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ABSTRACT

Arti�cial Intelligence (AI) has been a source of great intrigue and has spawned many

questions regarding the human condition and the core of what it means to be a sentient

entity. The �eld has bifurcated into so-called �weak� and �strong� arti�cial intelligence. In

weak arti�cial intelligence reside the forms of automation and data mining that we interact

with on a daily basis. Strong arti�cial intelligence can be best de�ned as a �synthetic�

being with cognitive abilities and the capacity for presence of mind that we would normally

associate with humankind. We feel that this distinction is misguided. First, we begin with

the statement that intelligence lies on a spectrum, even in arti�cial systems. The fact that

our systems currently can be considered weak arti�cial intelligence does not preclude our

ability to develop an understanding that can lead us to more complex behavior. In this

research, we utilized neural feedback via electroencephalogram (EEG) data to develop an

emotional landscape for linguistic interaction via the android's sensory �elds which we

consider to be part and parcel of embodied cognition. We have also given the iCub child

android the instinct to babble the words it has learned. This is a skill that we leveraged for

low-level linguistic acquisition in the latter part of this research, the slightly stronger

arti�cial intelligence goal. This research is motivated by two main questions regarding

intelligence: Is intelligence an emergent phenomenon? And, if so, can multi-modal sensory

information and a term coined called �co-intelligence� which is a shared sensory experience

via coupling EEG input, assist in the development of representations in the mind that we

colloquially refer to as language? Given that it is not reasonable to program all of the

activities needed to foster intelligence in arti�cial systems, our hope is that these types of

forays will set the stage for further development of stronger arti�cial intelligence

constructs. We have incorporated self-organizing processes - i.e. Kohonen maps, hidden

Markov models for the speech, language development and emotional information via neural

data - to help lay the substrate for emergence. Next, homage is given to the central and

unique role played in intellectual study by language. We have also developed rudimentary

associative memory for the iCub that is derived from the aforementioned sensory input

that was collected. We formalized this process only as needed, but that is based on the
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assumption that mind, brain and language can be represented using the mathematics and

logic of the day without contradiction. We have some reservations regarding this

statement, but unfortunately a proof is a task beyond the scope of this Ph.D. Finally, this

data from the coupling of the EEG and the other sensory modes of embodied cognition is

used to interact with a reservoir computing recurrent neural network in an attempt to

produce simple language interaction, e.g. babbling, from the child android.
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Chapter 1

INTRODUCTION

Without language, thought is a vague, uncharted nebula. � Ferdinand de

Saussure

Language is the light of the mind. � John Stuart Mill

We have taken for granted one of the most important components of intelligence our

species has developed, language. We purport to study intelligence in arti�cial systems and

during such journeys we have looked into many versions of systems that display intelligence

in an attempt to �nd and replicate that spark of life in research. It remains an elusive goal,

but these chapters discuss our latest attempts toward a smart system in the form of an

android named Bert.

In our original approach, we leaned heavily on an instinctual framework because in many

ways it can be considered a catalyst for many more complex intelligent behaviors. Without

instincts and drives, it is doubtful that many of the expressions of intelligence we observe

would ever have arisen from our evolutionary predecessors. This tact, unfortunately, led us

away from a more fundamental assumption that has driven this work, �functional

equivalence�. As a result of this refocusing, this dissertation has landed squarely on the

language components of the research. Language provides the sca�olding for the deluge of

information and patterns that appear around us. It also provides us with the tools to

categorize and recognize our experiences and those of others providing us with the facility

to manipulate and evolve these symbols into thoughts that we can express on a grander

scale. We also advocate for embodiment in this research. The majority of the concepts we

express and experience in language are through our physical forms. This undoubtedly

colors our collective understanding and helps to shape the language we use and develop.

In concrete terms, this dissertation is about very simple natural language acquisition in

particular, more speci�cally, attempting to empower our android, Bert, to have a basic

ability to attempt to learn words and �contextualize� simple components of language
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through visual, auditory and emotional senses. We have incorporated brain-machine

interfaces via electroencephalogram and multiple sensory input as embodied cognition

concepts in this paradigm because they provide closure for the feedback loop and memory

components of this work.

This research is not a Messianic quest to deliver true arti�cial intelligence, cognition or

the like. These types of quests tend to be dangerous as they usually require a dogmatic

devotion to a technique or philosophy. Admittedly, it is possible that we may fall short of

some of these goals because of the sheer number of coordinated e�orts that must be brought

to bear just to even attempt this work within a team, much more so in a single Ph.D.

dissertation performed by a single graduate student. At this stage in the study, we would

like to keep the options open for the big problems of true �strong� arti�cial intelligence.

In the pursuit of understanding intelligence, and hopefully cognition and consciousness,

mathematics is the language of choice to represent the world in physics and engineering.

This can be both a bene�t and a burden. We have reaped untold rewards from routinely

adhering to the tenets of this language, and as a result, we are inclined to believe that as it

is constructed its powers are without limit. The �rst person, to our knowledge, to question

this successfully was Kurt Gödel in �On Formally Undecidable Propositions of Principia

Mathematica and Related Systems� [1]. It is believed that a pure de�nition of human

intelligence in the more rigorous traditions of mathematics does not exist in the literature,

although there have been some attempts to de�ne this for machines [2, 3, 4, 5]. We will

provide several attempts at a de�nition from several groups and then o�er what are

considered to be the most salient features and a construction of intelligence that will be the

mainstay of our theoretical and experimental approach.

From �Mainstream Science on Intelligence� [6], an editorial statement by �fty-two

researchers:

A very general mental capability that, among other things, involves the

ability to reason, plan, solve problems, think abstractly, comprehend complex

ideas, learn quickly and learn from experience. It is not merely book learning, a

narrow academic skill, or test-taking smarts. Rather, it re�ects a broader and

deeper capability for comprehending our surrounding �catching on,� �making

sense� of things, or ��guring out� what to do.

�Intelligence: Knowns and Unknowns� [7], a report published by the Board of Scienti�c

A�airs of the American Psychological Association states the following:

Individuals di�er from one another in their ability to understand complex

ideas, to adapt e�ectively to the environment, to learn from experience, to
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engage in various forms of reasoning, to overcome obstacles by taking thought.

Although these individual di�erences can be substantial, they are never entirely

consistent: a given person's intellectual performance will vary on di�erent

occasions, in di�erent domains, as judged by di�erent criteria. Concepts of

�intelligence� are attempts to clarify and organize this complex set of

phenomena. Although considerable clarity has been achieved in some areas, no

such conceptualization has yet answered all the important questions, and none

commands universal assent. Indeed, when two dozen prominent theorists were

recently asked to de�ne intelligence, they gave two dozen, somewhat di�erent,

de�nitions.

We take issue with the bifurcation within the �eld of arti�cial intelligence. This can be

demonstrated by what we would like to call the �path problem�. Given a path (synonymous

with a problem or information in this de�nition) to follow, an increasing number of our

supposedly �intelligent� systems can follow them with little to no supervision. Now this

would seem to be exactly the kind of behavior we are looking for in an �intelligent� agent,

except for a major component of biological �real� intelligence that is obscured by this slight

of hand, another real intelligence had to determine and present the path that this agent is

following. Even in the cases in which an agent can identify a path on its own, this is still

driven and limited by its programming. A truly intelligent agent would have the ability to

identify, de�ne and solve a problem or learn a task independent of another intelligence, i.e.

humanity. A simple example is a calculator. We can use a calculator to obtain the answer

to many arithmetic problems, but calculators currently do not solve problems on their own

or try to understand the process and result of the calculation. Spoken more directly,

automation is not cognition! This is the di�erence between how we do things and why we

do things.

Realistically this �problem� we just described is called weak arti�cial intelligence (AI)

also known as weak AI in general and the �Chinese Room� in particular and it might not

be such a problem at all. All of the tests we use for intelligence shows that it develops on a

continuum and not in discrete states. As a result, we think that it is naive to assume that

a large body of AI research appears to have assumed the latter. The few cases we could

reliably call weak AI are experiencing a boom like never before. This has marched hand in

hand with our ability to collect data from a myriad of locations, giving us the term big

data. As computational resources continue to drop in price and increase in power and

availability, we have been able to tackle many problems that bene�t from this

amalgamation of analytical techniques.
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This dissertation will venture into the philosophical and computational aspects of a

simple intelligent activity, instinct, with the hope of developing a framework that will lead

to conceptualization and memory formation. This will play in to simple language

acquisition and semantics. It is thought that if intelligence is to be studied in the way that

humans generally appreciate it, semantics must play a signi�cant role. This understanding

may also help illuminate why our attempts at arti�cial intelligence have borne little fruit.

We begin with a discussion of the brain and mind in the biological sense and hopefully

explain to the reader why we should not be beholden to this description.

1.1 The Brain, Mind and Language

The mind has been a great source of intellectual fodder for most of human existence. These

discussions have ventured into realms as varied as the supernatural to religion and science.

In the book Mathematical Models for Speech Technology, Levinson [8] provides an excellent

table referring to the implementation of a particular era that was used to describe the

mind. Table 1.1 appears in [8].

Table 1.1: Mental Representations Throughout History

Pre-Industrial Period Industrial Period Information Age Mathematical Abstraction

Rudder Governor Thermostat Feedback Ampli�er Control Theory

Hydraulic Systems Telegraph Internet Communication Information Theory

Wax Tablets Photographic Plates AUDREY Pattern Classi�cation Theory

Clocks Analytic Engine ENIAC Theory of Computation

We currently do not have a well-de�ned mathematical conceptualization of the mind

despite our many in-depth images and diagrams of the brains of many species. Admittedly,

this might be because of our �xation on the organ, but it is the most logical starting place

for this kind of work. This is also the heart of Section 1.1.1.

1.1.1 The Neuroscienti�c Approach

The �eld of neuroscience deals with the structure and function of the nervous system and

brain. As a result the approach to intelligence and memory extends from biological origins.
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In this work, we are more concerned with cognitive neuroscience which investigates the

biological substrates involved in cognition, with a speci�c focus on the neural substrates of

mental processes [9]. Ultimately, the goal of the neuroscientist is to understand the

underlying biological systems that allow the brain to function and drive all of its functions

including but not isolated to intelligence.

1.1.2 Arti�cial Intelligence Approach

Arti�cial intelligence (AI) is intelligence exhibited by machines and/or software. Major AI

researchers and textbooks de�ne AI as �the study and design of intelligent agents� [5? ],

where an intelligent agent refers to a system that can perceive its environment and takes

actions to achieve a goal. The term originated from John McCarthy in 1955 who de�nes it

as "the science and engineering of making intelligent machines" in an online discussion on

the topic. This is where my research is rooted and this is where most of the divergence

from the neuroscienti�c methods develop, in particular with the notion of �functional

equivalence�.

1.2 Language

Language is center stage in this work. It is the most important tool that intelligent systems

use. It can be argued that in looking at language we are focusing on the shadow of

intelligence and not intelligence itself. There is certainly truth to this statement, but in

order to quantify intellectual capability in the android used in this dissertation, It was

necessary to choose a modalilty, and language is by far the most meaningful to human

interactions. When we discuss language we really are concerned with words or symbols, the

methods of combining them as a systematic means of communicating ideas or feelings.

1.3 Emotions

Emotions also play a role in the learning of languages [10, 11, 12]. This aspect of the

human condition is often left out of studies of intelligence due to di�culty in the

quanti�cation of states. In order to capture a more accurate picture of a word or a string of

words, it would be hard to construct simple mental states in silicon without access to this

information. In this research, we use a brain-machine interface to provide access to

emotional data for exactly that purpose.
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1.4 Cybernetics

The term cybernetics was originally coined by Norbert Wiener in his original book

Cybernetics, or Control and Communication in the Animal and the Machine [13].

Cybernetics is a cross-disciplinary approach for exploring regulatory systems, also known

as homeostasis by Wiener, their structures, constraints, and possibilities. Cybernetics was

developed to help elucidate the study of systems, mechanical, physical, biological,

cognitive, and social systems, for example. Cybernetics is applicable when a system being

analyzed generally possesses some type of feedback. By this we mean that an action by the

system generates some change in its environment and that change is re�ected in that

system in some way that causes the system (or another coupled system) to change. As this

work utilizes synthetic instincts, many of the principles from cybernetics will be needed.

1.4.1 Functional Equivalence

Alan Turing made an argument that in order to study the mind one does not necessarily

need to have a full understanding of its inner workings. All that would be required is to

faithfully reproduce its functionality [14, 15]. This belief is central to most arti�cial

intelligence research and provides us with a freedom to develop systems unconstrained by

our lack of understanding of the biological brain and the mind that emerges from it. To

this end, the dissertation focuses on developing and researching technology that can

reproduce some of the basic properties of systems that we can regard as residing on a scale

of intelligence. We intend to leverage this in order to classify and/or identify possible

intellectual states that truly do not require a faithful representation of a biological brain in

any way. We take this concept to its logical end by developing actions without direct

"neuronal" counterparts that can drive similar actions. The best analogy for this way of

approaching the problem is re�ected in the time line of physics research. Newtonian

mechanics and electricity and magnetism developed well before we had any true

measurement or understanding of the atom and electron. This did not preclude scientists

from conducting experiments on the properties that emerged from these particles and their

interactions. When dealing with emergent properties it is always useful to consider the

scale of detail and description required for the individual units that we are coaxing to

reveal their intrinsic properties.
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1.5 The iCub Android Platform

In the laboratory we have an iCub humanoid robot which we a�ectionately call Bert in

Figure 1.1. Bert is an advanced replica of a four to �ve year old child and a great tool for

the study of embodied cognition. He is 3.5 feet tall and weighs 48 pounds. Bert also has 53

degrees of freedom in joints, two eye-cameras (30 Hz), ear-microphones with external

pinnae for localization, proprioception (joint position, speed, and torque), and a

head-gyroscope for orientation.

Figure 1.1: The iCub android.

1.6 �Weak� AI, �Strong� AI and the Intelligence Continuum

After studying this problem, we have come to the realization that this segmentation

between weak and strong AI is a bit loaded. Natural intelligence occurs on a continuum

and, as a result, discounting the levels of intellectual performance can actually hinder our

understanding of this phenomenon. Intelligence, in the creatures that we agree have this

capability, usually starts in a state that could be considered weak and becomes strong from

interaction and experience.

1.6.1 Machine Learning

Machine learning is by no means the only version of arti�cially intelligent technologies

utilized by the research public, but it has gained quite a lot of attention in the public eye

due to everyday interactions with computer agents such as Apple's Siri, Google's Google

Now service and the soon to be released Microsoft product, Cortana. Machine learning is

essentially a collection of techniques for solving a small domain of problems with limited to
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no supervision. It is essential to work in these domains at this stage, but we have to remain

ever mindful of the larger goal of arti�cial intelligence.

1.6.2 To Serve Humankind or to Understand Humankind

When dealing with the development of arti�cial intelligence, we are forced to ask the

question �Whom will it serve?� We feel that this question is misguided by our Western

paranoia regarding invasion and conquest. But unfortunately, this question has shaped the

type of research that is conducted in this area. If we wish to develop automatons that will

follow our instruction with little guidance we are obviously already there. Our cell phones

can already do quite a lot of these things without any of us having to lift a �nger. The

deeper questions that we should be asking do not lie in the serving of humankind, but in

the understanding of humankind, in particular, that is, what does it mean to be sentient?

This is a question for the ages, of course, and we make no allusions to providing an answer

in this dissertation, but we will say that this question has played a profound role in our

decision to pursue this research.

8



Chapter 2

A REVIEW OF RELEVANT LITERATURE

If you wish to learn to dance, you should watch the feet of others. �African

Proverb

2.1 Instinctual Behavior

Instinct or innate behavior is the inherent inclination of an organism to demonstrate or

participate in a particular complex behavior. A simple instinctive behavior is a Fixed

Action Pattern (FAP). FAPs are composed of very short to medium length sequences of

actions, without variation, that are carried out in response to very speci�cally de�ned

stimulus.

If a behavior is performed without being based upon prior experience, in the absence of

learning, that behavior is instinctive and is therefore an expression of innate biological

factors. Honeybees communicate by dancing in the direction of a food source without

formal instruction. Sea turtles, newly hatched on a beach, will automatically move toward

the ocean. Other examples include animal �ghting, animal courtship behavior, internal

escape functions, and the building of nests. All of these are examples of complex behaviors

that are not learned or trained prior to the necessity to use that action.

An instinct is not to be confused with the re�exes, a simple response of an organism to a

speci�c stimulus, such as the contraction of the pupil in response to bright light or muscle

spasming when the knee is tapped. Instincts are inborn complex patterns of behavior that

exist across a majority of a species and in several cases even across species. The absence of

volitional capacity does not mean that a species has an inability to modify �xed action

patterns. For example, people may be able to modify a stimulated �xed action pattern by

consciously recognizing the point of its activation and simply stop doing it, whereas animals

without a su�ciently strong volitional capacity (also known colloquially as self-control and

awareness) may not be able to stop their �xed action patterns, once activated [16].

In the quest to observe intelligent behavior in inanimate systems we should be mindful of

the old saying within the acting profession: �What's my motivation?� In the case of this
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research, the motivation is the �rst step in attentive behavior that will help us to construct

very simple concepts from verbal babbling during language acquisition.

2.2 Brain-Machine Interfaces

This technology allows data collection from a brain, human or otherwise, and processed

with a computer [17]. It is a tool of importance in neuroscienti�c endeavors and has several

incarnations that have been used to control robotic limbs and generate speech via focusing

on letter clusters on a monitor for people with physical limitations.

2.2.1 Electroencephalogram (EEG) and Language

Electroencephalogram (EEG) technology had its start in 1875, when a physician named

Richard Caton began to investigate the possibility that electric signals might be detected

from exposed cerebral hemispheres of rabbits and monkeys [18]. Its use in language

occurred much later, around 1975 [19, 20], in the form of Event-Related Brain Potential

(ERP) measurements.

2.3 Neural Networks

Neural networks are an intriguing area of study and variations on these designs have played

a role in this research. The literature generally falls into two categories: biological neural

networks or arti�cial neural networks. We begin with a discussion about biological neural

networks.

2.3.1 Biological Neural Networks

Biological neural networks, e.g. biological neurons, synapses, etc. are under intense and

active investigation. A large portion of this work speci�cally focused on identifying the

regions of the brain, the human brain in particular, and their functions. Techniques such as

Electroencephalogram (EEG) and Functional Magnetic Resonance Imaging (f-MRI) are

valuable tools for the study of in-vivo brain activity, but unfortunately we have been

hindered by our current resolution issues regarding in-vivo neuronal activity. f-MRI is a

powerful tool [21, 22], but uses the correlation between blood deoxygenation to relate
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information and activity within the brain to the observer. This also has the very clear side

e�ect of a signi�cant time delay between neuronal activity and readout from the f-MRI.

f-MRIs do however provide us with the deepest in-vivo brain information to date. The

EEG reports actual electrical activity but it is limited in that this information is gathered

as an average over regions of the brain and is generally only reliably from the cortical

neurons. This coupled with the inverse problem which stops us from directly identifying

the neurons associated with the signals we are recording can be problematic to say the

least. EEGs main contribution to the advancement of the study of the brain is its real-time

information which is directly correlated to neuronal activity, not blood deoxygenation.

There still remain issues regarding the interpretation of the data collected by this

technique and its predictive value [23]. The main goal of all the biological neural network

studies is to, in e�ect, reverse engineer the human brain. Recent inroads toward this goal

include the human connectome project with its goal of generating a complete map of the

human brain via MRI technology and mapping the conductive �ow of blood through this

organ [24, 25, 26]. This goal has remained elusive for quite some time and will most likely

remain this way well into the future. Admittedly having a full picture of a human brain or

several brains with the �ber bundles in tact, does not promise full understanding of the

system in its own right, but it is considered one of many uses of new technology to gather

more information on the topic. Surely we would be remiss if we did not mention the

pioneering work of Hodgkin and Huxley [27] on the squid neuron which inspired quite a bit

of modern research by providing a mathematical relationship for the voltage changes within

a neuron or �spiking� as it is more commonly called.

2.3.2 Arti�cial Neural Networks

Arti�cial neural networks, e.g. Hop�eld networks, feed-forward networks, etc. began with

the work of McCulloch and Pitts in their seminal work, [28]. In this paper, the concept of

�threshold logic� was introduced where stimulus would be allowed to accumulate and would

only trigger a response from the system once a speci�ed threshold was achieved. This was,

of course, what was seen in several biological instances of neural activity and as a result

considered a reasonable �rst-order model. We know that the speci�cs of neural activity are

more complicated than initially laid out in this paper, but the idea has had a resurgence in

recent years with the development of faster computing technology capable of supporting

the intensive resources necessary for large-scale simulation and the solution of the

exclusive-or circuit by Werbos in 1974 [29]. These systems needed to be tested in a

practical manner in order to verify that there was anything of merit to this framework. To
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this end, many of these systems have proven themselves very adept at discovering and/or

recognizing certain patterns in data. Supervised neural networks can display this kind of

pattern recognition with a speci�ed amount of pre-training. Unsupervised neural network

models had their start with the work of Hebb and his hypothesis for neural plasticity

generally referred to as �Hebbian learning� [? ]. Two paradigms in neural networks research

utilized during this study are discussed in section 2.3.2.1.

2.3.2.1 Self-Organizing Maps

Self-Organizing Maps (SOM) also known as Kohonen maps were �rst developed by Teuvo

Kohonen [30]. They are a class of arti�cial neural networks that are particularly useful for

�nding patterns in data that are gathered without any pre-classi�cation. The training is

unsupervised and with the right set of parameters, the network generates results that are

useful for �nding associations or groupings in data. This method also has the bene�t of

being an unsupervised technique, which dovetails with this research by allowing passive

clustering of sensory inputs. Analyzing large datasets with multiple variables in each

sample is generally considered a complicated task since it is di�cult to visualize the

similarities between samples in greater than two or three dimensions. A SOM serves to

reduce the dimensionality of a problem by mapping these multiple factors onto a

two-dimensional space or grid. The distance between nodes on a grid not only demonstrates

which samples are similar but also gives us a sense of the topology of the data in the space

we are investigating. A diagram for the self-organizing map can be seen in Figure 2.1.

The basic Kohonen map algorithm goes as follows:

1. Initialize the weights to small random values.

2. Select an input vector from the data: xi.

3. Find the Best Matching Unit (BMU), i.e. the node that has weight values closest to

the input vector. Typically, this is done by calculating the Euclidean distance for

each node and �nding the minimum node.

4. Adjust nodes in the neighborhood of the BMU so that their weights are closer to the

input.

5. Adjust weights according to the following equation:

W (s+ 1) = W (s) + Θ(i, s)α(s)(X(s)−W (s)) (2.1)
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Figure 2.1: 2D self-organizing map. Nodes with the greatest similarity to the winning node
are updated to with similar weights.

Θ is the neighborhood function that decreases in radius over time,α is the learning

rate that also decays over each epoch, X(s) is the input vector, and s is the epoch

count for the algorithm.

6. Present the samples of each epoch (cycle) in a di�erent order until the total error

decreases below a speci�ed threshold.

Self-organizing maps have been suggested as a possible description of biological neural

activity with spike timing dependent plasticity [31]. There has also been work in this

domain directed toward applications in speech, i.e. Spatio-Temporal Organization Maps

(STOM) and the like [32, 33, 34], and have also been explored with regard to memory

formation [35] which are both of particular interest to this work.

2.3.2.2 Reservoir Computing

Reservoir Computing (RC) is the collective name given to techniques and formulations of

Recurrent arti�cial Neural Networks (RNN) that stem from temporal recurrent neural

networks [36], liquid state machines [37], echo state networks [38], and

decorrelation-backpropagation learning [39]. This model has been suggested as an

elementary framework for how learning and general intelligence occurs in the human brain

[40].
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2.3.2.3 Temporal Recurrent Networks

What we call reservoir computing owes a signi�cant part of its history to the work of

Dominey. In particular, his research on cortico-striatal circuits in the human brain (e.g.,

[41, 42], and beyond). His work in cognitive neuroscience and functional neuroanatomy

with the expressed goal of modeling and studying complex neural structures over

theoretical computational work guided his focus on these particular models of learning and

computation. Dominey also discusses a major component of the reservoir computing model

as follows: �... there is no learning in the recurrent connections, only between the State

units and the Output units. Second, adaptation is based on a simple associative learning

mechanism ...� [43]. Dominey also goes on to talk about the neural reservoir module as a

temporal recurrent network which requires randomization in the reservoir connections.

2.3.2.4 Echo State Networks

Echo State Networks (ESNs), see Figure 2.2, are an architecture and a set of supervised

learning principles for recurrent neural networks. The main idea is (i) to drive a random,

large, �xed recurrent neural network with the input signal, thereby inducing in each neuron

within this �reservoir� network a nonlinear response signal, and (ii) combine a desired

output signal by a trainable linear combination of all of these response signals. ESNs

represent one of the two pioneering RC methods. The approach requires that a random

recurrent neural network possess certain algebraic properties, training only a linear readout

from it is often su�cient to achieve excellent performance in practical applications. The

untrained RNN part of an ESN is called a dynamical reservoir, and its states are termed

echoes of its input history. ESNs, as a standard, use �weighted sum and nonlinearity� type

of simulated analog-valued neurons, most often with a tanh nonlinearity. Leaky integration

of the neurons' state recently became a standard practice in ESNs [44]. Classical recipes

and conditions of producing the ESN reservoir were outlined in the original introduction of

ESNs. The readout from the reservoir is usually linear. The original and most popular

batch training method to compute the output weights is linear regression. For online

training settings the computationally cheap least mean squares algorithm is recommended

[45]. Some of the �rst ESN publications were framed in settings of machine learning and

nonlinear signal processing applications. The original theoretical contributions of early

ESN research concerned algebraic properties of the reservoir that make this approach work

in the �rst place and analytical results characterizing the dynamical short-term memory

capacity [46] of reservoirs.
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Figure 2.2: Echo State Network. Adapted from a presentation by Herbert Jaeger [46].

2.3.2.5 Liquid State Machines

Liquid State Machines (LSMs) represent the other pioneering reservoir method, developed

independently from and simultaneously with ESNs. LSMs were developed from a

computational neuroscience background, aiming at elucidating the principal computational

properties of neural microcircuits [47, 48, 49]. Thus LSMs use more sophisticated and

biologically realistic models of spiking integrate-and-�re neurons and dynamic synaptic

connection models in the reservoir. The connectivity among the neurons often follows

topological and metric constraints that are biologically motivated. In the LSM literature,

the reservoir is often referred to as the liquid, following an intuitive metaphor of the

excited states as ripples on the surface of a pool of water. Inputs to LSMs also usually

consist of spike trains. In their readouts LSMs originally used multilayer feed-forward

neural networks (of either spiking or sigmoid neurons), or linear readouts similar to ESNs.

Additional mechanisms for averaging spike trains to get real-valued outputs are often

employed. RNNs of the LSM-type with spiking neurons and more sophisticated synaptic

models are usually more di�cult to implement, to correctly set up and tune, and typically

more expensive to emulate on digital computers (with a possible exception of event-driven

spiking Neural Network (NN) simulations, where the computational load varies depending

on the amount of activity in the NN) than simple �weighted sum and nonlinearity� RNNs.

Thus they are less widespread for engineering applications of RNNs than ESNs. However,

while the ESN-type neurons only emulate mean �ring rates of biological neurons, spiking

neurons are able to perform more complicated information processing, due to the time

coding of the information in their signals (i.e., the exact timing of each �ring also matters).

Also �ndings on various mechanisms in natural neural circuits are more easily transferable

to these more biologically realistic models. The LSM version of RC consists of analytical
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characterizations of the computational power of such systems [50].

2.3.2.6 Backpropagation-Decorrelation

The idea of separation between a reservoir and a readout function has also been arrived at

from the point of view of optimizing the performance of the classical RNN training

algorithms that use error backpropagation. In an analysis of the weight dynamics of an

RNN trained using the Atya-Parlos recurrent learning (APRL) algorithm [51], it was

revealed that the output weights of the network being trained change quickly, while the

hidden weights change slowly and in the case of a single output the changes are

column-wise coupled. APRL e�ectively decouples the RNN into a quickly adapting output

and a slowly adapting reservoir. These results lead to a new iterative/online RNN training

method, called BackPropagation-DeCorrelation (BPDC). It approximates and signi�cantly

simpli�es the APRL method, and applies it only to the output weights, turning it into an

online RC method. BPDC uses the same type of neurons as ESNs. BPDC learning is

claimed to be insensitive to the parameters of the �xed reservoir. BPDC boasts fast

convergence times and thus is capable of tracking quickly changing signals.

2.4 Swarm Intelligence

Swarm intelligence deals with natural and arti�cial systems composed of multiple agents

that coordinate using self-organization and decentralized control. The discipline has

focused on the collective behaviors that emerge from local interactions of these agents

within group and externally with their environment. Ant colonies and termites, schools of

�sh, �ocks of birds, herds of land animals are all good examples of the types of systems

studied by swarm intelligence [52]. Human behavior can also be studies in a swarm

intelligence fashion, mob behavior and multi-robot systems. Swarm intelligence requires an

interdisciplinary approach to study systems in such a wide variety of domains.

It is customary to divide swarm intelligence research into two areas according to the

nature of the systems under analysis. We speak therefore of natural swarm intelligence

research, where biological systems are studied; and of arti�cial swarm intelligence, where

human-like behaviors are studied.

A swarm intelligence system has the following properties:

• It is composed of a large number of individuals or agents.
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• The agents are relatively homogeneous (i.e., they are either all identical or have very

little variation).

• The interactions among the agents are based on relatively simple behavioral rules

that exploit only local information that the agents exchange directly or via the

environment.

• The overall behavior of the system results from the interactions of agents with each

other and with their environment, that is, the group behavior self-organizes.

Swarm intelligence systems are most known for their ability to act in a coordinated way

without the presence of a coordinator or of an external controller. In nature we observe

swarms that perform some collective behavior without any agent controlling the group, or

with no mechanism of global awareness of the overall group behavior. This still does not

preclude the swarm as a whole from showing intelligent behavior. The interaction of a

spatially neighboring agents that follow simple rules has been the main explanation for

such interesting and complex behavioral patterns.

It helps to describe this behavior of each agent in the swarm in probabilistic terms: Each

agent displays stochastic behavior that depends on its local access to data within the

neighborhood. This allows us to design swarm intelligence systems that are scalable,

parallel, and fault tolerant.

Scalability means that a system can maintain its function while increasing its size

without the need to rede�ne the way its agents interact. A swarm intelligence system

interactions involve only neighboring agents, the number of interactions usually do not

grow with the overall number of agents in the swarm: each agent's behavior is only loosely

in�uenced by the swarm dimension. In the arti�cial system studied for this work,

scalability is useful because a scalable system can increase its performance by simply

increasing its size, without the need for additional coding.

Parallel action is possible in swarm intelligence systems because the agents composing

the swarm can perform di�erent actions in di�erent places at the same time. Again in this

study, parallel action can be helpful because it can make the system it helps to foster the

ability to self-organize in teams that take care of di�erent tasks.

Fault tolerance is an inherent property of swarm intelligence systems since it is

decentralized, self-organized in the nature of their structures. Because the system is

composed of many interchangeable agents and none of them is in charge of controlling the

overall system behavior, a failing agent can be easily removed and replaced by another.
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2.5 Statistical Mechanics, Emergent Phenomena and Phase

Transitions

In nature, there are many examples of systems that exhibit properties en masse that

cannot be discerned from the individual parts. One of the best examples of this being the

wetness of water. Individual molecules do not impart the sensation of wetting, but after a

certain number of them are placed together at the right temperature we can sense this

property. There have been similar arguments made regarding the brain and neurons as a

dynamical system. This property known as emergence has Hop�eld-related arti�cial neural

activity also seen in spin glasses [53] a disordered magnet, where the magnetic spins of the

component atoms (the orientation of the north and south magnetic poles in

three-dimensional space) are not aligned in a regular pattern. These types of systems have

basic similarity to the brain and could yield some mechanisms for the development of

neural states. In connection to this body of work, this contributes some mechanisms for

observing and classifying emergence during the experiments.

In the case of cellular automata or simple agents [54, 55, 56, 57, 58, 59, 60] several papers

have explored the properties of these systems through the lens of statistical mechanics.

The swarm in this case plays the role of adaptation for the concepts in this model.

2.6 Natural Language Processing

The ability to communicate, transcribe, represent ideas, situations, objects and the

relationships between them both real and imagined can quite literally be seen as one of the

greatest hallmarks of human intelligence, without equal. So quite naturally in the world of

arti�cial intelligence we are keenly interested in getting our systems to understand and

produce language in a natural way, indistinguishable from humans. There are many facets

to language as studied by linguists, anthropologists, sociologists, scientists and engineers.

Some of these components are listed below which are clearly relevant to the Lengua Franca

of the United States, English (pun intended).

2.6.1 Syntax and Production Rules

Syntax provides the rules for order, principles and process of writing and speaking

grammatically correct sentences. This allows us to have some level of uniformity when

communicating ideas which is a large part of language's purpose. In the early stages of
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language acquisition, we struggle with this component since we can easily name objects

and actions without following these prescribed rules. This did not play any role in the

research in this dissertation. Production rules are the simple rules for the generation of a

syntactically correct piece of grammar. They come in several varieties that are not

mentioned here, but it su�ces to say that for our purposes they will not play any

signi�cant role.

2.6.2 Semantics

Semantics is devoted to the study of meaning, as witnessed at the levels of words, phrases,

sentences, and larger units of conversation and discourse. It focuses on the relation

between signi�ers, like words, phrases, signs, and symbols, and what they stand for and

their denotation. Linguistic semantics is the study of meaning that is used for

understanding human expression through the vehicle of language. The study of semantics

is also closely linked to the subjects of representation, reference and denotation. The basic

study of semantics favors the study of the meaning of signs, and the study of relations

between di�erent linguistic units and compounds listed below:

• Homonymy: one of a group of words that share the same spelling and pronunciation

but have di�erent meanings.

• Synonymy: a word with the same or similar meaning of another word.

• Antonymy: one of a pair of words with opposite meanings. Each word in the pair is

the antithesis of the other.

• Hypernymy and hyponymy: a hyponym is a word or phrase whose semantic �eld is

included within that of another word, its hypernym.

• Meronymy: denotes a constituent part of, or a member of something.

• Metonymy: a �gure of speech in which a thing or concept is called not by its own

name but rather by the name of something associated in meaning with that thing or

concept.

• Holonymy: de�nes the relationship between a term denoting the whole and a term

denoting a part of, or a member of, the whole.

• Paronyms: a word that is a derivative of another and has a related meaning.
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Re-creating true semantic understanding has also been, with good reason, considered one

of the key paths toward intelligence in machines [61, 62]. Unfortunately, this goal despite

its importance, was not truly attainable given the constraints of the experimental design

and setup conducted for this doctoral study.

2.7 Memory

Discussed in this section is memory in biological systems and the distinction between

associative and working memory. Associative memory is simply the ability to formulate an

association with an object or an action that can be used at a later state to recall one

instance when presented with an appropriately paired instance or object. This is a very

important basis for learning since it provides recall which can, in theory, be used to develop

higher-level concepts. A working memory construct that could engender learning is

proposed in a paper by Izhkevich [63]. The model is biologically based, as one would

expect, and serves as a reference point with regards to behavioral properties, but not

actual physical design. In Sections 2.7.1 and 2.7.2 more about the speci�c types of memory

relevant to this work is presented in detail.

2.7.1 Associative Memory

Associative memory refers to a connection between conceptual entities as a result of

similarity between those states or their proximity in space or time. Memory seems to

operate as a chain of associations: concepts, words and ideas are interlinked, so that

stimuli such as a favorite toy will call up the associated name [64, 65]. Understanding the

relationships between di�erent items is fundamental to episodic memory.

Classical conditioning is an example of associative memory driving the learning process.

In the famous experiment, Pavlov paired the sound of a bell with food, and later the dog

salivated to the bell alone, indicating that an association had been established between the

bell and food [66, 67, 68].

For operant conditioning we observe behaviors increase in strength and/or frequency

when they are coupled to a reward. We believe that this follows from an association

between the behavior and a mental representation of the reward.

There is no speci�c �reward� in this work, just a pre-programmed attentiveness that will

give us a greater probability of viewing interactions and events that will lead to linguistic

concepts.
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2.7.2 Semantic Memory

Semantic memory is the memory of meanings, understandings, and other concept-based

knowledge, and is directly related to the conscious recollection of factual information and

general knowledge about the known world and imagined world. Semantic and episodic

memory together make up the category of declarative (or working) memory, which is one of

the two major divisions in memory. Semantic memory helps us to give meaning to

otherwise meaningless words and sentences. We can learn about new concepts by applying

our knowledge learned from things in the past [69].

Semantic memory includes generalized knowledge that does not involve memory of a

speci�c event, but more the assimilation of several memory events. That is, semantic

memory contains information about what a paper is, whereas episodic memory might

contain a speci�c memory of writing this paper. Semantic memory is also where we can

hopeful begin to discern the early stages of more intelligent systems. No experiments for

semantic memory were conducted during this study due to temporal requirements of this

experimental design.

2.8 Neuromorphic Circuitry

The hardware aspects of this problem naturally led us to consider neuromorphic circuitry.

Neuromorphic circuitry is the study and development of novel electronic and optical

technology that is motivated by the biological organization and function of the brain and

its neural structures. Brain in this context usually refers to the human variety, but many

types of brains have been studied and modeled with circuitry. It is a relatively new �eld in

electrical and computer engineering tracing its origins back to the end of the 1980s and

Mead and his seminal book on the topic [70] and the paper that followed [71]. It is a highly

interdisciplinary area of research requiring understanding and collaboration between

electrical and computer engineering, psychology, neuroscience, neurobiology, mathematics

and computer science to name a few. In addition to the desire for novel devices and

architectures neuromorphic circuitry is being used as a tool in reverse engineering the

human brain, a grand challenge for engineering according to the National Academy of

Engineering. This is important for many reasons, but we will focus on the aspects that are

perceived to be closest to the goals of electrical and computer engineering.

As engineers, we would be foolish to ignore the lessons of a billion years of

evolution. � Carver Mead
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Noise is generally seen as an enemy of the scientist and engineer. It clouds data, obscures

results, makes our research lives unusually challenging. As a result, we have developed

many tools and methods to combat noise. We utilize metrics such as the signal-to-noise

ratio and bit error rate to quantify and eventually reduce noise. We make a concerted

e�ort to operate our theories and our devices in regimes that are as devoid of it as possible.

As we push further into nanotechnology, we enter a land where our battle against noise

may very well be futile. Moore's law is truly doomed if we do not become accustomed to

the realities of noise and change the conversation to fundamentally address alternatives

that utilize this inherent and natural state of the world we live in. Neural systems,

however, have long adapted the ability to operate in very noisy environments and can

guide us to new possibilities in design. All of this is possible with what would be

considered unreliable circuits by the standards of electrical and computer engineering.

Another highly coveted attribute of the brain is its ability to do all of this computation

with very low power requirements. This peaks our interests in an age where more

technology is gathered on a single device or system with the general expectation of reduced

form factors and increased battery life.

Mixed signal architectures have also started to play a more important role in the design

of these circuits. Many initial e�orts were focused on analog signals mainly due to the

brain's own analog architecture. But it has been shown that there is merit in the digital

incarnations of neurons as well. Complementary architectures that hold true to the

neuronal structure, i.e. very large fan-out/fan-in, inhibitory and excitory signals, are key

components of neuromorphic circuitry. Developing computational models that work within

this framework is equally important for the progression of the �eld.

2.8.1 The Silicon Brain

Neuromorphic circuitry is being pursued by several groups, Boahen at Stanford and Modha

at IBM Almaden to name a few. Boahen's group has developed the Neurogrid chip [72]

and architecture which allows them to simulate massive numbers of neurons in-silico [73].

The hope is that in the future the Neurogrid in Figure 2.3, will become a prototype for

a�ordable supercomputing.
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a) b)

Figure 2.3: (a) Neurogrid, a platform for cortical simulations. Cortical cell layers (left) are
mapped onto chips (right) with arrays of silicon neurons. (b) Finished Neurogrid FPGA
board. Image (a) is adapted [73], image (b) is from Boahen's Brains in Silicon website [74].

Modha is conducting research in a similar vein at IBM, but his group's focus is grander

in scale. They are currently developing hardware and software to empower our current

computing models with the parallel goal of achieving true cognitive computing. This is also

developed with new types of supercomputing in mind. Modha's group has developed

full-scale cortical simulations of a rat and cat scale simulations which are helping to

develop our understanding of these systems [75]. This work is moving toward human

neural constructs in silicon as well [76, 77].

2.9 FPGAs and Silicon Neurons

In a similar vein to Boahen's research, several groups have turned toward using Field

Programmable Gate Arrays (FPGA) for the design and development of neurons in-silico.

Spiking Neural Networks (SNN) have been a great source of inspiration for many of these

systems. This bears a close resemblance to observed human brain processes and these

groups hope to drive arti�cial activity by developing architecture with neural

considerations from the start [78, 79, 80, 81, 82]. At this stage large-scale spiking neural

networks have been achieved with this technology [83] and study continues in the search of

alternative computing architectures.

2.9.1 FPGAs versus ASICs

Application Speci�c Integrated Circuits (ASIC) and Field Programmable Gate Arrays

(FPGA) are both useful tools in the design of hardware-based neural networks. Each of

these technologies have di�erent advantages and drawbacks. For example, using FPGAs

allows for quick updates, but is slower than using digital ASICs; using analog techniques

implies real-time and often lower power operation, whereas using digital techniques implies
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programmability and o�ers higher and controllable precision [84]. ASICs truly shine in

cases where a general-purpose computer architecture cannot fully emulate the parallelism

that neural networks are known to have. Research shows that the FPGAs currently do not

match the ASICs in performance. The design of FPGAs is more cost e�cient when testing

and manipulating circuit design is required in real time. When considering the utilization

of a FPGAs, software will still play an important role for the computing systems you wish

to emulate. FPGAs provide the ability for customization in a cost-e�ective manner when

designing circuits in general and arti�cial neural networks in particular. FPGAs are ideal

for the cycle of design and testing of architecture, which can then be used to convert to

ASICs when performance issues are paramount. Regarding the experiments conducted

during this research, there were several initial attempts to introduce and design

neuromorphic components to augment the ability of the iCub android. These were

unattainable within the prescribed timetable.
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Chapter 3

PRELIMINARY INVESTIGATIONS

Better that one heart be broken a thousand times in the retelling, he has

decided, if it means that a thousand other hearts need not be broken at all� Elie

Wiesel

3.1 Early Investigations

The following earlier investigations are included because they outline the portions of the

mindset that lead us to choosing this topic and the power in subtle technologies chosen for

this work. This dissertation would not be complete without this information.

3.2 Self-Organizing Map Simulations

In this section, we considered self-organizing maps, in particular, their neighborhood

functions and how variations in this component maybe helpful in our study. Self-organizing

maps can be treated as part of a simple neural network and the hope was there may be

other types of applications for this technique in our work, i.e. visual-spatial compression,

etc. SOM has been considered in motor babbling experiments proposed by a colleague, Dr.

Lydia Majure. To achieve this goal, we explored several variations to standard SOM

models with an eye toward investigating some of the weaknesses inherent in the model as it

stands, i.e. time to converge, accuracy, etc. In particular, the experiments focused on how

di�erences in training methods, learning rates, and map topologies decrease quantization

error and improve clustering. This example was motivated by [85].

We used data on the national economies of 46 countries and upward of ten di�erent

economic indicators of �nancial health were added for each county, such as in�ation,

unemployment, trading balance, etc. The data was aggregated from open economic data

sources and kept to one year's worth of information from the year 2000. The data was

normalized across each indicator, so as to prevent a few indicators from being over-valued
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Figure 3.1: Flat (square), cylindrical and toroidal topologies.

or under-valued. The data was then processed using the basic Kohonen map algorithm in

Section 2.3.2.1.

3.2.1 Topology

The standard grid layout is a hexagonal grid of nodes in a rectangular sheet. This topology

presents some problems. The best neurons or nodes tend to gravitate toward the edges of

the map, sometimes resulting in similar ones sticking on either end. To address this, we

considered alternative topologies such as cylindrical and toroidal spaces, in Figure 3.1, that

allowed node connections to wrap around the space and no longer reach a permanent edge.

3.2.2 Neighborhood Functions

The neighborhood function plays a signi�cant role in the optimization process for SOMs.

We tested the following standard functions, square wave, Gaussian, cut Gaussian and

Epanevchicov, in Figure 3.2, to see quantitatively which nodes are changing on every

temporal step of the algorithm.

3.2.3 Local and Global Optimization

A primary issue with standard SOMs is that only the nodes around the winning BMU are

changed. This tends to create zones of local optimization, as seen in Figure 3.3. Early

clusters tend to stay together and later samples have decaying e�ect on the maps

predictions and updates. There is something positive to be said about this kind of

robustness, but the ideal case would not be quite so resistant to new information.

Preferably, there should also be an element of global optimization in this model. A simple
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Figure 3.2: Neighborhood functions: Square wave, Gaussian, cut Gaussian and epanechicov
(which is max(0, 1− x2)).

Figure 3.3: Optimization surface for the nodal distances. Red is least optimal and blue is
most optimal on the z -axis, the x - and y-axes are spacial coordinates.

technique to vary this approach is to look at multiple winning nodes and allow them all to

impact their neighborhoods. This will, of course, introduce an e�ect on the runner-up who

now has less of an in�uence on its surrounding nodes. Subsequent testing showed a 4.79%

decrease in quantization error. By itself, this statistic is not particularly signi�cant, but it

shows the potential bene�ts of global optimization.

3.2.4 Results

Cylindrical and toroidal grid topologies performed better than standard sheets. Updating

weights of the network based on more global parameters rather than local neighborhoods

prevented samples from locking in the network weights, although the training time is much

27



Figure 3.4: Country clustering by economic indicators. The color bars are the raw data
values for each of the economic indicators.

higher. While not all combinations showed a signi�cant improvement, many of them at

least warrant further investigation. The �rst set of diagrams, Figure 3.4, show some of the

clustering information derived from our �rst three economic indicators, the color bar

denotes the distance metric from the accurate clustering of countries. It is important to

keep in mind that the goal is to cluster unstructured data and in this case the SOM

performs well as expected.

Figure 3.5 shows the last two economic indicators and the distribution of the countries

based on the grid.

We can see that the method is able to conduct the self-organized selection as expected

and our improvements do not prevent this from occurring. We can also see that we can

overlay text association with the self-organized information even at this stage. These

attributes will prove important as we proceed.

28



Figure 3.5: Country clustering by more economic indicators. The color bars are the raw
data values for each of the economic indicators. The last image shows the external
association that can be made to these clusters.

29



3.3 Simple in-Silico Neuron Design on FPGA

The motivation for this experiment was to consider hardware development in the process of

implementing this framework, i.e. adding computation power to the android. As a result,

we made attempts to be able to replicate a simpli�ed neuronal model on an FPGA using

VHDL logic. Once the arti�cial neuron is created, self-organizing algorithms (Kohonen

maps) were implemented and checked for aberrant behavior. Testing a neuronal model

with a self-organizing map on the FPGA allowed us to investigate some of the behavior of

these algorithms in alternative circuitry con�gurations. We simultaneously questioned how

simpli�ed can we make a silicon neuron. Is a self-organizing map a natural topological

representation of these arti�cial neurons? We were not sure of the answer, but the question

was compelling enough to continue. We �rst utilized various resources related to

self-organizing maps, neural engineering and FPGA design. We worked on creating one

functioning silicon neuron and then wanted to scale up to as many as our Digilent Atlys

FPGA could handle. We proceeded with a design from another group that worked on a

similar problem.

ANNs, at this stage, are not as powerful or e�cient as the biological networks that

inspired their design, but both biological and silicon neurons have been shown to be more

e�cient with power and space than digital computers [86]. We understand that the brain is

a massively parallel and e�cient information processing system. Parallel processing can be

utilized when using the FPGA design. We want to be able to gain better performance of

neural networks with less power consumption. Clearly, this required a signi�cant reduction

in the overall functionality of the arti�cial neuron in comparison to a biologically inspired

neuron for practical computing purposes. Various areas like pattern recognition, function

approximation prediction and robotic control are just a few of the applications where

ANNs are utilized with great success [87]. But, there have been questions regarding how

closely the brain can be replicated in digital/analog systems. The observation that the

brain operates on some of the analog principles involved in the physics of neural

computation that could be fundamentally di�erent from traditional digital computing,

helped to spark the �eld of neuromorphic engineering [88].

Silicon neurons are also another component that can be utilized in the replication of an

arti�cial neural network. The silicon neurons (SiNs) are considered to be a hybrid between

analog/digital very large scale integrated circuits, whose components are representative of

the electrophysiological behavior of biological neurons and conductance based models.

Silicon neurons in theory will eventually allow us to emulate directly neuronal computation

in hardware rather than simply simulated on a general purpose computer which may have
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Figure 3.6: Neuronal schematic.

architectural constraints. Networks containing millions of neurons and ten billion

connections, and complex models like spiking neurons with temporal information that

require convolutions to be computed at each synapse, will possibly challenge even the

fastest computers. Hence there is much interest in developing custom hardware for ANNs.

SiNs will be most useful when large-scale dedicated neural computing is desired in real

time and under stringent power and space/weight constraints, such as in neuroprosthetic,

braincomputer interface, or embedded machine intelligence applications, as is the case in

our laboratory.

3.3.1 Design Features of a Simple Neuron

The design features for our arti�cial neural network begins with the biological neuron. We

understand graphically that need to replicate the change in voltage across the neuron in

particular and that this could be done in many ways. Xilinx was used to program and

debug in VHDL. Our simple neuron is shown in Figure 3.6.

We have our inputs entering the neuron and then summed together. When designing our

neuron we utilized the block diagram provided in [89]. The block diagram contains a

multiplexer, two shift registers, and accumulator weight rom and activation function. The

shift registers, accumulator and multiplexer were simple to create. The activation function
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Table 3.1: Estimate Sigmoid Function versus Actual Sigmoid Function

Input x Output y1 Output y2

-2 0.119203 0.166667
-1.5 0.182426 0.2
-1 0.268941 0.25
-.5 0.377541 0.333333
0 0.5 0.5
.5 0.622459 0.666667
1 0.731059 0.75
1.5 0.817574 0.8

was modeled after the sigmoid function. It was di�cult initially, because the sigmoid

function has an exponential behavior in the denominator. This can make the sigmoid

function is computationally expensive when done on the FPGA. We were able to discover a

way to re-create the sigmoid function without the need to use a generated look up table.

y1(x) =
1

1 + e−x
(3.1)

The sigmoid function that will be used is shown below.

y2(x) =
1

2

[
x

1 + |x|
+ 1

]
(3.2)

The components used to create this function were an adder, multiplier, absolute value

and a divide-by-two entity. We wanted to verify that the function was a good estimate for

the actual sigmoid function. In Table 3.1, we have a few input values that we compared

against the equations above.

The percent error between the actual and the estimated sigmoid function increases when

the input is a negative value compared to a positive one. The features of this network

require the neurons ability to be interconnected and to continue to function in this state,

this way the learning process will be operate as designed and the activation function used

will convert the weighted input to a output activation. The design was for one neuron

initially which was achievable and simpler to implement. This was a necessary step before

we could begin modifying and manipulating the circuit in order to see how the neuron

behaved before attempting to scale to an entire neural network. We also considered our

space constraints on the FPGA in the design of this neuron in relation to scaling concerns.

O� chip training was proposed by Salapura et al.[89] to reduce real-estate consumption

iteratively during the design process. The activation function used, in that case, was the
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estimated version of the sigmoid function.

The self-organizing map requires that we determine the Best Matching Unit (BMU) and

generally use a Euclidean distance in this process. Considering that the self-organizing map

would be implemented on the FPGA as well, the Euclidean distance algorithm might be a

heavier resource demand than we would like and is needed for our purposes since the

Euclidean distance utilizes the square root function. To avoid having to use the square root

function, which can be cumbersome, we used the Manhattan distance instead [90].

W (s+ 1) = W (s) + θ(s)α(s)(D(s)−W (s)) (3.3)

where D(s) = input vector

W (s) = weight vector

α(s) = decreasing learning coe�cient

θ(s) = neighborhood function

√
n∑

i=0

x2
i

xi = member of data sample

n = number of dimensions in the sample vector

The manhattan distance is,

n∑
i=1

|xi − yi| (3.4)

where n = the number of variables and xi,yi = the number of the ith variable in the x and y

direction. The Manhattan distance is the sum of the di�erences in the x and y direction of

two points.

The weights of the nodes are randomized at the initial operation. We then focus on the

topological distance between the nodes or �neurons� e�ectively in our case. The neuron

with the smallest distance to the input values in the topology is recognized as the winner.

The change is then updated by a speci�ed learning rule. This process continues until the

entire neighborhood of neurons are approached with a similar methodology and then the

weights are updated by the same learning rule that was used for the original weights. We

also are aware that the strength of the learning should decay with distance. This decay is

usually a Gaussian in nature. Figure 3.7 illustrates the �ow through this process.
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Figure 3.7: Neuronal �ow chart.

3.3.2 Results

We realized that many of the simpli�cations needed for a neural network or neuron has

made considerable progress over the years. The FPGA is a useful tool for the

implementation of design and recon�guration of arti�cial neuronal circuitry, but with

limitations with regard to e�cacy in transacting computational tasks. The type of neural

implementations studied is the silicon neurons, application speci�c integrated circuits, and

arti�cial neuron built using VHDL code for the FPGA. We have been able to create some

of the entities required for our neural network. Further work needs to be done on the

implementation side of this experiment. We have also started working on a learning

algorithm that would be useful to use on the FPGA. The self-organizing map is a learning

tool that will be integrated in the visual-spatial component of this framework, as expected.

Analyses of the error back-propagation algorithm is another avenue to consider. As far as

extending this functionality to the android, the case is not considered compelling at this

stage. Future comparisons will be helpful in the decision process for the appropriate

learning algorithms to use on our arti�cial neural network implemented on a FPGA.

Unfortunately, due to budget constraints, we were unable to expand this work and dive

deeper into some of the other questions we had regarding a successful integration with the

android.
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Figure 3.8: One state (trivial case).

3.4 Identifying Natural Language Structure via Hidden Markov

Models

This research was conducted in parallel with Professor Levinson's Mathematical Methods

of Language course at The University of Illinois at Urbana-Champaign. This was my initial

research into the hidden Markov model with various states in an attempt to detect simple

patterns in unstructured text. Collectively these are called the Cave-Newirth experiments

which were conducted over a range of one to twelve states.

3.4.1 Results

We have displayed the results of the aij and bjk coe�cients which are also known as the

state transition matrix and probability observation matrix, respectively. We started with

the single case state, Figure 3.8, in order to make sure that the code was compliant with a

basic and known result. We display this result for continuity.

The more interesting work begins in the higher-order states, Figures 3.9 - 3.11. As we

increase the number of states thus allowing for more transitions, we see that the

percentages for the alphabet increase as expected.

We still do not have enough detail from this graph to understand the underlying

structure of the input we presented the system with. Our percentages are abysmal for any
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Figure 3.9: Two states.

individual letter in our lexicon. So we soldier on to higher numbers of states.

In a three state system, we make our �rst signi�cant jump in the percentages reported in

the states. Spaces are showing up a little less than chance in state three.

By the time we get to �ve states in Figures 3.12 we notice that the blank spaces are

identi�ed about ninety percent of the time. As we progress toward eight states we �nd that

the �rst of the vowels, E, is identi�ed one hundred percent of the time in the fourth state.

The other letters that have greater than chance probabilities are H, N, R, S, and T. The

vowels A, I and O are also steadily increasing in probability. Interestingly, the vowels U

and Y are not making a strong showing yet. Another point worth mentioning is that the

percentages for the letter H are above chance by the �ve-states system and actually

dropped in the six-state system in Figure 3.13 by roughly twenty percent only to make

gains in the seven- and eight-state system in Figures 3.14 and 3.15.

The other greater concern is the total time to completion for each system in Figure 3.20.

We see a signi�cant jump in total time from seven- to eight-state systems, Figures 3.14 and

3.15, and we can already see that the simulations are time consuming in the previous

stages. Unfortunately, we were unable to log all of the data for up to and including the

twelve-state experiment, Figures 3.16-3.19, but we are certain that given the trend and the

increased requirements for computation, this would result in an increase in overall time.

We are not sure about an approach toward ameliorating this issue, parallelization has been

mentioned and might help to overcome this hurdle.
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Figure 3.10: Three states.

Figure 3.11: Four states.
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Figure 3.12: Five states.

Figure 3.13: Six states.
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Figure 3.14: Seven states.

Figure 3.15: Eight states.
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Figure 3.16: Nine states.

Figure 3.17: Ten states.
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Figure 3.18: Eleven states.

Figure 3.19: Twelve states.
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Figure 3.20: Total time for experimental runs.

We now talk about the convergence of the log likelihood function shown in Figure 3.21.

As we expect, the system with the largest number of states converges is the quickest. What

is interesting to note is that this case also has a far less pronounced wobble or plateau

before it moves toward �nal convergence.

When all is said and done, the Cave Newirth experiment was intriguing to say the least.

The hidden Markov model at work is very impressive at determining sequential structure

where it is not immediately apparent. As we look through the results and start to see the

distinction between consonants and vowels appear, we are taken aback knowing that this

code has no prior knowledge of this fact. The next step is to apply this understanding to

spoken language.
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Figure 3.21: Log likelihood function for all systems.
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Chapter 4

SYNTHETIC INSTINCTS AND

CONCEPTUALIZATION

I hear and I forget. I see and I remember. I do and I understand. � Confucius

In this chapter the research methods used are discussed. In computational intelligence

we have observed examples of unexpected and interesting behavior from very simple rules

and drives implemented in simple systems i.e. swarm intelligence, etc. Usually the rules are

extremely simple, stay a certain distance from their nearest neighbors, do not collide with

their neighbor and so forth. We believe that simple rules are an excellent basis for greater

complexity to emerge in more complicated systems, but we have to get the scale and nature

of the rules to align with the appropriate environmental pressures needed to force a system

to evolve or perish. Drawing from developmental psychology and observation, we applied a

very small set (one or two) of synthetic instincts for the iCub robot that should support

simple natural language acquisition. Swarm intelligence allows us to takes advantage of the

knowledge of multiple external agents for information gathering and synthesis.

4.1 Synthetic Instincts for the iCub

We start with the synthetic instincts for the iCub robot. These instincts are simple

autonomous action(s) from the android and provide some direction for some more complex

supervised and unsupervised activities of learning that were implemented. More

importantly we believe that providing a drive for the android to engage in events, real or

imagined, is one of many steps toward observable intelligent behavior at any level.

Our android, Bert, is limited in its sensory capabilities. As a result, we have developed

synthetic instincts, shown in Figure 4.1, that follow two criteria:

1. All instincts and drives are focused on gathering sensory information from the

auditory channel, the visual channel or some combination of the two. For example, if

Bert is confronted with a loud noise he should turn his head and focus on the largest

moving blob.
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Figure 4.1: iCub synthetic instinct and sensory framework.

2. All instincts and drives are directly integrated in the process of acquiring language

and/or communication capabilities, i.e. Bert may nod or smile after facial recognition

in order to engage a speaker and attain visual or verbal cues for the accuracy of the

information presented to him.

Following these criteria the synthetic instincts in the iCub are developed and utilized:

• Visual attention to all objects in frontal view like a newborn

• Auditory attention to speech-like sounds

• Babbling of words
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4.1.1 Visual and Auditory Interactions

The visual instinct simply focus on what was presented to it at any given time.

Implementing any extra tracking could have lead to con�icting data collection, so as a

result we did not integrate that into this instinct. The auditory instinct will be trained to

focus on sound, speci�cally on spoken word-like sounds. Visual and auditory inputs are

then used to develop �concepts�. These concepts are compared against previous

interactions that the android experienced during the experimental trials.

4.1.2 Interrogative Drives

This set of drives is speci�cally designed to keep the robot engaged with the human

interaction and to allow it to be an agent in the gathering of information. Keeping with the

theme of simplicity, one instinct associated is to gesture in the western world for more

information, or to make an auditory �hmmm� sound for more information. It was not

necessary to fully implement these drives sinced the robot was engaged without the aid of

these instinctual behaviors.

4.2 Conceptualization

Conceptualization is this study refers to the clustering and encapsulation of information for

memory or linguistic interaction. Self-organizing (Kohonen) maps have been useful in the

study of unsupervised clustering operations and the like. In this stage, the information

gathered via the �swarm� sense is to be attributed to categories by feeding the input to the

map and observing the natural clustering that occurs and then assigning the words uttered

to the android during this time window to this new clustered data set that we will call a

concept. Once a concept is �packaged�, it can be made available to the linguistic apparatus

in the android.

4.2.1 Simple Language Acquisition

The android, Bert, will need a mechanism for parsing and categorizing the auditory and

visual information that he receives. The Hidden Markov Model (HMM) has been identi�ed

as one such mechanism from preliminary work. It consisted primarly of direct interaction

with a robot, training it with word-object pairs. Providing cued video and audio input was
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Figure 4.2: Three-state HMM. Adapted from Mathematical Methods for Speech Technology.
[8]

considered as a secondary method of choice for developing word-object associations in the

android system.

4.2.2 Human-Android Linguistic Interaction

At this phase in the research, the development and optimization of self-selecting algorithms

for classifying linguistic structure are considered. The HMMs, speci�cally the discrete

observation variant in this case, are well-known tools for this type of development [91].

The HMM, diagrammed in Figure 4.2, is a doubly stochastic process which is comprised

of a state transition matrix, aij and probability observation matrix, bjk. This machinery

allows for the emergence of structure in previously unstructured input, text or speech in

this case. The actual formulation is assembled in the forward and backward probabilities

shown in the following equations:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1); 1 ≤ t ≤ T − 1

and

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j); T − 1 ≥ t ≥ 1
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where Ot is an observation sequence. We now can write the following for the probability of

an observation sequence conditioned on a model M .

P = Prob(O|M) =
N∑
i=1

N∑
j=1

αt(i)aijbj(Ot+1)βt+1(j) where 1 ≤ t ≤ T − 1

This is collectively known as the Baum algorithm [8].
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Chapter 5

SPEECH RECOGNITION

Every time we �re a phonetician/linguist, the performance of our

system goes up. � Fred Jelinek

In order to learn language, a system needs to be able to distinguish speech signals from the

many di�erent types of auditory inputs it receives, often simultaneously, from background

noise. CMU Sphinx, from Carnegie Mellon University, is an open source software package

that has gained some fame for speech recognition [92]. The Sphinx-4 system is a �exible

hidden Markov model-based speech recognition system. Its components can be con�gured

at runtime along the spectrum of semi-to-fully-continuous operation. This research was

solely concerned with continuous operation as we attempt to keep as much of the

interaction in real-time as possible. The package also includes a suite of speech recognizers,

pocketsphinx 4, and an acoustic model trainer, SphinxTrain, that were not needed for this

research. A diagram of the system architecture can be seen in Figure 5.1.

5.1 CMU Sphinx Recognition Structure

The CMU Sphinx recognition system works in several sequential stages which are listed in

Table 5.1. It has the following seven stages:

Table 5.1: CMU Sphinx speech recognition stages.

Segmentation, classi�cation, and clustering

Initial-pass recognition
Initial-pass best-path search

Acoustic adaptation
Second-pass recognition

Second-pass best-path search
N-best rescoring
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Figure 5.1: CMU Sphinx architecture.

In the �rst stage, the audio streams will be lumped into smaller segments. The

segmentation will land such that they coincide with acoustic boundaries, e.g. silence.

During the initial-pass recognition, the recognition is �rst done with a straightforward

continuous-density Viterbi beam search. This will produce a word lattice for each

sub-segment of the auditory input. Then we have the initial-pass best-path search. We

search the lattices for the global best path according to the trigram grammar we have

speci�ed. We apply some acoustic adaptation via the HMM which is then adapted using

Maximum Likelihood Linear Regression (MLLR). This adaptation is performed in one shot

with a single regression matrix. We give the data a second pass for recognition here, each

sub-segment is then decoded like the �rst time, using the acoustic models adapted in the

previous step. A lattice is produced for each subsegment as expected. The second-pass

best-path search involves searching the lattice for the global best path and an addition

N-best search over the lattice is also done. Finally, an N-best rescoring requires the N-best

lists generated using the supplemented vocabulary to be processed to convert the phrases

and acronyms into their constituent words and letters, which we hope are accurate, but

even errors at this stage could be useful for our goals.

5.2 The iCub Simulator

The iCub suite comes with a fully-functional simulator that can take true real-world inputs

and act on them in a virtual world. This world can have objects with real physics thanks

to the ODE package integrated in the release. The research and the experiments are
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conducted in the simulated environment, see Figure 5.2, without any loss of realism

because the video and audio feed are both from the real world. The actual android in our

laboratory currently runs on a version of the software that is several generations behind the

version in which the code for this research was written. In addition to the real risk of

damage involved in the operation of the android and some other mitigating circumstances

involving the microphones on the android, it was decided that since there is no variation in

the experiment from real to virtual environment that the entire experiment would be run

in simulation.

Figure 5.2: iCub simulator with a screen that allows the iCub to see video and interact
with the real world.
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Chapter 6

SENSORY FUSION AS EMBODIED COGNITION

We categorize as we do because we have the brains and bodies we

have and because we interact in the world as we do. � George Lako�

Our iCub Bert is a unique android built in the image of a 4-year-old child. Unfortunately,

he is not equipped with a wide range of sensory input modes at this time. It is possible to

collect visual and auditory information with accuracy. The most important aspect of the

idea of embodiment in our research is the con�uence of sensory inputs and the emergence

of states that can be fostered by having access to this data. Language also has its very

roots based as a tool for interacting with these senses [93]. Section 6.1 discusses the

implemention of sensory capabilities beyond the visual and auditory in the android.

6.1 Utilizing Extra-Sensory Modalities

Keeping in mind that this is a humanoid system, senses that are above and beyond the

norm might be helpful in developing semantic memory. The Microsoft Kinect system

provides an infrared and depth sensor in addition to the ability to program algorithms to

extract data directly from the system. Figure 6.1 shows the model used in the experiments

with the android.

6.2 Brain-Machine Interfaces

The electroencephalograph (EEG) has in many ways become the de facto brain machine

interface. Given the techniques temporal accuracy and reliability coupled with its generally

non-invasive nature it is a perfect �t for experimental and commercial uses. Research in

this area has been active for decades, making this a robust means of data collection with

several companies developing commercial models for everyday use. Used in this research is

the Emotiv EPOC+ EEG, seen in Figures 6.2 and 6.9, for data collection from 14 channels,
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Figure 6.1: Microsoft Kinect.

AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4 across the entire head.

It has a sampling rate of 128 SPS or 256 SPS running on a 2048 Hz internal clock. The

Emotiv also comes equipped with software that also tracks mental focus, engagement,

interest, excitement, a�nity, relaxation and stress level of the subject.

6.2.1 Emotional States

In Section 1.2 we see that emotional states play a signi�cant role in the development and

acquisition of language. Using the Emotiv EPOC+ we track the subject's emotional and

attentive state in real-time while the utterances to the android were made. This

information allows the system to develop a fuller picture of the word meaning and

association.

6.2.1.1 A�ectiv Suite

Collection of emotional responses that are tracked via the EEG. These responses are the

following: Frustration, Engagement/Boredom, Meditation, Excitement and Valence.
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Figure 6.2: Emotiv EPOC+ EEG.

6.2.1.2 E�ectiv Suite

In addition to emotional data, the EPOC+ can also be used to guess facial expressions in

real time. This provides another window for embodiment data to be fused with language

interaction and acquisition.

6.3 Swarm Agents

The swarm agents were programmed with a very simple set of directives. The agents are

given a word and based on the emotional content they will move through the android's

memories and choose other words of similar emotion content as determined by the EEG

data that is saved for all of the linguistic interactions with the system. The number of

agents available at any particular time will vary to re�ect the variability of responses in

any given situation.

6.4 Memories

The previous sections help to lay the groundwork for associative memories. CMU Sphinx is

used to help provide Bert with the feedback required for word recognition. Associative

memory is a useful component for conceptual construction and language acquisition.

54



Figure 6.3: The experimenter in the EEG EPOC+ apparatus.
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Figure 6.4: The data and response �ow. The box indicates the contribution in this
sequence for this research.

The work focused on the development of the components within the dashed box shown

in Figure 6.4.
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Chapter 7

NEURAL NETWORKS

Arti�cial Intelligence: The art of making computers that behave

like the ones in the movies. � Bill Bulko

7.1 Neural Network Phase

At this phase, the sensory data gathered is used to reach the goal of this research which is

to acquire simple language skills, e.g. babbling after interactions with another agent.

7.1.1 Self-Organizing Maps

The linguistic information was gathered during casual talking and the android was coupled

to emotional data, simultaneously, via the EPOC+ EEG. At this stage, this data was

clustered via a Kohonen map or so-called Self-Organizing Map (SOMs). This provided

emotional clustering for the verbal data. The visual component of this experiment was

accessible via associative memories stored as image �les.

7.1.2 Echo State Network - Reservoir Computing

We have allowed the interactions to cluster and we let the android improve its babbling by

attempting to learn from these and future interactions. A reservoir computer is a neural

network that allows for the implementation of a model that does not require the user to

provide the speci�cs of the learning task. For more details, please refer to Section 2.3.2.2.

The goal for our android was to proceed via trial and error which is very similar to the way

language is learned by human beings. As a result of this method, the babbling we observed

for this experiment would require a signi�cantly long time commitment on the part of the

experimenter if obtaining a full �edged linguistic response was attempted. But at this

stage, it is possible to verify emotional alignment and contextual relevance for the babble
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produced over time versus stochastic babbling production.

7.2 Speech Production

For the speech production portion of the work another well-established open-source

software package called Festival (or FestVox) was used. This is the recommended package

for the iCub and it works fairly well.

7.2.1 Linguistic Babbling

As with all creatures or systems that are learning there will be many imperfect attempts

made at communication. These types of responses were observed and fully expected during

our interaction with the android.
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Chapter 8

INSTINCT-CLUSTER-SWARM-MEMORY

The best way to predict the future is to invent it. � Alan Kay

8.1 Instinct-Cluster-Swarm-Memory Formalism

The synthetic instincts are based on the android's most accessible modalities, vision and

audition. Unifying these sensory streams required a reliable metric, in this case timing was

su�cient, and once we completed this the integration of the swarm agents was treated as

another �extra-sensory� modality which provided adaptation for the model. The formation

of the �concepts� which are used in the linguistic attempts during the experiments. Figure

8.1 displays the research paradigm followed in this work.

8.1.1 Instinct

Synthetic instincts are treated in an axiomatic fashion during this work. There was no a

priori expectation of proving why they were selected, but one can argue that their presence

motivates the desired behavior.

Let us consider the following:

We are given a set of input streams for the iCub, X, Y, Z ∈ Ω in Rn, relating to visual

input, auditory input and data stored in a repository respectively. They are discrete in

nature,

X = {x1, x2, . . . , xn} (8.1)

Y = {y1, y2, . . . , yn} (8.2)

Z = {z1, z2, . . . , zn} (8.3)

An event is considered to be a recognizable symbol or property, e.g. the color red, within a

particular modality.
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The purpose of the synthetic instinctual apparatus is to provide criteria for gathering

this stream of information which can then be abstracted to simple vectors of �events�. The

synthetic instincts can be considered a �lter and drive to some degree. This can be

represented as a Kronecker comb function on the input streams.

N∑
k=0

δ [x− kN ] where δij =

0 if i ̸= j

1 if i = j
(8.4)

and we can then construct a matrix of this information.

The inner product of the input streams with the synthetic criteria are written as

xi · x
′

j =
∑
ij

xiδijx
′
j (8.5)

where xi is the generic input stream and x′ is the synthetic instinct criteria.

When data is received from these sensory vectors, the instinct increases the probability

that any one of these data points will provide linguistically valuable concept data.

8.1.2 Cluster

Ideally we gather the information from these instincts into a triple (X,Y, Z) for concept

construction purposes. We have connect our sensory inputs using a uniform temporal

window with the assumption that is a reasonable basis for generating these triples.

A major component of this work also assumes that we do not need a priori information

for these sensory streams. In the visual senses, self-organizing maps have proven to be

e�ective at just such a task. In particular, SOMs also have a natural capacity for

information compression which is also needed. Normally, temporal information is not

overlayed within the SOM framework, this is addressed as we proceed in the concept

building portion of this work.

We begin with a randomized space in R2 and where we provide the input from X, the

visual stream directed by the visual synthetic instinct shown in Figure 8.2. This same

formulation is used for all sensory streams in this research. We apply the standard

Kohonen map algorithm to the information stream and follow the speci�cation below:

W (t+ 1) = W (t) + θ(t)α(t)(X(t)−W (t)) (8.6)

where X(t) = input vector
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Figure 8.2: Storyboarding.

W (t) = weight vector

α(t) = decreasing learning coe�cient, α0e
− t

λ

θ(t) = neighborhood function σ0e
−

(√
n∑

i=0
(xi−Wi)

2

)2

2σ2(t) where σ0 is the initial radius of the

neighborhood

n = number of dimensions in the sample vector

The similarity between the data stream and nodes will be tested by using the minimum

Euclidean distance, min
i

(√
n∑

i=0

(xi −Wi)2
)
.

The next phase is called �Storyboarding�, Σ = {s1, s2, . . . , sn} is a sequence of SOMs in

emotional order. These maps are generated during the time window and they provide

information about a visual and spacial scene the android and human are experiencing.

We also have the auditory input stream Y being gathered and classi�ed by a three-state

hidden Markov model. The mathematical details can be seen in Section 4.2.2. This stream

is conditioned by auditory synthetic instincts to focus on speech-like sounds. The Z

component of the triple in this case refers to the emotion data collected by the EEG.

8.1.3 Swarm

The swarm enters as the information gathered from the streams assessed within a linguistic

space which was developed from verbal interactions. The swarm uses a metric

nearest-neighbor, D(yi, zi), to determine the word-emotion proximity which provides

context. This information is then used to help classify the interactions with the android

and to suggest words for responses.

As the data streams are recorded, a distribution is associated with each stream.
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8.1.4 Associative Memories

Once presented with an object several times and verbally communicated word(s) and

sentences, we communicated words at random from the previous training session to the

android to verify word-object association. This association can be described by the

following: S : (Σ× Y ) → R where R is the response in this case. The response can be

non-verbal; in this case it is the image associated in the memory of the android.

8.1.5 Reservoir Computing

The �nal stage takes all of the data from the previous linguistic interaction and attempts

to learn from this data via a reservoir computing recurrent neural network. The result is

also babbled, but training leads to an increased relevance for the words related to the

verbal stimulus given and its emotional content.
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Chapter 9

FINAL RESULTS AND DISCUSSION

No book can ever be �nished. While working on it we learn just

enough to �nd it immature the moment we turn away from it. - Karl

Popper

9.1 Experiments

This section describes the experiments and the results.

9.1.1 Experiment 1: Associative Memory

The same objects used during the training sessions were used again to keep experimental

confounds to a minimum. The visual objects are now associated with spoken word sounds.

The iCub was taught for several runs and the association was tested by android's ability to

recall an image that included the spoken object. The amount of focus time needed to be

above a certain threshold as the synthetic instincts are running in parallel.

9.1.2 Results

The android recorded visual information as well auditory information in a database. This

recording is associated with its interaction in real time. The system has the ability to listen

and recognize speech, as mentioned in Section 5.1. We were able to see the image and the

word(s) associated with it by prompting the android at a later time. To test the associative

memory, several words that were uttered to the android earlier were repeated. They are

expected to be in the lexicon, if the android recognized the word sounds during training.

Next we waited to see the image that was presented by the android, to verify if it indeed

recognized the word.
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Figures 9.1 to 9.6 show the results of this experiment in the following format: Word

Utterance, Image Retrieved.

Figure 9.1: Associative memory response #1.

Figure 9.2: Associative memory response #2.
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Figure 9.3: Associative memory response #3.

Figure 9.4: Associative memory response #4.
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Figure 9.5: Associative memory response #5.

Figure 9.6: Associative memory response #6.

The mapping was not necessarily one-to-one which is the case in human memory as well.

The retrieval was successful, if the spoken utterance was recognized which happens about

90 percent of the trials. There are often several options available for the memory retrieval,

for easy of utilization, the �rst image recorded on any trial was the image retrieved.
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9.1.3 Experiment 2: Linguistic Babbling

In this experiment, several words are spoken to the robot for a training period. The

android was given the chance to see the objects during the conversation and form the

associative memory with the images. If the utterances were not recognized they were

repeated until the correct word(s) were associated with the full visual �eld. In addition to

auditory and visual information the android is simultaneously receiving real-time

information about the following �ve emotional states via the EEG:

• Engagement: A feeling normally experienced as a level of alertness and/or the

conscious direction of attention toward some task-relevant stimuli. It is often

detected via increased physiological arousal and beta EEG wave forms in conjunction

with a reduction in alpha wave expression.

• Excitement: An awareness or feeling of physiological arousal that can generally be

described as positive. Excitement is characterized by activation in the sympathetic

nervous system which results in a range of physiological responses including pupil

dilation, eye widening, etc.

• Frustration: A reduction of engagement with an increase in excitement in this

system. The physiological responses vary on the individual.

• Meditation: A suppression of excitement and frustration. A calming physiological

response is also noted.

• Valence: A measure of the intrinsic attractiveness or aversivness caused by an event.

For proprietary reasons, Emotiv does not make the exact algorithms involved in these

calculations public. The data is used to compare babbling driven with emotional context

versus randomly selected babbling from the android.

9.1.4 Results

9.1.4.1 Speech Recognition Phase

This is the �rst phase of the experiment and Figures 9.7-9.9 show graphs of the words

recognized by the iCub after training.
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The iCub recognized the spoken utterance about 65-70% of the time of the utterances

�rst presentation during the training trials. The percentage increased to approximately

90% (89.3%) with repeated utterance of the word and/or phrase. This unfortunately

introduced misheard artifacts in to the iCub's lexicon, but this turned out to be useful

since this phenomenon also occurs in human beings. The default auditory dictionary for

phoneme recognition was used with pocketsphinx, a C version of the CMU Sphinx

framework discussed in Section 5.1. By choosing the default dictionary, it makes the task

of using this framework more consistent across users. The option to develop a more

customized phoneme recognition lexicon was considered detrimental to the universality of

this type of training.

9.1.4.2 Self-Organizing Mapping Phase

Figure 9.10 shows the results of the EEG data self-organized via a Kohonen map.
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Figure 9.10: Kohonen maps for emotional states during live training.

The words and their corresponding emotional values from the EEG modality were

checked for correlation across all �ve emotions. Each of the distinct strips corresponds to

one of the emotional vectors, Engagement, Frustration, Meditation, Excitement and

Valence. Figure 9.10 serves two purposes. First, it is a good check for emotional richness of

the data-word collection process. If the subject was experiencing variations in his or her

emotional response, one would expect that distribution of the correlation would follow a

trend where the words are of a similar emotion and there should be roughly as many

identi�able trends as measured emotional states. The second purpose is to verify that there
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is some overlap of the emotional content and the words as would be expected in normal

language since all emotional levels are recorded for each word. We can observe both results

in Figure 9.11.

Figure 9.11: Word emotion correlation graph.

9.1.4.3 Swarm Phase

During this phase the emotional state information is provided to the swarm which then

selects words from the iCub's lexicon that has been mapped to the SOM. The swarm

follows a very simple set of rules:

1. Each member of the swarm can only have one word.

2. The word must have an emotional association within a speci�ed range for the most

dominant emotion at the measurement time.

3. The words are then passed to the reservoir computer in no particular order.

During the experiment the words selected were of the correct emotional range throughout

the entire run (±5-10% ). The parts of speech were not accounted for during the swarm
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Figure 9.12: Sample of random babbling words.

collection process since babbling is a very early language interaction and it does not follow

any real grammatical rules.

9.1.4.4 Reservoir Computing Phase

The reservoir computing phase allows for an attempt to make the babbling attempt more

emotionally relevant. Figures 9.12 and 9.14 show the results from training the babbling on

a reservoir computer of 100 neurons and access to 18 words at a time from the iCub's

lexicon. The number of words had to be limited due to the computational complexity

introduced with larger training sets and the limited computational abilities of the research

machine. In cases where this number of neurons and/or words exceeded 100 or 18

respectively, computational over�ow would occur in the machine which would cause the

training to crash and immediately invalidating the session and responses.

9.1.4.5 Linguistic Babbling Phase

The android was allowed to babble randomly, seen in Figure 9.16, in response to emotion

data and a spoken word. This was compared to the procedure described in the previous

phase. The results are displayed in Figures 9.13 and 9.15.
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Figure 9.13: Sample of babbled words with emotional cues.

Figure 9.14: Randomly babbled words.
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Figure 9.15: Babbled words from emotional cues.

Figure 9.16: iCub verbally babbling from its virtual environment.
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Chapter 10

DISCUSSION

All men are caught in an inescapable network of mutuality. � Dr.

Martin Luther King Jr.

This work demonstrates a case where sensory fusion is a useful method for simple language

acquisition. The results while not necessarily the likes of the systems on smart phones is

actually many times more authentic in design, since not a single explicit language rule or

instruction was used to generate demonstrably emotionally relevant responses with the

babbling. We also see that Kohonen maps and reservoir computing are complementary in

this regard as both methods can function without explicit supervision. The emergence of

these emotionally tethered states also gives further credence to this approach. This

phenomenon is interesting, particularly due to its similarities to behavior observed in

newborn children [94, 95, 96, 97]. This may well imply that our linguistic response and

acquisition process may have other hidden components, not previously considered. Further

investigation could enable us to shine more light on this.

Another fact to keep in mind is that despite our inability to verify with 100% certainty

the true correlates used by Emotiv for their emotional state classi�cation, this research is

not actually predicated on knowing the exact emotional states. The event of interest is the

android synchronizing with any recorded emotional state from the experiment at the time

of learning the words.
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Chapter 11

FUTURE WORK

Had I the heavens embroidered cloths, Enwrought with golden and

silver light, the blue and the dim and the dark cloths of night and

light and the half light, I would spread the cloths under your feet:

But I, being poor, have only my dreams; I have spread my dreams

under your feet; Tread softly because you tread on my dreams. -

W.B. Yeats, �He Wishes For the Cloths of Heaven�

11.1 Experimental Considerations

As this work proceeds, we should compare these results with a larger subject pool. This

would allow for full sensory fusion and reduced sensory groups, e.g. audio or video removed

from the fusion. Randomization of the emotion-word context would also help to remove

unforseen biases. This has the added bene�t of verifying this e�ect across subjects.

11.2 Motor-Linguistic Babbling and Response

Another dimension of this research would look at the ability to incorporate body language

in the learning cycle as well. We have also provided the android with body positioning

data, e.g. the real-time position of our head and arms while we were interacting with it

verbally. This is an important layer of the early linguistic acquisition because

approximately 55% of our language interaction is non-verbal, although this percentage can

vary based on the speci�cs of the scenario [98, 99, 100, 101]. Since full language acquisition

is the goal, it is of great importance to consider this modality further.
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11.3 Neuromorphic Circuitry and the iCub

In this research, we were unable to fully utilize the neuromorphic work that was

investigated earlier on, but this would provide another dimension to this type of research.

Spiking neural networks are in many ways attempts to have direct biological models run on

hardware. We could investigate what kind of emergence happens when the underlying

neural network is based on a truly biological phenomenon.

11.4 The iCub's Computer Vision Capabilities and Associative

Memories

If the iCub's computer vision capabilities were improved to allow for individual object and

pattern recognition, especially via this kind of paradigm, one could imagine a similar

experiment being conducted with visual states versus verbal language states.
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