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Abstract 

This dissertation includes two major sections. The first section presents the research on creating and 

studying novel classes of origami-inspired metamaterials and structures. The second section deals 

with seismic design of hybrid masonry structural systems.  

 

1) Origami-Inspired Structures and Materials 

Origami, the traditional Japanese art of paper folding, has been recognized to be a significant source 

of inspiration in science and engineering. Specifically, its principles have been used for innovative 

design of mechanical metamaterials for which material properties arise from their geometry and 

structural layout. Most research on origami-inspired materials relies on known patterns, especially on 

the Miura-ori, i.e., a classic origami pattern with outstanding properties and a wide range of 

applications.  

Motivated by outstanding properties and a broad range of applications of the Miura-ori, in this 

dissertation, inspired by the kinematics of a one-degree of freedom zigzag strip, we create a novel 

class of cellular folded sheet mechanical metamaterials. The class of the patterns combines origami 

folding techniques with kirigami cutting. Using both analytical and numerical models, we study the 

key mechanical properties of the folded materials. We show that they possess properties as 

remarkable as those of the Miura-ori on which there has been a surge of research interest. 

Consequently, the introduced patterns are single degree of freedom (DOF), developable, rigid-

foldable and flat-foldable.  

Furthermore, we show that depending on the geometry, these materials exhibit both negative and 

positive in-plane Poisson’s ratio. By introducing a novel class of zigzag-base materials, the current 

study extends the properties of the Miura-ori to those of the class of one-DOF zigzag-base patterns, 

and our work shows that Miura-ori is only one pattern in this class with such properties. Hence, by 

expanding upon the design space of the Miura-ori, our patterns are appropriate for a wide range of 

applications, from mechanical metamaterials to light cellular foldcore sandwich panels and 

deployable structures at both small and large scales. Furthermore, this study unifies the concept of 

the in-plane Poisson’s ratio from the literature for similar materials and extends it to this novel class 

of zigzag-base folded sheet metamaterials.  

Moreover, in this dissertation, by dislocating the zigzag strips of a Miura-ori pattern along the joining 

ridges, we create a class of one-degree of freedom (DOF) cellular mechanical metamaterials. We 

further show that dislocating zigzag strips of the Miura-ori along the joining ridges preserves and/or 

tunes the outstanding properties of the Miura-ori. The introduced materials are lighter than their 

corresponding Miura-ori patterns due to the presence of holes in the patterns. They are also amenable 

to similar modifications available for Miura-ori which make them appropriate for a wide range of 

applications across the length scales. 

Additionally, we study the Eggbox pattern. Similarly to Miura-ori, a regular Eggbox folded sheet 

includes parallelogram facets which are connected along fold lines. However, Eggbox sheets cannot 

be folded from a flat sheet of material, and contrary to Miura-ori which has received considerable 

interest in the literature, there are fewer studies available on Eggbox folded sheet material. By 

employing both analytical and numerical models, we review and study the key in-plane mechanical 

properties of the Eggbox folded sheet, and we present cellular folded metamaterials containing 
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Miura-ori and Eggbox cells. The entire structure of the folded materials is a one-DOF mechanism 

system and, similarly to Eggbox sheets, the materials composed of layers of Eggbox folded sheets are 

bi-directionally flat-foldable, resulting in a material flexible in those directions, but stiff in the third 

direction.  

 

2) Seismic Design of Hybrid Masonry Structural Systems 

Hybrid masonry is an innovative seismic lateral-load resisting system. The system comprises 

reinforced masonry panels within a steel-framed structure as well as steel connector plates which 

attach the surrounding steel frame to the masonry panel. Depending on the interfacial conditions 

between a masonry panel and the steel frame, the system is categorized into three major groups: 

Types I, II and III. 

The first part of the research on hybrid masonry systems, in this dissertation, includes a series of 

exploratory studies aimed at understanding the global behavior of various types of hybrid masonry 

panels and setting the stage for the study on seismic design of the systems. In this regard, 

computational analyses were carried out to study the distribution of lateral forces between a masonry 

panel and a frame in various types of hybrid masonry structural systems. The results are used to 

demonstrate differences in lateral-force distributions in hybrid masonry systems with different 

boundary conditions and with various panel aspect ratios as well as with different stiffness of the 

wall to that of the frame.  

Furthermore, this study presents the general methodology for seismic design of Type I hybrid 

masonry systems as well as the steps of a capacity design process in which two favorable ductile 

modes of behavior are considered: steel connector plates behaving as fuses or flexural yielding of the 

masonry panels. Moreover, using the proposed approaches we design several prototype buildings 

located in a high seismic region and investigate viability of hybrid masonry as a new seismic lateral-

load resisting system. According to this design framework and the exploratory studies, both 

approaches are shown to be feasible for developing realistic system configurations.  

Finally, in this study, an integrated approach for performance-based seismic analysis and design of 

hybrid masonry Type I systems with fuse connector plates is presented. The procedure used in this 

study is based on the Capacity Spectrum Method. The proposed method includes an iterative process 

through which a hybrid masonry structural system with fuse connector plates is designed depending 

on its energy dissipation capacity. In this regard, the value of the system R factor is regulated in the 

process. In this study, application of the method for design of a sample hybrid masonry building 

system is presented. 
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1 Introduction 

 

 

 

 

 

This dissertation includes two major parts. The first part includes Chapters 2 to 5 and focuses on 

origami-inspired structures and materials. The second part, i.e. Chapters 6 to 8, is about seismic 

design of hybrid masonry structural systems. 

 

Origami-inspired structures and materials 

Origami, the Japanese traditional art of paper folding, has proven to be a substantial source of 

inspiration for engineering applications. Among advantages of origami-inspired materials and 

structures are: ability of sustaining large unsupported spans, capability of maintaining large 

deformation without deforming the base material in rigid origami, possessing both the shape and 

the structure at the same time due to corrugation and folding and having anisotropy in 

deformation modes. These characteristics make origami-like structures specifically suited for 

applications in morphing structures, transformable and deployable structures where structures are 

capable of changing shape and mechanical properties in response to external excitations, i.e. a 

feature suited for sustainable developments.  

Chapter 2 provides an overall view on origami engineering. Chapters 3 to 5 include self-

contained articles. Chapter 3 is about Miura- and Eggbox-inspired materials. In this chapter, 

mechanical properties of Eggbox and Miura-ori are both reviewed and studied, and the geometry 

of one-degree of freedom (DOF) materials containing both Miura-ori and Egg-box are 



 
 

 

  2 

introduced. Chapter 4 is about a novel class of origami- and kirigami-inspired mechanical 

metamaterials. In this Chapter, by creating a class of zigzag-base patterns, we extend the 

properties of the Miura-ori, i.e. the most remarkable origami pattern with metamaterial 

properties, to the class of one-DOF zigzag-base patterns. In Chapter 5, we present a novel 

technique, i.e. dislocating the zigzag strips of the Miura-ori pattern along the joining ridges, to 

tune and/or preserve the mechanical properties of the Miura-ori. The technique can be used to 

design adaptable and foldable metamaterials and structures whose properties can be tuned 

depending on the external excitations. Moreover, we show that the zigzag-base materials 

introduced in Chapters 4 and 5, due to possessing cellular structures, are naturally lighter than 

their corresponding ones made from the Miura-ori pattern. Hence, they are well-suited for a 

broad range of applications at various length scales. 

 

Seismic design of hybrid masonry structural systems 

Hybrid masonry in a relatively new lateral load resisting system. The system includes reinforced 

masonry panels within a framed steel structure. In the system, masonry panels are linked to the 

surrounding steel frame via steel connector plates. Depending on the interfacial conditions 

between a masonry panel and the surrounding steel frame, hybrid masonry systems are 

categorized into three major groups: Types I, II and III. The second section of this dissertation 

focuses on seismic design of hybrid masonry structural systems. In this regard, Chapters 6 to 8 

include self-contained articles. Chapter 6 presents lateral load distribution between a masonry 

panel and a frame for various types of hybrid masonry systems. Moreover, this chapter sets the 

stage for further studies on seismic design of these systems. In Chapter 7, we describe the 

general approach for seismic design of hybrid masonry Type I, considering two cases of 

plasticity concentrated in steel connectors or in the flexural yielding of steel bars of the masonry 

panels. Employing these two design approaches, viability of hybrid masonry Type I systems are 

also studied in this chapter. Finally, Chapter 8 presents a general framework for capacity 

spectrum method-based seismic design of hybrid masonry Type I with fuse connector plates.     
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2 Origami Engineering 

 

 

 

 

 

Origami is the Japanese ancient art of paper folding in which “ori” means to fold and “kami” 

means paper. Developing complex spatial objects from a flat sheet of material using origami 

folding techniques has long attracted attention in science and engineering. Origami has shown to 

be a significant source of inspiration for innovations and in this regard, “orimimetics” refers to 

the application of this oriental art to solve technical problems [1]. Origami techniques have been 

used from folding of maps to construction of airbags, car crash boxes, medical stents, tents and 

shelters, instant food packaging, grocery bags, stadium roofs, etc. Folds and corrugations are also 

present in natural systems, at various length scales from protein ribbons and DNA to tree leaves 

and insect wings [2], and in these systems controlled folding and unfolding aims to improve 

functional and (or) mechanical properties. 

Origami can be broadly categorized into five areas of application in engineering (Figure 2.1). 

Deployable structures: where foldable structures are the solution of choice due to limited 

available transportation space such as deployable solar panels [3, 4] medical stents [5] and 

deployable space telescope [6]; Energy absorbing systems: for instance, sandwich panel cores 

[7], and airbag folding [8] and origami crash boxes [9]; Metamaterials: such as stacked Miura-

ori [10]; Improving mechanical properties of material by adding corrugations and folds: for 

example in solar sail structures [11]. Other engineering applications of origami include 

improving acoustic quality by corrugation [12], resonance frequency tuning in electro- magnetic 

devices [13] and others. 
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Figure 2.1: Applications of origami in Engineering with emphasis on deployable origami 

structures. 

 

 

 

Figure 2.2: Some applications of origami in engineering. (a) Deployable medical stents 

[14]. (b) Metamaterial [15]. (c) Folded core [16]. (d) Car crash boxes [9]. 

 

Figure 2.1 illustrates the application of origami in engineering in which the emphasis is placed 

on the rigid-origami branch of deployable structures as the potential application of origami-

inspired structures. The classification of deployable structures in Figure 2.1 is also based on their 

kinematic and morphological characteristics offered by Hanaor and Levy [17]. 

 

2.1 Origami Engineering and Sustainable Development  

Rapid reduction of natural resources, increasing of the world population and the change in the 

climate are placing demands on structural engineering towards a sustainable engineering. To 

develop sustainable design, some issues must be addressed in construction industry such as 

environmentally friendly systems, reduced level of energy consumption, operation and 
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optimization and others [18]. Moreover, the new trends in structural development show an 

increasing interest in kinetic architecture [19] which is in accordance with sustainable 

development. In the future, engineering structures can become highly smart, dynamic and 

adaptive with the capability of transform themselves to optimize their physical and mechanical 

performance in response to both external and internal excitations. Rigid origami is a subclass of 

origami structures in which rigid panels are linked through perfect hinges leading to an entirely 

geometric mechanism. Also, in rigid origami, there is a continuous path between unfolded and 

folded states. Consequently, rigid origami due to its kinetic characteristic has the potential for 

application in adaptive systems as well as in self deployable micro mechanisms. When 

employing thick panels, rigid origami is appropriate for fabrication of large scale gravity-load 

carrying objects [20]. The major advantages of origami-inspired structures which make them 

appropriate for applications in sustainable engineering are highlighted as follows:  

 Origami-inspired deployable structures can be prefabricated on site, and can be 

potentially designed to carry gravity and lateral loads in a partially folded configuration. 

Hence, rapid manufacturing and easy transportability make these types of structures 

appropriate for reusable construction allowing minimal installation cost.   

 They can be adjusted for use in various environmental conditions by folding or unfolding. 

Hence, they are suitable to create adaptive building envelopes and façades, convertible 

building covers, and are promising to provide solutions to some of the challenges in the 

construction industry, i.e. to provide low energy consumption and green sustainable 

buildings. One may find examples of applications in retractable roof structures for 

adjusting the light in a stadium [21, 22].  

 Rigid origami is capable of sustaining large displacements without stretching of the base 

material which makes it potentially suitable for transformable structures [23].  

 Single-Degree of Freedom (SDOF) rigid mechanism (e.g., Miura-ori) is appropriate for 

low-energy, efficient and controllable deployable structures [24].  

 Multi-degree of freedom (MDOF) rigid origami such as the transformable shell proposed 

by Resch and Christiansen [25] can be potentially used to cover arbitrary geometric 

surfaces by stabilizing the shell structure via effective stiffening methods, such as 

negative pressure, as suggested by Tachi [26]. Hence, due to having both the structure 
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and providing the form, origami structures can be utilized to construct complex forms by 

removing the need for complex understructure previously needed to support building 

covers.  

 Origami-inspired materials can be customized to deform easily in some directions while 

to keep their rigidity in others. Anisotropy in deformation modes makes them suitable for 

some novel engineering applications such as in morphing structures. They also possess 

the capability of being designed for a favorable coupling between bending and extension 

[23].  

 They are capable to sustain large span shell structures - see for example, the Pseudo-

Cylindrical Concave Polyhedral (PCCP) shells proposed by Miura [27].  

 

2.1.1 Sustainable design in civil engineering and architecture using origami 

techniques   

Adaptive structures that can transform and optimize their functions in response to environmental 

and functional stimuli have gained significant attention in various areas of engineering. 

Retractable roofs and environmentally responsive structures such as adaptive building covers and 

façades [21], responsive shading [28] and ventilation systems are examples of a new generation 

of architecture using kinetic and controllable smart structures (see Figure 2.3 and Figure 2.4). 

For civil engineering applications of origami-inspired structures, both folding efficiency and 

structural performance of the system are of interest. Origami has been applied by architects to 

attain visual appeal, shape, structure and kinetics. Various folding techniques, geometry and 

tessellation of a pattern provide versatility to origami-inspired structures making them potentially 

appealing for civil engineering applications. The Investment Council Headquarters of Abu 

Dhabi, Al-Bahr towers (Figure 2.3) are equipped with origami-inspired kinetic shading and solar 

responsive screen which performs as a secondary façade, controls solar light and optimizes the 

natural light internally. This type of kinetic and responsive shading decreases the energy 

consumption. 
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Figure 2.3: (a, b) Investment Council Headquarters of Abu Dhabi, Al Bahr towers [29], 

with origami-inspired kinetic shading and solar responsive screen; (c) “lightweight 

origami structure” [28].  

 

  

Figure 2.4: Dynamic façade; Kiefer Technic showroom Bad Gleichenberg Giselbrecht 

(pictures by Paul Ott). 

 

2.2 Application of Origami in Engineering 

As mentioned in the introduction and illustrated in Figure 2.1, existing applications of origami in 

engineering can be classified into five general groups: deployable structures, energy absorbing 

devices, modifying mechanical properties of material by introducing corrugations, metamaterials 

and other engineering applications. In the following, more details are provided on these 

applications.  

 

2.2.1 Deployable structures 

For common applications of pleating, the folds are generally used to enhance flexibility or 

motion. Examples include pleated skirts, Japanese traditional and decorative fans and pleated 

pipelines. Using this characteristic of pleating, deployable structures can be realized using 

(a) (b) (c) 
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origami techniques and they can be categorized under the class of adaptive and morphing 

structures. Deployable structures can transform from a stowed (folded) configuration to an 

unfolded state while having the capability of carrying load. Hence, origami-like deployable 

structures are transformable structures whose functions can be optimized in response to 

environmental and functional stimuli. For the purpose of deployable structures, SDOF rigid 

mechanism is appropriate for low-energy, efficient and controllable actuation. However, MDOF 

mechanism is also applicable for deployable structures. For example, Kuribayashi and You 

developed a medical stent using water-bomb origami pattern, an MDOF mechanism, to open 

collapsed arteries [14]. 

 

2.2.1.1 Rigid foldable origami (rigid origami) 

The mathematical theory of rigid origami has been studied by various researchers [30, 31, 32, 33, 

34, 35]. In rigid origami, fold lines act as hinges and rigid panels (facets) bend along the fold 

lines, and mathematics of rigid origami implies the presence of soft internal mechanism in the 

system [34]. Furthermore, for rigid foldability, the entire folding process is of interest and it is 

about the existence of a continuous path between the unfolded and folded states, whereas flat 

foldability pays attention to the final folded state. As Figure 2.1 shows, rigid origami which is 

categorized under adaptive and morphing structures, due to its kinetic behavior, has the potential 

to serve as adaptable systems such as adaptive architectural façades and covers [28]. Also, the 

stiffness of a folded sheet, for example Miura-ori sheet, can change at various folded states 

depending on folding angles. Therefore, it has the potential to be applied as an adaptive 

structural system for a structure subjected to a varying external load. For rigid origami, in 

general, the number of kinematic degrees of freedom (DOF) is equal to: DOF = N –3M, where N 

is the number of fold lines and M is the number of inner vertices. 

 

2.2.2 Impact absorbing devices 

Folded sheets can be used as car crash boxes (Figure 2.2(d)). In automobiles, energy absorption 

devices, i.e. crash boxes, are installed to absorb energy in the event of a car crash. Introducing an 

origami folding into a car crash box lowers the initial buckling force due to geometric 
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imperfections, and also forces the buckled mode to a pre-designated favorite buckled shape with 

higher energy absorption capacity [9]. Moreover, the origami technique of folding a flat sheet of 

material into three dimensional folded structures has been used to construct packaging material 

[16] and impact absorbing devices [7]. Hagiwara [36] also pointed out that manufacturing 

vehicles, with origami-inspired structures, has the potential to reduce the impact energy from 

collisions. To address the idea by Hagiwara, using the capability of easily crushing and restoring 

back of origami folded objects, Wu et al. [37] introduced a Cylindrical Origami Structure (COS) 

taking advantage of “progressive collapse deformation” to absorb the impact energy in the event 

of a collision. 

 

2.2.3 Modifying mechanical properties of materials and structures by corrugation 

Folding increases the out-of-plane stiffness of plates. Hence, covering of a large span is possible 

by a folded plate (Figure 2.5). A folded sheet can also be used in sandwich panel cores as it 

increases the stiffness of the system [16]. Origami patterns, with large out-of-plane stiffness 

while having a small planar stiffness, can be applied to reduce the out-of-plane displacement of 

some engineering systems.  

 

 

Figure 2.5: Folded plates [38]. 

 

2.2.4 Metamaterials 

Metamaterials are artificially engineered materials which exhibit the material properties beyond 

those found in natural materials. Deployable cellular solids [15], folded cellular stacked Miura 

metamaterial with omni-directional negative Poisson’s ratio [10], Miura-ori sheet with in-plane 
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and out-of-plane Poisson’s ratios of opposite signs [23, 10, 39] and curved folded shell structures 

which can undergo large changes in Gaussian curvature without stretching at the material base 

(making it potentially appropriate for morphing surfaces [40, 41]) are examples of folded 

metamaterials.  

 

 

Figure 2.6: Miura-ori sheet with in-plane and out-of-plane Poisson’s ratio of opposite 

signs [23]. 
 

 

              

Figure 2.7: (a) Stacked Miura folds and unfolds uniformly with negative Poisson's ratio 

in all directions and highly anisotropic material properties [10]. (b) Curved corrugated 

shell structures [40]. 

 

2.2.5 Other engineering applications 

Other applications of origami include, but are not limited to: resonance frequency tuning in 

electromagnetic devices such as “origami tunable frequency selective surfaces” [13] and 

“origami tunable metamaterial” [42], improving acoustic quality by corrugation and variable 

acoustic surfaces. Miura-ori pattern has been applied for the ceiling of Meguro Persimmon Hall 

in Tokyo due to the sound diffusion effect caused by its corrugated surface [12]. Application of 

Ron Resch for “Resonant Chamber, an interior envelope system that deploys the principles of 

rigid origami, transforms the acoustic environment through dynamic spatial, material and 
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electro-acoustic technologies. The aim is to develop a sound-sphere able to adjust its properties 

in response to changing sonic conditions, altering the sound of a space during performance and 

creating an instrument at the scale of architecture, flexible enough that it might be capable of 

being played” [43]. 

“Significant work in the areas of kinetic tessellated architectural systems and variable acoustic 

surfaces using specific geometry includes David Serero's 2005 "Variable Geometry Acoustical 

Domes", Mani Mani's 2009 "Tunable Sound Cloud", the current research of Brady Peters, 

particularly his 2011 "Distortion II" and Eddy Sykes' 2008 "Yakuza Lou" kinetic rigid origami 

structure” [43]. 

 

 

Figure 2.8: (a) Meguro Persimmon Hall in Tokyo with Miura-ori pattern applied for the 

ceiling [12]. (b) Resonant Chamber using Ron Resch pattern [43]. 

 

2.3 Major Origami Patterns Applied in Engineering 

Origami folding can be used to construct three dimensional objects applicable in engineering 

from two dimensional sheets. Due to manufacturing difficulties, simple folding patterns are used 

in most applications of origami in engineering such as self-assembly of micro-devices, for 

example [44, 45] among others. Since the materials constituting the origami facets for civil 

engineering applications are mostly rigid, rigid origami patterns are of our interest in which the 

facets do not stretch and bending happens along the fold-lines. In Table 2.1, an overview of the 

fundamental and major folding patterns applied in engineering is provided. Also, the patterns 

(a) (b) 
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discussed in this section, are mainly selected based on their potential applications in structural 

engineering and architecture.  

 

Table 2.1: Some major origami patterns applied in engineering, their properties and 

applications. 
 

Miura-Ori (Herringbone pattern) 

Crease Pattern and folded Stage Comment 
  

 

 

 

 

     

Images by Schenk and Guest 
 

 

 

 

Properties: SDOF pattern; developable; rigid-foldable; 

flat-foldable; negative in-plane Poisson’s ratio and 

positive out-of-plane Poisson’s ratio [23, 10, 39]; 

possibility of stacking of Miura-ori sheets with various 

heights while keeping the same kinematics [10].   

 

Applications: Folded core [46]; deployable solar 

panels [3]; curved folded core material [47]; folding of 

maps [48]; applied for ceiling in the Persimmon Hall in 

Tokyo due to its sound diffusion effect [12]. Stacked 

folded core as energy absorption systems [49]. 

Reprogrammable mechanical metamaterials [50]. Fluidic 

origami cellular system [51].  
 

 

 

 

Egg-box 

Crease Pattern and folded Stage Comment 
  

 

     

Images by Schenk and Guest 
 

 

Properties: SDOF pattern; non-developable; rigid-

foldable; bidirectional flat-foldable; positive in-plane 

Poisson’s ratio and negative out-of-plane Poisson’s ratio 

[23]. 

 

Applications “expansible surface structure” [52].  

 

 
 

Waterbomb (“Namako” by Shuzo Fujimoto) 

Crease Pattern and folded Stage Comment 
  

        

Images by Tomohiro Tachi 
 

 

 

Properties: MDOF pattern (3 DOFs per unit cell); 

developable; flat-foldable; flexible (multi DOF) and 

complicated motion. Negative Poisson’s ratio [53]. 

Cylinders constructed from waterbomb pattern are not 

generally rigid foldable [53], but a specific geometry can 

be found for cylinders with uniform radius making them 

rigidly foldable [54].  

 

Applications: Medical stent [14]; packaging; textured 

material; cloth folding; deformable wheel robot [55]. 
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Table 2.1 (cont.) 

Ron Resch; Including 90 degree pattern 

Crease Pattern and folded Stage Comment 
  

 

      
 

 

      

Images by Tomohiro Tachi 
 

 

 

   

Properties: MDOF pattern (3 DOFs per unit cell); 

developable; flexible; strong bending-extension 

coupling; negative Poisson’s ratio.  

 

Application: Resonant chamber [56]. 

 

 
 

Yoshimura (Diamond), Diagonal and Hexagonal Yoshimura 

Crease Pattern and folded Stage Comment 
  

           

                 Yoshimura       
 

    

                Diagonal       
 

     

Hexagonal Yoshimura 
 

Images from reference [57] 
 

 

 

 

Properties: Inextensional post-buckling geometry; 

Increased circumferential bending stiffness while 

decreasing the in-plane stiffness; to cover a curved 

architectural surface, without the need to construct 

curved plates. 

 

Application: Pseudo-Cylindrical Concave Polyhedral 

(PCCP) [27]; submarine pressure hulls due to improved 

buckling capacity [58]; textured drinking cans [59]; 

lightweight Origami structure for day lighting 

modulation [28]; construction of curved architectural 

structures such as vaults by assembling of plane 

triangles [60]; textured deep submarine pipelines due to 

their substantial increase in propagation buckling 

capacity [61]. 
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3 Miura- and Eggbox-inspired Cellular Folded 

Materials: Synthesis, Analysis and Mechanical 

Properties 

 

 

 

 

 

Abstract 

Miura-ori is a classic origami pattern with outstanding mechanical properties which has 

received considerable interest in the literature. Similarly to Miura-ori, a regular Eggbox 

folded sheet includes parallelogram facets which are connected along fold lines. 

However, Eggbox sheets cannot be folded from a flat sheet of material, and contrary to 

Miura-ori, there are fewer studies available on Eggbox folded sheet material. By 

employing both analytical and numerical models, we review and study the key in-plane 

mechanical properties of Miura-ori and Eggbox sheets, and present cellular folded 

metamaterials containing Miura-ori and Eggbox cells. The entire structure of the folded 

materials is a one-degree of freedom (DOF) mechanism system and, similarly to Eggbox 

sheets, the materials composed of layers of Eggbox folded sheets are bi-directionally flat-

foldable, resulting in a material flexible in those directions, but stiff in the third direction. 

Moreover, a framework is provided to obtain the Poisson’s ratio of both Miura-ori and 

Eggbox sheets. Apart from further investigation of the in-plane Poisson’s ratios of these 

folded sheets, the framework can be employed to obtain the in-plane Poisson’s ratios of 

similar, but more complex folded sheets for which analytical models are not available. 

 

Keywords: Miura-ori, Eggbox, rigid origami, metamaterial, cellular materials, auxetic materials, 

Poisson’s ratio. 
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3.1 Introduction 

Although mostly renowned for its visual appeal, origami, the Japanese art of paper folding has 

been a source of inspiration for designing cellular foldable materials [62, 63, 64, 15, 10, 65] and 

responsive materials and structures [66, 67], among many other applications. In this regard, 

Miura-ori, a classic origami folding pattern whose regular form constitutes four parallelogram 

facets linked via fold lines (Figure 3.1), has been employed for a wide range of applications 

spanning from folding of maps [48], folded-core cellular sandwich panels [68, 16] to the 

technologies such as deployable solar arrays [48, 24] and cellular materials and structures [10, 

62]. Miura-ori can be folded from a flat sheet of material (i.e., a developable pattern).  

Folds and corrugations are also present in natural systems (Figure 3.2), at various scales, from 

protein ribbons and DNA to tree leaves and insect wings [2]- in these systems, controlled folding 

and unfolding is used to improve functional and (or) mechanical properties. For instance, folding 

patterns in insect wings include four panels rotating around four fold-lines intersecting at a point 

which is similar to a degree-four origami unit cell and, more specifically, to a Miura-ori cell [69]. 

Leaves of hornbeam (Carpinus betulus) and common beech (Fagus sylvaticus) have similar 

mechanism and folding pattern to that of Miura-ori [70] (Figure 3.2). In addition, a herringbone 

pattern forms due to axial compression of a planar stiff thin elastic film at the top of a soft 

substrate [71, 72, 73] which corresponds to the minimum energy configuration [74]. The pattern 

naturally arises in embryonic intestine as well [75, 76].  

 

 

   

Figure 3.1: Illustration of 4 by 3 sheets of Miura-ori and Eggbox (m1=4, m2=3): (a) Miura-ori. 

(b) Eggbox.  

 

(a) (b) 
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Observing patterns similar to Miura-ori in biological systems has opened up a research path to 

discover associated mechanical, physical and mathematical properties [10, 39, 77]. Some of the 

most interesting properties of folded sheet material and structures arise basically due to their 

folding geometry. Miura-ori, for most ranges of geometry, is an auxetic material with a negative 

in-plane Poisson’s ratio, whereas under bending the sheet exhibits positive Poisson’s ratio, i.e., 

the in-plane and out-of-plane Poisson’s ratio of the sheet are of opposite signs [10, 39, 78]. 

 

     

Figure 3.2: Herringbone pattern in natural systems. (a) Common beech [79]. (b) Hornbeam 

[80]. (c) Insect wing [69]. (d) Pattern formed by biaxial compression of a thin film at the top of a 

soft substrate [71]. (e) Natural pattern in turkey embryo [75].  

 

Knowing that the Poisson’s ratio of a partially folded Miura-ori sheet is not dependent on the 

height of the sheet, and that it is only a function of an angle in the horizontal plane, Schenk and 

Guest [10] introduced metamaterials by stacking Miura-ori sheets with different unit cell 

geometries while preserving the capability of folding and unfolding. Wei et al. [39] also studied 

the in-plane stretching and out-of-plane bending responses of the Miura-ori unit cell.  

Eggbox is a bi-directionally flat-foldable pattern. It has been introduced as “expansible surface 

structure” by Brunner [52]. The sheet can be made by cutting Miura-ori crease pattern along the 

zigzags, and joining the strips with special alignment. Hence, a regular Eggbox sheet includes 

parallelogram facets which are connected along fold lines (Figure 3.1). The pattern cannot be 

folded from a flat sheet of material. Also, experimental tests [23] show that the sheet exhibits 

positive and negative Poisson’s ratio under stretching and bending, respectively. Similarly to 

Miura-ori the in-plane and out-of-plane Poisson’s ratios of Eggbox sheet are of opposite signs 

which is a remarkable characteristic of this folded sheet material [23].  

Tachi and Miura described cellular materials [62] composed of Miura-base tubes [81] with 

(a) (b) (c) (d) (e) 
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rhombus cross sections. The tube unit cell, shown in Figure 3.3(a), includes both Miura-ori and 

Eggbox cells overlapping by two parallelogram facets. By defining the geometry of Miura-ori 

and Eggbox cell in relation to an associated tube cell, we can relate the geometric parameters of 

Miura-ori to those of Eggbox as shown in Figure 3.3(a). The tubes assembled in various ways 

(e.g., side by side, interleaving etc.) can form the structure of the cellular materials. Special 

arrangements of Miura-ori and BCH2 (Basic Cell with Holes in which a unit cell includes 2 large 

and 4 small parallelogram facets) [65] tubes form Eggbox surfaces (see Figure 3.4). Hence, 

similarly to Eggbox sheets, the materials shown in Figure 3.4 are bi-directionally flat-foldable, 

and the materials fabricated with those geometries are soft in two directions and stiff in the third 

orthogonal direction.   

 

      

                                    ea a , eb b , 1 1e  , ew  l , e  , e   

Figure 3.3: (a) Tube unit cell with a rhombus cross section decomposed into Miura-ori and Egg-

box cells. The parameters shown in the figure are defined in the Sections on Miura-ori and 

Eggbox. (b) A BCH2-based tube forming two different scales Eggbox surfaces at the sides.  

 

In this study, we provide a general overview of the numerical modeling of origami-inspired 

structures, where the emphasis is placed on the bar framework approach available in the 

literature. Then, the key mechanical properties of Miura-ori and Eggbox patterns are reviewed 

and studied and, in this regard, the analytical models for the in-plane stiffness of Miura-ori 

available in the literature [39] are modified, and the in-plane Poisson’s ratios and rigidities of 

Eggbox are derived. Moreover, a framework is provided to obtain the Poisson’s ratio of both 

(a) 
(b) 
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Miura-ori and Eggbox sheets computationally, using the bar-framework origami structural 

modeling approach proposed by Schenk and Guest [23]. Apart from further investigation of the 

in-plane Poisson’s ratios of Miura-ori and Eggbox sheets, the framework can be employed to 

obtain the Poisson’s ratios of folded sheets with similar kinematics for which analytical models 

are not available. Finally, we introduce and describe folded one-DOF mechanism metamaterials 

including both Miura-ori and Eggbox cells.  

 

 

  

Figure 3.4: Tubular materials forming Eggbox surfaces. (a) A tubular material decomposed to 

layers of Eggbox sheets. (b) A novel material created with special assembly of BCH2 sheets 

resulting in Eggbox surfaces parallel to the horizontal plane. 

 

3.2 Numerical Modeling of Origami-like Structures 

In a folded paper, bending occurs along the fold lines, and the paper has no bending stiffness. 

Therefore, it can be approximated either using rigid plates hinged together along the fold lines or 

using membrane elements with high stretching stiffness and no bending stiffness. Another 

modeling scheme is simulation of origami using pin-jointed truss framework in which the fold-

lines and vertices are modeled using rigid bar elements and perfect hinges, respectively.  

Two types of analysis in origami structures are of interest: kinematic analysis and stiffness 

analysis. In general, depending on the application of origami, modeling and analysis methods can 

be chosen. For example, for kinematic analysis a rigid bar-framework approach and tracking the 

null space of the compatibility matrix can be used [23] or the folded sheet can be modeled using 

triangular finite element plates [25]. In addition, rigid origami simulation by properly 

constraining every vertex has been introduced by Tachi [34]. Balkcom also applied the 

(a) (b) 
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mechanism theory for the kinematic analysis [82].  

After reaching the mechanism to the desired folded state, to capture the structural properties of a 

folded shell system, a stiffness analysis can be carried out and structural modeling can be 

performed using a Finite Element Analysis. Depending on the application, either a bar-

framework origami modeling approach or a modeling scheme using nonlinear shell elements 

[49] can be used at this stage. The next section includes more details on Schenk and Guest’s bar 

framework modeling approach [23] used in current study.  

 

3.2.1 Bar-framework approach 

To investigate the effect of geometry on the global behavior of the folded sheet, Schenk and 

Guest [23] used a bar framework for modeling of partially folded shell structures. In their 

modeling, fold lines and vertices are modeled with bars and frictionless joints, respectively 

(Figure 3.5(a)). To stabilize each facet and to model the bending of the facets for stiffness 

analysis, the facets are triangulated, and diagonal members are added to each facet (Figure 

3.5(a)). In this way, this model considers the bending of the facets and the effect of out-of-plane 

kinematics of the sheets, and therefore is not restricted to rigid origami. In a bar-framework 

approach the compatibility is to relate the nodal displacements d to the bar extensions e via 

compatibility matrix C as follows 

Cd e                                                                   (3.1) 

From the relation above, the null space of the compatibility matrix provides the nodal 

displacements which do not extend the bars. Additionally, for rigid origami we need to prevent 

the bending of the facets. This can be done by adding an angular constraint to the compatibility 

matrix. The angular constraint F can be written in terms of the dihedral fold angle between two 

facets.  

sin( ) sin( ( ))F    P                                                        (3.2) 

where  is the dihedral fold angle between two adjoining facets; P is the nodal coordinates of 

two facets. By means of vector products, the angle  can be obtained. Hence, the change in the 
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dihedral angle is equal to 

1

cos( )
i

i

F
d dp

p





 


J d                                                     (3.3) 

In the above expression, J is the Jacobian of the angular constraint; idp are the nodal coordinates 

of joint i. The Jacobian of the angular constraint can be formed for each triangulated facet, and 

can be augmented to the compatibility matrix. Hence, 

d

 
  
 

e
Cd                                                                (3.4) 

in which 

facet

 
  
 

C
C

J
                                                             (3.5) 

The null space of the above equations provides the solutions that neither extends the bars nor 

bends the triangulated facets, i.e., a rigid origami model. Also, the number of internal 

infinitesimal mechanisms can be calculated from 

3 ( ) 6m j rank  C                                                     (3.6) 

For a modal analysis and also analysis of a folded shell structure subjected to external loads, we 

need to have a stiffness formulation. For a bar framework, the stiffness matrix is obtained as 

follows 

 T

barK C G C                                                              (3.7) 

In Figure 3.5(a), Kfacet and Kfold are rotational stiffness of the facets and folds, respectively. The 

equation above can be extended to model the bending of the facets and the fold-lines. Hence, the 

stiffness matrix of the system can be obtained from the following expression 

0 0

0 0

0 0

T

bar

facet facet facet

fold fold fold

G

G

G

     
     

      
     
     

C C

K J J

J J

                                        (3.8) 
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Therefore, for the analysis of the system subjected to the external forces f, we have 

Kd f                                                          (3.9) 

where d is the vector of nodal displacements.  

For the stiffness analysis, and to remove the stretching of the panels, we consider a very large 

axial stiffness for the bars. The eigenvalue analyses have been done for a wide range of material 

properties by changing the ratio of the Kfacet/Kfold. 

 

3.3 Mechanical Properties of Miura-ori and Eggbox Folded Sheet Materials 

3.3.1 Miura-ori pattern 

The geometry of Miura-ori can be described in various ways. Schenk and Guest [10] defined the 

geometry using the angles between the facets and horizontal and vertical planes, whereas Wei et 

al. [39] established the geometry based on the dihedral angles between two adjoining facets (see 

Section 3.8). However, since the system has only one independent DOF, all these angles are 

related. The equations relating the angles defining the geometry of Miura-ori are given by 

Schenk and Guest [10]. The geometric parameters of Miura-ori used in current study are shown 

in Figure 3.5(b). From the geometry of the unit cell, we have 

      2 sinw b          
cos

2
cos

a



l        sin sinh a                                      (3.10) 

Also, the expression relating the angle   and the fold angle   is given by 

tan cos tan                                                            (3.11) 
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Figure 3.5: (a) Illustration of the bar framework approach to model folded shell 

structures. Fold lines and vertices are replaced with the bars and hinges, respectively. (b) 

Geometry of Miura-ori unit cell. 

 

3.3.1.1 Stiffness analysis of Miura-based folded Materials 

The results of the stiffness analysis is shown in Figure 3.6 for a Miura-ori 4x4 sheet with facet 

angle 60 degrees, a=b=1 and 55   for varying Kfacet/Kfold. Modal shapes for the first lowest 

eigen-values of the sheet show that for the large values of Kfacet/Kfold, the first softest eigen-mode 

is representing a rigid origami behavior in which the facets do not bend and the bending happens 

only around the fold-lines. For the smallest values of Kfacet/Kfold the twisting mode is the 

predominant behavior of a Miura-ori sheet. Miura-ori sheet folded from a printing paper exhibits 

a saddle shape under bending [23]. As shown in Figure 3.6, the second softest eigen-mode for 

the values of Kfacet/Kfold around one (i.e., for the paper material) is a saddle shape which further 

confirms the accuracy of the analysis results.  

Moreover, the results of the stiffness analysis is illustrated in Figure 3.7 for a sample stacked 

Miura. The geometry of the Miura-ori sheets in Figure 3.7 has been chosen according to 

reference [10], so that the whole system can fold and unfold freely with the same kinematics. 

The result of the eigenvalue analysis also show that the softest eigen-mode of the system is the 

rigid origami behavior of the sample stacked Miura-ori for the large values of Kfacet/Kfold. This 

analysis further verifies the capability of the bar-framework approach for the stiffness analysis of 

complex SDOF system.  

 

(a) (b) 
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Figure 3.6: Stiffness analysis of Miura-ori pattern.  

 

 

  

Figure 3.7: Stiffness analysis of stacked Miura-ori pattern.  
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3.3.1.2 In-plane response of Miura-ori sheet 

In-plane Poisson’s ratio of Miura-ori 

The Poisson’s ratio of a (m1 by m2) Miura-ori sheet, shown in Figure 3.1(a), is as follows (see 

reference [65] for details) 

 
2

2 1

2

1

2 cos cos
tan

2 cos cos
WL e e

m

m

  
 

  


 


                                       (3.12) 

in which, /a b  . Therefore, for a Miura-ori sheet, for large number of rows (i.e., 1m  ), 

Poisson’s ratio considering the end-to-end dimension, e e  , approaches the corresponding value 

when considering the projected length of the zigzag strips, z  (i.e.,
2tan  ). Notice that even for 

a Miura-ori cell in which m1=1, for some ranges of geometric parameters, the Poisson’s ratio 

considering the end-to-end dimensions can be positive.  

 

In-plane stiffness of Miura-ori: Kx and Ky 

To obtain the in-plane rigidities, we define the unit cell based on parameters similar to those 

given in reference [39] (see Section 3.8). The in-plane stretching stiffness of a system in a given 

direction (e.g., Kx, Ky) is obtained by taking the derivative of the corresponding force with 

respect to the length parameter in that direction [83]. Accordingly, the in-plane stretching 

stiffness in the x direction is given by 

1 10 0

1

1

x x
x

df df d
K

d d d
 




  

l l
                                                  (3.13) 

in which 
01 is the initial dihedral angle at unreformed state. 

2 2 2 2

2 1/2 2 2 2 2
1 3

2 2

(1 ) cos 8 cos
4

(1 ) cos sin sin 4 cos 4
1 1

x

a b a
K k

a a al
l l

                 (3.14) 

where k is the rotational hinge spring constant per unit length. The second term within brackets 
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is missing in reference [39]. The contour plot of the ratio of Kx/k is shown in Figure 3.8 for a 

Miura-ori unit cell with a=b=1, in terms of the facet angle   and fold angle 1 .  

Similarly, the stretching stiffness in the y direction is obtained as follows 

0

010 10

1

1

y y

y

ddf df
K

dw d dw
 




                                                   (3.15) 

2 2 2

2 2 2 2 2
1

(1 ) cos 2
2

(1 ) sin cos( / 2) 4 sin
y

a b
K k

b b w

 

   

   
   

   
                          (3.16) 

The contour plot of the ratio of Ky/k is also shown in Figure 3.9 for a Miura-ori unit cell with 

a=b=1, in terms of the facet and fold angles   and 1 , respectively. Comparison of the two plots 

in Figure 3.8 (and Figure 3.9) shows that in-plane stiffness values from reference [39] are less 

stiff than their corresponding values obtained from the modified equations.  

 

 

 

 

Figure 3.8: Kx/k for a Miura-ori unit cell with a=b=1: (a) Wei et al.’s equation [39]. (b) 

modified equation (present work).  
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Figure 3.9: Ky/k for a Miura-ori unit cell with a=b=1: (a) Wei et al.’s equation [39]. (b) 

Modified equation (present work). 

 

Unlike the expressions given in reference [39], the modified relations for the planar rigidities 

(i.e., Kx/k and Ky/k) are not dimensionless, and thus Kx and Ky have dimension of the in-plane 

stretching stiffness, which agrees with classical references in structural analysis, e.g. [83].  

 

3.3.2 Eggbox pattern 

3.3.2.1 Geometry of Eggbox  

The geometric parameters of Eggbox used in current study are shown in Figure 3.10.  

From the geometry of the unit cell:  

2 sine e eb l   ,  2 sine e ew a   ,  cos cose e e e eh a b                            (3.17) 

in which 0 ,e e    . Another useful expression is given as 

   cos cos cose e                                                          (3.18) 

where e and e  are the angles between the z’-axis and the edges ae and be, respectively. Also, 

1e and 2e  are the dihedral angles between two adjacent facets along the edges ae and be, 

respectively (Figure 3.10), and are given by   

3

3

7

7

7

7

2
0

2
0

20
20

2
0

1
0

0
1
0

0

100 100
100

1
0

0
0

1
0

0
0

1
0

0
0 1000 1000

1000

  [Degree]


1
 [

D
e
g
re

e
]

K
y
/k  [1/length unit]

20 40 60 80

20

40

60

80

100

120

140

160

180

3

3

7

7

7

2
0

20

20

20

1
0

0

100

100 100

1
0

0
0

1
0

0
0

1000 1000
1000

1
0

0
0
0

1
0

0
0
0

10000 10000 10000

  [Degree]


1
 [

D
e
g
re

e
]

K
y
/k  [1/length unit]

20 40 60 80

20

40

60

80

100

120

140

160

180
(a) (b) 



 
 

 

  27 

  1

1

sin
2sin

sin

e
e






  
  

 
                                                      (3.19) 

1

2

sin
2sin

sin

e
e






  
  

 
                                                    (3.20) 

 

   

Figure 3.10: Geometry of Eggbox unit cell. The geometry of a regular Eggbox sheet can 

be parameterized by the geometry of a parallelogram facet (ae, be and ), and one fold 

angle, e.g. e [0, ] which is the angle between fold lines be and the z’-axis. Other 

important angles in the figure are angle between the fold lines ae and the z’-axis, i.e., e 

[0, ]; and dihedral fold angles between parallelogram facets e [0, ] and e [0, 

], joining along fold lines ae and be, respectively. 

 

3.3.2.2 Stiffness analysis of Eggbox sheet  

The results of the stiffness analysis are presented in Figure 3.11 for an Eggbox 4x4 sheet with 

facet angle 60 degrees, ae=be=1 and 45e  for a wide range of Kfacet/Kfold. Modal shapes for the 

first lowest eigen-values of the sheet show that for large values of Kfacet/Kfold, the first softest 

eigen-mode is representing a rigid origami behavior, which agrees with our expectation. For 

small values of Kfacet/Kfold twisting mode is the predominant behavior of an Eggbox sheet. The 

Eggbox sheet folded from a printing paper exhibits a spherical shape under bending [23]. As 

shown in Figure 3.11, the second softest eigen-mode for the values of Kfacet/Kfold around one (i.e., 

for paper material) is a spherical shape which further confirms the accuracy of the analysis 

results.  
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Figure 3.11: Stiffness analysis of Eggbox pattern. 

 

3.3.2.3 In-plane response of Eggbox sheet 

In-plane Poisson’s ratio 

In-plane Poisson’s ratio of Eggbox sheet is given by  

2
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e e
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w d
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l
l

l
l

                                                (3.21) 

From the above expression, the Poisson’s ratio of Eggbox is always positive, i.e. [0, )
e ew

  l , 

which was also quantified in the literature based on the angle e and the facet acute angle  [23]. 

However, knowing that the Poisson’s ratio is only a function of the angles between the z’-axis 

and the edges ae and be is insightful for creating foldable materials containing layers of Eggbox 

sheets with different geometries as presented in Section 3.7. The in-plane Poisson’s ratio of 

Eggbox versus e  for different values of the acute angle  is presented in Figure 3.15(b).  
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In-plane stiffness: Kx’ and Ky’  

Considering that the facets are rigid and are bonded via elastic torsional hinges at fold lines, we 

obtain the in-plane rigidities of Eggbox unit cell in the x’ and y’ directions (see Section 3.8) as 

follows 

2 2 2

1

2 2 2 2 2
1 1

(1 ) cos4 1

sin cos( / 2) (1 ) 4 sin

e e e
x

e e e ee

a bk
K

b b

 

   


   
   
    l

                    (3.22) 
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e e e
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e e e e e

a bk
K

a a w

 

   


   
   
    

                    (3.23) 

in which  1 1sin sin / 2e e    and  2 2sin sin / 2e e   .  

For the case of ea a , eb b , 1 1e   and ew  l , shown in Figure 3.3(a), from Equations (3.16) 

and (3.22), the in-plane stiffness of Miura-ori cell in the y direction (Ky), is equal to the in-plane 

stiffness of Eggbox cell in the x’ direction (Kx’). The contour plot of the stiffness ratio in the x’ 

direction (Kx’/k) is shown in Figure 3.12 for an Eggbox unit cell with ae=be=1, in terms of the 

facet angle  and fold angle 1e .  

 

 

Figure 3.12: In-plane stretching stiffness Kx’/k of Eggbox unit cell with a=b=1. 
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3.4 A Framework to Obtain Poisson’s Ratio Computationally  

Instantaneous Poisson’s ratio of Miura-ori is computed numerically in this section. A Miura-ori 

unit cell is modeled using the bar framework approach, and the Poisson’s ratio is calculated for 

changing  and . For the analysis under the external applied loads, we need to remove the rigid 

body motions of the system while keeping the planar motion by applying appropriate constraints. 

The simulation set up is illustrated in Figure 3.13(a) in which yellow nodes are constrained to 

remain in the horizontal (xy) plane (i.e., only displacements in the z direction are constrained, 

and the system moves freely in the xy plane), and the blue node is constrained for all 

displacements. External force is also applied in the x direction as shown in Figure 3.13(a). 

Moreover, to ensure the rigid origami behavior for obtaining the planar Poisson’s ratio, the value 

of Kfacet/Kfold must be large enough, and the axial stiffness of the bars, Kbar, is required to be 

sufficiently large to prevent the extension of the bars. For this example, we choose Kbar=109 and 

Kfacet/Kfold=103 - eigen-value analysis of the system confirms that using these values, the rigid 

origami behavior is obtained for the Miura-ori unit cell considered in this section (Figure 

3.14(a)). Figure 3.15(a) shows Poisson’s ratio obtained from the simulation matches well with 

the analytical model.  

A similar approach to the one described for Miura-ori has been used to obtain the instantaneous 

Poisson’s ratio of Eggbox. The simulation set up is illustrated in Figure 3.13(b) in which yellow 

nodes are constrained to move freely in the horizontal (xy) plane (i.e., only displacements in the z 

direction are constrained), and the blue node is constrained for x and y displacements, and moves 

freely in z direction. External force is also applied in the x direction as shown in Figure 3.13(b). 

The mode shapes showing the rigid origami behavior are shown in Figure 3.14(b). Figure 3.15(b) 

shows that Poisson’s ratio obtained from the simulation matches reasonably well the analytical 

model.  
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Figure 3.13: Simulation set up to compute Poisson’s ratio numerically. (a) Miura-ori. (b) 

Eggbox. 

  

                          

Figure 3.14: First mode illustrating rigid origami behavior: (a) Miura-ori. (b) Eggbox 

unit cell. 

 

  

Figure 3.15: Poisson’s ratio computed numerically: (a) Miura-ori. (b) Eggbox unit cell.  

 

3.5 Metamaterials Composed of Miura-ori and Eggbox Cells  

From expression 24, the Poisson’s ratio of a regular Eggbox sheet is a function of the angles e
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and e  (see Figure 3.10). Layers of Eggbox sheets with the same Poisson’s ratio can be attached 

along the joining fold lines resulting in a bi-directionally flat-foldable material (Figure 3.4). A 

similar tubular material composed of Miura-based tubes with identical parallelogram facets has 

been described by Tachi [62]. The cross section of the tube described by Tachi has identical 

edges (Figure 3.16(a)). In general, Miura-ori tube is a special case of stacking of Miura-ori sheets 

[10] in which the angle   has different signs for the sheets A and B bonded together along the 

joining fold lines, i.e. [ / 2,0]A   and [0, / 2]B  . Meeting the stacking conditions results in 

a tube cell with the kite-shape cross section shown in Figure 3.16(b) which is generally flat-

foldable in one direction.  

 

 

               

Figure 3.16: (a) Tube cell with rhombus cross section. (b) General tube cell geometry, 

for the kite-shape cross section, 1 2A Aa a and 1 2B Ba a . 

 

For two layers of Miura-ori cells (i.e., layers A and B), from the conditions for stacking of 

Miura-ori [10] we have  

   1 2 1 2cos cosA A A B B Ba a a a                                                (3.24) 

where 1Aa , 2 Aa , 1Ba  and 2Ba are shown in Figure 3.16(b). Also, from the geometry of Miura cell 

we have 

cos
cos

cos





                                                            (3.25) 

(a) (b) 
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Combining two above equations results in 

   1 2 1 2cos cosA A A B B Ba a a a                                          (3.26) 

From the above expression, for the special case of A B  , we need to have 

     1 2 1 2A A B Ba a a a                                                         (3.27) 

To meet the above equation, we can have 

1 2A Ba a  and 2 1A Ba a                                                   (3.28) 

Hence, for the special case of identical acute angles at the top and bottom cells (i.e., A B  ), we 

can have bi-directionally flat-foldable tubes with parallelogram cross sections (Figure 3.17). In 

the following, we describe tubular folded materials composed of tubes with parallelogram cross 

sections. As shown in Figure 3.18, with special alignments of tube cells and tessellation and/or 

combinations of tessellations of corresponding units, we can produce various cellular 

metamaterials. Tessellation of the alignment of the cells, shown in Figure 3.18(a), can result in 

materials with either Miura or Eggbox surfaces (see Figure 3.19). Figure 3.18(e) presents a 

cellular metamaterial with Miura-ori and Eggbox surfaces parallel to the xz and yz planes, 

respectively. Therefore, the material is auxetic in the planes parallel to xz plane, and expanding 

the material in the z direction results in the expansion and contraction of the material in the x and 

y directions, respectively.  

 

3.6 Non-developable Zigzag-base Sheets and Zigzag-base Tubes  

In this Section, we use the concept of the Poisson’s ratio of a zigzag strip introduced in reference 

[65] (see Sections 4.2 of the current dissertation), to design non-developable zigzag-base patterns 

(see Figure 3.20) as well as load-carrying zigzag-base tubes (see Figure 3.21 and Figure 3.22). 

To construct these structures, zigzag strips with identical kinematics are connected. Figure 3.20 

presents non-developable zigzag-base patterns. The patterns shown in the figure are designed so 

that, in their fully deployed configurations, the Miura-ori rows in the middle (dark pink) are flat, 

while the outer rows remain non-flat. Using the kinematics of a zigzag strip, we can design 
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various configurations of non-developable zigzag-base patterns in which the geometry can differ 

from one zigzag to the other one and even from one V-shape (see Sections 4.2) to the other one 

while keeping the kinematics identical.  

Figure 3.21 and Figure 3.22 show load-carrying zigzag-base tubes. The structures are flat-

foldable in one direction and can carry load in their fully deployed configurations.    

 

3.7 Concluding Remarks 

Eggbox is a non-developable folded sheet. The sheet is a one-DOF mechanism system and bi-

directionally flat-foldable material. Its structure can appear into Miura-inspired tubular materials 

when assembled in a special way. A sample novel bi-directionally flat-foldable material is shown 

in Figure 3.4(b) which contains layers of two different scales Eggbox sheets. Unlike Miura-ori, 

there is limited research available in the literature on Eggbox folded sheet.  

 

       

Figure 3.17: Miura-ori based tube with parallelogram cross section. (a) Unfolded Miura-

ori unit cells with mountain (blue continuous lines) and valley (red dashed lines) 

assignments. (b) Partially folded Miura-ori cells constructing the top and bottom of the 

tube cell.  (c) Tube cell with parallelogram cross section.  

 

In this study, the key mechanical properties of Miura-ori and Eggbox are reviewed and studied 

both analytically and numerically. Specifically, the geometric parameters of Miura-ori and 

Eggbox are explained in relation to a tube cell with rhombus cross section (see Figure 3.3) which 

can be decomposed to Miura-ori and Eggbox cells. In this way, mechanical properties of Eggbox 

(a) 

 

(b) 

 

(c) 
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and Miura-ori can be compared appropriately. Furthermore, employing bar-framework numerical 

approach, a procedure is described to obtain the Poisson’s ratio of both Miura-ori and Eggbox. 

The process can be used to obtain the Poisson’s ratio of similar, but more complex sheets for 

which the analytical models are not available. Verifying the analytical models for Poisson’s ratio 

numerically, as explained in this work, somehow shows the capability of pin-jointed bar 

framework approach for the analysis of folded shell structures subjected to external loads.  

Additionally, Miura-based tube with parallelogram cross section is explained (notice that in the 

tube shown in Figure 3.17, parallelogram facets of Miura-ori cells are not identical), and the 

geometry of one-DOF mechanism cellular metamaterials containing tubes with parallelogram 

cross sections is described. The proposed structures are purely geometric. Hence, they can be 

applied in a wide range of length-scale from microstructure of materials to deployable structures. 

Particularly, possessing one DOF is advantageous to provide low-energy, efficient and 

controllable actuation. Hence, making them appropriate as the bases to construct adaptive 

structures and materials.  

The conditions for stacking Miura-ori sheets with different geometries are described in reference 

[10]. However, attaching Eggbox sheets with different geometries, while preserving the 

capability of folding and unfolding is not described in the literature. Inspired by tubes with 

parallelogram cross sections (Figure 3.17) as well as the fact that the Poisson’s ratio of Eggbox is 

only a function of the angles between the edges ae and be and the z’-axis (see Equation (3.21)), 

we can design the structure of customizable cellular materials with one-DOF mechanism 

containing layers of Eggbox sheets (a sample is shown in Figure 3.23). The material shown in 

the figure contains three layers of Eggbox sheets which are attached along the joining fold-lines. 

The sheets have different geometries, but the same Poisson’s ratios. Hence, the entire system can 

fold and unfold freely.  
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Figure 3.18: (a-d) Sample alignments of tube cells with parallelogram cross sections, and 

sample one-DOF mechanism materials made from them. (e-g) Tessellations and/or 

combinations of these units results in various configurations of materials. 

  

   

Figure 3.19: (a) Material with Miura surfaces at the top and bottom. (b) Material with 

Eggbox surfaces at the top and bottom. (c) Bi-directionally flat-foldable tubular materials 

with parallelogram cross sections decomposed to Eggbox sheets. 
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Figure 3.20: Non-developable zigzag-base patterns constructed from Miura-ori cells with 

identical kinematics and different heights of the unit cells (the rule is similar to that used 

in the stacking, but the cells possessing different heights are connected side-by-side 

instead of stacking). 

 

 

   

Figure 3.21: Modified zigzag-base tubes constructed from zigzag strips with identical 

kinematics and different heights (in their semi-folded states) and various acute angles of 

parallelograms. The presented tubes are flat-foldable in one direction, and they provide a 

flat and load carrying surface in their fully deployed configurations.    
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Figure 3.22: A side-by-side assembly of the tubes shown in the figure above. The 

structure is flat-foldable in one direction and can carry vertical loads in its deployed 

configuration.  

 

 

   

Figure 3.23: (a) Sample graded bi-directionally flat-foldable cellular material with one-

DOF mechanism inspired by Miura-based tube with parallelogram cross section. The 

sample material includes 3 layers of Eggbox with the same Poisson’s ratio bonded along 

joining fold lines. (b, c) Fully folded states in 2 orthogonal directions.  

 

Acknowledgments: I would like to thank Dr. Simon Guest and Dr. Mark Schenk for their 

constructive feedback and discussions regarding the bar-framework origami structural 

modeling approach and the geometry of Eggbox used in this Chapter.  

(a) 

 
(b) 

 

(c) 

 



 
 

 

  39 

3.8 Supplementary Materials: In-plane Stiffness 

3.8.1 Miura-ori 

The geometry of Miura-ori unit cell (Figure 3.5(b)) in reference [22] is parametrized based on 

the dihedral fold angles between facets as follows 

2al        2w b       1tan cos( / 2)h a                               (3.29) 

in which, 

 1sin sin / 2           and      
1/2

2cos 1  


                            (3.30) 

By substituting l  from Equation (3.29) in Equation (3.14) and for a special case of Miura-ori 

unit cell with a=b=leq we have 

 

0 0

2 3 2 2

0 0

2 3

0 1 1

(1 ) cos (1 )4

cos sin sin cos( / 2)
x

eq

k
K

l
                                       (3.31) 

By substituting w from Equation (3.29) in equation (3.16) and for a special case of Miura-ori 

unit cell with a=b=leq we have 

0

2 2 2
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0 1
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eq

k
K

 

  

 


l
                                     (3.32) 

 

3.8.2 Eggbox  

Potential energy of an Eggbox unit cell subjected to a force in the x’ direction can also be 

calculated from the following equation  

H U                                                             (3.33) 

in which, U and   are elastic energy and potential of the applied load, respectively and can be 

calculated as 

 
0 0

2 2

1 1 2 2( ) ( )e e e e e eU k a b                                           (3.34) 
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where 
02e and

01e are the initial dihedral angles at unreformed states. Setting the condition

1/ 0eH    , the external force at equilibrium xf   can be obtained from 
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where 
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                (3.37) 

1 1/ sin cos( / 2)ee e ed d b  l                                            (3.38) 

Substituting the two above equations into xf  , we have 
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Also, xK   can be obtained from the following equation 
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Substituting equations (3.41) and (3.42) into (3.40) we have 
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2 2 2 2
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      (3.43) 

Figure 3.24 shows that increasing the fold length be, i.e. the fold in the x’ direction, makes the 

unit cell softer in the x’ direction. Whereas, increasing the fold length ae, increases the ratio of 

Kx'/k. 

 

  

Figure 3.24: Effect of fold lengths on in-plane stretching stiffness Kx’/k of Eggbox unit 

cell: Left (ae=1 and be=5); Right (ae=5 and be=1). 

 

 

Following similar process to the x’ direction, for the y’ direction we have  
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  (3.44) 

Equation (3.44) is similar to Equation (3.43) where 1, , ,e eeea b  l  in Equation (3.43) are 

substituted with 2, , ,e eeeb a w , respectively. 
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4 Unravelling Metamaterial Properties in 

Zigzag-base Folded Sheets 

 

 

 

This chapter is adapted from an article authored by Eidini and Paulino, published in 

Science Advances [65]. 

Abstract 

Creating complex spatial objects from a flat sheet of material using origami folding 

techniques has attracted attention in science and engineering. In the present work, we use 

the geometric properties of partially folded zigzag strips to better describe the kinematics 

of known zigzag/herringbone-base folded sheet metamaterials such as Miura-ori. Inspired 

by the kinematics of a one-degree of freedom zigzag strip, we introduce a class of cellular 

folded mechanical metamaterials comprising different scales of zigzag strips. This class 

of patterns combines origami folding techniques with kirigami. Using analytical and 

numerical models, we study the key mechanical properties of the folded materials. We 

show that our class of patterns, by expanding on the design space of Miura-ori, is 

appropriate for a wide range of applications from mechanical metamaterials to 

deployable structures at small and large scales. We further show that, depending on the 

geometry, these materials exhibit either negative or positive in-plane Poisson’s ratios. By 

introducing a class of zigzag-base materials in the current study, we unify the concept of 

in-plane Poisson’s ratio for similar materials in the literature and extend it to the class of 

zigzag-base folded sheet materials. 

 

Keywords: origami; auxetic; metamaterial; deployable structures; Miura-ori; soft material; 

Herringbone; zigzag; kirigami; Poisson’s ratio. 

 



 
 

 

  43 

4.1 Introduction 

Origami, the art of paper folding, has been a substantial source of inspiration for innovative 

design of mechanical metamaterials [10, 50, 39, 40, 62], for which the material properties arise 

from their geometry and structural layout. Kirigami is the art of paper cutting and, for 

engineering applications, it has been used as combination of origami with cutting patterns to 

fabricate complex microstructures through micro-assembly [84], as well as to create 3D core 

structures [64, 85, 86, 87]. Furthermore, rigid origami is a subset of origami structures where 

rigid panels (facets) are linked through perfect hinges leading to an entirely geometric 

mechanism. The mathematical theory of rigid origami has been studied by various researchers 

[30, 31, 32, 35, 34]. Based on rigid origami behavior of folding patterns, recent research [10, 39] 

has shown that in Miura-ori, metamaterial properties arise due to their folding geometry. Miura-

ori is a classic origami folding pattern and its main constituents are parallelogram facets which 

are connected along fold lines. Morphology and/or mechanism similar to that of Miura-ori 

naturally arises in insect wings [69], tree leaves [70] and embryonic intestine [75, 76]. Moreover, 

it has been reported that a self-organized wrinkling pattern of a planar stiff thin elastic film 

connected to a soft substrate subjected to biaxial compression, i.e. a herringbone pattern, is 

similar to the Miura-ori [71, 72, 73]; and herringbone pattern corresponds to the minimum 

energy configuration [74]. Applications of the Miura-ori pattern range from folding of maps [48] 

to the technologies such as deployable solar panels [24], foldcore sandwich panels [16, 68] and 

metamaterials [10, 50, 39]. The patterns introduced in this work are herringbone-base patterns, 

which are combined with cuts, and shown to possess the remarkable properties of the Miura-ori 

pattern. 

Motivated by outstanding properties and broad range of applications of the Miura-ori, the present 

study starts with raising a question: Can we design patterns aiming at both preserving the 

remarkable properties of the Miura-ori and expanding upon its design space? In this regard, upon 

closer inspection of the Miura-ori, we associate its kinematics to that of a one-degree of freedom 

(DOF) zigzag strip, and we present a technique to create zigzag-base mechanical metamaterials 

including various scales of zigzag strips. Through this study, we answer the question 

affirmatively. 
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An important material property in the present work is the in-plane Poisson's ratio. It is defined as 

the negative ratio of elastic extensional strain in the direction normal to the applied load, to the 

axial extensional strain in the direction of the applied load. Most commonly, when a material is 

stretched in a given direction it tends to get narrower in the directions perpendicular to the 

applied load. However, when stretched, materials with negative in-plane Poisson's ratio or 

auxetic materials expand in the direction perpendicular to the applied load. The out-of-plane 

bending Poisson’s ratio is defined as the negative ratio of curvatures in two perpendicular 

directions. Under bending, anticlastic (saddle-shape) and synclastic (spherical-shape) curvatures 

are observed in materials with positive and negative bending Poisson’s ratios, respectively [88, 

23]. Based on the theory of elasticity, the Poisson's ratio for a thermodynamically stable isotropic 

linear elastic material is bounded between -1 to 0.5 [89]. Contrary to isotropic solids, the value of 

Poisson's ratio is unrestricted in an anisotropic elastic material ( )    [90]. Folded sheets 

are anisotropic materials in which the deformation happens due to folding and unfolding. Thus, 

in folded sheet materials (for instance in most ranges within geometric parameters of the Miura-

ori folding pattern), the Poisson’s ratio can assume values outside the bound for isotropic 

materials [10, 39].   

 

4.2 Kinematics of a Folded One-DOF Zigzag Strip  

In this section, we look closely at the kinematics of Miura-ori as a zigzag-base folding pattern, 

which provides inspiration to create a class of mechanical metamaterials. A regular Miura-ori 

sheet contains zigzag strips of parallelogram facets, in which each unit cell can be decomposed 

into two V-shapes (Figure 4.1(a)). Each V-shape includes 2 rigid parallelogram facets connected 

via a hinge along the joining ridges as shown in Figure 4.1(b). We show that the kinematics of a 

properly constrained V-shape, as described in the following, is a function of an angle in the 

horizontal xy-plane. The constraints on the V-shape are applied to simulate similar conditions to 

those of the V-shapes in Miura-ori sheet, i.e., to create a one-DOF planar mechanism. Hence, to 

remove the rigid body motions associated with the translational and rotational DOFs, we 

constrain all translational DOFs of the point A and we assume that the edges AB and BC of the 

facets move in the xy-plane, and the projected length of the edge AD in the xy-plane remains 

along the x-axis (i.e., point D moves in the xz-plane). With this set up, the V-shape has only one 
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planar DOF. The expressions defining the geometry of the V-shape are given by 

   
cos

cos
v a




l              2 sinvw b                                               (4.1) 

where, vl  is the projected length of the edges a in the xy-plane and in the x direction; vw  is the 

width of the semi-folded V-shape in the xy-plane and along the y direction;  is an angle in the 

xy-plane between the edge b and the x-axis. The in-plane Poisson’s ratio of the system is given 

by  

  2/
tan

/

v

v

v v

w V
w v v

d

dw w


 


     

l
l

l l
                                          (4.2) 

The above expression shows that the kinematics of a V-shape is only a function of the angle . In 

particular, it shows that in a unit cell containing two V-shapes arranged side-by-side in the crease 

pattern, we can scale down the length b of the parallelogram facets to 1/n that of the other joining 

V-shape (n is a positive integer), while preserving the capability of folding and unfolding. Using 

this insight in our current research, we created a class of zigzag-base metamaterials in which the 

unit cell includes two different scales of V-shapes possessing the same   angles (Figure 4.1(c)). 

For instance, for the zigzag strips shown in Figure 4.1(c), the value of n is equal to 2.  For the 

case of n=2, from both the numerical model and the geometry, the unit cell has only one planar 

mechanism (see Sections 4.7.2 and 4.7.6.1), i.e., the geometry of the unit cell constrains the V-

shapes properly to yield one-DOF planar mechanism. Therefore, the condition for which we 

have obtained the kinematics of the V-shape is met.  

 

4.3 BCHn Zigzag-base Patterns 

The Basic unit Cell with Hole (BCHn) of the patterns introduced in Figure 4.1(c) is parametrized 

in Figure 4.2(a). The unit cell includes 2 large and 2n small parallelogram rigid panels joined via 

fold lines. For example, for the unit cell shown in Figure 4.2(a), n is equal to 2. Although 

theoretically possible, large values of n might not be practical. For a large n, a zigzag strip of 

small parallelograms approaches a narrow strip. In current research, we use only n=2, 3 in the 

BCH patterns with an emphasis placed on BCH2. We can define the unit cell by the geometry of 
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the parallelogram facets with sides a and b and acute angle  [0, /2], and angle  [0, ], 

which is half the angle between the edges b1 in the xy-plane. The expressions defining the 

geometry of the BCHn are given by 

      2 sinw b          
cos

2
cos

a



l        sin sinh a            1 /b b n                     (4.3) 

 

 

 

Figure 4.1: From Miura-ori to zigzag-base foldable metamaterials possessing different 

scales of zigzag strips. (a) A Miura-ori unit cell contains two V-shapes aligned side-by-

side forming one concave valley and three convex mountain folds (or vice versa, if the 

unit cell is viewed from the opposite side). (b) Top view of a V-shape fold including two 

identical parallelogram facets connected along the ridges with length a. Its geometry can 

be defined by the facet parameters a, b,  and the angle  [0, ]. (c) Two different 

scales of V-shapes with the same angle   are connected along joining fold lines. The 

length b of the parallelogram facets in the left zigzag strip of V-shapes is half that of the 

strip on the right in the unit cell shown.  

 

The relationship between the angle   and the fold angle   is as follows: 

tan cos tan                                                             (4.4) 

The outer dimensions of a sheet made of tessellation of the same BCHn (Figure 4.2(b)) are given 

by 

(a) (b) (c) 
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   2 2 sinW m b                1

cos 1 1
2 cos cos

cos

n
L m a b b

n n


 



 
   

 
                  (4.5) 

Note that, in the relation given for the length L, the expression within the parentheses presents 

the length of the repeating unit cell, and the last term shows the edge effect. The second term 

within the parentheses is related to the effect of the holes in the tessellation.   

For the case of rigid panels connected via elastic hinges at fold-lines, from the geometry, the 

BCH with n=2 has only one independent DOF. In general, the number of DOFs for each unit cell 

of BCHn is (2n-3). Using at least two consecutive rows of small parallelograms, instead of one, 

in BCHn (see Figure 4.9(b)) decreases the DOFs of the BCH to one irrespective of the number of 

n (see Figure 4.10 and Section 4.7.6.1 in supplementary materials for more details). Additionally, 

the patterns are all rigid and flat-foldable, and can be folded from a flat sheet of material, i.e., 

they are developable. In Figure 4.3, a few configurations of the patterns are presented. 

   

                  

Figure 4.2: Geometry of BCHn pattern. (a) Geometry of the unit cell. The geometry of a 

sheet of BCHn can be parameterized by the geometry of a parallelogram facet (a, b and 

), half number of small parallelogram facets (n) and fold angle  [0, ] which is the 

angle between fold lines b and the x-axis. Other important angles in the figure are fold 

angle between the facets and the xy-plane, i.e.,  [0, /2]; angle between the fold lines 

a and the x-axis, i.e.,  [0, ]; and dihedral fold angles between parallelograms,  

[0, ] and  [0, ], joined along fold lines a and b, respectively. (b) A sheet of BCH2 

with m1=2, m2=3 and outer dimensions of L and W. 

 

(a) (b) 
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4.4 Mechanical Properties of BCHn Patterns  

In the present research, we obtain the in-plane Poisson’s ratio in two different ways:  

• Considering the projected lengths of the zigzag strips.  

• Considering the end-to-end dimensions of a sheet. 

Note that while the first approach is valuable to provide insight on the kinematics of a zigzag-

base folded sheet such as the Miura-ori and BCH2, the latter definition can also be relevant 

depending on the application. To place emphasis on these two important concepts in relation to 

the folded sheet materials introduced in this work, we designate the value obtained by the first 

approach as z  and the latter as e e  , where the indices z and e-e stand for zigzag and end-to-end, 

respectively (see Figure 4.4(a) and Figure 4.11). In this regard, for the sheet of BCH2 shown in 

Figure 4.2(b), l and L are used to obtain z  and e e  , respectively. Notice that l for a sheet is the 

sum of the projected lengths of the zigzag strips in the xy-plane and parallel to the x-axis, and for 

a sheet made of tessellation of identical BCH2 is equal to m1 times that of a unit cell (Figure 

4.4(a)). Also, L is the end-to-end dimension of the sheet as shown in Figure 4.2(b). Furthermore, 

in both approaches W=w. Hence, z of the sheet is given in the following which is equal to the 

kinematics of a V-shape described in the previous sections. 

  2/
tan

/
w z

w

d

dw w


 


     l

l
l l

                                             (4.6) 

Accordingly, BCH2 and all other combined patterns of BCH with one-DOF planar mechanism 

(e.g., patterns shown in Figure 4.3) have z equal to 
2tan   (i.e., z of a Miura-ori sheet with the 

same fold angle [10, 39] - see Figure 4.4 (a) and (b)). We emphasize that the in-plane Poisson’s 

ratio, obtained by considering the projected lengths of the zigzag strips in the patterns, also 

provides insight that the components with identical z  can be connected to get a material which 

can fold and unfold freely (e.g., see Figure 4.3(f)). Additionally, using this insight, we can create 

numerous configurations of metamaterials (see Section 4.7.1 in supplementary materials for 

more details). For the sheets made of tessellation of the same BCHn (e.g., Figure 4.3(a)), e e   is 

given by  
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                                     (4.8) 

in which n=2 (notice that n=1 gives the relation for the Miura-ori sheet). Considering the end-to-

end dimension, for a unit cell of BCH2 (m1=1), the e e   is similar to that of a Miura-ori unit cell 

(Figure 4.4(c)) and is given by 

 
2

2

2

2 cos cos
tan

2 cos cos
WL e e

  
 

  


 


                                               (4.9)  

Therefore, unlike z  which is always negative (Figure 4.4(b)), e e  can be positive for some 

geometric ranges (Figure 4.4 (c) and (d)). Moreover, z  is only a function of the angle , but e e   

can be dependent on other geometric parameters, i.e., the geometry of the facets (a, b, ), 

tessellations (n, m1) and the angle  . Notice that Poisson’s ratio considering the end-to-end 

dimensions can be positive even for a Miura-ori unit cell (Figure 4.4(c)).  Also, note that the shift 

from negative to positive Poisson’s ratio in Miura-ori is only the effect of considering the tail 

[78], and the difference between two Poisson’s ratios (i.e., z  and e e  ) vanishes as the length of 

the Miura-ori sheet approaches to infinity. However, note that for the BCH patterns with holes, 

the transition to positive Poisson’s ratio is mainly the effect of the holes in the sheets, and unlike 

the Miura-ori, even for a BCH sheet with an infinite configuration, the difference between these 

two approaches (i.e., z  and e e  ) does not disappear (see Figure 4.5). In this regard, Figure 4.5 

presents Poisson’s ratio of a repeating unit cell of BCH2 pattern (within an infinite tessellation) 

which corresponds to the following expression. 

 
2

2

2

4 cos cos
tan

4 cos cose e

  
 

  
 


 


                                          (4.10) 

From the Equation above,  
e e

 
for the BCH2 sheet is positive if 

24 cos cos   . The value 

is negative if 
24 cos cos   .  
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Analogous to Miura-ori sheet [10], similar sheets possessing the same z  can be designed to be 

stacked and attached together along joining fold lines to form cellular folded metamaterials with 

capability of folding freely (Figure 4.3 (g) and (h), Figure 4.14). Note that the sheets tailored for 

the stacking have identical e e   which further confirms the relevance of defining the e e  as an 

important concept for the folded sheet metamaterials (see Section 4.7.3.1 in supplementary 

materials for more details). 

Considering that the facets are rigid and are connected via elastic rotational springs along the 

fold lines, we obtained the planar stretching stiffness of BCH2, in both x and y directions (Figure 

4.13) and compared the results with their corresponding values for the Miura-ori cell. From 

Figure 4.6, we infer that depending on the geometry and considering the same amount of 

material (compare Figure 4.2(a) with Figure 4.12), BCH2 can be more or less stiff than its 

corresponding Miura-ori cell in the x and y directions.  

Similarly to Miura-ori pattern, simple experimental observations show that these folded sheets 

exhibit anticlastic (saddle shape) curvature under bending (see Figure 4.7(a)), which is an 

adopted curvature by conventional materials with positive out-of-plane Poisson’s ratio [88]. This 

positional semi-auxetic behavior has been observed in the ‘anti-trichiral’ honeycomb [91] and 

auxetic composite laminates [92], as well as in other patterns of folded sheets made of 

conventional materials [10, 23, 39]. 
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Figure 4.3: Sample patterns including BCHn and cellular folded metamaterials. (a) A 

sheet of BCH2. (b) A sheet of BCH3. Adding one layer of small parallelograms to the first 

row reduces the DOF of the system to 1 for rigid origami behavior. (c) Combination of 

BCH2 and layers of large and small parallelograms with the same geometries as the ones 

used in the BCH2. (d) Combination of BCH3 and layers of large and small parallelograms 

with the same geometries as the ones used in the BCH3. (e) Sheet of BCH3 and layers of 

small parallelograms with the same geometries as the ones used in the BCH3. (f) A sheet 

composed of various BCHn and Miura-ori cells with the same angle . (g) A stacked 

cellular metamaterial made from 7 layers of folded sheets of BCH2 with two different 

geometries. (h) Cellular metamaterial made from 2 layers of 3x3 sheets of BCH2 with 

different heights tailored for the stacking purpose, and bonded along the joining fold 

lines. The material is flat-foldable in one direction. 

(c) (a) 

(g) (h) 

(b) 

(f) (d) (e) 
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Figure 4.4: In-plane Poisson’s ratios of the metamaterials introduced in this work. (a) 

5x4 (m1=5 and m2=4) BCH2 sheet (left image) and its corresponding Miura-ori sheet 

(right image) with the same geometry, and the same amount of material. Projected 

lengths of the zigzag strips along x’-x’ line parallel to the x-axis is used to obtain z and L 

is used to obtain e e  . Both sheets have identical z , but they have different e e  . (b) In-plane 

kinematics ( z ) for the class of metamaterials. (c) In-plane Poisson’s ratio considering the 

end-to-end dimensions ( e e  ) for the unit cell of Miura-ori and BCH2 patterns with a=b. 

(d) In-plane Poisson’s ratio considering the end-to-end dimensions ( e e  ) for sheets of 

Miura-ori and BCH2 with m1=5 and a=b.  
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Figure 4.5: In-plane Poisson’s ratio of the BCH2 sheet for an infinite configuration. 

Poisson’s ratio obtained by considering the projected length of the zigzag strips, z , 

versus Poisson’s ratio considering the end-to-end dimensions of the sheet when the sheet 

size approaches infinity, e e  (a=b and 1m  ). The latter is equivalent to the Poisson’s 

ratio of a repeating unit cell of BCH2 within an infinite tessellation. The figure shows 

that, contrary to the Miura-ori, the transition towards positive Poisson’s ratio is present 

for an infinite configuration of the BCH2 sheet. 

 

We investigated the effect of the geometry and material properties on the global behavior of the 

folded sheets, using the bar-framework numerical approach described by Schenk and Guest [10]. 

By considering the bending stiffness of the facets and fold lines (Kfacet and Kfold, respectively), we 

studied the modal responses of the folded shells by changing the ratio of Kfacet to Kfold. For the 

pattern of BCH2, shown in Figure 4.7, similarly to a regular Miura-ori sheet [23], twisting and 

bending modes are the predominant behavior of the pattern over a range of Kfacet/Kfold and 

associated geometries (Figure 4.7, (b) and (c)). Furthermore, the saddle-shaped bending mode 

obtained from eigen-value analysis of the patterns further confirms that the Poisson’s ratio under 

bending is positive [88]. The results show that for large values of Kfacet/Kfold, the first softest 

eigen-mode represents a rigid origami behavior (Figure 4.7(d)). The results of the stiffness 

analysis for several other patterns from the class of metamaterials show similar behavior (see 

Figure 4.15 to Figure 4.17).     

 

0 10 20 30 40 50 60 70 80 90
-5

-4

-3

-2

-1

0

1

 [Degree]


 [

-]

 

 


z
 (=65)


z
 (=85)


e-e

 (=65)


e-e

 (=85)



 
 

 

  54 

 

    

 

 

Figure 4.6: Ratio of in-plane stiffness of Miura-ori cell to that of the BCH2 in the x and y 

directions. The results show that depending on the geometry and considering the same 

amount of material, BCH2 can be more or less stiff than its corresponding Miura-ori cell 

in the x and y directions. (a) a/b=2. (b) a/b=1. (c) a/b=1/2.  
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Figure 4.7: Behavior of sheet of the BCH2 under bending and the results of the eigen-

value analysis of a 3 by 3 pattern of BCH2. (a) A sheet of BCH2 deforms into a saddle-

shaped under bending (i.e., a typical behavior seen in materials with a positive out-of-

plane Poisson’s ratio). (b) Twisting, (c) saddle-shaped and (d) rigid origami behavior 

(planar mechanism) of a 3 by 3 pattern of BCH2 (a=1; b=2; 60  ). Twisting and 

saddle-shaped deformations are the softest modes observed for a wide range of material 

properties and geometries. For large values of Kfacet/Kfold the rigid origami behavior 

(planar mechanism) is the softest deformation mode of the sheets. 

(b) 

(c) 

(d) 

(a) 
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4.5 Discussion  

Most research on origami-inspired materials relies on known patterns, especially on the Miura-

ori, i.e., a classic origami pattern with outstanding properties and a wide range of applications. In 

this study, we have created the BCH2 pattern among other combined patterns and we have shown 

that the patterns possess properties as remarkable as those of the Miura-ori. We summarize 

significant outcomes of the current research in Figure 4.8 and discuss in the following.  

  

 
Figure 4.8: Outcomes of the current study. Inspired by the Miura-ori to create the novel 

BCHn zigzag-base patterns with a broad range of applications. 

 

We have employed the concept of the in-plane Poisson’s ratio, a key material property in the 

present study, in two different contexts (see Table 4.1 in supplementary material):  

 

 To describe the kinematics and to create a class of one-DOF zigzag-base mechanical 

metamaterials: The Poisson’s ratio is obtained by considering the projected lengths of 

the zigzag strips, z , and the value is always equal to 
2tan  . The value obtained in this 

way is an inherent property of the class of one-DOF zigzag-base folded sheets, and is 

related to the foldability of the class of the metamaterials. Hence, the concept is insightful 

to create novel zigzag-base foldable materials. Note that to describe the stacking of the 

Miura-ori in the literature [10], the value (i.e., 
2tan  ) has been associated to the 
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Poisson’s ratio of the Miura-ori sheet [10]. However, in the present work, by explicitly 

associating the value to that of a one-DOF zigzag strip (Figure 4.1), we have scaled down 

the width of one joining zigzag strip in the unit cell, and created the BCH patterns 

containing various scales of zigzag strips. Accordingly, the present study extends the 

kinematics of the Miura-ori to that of a class of one-DOF zigzag-base folded sheet 

metamaterials. In other words, our work shows that all one-DOF zigzag-base folded 

metamaterials shown in Figure 4.3 have identical kinematics, if the angle   is the same.  

 To study the size change of a folded metamaterial introduced in this work: The 

Poisson’s ratio is obtained by considering the end-to-end dimensions of the sheet, e e  . 

Note that this definition captures the size change of a finite sheet (Figure 4.4) and that of 

a repeating unit cell (within an infinite configuration) for a regular sheet (e.g., regular 

BCH2 - see Figure 4.5). Moreover, it is applicable for irregular sheets such as the one 

shown in Figure 4.3(f).  

Because recent literature on the topic had differing expressions regarding Poisson’s ratio 

evaluation [10, 39, 78], by introducing a class of zigzag-base folded sheet materials, this study 

further clarifies the issue and unifies the concepts. In this regard, for the Miura-ori sheet, the 

Poisson’s ratio of a repeating unit cell is equal to z . Hence, the value given in [10, 39] presents 

both the kinematics of the Miura-ori sheet and the size change of a repeating unit cell of the 

Miura-ori. Thus, considering the end-to-end dimensions in a finite Miura-ori sheet is to simply 

capture the edge effect [78] (i.e., the last term given in Equation (4.5) for the L). However, for 

the BCH2 pattern, the Poisson’s ratio of a repeating unit cell is not equal to z , and it assumes 

both negative and positive Poisson’s ratios due to the presence of the holes in the pattern (Figure 

4.5). Therefore, our study shows that considering the end-to-end configuration for the BCH2 

pattern is mainly to capture the effect of the holes in the Poisson’s ratio (i.e., the second term 

within parentheses in Equation (4.5) for the L).  

We have also shown that BCHn and combined patterns, introduced in this work, possess 

metamaterial properties arising from their tunable geometrical configurations. An appealing 

feature of these patterns is that they display similar properties to those of the Miura-ori, however, 

presence of the different scales of zigzag strips in the structure of the patterns as well as 
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existence of the holes make the BCHn patterns unique (e.g., see Figure 4.4(a)). In addition, the 

fact that the BCHn mechanical properties differ from those of the Miura-ori (e.g., see Figure 4.6 

and Figure 4.4(d)) offer avenues to explore alternative materials and structures based on these 

patterns for a certain performance/application of Miura-ori pattern on which there is a surge of 

research interest. On the other hand, present technology requires lighter and more customizable 

structures and materials. Combining BCHn patterns with Miura-ori provides an augmented 

design space for tailored engineering design of materials and structures. Consequently, 

availability of large design motifs can be advantageous, for instance, in dynamic architectural 

façades where the place of the holes in the patterns can be controlled by combining Miura-ori 

with BCHn to either allow light in the interior of the building or to promote shading when 

desirable. 

The main assumptions in this study are highlighted as: (i) to obtain the in-plane Poisson’s ratio, 

we have assumed a rigid origami behavior. (ii) To perform stiffness analysis and to capture the 

effect of the stiffness of the panels to that of the fold lines in the global behavior of the patterns, 

we have assumed that the panels do not stretch, and bending happens only around the fold lines 

(including the added fold lines). 

In summary, the remarkable properties of the patterns (specifically BCH2), such as rigid-

foldability, flat-foldability, and possessing one DOF, as well as numerous possible combinations 

of the patterns make them potentially suited for a broad range of applications including kinetic 

and deployable structures (e.g., solar sails [24]), light cellular foldcore sandwich panels [68, 16], 

3D tunable folded cellular metamaterials [10, 62, 63], energy absorbing devices [49], foldable 

robots [93] and auxetic materials [88, 89]. In all these applications, scalability is a major feature 

of the BCHn or other combined patterns (due to their inherent geometric properties).  

 

4.6 Materials and Methods 

To experimentally assess mechanical behavior of the origami-inspired patterns, we fabricate 

samples from various types of materials including 20, 24, and 28 lb papers, 76 lb construction 

paper, and 110 lb cardstock. For creating holes and patterning creases, we employ an electronic 

cutter. We first design the patterns and then convert to a vector format appropriate for electronic 
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cutting. The crease lines are perforated using a dash-and-gap style. After patterning, we fold the 

sheets manually along the fold lines constituting the mountains and valleys of the folded sheets. 

We verify the observed behavior of the materials numerically using a stiffness analysis over a 

broad range of materials including rigid panels connected via frictionless hinges. 
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4.7 Supplementary Materials 

4.7.1 Geometry, pattern tessellation and combination  

The geometry of BCHn (Basic unit Cell with Hole) is described in the main text and is shown in 

Figure 4.2(a). The end-to-end dimensions of a sheet made of tessellation of the same BCHn (see 

Figure 4.2(b)) are given by 

   2 2 sinW m b                1

cos 1 1
2 cos cos

cos

n
L m a b b

n n


 



 
   

 
           (4.11) 

By combining BCHn with row/rows of small and/or large parallelograms with the same angle , 

we can obtain numerous unit cells. A few configurations are presented in Figure 4.9. The 

tessellations or/and combinations of tessellation of these cells having the same angle   can result 

in a new metamaterial. For example, patterns shown in Figure 4.3 (c) and (d) are obtained by 

tessellations of the unit cells presented in Figure 4.9(d).  

 

 

Figure 4.9: BCH2 and BCH3 and their combinations with row/rows of small and/or large 

parallelograms. (a) A BCH2 and a BCH3. (b) A BCH2 and a BCH3 combined with a row 

of small parallelograms with the same geometry as the one used in the corresponding 

BCH. (c) A BCH2 and a BCH3 combined with a row of large parallelograms with the 

same geometry as the one used in their corresponding BCH. (d) A BCH2 and a BCH3 

combined with rows of small and large parallelograms with the same geometry as the one 

used in their corresponding BCH.  

         

(a) (b) (c) (d) 
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4.7.2 Number of degrees of freedom of the patterns  

For the case of n=2, i.e., for the unit cell of BCH2 pattern shown in Figure 4.2(a), and for a given 

geometry of the facet, the geometry of the unit cell implies that it can be defined based on only 

one fold angle (i.e., similarly to Miura-ori [10], we can write the relations between all degrees of 

freedom (DOFs) based on only one fold angle, e.g., the angle ). Hence, the unit cell of BCH2 

has only one DOF. On the other hand, implicit formation of the structure of the Miura-ori unit 

cell with one DOF mechanism between two adjoining unit cells, as shown in Figure 4.10(a), 

imposes the whole pattern to have only one DOF. The conclusion is further verified using 

numerical calculation of the number of DOFs as described in Section 4.7.6.1.  

 

 

Figure 4.10: Constrained DOFs by implicit formation of the structure of the Miura-ori 

unit cell between adjoining unit cells of BCH2 and BCH3 in the pattern. (a) Although the 

unit cell of the pattern shown, BCH2, does not have Miura-ori unit cell, the Miura-ori unit 

cell structure formed implicitly in the tessellation makes the whole BCH2 pattern fold 

with one-DOF planar mechanism. (b) In the symmetric tessellation of identical BCH3, 

except for the small parallelogram facets of the first row, all other independent DOFs in 

the unit cell of BCH3 are constrained by the structure of the Miura-ori cell formed 

between two adjoining unit cells.  

 

In general, from the numerical model described in Section 4.7.6.1 and for rigid origami behavior, 

the unit cell of BCHn (Figure 4.9(a)) has 2n-3 DOFs. However, adding one row of small 

Miura-ori cell 

structure

Unconstrained 

DOFs

Constrained 

DOFs

Miura-ori cell 

structure
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parallelogram facets to the BCHn (e.g., Figure 4.9(b)), i.e., creating a complete row of Miura-ori 

unit cells with the small parallelogram facets, reduces the DOF of the cell to 1 irrespective of the 

number of n. Hence, tessellation of the unit cells shown in Figure 4.9(b) can create patterns with 

one DOF planar mechanism (e.g., Figure 4.3(e)).  

For the symmetric tessellation of BCH3, as presented in Figure 4.10(b), except for the first row 

of small parallelogram facets, all other independent DOFs in the unit cell of BCH3 are 

constrained by the implicit formation of the structure of Miura-ori cell between two adjoining 

unit cells. Hence, the pattern of BCH3, shown in Figure 4.10(b), due to existence of 

unconstrained DOFs in the first row of small parallelogram facets, has more than one DOF. 

However, adding one row of small parallelogram facets, and accordingly creating the row of 

Miura-ori cells with small parallelogram facts can reduce the DOF of the whole system to one 

(e.g., Figure 4.3(b)).   

 

4.7.3 In-plane stretching response of BCHn sheets 

4.7.3.1 Poisson’s ratio  

A 5x4 sheet of BCH2 along with its corresponding Miura-ori sheet containing the same geometry 

of facets and fold angle (a, b,  and   are identical in both models) is shown in Figure 4.4(a). 

The Poisson’s ratio z  for both sheets can be obtained from the following relation 

         
/

/
w z

w

d

dw w





   l

l

l l
                                                   (4.12) 

in which l  is the projected length of the zigzag strips in the xy-plane and parallel to the x-axis 

(i.e., the projected lengths of the strips along any arbitrary lines of x’-x’ in the xy plane and 

parallel to the x-axis intersecting a complete tessellation). Hence, for a sheet with m1 rows, l  is 

equal to m1 times the projected lengths of the strips in the unit cell shown in Figure 4.2(a). From 

Figure 4.4(a), the importance of considering the end-to-end dimensions to obtain the Poisson’s 

ratio for folded sheets is more pronounced in sheets with holes, because both sheets have the 

same z  despite having different lengths along the x-axis. Another example, showing the 
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relevance of the end-to-end dimensions to obtain Poisson’s ratio of folded sheets is presented in 

Figure 4.11, where two identical 2x2 Miura-ori sheets are shown. Moreover, 2 rows of small 

Mira-ori cells with equal z  are also attached to the left-hand sample as shown in the figure. 

Therefore, from the figure, considering the end-to-end dimensions to obtain Poisson’s ratio in the 

left system is obvious. For the limit cases of very large number of small cells, as well as very 

small length of a for small cells (i.e., n   and 0sa  . See Figure 4.12 for the geometry of 

Miura-ori cell), the rows of small Miura-ori cells approach the lines defining the end-to-end 

dimension for the 2x2 Miura-ori sheet shown on the right-hand image. 

From the expression (4.6) in the main text, when
2cos cos     , e e   is positive and for

2cos cos     , e e  is negative.  

 

 

Figure 4.11: Concept of Poisson’s ratio considering the end-to-end dimensions. Figure 

shows two identical 2x2 Miura-ori tessellations. The 2 rows of small Mira-ori cells with 

the same z as that of the 2x2 sheet are attached to the left sample. Length b of the small 

cells are 1/5 of that of the large cells (i.e., the number of small cells per each large cell is 

5 (n=5)). 
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Figure 4.12: Geometry of Miura-ori cell. 

 

For a Miura-ori (n=1) sheet, we have 
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                                      (4.13) 

Hence, for a Miura-ori sheet, if 1m  , then e e   approaches 
z  (i.e.,

2tan  ). Notice that 

from the above relation, even a Miura-ori unit cell (i.e., 1 1m  ) can have positive Poisson’s ratio 

for some ranges.  

Also, for a sheet of BCH2, we have 
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                                     (4.14) 

Note that from the above relation, for a sheet of BCH2, while comparing z  with e e  , the shift 

towards positive Poisson’s ratio in e e  is mainly the effect of the holes, and thus the difference 

between z  and e e   does not disappear (see Figure 4.5) when the length of the sheet approaches 

to infinity ( 1m  ). Table 4.1 summarizes the main points on the in-plane Poisson’s ratio of 

the class of zigzag-base folded materials. 
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Table 4.1: Summary of main points on the in-plane Poisson’s ratio of the class of zigzag-

base folded metamaterials. 

 

 

4.7.3.2 Stretching stiffness  

4.7.3.2.1 BCH2  

In this section, we derived the in-plane stiffness of the BCH2 in the x and y directions. The results 

are also compared with those of the Miura-ori cell. For this purpose, an alternative 

parameterization for BCH2 (the unit cell is shown in Figure 4.2, (a) and (b)) based on the 

dihedral angles between the rigid facets is used, which is similar to the equations of reference 

[39] for Miura-ori cell. To better compare the results, we kept the same symbols as those given 

for Miura-ori [39], provided that they are consistent with the symbols used in this work. 

Therefore,  

2al        2w b       1tan cos( / 2)h a                          (4.15) 

in which, 

 1sin sin / 2           and      
1/2

2cos 1  


                     (4.16) 

The potential energy of a BCH2 (see Figure 4.2, (a) and (b)), subjected to uniaxial force in the x 

Using projected length of the zigzag strips

 

Using the end-to-end dimensions of a sheet

2/
tan

/
z

d

dw w
    

l l /

/
e e

dL L

dW W
   

v By introducing BCHn patterns, our work shows 
that the value is an inherent property of the 
class of one-DOF zigzag-base folded materials, 
and is always negative and is a function of the 
angle    .

v Provides insight on the kinematics and thus on 
how to create zigzag-base foldable 
metamaterials.

v It has been used in the literature (1) as the 
Poisson s ratio of the Miura-ori, to describe the 
stacking of the Miura-ori sheets.

v By explicitly associating the value to each zigzag, 
and thus by changing the scale of the zigzags in 
the patterns, we have created the BCHn 
patterns.

v The value captures the size change of the 
sheets, and is a function of the geometry of the 
facets, tessellation, and the angle    . It can be 
positive depending on the geometry. 

v For an infinite tessellation of a regular sheet, it 
captures the Poisson s ratio of a repeating unit 
cell.

v The in-plane Poisson s ratio of a repeating unit 
cell of the Miura-ori sheet, obtained in this way, 
is equal to      .

v For the Miura-ori, considering the end-to-end is 
to simply capture the edge effect (32). However, 
for the BCHn patterns, it is to capture the effect 
of the holes in the patterns.
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direction, can be obtained from 

H U                                                        (4.17) 

in which, U  and   are elastic energy and potential of the applied load, respectively that are 

given by 

 
0 0

2 2

1 1 2 2

1
4 ( ) ( )

2
U k a b                                            (4.18) 

1

10

1

1

x

d
f d

d








  


l
                                             (4.19) 

where k  is the rotational hinge spring constant per unit length (k). Setting the condition

1/ 0H    , the external force at equilibrium xf  can be obtained from 
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Notice that xK  is obtained from the following expression 
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where,  
00 1,    . The contour plot of the stiffness ratio in the x direction (Kx/k) is shown 

Figure 4.13(a) for a unit cell with a=b=1, in terms of the facet angle   and fold angle 1 .  

Similarly, for the y direction: 
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The contour plot of the stiffness in the y direction is shown in Figure 4.13(b) for a unit cell with 

a=b=1 in terms of the facet and fold angles,  and 1 , respectively.  

 

 

Figure 4.13: In-plane stiffness for the BCH2 with a=b=1. (a) Kx/k. (b) Ky/k. 

 

Note that to compare the in-plane stiffness results with those of the Miura-ori, we considered a 

measure of the in-plane stiffness which is equivalent to the load making the unit displacement in 

the zigzag strips of the unit cells (i.e., the length of the zigzag strips are used in the derivations).  
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4.7.3.2.2 Classical Miura-ori  

The in-plane stretching stiffness in the x direction for Miura-ori cell is obtained by Equation 

(4.21), which results in  
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     (4.26) 

The second term within brackets is missing in Ref. [39]. Similarly, the stretching stiffness in the 

y direction is obtained by Equation (4.24), which results in 

0

0

2 2 2

0
1 2 2 2 2 2

0 1

(1 ) cos 2
( , ) 2

(1 ) sin cos( / 2) 4 sin
y

a b
K k

b b w

 
 

   

   
       

               (4.27) 

Notice that Kx/k and Ky/k are not dimensionless, and thus Kx and Ky have dimension of the in-

plane stretching stiffness [83]. See Section 3.3.1.2 in Chapter 3 for more information.  

 

4.7.3.2.3 In-plane Stiffness of BCH2 compared with its corresponding Miura-ori cell  

Figure 4.6 shows the ratio of the in-plane stiffness of Miura-ori cell in the x and y directions to 

those of the BCH2, for various ratios of a/b. The ratio is equal for both x and y directions because 

only the numerators of the first term in the planar stiffness relations change from BCH2 to Miura-

ori cell, and the numerators are equal in both planar rigidities of x and y directions for a specific 

unit cell. 

 

4.7.4 Cellular folded metamaterial  

Similar sheets with different heights, while possessing the same z , can be stacked and attached 

together along joining fold lines to make a cellular folded metamaterials (see Figure 4.3 (g) and 

(h) Figure 4.14). The fold geometry can change from layer to layer, but assuming stacking of the 

patterns using 2 layers of A and B [10], and by equating the external dimensions as well as z for 
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both layers of A and B, respectively, we have 
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                                             (4.29)                                             

where, the geometry of the layer B can be obtained based on that of the layer A. It is worth 

noting that meeting the above equations for the stacking of the layers results in the sheets 

possessing identical e e   as well. This result further emphasizes the relevance of defining the 

end-to-end Poisson’s ratio for the folded sheet metamaterials. Studies similar to the one given in 

[10] can be done on stacked folded cellular materials developed from the patterns introduced in 

this work.   

The angle   for the stacked samples shown in Figure 4.3(g) and Figure 4.14 is positive for both 

sheets, i.e. , [0, / 2]A B   . This form of stacking may be applied as impact absorbing devices 

[49]. 

Considering the angle   for one alternating layer being negative, i.e. [ / 2, 0]A    results in a 

new metamaterial in which the layers can be connected along joining fold lines using adhesive 

(Figure 4.3(h)). In this way of stacking, the heights for two successive layers can be identical. 
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Figure 4.14: Sample stacked cellular folded metamaterials. The samples include layers of 

BCH2 with two different geometries tailored for stacking. One alternating layer is almost 

unfolded ( 5  ) in these samples. (a) Two BCH2 with different heights are attached 

along the joining fold lines. (b) 4 layers of BCH2 with two different heights are attached 

along the joining fold lines. (c) 4 layers of 2x2 BCH2 with two different heights are 

attached along the joining fold lines.  

 

4.7.5  Experimental responses of the patterns 

4.7.5.1 In-plane behavior 

Under in-plane extension, the patterns, for large geometric ranges (see the analytical model in the 

main text), exhibit negative Poisson’s ratios. Simple in-plane experimental tests show that, for 

most geometric ranges, the patterns exhibit negative Poisson’s ratio.  

 

4.7.5.2 Out-of-plane behavior 

Under bending, this class of patterns folded from various types of papers exhibit anticlastic 

(saddle-shaped) curvature (see Figure 4.7(a), Figure 4.15(a), Figure 4.16(a) and Figure 4.17(a)) 

which is an adopted curvature by conventional materials with positive Poisson’s ratio [24]. 
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4.7.6 Numerical investigation of patterns behavior 

To capture the effect of geometry and material properties on the global behavior of a folded shell 

system, a stiffness analysis can be carried out and the structure can be simulated using a Finite 

Element Analysis (FEA). Depending on the application, either a constrained bar-framework 

origami modeling approach [10, 23] or a modeling scheme using nonlinear shell elements can be 

used at this stage. In the current study, to model folded shell structures, we used the pin-jointed 

bar framework approach proposed by Schenk and Guest [10, 23]. In this modeling scheme, fold 

lines and vertices are modeled with bars and frictionless joints, respectively. To stabilize each 

facet and to model the bending of the facets for stiffness analysis, the facets are triangulated, and 

additional members are added to each facet. Placing of additional members is based on 

observations from physical models, stabilization of the facets, and energetic consideration in 

facet bending [10]. In that way, this model considers the bending of the facets and the effect of 

out-of-plane kinematics of the sheets, and therefore is not restricted to rigid origami.  

By varying the ratio of the bending stiffness of the facets and fold lines (Kfacet/Kfold), we 

performed stiffness analysis for 3x3 patterns of BCH2 and BCH3, and 2x3 patterns of the unit 

cells shown in Figure 4.9(d) with =60 degrees, a=1 and b=2. The stiffness analysis of the 

patterns reveals that twisting and bending modes are predominant behavior of the patterns over a 

large range of Kfacet/Kfold and geometries (Figure 4.15-Figure 4.17, (a) and (b)). The modal shapes 

corresponding to the lowest eigen-value of the sheets show that for large values of Kfacet/Kfold, the 

first softest deformation mode is representing a rigid origami behavior (Figure 4.15-Figure 4.17, 

(c)). 

 

4.7.6.1 Numerical calculation of the number of DOFs of the patterns  

In the bar-framework analysis, compatibility equation is to relate the nodal displacements d to 

the bar extensions e via compatibility matrix C as follows 

Cd e                                                                   (4.30) 

From the above equation, the nullspace of the compatibility matrix provides the solution in 

which the bars do not extend. To model rigid origami behavior, we need to add an angular 
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constraint to the compatibility matrix whose nullspace can provide the nodal displacements d for 

which the facets do not bend either. The angular constraint can be written in terms of the dihedral 

fold angles between triangulated facets connected by added fold lines [10, 23]. Hence,  

facet dJ d                                                             (4.31) 

where  is the dihedral fold angle between two adjoining triangulated facets and 
facetJ  is the 

Jacobian of the angular constraint considered for the triangulated facets intersecting by added 

fold lines. Therefore, the augmented compatibility matrix is as follows 

facet

 
  
 

C
C

J
                                                             (4.32) 

Accordingly, the number of internal infinitesimal mechanisms (i.e., the number of independent 

DOFs) can be obtained from the expression 

3 ( ) 6m j rank  C                                                    (4.33) 

in which  j is the number of joints (i.e., the number of vertices). In the above relation, the 6 DOFs 

related to the rigid-body motions of 3D structures are excluded.  

We used the above relation to obtain the number of DOFs for the patterns considering rigid 

origami behavior. The results are justified based on the geometry of the patterns as well as 

existence of the implicit formation of the structure of the Miura-ori cells with one-DOF 

mechanism as described in Section 4.7.2.   
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Figure 4.15: Behavior of the sheet of BCH3 under bending and the results of eigen-value 

analysis of a 3 by 3 pattern of BCH3. (a) Sheet of BCH3 deforms into a saddle-shaped 

under bending which is typical behavior for materials having a positive Poisson’s ratio. 

(b) Twisting, (c) saddle-shaped and (d) rigid origami behavior (planar mechanism) of a 3 

by 3 pattern of BCH3 (with a=1; b=2; 60  ).  
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Figure 4.16: Behavior of a sheet of the pattern shown in Figure 4.3(c) under bending and 

results of eigen-value analysis of a 2 by 3 sheet of the pattern. (a) The sheet deforms into 

a saddle-shaped under bending (i.e., typical behavior seen in materials having a positive 

Poisson’s ratio). (b) Twisting, (c) saddle-shaped from two different views and (d) rigid 

origami behavior (planar mechanism) of a 2 by 3 pattern shown in Figure 4.3(c) (with 

a=1; b=2; 60  ).   

(b) 

(c) 

(d) 

(a) 
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Figure 4.17: Behavior of a sheet of the pattern shown in Figure 4.3(d) under bending and 

the results of eigen-value analysis of a 2 by 3 sheet of the pattern. (a) The sheet deforms 

into a saddle-shaped under bending, i.e. a typical behavior seen in materials having a 

positive Poisson’s ratio. (b) Twisting, (c) saddle-shaped from two different views and (d) 

rigid origami behavior (planar mechanism) of a 2 by 3 pattern shown in Figure 4.3(d) 

(with a=1; b=2; 60  ).  
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5 Tuning the Miura-ori Properties by 

Dislocating the Zigzag Strips 

 

 

 

This chapter is adapted from an article authored by Maryam Eidini, in review [94]. 

 

Abstract 

The Japanese art of turning flat sheets into three dimensional intricate structures, origami, 

has inspired design of mechanical metamaterials. Mechanical metamaterials are 

artificially engineered materials with uncommon properties. Miura-ori is a remarkable 

origami folding pattern with metamaterial properties and a wide range of applications. In 

this study, by dislocating the zigzag strips of a Miura-ori pattern along the joining ridges, 

we create a class of one-degree of freedom (DOF) cellular mechanical metamaterials. 

The resulting configurations are based on a unit cell in which two zigzag strips surround 

a hole with a parallelogram cross section. We show that dislocating zigzag strips of the 

Miura-ori along the joining ridges preserves and/or tunes the outstanding properties of the 

Miura-ori. The introduced materials are lighter than their corresponding Miura-ori sheets 

due to the presence of holes in the patterns. Moreover, they are amenable to similar 

modifications available for Miura-ori which make them appropriate for a wide range of 

applications across the length scales. 

 

Keywords:  Miura-ori; Poisson’s ratio; auxetic; metamaterial; origami; kirigami; zigzag; 

herringbone. 

 

5.1 Introduction 

Miura-ori, a zigzag/herringbone-base origami folding pattern, has attracted substantial attention 
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in science and engineering for its remarkable properties [71, 95, 96, 97, 98]. The exceptional 

mechanical properties of the Miura-ori [97, 39], the ability to produce its morphology as a self-

organized buckling pattern [71, 95] and its geometric adaptability [99, 100] has made the pattern 

suited for applications spanning from metamaterials [97] to fold-core sandwich panels [101]. 

Moreover, Miura-ori is a mechanical metamaterial with negative Poisson's ratio for a wide range 

of its geometric parameters [65, 78]. Mechanical metamaterials are artificially engineered 

materials with unusual material properties arising from their geometry and structural layout. In-

plane Poisson’s ratio is defined as the negative ratio of transverse to axial strains. Poisson’s 

ratios of many common isotropic elastic materials are positive, i.e., they expand transversely 

when compressed in a given direction. Conversely, when compressed, materials with negative 

Poisson's ratio or auxetics contract in the directions perpendicular to the applied load. Discovery 

and creating of auxetic materials has been of interest due to improving the material properties of 

auxetics [89, 102, 103, 104]. Auxetic behavior may be exploited through rotating rigid and semi-

rigid units [105, 106], chiral structures [107, 108], reentrant structures [109, 110, 111], elastic 

instabilities in switchable auxetics [112, 113], creating cuts in materials [114], and in folded 

sheet materials [97, 65]. The latter is the concentration of the current research.  

Research studies have shown that the herringbone geometry leads to auxetic properties in folded 

sheet materials [97, 65] and textiles [115, 116], and its morphology arises in biological systems 

[75, 76, 117]. Due to possessing unprecedented deformability, the herringbone structure 

fabricated by bi-axial compression, has been also used in deformable batteries and electronics 

[118, 98, 119].  

Kirigami, the art of paper cutting, has been applied in science and engineering as three 

dimensional (3D) core cellular structures and solar cells among others [64, 120, 121]. The 

current research expands on a recent study by Eidini and Paulino [65] where origami folding has 

been combined with cutting patterns to create a class of cellular metamaterials. In the present 

study, we use the concept of the Poisson’s ratio of a one-DOF zigzag strip (i.e., 2

z tan   ) 

[65] which provides inspiration to tune and/or preserve the properties of the Miura-ori. In this 

regard, by dislocating the zigzag strips of the Miura-ori pattern along the joining fold lines, we 

create a novel class of metamaterials. The resulting configurations are based on a one-DOF unit 

cell in which two zigzag strips surround a hole with a parallelogram cross section. 
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5.2 Geometry of the Patterns  

As shown in Figure 5.1, the arrangement of zigzag strips with offsets creates the parallelogram 

holes in the patterns.  

 

  

Figure 5.1: Crease patterns of sample zigzag-base folded materials introduced in the 

current work and their unit cell. (a) Changing the direction of the offset from a zigzag 

strip to the next adjoining one results in a pattern with holes oriented in different 

directions - the direction of the offsets are shown with blue arrows. (b) Arranging the 

offsets all to one side, results in zigzag strips with the holes all oriented with the same 

direction. (c) Crease pattern of the unit cell. In the figures, the blue and red lines show 

mountain and valley folds, respectively, and hatched black areas represent the places of 

the cuts.   

 

The Zigzag unit Cell with Hole (ZCH) of the patterns is shown in Figure 5.1(c) and is 

parametrized Figure 5.2(a). The equations defining the geometry of the ZCH are given by 

      2 sinw b          
cos

2
cos

a



l         sin sinh a             0 / 2hb b b                (5.1) 

The expression relating the angle   and the fold angle   is as follows 

tan cos tan                                                             (5.2) 

The outer dimensions of a regular sheet of ZCH (Figure 5.2(b)) are given by 

(a) (b) 

(c) 
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 2 2 sinW m b                                                        (5.3) 

 1

cos
2 2b cos b b cos

cos
ZCH h hL m a


 



 
    

 
                              (5.4) 

If considered in the context of rigid origami, the ZCH is a one-DOF mechanism system. Sample 

patterns containing ZCH unit cells are presented in Figure 5.3, and the patterns have one DOF. 

We obtain the DOF of the patterns in this work using the approach mentioned in [65].  

 

     

Figure 5.2: Geometry of ZCH pattern. (a) Geometry of the unit cell. The geometry of a 

ZCH sheet can be parameterized by the geometry of a parallelogram facet, hole width bh, 

and fold angle  [0, ] which is the angle between the edges b0 (and b) and the x-axis 

in the xy-plane. Other important angles in the figure are fold angle between the facets and 

the xy-plane, i.e.,  [0, /2]; angle between the fold lines a and the x-axis, i.e.,  [0, 

]; Dihedral fold angles between parallelogram facets [0, ] and  [0, ], joining 

along fold lines a and b0, respectively. (b) A ZCH sheet with m1=2 and m2=3 and outer 

dimensions L and W. 

 

5.3 Key Mechanical Behaviors of the Patterns 

Being in the class of zigzag-base patterns with one-DOF planar mechanism, the patterns of ZCH 

shown in Figure 5.3 all have z  equal to 
2tan   [65]. Using the outer dimensions of the sheet, 

the Poisson’s ratio of a regular ZCH sheet (for example, sample patterns shown in Figure 5.2(b) 

and Figure 5.3(a)) is given by  

(a) (b) 
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in which 

        1

1 0h
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                                                            (5.6) 

In Equation (5.4), the dimensions of a repeating unit cell of the sheet are as follows  

2 sinw b                                                             (5.7) 

cos
2 2 cos

cos
r hL a b





                                                   (5.8) 

Hence, the Poisson’s ratio of a repeating unit cell (in an infinite tessellation) is given by 
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           (5.9)            

The value given in the relation above presents the Poisson’s ratio of a regular ZCH sheet for an 

infinite configuration as well (see Figure 4.4(a)). The value is positive if 2cos cosha b  . The 

value is negative if 2cos cosha b  . If / ha b  , the Poisson’s ratio of a repeating unit cell 

approaches z . If /b a  , the Poisson’s ratio of a repeating unit cell of the Miura-ori remains 

as 
2tan  , i.e., the z  (Figure 4.4(b)), but the Poisson’s ratio of a repeating unit cell of ZCH 

approaches 
2tan  . This phenomenon happens due to the existence of the holes in the ZCH 

patterns.  

Upon bending, a ZCH sheet exhibits a saddle-shaped deformation (see Figure 5.6) which is a 

property for materials with positive Poisson’s ratio [104]. Using the bar-framework numerical 

approach [97], the results of eigen-value analysis of sample ZCH patterns reveal similar behavior 

to those observed in Miura-ori and BCHn [97, 65] (see Figure 5.5 and Section 5.5 for more 

details). 

 



 
 

 

  81 

 

 

 

 

 

Figure 5.3: Sample patterns of ZCH. (a-e) Sample ZCH sheets created by changing the 

direction and/or the amount of the offsets, in placement of one zigzag with respect to its 

neighboring one, in the patterns. Note that by changing the height h, the length and width 

of the parallelogram facets, the hole width (pattern (e)) and other changes (e.g., similarly 

to the Miura-ori, changing the geometry of the facets to get the curved version and 

others) we can produce numerous graded and/or shape morphing materials/structures.     

 

(a) (b) (c) 

(d) (e) 
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Figure 5.4: In-plane Poisson’s ratio of metamaterials introduced in this work with 

infinite configurations. (a) Poisson’s ratio of Miura-ori and ZCH sheets for ( 1m   ) and 

a=b, and two different hole widths - the values correspond to the Poisson’s ratios of the 

repeating unit cells of sheets as well. (b) Poisson’s ratio of repeating unit cells of ZCH 

and Miura-ori sheets if /b a  .   

 

            

  

Figure 5.5: Results of the eigenvalue analysis of a sample ZCH sheet. (a) Twisting, (b) 

saddle-shaped and (c) rigid origami behavior (planar mechanism) of a 4x4 and a 4x3 

patterns of ZCH with the holes located on various directions (a=1; b=2; =60).  

 

5.4 Concluding Remarks 

In this study, we have presented a method to tune and/or keep the properties of the Miura-ori, 

i.e., the most remarkable origami folding pattern. The resulting configurations are zigzag-base 

(a) (b) 

(a) (b) 

(c) 



 
 

 

  83 

patterns which are flat-foldable, developable and 1-DOF systems. The main advantages of the 

patterns are highlighted as follows: (i) the patterns are amenable to similar modifications and/or 

applications available for the Miura-ori (e.g., [97, 63, 100, 122, 49] - see Figure 5.7 to Figure 

5.9). (ii) Due to possessing holes in their configurations, they are less dense than their 

corresponding Miura-ori patterns (see Figure 5.10 to Figure 5.12). (iii) They extend geometrical 

and mechanical design space of the prior known zigzag-base patterns such as Miura-ori and 

BCH2 (for example, see Figure 5.4). (iv) Despite existence of the holes, they are all single‐degree 

of freedom (SDOF) systems for the rigid origami behavior. SDOF rigid mechanisms are 

appropriate for low energy, efficient and controllable deployable structures. (v) Compared with 

BCHn patterns [65] whose unit cell includes two large and 2n small parallelogram facets, the unit 

cell of the patterns introduced in this work has identical number of facets on each side of the 

hole. Hence, they can be more appropriate than their corresponding BCHn patterns when 

considering the thickness of the facets (e.g., when separate thick panels are connected with 

frictionless hinges [123]). (vi) For applications such as sandwich folded-cores, unlike Zeta core 

[68], the patterns remain developable by adding surfaces at the top and bottom of the patterns to 

increase the bonding areas (see Figure 5.7) - developable sheets are well-suited for continuous 

manufacturing techniques available for folded core structures. (vii) Dislocating the zigzag strips 

along the joining ridges makes the ZCH patterns appropriate for design of programmable 

materials and structures in which the directions and values ( hb ) of the offsets can  be adjusted 

depending on the external excitations.  

In summary, the characteristics of the introduced patterns make them suitable for a broad range 

of applications from folded-core sandwich panels and morphing structures to metamaterials at 

various length scales. 
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5.5 Supplementary Materials 

5.5.1 Out-of-plane behavior of the patterns  

Upon bending, ZCH sheets exhibit saddle-shaped curvatures (Figure 5.6). The behavior is 

typically observed in materials with positive Poisson’s ratio [104]. 

 

 

Figure 5.6: Behavior of sheets of the ZCH patterns under bending. ZCH Sheets deform 

into saddle-shaped curvatures under bending. 

 

5.5.2 Other variations of ZCH and their assemblages  

The variation of the ZCH pattern shown in Figure 5.7 provides additional bonding areas on the 

crests of the corrugation for applications as folded-core sandwich panels. Furthermore, by 

changing the geometry of the facets similarly to the curved version of the Miura-ori [122], we 

can create a curved version shown in Figure 5.8. In addition to the variations available for the 

Miura-ori (e.g., reference [99, 122]) which are applicable to these patterns, changing the hole 

width bh (Figure 5.3(f)) and the width of the bonding areas at the crests (shown in Figure 5.7) 

combined with other changes can provide extensive versatility to create various variations/shapes 

from the patterns.  
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Figure 5.7: A developable ZCH pattern with augmented bonding areas.   

 

 

Figure 5.8: A curved ZCH pattern.   

 

Sample one-DOF cellular materials designed based on the ZCH patterns are shown in Figure 5.9. 

The stacked materials shown in Figure 5.9 (a) and (b) are appropriate for applications such as 

impact absorbing devices [49]. The interleaved ZCH tubular material shown in Figure 5.9(c) is 

similar to the one made from the Miura-ori pattern [63], which is a bi-directionally flat-foldable 

material. Its geometry results in a material which is soft in two directions and relatively stiff in 

the third direction. The samples shown in Figure 5.9(d) to Figure 5.9(f) are bi-directionally flat-

foldable materials made from different assemblages of the ZCH tubes. 
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Figure 5.9: Cellular foldable metamaterials. (a, b) Stacked cellular metamaterials made 

from 7 layers of folded ZCH sheets. Each material includes two different geometries of 

similar sheets. (c) Interleaved ZCH tubular materials. (d-f) Materials made from various 

assemblages of ZCH tubes. (g) Sample ZCH tube with a parallelogram cross section.  

 

5.5.3 Comparison of ZCH with Miura-ori and BCH2 for the same amount of mass 

In this section, we compare the density of the ZCH with its corresponding Miura-ori and BCH2 

sheets (see Figure 5.10 for sample sheets). Knowing that widths and heights of the corresponding 

sheets are identical, the ratio of the density of the Miura-ori to that of the ZCH is given by 

/
ZCH ZCH

Miura ZCH

Miura Miura

V L

V L
                                                      (5.10) 

Equation (5.4) in the main text gives the length of the ZCH sheet. Note that considering 0hb   in 

that relation, gives the length of the Miura-ori. Hence, the ratio of the length of the ZCH to that 

of the Miura-ori, i.e. /M Z , is equal to  

(a) (b) (c) 

(d) (e) (f) (g) 
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Therefore, the relation above is equal to the ratio of the Miura-ori density to that of its 

corresponding ZCH sheet and is shown in Figure 5.11. Similarly, for BCH2 we have (see Figure 

5.12) 
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                        (5.12) 

Working with the relation above, the length of the hole, i.e. hb , at which the density of the ZCH 

is equal to that of the BCH2 is given in the following.  
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1

1

2 2 1
h

b m
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m





                                                         (5.13) 

For the infinite configuration of the sheets (i.e., 1m  ), the length of the hole at which the 

density of ZCH is equivalent to that of the BCH2 is given by 

1

4
hb b                                                              (5.14) 

Consequently, for 0.25hb b , the ZCH is less dense than its corresponding BCH2 sheet and for

0.25hb b , BCH2 is less dense than its corresponding ZCH sheet. 
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Figure 5.10: Sample ZCH with its corresponding Miura-ori and BCH2 sheets. (a) A 4x3 

ZCH sheet with its corresponding Miura-ori with b=2a, =70 and bh= 0.3b. (b) A 4x3 

ZCH sheet with its corresponding BCH2 sheet with b=2a, =70 and bh= 0.3b. (c) A 4x3 

ZCH sheet with its corresponding Miura-ori with b=2a, =30 and bh= 0.3b. 

 

(a) (b) 

(c) 
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Figure 5.11: Density of ZCH compared with that of its corresponding Miura-ori. (a) 

m1=4, b/a=2 and bh=0.3b. (b) m1=∞, b/a=2 and bh=0.3b. (c) m1=∞, b/a=5 and bh=0.3b. 

(d) m1=∞, b/a=2 and bh=0.5b. 

 

 

 

(a) (b) 

(c) (d) 
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Figure 5.12: Density of ZCH compared with that of its corresponding BCH2 sheet. (a) 

m1=4, b/a=2 and bh=0.3b. (b) m1=∞, b/a=2 and bh=0.3b. (c) m1=∞, b/a=5 and bh=0.3b. 

(d) m1=∞, b/a=2 and bh=0.5b. 

 

5.5.4 Global behavior of the patterns studied numerically 

Using the bar-framework numerical approach [10], we perform eigen-value analyses of sample 

patterns shown in Figure 5.3 (a) and (b), by changing the ratio of the stiffness of the facet (Kfacet) 

to that of the fold line (Kfold). We observe that, similarly to Miura-ori and BCHn zigzag-base 

patterns [10, 65], for small values of Kfacet/Kfold, which cover a wide range of material properties, 

the twisting and saddle-shaped modes are the first and the second softest modes, respectively 

(Figure 5.5 (a) and (b)). That the second softest bending mode is a saddle-shaped deformation 

further shows that the material, constructed from a ZCH sheet, has a positive out-of-plane 

(a) (b) 

(c) (d) 
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Poisson’s ratio (see Figure 5.5(b) and Figure 5.13). Moreover, the patterns exhibit rigid origami 

behavior (Figure 5.5(c)) for large values of Kfacet/Kfold which is in accordance with our 

expectation. 

 

                                 

 

Figure 5.13: Results of the eigenvalue analysis of a sample ZCH sheet. (a) Twisting, (b) 

saddle-shaped and (c) rigid origami behavior (planar mechanism) of a 4x4 and a 4x3 

patterns of ZCH with the holes located on the same directions (a=1; b=2; =60).  

 

  

(a) 

(c) 

(b) 
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6 Lateral Force Distributions for Various Types 

of Hybrid Masonry Panels 

 

 

 

This chapter is adapted from a 2011 article by Eidini and Abrams, published in 

Proceedings of 11 NAMC conference [124]. 

Abstract 

This chapter summarizes computational analysis results carried out to study the 

distribution of lateral forces between a wall and a surrounding frame in hybrid masonry 

structural systems. Computational results of several multi-story, one‐bay steel frames 

employing different types of hybrid masonry panels are presented. We use computational 

results to demonstrate differences in lateral-force distributions in hybrid masonry systems 

with different boundary conditions and with various panel aspect ratios as well as with 

different stiffness of the wall to that of the frame. This study is based on structural 

analyses using the hybrid masonry interfaces incorporated in the Bentley RAM Elements 

software. Findings presented in this study will help enhance understanding of the hybrid 

masonry behavior, and set the stage for large-scale experiments. 

 

Keywords:  Hybrid masonry, lateral force, aspect ratio, computational modeling, seismic. 

 

6.1 Introduction 

Hybrid masonry is a new technology for seismic design of structures, and was first proposed in 

2007 [125]. Contrary to conventional masonry infilled frames which are usually treated as non-

structural elements in design, the innovative hybrid masonry technology is based on the 

structural action of reinforced concrete masonry panels in combination with bounding steel 

frames as well as novel steel connectors where the panels including masonry wall, steel frame 
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and steel connectors are designed to resist lateral seismic forces. Depending on the boundary 

conditions between a masonry panel and a surrounding frame, hybrid masonry panels are 

categorized into three major groups namely hybrid Types I, II, and III. There are two more sub 

classifications for hybrid Types II and III. If a panel is resisting overturning moments by tensile 

force in vertical reinforcement, it is considered as Type IIa or IIIa. If it is resisting the 

overturning moments by bearing contact at the top and bottom of the panel and strut action, it is 

categorized as Type IIb or IIIb [126].  

In this chapter, the effect of aspect ratio and wall stiffness on distribution of lateral load between 

a panel and a frame in various types of hybrid masonry panels is studied. Furthermore, the effect 

of story level on lateral load distribution is taken into account. Additionally, the effect of lateral 

load pattern using two different load patterns of inverse triangular and rectangular on the results 

is compared for the prototype frame described in the following section. This study was part of 

the NSF NEESR-CR: Hybrid Masonry Seismic Structural Systems research project [127]. 

 

6.2 Example Structure Considered in the Analyses 

A four-story one-bay steel frame shown in Figure 6.1 under inverse triangular lateral load is 

considered for exploratory studies. The columns are W12x65, and the beams cross sections are 

W16x40. The thickness of the wall is 12 inches (30.48 cm). The frame employing five different 

types of hybrid panels including Type I, IIa, IIb, IIIa, and IIIb has been considered for one set of 

analyses. They are modelled using hybrid masonry interfaces of RAM Elements software [128] 

to study the effect of aspect ratio, and various boundary conditions on lateral load distribution. 

To evaluate the effect of wall thickness, one more set of analyses using the aforementioned 

hybrid panels, but with a thickness of wall equal to 6 inches (15.28 cm) has been carried out. All 

column heights (h) are 10 ft (3.048 m), and to generate the different aspect ratios only the frame 

bay width (L) has been changed in the models.  
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Figure 6.1: Four-story one-bay steel frame used in the analyses. 

 

6.3 Lateral Load Transfer Mechanism in Hybrid Masonry Panels 

The various interfacial conditions in hybrid masonry panels explicitly constitute the type of 

interaction between the frame and the masonry panel. This interaction is the main part in 

understanding the load transfer mechanism as well as in assessing the behavior of the panels. 

Pook and Dawe among others tested several large-scale infill panel specimens, and studied the 

influence of boundary conditions between a wall and a frame on behavior of infill systems. It 

was concluded that interface conditions significantly affected the initial stiffness and strength of 

the infill, and that the best overall performance was the case in which a panel is constructed in 

close contact with the moment-resistant frame without having either ties between the wall and 

the frame or separating them, for example using interfacial membrane [129, 130].  

What presented in the following are the theoretical backgrounds and results aim at improving our 

understanding of the behavior of various types of hybrid masonry panels, with unknown 

structural behavior to us at the beginning of the present research. Furthermore, the results would 

be tempered through the course of the project and after having the results of the tests on several 

large-scale specimens as well as on steel connector plates [127].  
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6.3.1 Hybrid Type I 

In hybrid Type-I, among all the actions, only shear force transfers to the wall, and there is no 

axial load transmission due to existence of gaps between the masonry wall and the frame as well 

as presence of slotted holes in the steel connectors. The transfer of story shear is through the steel 

links connecting the beam to the masonry wall. To have a continuous lateral load path there 

should be shear connectors at the interface of the wall and the beam below. In this kind of hybrid 

panel, steel connectors are acting in series with the masonry panel and the system of these two is 

performing in parallel with the bounding frame (see Figure 6.2). According to Figure 6.2, and 

considering that each connector plate is behaving like a cantilever beam, we have: 

Lateral stiffness of each steel connector = 33 /connectors connectorsEI h
  
 

Lateral stiffness of wall ≈ 33 /wall wallEI h     (considering the wall base is fixed) 

Therefore, the ratio of the lateral stiffness of the connectors to that of the wall is proportional to 

3( / )wall connectorh h  which provides a large lateral stiffness ratio of the connectors to that of the wall 

even for small ratios of )/( wallconnectors II .  

Since the wall is connected to the steel connector plates in series (Figure 6.2(b)), and considering 

the large lateral stiffness ratio of the connectors to that of the wall, the stiffness of the system of 

the wall and connectors will be governed by the smaller lateral stiffness, i.e. lateral stiffness of 

the wall. Thus, 

WCCW KKK

111
                                                          (6.1) 

For rigid connectors:                                WCW KK                                                                 (6.2) 

in which, CWK is the lateral stiffness of the connectors and the wall acting in series; WK is the 

lateral stiffness of the wall; CK is the lateral stiffness of the connectors. Since WK is much larger 

than
frameK , almost all lateral shear is attracted by the wall at each story level.  

Based on the above-mentioned mechanism, the value of the shear at the story level i, iV , and the 
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value of the axial load in each column at story level i, iP , can be calculated by the following 

formula:  

n

i j

j i

V F



                                                               

(6.3) 
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(6.4)  

where i is the story level index; n is the total number of stories; iP
 
is axial force due to lateral load 

in each column at level i; 
jF is the lateral force at level j; 

1ih 
is the story height for the story 

level i+1; L is the bay width.  

By substituting corresponding values for 2iP , 3iP , …, nP
 
in the above formula, one can get: 
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                                                               (6.5)   

where, kV  is the story shear in story level k, and kh is the story height for the same story level. 

Hence, the overturning moment of the frame at level i is equal to: 
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                                       (a)                                                                                 (b) 

Figure 6.2: (a) Hybrid masonry panel Type I; (b) Schematic connection of elements in a 

hybrid masonry panel Type I. 

 

A sample vertical stress distribution for hybrid Type I is shown in Figure 6.3(a). Flexural action 

of a masonry panel along a story height is evident by the pattern of vertical normal stresses. Type 

I hybrid panels, due to presence of slotted holes in the steel connector plates, do not transfer 

vertical forces from the top story to the bottom one. Hence, the vertical stresses are not 

continuous from one panel to another, as shown in Figure 6.3(a).  

 

6.3.2 Hybrid Types II and III 

In hybrid Type II, the wall is in contact with the beams, but there are gaps at the sides which 

prevent interaction of the wall with the surrounding frame. Also, in hybrid Type III similar to 

traditional infill panels, there is no gap between the wall and the frame, and the walls are 

constructed tight at the columns and the top of the wall. Moreover, Types a and b are sub 

categories for hybrid Types II and III. In hybrid Types IIa, and IIIa similar to hybrid Type I the 

reinforcing bars of the wall are welded to the beam below. Therefore, the contribution of the wall 

to the story overturning moment is through flexure of the reinforced section. However, in hybrid 
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Types IIb, and IIIb the contribution of the wall to the story overturning moment is a result of 

bearing and strut action of the panel. Sample contours of vertical stresses developed in the wall 

for the example structure employing hybrid panels Types IIa, and IIIa under a triangular lateral 

load pattern are shown in Figure 6.3 (b) and (c), respectively. 

 

     

         (a) Type I                                (b) Type IIa                              (c) Type IIIa 

Figure 6.3: Sample vertical stress distribution for hybrid Types I, IIa and IIIa for the 

example frame with aspect ratio 1.5 under triangular lateral load pattern. 
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                                  (a)                                                               (b) 

Figure 6.4: (a) Sample vertical stress distribution in shear wall system for the example 

frame with aspect ratio 1.5 under triangular lateral load pattern. (b) Ratio of overturning 

moment in the wall to that of the frame in the 1st and 4th stories for shear wall system 

and hybrid Type IIIa.  

 

Figure 6.3(c) shows an essentially continuous vertical stress distribution in hybrid Type IIIa. 

Comparison of the vertical stress distribution in hybrid Type IIIa (Figure 6.3(c)), and shear wall 

(Figure 6.4) reveals the similarity of the behavior of these two lateral load resisting systems. 

Figure 6.4(b) illustrates the ratio of overturning moment in the wall to that of the frame in the 1st 

and 4th stories for both shear wall system and hybrid masonry Type IIIa. The results of both 

systems are well-matched, as shown in Figure 6.4(b).     
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6.4 Effect of Aspect Ratio and Wall Stiffness on Distribution of Lateral Force 

between Wall and Frame 

To study the lateral load distribution in various types of hybrid masonry panels, several four-

story one-bay frames employing hybrid masonry panels described in previous sections have been 

modeled using RAM Elements software [128]. The graphs presented in Figure 6.5 and Figure 6.6 

are obtained from 54 such models. They show the effect of aspect ratio (frame bay to the story 

height), and wall thickness on contribution of the wall overturning moment to the story 

overturning moment as well as on the ratio of the wall overturning moment to that of the frame, 

respectively. In these studies, the structures are subjected to an inverse triangular lateral load 

pattern with the lateral load equal to 8.82 Kips (39.23 KN) at the top. Decreasing the wall 

thickness while keeping all other parameters unchanged has resulted in reduction of the wall 

contribution to the overturning moment which is in accordance with the expectations (see Figure 

6.5 and Figure 6.6). Moreover, for the panels having the walls with thickness of 6 inches, similar 

behavior to those of the walls with thickness of 12 inches is observed (Figure 6.5 and Figure 

6.6). For example, for hybrid panels Type II-a, III-a, and III-b for both thicknesses of 6 and 12 

inches overturning moment in the wall increases by increasing the aspect ratio. Because, by 

increasing the aspect ratio, the axial load in columns decreases which will result in reduction of 

overturning moment in the frame and accordingly increasing the overturning moment in the wall.    

For hybrid Type I, overturning moment in the frame at each story level is constant, and depends 

on both the story shear and geometry of the frame, as Equation (6.6) shows. Therefore, based on 

the formula overturning moment in the wall is constant as well. The results presented in Figure 5 

obtained from RAM Elements also show that the overturning moment in the wall is constant for 

a wide range of aspect ratios. As discussed under “Hybrid Type I”, the effect of 
frameK  has been 

disregarded. However, for small aspect ratios the assumption is not necessarily true. Therefore, 

some parts of the story shear will be resisted by the frame, resulting in a smaller shear in the 

wall, and consequently smaller overturning moment in the frame than that discussed earlier. 

Hence, in hybrid Type I, for small aspect ratios, the wall overturning moment is slightly greater 

than the value for large aspect ratios, as Figure 6.5 presents.  

In hybrid Type IIIa, contrary to hybrid Type IIa, the masonry wall is in contact with the columns 

as well. Therefore, part of axial loads in the wall will transfer to the columns through the contact 
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length. For the same aspect ratio, maximum value of axial load in the columns of hybrid Type 

IIIa is greater than that of the corresponding columns of hybrid Type IIa. If all properties are the 

same, the relation between the maximum values of axial loads in columns of hybrid panels Type 

IIa and IIIa under lateral loading is as follows:  

( ) ( )Col III a Col II aP P

                                                      

(6.7) 

Hence,  

( ) ( )Wall III a Wall II aM M

                                                    

(6.8) 

The above relation shows that the wall contribution of overturning moment in hybrid Type IIa is 

greater than that of hybrid Type IIIa (See Figure 6.5 and Figure 6.6). 

   

 

Figure 6.5: Wall contribution of story overturning moment in the first story for the 

frames with different aspect ratios in various types of hybrid panels for two different wall 

thicknesses. 
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Figure 6.6: Ratio of wall contribution of story overturning moment to that of the frame 

contribution in the first story for the frames with different aspect ratio in various types of 

hybrid panels for two different wall thicknesses. 

 

6.5 Effect of Story Level on Distribution of Lateral Force between Wall and 

Frame 

In this section, the distribution of lateral load between the wall and the frame of hybrid masonry 

Types I, IIa, and IIIa at different stories are studied. The results are summarized in Figure 6.7-

Figure 6.9. As illustrated in the figures, the ratio of the wall contribution of the overturning 

moment to that of the frame is increasing in upper stories. This trend is similar to that found in a 

shear wall. Specifically, the results obtained in hybrid Type IIIa (Figure 6.9) are in very close 

agreement with the results obtained from the shear wall system (Figure 6.4(b)). This similarity is 

due to the continuity of the lateral load path between the wall above and the one below a beam in 

hybrid Type IIIa systems. 
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Figure 6.7: Wall contribution to story overturning moment in different stories for the 

frames with different aspect ratio in hybrid Type I. 

 

 

 

Figure 6.8: Wall contribution to story overturning moment in different stories for the 

frames with different aspect ratio in hybrid Type IIa. 
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Figure 6.9: Wall contribution to story overturning moment in different stories for the 

frames with different aspect ratio in hybrid Type IIIa. 

 

For hybrid Types IIa and IIIa, the ratio of the wall overturning moment to that of the frame at all 

stories increases, as the aspect ratio increases (see Figure 6.8 and Figure 6.9). This fact is due to 

the reduction of axial load in columns as discussed earlier.   
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For rectangular load pattern, the ratio of overturning moment in the wall to that of the frame 

(Mw/Mf), at the first story is greater in hybrid masonry panels Types I and IIa than their 

corresponding values for the triangular load pattern, as presented in Figure 6.10. However, the 

ratio of Mw/Mf at the first story is essentially identical, in hybrid masonry panels Types IIb, IIIa, 

and IIIb, for both lateral load distribution patterns. Nevertheless, to generalize these results more 

studies need to be done considering the effects of other parameters such as relative stiffness of 

the frame to that of the wall, effect of story level and so on. Moreover, similar to the results 

found in previous sections, the wall participation to the overturning moment in hybrid Types IIa, 

IIIa, and IIIb subjected to a rectangular lateral load pattern increases as the aspect ratio increases.   

      

 

 

Figure 6.10: Effect of Triangular (T), and Rectangular (R) lateral load pattern on 

distribution of lateral forces between the wall and frame in hybrid masonry panels. 
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in combination with surrounding steel frames as well as novel steel connectors. One of the 

advantages of the system includes: the bracing of a steel frame by the use of reinforced masonry 

panels will lead to an integrated, efficient application of both materials. This research 

summarizes the results of exploratory studies performed to improve understanding of the 

behavior of various types of hybrid masonry panels. Particularly, the chapter’s focus is to 

understand the effect of aspect ratio and relative stiffness of the wall to that of the frame as well 

as the effect of lateral load pattern on lateral load distribution in various types of hybrid masonry 

panels. The main results obtained through this study are listed as follows:  

 For hybrid Type I, overturning moment in both the wall and the frame is constant for 

various aspect ratios, and the ratio of the wall to the frame contribution is dependent on 

the system geometry and applied lateral load pattern.  

 Comparison of the vertical stress distribution in hybrid Type IIIa, and shear wall reveals 

very close similarity of the behavior of these two lateral load resisting systems. In 

addition, the study of contribution of the overturning moment in the wall and the frame in 

both shear wall and hybrid masonry Type IIIa systems shows that the behavior of these 

two lateral load resisting systems are very close to each other.  

 In hybrid Types IIa, IIIa, and IIIb at all story levels, wall contribution of overturning 

moment increases with increasing aspect ratio, and having all other parameters 

unchanged. Frame contribution to overturning moment decreases with increasing aspect 

ratio. Axial load in columns decreases with increasing aspect ratio in all three 

aforementioned hybrid panels. 

 In hybrid panels Type I, IIa, and IIIa wall contribution to story overturning moment 

increases at higher story levels. This behavior is similar to the behavior of the shear 

walls. 

 The wall contribution to overturning moment in hybrid panel Type IIa is greater than that 

in hybrid panel Type IIIa, if all the properties and lateral loading in both panels are the 

same. This is mainly due to the fact that the axial load is smaller in columns of hybrid 

Type IIa which will accordingly lead to a greater overturning moment in the wall of 

hybrid panel Type IIa. 

 To understand the behavior of the panels in hybrid Types IIb and IIIb, and rationalize the 
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findings in this chapter for these types of hybrid panels more research needs to be 

performed.       
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7 Seismic Design and Viability of Hybrid 

Masonry Building Systems 

 

 

 

This chapter is adapted from a 2013 article by Eidini et al., published in ASCE Journal of 

Structural Engineering [131]. 

Abstract 

Hybrid masonry is an innovative technology for seismic design of buildings. The system 

utilizes reinforced masonry panels within a steel-framed structure, where steel connector 

plates link the steel frame to the masonry panels. The system has been used for 

construction of low-rise buildings in the low-seismic regions of the eastern and mid-

western United States, but has not been implemented in regions of moderate or high 

seismicity yet. Current research is underway to extend the application of hybrid masonry 

for use in high-seismic regions.  In this chapter, the overall approach for seismic design 

of one type of hybrid masonry systems is studied and the steps of a capacity design 

process are presented, where two favorable ductile modes of behavior may be exploited: 

steel connector plates behaving as fuses or flexural yielding of the masonry panels. 

Moreover, this research applies the two design options for three, six, and nine-story 

prototype buildings located in a high seismic region, and evaluates viability of hybrid 

masonry as a new seismic lateral-load resisting system. Based on this design framework 

and the exploratory studies, both approaches are shown to be feasible for developing 

realistic system configurations. Nevertheless, for the case of flexural yielding of the 

masonry panels, the steel connector plates must carry significant shear force demands. 

The structural system then requires more hybrid panels compared with corresponding 

systems when plasticity is concentrated in the steel connector plates. 

 

Keywords: Seismic Design; Hybrid Masonry; Capacity Design; Connections; Structural Fuses; 

Ductility.  
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7.1 Introduction 

Hybrid masonry, which was first proposed in 2007 [125], is an innovative lateral-load resisting 

system that synergistically combines masonry panels and a steel frame. As mentioned by Bertero 

and Broken [132], the key principle for seismic resistant design is to use the necessary mass in 

the system to resist seismic forces. Hybrid masonry takes advantage of masonry walls present in 

most buildings as non-structural elements (i.e., the necessary mass) and uses special details to 

make them part of the lateral-load resisting system. Unlike common masonry infill panels, the 

innovative aspect of hybrid masonry panels is the intentional detailing of the connections 

between the masonry panels and the steel frame such that predictable, robust and ductile 

behavior is ensured. Additionally, reinforced masonry panels are used in the system, rather than 

unreinforced as are commonly used in masonry infill walls.  

The presence of masonry panels in hybrid masonry systems changes the lateral-load transfer 

mechanism of the structure from predominantly frame or truss action, depending on whether the 

steel frame is unbraced or braced, to a combined truss-shear wall action. Since most low-rise 

steel buildings are braced frames, the masonry panels can be viewed as surrogate bracing 

elements. Based on the boundary conditions between masonry panels and the surrounding steel 

frame, hybrid masonry systems are categorized into three major groups: Types I, II, and III 

(NCMA TEK 14-9A 2009) [126]. This research focuses on hybrid masonry Type I, which will 

be discussed in more detail below. 

Hybrid masonry construction has been introduced to the eastern United States for low-rise office 

and commercial buildings, and it has been found to reduce cost and expedite construction since 

structural and architectural components can be integrated. However, it has not been used in 

regions of high seismicity yet. The research described in this chapter is part of a comprehensive 

effort to characterize the inelastic behavior of hybrid masonry and develop design methods so 

that it can be implemented in high seismic regions. 

Since the system is new, research on hybrid masonry is in its infancy. Sample construction 

details of hybrid masonry panels are provided by the National Concrete Masonry Association 

(NCMA TEK 3-3B 2009) [133]. An overview of current research on hybrid masonry panels is 

given in [127]. Eidini and Abrams [124] performed an exploratory study on distribution of lateral 
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forces between a masonry panel and a frame using models of four-story, one‐bay steel frames 

employing different types of hybrid masonry panels. The effects of various parameters such as 

panel aspect ratio and lateral-load distribution pattern were taken into account. Johnson et al. 

[134] performed an experimental study to establish the strength and hysteretic behavior of 

connector plates, and to develop ductile energy dissipating fuse connector plates for use in 

hybrid masonry Type I systems. They tested the connector plates under cyclic lateral loading, 

and developed steel connectors and ductile fuses with various geometric configurations. Further 

research on development and design of steel connector plates for use in hybrid masonry 

structural systems can be found in Goodnight et al. [135] and Ozaki-Train and Robertson [136]. 

The purpose of this research is to establish a framework for the application of hybrid masonry to 

construction in areas of moderate and high seismicity. The main contribution of this study is to 

present simplified formulas for lateral-load analysis of hybrid masonry Type I, as well as to 

provide systematic approaches for seismic design of hybrid masonry as efficient lateral-load 

resisting systems. The design methodologies presented in the chapter are based on the widely 

accepted capacity design approach [137].  

In addition, application of the proposed approaches is used in an exploratory parametric study, 

which is done to evaluate the viability of hybrid masonry Type I. The current study precedes a 

large-scale experimental program and computational studies as discussed in [127]. There are no 

provisions in current codes that define seismic response factors [138], such as the response 

modification coefficient (R) and the system over-strength factor (Ω0) for hybrid masonry 

systems. Hence, in the portion of this study on evaluating feasibility of these systems, the 

demands on the structural elements are calculated assuming a range of likely values for these 

currently-undefined seismic design parameters. The values for these parameters are assumed 

based on the current code provisions [138] for systems with similar behavior. 

This chapter focuses on hybrid masonry Type I and is organized as follows. Hybrid masonry 

Type I and its lateral-load transfer paths are discussed in the next section. Seismic design 

procedures are then presented for buildings incorporating hybrid masonry Type I. Using the 

proposed design methodologies, viability of hybrid masonry building systems is investigated for 

use in high seismic regions. The last section provides some concluding remarks and areas for 
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further research.  

 

7.2 Hybrid Masonry Type I 

7.2.1 Force transfer mechanisms 

In general for hybrid masonry systems, a reinforced concrete masonry panel is attached to a 

structural steel frame such that gravity forces, story shears and overturning moments can be 

transferred to the masonry. Type I is the simplest form of hybrid masonry since only horizontal 

shear force transfers from the steel frame to the top of each panel. As shown in Figure 7.1(a), 

there is no axial load transmission due to gaps between the top of the masonry panel and the 

frame and vertically slotted holes in the steel connectors. A steel connector comprises two steel 

connector plates, one on each side of the masonry panel, and a through bolt. Hence, a masonry 

panel at a level functions as an isolated shear wall and vertical stresses in the masonry are not 

continuous over the height. The transfer of story shear is through the steel connectors attaching 

the beam to the masonry panel. The structural masonry panel acts as a lateral bracing member 

and can be reinforced both vertically and horizontally to resist lateral forces and to develop the 

deformation capacity of a well-detailed reinforced masonry shear wall. To prevent sliding of the 

masonry panel and to provide a continuous lateral-load path there must be adequate connections 

at the interface of the masonry panel and the supporting beam below.  

In hybrid masonry Type I, steel connectors are acting in series with the masonry panel and the 

system of these two elements is acting in parallel with the surrounding frame (see Figure 7.1). 

Steel connectors are shown schematically in this figure, but realistic details are achieved by 

attaching to both flanges of the beam above with a combination of welds and bolts. The 

robustness of this configuration permits the connection between a connector and the beam to be 

idealized as fixed. Therefore, each connector plate is behaving like a cantilever beam, and the 

lateral stiffness of a steel connector with constant cross section is KCP=3 ESICP/LCP
3, where, Es is 

the modulus of elasticity of steel; ICP is the moment of inertia of a steel connector; LCP is the 

length of a connector. In addition, the lateral stiffness of a cantilever panel is [139] 

Kpa≈bEm/[4(hpanel/Lpanel)
3+3(hpanel/Lpanel)] where Em is the modulus of elasticity of masonry; hpanel 

is the height of the panel; b is the net thickness of the panel; Lpanel is the length of the panel. 
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Therefore, since the panel is connected to the steel connectors in series (Figure 7.1(b)), the 

stiffness of the system of the panel and connectors will be: 

CPa C Pa C PaK K K / ( K K )                                                       (7.1) 

where KC is the lateral stiffness of the steel connectors (equal to the lateral stiffness of each steel 

connector, KCP, multiplied by the number of connectors per panel, NCP_panel) and KPa is the lateral 

stiffness of the panel. Since the total stiffness in such a series system is dominated by the more 

flexible element, the connector plates in hybrid masonry Type I, which are much more flexible 

than the masonry panels, play an important role.   

 

 

Figure 7.1: (a) Hybrid masonry Type I; (b) Schematic connection of elements in hybrid 

masonry Type I building systems. 
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In hybrid masonry systems, the steel beams are connected using details that transfer limited 

moment, so the steel frame is not considered to contribute lateral stiffness. KCPa is then much 

greater than lateral stiffness of the surrounding frame, KFrame. Hence, almost all the lateral shear 

is attracted by the masonry panel and steel connector system at each story level. For taller 

structures, steel column axial flexibility reduces the overall system stiffness and should be 

considered in design.   

Based on the assumptions that the steel beams have pinned ends and only horizontal shear is 

transferred into the top of the masonry panel at floor level, the value of the shear in story i, Vi, 

and the value of axial force due to lateral-load in each column in story i, Pi, can be calculated by 

the following expressions:  
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                                                                  (7.2) 
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where i is the story index; n is the total number of stories; Fj is the applied lateral force at level j; 

hi+1 is the story height for story i+1; L is the bay width; hcp is the vertical distance from the 

through bolts to the point of application of the story force (see Figure 7.2). 

Assuming hcp is the same in all stories, and by substituting corresponding values for Pi+1, Pi+2, 

…, Pn in Equation (7.3), one can get: 
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                                                      (7.4) 

where Vj is the story shear in story j and hj is the story height for the same story. For short 

connectors, the last terms in the above equation is small and can be ignored. However, in 

realistic situations the length of the connectors cannot be neglected. 
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Figure 7.2: Parameters used in lateral load analysis of hybrid masonry Type I.  

 

7.2.2 Ductile limit states 

Under in-plane lateral-loads, a hybrid masonry panel can reach a desirable ductile limit state and 

sustain inelastic demands through two mechanisms: yielding of the steel connector plates or 

yielding of the vertical steel reinforcement in the masonry panels. Non-ductile limit states, such 

as break-out/bearing failure where the steel connector plates are bolted to the masonry panel 

(discussed below), column buckling, beam hinging and connection failure, are undesirable and 

must be prevented through capacity-design procedures. The behavior of a reinforced masonry 

panel in the hybrid masonry system is similar to that of a conventional reinforced masonry shear 

wall. In a reinforced masonry shear wall under lateral load, the controlling limit state is either 

flexure or shear. In a well-designed flexural-controlled wall, horizontal cracks appear at the wall 

heel, the vertical reinforcing bars yield before toe crushing of the masonry such that inelastic 

deformation can be sustained prior to strength degradation. In this case, toe crushing or rupture 

of the extreme tensile bars causes the final failure. Increasing the amount of vertical 

reinforcement or the length-to-height ratio of the wall increases the likelihood of shear failure 



 
 

 

  115 

[140]. The flexural failure mode of steel connector plates is shown in Figure 7.3(a), and the 

flexural failure mode of a masonry panel is presented in Figure 7.3 (b).  

 

 

 (a)                                                                                    (b) 

Figure 7.3: Flexural failure modes in hybrid masonry Type I. (a) Flexural yielding of 

connector plates. Yielding of connector plates are shown in circles. (b) Flexural yielding 

of masonry panels. Flexural cracks at the heel and toe crushing are shown on the bottom 

left and right sides of the panel, respectively. To make the deformed shapes more 

illustrative, the gaps are shown wider than their normal sizes in a scaled picture. 

 

Whereas the limit states discussed above are desirable for seismic response due to their ductile 

character, an undesirable non-ductile failure mode for hybrid masonry Type I is break-

out/bearing failure of the masonry panel at the points where steel connector plates are attached. 

Break-out/bearing is a brittle failure mode, and is due to the stress concentrations at the 

connections of the bolts with the masonry panels. To prevent this failure mode, the portion of the 

story shear force transferred from a pair of connector plates to a masonry panel is required to be 

smaller than the shear break-out/bearing strength of a masonry panel. Shear break-out/bearing 

strength is defined in the next section.  

  

7.2.3 Non-ductile break-out/bearing strength 

The Building Code Requirements for Masonry Structures [141] provides guidelines for anchor 
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bolts embedded in masonry, but thru-bolts are not addressed. To determine the nominal shear 

strength of anchor bolts, the MSJC [141] addresses the possible failure mechanisms as follows: 

masonry break-out, masonry crushing, anchor bolt pry-out, and steel yielding. Although the 

MSJC provisions do not address the thru-bolt connection that is used in hybrid masonry panels, 

Goodnight et al. [135] used them to provide an estimate for the nominal shear strength to assess 

the performance of the connections. Furthermore, to establish the break-out strength of the 

connections, they performed push out tests on embedded thru-bolts in masonry wall specimens. 

They tested four specimens loaded in displacement control. Most specimens were also loaded in 

two directions until failure occurred. The specimens showed a masonry break-out strength at 

least equal to 89kN (20kips) [136].  

 

7.3 Seismic Design Methodologies for Hybrid Masonry Building Systems 

Code-based seismic design is most commonly conducted using the equivalent lateral force 

procedure [138], and the objective is to prevent structural collapse by dictating favorable limit 

states in the structure. A favorable limit state corresponds to the ductile behavior of the structure 

as a whole. Seismic design provisions are based on the capacity design approach through which 

certain structural components are designated as the “dissipative components” or “fuses” and are 

specially detailed for high energy absorption during a major seismic event. Inelastic response in 

the “dissipative components” should not impair the gravity load-carrying capacity and the global 

stability of the system. All other structural components including connections are proportioned in 

accordance with the capacity design concept [137], and this is typically done by considering 

adequate over-strength factors to ensure nearly elastic behavior [142, 143].  

For hybrid masonry panels, two design approaches are considered for detailing of components. 

The major considerations of each approach are listed in Table 7.1. The goal is to guarantee a 

favorable response of the hybrid masonry structural system through utilizing a combination of 

“dissipative components” with high inelastic deformation capacity, as well as elastic elements 

with high load capacity. The approaches are described in the following. 
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Table 7.1: Main considerations in capacity design of hybrid masonry panels. 

 Favorable Failure Mode 
Potential (*) 

Ω0 
Modes required to be prevented 

Case a 
Flexural plastic hinges in 

connector plates 
2 

Failure of columns, beams, masonry 

panels, connections 

Case b 
Flexural yielding of vertical 

reinforcing bars in masonry 
2.5 

Failure of connector plates, columns, 

beams, connections, shear failure of 

masonry panels, break-out failure of 

panels 

* Note: These values are used in an exploratory study on viability of hybrid masonry panels. To be 

included in future code provisions, further research is required on seismic response factors for hybrid 

masonry systems, including R, Cd and Ω0. 

 

7.3.1 Case a) Inelasticity concentrated in connector plates  

For this case, the design strategy is to have the plastic hinges form only in the connector plates. 

Furthermore, other elements including masonry panels, beams and columns are designed 

considering appropriate over-strength factors so that they remain elastic during a seismic event. 

Since the plasticity will be concentrated in the steel connector plates, the over-strength factor 

equal to 2 is considered for this case.    

 

7.3.2 Case b) Inelasticity concentrated in vertical bars of reinforced masonry 

panels 

The design strategy for this case is to proportion the structural elements so that the inelasticity 

will be concentrated in the vertical bars in the masonry panels to provide favorable flexural 

ductility. Accordingly, all steel members including connector plates, beams and columns, and 

horizontal reinforcement of the masonry panels are designed considering appropriate over-

strength factors to remain elastic. In ASCE 7-10 [138], the over-strength factor for all types of 

reinforced masonry shear walls is 2.5. In view of the fact that the behavior of the masonry panels 

in hybrid masonry Type I is similar to the behavior of non-load bearing masonry shear walls, a 

rational assumption is to consider the over-strength factor equal to 2.5 for this case as well. To 

obtain the seismic shear demands on steel connectors, the shear demands on masonry panels are 
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multiplied by this over-strength factor. The connector plates then are expected to experience 

larger shear demands than those of Case a.  

 

7.4 Major Parameters Affecting Shear Demand on Lateral-Load Resisting 

Elements of a Hybrid Masonry System 

Generally speaking, the shear demand on a given hybrid masonry panel is directly related to the 

design base shear, which in turn is dependent on all the parameters affecting the equivalent 

lateral-load (e.g. building weight and seismic hazard). To assess the capability of the hybrid 

masonry system to efficiently resist seismic loads, prototype buildings are considered for a high 

seismic hazard region. Other significant parameters influencing the shear demands on the lateral-

load resisting elements of hybrid masonry systems are discussed in this section. If the system is 

appropriate for the high seismic hazard region considered in this study, it can be used for 

moderate and low seismic hazard regions as well. 

 

7.4.1 Response modification coefficient (R) 

The response modification coefficient R (commonly called the “R factor”) is used in the 

equivalent lateral force procedure to determine the design base shear [138]. The R factor depends 

on the energy dissipation capacity of the system, where a larger R factor indicates greater energy 

dissipation capacity and produces a smaller design base shear. Using connector plates with 

special detailing to dissipate the input seismic energy is expected to permit a higher R factor. 

Tests on connector plates and fuses are being performed at the University of Hawaii [134]. In the 

present study, shear demands have been calculated for R factors equal to 3, 4, 5, and 6. For the 

case where inelasticity is concentrated in the connector plates (Case a), the steel connectors are 

detailed to behave as energy dissipating fuses [134]. Hence, R factors equal to 5 and 6 are 

considered to be appropriate values for the feasibility studies considering Case a. For the case 

where inelasticity is concentrated in the vertical bars of the masonry panels (Case b), a range of 

R factors from 3 to 6 have been assumed. The considered range covers the possible R factors 

from ordinary reinforced masonry walls to specially reinforced ones.  
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7.4.2 Number of hybrid masonry panels 

Increasing the number of hybrid masonry panels decreases the shear demand per panel and 

connector. Generally, non-structural masonry walls and partitions in a building with a steel frame 

can be adapted into hybrid masonry panels. However, similar to any other structural walls in a 

building system, the placement of the panels should avoid causing any significant seismic 

irregularities.    

 

7.4.3 Number of steel connectors per panel (NCP_panel) 

As mentioned earlier a steel connector comprises a pair of steel connector plates and a through 

bolt. In calculation of the force demands per connector, one significant assumption is that all 

connectors per panel have the same geometry and material properties. There is a limit on the 

number of connectors per panel, which is dependent on the minimum practical spacing. In this 

study, it is assumed that only one connector per concrete masonry unit (CMU) can be used. 

Therefore, NCP_panel cannot exceed the number of CMUs per course at each frame bay. 

Considering the length of each CMU equal to 0.41m (16 inches): 

0 41CP _ panel panelN L / .                                                           (7.5) 

where Lpanel is the panel length in meters.   

Furthermore, for both Cases a and b, the shear per connector (from lateral-load analysis) 

multiplied by the over-strength factor, (VCP)u Ω0, is required to be equal or smaller than the shear 

break-out strength of the panel per connector, VBO_panel: 

    0 0CP panel CP _ panel BO _ panelu u
V V / N V                                  (7.6) 

in which (Vpanel)u is the shear per panel from lateral-load analysis. Hence, 

  0 panel BO _ panel CP _ panelu
V / V N                                              (7.7) 

Equation (7.7) provides the minimum NCP_panel. NCP_panel must be sufficient to tolerate the 
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demands from out-of-plane loads as well. This check can be done after the design of connector 

plates for seismic demands. In summary, the number of steel connectors per panel is dependent 

on the shear demand per panel, the shear break-out capacity of the panel per connector, and the 

number of CMUs used per course at each frame bay.  

 

7.5 Seismic Design Process 

In a hybrid masonry Type I system, steel connectors and the masonry panels carry only the 

lateral seismic loads. Beams and columns are part of the lateral-load resisting system, but also 

carry the gravity loads. Hence, seismic demands on beams and columns are required to be 

combined with gravity loads considering appropriate load combinations [138]. Furthermore, for 

both design options (i.e., Cases a and b), the beams and columns must remain elastic during a 

seismic event. Therefore, the seismic demands on these elements are required to be multiplied by 

appropriate over-strength factors or be estimated considering the maximum demands transferred 

to these elements. The seismic design processes for Cases a and b are summarized in Figure 7.4 

and Figure 7.5, respectively, and described below.  

 

7.5.1 Case a) Inelasticity concentrated in steel connector plates 

1) Determine the placement of hybrid masonry panels in the system, and the number of such 

panels in each direction. A larger number of hybrid masonry bays in plan provides higher 

redundancy for the system and lower shear demand per panel.    

2) Estimate the number of connectors per panel (NCP_Panel), based on Equations (7.5) and 

(7.7). If the maximum possible number of connectors per panel is smaller than the 

required number of connectors per panel, the number of hybrid masonry bays in the 

system must be increased. 

3) Estimate the seismic shear demand per connector from the lateral-load analysis 

((Vpanel)u/NCP_panel), and design the connectors as fuses.   

4) Design the masonry panels, beams, and columns considering the appropriate over-

strength factor. The shear demand on the panels can be calculated from the following 

equation:    
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     0 0panel panel CP CP _ panelDD u
V V V N                                   (7.8) 

The demands on columns including the seismic axial load component, and the concentrated 

moments on the beams generated from the shear demand on the connector plates, must be 

multiplied by the over-strength factor or be designed for the maximum load transferred to these 

members from the connector plates. After estimating the demands on beams and columns, the 

current code criteria [144, 145] can be used for design of these members. 

 

7.5.2 Case b) Inelasticity concentrated in vertical bars of reinforced masonry 

panels 

1) Determine the placement of hybrid masonry panels in the system, and the number of such 

panels in each direction. A larger number of hybrid masonry bays in plan provides higher 

redundancy for the system and lower shear demand per panel.    

2) Estimate the shear demand per panel at each story of the building (Vpanel)u from lateral-

load analysis. 

3) Estimate the number of connectors per panel (NCP_Panel), based on Equations (7.5) and 

(7.7). If the maximum possible number of steel connectors per panel is smaller than the 

required number of steel connectors per panel, the number of hybrid masonry bays in the 

system must be increased. 

4) Design the panels according to the next section for the following demands. For flexural 

design and shear design, respectively: 

   panel panelDF u
V V                                                     (7.9) 

   0panel panelDV u
V V                                                  (7.10) 

5) Design the connector plates, beams, and columns considering the appropriate over-

strength factor or the maximum load transferred from the panel to these members. The 

shear demand on a pair of connector plates can be calculated as:  

    0CP panel CP _ panelD u
V V / N                                         (7.11) 



 
 

 

  122 

The maximum moment on a pair of connector plate can be calculated as:  

   CP CP CPD D
M V L                                                       (7.12) 

where LCP is the length of steel connectors from the through bolts to the support of the 

connector plates on the beam (Figure 7.1(a)). For design of beams and columns, the demands 

from gravity loads need to be added as well using appropriate load combinations [138].     

 

7.5.3 Design of hybrid masonry structural panels  

7.5.3.1 Case a) Inelasticity concentrated in steel connector plates 

The story shear that can be carried by a hybrid masonry panel for Type I is the minimum of the 

panel shear strength VShear, the shear force corresponding to the flexural strength VFlex, and the 

shear break-out strength of the panel per steel connector multiplied by the number of connectors 

per panel (Equation (6.13)). Shear strength and flexural strength of hybrid masonry panels can be 

calculated per MSJC provisions for masonry shear walls [141]. Further research is required on 

break-out strength of masonry panels with through bolts. 

panel C Shear Flex. BO_ panel CP _ panel(V ) min(V ,V ,( V N ))                                   (7.13) 
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Figure 7.4: Seismic design process for hybrid masonry building systems considering 

connector plates with fuse behavior (Case a). 
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Figure 7.5: Seismic design process for hybrid masonry building systems considering 

yielding of vertical reinforcing bars in reinforced masonry panels (Case b). 
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7.5.3.2 Case b) Inelasticity concentrated in vertical bars of reinforced masonry panels 

The required shear strength of a hybrid masonry panel for Type I to develop the flexural 

strength, (Vpanel)CF, is obtained from Equation (7.14), and the shear strength of a hybrid masonry 

panel Type I, (Vpanel)CV, is the minimum of the panel shear strength VShear, and the break-out 

strength of the panel per connector times the number of connectors per panel Equation (7.15). 

_( ) /panel CF C Panel panelV M h                                                    (7.14) 

_ _( ) min ( , ( ))panel CV Shear BO panel CP panelV V V N                                   (7.15) 

MC_Panel, is the flexural strength of a masonry panel.  

 

7.6 Viability of Hybrid Masonry as a Lateral-Load Resisting System 

Based on the procedures described above, the feasibility of hybrid masonry panels as practical 

lateral-load resisting systems is studied by calculating seismic demands on lateral-load resisting 

elements of prototype buildings and designing them. The system design results are presented for 

the first story, which has the maximum shear demand on the lateral-load resisting elements.   

 

7.6.1 Description of Prototype Buildings 

The prototypes studied in this research are office buildings located in Los Angeles, California, 

which is a high seismic hazard region. Three, six and nine story office buildings of rectangular 

plan configuration, which are 51.1 m long in the E-W direction and 36.5 m wide in the N-S 

direction, are considered (Figure 7.6). Each story height is 3.7 m and 7.3 m bays are used in each 

direction. Floors consist of 8.3 cm lightweight concrete placed on corrugated metal deck. 

Structural steel members are wide-flange shapes comprised of A992 steel and the beams are pin-

ended. The nominal loading magnitudes are adopted from the design examples in FEMA 451 

[146]: 3.0 kN/m2 for floor dead load (deck, slab, beams, girders, fireproofing, ceiling, partitions, 

mechanical and electrical systems); 2.6 kN/m2  for roof dead load (roofing, insulation, deck, 

beams, girders, fireproofing, ceiling, mechanical and electrical systems); 2.4 kN/m2 for office 

live load; 1.2 kN/m2 for roof live load; 1.2 kN/m2 for exterior wall cladding loads (evenly 
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distributed over the exterior wall area of the buildings, including a 1.1 m high parapet wall above 

the roof level); weight of the hybrid masonry panels: 4.0 kN/m2.   

The design response spectrum parameters considered in the seismic design calculations are: site 

class D, SS=1.5 g, S1=0.6 g, Fa=1.0, Fv=1.5, SMS=1.5 g, SM1=0.9 g, SDS=1.0, SD1=0.6, occupancy 

category II (I=1.0), and redundancy factor ρ =1. The approximate equation of the code is used to 

estimate the period of the prototype buildings [138].   

 

 

Figure 7.6: Typical floor framing plan (dimensions in meters). 

 

7.6.2 Design of Prototype Buildings  

7.6.2.1 Case a) Inelasticity concentrated in steel connector plates 

The demands on the lateral-load resisting elements are calculated considering two possible 
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values of the response modification coefficient, R = 5 and 6. The break-out strength of a panel at 

one connector location is considered to be 89 kN (20 kips), based on preliminary experimental 

studies by Goodnight et al. [135]. Considering W14 column section and a 64 mm (2.5 in) gap at 

each side of the panel, the length of the masonry panel is 6.8 m. For this length of the panel, from 

Equation (7.5), the maximum number of connectors per panel is equal to 16. The connector 

plates utilized in the design are similar to the tapered fuses, detailed and tested at the University 

of Hawaii [134]. The steel design is based on AISC 360-10 [144], and AISC 341-10 [145]. The 

fuse illustrated in Figure 7.7(a) is designed similar to a cantilever beam subjected to a transverse 

concentrated load at the tip, and is detailed so that the cross sections at the top and bottom of the 

fuse reach their maximum moment capacity at the same time. Moreover, the design is based on 

the provisions of Section F11 in AISC 360-10. It is assumed that the fuse is made up of steel 

plates with Fy =250 MPA (36 ksi), and that the fuse length (Lf) is equal to 20 cm. The values of 

the panel shear forces from lateral-load analysis are shown for 3, 6, and 9 story prototype 

buildings in Table 7.2. In Table 7.2, Wr is the ratio of required number of panels to the possible 

number of structural panels in each direction. The possible number of panels is equal to the 

number of bays in each frame times the number of frames in each direction. Regarding the 

prototype buildings considered in this study, the possible number of hybrid masonry panels in 

the N-S direction is equal to 40 (see Figure 7.6). However, this number is impractical since the 

building would not be functional. The parameters considered for design of the masonry panels 

are listed in Table 7.3. In designing the panels, it is assumed that the vertical bars are distributed 

evenly across the panel width. The shear strength of the panel can be calculated from Equation 

(7.13). Other calculations are summarized in Table 7.5 to Table 7.9. The results indicate that the 

system is potentially viable for the 9-story prototype office building located in a high seismic 

hazard region.  
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Table 7.2: Panel shear forces from lateral-load analysis (Case a). 

  

 

Base shear (kN) 
No. of panels in each 

direction 
(Vpanel)u (kN)   

  R  3 Story 6 Story 9 Story 3 Story 6 Story 9 Story 3 Story 6 Story 9 Story   

  5 4517 10084 14461 7 15 21 645 672 689   

  6 3731 8183 11643 6 12 17 622 682 685   
 

Note:                   

Wr = Ratio of required No. of panels to the 

possible number of panels in the system 

  Wr  0.4   
 

  0.4 <Wr 0.55   
 

 

 

Table 7.3: Parameters considered for design of reinforced masonry panels. 

 

 

 

 

 

 

 

                

                                                        (a)                                                                       (b)             

Figure 7.7: (a) Fuse geometry. (b) Connector plate geometry (dimensions in 

centimeters). 

d'  (mm) 50 End cover over bars 

f'
m (MPa) 10 Compressive strength of the masonry 

fy (MPa) 414 Yield strength of the reinforcement 

L (m) 6.83 Length of the panel 

b (mm) 194 Thickness of the panel (8" CMU fully grouted) 

h (m) 2.90 Height of the panel 

Em (GPa) 9 Modulus of elasticity of masonry (900 f'
m ) 

ES (GPa) 200 Modulus of elasticity of the reinforcement 
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7.6.2.2 Case b) Inelasticity concentrated in vertical bars of reinforced masonry panels 

The demands on the lateral-load resisting elements are calculated considering four possible 

values of response modification coefficient, R 3, 4, 5 and 6. Break-out strength of the panel per 

connector and the length of the panels are similar to those of Case a. It is assumed that steel 

connectors are made up of plates with Fy =250 MPA (36 ksi), and that the connector length, from 

the center of the slotted holes to their support, is equal to 35.5 mm (Figure 7.7(b)). Results of 

calculations based on the process described in the previous sections are summarized in Table 7.4 

and in Section 7.8. According to the results presented in Table 7.4, for high seismic hazard 

regions, using Case b is suitable for the low-rise (around 3 stories) prototype buildings.  

 

Table 7.4: Panel shear forces from lateral-load analysis (Case b). 

  
Base shear (kN) 

No. of panels in each 

direction 
(Vpanel)u (kN) 

R  3 Story 6 Story 9 Story 3 Story 6 Story 9 Story 3 Story 6 Story 9 Story 

3 8063 19750 27971 15 35 N.F. 538 564 --- 

4 5847 13598 20367 11 24 36 532 567 566 

5 4677 10437 15194 11 19 27 425 549 563 

6 3898 8403 12152 11 15 22 354 560 552 

Note:                   

Wr = Ratio of required No. of panels to the 

possible number of panels in the system 

  Wr   0.4   0.55 <Wr  0.75 

  0.4 <Wr  0.55   0.75 < Wr<1 

          1.0 ≤Wr   Not Feasible (N.F.)     

 

7.7 Summary, Conclusions and Future Research 

Hybrid masonry is a new system for seismic-resistant building construction. The system takes 

advantage of masonry walls present in most buildings as non-structural elements, and by using 

special details, makes them part of the lateral-load resisting system. A hybrid masonry system 

consists of reinforced masonry panels within a steel framed structure, where steel connectors are 

used to tie the surrounding steel frame to the masonry panels. To date, the system has been used 

for construction of low-rise buildings in the eastern and mid-western United States. The current 

research provides a framework for using one type of hybrid masonry in areas of moderate and 

high seismicity. The main contributions of this study are summarized as follows: 
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 Simplified lateral-load analysis of hybrid masonry Type I is presented. The results show 

that the lateral-load path is straightforward and thus the system is well suited to hand 

calculations. 

 Employing the widely-accepted capacity design concept, this study establishes the basis 

for seismic design of hybrid masonry building systems, specifically those employing 

hybrid masonry Type I. Seismic design methodologies for buildings incorporating hybrid 

masonry Type I are discussed for two cases: inelasticity concentrated in the steel 

connector plates and inelasticity concentrated in the vertical steel bars of the masonry 

panels.  

 The viability of hybrid masonry as a new seismic lateral-load resisting system was 

considered and the results of seismic demand calculations for the basic lateral-load 

resisting elements show that it is a promising system. Nevertheless, there will be 

significant demands on the steel connector plates for the case where plasticity is 

concentrated in flexural yielding of steel vertical bars in the masonry panels. The 

structural system then requires more hybrid masonry bays compared with corresponding 

systems when plasticity is concentrated in steel connector plates. 

 When inelasticity is concentrated in the steel connector plates, mid-rise prototype office 

buildings (around 9 stories) appear to be feasible. However, when inelasticity is 

concentrated in the masonry panels, only low-rise buildings (around 3 stories) appear to 

be feasible.  

 The results presented in this chapter are for prototype office buildings located on Site 

Class D in a high seismic hazard region. The seismic demands on the system are smaller 

for buildings located on sites with better soil conditions and in moderate seismic hazard 

regions. Therefore, hybrid masonry Type I can potentially be used for taller prototype 

buildings than those considered in this study.    

 The sample design of prototype buildings presented in this study can be used as a 

practical design guide for engineers considering hybrid masonry for seismic design.    

Before hybrid masonry can be effectively used as a seismic structural system, large-scale 

experimental validation of the system behavior is required. This testing is planned as part of an 

ongoing research project on hybrid masonry systems [127]. All hybrid masonry configurations 
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will be studied (Types I, II and III) and the critical force transfer mechanisms at the steel-

masonry interfaces will be explored. These mechanisms include masonry through-bolts (as used 

for steel connectors), contact and bearing, and headed steel connectors. Validation of robust 

steel-masonry interface behavior and global system performance is a critical step for 

implementing hybrid masonry seismic systems.  

 

7.8 Supplementary Materials 

7.8.1 Summary of calculations for Case a) 

The number of steel connectors per panel, and the shear demands per connector for the prototype 

buildings are presented in Table 7.5. Table 7.6 includes moment demands and the cross-section 

geometry at the top of the fuses. Moment demands and the cross-section geometry at the bottom 

of fuses are presented in Table 7.7. Checks for the panel break-out strength and the shear 

demands on the panels are presented in Table 7.8. A summary of shear strength for the masonry 

panels using various configurations of bars is presented in Table 7.9. Since the shear break-out 

strength has been checked in Table 7.8, Table 7.9 then includes the shear strength calculations 

governed by flexural and shear action of the reinforced masonry panel. 

 

 

Table 7.5: Number of steel connectors per panel and shear demand per connector (Case a). 

    (NCP_panel)min (NCP_panel)used (VCP)D (kN)   

  R  3 Story 6 Story 9 Story 3 Story 6 Story 9 Story 3 Story 6 Story 9 Story   

  5 15 16 16 16 16 16 40 42 43   

  6 14 16 16 16 16 16 39 43 43   
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Table 7.6: Moment demands and cross-section geometry at the top of fuses (Case a). 
 

    (MCP)D at the top of fuse       

(kN-m)  

Top of fuse cross section (for a single plate)   

    3 Story 6 Story 9 Story   

  R  3 Story 6 Story 9 Story Wt (mm) t (mm) Wt (mm) t (mm) Wt (mm) t (mm)   

  5 12.3 12.8 13.1 100 12 100 12 100 12   

  6 11.8 13.0 13.0 95 12 100 12 100 12   

 

 

Table 7.7: Moment demands and cross-section geometry at the bottom of fuses (Case a). 

  (MCP)D at the bottom of fuse  

(kN-m)  

Bottom of fuse cross section (for a single plate) 

  3 Story 6 Story 9 Story 

R  3 Story 6 Story 9 Story Wb (mm) t (mm) Wb (mm) t (mm) Wb (mm) t (mm) 

5 4.1 4.3 4.4 55 12 60 12 60 12 

6 3.9 4.3 4.3 55 12 60 12 60 12 

 

 

 

Table 7.8: Check of panel break-out strength and shear demands on panels (Case a). 

 

Ω0 (Vpanel)u /NCP_panel (1)  (kN) VBO_panel x NCP_panel (2) (kN) (Vpanel)D =Ω0 (Vpanel)u (3) (kN)     

R  3 Story 6 Story 9 Story 3 Story 6 Story 9 Story 3 Story 6 Story 9 Story     

5 81 84 86 1423 1423 1423 1291 1345 1377     

6 78 85 86 1423 1423 1423 1244 1364 1370     

Note:                       

(1) The values calculated must be smaller than the break-out strength of the panel considered in the design 

(See Equation (7.6)). 

    

    

(2) The values calculated in this column must be greater than the shear demand on the panel (See section 

“Design of hybrid masonry structural panels”). 

(3) The shear demand on the panel.                 
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Table 7.9: Summary of shear strength calculations of masonry panels for various configurations of 

bars per MSJC 2008 Strength method. 

c (1)                 

(cm)  

Vertical 

Bars 

VFlex
 (2)                   

(kN)  

Vm 
(3)             

(kN) 

(Vn)max 
(4) 

       

(kN) 

(VFlex & Shear)C 
(5)

 

(kN) 

(Vs)Req. 
(6) 

   

(kN)  

41 11 # 4 (D13) 365 1149 1953 365 NA 

82 11 # 6 (D19) 772 1149 1953 772 NA 

105 11 # 7 (D22) 1011 1149 1953 1011 NA 

128 11 # 8 (D25) 1262 1149 1953 1262 113 

153 11 # 9 (D29) 1525 1149 1953 1525 376 

Note: 

Shear break-out strength has been checked in other Tables, this Table then includes the shear 

strength calculations governed by flexural and shear action of the reinforced masonry panel.  

(1) Length of compression zone.   

 

(2) Flexural shear strength of the masonry panel. 

(3) Shear strength provided by the masonry.    

(4) Upper bound limit on the nominal shear strength of the masonry panel per MSJC 2008 [141]. 

(5) Shear capacity provided by flexural and shear action of the masonry panel. Comparison of these 

values with shear demands per panel from Table 7.4 shows the feasibility of design of the panels for 

seismic lateral-load demands.  

(6) Required shear capacity of horizontal steel bars.       

 

7.8.2 Summary of calculations for Case b) 

Calculations for Case b are summarized in Table 7.10 to Table 7.12. 

 

Table 7.10: Number of steel connectors per panel and shear demand per connector (Case b). 

 
(NCP_panel)min (NCP_panel)used (VCP)D (kN) 

R  3 Story 6 Story 9 Story 3 Story 6 Story 9 Story 3 Story 6 Story 9 Story 

3 16 16 --- 16 16 --- 84 88 --- 

4 15 16 16 16 16 16 83 89 88 

5 12 16 16 16 16 16 66 86 88 

6 10 16 16 16 16 16 55 88 86 
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Table 7.11: Moment demands and cross sections geometry (Case b).  

  (MCP)D  at connector 

support  (kN-m)  

Connectors cross section (for a single plate) 

  3 Story 6 Story 9 Story 

R  3 Story 6 Story 9 Story W (mm) t (mm) W (mm) t (mm) W (mm) t (mm) 

3 29.9 31.4 --- 160 12 160 12 --- --- 

4 29.5 31.5 31.4 155 12 160 12 160 12 

5 23.6 30.5 31.3 140 12 160 12 160 12 

6 19.7 31.1 30.7 125 12 160 12 160 12 

 

 

 

Table 7.12: Check of panel break-out strength and shear demands on panels (Case b). 

 

Ω0 (Vpanel)u /NCP_panel (1) (kN) VBO_panel x NCP_panel (2) (kN) (Vpanel)D =(Vpanel)u (3) (kN)   

R  3 Story 6 Story 9 Story 3 Story 6 Story 9 Story 3 Story 6 Story 9 Story   

3 84 88 --- 1423 1423 --- 538 564 ---   

4 83 89 88 1423 1423 1423 532 567 566   

5 66 86 88 1423 1423 1423 425 549 563   

6 55 88 86 1423 1423 1423 354 560 552   

Note:                     

(1) The values calculated must be smaller than the break-out strength of the panel considered in the design 

(See Equation (7.6)). 

  

  

(2) The values calculated in this column must be greater than the shear demand on the panel (See section 

“Design of hybrid masonry structural panels”). 

(3) The shear demand on the panel.  

               

 

  



 
 

 

  135 

8 Capacity Spectrum-Based Seismic Design of 

Type I Hybrid Masonry Structural Systems with 

Fuse Connectors 

 

 

  

 

Abstract 

Applying the force-based seismic design procedures of the current codes to hybrid 

masonry structural systems requires availability of the seismic response factors. Whereas, 

hybrid masonry is a relatively new lateral-load resisting system for which seismic 

response factors, including the response modification coefficient (R), are not defined in 

the current codes. In this study, an integrated simple approach for performance-based 

seismic analysis and design of hybrid masonry Type I systems employing fuse connector 

plates is presented. The procedure used in this study is based on the Capacity Spectrum 

Method. In this study, we apply the method for design of a sample hybrid masonry 

building system.  

 

Keywords: Hybrid Masonry; Capacity Spectrum; Displacement-Based Design; Capacity 

Design; Performance-based Design.  

 

8.1 Introduction 

Masonry infill walls are primarily used in buildings as architectural partitions worldwide, and 

their function as structural elements is usually ignored. Contrary to masonry infill panels, hybrid 

masonry is a relatively new technology for earthquake resistant design of buildings, and was first 
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proposed in 2007 [125]. The system has been introduced to the eastern United States for low-rise 

office and commercial buildings, but it has not been used in high-seismic regions yet.  

The innovative hybrid masonry technology is based on the structural action of reinforced 

masonry panels connected to a surrounding steel frame via novel steel connectors. The connector 

plates if detailed appropriately can accommodate a large dissipation of energy through yielding 

of the steel plates. Depending on the interfacial conditions between a masonry panel and a 

surrounding frame, hybrid masonry panels are categorized into 3 major groups designated as 

Types I, II, and III [126].  

An overview of the current research on hybrid masonry panels is given in Abrams et al. [147]. 

Employing capacity design concept, seismic design methodologies for buildings incorporating 

hybrid masonry panels Type I are discussed in Eidini et al. [131] (see Chapter 7) for two cases of 

plasticity concentrated in steel connectors or in vertical steel bars of the masonry panels. 

Seismic response factors (e.g., response modification coefficient, R) are not proposed in the 

current codes for hybrid masonry systems. One advantage of performance-based design 

procedures is that they are not dependent on the current codes’ seismic response factors, but on 

the actual performance of the structures. To estimate the base shear of the hybrid masonry Type I 

systems employing connector fuses, the current study employs a performance-based design 

procedure which does not require the code-based response modification factors. The approach in 

this study is an iterative process implemented in the framework of the Capacity Spectrum 

Method (CSM). CSM has been widely accepted and extensively improved [148, 149, 150, 151, 

152] since its recommendation in ATC-40 [153]. The steps of the approach are described in this 

study. The proposed method includes an iterative process through which a hybrid masonry 

structural system with fuse connector plates is designed depending on its energy dissipation 

capacity. In the proposed design approach, the value of the system R factor is regulated in the 

process, depending on the energy absorption capacity of the system.  

 

8.1.1 Major Advantages of Hybrid Masonry 

Hybrid masonry uses masonry walls present in most buildings as non-structural elements and by 
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employing special details makes them as parts of the lateral-load resisting system. This merit is 

in accordance with a key principle of seismic resistant design of buildings as noted by Bertero 

and Brokken [132]. The main advantages of hybrid masonry systems are listed as follows. 

 Bracing steel frames using reinforced masonry panels leads to an integrated efficient 

application of both materials. 

 In a hybrid masonry system, moment-resisting connections or steel bracings in steel 

frames are not required. Hence, making the installation of both the masonry and the 

structural steel simpler, for instance by eliminating the construction difficulty in trying to 

fit masonry around the braces.   

 Introducing the technology to engineering and research society as a new lateral load 

resisting structural system rather than non-structural partitions as are in the case of infill 

panels.  

 Removing the interaction between a masonry panel and columns, and therefore 

preventing from unfavorable brittle shear failure modes of columns (e.g., reported in 

[154] for the case of bounding concrete frames) by introducing gaps between a frame and 

masonry panels in hybrid masonry Types I and II. 

 The panels can be designed to reduce the extent of the damage in the masonry, for 

example via introducing the novel steel connector plates as fuses for dissipating seismic 

energy [131].   

 Presence of the gaps both at the sides and at the top of the wall as well presence of slotted 

holes in the connector plates in hybrid Type I, makes lateral-load analysis of the system 

straightforward. Therefore, the system is well-suited for hand calculation [131]. 

 The system is well-suited for a performance-based design approach, particularly for a 

design philosophy in which the plasticity is concentrated in the connector plates. 

Focusing on this point, the current study introduces a performance-based approach for 

seismic design and analysis of hybrid masonry Type I structural systems. 

Incomplete codes and lack of recommendations for seismic design of hybrid masonry systems 

are among the main barriers to implement the system [147]. The current study addresses this 

issue by introducing a seismic design approach which is not dependent on the code-based 

seismic response factors. 
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8.2 Hybrid Masonry Type I 

The paper by Eidini et al. [131] describes the force transfer mechanism in hybrid masonry Type 

I. In this study, we employ an alternative approach based on the free-body diagram of a masonry 

panel in Type I hybrid masonry to explain the force transfer mechanism. As described in the 

current literature [131], in Type I hybrid masonry, only shear force transfers to the masonry 

panel, and specifically there is no axial load transmission due to existence of gaps between the 

masonry panel and the frame as well as presence of slotted holes in the steel connectors. The 

story shear transfers through the steel links connecting the beam to the masonry panel (Figure 8.1 

(a)).  

 

  

     (a)                                                             (b)                                              (c)  

Figure 8.1: (a) Hybrid masonry Type I. (b) Parameters used in lateral load analysis of 

hybrid masonry Type I. (c) Free-body diagram of a masonry panel in hybrid masonry 

Type I systems.  

 

8.2.1 Lateral load analysis in hybrid masonry Type I 

The free-body diagram of a masonry panel in hybrid Type I is shown in Figure 8.1(c). Beams are 

pin-ended in hybrid masonry systems. Therefore, the value of moments in columns are 

negligible, and are not considered in the following derivations. 

The story shear at level i+1 is given by 
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                                                          (8.1) 

From moment equilibrium around the X-X axis in Figure 8.1(c), the axial force in the column is 

given by 
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where 
CPh  is the length from the slotted holes to the point of application of story forces. 

Substituting Equation (8.1) in Equation (8.2), we have 
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Similarly, for 
1iP
, 
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Assuming 
CPh is identical in all stories, and by substituting corresponding values for

1iP
, 

2iP
, …, 

nP in Equation (8.2), one can get 
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                              (8.5) 

For very short connector plates, the last term in Equation (8.2) to Equation (8.5) can be ignored. 

In RAM Element software [155] the steel connector lengths are assumed to be negligible, and 

therefore the value of axial load in columns is estimated from the following formula [147, 124]. 

However, in realistic situations, the length of connector plates is not very small and its effect on 

column axial load cannot be neglected. From Equation (8.5), the larger the length of steel 
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connectors, the larger the axial loads in columns (under lateral load). The frame and the panel 

moments under lateral load are given in the following equations 

 
1

n

Frame i j j i CPi
j i

M P L V h V h
 

                                             (8.6) 

  ( )Panel i p ii
M V h                                                        (8.7) 

Assuming that the panel height is identical in all stories and that it is approximately equal to the 

story height (e.g., (hp)i=hi=h), we have   
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                                 (8.8) 

If right hand side of Equation (8.6) is constant (i.e., if lateral load pattern, steel connector length 

and story heights remain unchanged throughout the stories), column axial load has an inverse 

relation with the frame bay width, i.e., increasing the bay width in this case reduces the axial 

load in the columns.       

From Equation (8.8), the ratio of frame overturning moment to that of the panel at level i is not 

dependent on L (i.e., bay width), and it depends on the lateral load pattern, length of steel 

connectors and both the story and the panel heights. Additionally, Equation (8.8) shows that if 

lateral load distribution pattern is scaled uniformly, the ratio does not change. However, the ratio 

changes if lateral load pattern changes. For example, consider a four-story structure in which the 

story height is the same in all stories, and is subjected to an inverse triangular lateral load pattern 

with the magnitude equal to 1 to 4 at the 1st to 4th stories, successively. For the first story we 

have 
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Now consider a rectangular lateral load pattern producing the same base shear as that of the 

inverse triangular lateral load pattern. The loading magnitude at each story will then be equal to 

2.5. Hence, 
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8.2.2 Lateral stiffness of hybrid masonry Type I 

In this section, using a simplified model we obtain the lateral stiffness of a hybrid masonry Type 

I structural system. In the system, each masonry panel is connected in series with the steel 

connectors (Figure 8.2(a)). Hence, for a single panel, the displacement of the panel is given by 

Pij Cij Mij                                                            (8.11) 

in which the indices i and j represent the bays and stories numbers, respectively. Also, the 

indices P, C and M denote panel (hybrid panel), connectors and masonry panel, successively. 

From the above relation we have 

Pij Cij Mij

V V V

K K K
                                                     (8.12) 

 
1 1 1

Pij Cij MijK K K
                                                     (8.13)  

The steel connectors per each panel are acting in parallel with each other. Hence, the lateral 

stiffness of the connectors per panel at bay i and story j,
CijK , can be estimated as  

_

_

1

( )
CP panelN

Cij CP CP panel CPK K N K                                         (8.14)  

From Equation (8.13), in a single hybrid masonry panel, the total stiffness of the masonry panel 

and connectors acting in series is dominated by the more flexible element, i.e., the connector 
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plates which are much more flexible than the masonry panels. Hence, for a single panel, lateral 

stiffness of the hybrid panel can be considered equal to that of the connectors as given in the 

following. 

Pij CijK K                                                           (8.15) 

 

 

Figure 8.2: (a) Schematic connection of a hybrid masonry panel to steel connectors. (b) 

Schematic connection of elements in a two-story and three-bay hybrid masonry Type I 

building system. Cij represents the steel connectors in the ith bay and jth story, and Mij 

stands for the masonry panel in the ith bay and jth story. SFj represents the steel frame at 

the jth story.  

 

The schematic connections of the structural elements in a two-story and three-bay hybrid 

masonry Type I building system is illustrated in Figure 8.2(b). The lateral stiffness of the jth 

story can be estimated as 

. .

1 1
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                             (8.16) 

where 
SFjK  is the stiffness of the steel frame at the jth story. Assuming the steel beams have 

pinned ends, and disregarding the stiffness of the frame, we have   
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Assuming only one type of steel connector is used at each story, we have 
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                         (8.18) 

in which (NCP_Story)j is the number of steel connectors at the jth story. The relation above shows 

that in a system with long hybrid masonry bays in which the steel connectors are much more 

flexible than the masonry panel, the number and the stiffness of connector plates control the 

story stiffness. Note that the relation above is true on the basis of the assumptions that the steel 

frame does not contribute in the lateral stiffness and that the connector plates are much more 

flexible than the masonry panels. By considering the steel beams as pin-ended and designing the 

connector plates as energy absorption fuses, the realistic situation can be close to the assumed 

one.  

  

8.3 Performance-based Seismic Design of Hybrid Masonry Structural Systems 

In this section, a performance-based design approach is proposed for seismic analysis and design 

of hybrid masonry Type I systems. The design methodology is based on formation of the plastic 

hinges in the connector plates, i.e., case (a) described by Eidini et al. [131] (see Chapter 7). The 

main assumptions used in the proposed design process are summarized as follows: 

 Plastic hinges only form in the connector plates. This assumption is accommodated 

through capacity design of the system described by Eidini et al. [131]. 

 To obtain the story displacement, only connector plates are considered and the 

displacements of the masonry panels are ignored (rotation of the masonry panels and the 

flexural and shear displacement of the panel are small compared to the deformation of the 

connectors, and are neglected in the calculations).  

 Only one type of connector plate is used at each story, i.e., the geometry and load-

displacement behavior of all connector plates are the same (this assumption simplifies the 

design process).    
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The performance-based seismic design procedure presented in this study is an iterative process 

based on CSM. The process is illustrated in Figure 8.3. The steps of the proposed CSM-based 

approach for seismic design of hybrid masonry Type-I systems with fuse connector plates are 

given in the following.  

1) Estimate the base shear. Assume a value for R factor (force reduction factor), and 

calculate lateral load demand for preliminary design stage. R=6 is suggested at this stage.  

2) Design the system based on the steps for case (a) described by Eidini et al. [131]. 

3) Construct the earthquake response spectrum in acceleration displacement (A-D) format. 

To convert a spectrum from the Sa-T format to A-D format use the following relation. 

                
g

T
S i

di ai2

2

S 
4


                                                          

(8.19) 

4) Construct the capacity curve of the system in terms of the base shear versus roof 

displacement. As described in Section 8.2.2, almost all lateral shear is resisted by the 

system of connector plates and the masonry panel. Moreover, the connector plates per 

each panel are acting in parallel whose resultant system is performing in series with the 

masonry panel. Hence, given the load-displacement curve for the connector plates, the 

capacity curve of the system can be constructed in terms of base shear versus roof 

displacement. The process is illustrated in Figure 8.4 and Figure 8.5. Therefore, we have 

     
  _( )Panel u CP CP panelCapacity
V F N 

                                         
(8.20)

 

in which (VPanel)Capacity is the shear capacity of each hybrid masonry panel; (Fu)CP is the 

ultimate shear load capacity of a connector plate. Story shear can then be calculated from the 

sum of shear capacity of the panels at each story. 

       
 Story Panel Capacity

V V                                                   
  
(8.21) 

5) Convert the capacity curve of the system to that of a single degree of freedom (SDOF) 

representation in A-D format. The conversion is carried out via the following formula. 
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    1 1

roof

di

roof ,

S
PF 





                                                       (8.23) 

where (Sai, Sdi) are points on capacity spectrum curve corresponding to (Vi, ∆roof) on the 

capacity curve of the system. 1 and PF1 are the mass and modal participation factors of the 

first mode, respectively; ϕroof,1 is amplitude of the first mode at the roof level; V is base shear; 

W is the dead load plus probable live load; ∆roof is the roof displacement; Sa is the spectrum 

acceleration; Sd is the spectrum displacement. 
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                (8.24) 

6) Draw the demand versus capacity curve in A-D format in a single plot. 

7) Determine the performance point, i.e., the intersection of the demand with the capacity 

curve. The performance point obtained in this way is for a SDOF system which needs to 

be converted to that of a multi-degree of freedom (MDOF) system. 

8) Evaluate performance of the structure. If the performance point is before and close to the 

end point of the capacity curve, i.e., it meets the following relation, go to the next step; 

otherwise the system design needs to be verified. 

      

tolerance
d

dd

p

pe



0

                                              

(8.25) 

where de and dp are ultimate and performance point displacements, respectively. In this study 

0.05 is used as the tolerance. 

9) Check code displacement limit criteria. If OK, design the system for the demand on each 

elements; otherwise use less ductile connector plates and go to Step 3. 
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Figure 8.3: CSM-based design of hybrid masonry Type I building systems with fuse 

connector plates. 
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               (a)                                             (b)                                             (c) 

Figure 8.4: (a) Envelope curve derived from the test results; (b) load-displacement curve 

for a hybrid masonry panel Type-I; (c) Story shear-displacement curve for a frame 

employing hybrid masonry Type-I panels. 

 

 

Figure 8.5: Base shear versus roof displacement. 

 

8.4 Description of a Prototype Building  

The example considered for this section is a three-story office building located in a moderate 

seismic hazard region. The building has a rectangular plan configuration with 21.9 m long in the 

E-W direction and 21.9 m wide in the N-S direction (Figure 8.6). Each story height is 3.7 m. 

They are framed in structural steel with 7.3 m bays in each direction. Floors include 8.3 cm 
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lightweight concrete placed on metal deck. Structural steel members are wide-flange shapes 

comprised of A992 steel. The values of loading are: dead load (floors)= 3.0 kN/m2; dead load 

(roof)= 2.6 kN/m2; live load= 2.4 kN/m2 (office buildings); live load= 1.2 kN/m2 (for roof is 

assumed); cladding loads: 1.2 kN/m2 (evenly distributed over the exterior wall area of the 

building, including a 1.1-m-high parapet wall above the roof level). The design response 

spectrum parameters considered in this section are: site class D, SS=0.9 g, S1=0.3 g, Fa=1.14, 

Fv=1.8, SMS=1.03 g, SM1=0.54 g, SDS=0.68, SD1=0.36, occupancy category-II (I=1.0), and 

redundancy factor ρ=1.  

 

 
Figure 8.6: Typical floor framing plan (dimensions in meters). 

 

8.5 Design of the Prototype Building  

The system is first designed based on the steps described for the Case a described by Eidini et al. 

[131]. For preliminary seismic design stage, we assume R=6 for the system. The assumed R 

factor for the current hybrid masonry structure is investigated in the process as well. The 

building is designed assuming two lateral load resisting systems (LLRS) in each direction. In 

addition to the key assumptions used in the design process (see Section 8.3), the over-strength 
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factor (Ω0) equal to 2 is used in the capacity design process for the steel connector plates. The 

break-out strength of a panel at one connector location is considered to be 89 kN (20 kips), based 

on preliminary experimental studies by Goodnight et al. [135]. Considering W14 column section 

and a 64 mm (2.5 in) gap at each side of the panel, the length of the masonry panel is 6.8 m. For 

this length of the panel, from the following relation [131], the maximum number of connectors 

per panel is equal to 16.  

0 41CP _ panel panelN L / .                                                 (8.26) 

where Lpanel is the panel length (m). The connector plate used in the CSM design process is the 

tapered fuse specimen (P4_T4_Ft3-01), detailed and tested at the University of Hawaii [134] to 

perform as energy dissipating links. The test set up for the connector plate along with the Load-

Displacement behavior of the connector is shown in Figure 8.7. The envelope of the curve, used 

in the design process, is also shown in Figure 8.7(b). For the test specimen, the yield and 

ultimate forces and displacements used in the design process are given in Table 8.1. Table 8.2 

presents the details of calculations to obtain the number of steel connectors per panel and the 

lateral-load capacity of each hybrid masonry panel. The data required for drawing the capacity 

curve of the system is also presented in Table 8.3.  

                               

                             (a)                                                                                  (b) 

Figure 8.7: (a) Test set up for P4_T4_Ft3-01 fuse reported by Johnson et al. [134]. (b) 

Load versus displacement for a sample fuse [134] and its envelope drawn by black thick 

line. 
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Table 8.1: Critical points of hysteretic response for the fuse used in the design. 

Yield Point Ultimate Point 

∆y             

mm 

Fy
                 

kN 

∆u             

mm 

Fu
                 

kN 

5.3 6.7 73.7 13.3 

 

 

Table 8.2: The number of steel connectors used per panel and lateral-load capacity of 

each hybrid masonry panel. 

 
                    
                    

Table 8.3: The data needed to draw the capacity curve of the system.  

 
 

 

dR R Y                                                           (8.27) 

Level
(V u )LLRS

(1)     

kN

N panel
(2) 

(V u )panel
(3)      

kN

N CP_panel
(4)   

Required

N CP_panel
(5)   

min

N CP_panel
(6)  

Used

(V C )panel
(7)       

kN

3 88.4 2 44.2 2 1 3 80

2 161.3 2 80.7 4 2 6 160

1 197.8 3 65.9 3 2 7 187

Note:

(1) Lateral-load demand on each LLRS. The structures include two LLRS.

(2) Number of hybrid masonry panels at each level per LLRS. 

(3) Lateral-load demand per each hybrid masonry panel.

(4) Required number of steel connectors per panel. 

(5) Minimum number of steel connectors per panel from Equation (6.7).

(6) Used number of steel connectors per panel.

(7) Lateral-load capacity of each panel.

Level
(V u-LLRS )C    

kN

(∆ u )CP         

mm

(D Story )u      

mm  

(V y-LLRS )C 

kN

(∆ y )CP            

mm

(D Story )u    

mm   

3 160.1 2.9 8.7 80.1 0.21 0.63

2 320.3 2.9 5.8 160.1 0.21 0.42

1 560.5 2.9 2.9 280.2 0.21 0.21

Note:

=∆u/∆y= 13.8 R=(2-1)= 5.16

d= 2 R= 10
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where R  and 
d  are the ductility reduction and over-strength factors, respectively, as given by 

the following relations [156, 143]. The parameterY is the allowable stress factor [156].  

e

y

V
R

V
             

y

d

d

V

V
                                                   (8.28) 

For the structures designed based on the ultimate strength method, the allowable stress factor is 

equal to unity. Hence, the response reduction factor is given by 

dR R                                                                 (8.29) 

For intermediate period range, and from the equal energy criterion we have [143] 

2 1R                                                                (8.30) 

Considering 
0 2d   , we have 

R  2 2 1                                                             (8.31) 

Assuming the first mode is the predominant mode of the system, capacity curve of the system is 

converted to that of a SDOF representation in A-D format [153]. Furthermore, the demand and 

capacity curves are drawn in A-D format in a single plot. To obtain the demand curve, the 

earthquake spectrum needs to be reduced. The reduction factors account for the energy dissipated 

by the structure during a seismic event. The spectrum reduction factors are used as follows 

 3 21 0 68

2 12

eff

A

. .  Ln 
SR

.


                                                 (8.32) 

 2 31 0 41

1 65
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                                                  (8.33) 

In the above formula, SRA and SRV are spectral reduction values in constant acceleration and 

constant velocity ranges of the spectrum, respectively; eff, is the effective damping of the 

structure, which combines the inherent viscous damping and hysteretic damping. It can be 

calculated from the following relation [153]:  
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                                           (8.34) 

in which, 0, is the viscous damping equivalent to the hysteretic damping; 0.05, is the assumed 

inherent viscous damping of the structure; (dy, ay) and (dp, ap) are the coordinates of the yield and 

performance points, respectively (see Figure 8.8); Performance point is located on the 

intersection of the demand and capacity curves and is determined via an iterative procedure 

[153]. The parameter  is a damping modification factor introduced in ATC 40 for existing 

Reinforced Concrete (RC) structures. The factor is dependent on the structural behavior. In ATC 

40, structural behavior is also categorized based on quality of the lateral load resisting system 

and duration of the ground motion. The structure under investigation is a newly designed hybrid 

masonry building, and not a RC structure. For this example, since inelasticity is concentrated to 

the steel connector fuses, a higher ductility than that of an existing RC structure, and 

consequently a higher  factor than that suggested in ATC 40 are expected. For the current 

example, the same  factor as in the ATC 40 for the structures of category A is used, which is 

conservative.  

The performance point, i.e., the intersection of the demand with the capacity curve, is then 

determined. The performance point obtained in this way is for a SDOF system that needs to be 

converted to that of a MDOF system.  

The demand versus capacity curve in A-D format, for the example system, is presented in Figure 

8.9. The figure shows that the system provides sufficient capacity and the performance point is 

(0.1 g, 6.8 in).   
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Figure 8.8: Bilinear representation of the capacity spectrum and the key points in 

damping calculation. 

 

 

 

Figure 8.9: Final iteration result. The dotted black line (2nd Iteration) matches well with 

the green line. Therefore, performance point is shown by a solid black circle in the figure.  

 

8.6 Concluding Remarks and Future Research 

A Capacity Spectrum Method-based seismic design approach has been proposed for hybrid 

masonry Type I structural systems with fuse connectors. Advantages of hybrid masonry Type I 

along with the straightforward implementation of the performance based design approaches for 
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fuse-based hybrid masonry panels, offer an interesting solution for seismic design of these types 

of structures.  

The proposed approach is capable of providing an estimate of the seismic demands, e.g., the 

force and displacement demands on a hybrid masonry Type I structure with fuse connectors 

without performing a nonlinear push-over analysis. In this regard, as a substitute for nonlinear 

push-over analysis, we obtain the capacity curve of the system via knowing the load-

displacement behavior of the connector plates. Moreover, using the test results carried out on 

connector plates at the University of Hawaii, the application of the method is presented for 

analysis and design of an example system. The proposed method is for the structures in which 

the first mode is the predominant mode of the structure. Hence, it is suitable for low and mid-rise 

buildings. Based on the study by Eidini et al. [131], hybrid masonry Type I is also applicable to 

low and mid-rise buildings.  

In addition to the advantages of displacement-based design approaches cited in the literature 

[157], the major benefits of the proposed approach are as follows: 

 The method is an interactive seismic analysis and design procedure which is not 

dependent on the code proposed seismic response factors, but rather on the performance 

of the system. 

 The preliminary design is only dependent on the design of the fuses. Therefore, less effort 

is needed compared with the application of the performance-based design approaches on 

other structures.  

Before the proposed method can be effectively used, several issues must be addressed as listed in 

the following.  

 In this study, the spectrum reduction factors have been chosen based on the proposed 

values in the ATC40. However, a higher reduction factor is expected due to the higher 

ductility of the Type I hybrid masonry with fuse connectors. More research is required on 

the appropriate reduction factor for this type of the structure.  

 Only one type of steel connector plate has been used in the design process. For the 

effective application of the proposed method, availability of the database on the load-
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displacement relationships for steel connector plats is necessary. 

 The length of the slotted holes in the connector plates is required to be sufficient to 

accommodate the story drifts during a seismic event. Otherwise, the axial load will be 

transferred to the connector plates. 

 Under lateral load a hybrid masonry panel may fail due to the lack of strength in either 

in-plane or out-of-plane directions. This study only addresses the in-plane behavior of the 

panels. 

 The push-over curves are obtained based on the assumption that the steel frame does not 

contribute in the lateral stiffness. Effect of the stiffness of the continuous columns on the 

lateral stiffness of the system, even though small, needs to be investigated.  

 For the case of the panels with small bay lengths, the effect of the stiffness of the 

masonry panels on the lateral stiffness must be investigated.  

 Base shear capacity is only dependent on the first story connector plates! Force-

displacement curves of the other stories need to be checked separately.  

 As an alternative, fix the displacement (target displacement) and calculate the demand 

accordingly. Start with a target displacement and a value for ductility. Then, calculate the 

acceleration demand (base shear).  Iteration is not needed in this approach. 

 Perform the pushover analysis of the structures considering the effect of the columns in 

the frame, and compare the result with the simplified model proposed in the current work. 

In this regard, the nonlinear force-displacement, obtained numerically for the connector 

plate used in the proposed design procedure, has been compared and calibrated to match 

with the corresponding force-displacement curve obtained from experimental test (see 

Figure 8.10). Hence, it can be used for further investigations of the behavior of the 

prototype structures using a nonlinear analysis.  
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Figure 8.10: Load versus displacement for a sample fuse obtained experimentally shown 

by red line [134] versus the corresponding plot obtained from computational simulation 

performed by OpenSees. 
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Appendix A: Artworks Related to the BCH2 Pattern  
 

 

 

Figure A.1: Novel artworks related to the BCH2 pattern. Figure shows different positions 

of a kinetic structure.   
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