point, consider a particle of size D=10d where the A and B monomer 

attractive interaction parameters are: 0.25 , 0.1, 3.An Bnd      The corresponding 

“reference” homopolymer PMFs are dominated by either depletion or bridging attraction, with a 

low solubility limit nanoparticle volume fractions, 
 


c
 , of essentially zero or 0.07, respectively. 

If these monomers are arranged into copolymers of different architecture at fixed 50/50 

composition we predict  
 


c
 values of:  10

-5
 (random copolymer), fully miscible (R=1 and 5 

multiblock copolymers), and 0.001 (R=10). This complex, many order of magnitude variability 

with copolymer architecture seems impossible to a priori guess, and reflects the complex 

thermodynamics and competing packing correlations discussed above. 

The present work is an initial study, and utilizes a simple model that precludes 

microphase domain formation, although this aspect can be treated using PRISM theory
13

. All the 

calculations presented have been in the dilute nanoparticle limit, and future studies are required 
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to explore in detail the role of many-body effects on structure and thermodynamics. It remains to 

be determined how the strong coupling between the block length, particle size and chemical 

heterogeneity is modified when there is a strong direct attraction between the particles. Finally, it 

would be interesting to study how a copolymer of variable sequence and chemical heterogeneity 

mediates interactions between non-spherical particles like rods and disks
23

.    

5.8 References 

(1) S. Teh, D. Linton, B. Sumpter, M. D. Dadmun, Macromolecules, 44, 7737-7745, 2011. 

(2) J. F. Lutz, M. Ouchi, D. R. Liu, M. Sawamoto, Science, 341, 1238149, 2013. 

(3) A. Song, K. A. Parker, N. S. Sampson, J. Am. Chem. Soc., 131, 3444-3445, 2009. 

(4) C. S. Daeffler, R. H. Grubbs, Macromolecules, 46, 3288-3292, 2013. 

(5) J. J. Chiu, B. J. Kim, E. J. Kramer, D. J. Pine, J. Am. Chem. Soc., 127, 5036-5037, 2005. 

(6) Q. Zhang, T. Xu, D. Butterfield, M. J. Misner, D. Y. Ryu, T. Emrick, T. P. Russell, Nano 

Lett., 5, 357-361, 2005. 

(7) W. A. Lopes, H. M. Jaeger, Nature, 414, 735-738, 2001. 

(8) J. J. Chiu, B. J. Kim, G. R. Yi, J. Bang, E. J. Kramer, D. J. Pine, Macromolecules, 40, 

3361-3365, 2007. 

(9) E. Reister, G. H. Fredrickson, Macromolecules, 37, 4718-4730, 2004. 

(10) R. B. Thompson, V. V. Ginzburg, M. W. Matsen, A. C. Balazs, Science, 292, 2469, 2001. 



 

141 

 

(11) R. B. Thompson, V. V. Ginzburg, M. W. Matsen, A. C. Balazs, Macromolecules, 35, 

1060-1071, 2002.  

(12) D. Banerjee, M. D. Dadmun, B. Sumpter, K. S. Schweizer, Macromolecules, 46, 8732-

8743, 2013. 

(13) K. S. Schweizer, J.G. Curro, Adv. Chem. Phys., 98, 1-142, 1997. 

(14) J. B. Hooper, K. S. Schweizer, Macromolecules, 38, 8858-8869, 2005. 

(15) J. B. Hooper, K. S. Schweizer, Macromolecules, 39, 5133-5142, 2006. 

(16) L. M. Hall, K. S. Schweizer, J. Chem. Phys., 128, 234901, 2008. 

(17) L. M. Hall, A. Jayaraman, K. S. Schweizer, Curr. Opin. Solid State Mater. Sci., 14, 38-

48, 2010. 

(18) A. M. Mayes, M. Olvera de la Cruz, J. Chem. Phys., 91, 7228–7235, 1989. 

(19) H. Benoit, G. Hadziioannou, Macromolecules, 21, 1449-1464, 1988. 

(20) B. J. Sung, A. Yethiraj, Macromolecules, 38, 2000-2008, 2005. 

(21) J. B. Hooper, K. S. Schweizer, T. G. Desai, R. Koshy, P. Keblinski, J. Chem. Phys., 121, 

6986-6997,  2004. 

(22) D. Banerjee and K. S. Schweizer, J. Chem. Phys., 142, 214903, 2015. 

(23) L. M. Hall, K. S. Schweizer, Soft Matter, 6, 1015, 2010. 

 



 

142 

 

5.9 Figures 

 

Figure 5.1 Conceptual cartoon of dilute particles in a alternating AB multiblock copolymer 

melt. 
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Figure 5.2a A (solid) and B (dashed) monomer – particle cross correlation functions for dilute 

hard spheres of D/d=10 in a MBCP melt with 0.1An  , 3Bn  and 0.25pn d  at the 

indicated values of block lengths R = 1, 5 and 10. The gBn contact values are at 14.8 (R=1), 

18.1 (R=5) and 20.8 (R=10), respectively. The gpn contact values for the reference 

homopolymers of pn  = 0.1(solid) and 3(dashed) are shown in inset. 

 

 



 

144 

 

 

Figure 5.2b A (solid) and B (dashed) monomer – particle cross correlation functions for dilute 

hard spheres of D/d=1 in a MBCP melt with 0.1An  , 3Bn  and 0.25pn d  at the 

indicated values of block lengths R = 1 and 5. 
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Figure 5.3 Particle potential of mean force for dilute hard spheres of D/d = 10 in a MBCP melt 

with 0.1An  , 3Bn  (D-B) and 0.25pn d  at the indicated values of block lengths R = 

1(dot), 5(solid), and 10(dash-dot) and homopolymer (dash) of average 

strength ( ) / 2pn An Bn    . 
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Figure 5.4 (Inset) Particle PMF for dilute hard spheres of D/d = 10 in a MBCP melt 

with 0.1An  , 1.5Bn  (D-S) and 0.25pn d  at the indicated values of block lengths R = 

1(dot), 5(solid), and 10(dash-dot) and a homopolymer (dash) of average 

strength ( ) / 2pn An Bn    . (Main) PMF for the same systems as the inset but with 

0.5pn d  . 
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Figure 5.5 (Inset) Particle PMF for dilute hard spheres of D/d = 1 in a MBCP melt 

with 0.1An  , 1.5Bn  (D-S) and 0.25pn d  at the indicated values of block lengths R = 

1(dot), 5(solid), and 10(dash-dot) and a homopolymer (dash) of average 

strength ( ) / 2pn An Bn    . (Main) PMFs for D/d = 1 in a MBCP melt with 0.1An  , 

3Bn  (D-B) and 0.25pn d  at the indicated values of block lengths R = 1(dot), 5(solid), 

and 10(dash-dot) and a homopolymer (dashed) of average strength ( ) / 2pn An Bn    . 
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Figure 5.6 Schematic of the probable equilibrium structure of nanoparticles of (A) D/d = 10 , 

and (B) D/d = 1 in a MBCP melt of R = 5. Black curves show backbone bonds for clarity. 
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Figure 5.7 (Inset) Spinodal phase diagram of dilute hard spheres of D/d = 10 in a MBCP melt 

with 1.5Bn  and 0.25pn d  at the indicated values of block lengths R against that of 

homopolymer (dashed) and a RCP (dotted) as reference. (Main) Spinodal phase diagram for 

the same system as the inset but with 0.5pn d  . 
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Figure 5.8 Spinodal phase diagram of dilute hard spheres of D/d = 1 (solid) and 10 (dashed) in 

a MBCP melt with 1.5Bn  and 0.25pn d  at the indicated values of block lengths R 

against that of homopolymer as reference. 
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Figure 5.9 Spinodal phase diagram of dilute hard spheres of D/d = 10 in a MBCP melt with 

1.5Bn  and 0.25pn d  at the indicated values of block lengths R for two chain lengths N = 

100 (circle) and 1000 (square). Total packing fraction ηt for N=100 and 1000 are 0.4 and 

0.4355, respectively, to maintain a constant polymer melt dimensionless isothermal 

compressibility of S0 = 0.17. 
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Figure 5.10 (Main) Comparison of the polymer partial structure factor (A-A=B-B) for a MBCP 

melt with 0.2AB    and block lengths R=5 and 10 with the corresponding homopolymer 

result. (Inset) The like ( ( )AAg r ) and unlike ( ( )ABg r ) site-site pair correlation functions for a 

MBCP of 0.2AB    and R=10 compared to the analogous homopolymer case ( 0AB  ). 
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Figure 5.11 Spinodal phase diagram of dilute hard spheres of D/d = 10 in a MBCP melt with 

0.1Bn  and block length R=10 for 0.2AB   (red) and 0AB  (blue).     
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Figure 5.12 Particle PMF for dilute hard spheres of D/d = 10 in a MBCP melt with 0.2AB    

and block length R=10 for (i) 0.5An  , 0.1Bn  (main) and (ii) 2.5An  , 

0.1Bn  (inset). 
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CHAPTER 6 

THEORY OF THE MISCIBILITY OF FULLERENES IN 

RANDOM COPOLYMER MELTS
1
 

6.1   Introduction 

Nanoparticles or “fillers” are widely added to polymers to create nanocomposites with improved 

properties
1,2,3

. Carbon nanotubes (CNTs) and fullerenes (C60) are specific functional particles 

that have found increasingly large applications as mechanical reinforcers and in optoelectronics 

due to their pi-conjugated nature and excellent electrical, optical and charge conduction 

properties
3-9

. However, both nanoparticles experience strong direct intermolecular attractions, 

which make it challenging to disperse them in polymer matrices at desired levels of loading. This 

difficulty is especially pronounced for carbon nanotubes due to their high aspect ratio. Recent 

experiments illustrate the advantage of using chemically heterogeneous AB random copolymers 

to improve the spatial dispersion of CNTs
10-13

. 

The focus of this theoretical article is fullerenes, which have attracted much recent 

attention as active elements for fabricating heterojunction solar cells
7,8,14,15

. In contrast to carbon 

nanotubes, these nanoparticles are small and spherical, but strong attractions due to delocalized 

                                                 
1
 This chapter is drawn in its entirety from a previous publication. Reprinted (adapted) with permission from D. 

Banerjee, M. D. Dadmun, B. Sumpter and K. S. Schweizer, Macromolecules, 46, 8732-8743. Copyright 2013 

American Chemical Society. 
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electrons still render them difficult to disperse in polymers. In photovoltaic applications, 

controlling polymer packing around fullerenes is also important for charge transfer and the 

subsequent separation of electrons and holes.  One might hope that their smaller size will allow 

the exploitation of equilibrium thermodynamic principles to achieve better spatial dispersion 

than CNTs. Just like the CNTs, it was experimentally observed that AB random copolymers of 

intermediate composition can afford for many, but not all, systems major improvement of 

dispersion relative to homopolymer behavior based on electron donor-acceptor C60-polymer 

attractions
16

. 

The goal of this chapter is to combine the polymer reference interaction site model 

(PRISM) statistical mechanical theory of packing and thermodynamics in nanocomposites
17-25

 

with computational chemistry input for the interactions to study specific RCP-fullerene mixtures. 

To the best of our knowledge, this is the first time such a hybrid approach has been attempted. 

This problem has been studied in a generic manner with PRISM theory for hard sphere fillers 

much larger than polymer monomers, and changing from a homopolymer to a RCP appears to 

diminish miscibility relative to the homopolymer limits
24

. However, this conclusion cannot be 

naively applied to the fullerene systems due to their ultra-small nature, the presence of strong 

direct attractions, and chemically-specific aspects of the donor-acceptor interactions between C60 

and polymers. 

6.2   Theory and Model 

6.2.1 Theory 
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In the following chapter, the subscript p denotes any polymer segment, A and B labels the 

two types of polymer segments, and n denotes the nanoparticle, as schematically shown in Figure 

6.1. For a AB copolymer there are two types of inequivalent sites, and hence three intramolecular 

probability distribution functions or partial structure factors ωij(k). We consider a completely 

random sequence of A and B sites, subject only to the constraint of what fraction, fA, of the N 

total sites of a single chain are of type A. Per prior work
18, 19, 22, 23

, the polymer is modeled as a 

freely-jointed-chain (FJC) of N = 100 segments where the A and B sites have a hard core 

diameter d and bond (persistence) length l. The corresponding ωij(k) are
26

 : 
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where fi is the fraction of i sites, and l = 1.2d which is a  typical value for flexible polymers
17

.  

6.2.2 Model 

Even by adopting a simple FJC model and an (additive) hard core plus exponential tail 

model of site-site potentials as discussed in Chapter 2, 18 material-specific parameters are 

required which can be parsed into two categories. There are 6 length scales:  filler diameter D, 

monomer diameters dA and dB, bond lengths (or homopolymer persistence lengths) lA and lB, and 

polymer radius-of-gyration or chain length (N). The tail potential is defined by a contact strength 

and spatial range 
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                                       (6.3) 

where rij,c is the closest distance of approach between the species i and j , which equals D for n-n 

and (D+d)/2 for p-n interactions. Given there are 6 pairs (AA, AB, BB, An, Bn, nn), 12 

interaction parameters must be specified.  

The direct fullerene interaction is often modeled using the analytic expression
27

:  
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where A and B are known constants and /s r D . Figure 6.2 shows this potential is well 

approximated by a hard core (diameter D = 0.7 nm) plus an exponential attractive tail of strength 

εnn and short range αnn, where εnn = 7.3kBT at the temperature of prime (experimental
10,16

) interest 

here (T = 440K) and αnn = 0.15D, which we adopt in the PRISM calculations. In a dielectric 

medium, the attraction strength is reduced. We crudely estimate this effect by treating the 

fullerene as a homogeneous dielectric sphere with a Hamaker constant, AH, which based on the 

classic Lifshitz theory of van der Waals interactions is given by
28
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Here ε is the medium dielectric constant, n the refractive index, h is Planck’s constant and 

νe an absorption frequency typically of order 2-3*10
15

 s
-1

 
28

. The dielectric constant and 

refractive index of a fullerene is
29

 1 4.4  and 1 2.2n  . As a relevant example, consider 
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polystyrene for which
28

 
2 2.55  and 

2 1.557n  . Using these values, the fullerene Hamaker 

constant relative to its vacuum value is reduced by a factor of ~ 0.285, which implies 

2.1nn Bk T  at T = 440K. With these estimates as motivation, we fix 2.5nn Bk T  in all 

subsequent PRISM calculations unless stated otherwise. 

 

To specify the polymer model and the p-p and p-n interactions requires 15 parameters. 

We study five monomers: Acrylonitrile (AN), Styrene (Sty), Cyanostyrene (CNSty), 

Methylmethacrylate (MMA), di-methyl-amino-ethyl-methacrylate (DMAEMA). Their 

persistence lengths and monomer diameters have been estimated and differ only modestly. 

Moreover, beyond a rather low value the chain length only slightly influences particle miscibility 

in melts
19

. Hence, a minimalist “reference” parameter set is employed corresponding to N = 100, 

common bond lengths and monomer diameters for A and B of l = 1.2d and d = 0.7nm, 

respectively, and a polymer melt packing fraction (dimensionless compressibility) of
17, 22

 t = 

0.4352 (Spp(q=0) ≡ S0 = 0.25). Note that a fullerene diameter of D = 0.7nm implies the monomer 

and nanoparticle are the same size, i.e., D/d = 1. The modest sensitivity of our miscibility 

predictions to variations of these parameters is discussed in section 6.4.2 and Appendix B.  

The chemistry of the model now enters via the 5 attraction strength parameters, AA , 

BB , AB , An , Bn , and their corresponding spatial ranges. Computational chemistry calculations 

of these energies have been performed based on standard methods
30

; see Appendix B for a brief 

discussion. Table 6.1 shows these energies in units of kBT (at 440K). First note that the monomer-

fullerene attraction is “strong” in all cases, varying from ~ 5.3 to 10.7.  The monomer-monomer 

attractions vary over an even wider range, from ~ 2.3 to 7.7. However, in all cases the AB 
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monomer exchange energy,  2 / 2AA BB AB       , is small in the sense |∆ε| « εjj. This 

suggests there will be little local clustering of A and B monomers in the pure RCP melt. In a 

microscopic approach, especially if attractions are strong relative to thermal energy, the 

attraction range is important. Full potentials have been computed and a representative example is 

shown in the inset of Figure 6.2.  For all systems of interest, we find that the range is short and 

very similar, on the order of an Angstrom. Our reference model fixes αpn = 0.12d. 

  Our focus is on understanding the role of interfacial n-p attractions, both in absolute and 

relative (A versus B) terms. To achieve this in the simplest way possible, all prior PRISM theory 

work on PNCs adopted an athermal hard core model of the pure polymer melt
18, 19, 22, 23, 24, 25

. As 

a consequence, p-p and p-n attractions enter in a combined manner as an effective monomer-filler 

attraction. This significantly reduces the number of energy parameters, simplifies closure 

selection, and allows a simpler physical interpretation. We adopt the same approach here, which 

corresponds to modeling the pure RCP melt as an athermal homopolymer liquid. Given that the 

net tendency for like monomers to cluster in RCP liquids is weak, we believe this is a reasonable 

simplification, and it corresponds to ( ) ( ) ( )AA BB ABg r g r g r  in the absence of fillers. Thus, the 

monomer-nanoparticle attraction physically corresponds to an energy lowering upon transfer of a 

monomer from the pure RCP melt environment to the fullerene surface given by  

                                 (1 )eff

An An A AA A ABf f                                                         (6.6) 

                                  (1 )eff

Bn Bn A BB A ABf f                                                          (6.7) 
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Using the above equations and the energy parameters of Table 6.1, the effective 

monomer-filler attraction strengths as a function of composition for the 4 sets of random 

copolymers that are studied in depth are plotted in Figure 6.3.  One sees that the effective 

transfer energies are (of course) different for the A and B monomers, and typically change by 2-3 

thermal energy units as copolymer composition varies from A-rich to B-rich. These values are 

used in eqn (6.3) to model polymer-particle interactions of strength eff

pn with αpn = 0.12d. 

 6.2.3 Goals and Approach 

We emphasize that our primary goal is to combine statistical mechanical theory with 

computational chemistry calculations of interaction parameters to study the structure and 

miscibility of fullerenes dissolved in a specific class of AB random copolymers. Most of our 

results will be based on the reduced “reference system” set of parameters described above. Given 

the complexity of the problem, the uncertainty in quantum chemical input, and the model 

simplifications, let alone the approximate nature of the statistical mechanical theory, our goal is 

not quantitative predictability. Rather we aim to gain insight concerning how RCP chemistry and 

composition determines miscibility trends, dispersion mechanisms and effective interactions 

between fullerenes. By comparing our calculations with Flory-Huggins theory and a simpler 

effective homopolymer PRISM approach, based on the same input parameters, the role of 

correlation effects and copolymer sequence disorder captured in PRISM theory is established. 

We initially fix temperature to 440K in sections 6.3 and 6.4 per recent experimental studies
16

. 

The surprisingly complex effect of changing temperature is explored in section 6.5.  
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6.3   Structural Correlations 

6.3.1 Interfacial Packing 

The monomer-nanoparticle pair correlation function quantifies how A and B monomers 

statistically pack and locally segregate around a filler in the melt. Figure 6.4 shows results for 

CNSty-MMA as a representative example. The inset shows that as the fraction of CNSty (A 

monomer) increases, the effective attraction of both monomers with the fullerene monotonically 

decreases, which results in a reduction of the pair correlations near contact. For all compositions 

less than ~65% we find eff

An > eff

Bn , and hence gAn > gBn for fA < 0.65. Local surface segregation 

can be dramatic, e.g., the contact value of gAn is more than twice that of gBn for fA = 0.1. For 70% 

composition, the two gpn curves coincide almost exactly due to the equal propensity of both 

monomers to adsorb, and for fA >0.7 one has gBn > gAn. The strong sensitivity of interfacial 

structure to RCP composition is present only at small filler-monomer separations, reflecting the 

short-range attraction and packing frustration associated with a quenched random sequence.  

6.3.2 Filler Potential of Mean Force 

Figure 6.5 shows the PMF between two fullerenes dissolved in the same CNSty-MMA 

RCP studied in Figure 6.4. At 10% CNSty, the effective adsorption energies of both monomers 

are large (see inset of Fig. 6.4), sufficiently so that if they were homopolymers one expects 

bridging. Qualitatively, the latter is seen since the PMF displays a modest (since the filler is 

small) bridging minimum of 0.84 kBT at a separation of one monomer diameter, along with a 

stronger contact attraction of ~1.83 kBT due to the direct fullerene attraction. Note, however, that 
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the PMF at contact is significantly less attractive than the bare strength of 2.5 kBT, a reflection of 

its reduced probability due to the tendency to form particle separated bridging configurations.   

As the copolymer composition is increased and MMA becomes the minority species, 

both effective interfacial attraction strengths decrease significantly but remain well in excess of 

the thermal energy (inset of Fig. 6.4).  Hence, the PMF is expected to acquire some features 

characteristic of the presence of adsorbed layers and a repulsive steric stabilization type of 

organization
18, 25

. This effect is manifested in Figure 6.5 as a weakening of the bridging 

minimum, essentially the same contact aggregation minimum, and the emergence of a small 

repulsive barrier of ~0.235kBT at a fullerene surface-to-surface separation of roughly one half a 

monomer diameter. However, at 90% MMA, although the bridging minimum is further 

suppressed, the repulsive barriers do not grow beyond what is obtained for 70% composition, 

and the contact attraction deepens. Hence, importantly, the PMF is a non-monotonic function of 

RCP composition. The intermediate composition 70% MMA system has the weakest attractive 

features and hence is the most soluble system.  

We now turn to the solubility question, and given the above findings we expect subtle 

non-monotonic variation of fullerene miscibility depending on the specific monomers 

chemistries and RCP composition. The origin of this behavior is the non-additive competition 

between the direct fullerene attraction and polymer-mediated bridging, steric stabilization and 

depletion.  

6.4   Isothermal Miscibility 

6.4.1 PRISM predictions and Comparison to Experiment 
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Figure 6.6 shows the spinodal phase diagram in the representation of the critical 

nanoparticle volume fraction as a function of (A-B) RCP composition (fA) for Acrylonitrile-

Styrene (AN-Sty), Cyanostyrene-Styrene (CNSty-Sty), Methyl Methacrylate-Styrene (MMA-

Sty) and Cyanostyrene–MMA (CNSty-MMA). The critical volume fraction is defined as the 

volume fraction of nanoparticles beyond which the system spinodally phase separates. As a 

reference, the miscibility limit volume fraction of C60 in the pure homopolymer melts are 18.5%, 

16.3%, 18.7% and 11.9% for Sty, AN, CNSty and MMA, respectively. For both the AN-Sty and 

MMA-Sty copolymers, as the fraction of A monomer increases from zero the miscibility 

increases until a critical composition after which the trend reverses. For both copolymers, the 

maximum dispersion occurs at ~40% composition. The maximum soluble fullerene volume 

fraction is 24% for AN-Sty and 40% for MMA-Sty, which are greater than the values achieved 

in the parent homopolymer melts.  

Figure 6.6 also shows the miscibility trends exhibit qualitative changes if the RCP chemistry 

is changed to CNSty-Sty and CNSty-MMA. As the A monomer composition is increased, 

solubility in CNSty-MMA first decreases compared to the pure MMA melt, then reverses around 

fA = 0.1, after which it grows to a large maximum value at ~ 75%, before again decreasing. Such 

complexity is absent for CNSty-Sty and there is no clear optimum copolymer composition, with 

the miscibility limit fullerene volume fraction ~ 17-19% for all compositions.  

The miscibility trends predicted by PRISM theory for AN-Sty and CNSty-Sty can be 

compared to recent experiments
16

 and the estimated solubility limits are shown in Figure 6.7. 

The highest miscibility of C60 (12 wt%) in the AN-Sty melt occurred at 45% AN copolymer, and 
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is far above the ~4% value for pure polystyrene. For CNSty-Sty there was no clear optimal 

composition with a C60 miscibility of ~ 4-5 wt%, significantly lower than in the AN-Sty 

copolymer. These observations are in good qualitative agreement with the theoretical 

calculations in Figure 6.6. Our results for CNSty-MMA and MMA-Sty are testable predictions. 

Finally, a RCP melt of di-methyl-amino-ethyl-methacrylate (DMAEMA)–MMA was studied. 

In contrast with the qualitative agreement between theory and experiment discussed above, our 

initial calculations did not agree with the observation
16

 that the miscibility limit of C60 in 50/50 

DMAEMA-MMA is at least 20%, higher than any other system studied. Rather, PRISM 

calculations based on the same modeling of interaction potentials as above predicts very poor 

dispersion, almost zero (0.24% for a 50/50 composition). However, we believe there is a 

qualitative chemical difference for this polymer since DMAEMA is electron donating, while 

AN-Sty and Sty-CNSty are electron withdrawing. Although C60 is an amphoteric molecule, it is a 

better electron acceptor than donor. This suggests that DMAEMA-based RCP’s are very 

different due to a transfer of the lone pair electrons of the amino N atom leading to a “partial 

charge” on the fullerene which qualitatively alters the C60-C60 interaction by introducing 

repulsion between fullerenes, an effect not accounted for in our calculations.  

We now quantitatively include the above donor-acceptor partial charge transfer 

(DMAEMA
+
-C60

-
) effect which results in an effective dipole-dipole potential. The 

intermolecular interaction was computed using density functional tight binding theory (DFTB)
31

 

where the DMAEMA
+
 cations were placed "behind" each C60

-
 anion at the optimized distance of 

~3.5 Angstroms from the C60 surface.  The interaction of two of the C60 anion-cation pairs as a 
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function of the separation was then explicitly computed using DFTB.  A homogeneous dielectric 

screening corresponding to DMAEMA was added based on classical electrostatics via the 

standard multiplicative factor of 1/ε
DMAEMA

, where ε
DMAEMA

 = 6. The resulting interaction 

potential is shown in the inset of Figure 6.8, and using it PRISM theory calculations were 

repeated. Figure 6.8 shows the results based on both ignoring and including this special effect. 

Including it results in a miscibility curve that remains concave upwards, but the amount of 

dispersion predicted is dramatically enhanced and reaches 20% miscibility at an A-monomer 

composition of ~55%. The latter specific and quantitative trend is in rough agreement with 

experimental observations
16

.   

 Numerically-intensive calculations of spinodal curves based on the simultaneous 

divergence at zero wavevector of all partial structure factors at arbitrary filler loading have also 

been performed. In contrast to findings for large fillers
22

, the many body effects contained in the 

beyond virial analysis tend to increase, not decrease, miscibility. However, this appears to be a 

modest effect, and even if a relatively high Φc is predicted using eqn (2.10) we find the results 

are reliable for the qualitative elucidation of trends at the level the present work aims for
32

.    

6.4.2 Role of Non-Universal Parameters 

One can ask how sensitive the results presented in the previous section are to changes of 

material structural or interaction potential parameters. This is admittedly a difficult question and 

is quantitatively explored in Appendix B. In this section we summarize our conclusions. 
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We relaxed the following seven simplifications of our “reference model”: (a) fixed melt 

packing fraction (0.4352) or, equivalently, fixed polymer melt dimensionless compressibility, S0 

= 0.25, for all copolymer compositions, (b) fixed local aspect ratio of l/d = 1.2, (c) equality of the 

monomer and fullerene hard core diameters (D/d = 1), (d) fixed interfacial attraction range of 

0.12d, (e) copolymer-composition-dependent interfacial attraction energies, (f) N = 100, and (g) 

nn = 2.5 for the direct fullerene attraction. This exercise provides insight on the relative 

importance of these parameters, which are likely to vary with RCP composition, and how 

sensitive the results are to absolute values within chemically reasonable bounds. 

Relaxing the assumption of constant l/d, S0 and ηt values for every copolymer 

composition, or changing their fixed values consistent with known equation-of-state and 

conformational statistics data, does not qualitatively change the miscibility trends found in 

section 6.4.1 (points (a), (b)). The sizes of the studied monomers vary between d ~ 0.6–0.8 nm, 

so D/d need not be exactly unity. However, reasonable variation of this ratio does not change 

qualitatively the miscibility predictions (point (c)). The absolute fullerene solubility limit results 

are sensitive to the magnitude of the direct attraction between nanoparticles, but the key 

prediction that an intermediate RCP composition can result in optimum miscibility is robust to 

variations of the direct attraction within the chemically reasonable window of 2 4nn  (point 

(g)). Increasing N = 100 to N = 10,000 results in very little changes of the spinodal curves (point 

(f)), in analogy with classic polymer-solvent systems at “low” solvent volume fractions
33

. 

On the other hand, the downward concavity of the spinodal miscibility plots in Figure 6.6 

reverses to an upward concavity form when effective attraction strengths are not varied with 
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composition (point (e)). The choice of interfacial attraction range, which modifies packing 

correlations
18, 19, 22

, also seems of major importance as the non-monotonic trend of miscibility is 

predicted only when 0.1d ≤ αpn ≤ 0.15d (point (d)); the latter range of values is consistent with 

our quantum chemical calculations. The spatial ranges of A and B attractions need not be exactly 

the same, and our results are robust to a realistic variability. Hence, we conclude the “essential 

parameters” at zeroth order are the composition-dependent strength and spatial range of effective 

polymer-fullerene attractions.  

6.4.3 Understanding Correlation Effects on Miscibility 

Our finding that the essential parameters that result in the non-monotonic miscibility 

curves are the composition–dependent effective polymer-fullerene short range attractions, which 

result in composition-dependent polymer-particle packing and PMFs, suggests that to develop an 

intuitive understanding of miscibility trends one should closely examine the energetics. To 

pursue this we adopt the AN-Sty system as a representative case that illustrates the general 

principles underlying the optimum dispersion occurring at an intermediate RCP composition. 

One sees from Figure 6.6 that in the AN-Sty melt the miscibility peaks at fA = 0.4 

corresponding to a 40% AN random copolymer. At this composition, the effective interaction 

strengths of Sty and AN are 2.2 and 1.6 kBT, respectively. What is the significance of these 

numbers? To answer this, Figure 6.9 shows the fullerene PMF in a homopolymer melt at various 

polymer-particle attraction strengths with all other parameters kept the same as for the reference 

model RCP studies. When pn = 0.1, the direct attraction reinforces entropic depletion, resulting 
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in strong contact aggregation with a PMF minimum of ~ 4 kBT. As pn  is increased, the 

polymers adsorb on the filler leading to a decrease in contact aggregation due to steric 

stabilization. A small bridging minimum then emerges when 2 ≤ pn  ≤ 3. The spinodal curve 

for this homopolymer system is shown in the inset, and a miscibility peak is seen at pn  = 

2.1kBT. This suggests that when the interfacial attraction reaches the latter value there is an onset 

of bridging. This is relevant to RCP systems because AN-Sty melt miscibility is optimized when 

the majority Sty species composition is such that its attraction strength just crosses
 
2.1kBT.  

To provide further support for the above interpretation, we consider the CNSty-MMA 

melt where maximum miscibility is achieved at 80% A-composition. The effective interaction of 

CNSty (the A monomer) varies from 2.3 to 2.04 kBT when fA increases from 0.7 to 0.8. 

Miscibility thus peaks at 80% composition since the majority species (CNSty) composition has 

just crossed the onset of bridging at 2.1kBT while the corresponding homopolymer-fullerene 

attractions  for CNSty and MMA (1.48 and 3.18kBT, respectively) are far from this optimally 

mixed state value. This is the fundamental reason and mechanism for why random copolymers 

can result in better miscibility as compared to the two limiting homopolymers. The fact that 

optimum miscibility in both AN-Sty and CNSty-MMA melts is obtained at 40% and 80% 

compositions implies that spatial dispersion is maximum when the majority composition 

monomer is present at a level such that it begins to bridge. The location of the latter at εpn=2.1kBT 

is for αpn = 0.12d and is not universal.  However, the shift is modest for the attraction ranges 

relevant to the systems studied where 0.1d ≤ pn ≤ 0.15d. 
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6.4.4 Average Homopolymer Results 

It is interesting to ask how sensitive the key aspects of Figure 6.6 are to differential 

adsorption of A and B monomers on the fullerene. The fact that the maximum miscibility is 

attained when the monomer with higher composition reaches or crosses the point of the onset of 

bridging in the PMF hints that perhaps a weighted “average homopolymer” model might result in 

similar behavior. To study this, we define an effective homopolymer that interacts with the filler 

via a single interfacial attraction energy equal to a weighted mean of Equations (6.6) and (6.7): 

                                     1homo,eff eff eff

pn A An A Bnf ( f )                                                           (6.8) 

where eff

n is a function of fA per equations (6.6) and (6.7).   

Calculations based on Equation (6.8) are shown in Figure 6.10 for AN-Sty, CNSty–Sty 

and CNSty–MMA, and contrasted with the full RCP results of Figure 6.6. For AN-Sty, the 

highest miscibility occurs at a ~50% composition where 2 1homo,eff

pn B. k T  . The high miscible 

filler volume fraction of ~ 44% is nearly twice that obtained based on the RCP model. The 

difference in miscibility between the latter and the average homopolymer for CNSty–Sty and 

CNSty–MMA are quantitatively less pronounced than found for AN-Sty, and the qualitative 

trends agree for the two models.  

We conclude that the “average homopolymer” simplification is qualitatively reliable, but 

can incur significant system-specific errors. For example, the miscibility of the 3 RCP systems 

analyzed in this section based on the full RCP description are smaller at all compositions than 
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what is predicted based on the average homopolymer description. This is as expected since in a 

real RCP system with unequal A and B attractions with the filler there is always packing 

frustration and differential adsorption due to sequence disorder, which prior PRISM studies have 

shown results in a less thermodynamically stable mixture
23

.  

6.4.5 Flory – Huggins Theory Predictions 

We now apply the simplest mean field incompressible lattice Flory-Huggins (FH) 

model
32

 to our systems treated as a ternary mixture of nanoparticles n, and a random copolymer 

of A and B monomers. An elementary analysis yields the Helmholtz free energy of mixing per 

lattice site of 

                       (1 ) ln (1 ) ln(1 )mix mix mix BF U T S k T
N


    
 

           
 

               (6.9) 

where ((1 ))  is the total polymer (nanoparticle) volume fraction, and χ is the Flory interaction 

parameter  
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and z is the lattice coordination number. The spinodal curve follows as 
1 1
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which in the long chain, dilute filler limit of interest ( (1 ))N   becomes     

                                                        
1
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                                                             (6.11)                                                       
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The FH critical filler volume fractions as a function of RCP composition are shown in 

Figure 6.11 for T = 440K, z = 12 and 
nn = 2.5. The miscibility limit is a weak and (basically) 

monotonically increasing or decreasing function of composition, contrary to experiment and 

PRISM theory. The absolute magnitude of C60 solubilities are usually very small (~1%-2.7%) 

compared to both experiment and PRISM theory. This suggests FH theory is inadequate due to 

its neglect of spatial correlations and the effect of chain connectivity on enthalpy. How one 

might try to empirically “correct” the FH approach to account for the latter correlation effects is 

unclear to us.  

6.4.6 Fullerenes in Multiblock Copolymer Melts 

Adopting the same model and methods as outlined in chapter 5, we ask how the multi-

block copolymer (MBCP) architecture affects fullerene miscibility to make testable comparison 

between a RCP and MBCP melt as well as establish the effect of order on the monomer 

sequence.  

Using the same models and interactions as above (composition fA is now fixed at 0.5), we 

make testable predictions of the spinodal demixing volume fraction of fullerenes in MBCP melts. 

Table 6.2 shows the results for four sets of copolymers of different architecture: random 

copolymer, and MBCPs of block lengths R = 1, 5 and 10, at 440K and 370K. There are three 

notable trends. (1) For every MBCP, the nanoparticle miscibility decreases very weakly, if at all, 

with increasing block length R. We suspect this is because the energetic chemical heterogeneity 

for most of these copolymers is modest at 50% composition resulting in both A and B monomers 

being in the same homopolymer organizational regime (D, S, B) thereby rendering it difficult for 
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the small fullerenes to distinguish the blocks. The most discernible change of miscibility with 

block length is observed for AN-Sty at 370K for which the energy difference 

0.72An Bn      is the largest among all the copolymers studied. (2) The MBCPs show 

different variations of miscibility with temperature. For all block lengths, fullerene solubility in 

AN-Sty, MMA-Sty and CNSty-MMA decreases with cooling, while for CNSty-Sty it increases. 

The physical reason for the latter trend is qualitatively identical to that discussed in depth in 

6.4.3. Briefly, upon cooling from 440K to 370K, the net energetics of the CNSty-Sty copolymer 

shifts towards the point of maximum miscibility at an effective adsorption energy of ~ 2.1kT; in 

contrast, such cooling leads to the opposite behavior for the other chemical systems studied, i.e. 

they move away from the maximum miscibility condition. (3) For nearly all copolymers studied 

greater fullerene miscibility is predicted in MBCPs compared to the RCP. As shown in figure 

6.6, the miscibility obtained in these 50-50 RCPs is mostly higher than the corresponding 

homopolymers. Hence, we conclude that, within the purview of our study, fullerenes can be best 

dispersed by multiblock copolymers of block lengths R ≤ 10. We do not claim that this is 

universal as the chemistry of the specific polymers in the melt is the most important determinant 

of miscibility. 

6.5   Complex Effect of Temperature 

All the above calculations were performed at 440K per recent experiments
16

. One can ask what is 

the effect on miscibility if the temperature is varied, even over a relatively narrow range? The 

most obvious and direct consequence of varying temperature is a rescaling of all energies by the 

same factor, i.e., βεij. According to Flory-Huggins theory, the χ parameter varies as the inverse 
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temperature and one expects miscibility decreases with cooling corresponding to UCST behavior 

(Figure 6.11). Does this hold based on PRISM theory? Given the importance of temperature-

sensitive spatial correlations, the answer is unclear. Of course, when temperature is varied other 

parameters change, such as the melt packing fraction, compressibility and chain backbone 

stiffness. However, these variations are very small, and the analysis in Appendix B suggests they 

are not important. Hence we ignore them, and focus on the direct effect associated with βεij. 

Figure 6.12a shows PRISM theory spinodal calculations at several temperatures for 

MMA-Sty. Three features stand out: (i) miscibility of C60 in a pure Styrene homopolymer melt 

(fA = 0) decreases with heating, (ii) miscibility in a pure MMA homopolymer melt (fA = 1) 

increases with heating, and (iii) the optimum composition (miscibility peak) significantly 

changes with temperature. The inset of Figure 6.12a shows that upon heating from 370K to 

500K, the effective C60-Sty interaction strength decreases from 1.75 kBT to 1.3 kBT, and the 

system moves away from the miscibility peak centered at ~2.1kBT. This explains why the 

solubility decreases if temperature is raised. On the other hand, eff

pn for MMA decreases from 3.8 

kBT to 2.8 kBT, i.e., shifts from the bridging regime towards the steric stabilizing peak as 

temperature grows. Thus, the dispersion trend for this monomer is exactly the opposite of Sty. 

When temperature is varied, the eff

pn for the intermediate compositions also change and, thus, the 

point at which the monomer with the greater composition reaches an effective attraction strength 

of 2.1kBT also changes resulting in a shift of the miscibility peaks.  

Figure 6.12b shows the effect of variable temperature on fullerene miscibility in AN-Sty 

(inset) and CNSty-Sty melts. As the temperature drops from 500 to 440K, there is no qualitative 
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change of the spinodal curves for the CNSty-Sty melt, and no clear optimum copolymer 

composition. At 370K, the miscibility curve becomes concave upwards, which means better 

dispersion is obtained in the parent homopolymer melts than for any random copolymer 

composition. The inset shows the temperature dependence in the AN-Sty melt. As found for the 

CNSty-MMA case, the composition at which the highest miscibility occurs changes as well as 

the miscibility in the two limiting homopolymer matrices. At 370K, the non-monotonic behavior 

disappears completely with the B homopolymer (Sty) yielding the best dispersion.  

The above results demonstrate a remarkably rich sensitivity to changing temperature. The 

predicted behavior does not correspond to either simple UCST or LCST behavior. For a specific 

random copolymer, at fixed composition the filler miscibility can either increase or decrease with 

cooling or heating. Hence, PRISM theory with quantum chemical input for polymers that interact 

with fullerenes via strong, short range specific attractions suggests a material-specific complex 

dependence of miscibility on temperature in qualitative contrast with Flory-Huggins theory. The 

key physics that underlies this complexity is nonrandom packing, differential surface 

segregation, and competition between steric stabilization and bridging, which in turn are 

intimately related to the composition-dependent polymer-filler energetics. The predicted 

complex thermal behavior of miscibility is amenable to experimental and simulation tests. 

6.6   Summary 

We have combined polymer integral equation theory and computational chemistry methods to 

study the interfacial packing, effective nanoparticle interactions, liquid demixing, and spatial 

dispersion mechanism of fullerenes dissolved in random copolymer melts which interact with the 
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nanofiller via strong, short range, and tunable non-covalent electron donor-acceptor interactions. 

A statistical mechanical basis has been formulated for using random copolymers to optimize 

fullerene dispersion at an intermediate composition. Key general features, typically not present in 

PNCs composed of larger fillers which interact non-specifically with polymers, include the 

strong and spatially very short range nature of C60-polymer attractions, and the nonrandom 

packing and surface segregation of A and B monomers around the fullerene which is sensitive to 

chemistry, chain connectivity, and the small nature of the nanoparticle.  

Theoretical pair structure calculations reveal a strong sensitivity of interfacial packing 

close to the fullerene surface to RCP composition and adsorption energy mismatch. The PMF 

between fullerenes also displays rich trends, often non-monotonic with copolymer composition, 

reflecting a competition between direct filler attractions and polymer-mediated bridging and 

steric stabilization. The spinodal phase diagrams are in good qualitative agreement with the very 

different observations
16

 on AN-Sty and CNSty-Sty melts. Testable predictions are made for 

MMA-Sty and CNSty-MMA which are potential future targets to further improve dispersion.   

A physical understanding of the isothermal miscibility predictions has been achieved in 

two steps. First, the role of nonuniversal material parameters was investigated, and the distinctive 

non-monotonic variation of miscibility with copolymer composition is found to be primarily a 

consequence of composition-dependent, short range attractions between the A and B monomers 

with the fullerene which induce nonrandom and composition-dependent interfacial packing 

correlations and polymer-mediated filler interactions. Second, a connection to the non-monotonic 
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miscibility behavior in homopolymer systems has been elucidated based on the idea that 

effective energetics can be tuned to maximize the steric stabilization features of the filler PMF.  

The PRISM RCP miscibility calculations were contrasted with an effective homopolymer 

PRISM model and the Flory-Huggins model. The former appears to be qualitatively reasonable 

but can incur large quantitative errors since it misses preferential packing of A and B monomers 

near nanoparticles. The latter appears to fail qualitatively due to its neglect of spatial 

correlations. 

A remarkably rich temperature dependence of the phase behavior is predicted which 

depends on the chemical system and reflects the thermal sensitivity of spatial correlations. 

Simple UCST or LCST behavior is often not found, but rather for a specific random copolymer 

at fixed composition the fullerene miscibility can either increase or decrease with cooling or 

heating, which is not predicted by the Flory-Huggins model for the polymer systems studied.  

We also studied the dispersion trends of fullerenes in specific multiblock copolymer 

melts of experimental interest, and made comparisons with the behavior in a RCP melt of the 

same bare chemistry. For all the polymers studied, a MBCP composed of short blocks affords 

better miscibility than either a RCP or the corresponding homopolymer, making the MBCP a 

potentially novel option to strongly disperse small, strongly attractive particles. 

Finally, we emphasize much remains to be done. For example, studying the full spatial 

mixture structure at high fullerene loading, in real and Fourier (scattering) space, or the role of 

polymer grafts attached to fullerenes on miscibility and structure, are interesting directions. Since 
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fullerenes readily crystallize, generalizing the theoretical phase behavior analysis to treat this 

aspect, as opposed to the present liquid-liquid demixing analysis, is also a worthy future task.  
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present work, D/d = 1, we find that the selected full many-body calculations predict a higher 

miscibility compared to virial calculations for all Φc ≥ 0.2. For the cases where our virial-

based miscibility limit volume fractions are large, this quantitative difference may or may not 

be modest depending on the chemical system under consideration. However, most 

importantly for the present work, all the miscibility trends discussed in the main text remain 

qualitatively the same, and thus the virial results are reliable and adequate at the level of 

accuracy of interest in the present study. 
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6.8  Figures 

 

Figure 6.1 Conceptual cartoon of dilute fullerenes in a AB random copolymer melt. 
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Figure 6.2 Direct interaction potential (units of thermal energy, T = 440K) between two C60 

molecules in vacuum as a function of the dimensionless separation based on Eq(10); a hard core 

plus exponential tail fit is also shown. Inset: Computational chemistry computed potential energy 

curve for AN – C60 with the C – C bond of AN aligned to the center of the hexagon on C60.  
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Figure 6.3 The effective pair attraction strength at 440K between the A (solid) and B (dashed) 

monomers and C60 as a function of (A-B) RCP composition for AN-Sty and CNSty-Sty, and 

(inset):  MMA-Sty and CNSty-MMA. 
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Figure 6.4 A (solid) and B (dashed) monomer–particle pair correlation functions in random 

copolymer melt of CNSty-MMA at 440K at the indicated compositions fA (from top to bottom) 

of 0.1, 0.7, 0.9. Inset: effective pair attraction strengths between CNSty (A) and C60, and MMA 

(B) and C60 as a function of RCP composition. The distance of closest approach between a 

monomer and a particle is defined as rc = (D+d)/2  
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Figure 6.5 Fullerene potential-of-mean-force as a function of dimensionless inter-surface 

separation in CNSty-MMA at the indicated compositions fA and T = 440K.   
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Figure 6.6 Fullerene spinodal volume fraction as a function of composition for T = 440K and the 

indicated copolymer melts.   
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Figure 6.7 Experimental
16

 miscibility limit of C60 in AN-Sty and CNSty-Sty random copolymer 

melts. Dashed lines are guide to the eye. In the pure Styrene melt the miscibility limit is ~ 4%. 
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Figure 6.8 Fullerene miscibility limit volume fraction as a function of composition at 440K in a 

DMAEMA-MMA melt of neutral C60 (blue) and fullerene anions (red) screened by a matrix 

dielectric of constant 6. Inset shows the repulsive energy (in kBT) between fullerene anions using 

a dielectric constant of 6. The smooth curve is the exponential fit used in the PRISM calculations 

with parameters εnn = 1.38 and αnn = 0.95D. 

 

 



190 

 

 

Figure 6.9 Fullerene PMF in a homopolymer melt at the indicated polymer-particle attraction 

strengths (αpn = 0.12d) and T = 440K. Inset shows the spinodal curve. 
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Figure 6.10 Fullerene miscibility limit volume fraction as a function of composition in AN-Sty, 

CNSty-Sty and CNSty-MMA (solid), and the corresponding results based on the composition-

weighted average homopolymer model (dashed).  
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Figure 6.11 Miscibility limit of fullerenes predicted by Flory–Huggins theory in the indicated 

copolymer melts at 440K. Dashed line is the result in the AN-Sty melt at 370K. 
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Figure 6.12a Miscibility limit volume fraction of fullerenes in (a) MMA-Sty as a function of 

composition at the indicated temperatures. The inset shows the effective pair attraction strengths 

between Sty and C60 and MMA and C60 as a function of temperature. 
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Figure 6.12b Miscibility limit volume fraction of fullerenes in  CNSty-Sty (main) and AN-Sty 

(inset) as a function of composition at the indicated temperatures.  

 



195 

 

 

Figure 6.13 Miscibility limit volume fraction of fullerenes at 440K in AN-Sty for random 

copolymers of chain length N = 100 (solid) and N = 10000 (dashed) at the indicated values of 

size asymmetry ratio D/d; all other parameters are fixed at their reference model values. Inset 

shows the miscibility limit of fullerene in the AN-Sty melt with D/d=1 and N = 100 but at fixed, 

composition-independent values eff

An and eff

Bn of 2.96 and 1.47kBT, respectively. 
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Figure 6.14 Fullerene miscibility limit volume fraction at 440K in AN-Sty as a function of 

composition for the indicated polymer-particle attraction ranges.  Inset: Miscibility limit results 

in AN-Sty with αpn = 0.12d as a function of direct particle-particle attraction. 
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Monomers AN Sty MMA CNSty DMAEMA C60 

AN 2.32 4.58 2.55 3.71 4.30 5.28 

Sty 4.58 6.54 5.16 6.99 7.74 8.01 

MMA 2.55 5.16 3.63 4.81 5.06 6.81 

CNSty 3.71 6.99 4.81 7.62 7.47 9.10 

DMAEMA 4.30 7.74 5.06 7.47 5.73 10.69 

 

Table 6.1 Monomer-monomer and monomer-C60 pair attraction strengths (in units of kBT at 

440K) computed using the Amber force field. 
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Copolymer 

T = 440K T = 370K 

RCP R=1 R=5 R=10 RCP R=1 R=5 R=10 

AN-Sty 0.23 0.46 0.44 0.40 0.14 0.31 0.28 0.18 

CNSty-Sty 0.17 0.21 0.21 0.21 0.21 0.35 0.35 0.34 

MMA-Sty 0.37 0.42 0.42 0.41 0.20 0.23 0.22 0.21 

CNSty-MMA 0.20 0.23 0.22 0.21 0.09 0.11 0.10 0.07 

 

Table 6.2 Critical nanoparticle volume fraction of fullerenes in the indicated multiblock 

copolymers of block length R = 1, 5, and 10 at two different experimentally-realizable 

temperatures. Results for the corresponding random copolymer are also shown. 
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CHAPTER 7 

EQUILIBRIUM STRUCTURE AND MISCIBILITY OF SOFT 

NANOPARTICLES IN CHEMISTRY-MATCHED POLYMER 

MELTS 

7.1 Introduction 

Nanogels are nanoscopic cross-linked polymeric particles that have recently received the 

attention of many researchers due to their ease of preparation and control of surface morphology 

(fluctuation amplitude or fuzziness) and overall degree of softness. These particles can be 

synthesized using micro-emulsion polymerization techniques and are characterized using NMR, 

size exclusion chromatography, differential scanning calorimetry and different small angle 

scattering techniques
1-4

. The surface fuzziness and overall softness of such particles can be tuned 

by varying the cross-linking density
5, 6

 as well as changing external parameters like temperature 

(for thermo-responsive polymers)
7
, pH, solvent quality, etc. Higher degree of cross-linking 

results in a near-smooth particle which when dissolved in a polymer matrix of similar chemistry 

results in agglomeration due to entropic depletion attraction. Weaker cross-linking results in 

particles with irregular, fluctuating surfaces that are expected to help mitigate the unfavorable 

consequences of depletion and promote dispersion via penetration of matrix polymer chains into 

the surface region of the soft particles. Such behavior was observed experimentally by Mackay et 

al who employed intramolecularly cross-linked polystyrene nanoparticles of diameter ~ 5-7 nm 
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and demonstrated improved miscibility in chemically matched polystryene melt
8
. It was also 

observed that when these particles were added to entangled melts, the viscosity decreased, in 

stark violation of the Stokes-Einstein continuum ideas
9
. Fundamental understanding of these 

observations has not been achieved. 

To fundamentally understand the above-mentioned phenomenon, a systematic structural 

and chemical characterization of such particles is essential. For a theoretical analysis, the most 

basic step is to first calculate the bare effective potential between the center-of-mass (CM) of the 

soft fluctuating particles in vacuum. Their non-uniform and fluctuating nature makes this a 

challenging task. The soft repulsive Hertzian pair potential
10

 is often used as a highly simplified 

inter-particle potential for microgels. It is believed to be realistic within a pair-decomposable 

potential energy description when particle deformation is 10% or less
11

. The Hertzian potential is 

highly coarse grained and contains only one length scale, the effective particle diameter, and one 

energy scale determined by the tunable single particle modulus which is controlled largely by the 

internal polymer cross-linking density. A real polymeric nano/microgel, depending upon the 

amount of cross-linking, is defined by multiple length scales of which the core radius and the 

mean width and density profile of the fuzzy, fluctuating surface region are critical. This 

necessitates the construction of an effective CM-level potential that accounts for the latter 

aspects, as recently experimentally deduced using small angle neutron scattering (SANS) by 

Holley et al
1
. Holley and coworkers reported the synthesis and characterization of polystyrene 

nanogels exhibiting a graded interface and tunable softness with radii 10pR nm . These 

nanoparticles, cross-linked with divinyl benzene (DVB), were synthesized using batch and semi-

batch radical microemulsion polymerization techniques. Three different nanoparticle 
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morphologies were identified based on modeling of the single particle SANS profiles: (1) fuzzy 

nanoparticles with fluctuating chain ends, (2) smooth homogeneous particles with very weak 

surface undulations, and (3) particles with an inhomogeneous core and ill-defined interface. A 

schematic illustration of these three type of particles is shown in figure 7.1a. The authors show 

that the size of the polystyrene nanoparticles, the segmental chain distribution at the particle 

interface, and the softness of the particles can be readily controlled through DVB concentration 

and synthetic (batch vs. semi-batch) methodology. Detailed SANS analysis allowed the 

determination of structural parameters such as the particle radius of gyration gR , size of the 

cross-linked core cR , average chain conformation, average mesh size of the network, and width 

of the fuzzy fluctuating interface  .  

Motivated by the experimental advances discussed above, we aim to develop a general 

theory for soft nanoparticles that explicitly takes the key two length scales into consideration to 

construct an effective interaction that can be used as the starting point to predict equilibrium 

structure and phase behavior in a manner that directly exploits the single particle form factors 

measured by SANS for real nanogel particles. 

7.2 Methodology 

7.2.1 Model 

SANS allows the determination of single particle structural parameters like the radius of 

gyration Rg, average chain (strand) conformation, size of the crosslinked core Rc, width of the 

‘fuzzy’ interfacial layer τ, etc
1, 12-17, 18-23

.  A soft fuzzy sphere can be effectively perceived as 

composed of a well-defined core of size Rc (diameter 2 cD R ), containing a homogeneous 
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distribution of crosslinks with a soft fuzzy layer (of thickness τ) at the interface that is 

representative of dangling chain ends and loops as shown in figure 7.1b. As special example, we 

consider in detail in sections 7.6 and 7.7 the four particles studied by Holley and workers in ref 

[1]. The quantitative structural parameters associated with each of these particles (NP1, NP2, 

NP3 and NP3A) are tabulated in Table 7.1. Particles NPz (z = 1-3) were synthesized using batch 

microemulsion polymerization as opposed to semi-batch microemulsion polymerization that was 

employed for particle NP3A. 

 The azimuthally-averaged and calibrated SANS intensity I(q) for dilute particles in 

deuterated solvent can be analyzed by using 

( ) ( ) ( )I q P q S q                                                             (7.1) 

where P(q) and S(q) are the form factor and structure factor, respectively.  The form factor 

represents the interference of neutrons scattered from different parts of the same object and 

therefore statistically quantifies at the pair correlation level the shape and softness of the object. 

The form factor for a fuzzy particle was modeled by Richtering et al
1, 24, 25

 by convoluting the 

form factor of a homogeneous sphere of radius Rc with an exponentially decaying function: 

2 2 2/2 2

3

3( ( ) cos( ))
( ) [ ] ( )

( )

qc c c
f

c

sin qR qR qR
P q e F q

qR


                            (7.2) 

where F(q) is the amplitude of scattered intensity and the total radius of the particle is 

2p cR R    (figure 7.1). The radial density profile Γ(r) can then be obtained by taking an 

inverse Fourier Transform of the amplitude. Thus, 

3 .

3

1 4
( ) ( )

(2 ) 3

iq r

cr R F q e dq


                                                (7.3) 
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Using the F(q) from eqn 7.2, an analytic expression for radial density is obtained: 

2 2 2 2

2 2 2

( ) ( ) ( )

2 2
1

( ) 2 ( ) ( )
2 2 2

c c cr R r R r R

c cr R r R
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       (7.4) 

and     
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Now, consider a hard sphere of size R such that its radial profile is given by a step 

function 
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         (7.6) 

Our goal is to capture the radial profile of a fuzzy particle by allowing the hard sphere to 

fluctuate, i.e., vary its radius according to some distribution, unknown yet, such that the radial 

density profile of the fluctuating particle is equivalent to that of the true soft particle. Let the 

normalized distribution be P(r). When the particle radii are sampled according to this 

distribution, the averaged radial profile is 

    0

0

( ) ( ) ( ) ( )
r

r r P R dR P R dR  
 

                                          (7.7) 

Enforcing the constraint, ( ) ( )r r  , one obtains
0

1 ( )
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d r
P r

dr


  . 

Thus,                          
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and         
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When the particle radii are sampled from this distribution, the same radial profile as that of a 

fuzzy particle is obtained. 

7.2.2 Intermolecular Site – Site Potentials 

In this sub-section, we individually consider the three potentials – particle-particle, 

particle-monomer, monomer-monomer.  

Particle – particle : To compute the inter-particle pair interaction, two fluctuating hard spheres, 

each fluctuating according to the distribution P(r), are brought from infinity to a distance r. The 

fraction of accepted configurations are calculated as  

1 2 1 2 1 2

0 0

1 2 1 2 1 2

0 0

( ) exp( ( , )) ( ) ( )

( ( )) ( ) ( )

acceptedf r U R R P R P R dR dR

r R R P R P R dR dR


 

 

 

   

 

 

                          (7.10)  

In equation (7.10) the “no overlap” criterion has been enforced as in routinely done for hard 

spheres – i.e., reject the configurations that result in overlap and count only the non-overlap 
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configurations. Now, as the particles are brought closer and the tails of their densities start 

overlapping, there will come a point at which the total density is equal to the core density of the 

particle. To account for excluded volume effects, our simple physical idea is that the particles 

can be pushed into each other only till that point. For these fuzzy particles, Rc is the separation at 

which the density drops to roughly half its core value, which is taken as the cutoff for the 

particle-particle interactions and equation 7.10  is rewritten as : 

      1 2 1 2 1 2( ) constant ( ( )) ( ) ( )

c c

accepted

R R

f r r R R P R P R dR dR

 

                         (7.11) 

Akin to a simple Boltzmann picture, we define the effective interaction between two fluctuating 

particles as:  

    ( ) ln ( )nn B accU r k T f r         (7.12) 

Monomer – particle : In the same spirit as equation (7.10), the fraction of accepted 

configurations for monomer-filler interactions is given as  

1 1 1

0

( ) ( ( )) ( )accepted monf r r r R P R dR



         (7.13) 

Note that the cutoff is set for the particle-particle interactions (equation (7.11)) taking into 

account excluded volume, but this does not enter for the monomer – particle potential because a 

monomer is small compared to the core radius and we assume it can, in principal, penetrate into 

the core of the soft particle. Then, ( ) ln ( )pn B accU r k T f r  defines the effective interactions 

between a monomer and a particle. 
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Monomer – monomer: We consider an ideal athermal melt where the monomer-monomer 

interactions are hard core: 

( ) ,

0 ,

mmU r r d

r d

  

 
       (7.14) 

By assuming hard core (diameter d) monomer-monomer interactions, one can easily isolate the 

effect of the surface irregularity on the dispersion of soft particles in a homopolymer melt via the 

effective monomer-particle and particle-particle potentials
26-31

.  

The above coarse-grained methodology is adopted to try and circumvent the high 

complexity of the system that exists on the microscopic scale if a nanogel or other soft particle is 

described at the monomer level including all its degrees of freedom. The real detailed surface 

morphology and chemistry of the particles have been removed from explicit consideration 

retaining only  the averaged pair structure amenable to scattering measurements, the form factor 

or the radial density profile. 

Next, using the above effective CM potentials in PRISM theory, we study the equilibrium 

structure of their polymer nanocomposites, from which  the miscibility can be predicted as a 

function of (1) degree of fuzziness / d  , (2) particle core radius /cR d  , (3) matrix packing 

fraction t  and (4) matrix polymer chain length. All results below have been calculated in the 

dilute two particle limit where, based on prior work, the virial analysis of miscibility is expected 

to be accurate up to a critical volume fraction of 0.2c  . 

7.3 Single Particle Properties 
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Figure 7.2 shows the radial density profile of a particle of core radius Rc = 2.5 at various degrees 

of fuzziness. The fuzziness is quantified by τ which is the half-width of the interfacial soft layer. 

Note that for τ = 0, i.e., a hard sphere (dashed black curve), the profile is a step function as it 

must be for a smooth homogeneous spherical particle. As the fuzziness increases, and the sharp 

cutoff at Rc is replaced by an exponential decay of radial density, with the density dropping to 

half its core value at ~Rc for all values of τ. It is for this reason that Rc is adopted as the cutoff 

distance for particle-particle interactions. 

 Figure 7.3 shows the normalized probability distribution from which the radius of the 

fluctuating hard sphere is sampled. When the softness is as small as / 0.1d  , the distribution 

function is sharply centered around Rc. As the fuzziness increases, the distribution function at 

~Rc decreases in height and spreads on either side to encompass a wider range of radii. As the 

particles become softer, ( / 1.5d  ), the natural cut off at r/d=0 skews the distribution function 

with less sampling of smaller radii and enhanced sampling of larger distances.  

Figures 7.4 and 7.5 show the particle – particle and monomer – particle effective pair 

interaction potentials, respectively, for a core size of Rc = 2.5. The hard core potentials (both m-n 

and n-n) for a hard sphere (τ = 0) transform into soft potentials as the width of the soft interfacial 

layer increases. With increasing surface fuzziness, the particle-particle interaction 

( )nnU r becomes softer monotonically, and it diverges at contact ( 2 cD R ) since, by 

construction, two fluctuating soft particles cannot interpenetrate beyond this point. A monomer, 

on the other hand, can explore the interiors of a soft particle and thus the monomer-particle 

interaction does not diverge at the distance of closest approach defined as (2 ) / 2c cr R d  . As τ 

increases from zero to 1.5, ( )mnU r changes from a hard core to a soft potential. However, 
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beyond / 1.5d  , the potential trend reverses and becomes more repulsive. Mathematically, this 

originates from the skewed nature of the fluctuating radius probability distribution function 

where, for sufficiently large fuzziness, the smaller radii are sampled less than the larger ones.   

7.4 Spatial Correlation Functions in a Monomer Solvent 

This section studied the spatial correlations between a particle and a solvent sphere ( ( )mng r ) and 

between two particles ( ( )nng r ). For the large majority of the ensuing discussion, we focus on the 

monomeric fluid limit (N=1) for three reasons – (1) The N=1 model represents a broad range of 

soft colloidal systems dissolved in small molecules solvents that are of high interest to 

experimentalists. (2) The rich physics that is found for N=1 is qualitatively also present for the 

more complicated polymer chain melt problem addressed in section 7.5. (3) The form factor that 

is central to the methodology adopted in this chapter has been extracted experimentally in 

solvent matrices and, their validity in a more physically different environment of a polymer melt 

remains unknown. In the dilute particle limit, two fluid volume fractions are considered, 

0.226t  and 0.4, which are representative of concentrated solutions and melts, respectively.  

The cross pair correlation function quantifies the statistical spatial organization of the 

solvent around the particle. Figure 7.6 shows it for Rc = 2.5 and 0.226t  . For hard spheres, the 

closest distance of contact between a monomer and a particle is (2 ) / 2c cr R d   which is where 

the dashed black curve peaks
26, 30,32

, and for all smaller distances ( )mng r is zero. However, as the 

particle becomes fuzzier, solvent molecules penetrate inside the particle core. The ( )mng r curve 

therefore develops a tail region at small separations implying increased probing of the interior of 

the nanogel. Because of the soft particle interface, monomers do not strongly layer in a fashion 
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similar to that around hard impenetrable surfaces. The value of the ( )mng r peak decreases with 

increasing τ and the most prominent peak is completely obliterated for all 0.5d  , i.e., when 

the fuzzy layer is of the order of a monomer diameter.  For all such soft particles (τ/d ≥ 0.5), at 

distances greater than rc, the oscillations around the random value of unity disappear indicating a 

lack of solvation shell packing of matrix molecules around the particles. For τ as high as 1d, the 

fuzzy layer is nearly as large as the core radius and extreme penetration inside the nanogel is 

observed. However, the longer range correlation hole deepens for / 2d  and the matrix 

particles are now excluded from the deeper interiors of the soft particle. This follows from the 

fact that the monomer-particle potential for / 2d  is more repulsive compared to the result for 

smaller values of / d . 

Figure 7.7 compares the monomer-particle correlation function for two limiting values of 

surface softness at two different matrix packing fractions.  When the nanogel is tightly cross-

linked ( / 0.05d  ), ( )mng r peaks at cr r followed by oscillations on monomer scale indicative 

of the layering tendency of the matrix around the particle. At higher matrix fluid density 

of 0.4t  , the peak height increases from 1.83 to 2.98 with enhanced oscillations. At a higher 

value of / 2d  , the correlation hole feature of ( )mng r persists for both densities. However, 

there is more penetration of the monomers for the higher packing fraction.   

Figure 7.8 shows the interparticle radial distribution function, ( )nng r , for Rc = 2.5 in a 

solvent of 0.4t  . For a smooth particle in a concentrated solution with oscillatory packing 

correlations, when two particles are brought close, the preferred local packing of the matrix is 

frustrated, thereby raising the excess (entropic) free energy of the liquid leading to strong contact 
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aggregation (depletion)
33

. Thus, we see an enormous peak of ( )nng r at contact for a hard sphere 

in figure 7.8 (dashed black). Introducing slight softness ( / 0.1d  ) drastically reduces the peak 

value from 6290 to 8.5, while shifting the point at which the peak appears from 5d to 5.065d due 

to the fluctuating interfacial layer between the particles. When / 0.5d  , the peaks completely 

disappear and are replaced by a local correlation hole. This trend continues up to / 1.5d  . 

For   / d 1.5, the peak in ( )nng r re-appears at a surface separation of 0.5d. The lack of 

oscillations in the ( )mng r  curve indicates that there is not much layering. In fact for / 1.5d  , 

the cross correlation function shows that the monomers do not penetrate any deeper into the soft 

particle. Rather, the fuzzy fluctuating layer acts as a bridge between particles, i.e., the particles 

share their interfacial layers. 

The effective interaction between the two particles mediated is given by the particle-

particle potential of mean force per eqn 2.8. Figure 7.9 shows the PMF for a core size of 

2.5cR   and fluid packing fraction 0.226t  . For hard spheres there is strong contact 

aggregation. Increasing the interfacial fuzzy layer suppresses this depletion attraction 

corresponding to decreasing the minimum at contact. For τ = 1, the PMF becomes completely 

repulsive, which is a signature of total dispersion. For τ greater than 1, the PMF behavior 

reverses and a long-ranged attractive potential emerges of magnitude slightly greater than its 

depletion analog in hard spheres with a range of the order of the fuzzy layer width, 2τ.  

Figure 7.10 shows the solvent mediated PMF for the same particle in a liquid of packing 

fraction 0.4t  . For the hard sphere-like particles in the depletion regime, increasing 

0.226t  to 0.4 leads to more attractive potentials, in accordance with conventional depletion 
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features
26, 27, 33-37

. This trend, however, reverses in the “very soft” regime, with the / 2d   

system presenting a striking example. In a fluid of 0.4t  , the PMF for particles of fuzziness 

/ 2d  is ~ -1kBT at contact which is a reduction of a factor of 3.5 as compared to 0.226t   

(figure 7.9). Therefore, the solvent mediated potentials for the very soft particles become more 

repulsive upon increasing of fluid density. This feature is reminiscent of the rough hard sphere 

trends discussed in Chapter 4
38

.  

7.5 Miscibility 

In the virial approach, spinodal miscibility is determined by the normalized second virial 

coefficient 2B  of equation 2.11. This problem is studied as a function of four variables:  (1) 

Fuzziness τ, (2) particle core size cR  ,(3) total matrix fluid packing fraction t  ,and (4) chain 

degree of polymerization N. Figures 7.11 and 7.12 show the variation of miscibility with respect 

to these parameters. 

1) Fuzziness τ.  Figure 7.11 plots the second virial coefficients for various core sizes as a 

function of / d . Increasing the fuzziness triggers a transformation of 2B  from negative to 

positive, implying increasing softness makes the system more miscible. For a core size 5cR  , 

the system is completely miscible in the window 0.25 2  . Beyond / 2d  , the second virial 

coefficients again become negative signifying impending phase separation. The same trend is 

observed even when the particle size is decreased or increased to 2.5cR   and 10. Therefore, 

miscibility of these soft particles is a non-monotonic function of interfacial fuzziness. This is a 

non-trivial and rather surprising result. We believe this is a consequence of the complex interplay 
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of the three potentials (m-m, m-n, n-n) where the monomer-particle potential is more repulsion at 

higher / d  (see Figure 7.4). 

2) Core size
cR . The effect of the particle core size is also shown in figure 7.11. The window 

of miscibility is the smallest for 10cR   as physically expected since the ratio of / cR for this 

system is the smallest, making it “harder” than the smaller core particles. As the core size is 

decreased from 10cR  to 5, the miscibility window widens indicating improved dispersability in 

both the depletion (small / d ) and soft regimes. Decreasing cR  further to 2.5, however, does 

not continually improve the stability. Improved miscibility is predicted in the depletion regime, 

but the opposite behavior is predicted in the “soft” regime for / 1.5d  . For the latter regime, 

the miscibility variation is highly non-monotonic with 5cR  showing the best dispersion 

qualities. The complete miscibility window is also the widest for 5cR  .    

3) Solvent packing fraction t . The red dashed curve of figure 7.11 is the second virial 

coefficient results for 5cR  nanogels in a solvent of increased density 0.4t  . Following the 

PMF trend, increasing t destabilizes the system in the “depletion” regime ( / 0.1d  ) but 

improves dispersion in the “soft” regime, consequently widening the miscibility window. 

4) Polymer chain length N. Under iso-compressible melt conditions ( 0 0.17S  ) as 

discussed in Chapters 2 and 3, increasing the polymer size monotonically destabilizes the PNC. 

As shown in figure 7.12 for a particle of core size 2.5cR  , miscibility is reduced in both the low 

and high / d regimes. The miscibility window is the widest for the monomeric fluid of N = 1 

and progressively narrows with increasing N. Surprisingly, chain length does not have any effect 

in the dispersed states of / 0.5d  and 1. The reason for enhanced miscibility in a soft particle 
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is the ability of the polymer to penetrate the fuzzy layer of the particles. Increasing the degree of 

polymerization makes it difficult for the polymers to configure themselves in between the 

particles owing to increased constraints. This decreases the miscibility of the particles.   

   Table 7.2 shows the spinodal solubility limit 
c for particles of core radius 5cR  at 

varying amounts of softness in both monomeric solvents and polymer melts. 
c is the critical 

volume fraction beyond which spinodal phase separation occurs. Prior work on smooth particles 

in homopolymer melt
30

 show that the solubility limits based on virial analysis in quantitatively 

accurate up to 0.2c  . A homogeneously smooth hard sphere of radius 5cR   has solubility 

limits of 11.6% and 1.3% in solvents of N=1 and 100, respectively. As the surface fuzziness is 

increased, the particle solubility increases initially and then drops when / 2d  . The window of 

miscibility, defined as the range in which the particles are always dispersed, is roughly 

0.1 / 2d   for the monomeric fluid and 1 / 2d   for the polymer melt. It is surprising that 

when the fuzziness is of the order of a monomer diameter ( 2 / 1d  ), the particle spinodal 

solubility is as high as 30% in the polymer matrix, an increase of a factor of 23 compared to that 

of the smooth sphere.   

7.6   Miscibility Predictions for Specific Experimental Nanogel Systems    

 This section makes predictions for the four specific soft nanoparticles systems considered in ref 

[1], NP1, NP2, NP3, and NP3A. As shown in Table 7.1, Holley and coworkers varied the DVB 

monomer cross-linking density to obtain nanogels of different core sizes and degrees of 

fuzziness. The lowest crosslinking density of 0.81 mol% yielded the “fuzziest” particle with 

/ 0.73cR   while tight crosslinking with semi-batch microemulsion polymerization gave a 

smooth soft gel that lacked significant interfacial layer ( / 0.1cR  ). A special feature of 
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choosing these particular soft particles is that the radius of gyration of all the four is 

approximately fixed at 10 nm, i.e., 2 10p cR R nm   . 

 Figure 7.13 shows the monomer-particle pair correlation function for the four sets of 

particles at 0.4t  . The most noticeable feature for all the particles is the lack of a sharp peak 

at the core radius. A weak vestige of solvent layering is present for NP3A which has the 

narrowest fuzzy layer / d , while only a correlation hole feature is observed for NP1, NP2 and 

NP3. Quantitatively, NP2 allows maximum penetration of the monomer followed by NP1 and 

NP3. However, note that the ( )mng r curves for NP2 and NP3 attain the random value of unity at r 

~ Rc, while this is attained for NP1 at a larger separation of 1.8 cr R corresponding to the 

deepest correlation hole. This feature has major implications for the particle PMF as shown in 

figure 7.14. One sees that the PMF of NP2, NP3 and NP3A are completely repulsive in a 

monomeric fluid at 0.4t  . Given that NP2 and NP3 also have fuzzy layers, the corresponding 

PMFs show a weak, long-ranged repulsive tail. For NP1, a strong attraction of -4.7kBT is 

observed with a spatial range of order the correlation hole ( ~ 1.8 cR ).  

Experiments on the dispersion properties of these particles are presently underway at Oak 

Ridge National Laboratory (ORNL) for unentangled polymer melts for which the corresponding 

mapped chain length is N ~ 100 – 1000
39

. We, therefore, study in figure 7.15 the PMF for 

particles NP3 and NP3A at different chain lengths under iso-compressible melt conditions (S0 

fixed at 0.17). The general feature is that as the chain length is increased, the attraction minimum 

deepens. For NP3A, the PMF changes from purely repulsive to weakly attractive upon increasing 

N from 1 to 10. For both particles, the change in PMF minima with increasing N hints at a 
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possible saturation behavior in the long chain limit as has been observed for smooth hard spheres 

in polymer melts
33

. 

 We now make testable miscibility predictions for the four nanogel particles at different 

polymer chain lengths. Table 7.3 show that NP1 is immiscible and NP3A is miscible at all N. 

This seems counter-intuitive since NP1 is the softest and NP3A is relatively the hardest particle. 

However, this follows the trend of figure 7.11 where one sees that a fuzzy layer of the order of 

monomer diameter, 2 / 1d  , yields a positive second virial coefficient for particles of all core 

sizes 10cR  . Figure 7.11 also showed that, depending upon the core size, particles with soft 

layers much less than 0.5d behave as “hard” particles. Similarly, in the limit of very high degree 

of fuzziness, the miscibility trend changes back to destabilization. This is the reason why NP1 is 

predicted to be immiscible at all chain lengths. For both NP2 and NP3, the nanoparticles are 

totally miscible for N = 1 and their miscibility drops with increasing N. The spinodal solubility 

limit of NP2 is only slightly better than NP3. Therefore, even though all the four particles have 

the same effective radius of gyration, their solubility limits are very different. 

 The biggest take home message from our calculations is that the “effective fuzziness” 

( / cR ) defined by Holley et al
1
 is not the only parameter that controls the degree of miscibility. 

Miscibility of soft particles is determined by the size of the core relative to the monomer 

diameter (which primarily controls the dispersion properties of smooth hard particles) in addition 

to the degree of fuzziness. This makes the problem more complicated and can lead to non-

intuitive, not easily guessed trends. Based on our present model and calculations, particles with 

an interfacial fuzziness of 2 / 1d   should not be viewed as smooth homogeneous spheres as 

suggested by Holley et al
1
. Rather, the particle fuzziness needs to be much less than 2 / 1d   to 
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be deemed ‘hard’. Of course, this is a preliminary theoretical study and future work is required to 

establish the robustness of our conclusions.      

7.7 Importance of Radial Density Profile 

 The particle form factors of the ORNL soft nanoparticles were obtained by SANS analysis (data 

fitting) over a limited range of wave vector. Thus, a natural question arises concerning how 

unique the deductions about the true particle radial density profile are based on limited small 

angle scattering data fit to a specific single particle form factor model. An alternative form factor 

has been proposed by Pedersen and Richtering
7, 40

 to describe soft particles with a graded 

interface. The radial profile is described with a symmetric form based on a parabolic shape: 
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This form factor is well-suited for analyzing scattering data of particles of core-shell 

morphology. In this section we repeat the calculations of the previous sections using this 

parabolic radial profile to:  (a) check the robustness of our results, and (b) test whether the 

theoretical predictions of miscibility trends are sensitive to relatively small changes of the 

nanoparticle   surface characteristics. 

 The parabolic radial density profile is shown in figure 7.16 where increasing fuzziness 

results in density reduction. The difference between this profile and the exponential profile of 

figure 7.2 becomes significant starting at / 1d  . The main difference is that for the exponential 

profile the core density decreases immediately with growing r and the point at which it drops by 
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half is not strictly 
cR  but slightly less than 

cR . Using the method described in section 7.2, the 

effective potentials are constructed and equilibrium structure and miscibility predictions are 

made using PRISM theory. 

 Figure 7.17 shows the monomer-particle pair correlation function of a particle of radius 

2.5cR  in a solvent of total packing fraction 0.226t  . While the qualitative features are the 

same as before (figure 7.6), the peak heights differ quantitatively due to the differences in the 

radial density profile. We also note that increasing  results in enhanced penetration in a 

monotonic manner, unlike the behavior in figure 7.6. 

 Figure 7.18 shows the corresponding PMF between two particles of core radius 2.5cR   

in a monomeric fluid of 0.226t   at various degrees of fuzziness. The attractive feature, 

indicating (near) contact aggregation, is reduced as the particle softness grows, and the PMF 

becomes repulsive for / 0.5d  . Interestingly, using this new form factor, the PMFs do not 

become attractive again at higher values of  . This is also reflected in figure 7.19 where, for 

2.5cR  , increasing   results in the reduced second virial coefficient changing from negative to 

positive, before saturating at the bare hard sphere value of unity. This is in sharp contrast with 

the previous set of calculations in figure 7.11 where for a particle of size 2.5cR  , the second 

virial coefficients for / 2d   and 2.5 were -5 and -8000, respectively. The trend for 5cR   is 

similar to that of 2.5cR  , though for / 2d   there is a weak hint of a turn over as also seen in 

figure 7.11. The inset to figure 7.19 shows how the 2B dependence on / d  depends on polymer 

chain length under iso-compressible melt conditions. For / 0.5d  , increasing N destabilizes 

the system in a depletion-like manner
33

. For / 0.5d  , the inter-particle potentials and 

miscibilities are predicted to be unperturbed by the melt chain length.        



218 

 

 Finally, we make predictions for the four particles using the parabolic radial density 

profile. The results are quite different from what those in Table 7.3 using the exponential radial 

density profile. All four particles are completely miscible for short chains (N=1 and 10). For the 

longer chains, the miscibility trends are complex. The particle with the softest interface, NP1, is 

the most miscible, though it is only slightly more so than the “hardest” particle NP3A. Among 

the four particles, least miscibility is predicted for NP2 and NP3. This again reiterates the fact 

that the absolute softness of the particles, quantified by / d , is not the sole determinant of the 

dispersion properties. The softness in conjunction with the core radius impact miscibility, 

making the problem rather complex and subtle.  

 Broadly, we conclude that the non-monotonic change of miscibility with softness is a 

feature that persists even with a slightly different form factor. Even though the two radial density 

profiles of equation 7.4 and 7.15 are not qualitatively different, their modest quantitative 

differences do modify the predictions of PRISM theory. This emphasizes the importance of 

experimentally measuring the particle form factor to very high accuracy and over as large a 

range of wavevector as possible in order to better establish the real space radial density profile of 

soft nanoparticles. 

 

7.8 Summary 

We have studied the equilibrium structure of cross-linked nanogels in a chemistry-matched 

solvent or polymer melt using PRISM theory. An analytical expression for the particle-particle 

and particle-monomer potentials was derived using experimental scattering intensity information 

that is a function of the particle core size and degree of surface fuzziness. Our approach is a 

general technique within the simplifying framework of averaging over all surface irregularities 
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and fluctuations to give a center-of-mass level potential. At this point, our guess is that this 

methodology will be valid as long as the amount of fuzziness is less than the core radius or even 

less, and the surface morphology is irregular and disordered unlike the ordered surface roughness 

discussed in Chapter 4. 

 Our results throw light on some of the recent experimental observations of improved 

cross-linked nanoparticle miscibility in chemically similar polymer melt. Dramatic changes are 

noted in the single particle-monomer spatial correlation functions upon variation of surface 

softness. This leads to an unexpected non-monotonic change of the particle potential of mean 

force as a function of fuzziness. Going from a homogeneously smooth to a graded interfaced 

particle, the miscibility of the particles is improved and a window of miscibility is predicted 

where the particles are completely dispersed. However, making the particles very soft does not 

monotonically improve the stability of  the PNC as the longer soft layer can also interdigitate in 

each other, destabilizing the system. 

 The miscibility is also an unexpected function of the particle core radius with Rc = 5 

yielding maximum miscibility. The solvent density has opposing effects on the particle 

miscibility depending on the amount of softness of the particle. Higher packing fraction results in 

a stronger attractive PMF for the harder particles, while for the softer particles the miscibility is 

improved for higher t . Increasing the polymer chain length monotonically destabilizes the 

system, but long polymers can still display full miscibility provided the amount of surface 

fuzziness is optimal. 
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7.10 Figures 

 

Figure 7.1a Schematic of different types of cross-linked nanoparticles depending 

on the crosslinking density. Figure reproduced from ref [1].  
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Figure 7.1b Schematic of the model soft fuzzy cross-linked nanogel. 
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Figure 7.2 Radial density profile of a particle with core 2.5cR  (diameter 2 cD R ) at various 

degrees of fuzziness. 
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Figure 7.3 Probability distribution function for a particle with core 2.5cR  at various degrees of 

fuzziness. 
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Figure 7.4 Effective interaction between a nanogel of core radius 2.5cR  and a monomer at 

various degrees of fuzziness ( ( ) / 2cr D d  ). 
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Figure 7.5 Effective interaction between two nanogels of core radius 2.5cR   at various degrees 

of fuzziness. 
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Figure 7.6 Cross correlation function for dilute soft particles of size 2.5cR   at various degrees 

of fuzziness and total packing fraction 0.226t  . 
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Figure 7.7 Cross correlation function for dilute soft particles of size 2.5cR   at the indicated 

degrees of fuzziness at packing fractions 0.226t   (solid) and 0.4 (dashed). 
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Figure 7.8 Particle-particle correlation function for dilute soft particles of size 2.5cR   at 

various degrees of fuzziness and total packing fraction 0.4t  . The peak heights for 

/ 0d  and 0.1 are 6290 and 8.5, respectively. 
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Figure 7.9 Potential of mean force between dilute soft spheres of size 2.5cR  at at various 

degrees of fuzziness in a monomeric solvent of total packing fraction 0.226t  . 
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Figure 7.10 Potential of mean force between dilute soft spheres of size 2.5cR  at at various 

degrees of fuzziness in a monomeric solvent of total packing fraction 0.4t  . 
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Figure 7.11 Normalized second virial coefficient for soft particles of different core sizes in a 

monomeric solvent (N=1) of total packing fraction 0.226t  (solid) and 0.4 (dashed). 
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Figure 7.12 Normalized second virial coefficient for soft particles of size 2.5cR   as a function 

of surface fuzziness in a polymer melt of various chain lengths and fixed matrix liquid 

dimensionless compressibility 0 0.17S  . 
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Figure 7.13 Cross correlation function for the indicated soft particles in a solvent of N = 1 and 

total packing fraction 0.4t  . 
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Figure 7.14 Potential of mean force for the indicated soft particles in a solvent of N = 1 and total 

packing fraction 0.4t  . 
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Figure 7.15 Potential of mean force for NP3 (main) and NP3A (inset) at the indicated chain 

lengths in an iso-compressible polymer melt ( 0 0.17S  ).The axes labels for the inset are the 

same as the main plot.   
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Figure 7.16 Parabolic radial density profile of a particle with core 2.5cR  at various degrees of 

fuzziness. 
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Figure 7.17 Cross correlation function for dilute soft particles of size 2.5cR   at various degrees 

of fuzziness (and using parabolic radial density profile) and total packing fraction 0.226t  . 
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Figure 7.18 Potential of mean force between dilute soft spheres of size 2.5cR  at various 

degrees of fuzziness (using parabolic radial density profile) in a monomeric solvent of total 

packing fraction 0.226t  . 
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Figure 7.19 (Main) Normalized second virial coefficient for soft particles of different core sizes 

(using parabolic radial density profile) in a monomeric solvent (N=1) of total packing fraction 

0.226t  . (Inset) 2B for particles of core 2.5cR   at different chain lengths under iso-

compressible melt conditions. The axes labels for the inset are the same as the main plot.   
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Sample 

crosslinking 

density [mol%] 
cR [nm]  [nm] 

NP1
*
 0.81 3.8 2.77±0.1 

NP2
*
 1.91 5.49 2.13±0.1 

NP3
*
 4.60 7.16 1.51±0.3 

NP3A
+
 4.60 5.12 0.51±0.3 

 

Table 7.1 Molecular properties of cross-linked PS nanogels synthesized using batch
*
 and semi-

batch
+
 microemulsion polymerization techniques. Data reproduced from ref [1]. 
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/ d  

c  

N = 1 

( 0.226)t   

N = 100 

( 0.4)t   

0 0.116 0.0127 

0.01 0.170 0.018 

0.1 

miscible 

0.059 

0.5 0.297 

1 

miscible 1.5 

2 

2.5 0.128 0.000214 

 

Table 7.2 Spinodal solubility limits c for particles of core radius 5cR  at various degrees of 

fuzziness in the indicated iso-compressible polymer melts. Systems with solubility limit of < 10
-4

 

are deemed immiscible while those with > 0.5 are assumed miscible.   
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Sample 

c  

N = 1 

( 0.226)t   

N = 10 

( 0.317)t   

N = 100 

( 0.4)t   

N = 1000 

( 0.4355)t   

NP1 immiscible 

NP2 miscible 0.12 0.015 0.007 

NP3 miscible 0.1 0.01 0.004 

NP3A miscible 

 

Table 7.3 Spinodal solubility limits c for the 4 indicated samples in iso-compressible polymer 

melts. Systems with solubility limit of < 10
-3

 are deemed immiscible while those with > 0.5 are 

assumed miscible.   
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Sample 

c  

N = 1 

( 0.226)t   

N = 10 

( 0.317)t   

N = 100 

( 0.4)t   

N = 1000 

( 0.4355)t   

NP1 

miscible 

0.12 0.056 

NP2 0.086 0.035 

NP3 0.1 0.034 

NP3A 0.11 0.04 

 

Table 7.4 Spinodal solubility limits c for the 4 indicated samples in iso-compressible polymer 

melts using the parabolic radial density profile. Systems with solubility limit of < 10
-3

 are 

deemed immiscible while those with > 0.5 are assumed miscible.   
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CHAPTER 8 

CONCLUSIONS AND POSSIBLE FUTURE DIRECTIONS 

8.1   Concluding Comments 

The over-arching goal of this thesis is to study the fundamental equilibrium structural 

characteristics of polymer nanocomposites (PNC) and identify the materials design conditions 

under which improved miscibility can be attained by changing the chemical and/or physical 

features of the individual components. In the absence of attraction between the polymer and a 

smooth spherical particle, entropy-dominated depletion forces result in strong polymer-mediated 

attraction at contact between the nanoparticles
1-6

. Broadly, in this dissertation we have 

theoretically established techniques of countering polymer-particle phase separation using two 

general routes – (1) incorporating monomer chemical heterogeneity and manipulating polymer 

architecture and differential wettability, and (2) engineering the surface morphology and 

“softness” of the nanoparticle. 

The Polymer Reference Interaction Site Model (PRISM) liquid state theory
7, 8

 has been 

used throughout the thesis. In many cases, the theory predicts high sensitivity to the chemical 

details and the bare effective potential (in vacuum) between the different components. Therefore, 

going beyond the simple case of hard spheres in homopolymer melts
5, 8, 9, 10

, we have addressed 

new, multi-faceted fundamental physics issues and developed design rules for realizing novel 
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equilibrium polymer nanocomposites with chemical, architectural, and/or particle surface 

complexity. 

Chapter 3 studied in great depth entropic depletion phenomenon under isobaric melt 

conditions over an unprecedented wide range of polymer-particle size ratios ( /gR D ), particle-

monomer size ratios (D/d) and chain lengths N
6
. Chapter 4 established how incorporating 

deterministic roughness on a particle surface can mitigate depletion attraction via a competition 

of new excess entropic mechanisms
11

. The use of rough ‘raspberry’ particles can either enhance 

or suppress dispersion depending upon surface topography. A similar theme was established in 

Chapter 7 for soft cross-linked nanoparticles with fluctuating or fuzzy surfaces
12

. The softness 

results in partial interpenetration of solvent molecules or polymer chains in the interior of the 

networked particle, which can even fully destroy depletion attraction.  

Prior work has established the role of polymer-particle interfacial attraction on the 

thermodynamic miscibility of hard spheres in homopolymer melts. Depending upon the 

interaction, the polymer can form a layer around the nanoparticle leading to steric stabilization or 

induce phase separation due to bridging and formation of polymer-particle complexes
5, 8, 9, 10

. 

Going beyond a chemically homogeneous polymer, the role of chemical heterogeneity (in AB 

copolymers), monomer sequence, and differential adsorption strength on the equilibrium 

structure of PNCs has been explored in this thesis. Specifically, melts of random copolymer 

(RCP)
13

 and alternating block copolymer (MBCP)
14

 were considered in chapters 5 and 6, 

respectively. For some of the chemical systems, the miscibility of fullerenes is shown to be 

optimum at an intermediate RCP composition which is greater than that given by either of the 
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two limiting homopolymers akin to what has been observed experimentally
15

. Replacing the 

disordered randomness in the monomer sequence by an ordered MBCP leads to even richer 

structures and novel miscibility features that depend on the size of the particle relative to the 

block contour length.      

8.2   Future Direction 

Concerning possible future work, much remains to be done in the context of the rough and soft 

particles. For the rough raspberry particles, all the calculations have been performed at maximum 

surface bump coverage which is an additional parameter that can be tuned for more control over 

the structure. Our model also assumes monodisperse surface corrugation which does not capture 

experimental realism in some cases. It would be straight forward to incorporate polydispersity in 

bead size as well as randomness in the placement of corrugation on the surface. For both the 

rough and soft particles, another direction is to break chemical symmetry and allow local 

interfacial attractions between the surface beads and monomers.  

Given the vast amount of available experimental data on many dynamical phenomena 

related to soft particle fluids, a straight forward extension of our model is to study the 

equilibrium structure of such fluids (pair correlation functions ( )g r and static structure 

factor ( )S k ) at very high concentrations as a function of the particle size and fuzziness. 

Motivated by experiments
16, 17

, this problem has been tentatively addressed in the past
18, 19

 but 

the role of particle size and softness on the variation of the equilibrium structures has never been 

systematically understood. Finally, the ability to compute structural correlations for rough 
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particles can provide crucial input to developing force-level theories for the slow dynamics and 

kinetic arrest in suspensions composed non-smooth surface particle suspensions. 

The presented work on the copolymer based PNCs is an initial study. All the calculations 

have been in the dilute nanoparticle limit, and future studies are required to explore in detail the 

role of many-body effects on structure and thermodynamics. It remains to be determined how the 

strong coupling between the block length, particle size and chemical heterogeneity is modified 

when there is a strong direct attraction between the particles. Finally, it would be interesting to 

study how a copolymer of variable sequence and chemical heterogeneity mediates interactions 

between non-spherical particles like rods and disks.   
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APPENDIX A 

DEPLETION IN SEMI-DILUTE POLYMER SOLUTIONS   

A natural question is whether all the qualitative features of the nanoparticle PMF in polymer 

melts persist in semidilute solutions. We examine this question based on the analytic Gaussian 

thread model and numerical full PRISM calculations for segments of nonzero size.  

A.1 Gaussian Thread Polymer Limit 

 It is instructive to first recall the exact analytic solution of the pure polymer liquid PRISM 

equations in the limit that chains are a priori replaced by infinitely thin (d0) Gaussian random 

walk threads or space curves
1, 2

. Here the site-site interchain hard core constraint is enforced only 

at a point, 0r  , where ( 0) 0ppg r   , corresponding to a literally zero inter-site contact value. 

Fuchs
3
 has derived that this Gaussian thread limit emerges rigorously from the full solution of 

PRISM theory for nonzero volume segments in the asymptotic semidilute limit of 

  
N ,

t
 0 but

  


t
/ *  0 , where  

*
 is the dilute-semidilute crossover packing fraction 

which scales as   
*  N 1/ 2

 for ideal coils. The predictions of the thread limit of PRISM theory 

agree well with experimentally-verified scaling and field theory ideas in semidilute polymer 

solutions where oscillatory packing correlations are absent
1, 4, 5

.  The specific results for the pure 

polymer liquid are: 

      
1

1 2 2( ) /12p k N k


                                               (A.1) 
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Here, σ is the statistical segment length and 2 2 / 6gR N  . Note the monotonic, Yukawa decay of 

the real space collective density fluctuations on the density correlation or mesh length that 

monotonically decreases with polymer density. The Fourier signature of this behavior is a 

Lorenztian static structure factor peaked at k=0. These features agree with experiment and 

simulation in semidilute solutions up to ~30-40% polymer volume fraction
1, 6, 7

. Beyond that, 

they incur qualitative errors since the density correlation length approaches the monomer size 

and local oscillatory packing correlations emerge in both ( )ppS r and ( )ppg r on lengths scales that 

can extend to ~3-4 monomer diameters
1, 6, 7

. Simultaneously, ( )ppS k qualitatively changes to a 

shape at small wavevectors that increases, not decreases, with k, and at large wavevectors is 

oscillatory.  

  The interchain site-site pair correlation function of eqn (A.2) has two parts : (i) a local 

decay on the density correlation length scale, and (ii) a long range component called the 

correlation hole on the Rg scale
8
 which is a consequence of long range chain connectivity and 

excluded volume interactions. The latter feature is universally present irregardless of whether the 

d0 limit is taken, while the former is modified in a nonuniversal manner at high densities
1
. 
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 If a hard sphere (radius R) is immersed in this thread polymer liquid, the monomer-

particle correlation function has been derived to be
4
: 

( )/
( ) 1 ,

r R

pn

R
g r e r R

r

  
  

       (A.5) 

Note that the polymer density vanishes at the sphere surface, and the correlations are controlled 

entirely by the density correlation length with no long range component. The corresponding 

depletion potential between two spheres follows as
4
: 

2
( )/3( ) ln ( ) ,

3

r D

nn nn p

R
W r g r e r D

r

  
      

                  (A.6) 

Its functional form is a monotonically decaying attraction with no long range component.  

In concentrated solutions and melts, the thread model incurs qualitative errors which 

include: (a) no oscillatory correlations in ( )ppS r nor (locally) ( )ppg r , (b) the correct trend is the 

density correlation length now increases with polymer density versus decreasing as predicted by 

eqn (A.3), and (c) the strict connection between ( 0)ppS k   and p implied in eqn (A.4) fails
6, 7

. 

These deviations from the thread model results are defining physical features of a dense liquid or 

concentrated solution.   

A.2 Numerical PRISM calculations in the semi-dilute regime 

Figure A.1 (main frame) shows that in a semidilute polymer solution, the static structure factor 

(main frame of Fig. A.1) is monotonically decreasing at low wavevector in contrast with the 

melt–like structure factor (S0 = 0.5), and no strong oscillations at high wavevectors due to real 
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space local packing correlations are present (see inset). The site-site interchain distribution 

function in semidilute solution increases monotonically with separation but does have a nonzero, 

albeit small, contact value. In both melts and semidilute solutions there is a long range 

correlation hole that extends to r ~ Rg.  

The d0 thread model does exhibit many of the same qualitative features for ( )ppg r  and 

( )ppS k  found based on numerical PRISM calculations in the semidilute regime. This includes the 

key scaling relations for the mesh length   1
2

p



     and dimensionless compressibility 

  2

0 /S     which follow from longer wavelength correlations. However, the thread model 

misses the nonzero contact value of ( )ppg r  and the weak oscillations at higher wavevectors of 

( )ppS k  due to the d0 simplification. 

Figure A.2 shows PMF calculations for nanoparticles of size asymmetry D/d = 80 and 

fixed N = 1000 at both melt and semidilute-like densities. At melt-like compressibilities (S0 = 

0.1-0.5), as shown in section 3.3, the PMF is highly oscillatory on the monomer diameter scale 

followed by a long-ranged repulsive tail. However, at lower semidilute densities (higher 

dimensionless compressibilities) the inner local barrier of regime II disappears and is replaced 

by a PMF that monotonically increases from contact, attains a shallow maximum, and then 

slowly decays to zero on the Rg length scale. This barrier (not to be confused with the amplitude 

parameter α in melts) is reduced with decreasing polymer concentration and nearly vanishes at 

low polymer densities. We note that at 
  


t
 0.05  (S0 = 81) the mesh length is 3.5d . 
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 Figure A.3 shows the variation of the barrier height with chain length at fixed ηt = 0.2 

(very close to the semidilute-concentrated crossover) where N grows from 50 to 10
4
 

corresponding to S0 increasing from 1.5 to 4.2. Note that here the iso-compressible strategy 

adopted for melts is not employed since the focus is on the long-ranged repulsion of the PMF 

which persists with or without the calibration strategy. For the calculations in Figure A.3, the 

dimensionless parameters Rg/R and S0 both increase as N grows. The barriers scale linearly with 

particle size D/d (not shown), and broaden, shift to larger separation,  and decrease in amplitude 

with increasing chain length, ultimately disappearing for very long chains consistent with the 

approach to the Gaussian thread limiting behavior. The absence of the inner barrier (regime II of 

melts) in the numerical PRISM calculations performed in the semidilute regime is intuitive given 

the absence of monomer-scale packing oscillations in gpp(r) and gpn(r) in semidilute solutions.  

The above trends of the PRISM results for the PMF in semidilute solutions are 

qualitatively consistent with recent self-consistent mean field theory results
9
. The latter work 

argued that the long range repulsion is due to chain end segregation effects. Specifically, chain 

ends are depleted less near the hard particle surface than interior segments leading to a net 

mismatch between the nonzero chain end and total segmental concentrations near a repulsive 

surface, resulting in the long range repulsion. From this perspective, it is not surprising that the 

PRISM thread model misses the long range part of the PMF given it assumes zero contact 

density of polymer at the particle surface. We note that in numerical PRISM theory all explicit 

chain end effects are absent (pre-averaged at the start), and thus our mechanism for the long 

range repulsive tail in semidilute solution is not obviously identical to that of ref [9]. 

A.3 References 
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A.4  Figures 

 

Figure A.1. (Main) The dimensionless polymer collective static structure factor at various 

packing fractions for a chain length N=1000. The mesh size 3.5d  for 
  


t
 0.05 , and is 

predicted to decrease as a power law in semidilute solution, 
  


 

t

1 , until the concentrated 

regime is entered where
6, 7

 
 


 d  . (Inset) The corresponding interchain site-site pair correlation 

function, ( )ppg r  
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Figure A.2. The long-ranged repulsive tail region of the potential of mean force for D/d = 80 and 

N = 1000 under melt (S0 = 0.1, 0.5) and semidilute conditions (S0 = 8, 34, 81) conditions. 
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Figure A.3. Potential of mean force in a dense semidilute solution of 0.2t   with D/d = 20 at 

the indicated chain lengths. 
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APPENDIX B 

COMPUTATIONAL CHEMISTRY CALCULATIONS AND ROLE 

OF NON-UNIVERSAL PARAMETERS 

B.1 Calculation of Interaction Potentials 

All electron density functional theory calculations were used to develop initial insight into the 

extent of molecular interactions between an interacting monomeric unit and C60
1
. The potential 

energy curve shown in the inset of Figure 6.2 was obtained using this approach.  We also 

calibrated the results against a number of classical force fields which indicated that the AMBER 

force field can provide a reasonable accuracy for the relative attraction strengths
2
. Based on this 

calibration, and the fact that the classical force field approach is considerably more 

computationally efficient, we opted to use the AMBER force field to estimate the attraction 

strengths (binding energies) for all the different monomer and C60 interactions that are reported 

in Table 6.1. 

 

B.2 Role of Non-universal Parameters  

Section 6.4.2 summarized our findings concerning the influence of nonuniversal parameters and 

model simplifications on the miscibility predictions in the main text. Here we present some 

technical details underlying our statements. 

In reality, the persistence lengths of the polymers that are copolymerized are not exactly 

the same, nor are their dimensionless isothermal compressibilities ( 0 B TS k T   ) in the 



262 

 

corresponding homopolymer melts due to equation-of-state effects. To explore the miscibility 

consequences of these factors, the reduced persistence length (local aspect ratio) for the freely-

jointed chain model was changed from l/d = 1.2 to other typical values of 1.1 or 1.3
3
. The latter 

are also representative of the polymers we study based on the experimental characteristic ratios 

and monomer volumes. Based on equation-of-state data, realistic values of the dimensionless 

isothermal compressibility for Acrylonitrile and Styrene at 440K are approximately 0.2 and 0.3, 

respectively, compared to the single value used in the main text of S0 = 0.25. The characteristic 

ratios of RCPs can be modeled as a composition average of the parent homopolymers
4, 5

, and we 

adopt this simple model also for the dimensionless isothermal compressibility,  

                      0 0 0*( ) (1 )*( )A A A BS f S f S                                                 (B.1) 

                      / *( / ) (1 )*( / )A A A Bl d f l d f l d                                            (B.2)     

Since S0 changes via t , the total packing fraction also varies with composition.  

The spinodal curve of C60 in Acrylonitrile-Styrene (AN-Sty) has been re-calculated 

wherein all the parameters, effective interactions, local aspect ratio l/d, S0, and t , are varied as 

functions of composition. To within the resolution of the presented figures, an identical result is 

found (not plotted) as compared to Figure 6.6 which was based on the fixed “reference values” 

of l/d, S0 and t . Hence, the non-monotonic variation of filler solubility with fA is robust to these 

changes of the model. Since we wish to study qualitative trends, this exercise suggests it is not 

essential to vary l/d, S0 and t  with copolymer composition. However, the inset of Figure B.1 

shows that the downward concavity of the spinodal curve reverses to an upward concavity when 

effective interactions are not varied with composition. Hence, including the physical effect that 
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monomers interact with the filler in an effectively composition-dependent manner is essential at 

zeroth order.  

The nanoparticle-to-monomer diameter ratio was fixed at D/d = 1 in the main text. For 

the monomers of interest, we estimate d ~ 0.6 – 0.8 nm, and thus D/d can modestly deviate from 

unity. Figure B.1 presents miscibility calculations that change this ratio to D/d = 1.167 and D/d = 

0.875 in the AN-Sty melt. Trends are not modified qualitatively, and the non-monotonic 

behavior persists. Figure B.1 also shows that increasing N from 100 to 10,000 results in only a 

small reduction of fullerene miscibility, as expected.  

The spatial range of the interfacial attraction, αpn, was held fixed at 0.12d in the main 

text.  The main frame of Figure B.2 shows an example of the effect of changing this parameter 

on the miscibility of C60 in a AN-Sty melt. When αpn is as small as 0.1d, a slight hint of an 

intermediate copolymer composition (~70%) achieving the best miscibility emerges. The 

downward concavity becomes more pronounced as αpn is increased to 0.12d with the miscibility 

peak shifting from fA = 0.7 to 0.4. However, the concavity does not grow continuously by 

increasing the spatial range. When αpn = 0.15d, the miscibility of C60 in pure B-homopolymer 

melt (Sty, fA = 0) increases to nearly 30% and no intermediate composition achieves better 

dispersion than the homopolymer. Thus, the spatial range is important since the distinctive non-

monotonic spinodal curve occurs only when 0.1d ≤ αpn ≤ 0.15d. However, significantly, our 

computational chemistry calculations do find this range describes all the monomers studied here, 

and it is nearly independent of chemistry. Of course, the spatial attraction ranges for A and B 

monomers need not be exactly the same. To address this, another C60–AN-Sty melt system was 

studied with αAn = 0.14d and αBn = 0.12d. Qualitatively the non-monotonic miscibility trend 
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remained the same, but there are some quantitative changes such as the maximum miscibility 

increases to 32% at a 50% copolymer composition (plot not shown).  

 Finally, the inset of Figure B.2 shows the sensitivity of the dispersion trends for the AN-

Sty system to the magnitude of the direct fullerene attraction. As expected, miscibility decreases 

(increases) if the direct attraction grows (weakens) relative to the nn = 2.5kBT value used in the 

main text. However, the most crucial trend, a concave down non-monotonic form of the spinodal 

curve that indicates an intermediate RCP composition gives the best fullerene miscibility, is still 

obtained in the window of 2 4nn   , which is realistic based on our estimates in section 6.2.2.  
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B.4 Figures 

 

Figure B.1 Miscibility limit volume fraction of fullerenes at 440K in AN-Sty for random 

copolymers of chain length N = 100 (solid) and N = 10000 (dashed) at the indicated values of 

size asymmetry ratio D/d; all other parameters are fixed at their reference model values. Inset 

shows the miscibility limit of fullerene in the AN-Sty melt with D/d=1 and N = 100 but at fixed, 

composition-independent values eff

An and eff

Bn of 2.96 and 1.47kBT, respectively. 
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Figure B.2 Fullerene miscibility limit volume fraction at 440K in AN-Sty as a function of 

composition for the indicated polymer-particle attraction ranges.  Inset: Miscibility limit results 

in AN-Sty with αpn = 0.12d as a function of direct particle-particle attraction. 
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