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ABSTRACT

The era of the internet-of-things (IOT) is expanding the utilization of mobile

and cloud computing to a global scale. The enormous data transport places

a huge design overhead in building low-cost, low-power, low-error-rate high-

speed data links. This thesis provides a system-level overview of the design,

simulation, and measurement of high-speed digital applications in the con-

text of signal integrity. Examples are provided to demonstrate the design

approach and trade-offs made to arrive at the results. Modeling and simu-

lation methodologies for high-speed interconnect are discussed and studied,

using both conformal mapping and the variational method in closed-form

solutions, with examples provided to study the frequency-dependent channel

effects in high-speed digital systems. Detailed processes along with examples

are presented at the end to illustrate some real-world issues many engineers

will face when characterizing and measuring high-speed data links.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The information age is here. Big data, internet-of-things (IoT), digital con-

vergence, all these new opportunities are aiming to provide smart and intel-

ligent solutions to solve real-world problems more efficiently, while they also

require massive amounts of data transportation. As shown in Figure 1.1 [1],

an estimated 5 zettabytes (5 ZB = 5×1021 bytes = 5 billion terabytes) of

data were generated in 2014 alone, and trends indicate that the volume of

data will grow significantly every year, reaching nearly 45 ZB by 2020.

Figure 1.1: Estimated total volume of data generated by year

Data transmission (also known as digital transmission, or digital com-

munications) is the physical transfer of data (a digital bit stream) over a
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point-to-point or point-to-multipoint communication channel. Shown in Fig-

ures 1.2 and 1.3 are the two basic methods of data transmission between two

chips on the same circuit board or inter-circuit boards: parallel data transfer

and serial data transfer.

Figure 1.2: Parallel communication

Figure 1.3: Serial communication

To allow faster and more efficient data transfer, one way would be to in-

crease the data rate. As the technology continues to advance, data rates

are increasing rapidly into the multi-gigabits-per-second range, as shown in

Figure 1.4 [2]. The input/output (I/O) performance has become the bot-

tleneck of the overall system performance, especially for modern high-speed

applications.
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Figure 1.4: Per-pin data-rate vs. year for a variety of common I/O
standards

Traditional parallel communication such as PCI and PCI-X, however, can-

not meet the standard for high-speed links between integrated circuits (IC)

data transmission. In parallel communication, the difference in arrival time

of simultaneously transmitted data is commonly referred to as skew. The

tolerance of data skew between parallel signals is approaching the practical

limit, because of the increasing operating frequency of the high-speed data

links, and data skew can cause critical problems such as phase difference. In

addition, crosstalk, which refers to the interference between adjacent paral-

lel data links, is causing more problems as data rates go higher and higher.

What is more, the number of circuits that can be manufactured on a chip

is increasing year by year, as predicted by Moore’s law, and therefore extra

pins associated with parallel links would lead to higher packaging costs.

To circumvent the performance limitation of traditional parallel commu-

nication, point-to-point serial data communication is one of the possible so-

lutions. Serial data transfer requires fewer lines, which reduces board area.

Serial I/O has the advantage of higher speed, less interference between adja-

cent links, fewer pin counts and thus lower packaging costs. A serializer/de-

serializer (SerDes) is such a device that takes the parallel data link input and

condenses it into fewer lines of serial stream which are then deserialized and

output as the original recovered parallel data, as shown in Figure 1.5. SerDes
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is very beneficial because it solves the problems of many traditional parallel

data links and reduces the number of I/O pins and cost for connectors and

cables. Designing a robust, lower power SerDes that functions properly at

high speed is very challenging and requires knowledge from several different

areas.

Figure 1.5: Generic function of a SerDes

This thesis provides guidelines for high-speed serial link (HSSL) design,

modeling and characterization in the context of signal integrity. Funda-

mental concepts and major components of SerDes are covered, as well as

the design approach of the transmitter, channel, receiver and clock-data re-

covery (CDR) using charge-pump phase-locked-loop (CPLL). Figure 1.6 [3]

shows an overview of the SerDes core, where the PLL slice ensures that the

clock signals for the transmitter and receiver slice have low jitter. The trans-

mitter (TX) slice performs parallel-to-serial conversion through a serializer

circuit. The serialized data is then fed to a feed-forward equalizer (FFE) to

ensure that the receiver input is a clean waveform. The receiver (RX) slice

also requires equalization after the serialized data is transmitted through the

channel. A decision-feedback equalizer (DFE) could improve the bit-error-

rate (BER). After the signal is equalized, the serial stream is driven through

the deserializer to perform the serial-to-parallel conversion.
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Figure 1.6: Overview of the SerDes core

The thesis will explore signal integrity issues experienced by high-speed

link designers on both a system-architecture level as well as the circuit level.

All building blocks, including the transmitter, receiver and timing recovery

circuits, will be implemented at a transistor level using Cadence Virtuoso.

The channel, which connects the chip through package to board is shown in

Figure 1.7 [4]. The complete channel that includes wire bonding, package

trace, package via, solder bump, PCB via, and PCB trace is designed in

HFSS. Scattering parameters will be generated and analyzed in ADS.
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Figure 1.7: A typical controller and memory interface, forming a channel;
consider the controller as transmitter and memory as receiver

1.2 Outline

• Chapter 1 provides the background and introduction to the research

problem, as well as the motivation for this thesis.

• Chapter 2 describes the design approach of the fundamental build-

ing blocks used in high-speed SerDes, including Serializer, Deserializer,

Transmitter, Receiver, Channel, PLL-based Clock and Data Recovery.

• Chapter 3 discusses the techniques used in modeling and simulation

of high-speed interconnects, including both conformal mapping and

variational method in closed-form analytical solution.

• Chapter 4 provides detailed procedure on jitter, noise, eye diagram

measurement as well as mask test, embedding and de-embedding tech-

niques for high-speed data links.

• Chapter 5 concludes the thesis with a few possible future research di-

rections and opportunities.
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CHAPTER 2

DESIGN OF FUNDAMENTAL BUILDING
BLOCKS IN HIGH-SPEED SERDES

Shown in Figure 2.1 is the high-level overview of the serial link that is going

to be discussed in this chapter.

Figure 2.1: High-level overview of the serial link

2.1 Serializer and Deserializer

The serializer performs the parallel-to-serial conversion while the deserializer

performs the serial-to-parallel conversion. Simplified schematics of basic 2:1

serializer and 1:2 deserializer are presented here in Figures 2.2 and 2.3
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Figure 2.2: A 2:1 serializer circuit

Figure 2.3: A 1:2 deserializer circuit

For the 2:1 serializer example, assume that the two bits of parallel data,

Deven and Dodd, are time-aligned into the serializer and are synchronized

to the half-rate C2 clock signal. The parallel Deven and Dodd signals are

captured by the first two D-latches, which create the De and Do outputs

on the rising edge of the C2 clock signal. The Do′ signal is generated by

resampling the Do signal on the falling edge of the C2 clock signal. The select

input of the 2:1 multiplexer (MUX) is controlled by the C2 clock signal, so

that when the clock is low, De input signal is selected, and when the clock

is high, Do′ is selected.
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2.1.1 D-latch Design

A latch is an important component in the construction of several major blocks

in high-speed SerDes, including the serializer block, feed-forward equalizer

block, phase detector block, deserializer block, etc. A positive latch is a level-

sensitive circuit that passes the D input to the Q output when the clock signal

is high and it is said to be in the transparent mode. When the clock signal

is low, the input data sampled on the falling edge of the clock is held stable

at the output for the entire phase, and the latch is said to be in the hold

mode. Similarly, a negative latch passes the D input to the Q output when

the clock signal is low. A register, however, is an edge-trigged component

in contrast to the level-sensitive latches. A latch is an essential component

in the construction of an edge-triggered register. A flip-flop generally refers

to any bistable component, formed by the cross coupling of gates. Often in

some textbooks, an edge-triggered register is referred to as a flip-flop as well

[5].

Shown in Figure 2.4 is the transistor-level implementation of a positive

MUX-based D-latch built by using transmission gates.

Figure 2.4: A positive MUX-based D-latch using transmission gates
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When the CLK signal is high, the bottom transmission gate is on, and the

latch is transparent, and input signal D is copied to Q. During this time,

the top transmission gate is off. When the CLK signal is low, the bottom

transmission gate is off while the top is on. The feedback ensures the output

is held as long as the CLK signal is low.

The problem of such MUX-based D-latch design using transmission gate

is that it requires both CLK and CLK BAR signal, which could lead to clock

overlap and eventually cause a race condition to happen. A true single-phase

clocked (TSPC) latch can overcome the problem caused by clock overlap.

Figure 2.5 shows the transistor implementation of a TSPC latch.

Figure 2.5: A true single-phase clocked latch

For the positive TSPC latch shown in Figure 2.5, when the CLK is high, the

latch is in the transparent mode, and corresponds to two cascaded inverters.

When the CLK is low, on the other hand, both inverters are off and the latch

is in hold mode.

A slightly different configuration of a TSPC with split out latch is used

in the final design of the serializer as shown in Figure 2.6. The advantage

is that fewer transistors are needed in this design, and thus less power is

consumed by the overall system. Also smaller propagation delay results in

higher speed of the entire circuit. Again, no inverted clock signal is needed

in this design, so the circuit is free of clock skew.
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Figure 2.6: A true single-phase clocked latch with split output

2.1.2 Multiplexer Design

The transistor-level schematic of a transmission-gate multiplexer is shown in

Figure 2.7. The idea behind this circuit is to use two transmission-gates as

simple switches to propagate either input A or input B directly to the out-

put. An extra inverter is needed to generate the inverted select signal S bar.

While the upper transmission-gate is activated by S, the lower transmission-

gate is activated by S bar, due to the wiring of their control inputs. When

S is low, only the lower transmission-gate is conducting (because S bar is

connected to its n-channel and S to its p-channel transistor gate inputs),

while the upper transmission-gate is non-conducting. As a result the value

of B is passed through to the output of the multiplexer. When S is high,

the upper transmission-gate is activated, while the lower transmission-gate

is non-conducting. Therefore the value of A is passed through to the multi-

plexer output. This operation is equivalent to the following Boolean function:

Q = (A · S +B · S bar) (2.1)
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Figure 2.7: A transmission-gate based multiplexer

However, the traditional transistor sizing method and logical effort cannot

be applied to this transmission-gate multiplexer design, and thus it is hard to

find out the optimal transistor size for maximum speed theoretically. Also,

in order to lower the equivalent resistance Req, the transmission gate must

be made wide. The capacitance of the gates, however, will also be increased,

resulting in no reduction in the time constant of the transmission-gate mul-

tiplexer. As a result, another design called current-mode logic (CML) mul-

tiplexer is adopted and is shown in Figure 2.8. The CML circuits are widely

used in GHz range high-speed bipolar driver or multiplexer implementations.

The differential select signals, S and S bar, select which of the two data-

inputs A and B to connect to the output. When the select signal S is high
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(and S bar is low), A directly affects the output while B is disconnected.

When the select signal S goes low (and S bar high) B will be connected to

the output. Thus both levels of the clock will be used to multiplex the data.

The advantage of this CML circuit is that it has higher operating speed with

constant power consumption independent of operation frequency.

Figure 2.8: A current-mode logic multiplexer

2.1.3 Simulation

Simulation results of the transmission gate multiplexer and CML multiplexer

are given in Figure 2.9 and Figure 2.10.
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Figure 2.9: Simulation result of transmission gate multiplexer

Figure 2.10: Simulation result of CML multiplexer

The input to the serializer is an n-bit datapath, which is then serialized to

a one-bit serial data signal for application to the feed-forward equalizer and

driver stage. The value of n is generally a multiple of 8 or 10, and may be

programmable on some implementations. Values of n which are multiples of
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8 are useful for sending unencoded and/or scrambled data bytes; values of n

which are multiples of 10 are useful for protocols which use 8B/10B coding.

The 8B/10B encoder is usually implemented by logic outside the SerDes core

[3]. The proposed 8-to-1 binary-tree design serializer is shown in Figure 2.11,

with the functionality test simulation shown in Figure 2.12 and Figure 2.13.

Figure 2.11: Binary-tree design serializer
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Figure 2.12: Simulation result of 8 to 1 serializer with transmission gate
mux

Figure 2.13: Simulation result of 8 to 1 Serializer with CML mux
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The actual design of the datapath which is fed into the equalizer may

be more than one bit wide, and that results in more complex circuitries.

However in general, the n-bit data input would be serialized into a k-bit

datapath, where n > k > 0. The k-bit data would be fed into the equalizer,

and further serialized at the driver stage if needed.

The deserializer block at the receiver slice, as shown in Figure 2.14, per-

forms the inverse function of the serializer at the transmitter slice. The serial

data, after the clock-data recovery and decision feedback equalization block,

is then deserialized back to an n-bit databus.

Figure 2.14: Binary-tree design deserializer

The complete serializer and deserializer functional test simulation, without

the channel, equalization and CDR circuits, has been performed and is shown

in Figure 2.15 and Figure 2.16.
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Figure 2.15: Test bench of serializer and deserializer (without channel,
equalizer and clock-recovery unit)

Figure 2.16: Simulation result of 8 to 1 serializer with CML MUX

2.2 Transmitter and Receiver

In high-speed serial link designs, transmitters are used to pass data stream

through transmission lines. If the impedance of the driver does not match

18



the characteristic impedance of the channel, the driver is unable to provide

maximum power to the channel because of reflection in the transmitter side.

If the characteristic impedance of the channel does not match the impedance

of the terminal, the channel is unable to deliver maximum power to the

terminal because of reflection in the receiver side. If there is mismatch in

both sides, then some energy reflected from the terminal will experience

another reflection in the transmitter side. It takes some time (∆T) for this

energy to complete this round-trip and suffer some loss. When it comes

back, it adds to the signal that is sent at ∆T later. Therefore, the output

impedance of the transmitters should match the characteristic impedance of

the transmission lines in order to minimize the reflections for signal integrity

considerations, especially for high data rate applications. Two typical types

of transmitter driver (Tx driver) will be discussed in the following two sub-

sections: current-mode (CM) drivers and voltage-mode (VM) drivers.

2.2.1 Current-Mode Drivers

Current-mode drivers use Norton-equivalent parallel termination, as shown

in Figure 2.17, and they are widely used in high performance serial links.

The advantage of current-mode drivers is that it is easier to control output

impedance because of the Norton configuration. The termination resistor

RTT should be equal to the characteristic impedance, Zo, of the channel.

The disadvantage, as will be shown later, is that the power consumption

could be as high as 4 times larger than voltage-mode drivers. Figure 2.18

shows one possible design of a current-mode driver.

Figure 2.17: Parallel termination typically used for high impedance
current-mode driver
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Figure 2.18: Current-mode driver for differential signaling

2.2.2 Voltage-Mode Drivers

In contrast, voltage-mode drivers use Thévenin-equivalent series termination,

as shown in Figure 2.19, and typically have very low output impedance and

hence are implemented using large transistors operated in the triode region.

Fundamentally, a voltage-mode driver acts as a switch connecting a signal

line to one of two voltages with very low impedance, as illustrated in Figure

2.20(a). In practice, the switch should have output impedance matched

to the characteristic impedance of the transmission line. For low voltage

swing application, both transistors can be NMOS with the upper transistor

connecting to a dedicated voltage reference (supply) for V1 as shown in Figure

2.20(c). For high voltage swing application as shown in Figure 2.20(b), the

size of the transistors, especially PMOS, must be made very large so that

transistors can have an on resistance of about Z0. The termination voltage

VT can be any convenient voltage; however, typically it is chosen to be the

middle value between V1 and V 0.
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Figure 2.19: Series termination typically used for low impedance
voltage-mode driver

Figure 2.20: Voltage-mode driver for single-ended signaling
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2.2.3 Single-Ended vs. Differential Signaling

Differential signaling uses two complementary signals sent on two paired

transmission lines to transmit data. This signaling method requires twice as

many wires as single-ended signaling, but fewer return pins, and potentially

it has better noise immunity. However, uneven length in trace or difference

in signal speed may cause timing skew, which would greatly affect signal

integrity. Single-ended signaling is the simplest and most commonly used

method of transmitting electrical signals over wires. This signaling method

uses only one wire to carry the signal, while the other wire is connected to

a reference voltage, usually ground. Pure single-ended signaling has noise

problems such as ground offset, but is cost-effective because fewer wires are

needed to transmit multiple signals. In this design project, single-ended

signaling is employed as it does not suffer from timing skew problem. Figure

2.21 summarizes the above mentioned signaling techniques.

Figure 2.21: Comparison of signaling techniques

2.2.4 Current-Mode Driver vs. Voltage-Mode Driver

The two different output drivers [6] discussed earlier are compared in Figure

2.22.
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Figure 2.22: Output driver summary

For this design example, the voltage-mode driver is utilized since the driver

delay is not a very big concern at the target speed 2 Gbps. It also has the

advantage of lower power consumption, as well as easy configuration. The

biggest challenge of the voltage-mode driver, as mentioned above, is the

output impedance control. For the high swing voltage-mode driver design,

the output impedance is controlled by adjusting the transistor sizing, as

shown in the test bench in Figure 2.23.

Figure 2.23: Test bench for output impedance sweep of the voltage-mode
driver

DC analysis was performed to sweep the variable W , width of the transis-

tor, as shown in Figure 2.24. In the simulation result file, plot current versus
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width is shown in Figures 2.25 and 2.26. In this example, the target output

impedance is 75 Ω, and therefore current flowing through transistor should

be

ID =
VDD
2Zo

= 12 mA (2.2)

Figure 2.24: DC Analysis for output impedance sweep
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Figure 2.25: Current vs. width for NMOS

Figure 2.26: Current vs. width for PMOS

As shown in Figure 2.25 and Figure 2.26, the transistor widths of Wn =

22.47 µm and Wp = 50 µm correspond to the transistor current of 12 mA

which gives 75 Ω output impedance explained above.

The final design of the voltage-mode driver is shown in Figure 2.27, with

the transistor sized such that output impedance is matched to the charac-

teristic impedance 75 Ω.
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Figure 2.27: High swing voltage-mode driver

To check the performance of the output driver of the transmitter, simulate

the eye diagram right before the channel as shown in Figure 2.28. The eye

diagram is shown in Figure 2.29.

Figure 2.28: Test bench to simulate eye diagram at driver output before
channel
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Figure 2.29: Eye diagram at driver output before channel

2.2.5 Receiver Circuit

A receiver detects an electrical quantity, current or voltage, to recover a

symbol from a transmission medium. In order to recover the data stream

transmitted by transmitters, receiver circuits are needed to properly match

with the channel and ensure signal integrity. The receiver performance is

measured in both time and voltage domains. The sensitivity indicates the

minimum voltage the receiver can measure. The receiver voltage offset is

caused by the device mismatch and circuit structure. The aperture time,

which limits the maximum data rate of the link system, is defined as the

shortest pulse width the receiver can detect. The timing offset becomes the

timing skew and jitter between the receiver and CDR. These four parameters

are illustrated in Figure 2.30 [7].

Figure 2.30: Eye diagram showing time and voltage offset and resolution
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For single-ended designs, CMOS inverters are usually used for receiver pre-

amplifier structures. The termination resistor, RTT , should be placed near

the inverter trip-point, as is illustrated in Figure 2.31.

Figure 2.31: Illustration of receiver circuit

2.3 Channel Loss and Equalization

Figure 2.32: Single-ended S11, S12, S13 and S14 of a 4-port backplane
channel

Shown in Figure 2.32 are the the S-parameters of a 4-port backplane channel

across the frequency range 0-40 GHz. The channel consists of the daughter-

card, connector, backplane, and then connector to the other daughtercard.

The S11 plot represents how much reflection exists in the channel, measured
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with referenced impedance (usually 50 Ω) system. It is also known as the

return loss, which characterizes the loss of power in the signal reflected by a

discontinuity in a transmission line. When the system is perfectly matched

(i.e. Γ =0), dB (S11) is ideally -∞. The closer dB (S11) is to -∞, the better

matching (less reflection). The S11 of this 4-port backplane channel ranges

between -15 dB and -55 dB, which signifies a moderate amount of reflection,

especially at around 5 GHz.

The S12 plot represents how much attenuation of the transmitted signal

exists in the channel, and is known as the insertion loss due to the fact

that it characterizes the loss of signal power resulting from the insertion of

a device in a transmission line. At low frequencies, the transmission line

looks like a short wire with little (if not zero) loss. As frequency goes higher

and higher, the signal power transmitted through the channel decreases due

to the skin effect, which states that at higher frequencies where skin depth

becomes smaller, the effective resistance of the conductor increases and thus

the power loss is greater at higher frequencies. The skin effect is due to

opposing eddy currents induced by the changing magnetic field resulting from

the alternating current. Therefore, the skin effect explains the decrease of

power transmission as frequency increases. The S12 of this 4-port backplane

channel starts at 0 dB at DC (which is expected as explained before), and

then goes down drastically beyond -100 dB around 39 GHz.

The S13 plot represents the near-end crosstalk (NEXT) while the S14

plot represents the far-end crosstalk (FEXT). A moderate amount of NEXT

between -19 dB and -58 dB is observed across the entire frequency range.

FEXT, on the other hand, increases quite a lot from -27.44 dB at 3.73 GHz

to -129.3 dB at 39.59 GHz

In the ideal situation, the signal sent from the transmitter should propa-

gate through the wire without any loss of the frequency component. However

in reality there are many factors, such as the physical dimensions and ma-

terial of the electrical transmitting medium, which could limit the signaling

bandwidth. A simple case is shown in Figure 2.33, where an ideal channel

(in solid blue) should have 0 dB loss, and a physical channel (in dashed red)

will act like a low pass filter with some loss. As frequency increases, the

loss of the channel will increase. An equalizer (in dot-dashed purple) should

have a frequency response that could undo the channel effect, compensate

for any unwanted channel loss, and extend the channel’s maximum operating
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bandwidth. The equalized channel behaves like an ideal cable with 0 dB loss

(in solid blue).

Figure 2.33: Frequency response of an ideal channel (solid blue), physical
channel (dashed red) and equalizer (dot-dashed purple)

Equalization can be realized both at the transmitter side (before the chan-

nel) and at the receiver side (after the channel). Typically in many high-speed

serial links, transmitter-side equalization is the most common and favorable

technique. A feed-forward equalizer (FFE) on the transmitter side can be

achieved by a finite impulse response (FIR) filter that pre-distorts the trans-

mitted data over several bit periods in order to invert the channel loss and

distortion. An FFE is normally implemented as a low-frequency de-emphasis

process to reduce the low-frequency signal envelope in proportion to the at-

tenuation experienced by the high-frequency pattern in the channel. The

low-frequency components get de-emphasized in order to flatten the channel

response. This equalization process usually comes at the cost of attenuated

signal at the transmitter output driver, and as a result this type of equaliza-

tion is also known as de-emphasis or pre-emphasis. As shown in Figure 2.34,

the FIR equalizer can be implemented using unit delay elements and cur-

rent steering digital-to-analog converter (DAC) circuits. The input data Din

propagates through the delay elements with some delay value T (also known
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as the tap spacing) which is equal to 1 bit period in this implementation. At

each stage the input is multiplied by the tap coefficient, Ci.

Figure 2.34: Block diagram of transmitter side FIR equalizer

The taps can be implemented by some trans-conductance elements, whose

Gm are set by the tap coefficients, and the unit delay elements can be just flip-

flops as shown in Figure 2.35. The advantage of this configuration is that

a high-speed DAC on the transmitter side is relatively easy to implement

compared to a high-speed analog-to-digital converter (ADC) on the receiver.

Tx FFE can also cancel both the pre-cursor and post-cursor inter-symbol

interference (ISI), while noise is not amplified due to the digital nature of

the Tx FFE. The disadvantage of the Tx FFE is that it flattens the channel

response, and low-frequency content is attenuated as a result of the peak

power constraint.
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Figure 2.35: Implementation of transmitter side FIR equalizer

Shown in Figure 2.36 is a current-mode-logic (CML) based 3-tap FIR

equalizer. The termination resistors RTT are set to be the same as the char-

acteristic impedance Zo of the channel. Tap coefficients are optimized using

peak distortion analysis based on the pulse response (also known as the

single-bit response) of the channel, shown in Figure 2.37.

Figure 2.36: Circuit-level realization of a 3-tap Tx FIR equalizer
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Figure 2.37: Single-bit response of the channel at 5 Gbps, with maximum
swing of 0.6 V per symbol (or 1 Vpp differentially)

The output common mode voltage can be expressed as the following:

Vocm = VTT −
IBRTT

2
(|C−1|+ |C0|+ |C1|) (2.3)

where | C−1| + | C0| + | C1| needs to be equal to 1. This is also sometimes

referred to as the peak swing (or peak power) constraint:∑
i

| Ci| = 1 (2.4)

Shown in Figures 2.38 and 2.39 are the eye diagrams at the channel output

driven by the CML output driver with and without the FIR equalizer enabled.

The vertical and horizontal eye openings have increased by 5 mV and 6 ps

respectively at 5 Gbps.
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Figure 2.38: Differential eye diagram at channel output driven by CML
output driver, with equalization
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Figure 2.39: Differential eye diagram at channel output driven by CML
output driver, without equalization

Although equalization is often implemented on the transmitter side, it can

also be realized on the receiver side. The FIR equalizer can be done on the

receiver side with delay elements and high-speed analog-to-digital converter,

with the addition of a sample-and-hold circuit at the front of the equalizer,

as shown in Figure 2.40. Instead of a digital binary data pattern, the input

to the receiver equalizer is an analog voltage waveform. Therefore the delay

elements on the receiver side need to be implemented in the analog manner,

which is the major circuit design challenge. What is more, since the receiving

signal contains the channel response information, the tap coefficients can be

tuned adaptively to the channel; however, the noise and crosstalk contents

can also be unintentionally amplified along with the incoming signal by the

Rx FIR equalizer as illustrated in Figure 2.41.
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Figure 2.40: Block diagram of receiver-side FIR equalizer

Figure 2.41: Illustration of noise enhancement by receiver-side equalization

2.4 PLL-based Clock and Data Recovery

In modern data transmission systems, binary data is the most common for-

mat for data transmission. The random data bits received at the receiver end

are most likely distorted and noisy. A clock and data recovery circuit block

is usually needed for regeneration of data signals and associated clock pulses
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from an input data stream. A CDR block would usually have the following

characteristics:

1. Clock frequency exactly equals the data rate of the input data.

2. The clock has appropriate timing with respect to the data, allowing

optimally sampling. Preferably, the clock sampling edge is locked in

the middle of the data eye.

3. The clock exhibits small jitter since the jitter of the clock contributes

to the retimed data jitter.

Figure 2.42 illustrates the CDR circuit blocks. Typically, the CDR com-

prises four circuit components:

• Phase detector (PD)

• Charge pump (CP)

• Low-pass filter (LPF)

• Voltage-controlled oscillator (VCO).

Figure 2.42: Block diagram of the CDR

The PD compares the phase of the input data stream and the VCO feed-

back clock signal, as shown in Figure 2.43. If the phase difference exceeds

the PD detection resolution, a voltage pulse will be generated to drive the

next block, CP, to charge or discharge the capacitors in the following block.

After LPF eradicates the high-frequency noise components, a constant con-

trol voltage then locks the VCO to generate clean and stable clock pulses

whose phase and frequency align with the input data stream. The generated

clock pulse is then fed back to the PD. Finally, the recovered clock pulse will

feed to the data recovery latch to recover the data bits.
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Figure 2.43: Implementation of the charge-pump PLL-based CDR

The FF latch is a necessary component in most digital logic circuit blocks.

A fast low-delay FF latch would greatly improve the circuit block perfor-

mance including delay, noise, jitter, etc. In CDR, latches are used in PD

and in data recovery block. Therefore, a high-performance latch is crucial

to a CDR that can fulfill project specifications. A widely used scheme for

the latch is the master-slave latch combination consisting of two cascaded

latches. However, this topology encounters clock phase aligning issues. A

flip-flop latch usually consists of two blocks: a pulse generator and a slave

latch. This topology seemingly is similar to the master-slave topology; how-

ever, the pulse generator stage is a function of the clock and data signals,

which will automatically align with the slave stage. Figure 2.44 gives the

schematic of sense-amplifier-based SR FF latch. The pulse-generating stages

are M3 M4, and M5 M6. The latch senses the complementary differential

inputs from M1 and M2. As the clock is on, any input change will not affect

the SR output. After the clock returns to zero, both SR outputs remain logic

one.
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Figure 2.44: Circuit schematic of SR latch
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2.4.1 Phase Detector

With the latch selected, the next step is to design the phase detector. There

are two types of popular phase detectors available for us to choose: the

Hogge phase detector (PD) and the bang-bang phase detector. The Hogge

phase detector generates pulse length that is linearly proportional to the

phase difference. It has a wider frequency acquisition range than the bang-

bang phase detector. Figure 2.45 shows the circuit schematic for the Hogge

PD. It consists of two D-latches and two XOR gates. The D-latch uses the

sense-amplifier latch discussed above. The first latch samples data at the

clock rising edge while the second samples data from the first latch at the

clock falling edge. When clock phase and data phase are not aligned, the

Y generates pulse width linearly depending on how much the clock comes

early or late relative to data. The pulse width generated by X will always

be a half clock cycle. The bottom part of Figure 2.45 presents the operation

data stream and clock when the data and clock get aligned. We can see that

the pulse widths generated by X and Y will be exactly the same. The clock

falling edge will be aligned with the data rising edge. Figure 2.46 reveals the

Hogge PD up and down output when data and clock are aligned. As seen

in the figure, the when clock rising edge is aligned in the middle of data bit,

the up and down pulse widths are endemically the same. Figure 2.46 shows

that the Hogge PD is working well.
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Figure 2.45: Top: Circuit schematic of Hogge PD. Bottom: Operation data
stream and clock when the data and clock get aligned.
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Figure 2.46: Hogge PD up (second bottom) and down (bottom) output
when data (top first) and clock (top second) are aligned

2.4.2 Charge Pump

The charge pump is another important circuit block that needs to be well

designed. Current steering charge pump design topology was used in this

work. Basically, the function of the charge pump is to convert the voltage

pulse generated from the PD into current. Figure 2.47 shows the circuit

topology of current steering charge pump. There are two inputs, up and

down, which turn a switch transistor on and off so that charging and dis-

charging happen when clock and data phases are not aligned. Figure 2.48

presents the simulation of charge pump designed. As seen from the figure,

when a periodic pulse is applied alternatively up and down, the voltage at

the output of the CP exhibits a perfect zigzag form, which means the charge

pump block is functioning well.
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Figure 2.47: Schematic of a current steering charge pump
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Figure 2.48: Simulation result of the current steering charge pump

2.4.3 Loop Filter

The loop filter is a low-pass filter to filter out the high-frequency component

of the control voltage pulse, as shown in Figure 2.49. At the lock state, the

CP will generate a zigzag waveform voltage at the output. However, the

fluctuating voltage is not desired for controlling a VCO. Therefore, a loop

filter will do its job to smoothen the control voltage by filtering out the high-

frequency component. The loop filter consists of a two branches in parallel

with each other. One branch composes a capacitor in series with a resistor.

The other composes a bare capacitor. The values for those capacitors and

resistor are carefully calculated based the CDR working conditions, such as

working frequency, phase margin, pole positions, etc. Detailed calculations

are presented in the following. The unit gain bandwidth ωugb is between 1M

rad/s to 3M rad/s, and ωugb = 1M rad/s was chosen in this work. Phase

margin φM is another parameter need to be set. φM cannot be too large or

too small. If φM is too large, for instance 100◦, it will result in a long locking

time. However, if φM is too small, such as 20◦, it will result in an unstable

feedback system. φM = 65◦ was selected in this work. With φM and ωugb

selected, the ratio of capacitors C0 and C1, KC , can be calculated.

Kc =
C1

C2

= 2(tan2 φM + tanφM

√
tan2(φM) + 1) (2.5)

The zero pole position can be found by the following equation:
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ωz =
ωugb√
Kc + 1

(2.6)

For low noise, the resistance R0 was chosen to be 10 kΩ. The capacitors

C0 and C1 can be calculated using the following equations:

C1 =
1

ωzR0

(2.7)

C2 =
C1

Kc

(2.8)

C0 and C1 was calculated to be 100 pF and 5 pF. Then to determine the

bias current Icp for the charge pump designed:

ωp3 =
1

R0
C0C1

C0+C1

(2.9)

Icp =
2πC2

Kvco

· ω2
ugb ·

√
ω2
p3 + ω2

ugb

ω2
z + ω2

ugb

(2.10)

With Kvco = 1 GHz/V , Icp was calculated to be 11.03 µA.

Figure 2.49: Schematic of a loop filter
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2.4.4 Simulation

Figure 2.50 shows the schematic of the CDR overall simulation. A pseudo-

random bit sequence (PRBS) generator was used to mimic the data stream

coming from the transmission line or equalizer. The bit rate is set at 2

Gbps. The Hogge PD will take the input pseudo-random bit as input to a

generate control voltage for VCO through charge pump and loop filter. The

clock recovered is fed to the data sampling latch in order to recover data. At

lock condition, VCO will stably generate 2 GHz clock pulse. The output data

stream is going to exactly follow the pattern of the input data stream. Figure

2.51 shows the 10 µs simulation result. As seen from the figure, the control

voltage is still decreasing, which means that the CDR is still on the way to

being locked. Due to the lengthy simulation for CDR, an initial value which

is close to the lock voltage was given to the control voltage line in order to

significantly shorten the simulation time to reach the locking condition. The

initial value was set to be 1.3 V, and the simulation time was set to be 10

µs. Figure 2.51 (top) and Figure 2.51 (bottom) presents the 10 µs simulation

time result with 1.3 V initial voltage and its zoomed-in view, respectively.

We can see that the CDR is locked at around 1.3 V, and the data can be

perfectly recovered at this condition.

Figure 2.50: Schematic of the CDR testbench
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Figure 2.51: Simulation result of the CDR for 10 µs simulation

2.5 Link Verification

2.5.1 Channel Design

In this section, Ansys HFSS and Ansys Q3D Extractor were used to sim-

ulate and extract the equivalent S-parameters of the signal channel. The

simulated S-parameters are imported to Agilent ADS to verify that the de-

sired specifications have been achieved. The process of how to design the

signal channel is illustrated in Figure 2.52. The reference impedance of all

the system components was set to be 75 Ω . The data rate is a key design

parameter because it determines the working frequency of the signal trace.

Considering a robust system design, all the subsystem components for the

signal trace are simulated with a frequency up to 10 GHz. The bit-error-rate

(BER, less than 10−12) is another important design parameter. While it is

non-trivial, if not impossible, to find an explicit relationship that expresses

the BER in terms of the insertion loss of the signal trace, it is certainly pos-

sible to decrease the BER by minimizing the loss of the signal channel over
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the entire frequency band of interest.

Figure 2.52: Illustration of channel design

Bonding Wire

The structure of the bonding wire (or the controller package trace) is illus-

trated in Figure 2.53. There are many practical issues or, more precisely,

conventions involved in the design of the bonding wires; for example, they

must be connected to the traces via pads. With such conventions considered

in the model, the Ansys HFSS simulation results are depicted in Figure 2.54.

As can be observed from Figure 2.54, the loss introduced by bonding wires

is very small. After completing the HFSS simulation, the S-parameters were

exported as an s4p file for the future ADS simulation.
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Figure 2.53: Configuration of the bonding wires in Ansys HFSS

Figure 2.54: HFSS simulated S-parameters of the bonding wires

Package Via

The geometrical configurations and HFSS simulation results of the package

vias are shown in Figures 2.55 and 2.56, respectively. The package vias are

complicated structures with many connections. It is not expected to have
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the same low insertion loss as the bonding wire. Nevertheless, as is shown in

Figure 2.56, the insertion loss is still controlled within an acceptable range.

Even for the worst case when the working frequency approaches 10 GHz, the

loss is approximately -1.32 dB.

Figure 2.55: Configuration of the bonding wires in Ansys HFSS

Figure 2.56: HFSS simulated S-parameters of the package vias
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Stripline

The design of a stripline is a rather mature topic. There are many well-

tested formulas to use. However, to combine all the subcomponents inside

Agilent ADS to perform a wide-band simulation, we chose Ansys Q3D to

extract the equivalent S-parameters. We use Q3D rather than HFSS to

extract the S-parameters because the former can analyze this problem more

efficiently by solving a two-dimensional problem instead of solving a complex

and time-consuming three-dimensional problem. Figure 2.57 demonstrates

the geometrical configurations of the stripline with a trace of 2.25 mil in

length and 0.325 mil in height, and a substrate of 15 mil in height. The

extracted S-parameters are exported as an s2p file for the subsequent ADS

simulations.

Figure 2.57: Configuration of the stripline in Ansys Q3D

ADS Simulation

With the Ansys HFSS and Ansys Q3D extracted S-parameters, an ADS

model was built to investigate the total loss of the signal trace (see Figure

2.58 and 2.59). As can be observed from Figure 2.59, the signal trace has an

excellent S11 and S21 from DC to 2 GHz. From 2 GHz to 6 GHz, although
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the S21 did not deteriorate much, the S11 increased significantly. When the

frequency is higher than 6 GHz, both the S11 and S21 deteriorate a lot. The

poor performance at a relatively high frequency might be partly due to the

sharp corners in this design.

Figure 2.58: The ADS schematic circuit for analyzing the total loss of the
signal trace

Figure 2.59: Simulated total loss of the signal trace in Agilent ADS
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2.5.2 Combined Simulation

Serialized data coming from the serializer are transmitted to the channel

through the Tx driver. The scattering parameter of the channel designed in

HFSS is first packaged in ADS, and then imported to Virtuoso represented

by the two-port network called n2port, as shown in Figure 2.60. To analyze

the signal integrity performance of the link, eye diagrams were simulated as

shown Figures 2.61 to 2.63. Due to the slight mismatch between the output

impedance of the transmitter and characteristic impedance of the channel, as

well as data-dependent jitter, we can observe some ripples at the transition

points between unit intervals (UIs), as shown in Figure 2.61. Data-dependent

jitter (DDJ) depends on the input pattern, as well as the impulse response

of the system that generates the pattern. Since the channel is bandwidth-

limited and has finite rise-time step response, DDJ is to be expected. To

verify the performance of the receiver circuit, the eye diagram at the receiver

output is measured, shown in Figure 2.62. The sensitivity of the receiver

almost achieves full rail-to-rail swing, and the aperture time is reasonably

good at the data rate of 2 Gbps. Finally the eye diagram of the data output

of the CDR is simulated and shown in Figure 2.63, where we can see the

eye is opened. In the transient simulation, shown in Figure 2.64, we can see

the CDR block is able to recover clock at 2 GHz as well as fully recover the

transmitter data through the receiver.

Figure 2.60: Virtuoso testbench for link verification
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Figure 2.61: Eye diagram measured at Tx driver with channel effect

Figure 2.62: Eye diagram measured after Receiver

Figure 2.63: Eye diagram measured after CDR
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Figure 2.64: Transient simulation of recovered data at receiver end

With the PRBS-31 sequence, the eye diagram is simulated as shown in

Figure 2.65. With the eye diagram, it is possible to extract individual jitter

components. Ideally, we could use deconvolution into components. How-

ever, without prior knowledge of deterministic jitter, it is not possible to do

so. Therefore, the tail-fit technique can be used to extract random jitter

under the assumption that its probability density function follows a Gaus-

sian distribution. Making use of the dual-dirac model, the individual jitter

components of the total jitter measurement result can be extracted. Jitter

can cause inter-symbol interference (ISI), which occurs if time required by

signal to completely charge is longer than bit interval. To ensure high signal

integrity, jitter is ought to be minimized. As shown in Figures 2.65 to 2.70,

the total jitter (TJ) PDF is the convolution of individual components, in this

case, the deterministic jitter (DJ) and the random jitter (RJ):

TJ(x) = DJ(x) ∗ RJ(x)

The sample delay BERT scan curve is a direct measurement of the jitter

cumulative density function (CDF). In a BERT scan, the BER (CDF) is

measured as the sample time, and is swept between the two-bit time bound-

aries. From the BERT scan results, one may be able to estimate the jitter

in the signal. The BER is a function of the sample time and the probability

density function (PDF) width. This is commonly known as a BER bathtub

curve. The BER bathtub curve is a description of the shape of a BER or

CDF curve that has steep walls to a noise floor (a flat bottom) where the
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probability of population is small. It is observed that for the majority of the

unit-interval (UI), the bit-error-rate (BER) is less than 10−12.

Figure 2.65: Eye diagram of the HSSL with PRBS-31 sequence

Figure 2.66: Total jitter (TJ) histogram of the HSSL with PRBS-31
sequence
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Figure 2.67: Data-dependent jitter (DDJ) histogram of the HSSL with
PRBS-31 sequence

Figure 2.68: Random jitter (RJ) histogram of the HSSL with PRBS-31
sequence
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Figure 2.69: DDJ vs. Bit Number of the HSSL with PRBS-31 sequence

Figure 2.70: Bathtub curve and bit-error rate (BER)
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CHAPTER 3

MODELING AND SIMULATION OF
HIGH-SPEED INTERCONNECT

3.1 Overview

The interconnect in high-speed links usually refers to the electrical path be-

tween the transmitter (Tx) and receiver (Rx). Also known as the “channel,”

the interconnect can include but is not limited to the following components:

IC packages like wire bonds, ball grid arrays (BGAs), through-silicon vias

(TSVs), printed circuit board (PCB) traces and vias, connectors, wires, flex-

ible circuits (FLEX), etc.

Figure 3.1: Interconnect modeling

As shown in Figure 3.1, for low-speed designs, where the wavelength is

much bigger than the dimension, an interconnect can be modeled as a sim-

ple short. For applications within mid-range speed, the interconnect can

be approximated with lumped RLGC elements. As the speed goes higher

and higher, where the wavelength is comparable to the physical dimensions,

a distributed element model (also known as a transmission line model) is

required.
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3.2 Interconnect Modeling Using Numerical Methods

with Field Solvers

Modeling and simulations for high-speed design, signal integrity and power

integrity (SIPI), and electromagnetics (EM) can be classified as high per-

formance computing (HPC) tasks, which require extraordinary high CPU,

RAM, and graphical performance. Sufficient power supply and cooling also

have to be ensured in order to handle heavy and time-consuming simulation

tasks.

For the interconnect extraction, modeling and simulation, there are exist-

ing commercial tools (e.g. CST Microwave Studio, Ansys HFSS, Q3D Extra-

tor, etc.) whose simulation approaches involve numerical methods such as

finite difference time-domain (FDTD), finite element method (FEM), bound-

ary element method (BEM), etc., but they can be extremely computationally

hungry and take a very long time for just one single run of simulation.

Shown in Figures 3.2 to 3.5 are the examples of HFSS model and S-

parameter results of microstrip line and microstrip line with discontinuities,

and their simulation time could take hours depending on the computer specs

as discussed above.

Figure 3.2: HFSS modeling of a microstrip line
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Figure 3.3: Simulated S-parameters of a microstrip line

Figure 3.4: HFSS modeling of a microstrip line with discontinuities
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Figure 3.5: Simulated S-parameters of a microstrip line with discontinuities

Simple structures like stripline models shown in Figures 3.6 to 3.9 are used

in memory interconnects, and the time-consuming simulations can slow down

each iteration of feasibility studies for full system design.

Figure 3.6: Cross-sectional view of the multi-conductor stripline models
with 1 conductor at two different thicknesses

Figure 3.7: Cross-sectional view of the multi-conductor stripline models
with 2 conductors at two different thicknesses

Figure 3.8: Cross-sectional view of the multi-conductor stripline models
with 3 conductors at two different thicknesses
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Figure 3.9: Cross-sectional view of the multi-conductor stripline models
with 4 conductors at two different thicknesses

3.3 Interconnect Modeling Using Conformal Mapping

and Variational Method in Closed-Form Analytical

Method

3.3.1 Basis of the Unified Approach

In this work, a unified approach is used to solve a microstrip-like trans-

mission line with multilayer dielectrics and bottom ground aperture. The

approach makes use of the Green’s function and the transverse transmission

line technique combined with the variational method. Closed-form analyti-

cal expressions for the line capacitance and characteristic impedance of the

microstrip-like interconnect with bottom ground aperture are presented.
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Figure 3.10: N-layer dielectric with side walls and a point source

Consider a unit charge located at (x0, y0) as shown Figure 3.10. The

Green’s function should satisfy the Poisson’s differential equation in the plane

(x, y) and is given by Equation (3.1):

∇2
tG(x, y|x0, y0) = −1

ε
δ(x− x0)δ(y − y0) (3.1)

For an interconnect with a multilayered substrate, the boundary conditions

at the interface of the dielectrics are given by:

G(x, sj−0) = G(x, sj+0) (3.2)

εj
∂

∂y
G(x, sj−0) = εj+1

∂

∂y
G(x, sj+0) (3.3)

The Green’s function can be expressed as the sum of the product of ele-
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mentary functions with separated variables:

G =
∑
n

Gn(x)Gn(y) (3.4)

In order to satisfy the boundary conditions on the vertical walls separated

by wall spacing c, the following expressions are found [8] for Gn(x) for the

three cases shown in Figure 3.11:

Case a. Electric walls at x = 0 and c (Dirichlet type, G = 0):

Gn(x) = sin
nπx

c
, n = 1, 2, . . . ,∞ (3.5)

Case b. Electric wall at x = 0(Dirichlet type, G = 0) and Magnetic

wallx = c (Neumann type, ∂G/∂n = 0):

Gn(x) = sin
(2n+ 1)πx

2c
, n = 0, 1, 2, . . . ,∞ (3.6)

Case c. Magnetic walls at x = 0 and c (Neumann type, ∂G/∂n = 0):

Gn(x) = cos
nπx

c
, n = 1, 2, . . . ,∞ (3.7)

Note that in the equations, sin nπx
c

, sin (2n+1)πx
2c

and cos nπx
c

are orthogonal

in the interval (0,c).

Figure 3.11: Three boundary conditions. Dashed lines represent magnetic
walls, thick solid lines represent electric wall, and thin solid lines represent
the dielectric interfaces

The transverse transmission line technique is used to compute Gn(y). Con-

sider a transmission line with a current source of intensity Is at the charge
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plane y = y0. The voltage and current relations along the line are [9, 10, 11]:

dV

dy
= −γZcI (3.8)

dI

dy
= − γ

Zc
V + Is · δ(y − y0) (3.9)

where Zcis the characteristic impedance of the line and γ is the propagation

constant.

Solving (3.8) and (3.9) simultaneously leads to the following differential

equation satisfied by the voltage:

d2V

dy2
− γ2V = −γZcIs · δ(y − y0) (3.10)

In the case of change in the characteristic admittance of the line, the conti-

nuity equations are

Vj = Vj+1 (3.11)

and Ij = Ij+1 which combined with (3.8) give

Ycj
∂Vj
∂y

= Vcj+1
∂Vj+1

∂y
(3.12)

Comparing Equations (3.10) to (3.12), the authors of [12] came up with

the following:

1. Green’s function Gn(y) can be determined by the voltage along the

line:

V ≡ Gn(y) (3.13)

2. The dielectric constant of the layer can be identified by the character-

istic admittance of the transmission line:

Ycj = εj (3.14)

Thus, the boundary conditions satisfied by the Green’s function at the

various interfaces are equivalent to the boundary conditions satisfied by the

voltages at the interfaces between two dissimilar characteristic admittances.
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The voltage on the transmission line at the charge plane y = y0 is given by

V |y=y0 =
Is
Y

(3.15)

where Y is the admittance at y = y0. The Green’s function for the three

cases can now be obtained as follows:

Case a. Electric walls at x = 0 and c (Dirichlet type, G = 0):

Zc = 1
ε
, γ = nπ

c
, and Is = 2

nπ
sin nπx0

c

Thus,

Gn(y)|y=y0 =
2

nπY
sin

nπx0
c

(3.16)

Substituting (3.16) and Gn(x) into G =
∑

nGn(x)Gn(y), the Green’s func-

tion at the charge plane y = y0 becomes

G(x, y|x0, y0)|y=y0 =
∞∑
n=1

2

nπY
sin

nπx

c
sin

nπx0
c

(3.17)

Case b. Electric wall at x = 0 (Dirichlet type, G = 0) and magnetic

wallx = c (Neumann type, ∂G/∂n = 0):

Zc = 1
ε
, γ = (2n+1)π

2c
, and Is = 4

(2n+1)π
sin (2n+1)πx0

2c

Thus,

Gn(y)|y=y0 =
4

(2n+ 1)πY
sin

(2n+ 1)πx0
2c

(3.18)

Substituting (3.18) and Gn(x) into G =
∑

nGn(x)Gn(y), the Green’s func-

tion at the charge plane y = y0 becomes

G(x, y|x0, y0)|y=y0 =
∞∑
n=0

4

(2n+ 1)π
sin

(2n+ 1)πx

2c
sin

(2n+ 1)πx0
2c

(3.19)

Case c. Magnetic walls at x = 0 and c (Neumann type, ∂G/∂n = 0):

Zc = 1
ε
, γ = nπ

c
, and Is = 2

nπ
cos nπx0

c

Thus,

Gn(y)|y=y0 =
2

nπY
cos

nπx0
c

(3.20)
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Substituting (3.20) and Gn(x) into G =
∑

nGn(x)Gn(y), the Green’s func-

tion at the charge plane y = y0 becomes

G(x, y|x0, y0)|y=y0 =
∞∑
n=1

2

nπY
cos

nπx

c
cos

nπx0
c

(3.21)

The variational method is a well-established mathematical technique gen-

erally used to seek a function that gives a maximum or minimum of a desired

quantity which depends upon that function, and is widely applied to elec-

tromagnetics problems, particularly microwave problems where the physical

system under consideration acts such that some function of its behavior at-

tains the least or the greatest value. For example, in an electrostatic system,

the well-known Thomson’s theorem states that the charges which reside on

conducting bodies and which give rise to the electric field E will distribute

themselves such that the energy function We is minimized. So, the varia-

tional method is fundamentally a maximization or minimization technique

[13].

In the unified approach, the variational method is used to compute the

capacitance per unit length [14]. To illustrate the basis of the variational

method, consider a system of perfect conductors S1, S2, . . . , SN , with Q1,

Q2, . . . , QN as the charges on the conductors held at potentials V1, V2, . . . ,

VN . The potential function ϕ in the space surrounding the conductors is the

solution of the Laplace equation ∇2ϕ = 0 subject to the boundary conditions

ϕ = Vi on Si with i =1, 2, . . . , N. The electrostatic energy stored is given by

We =
ε

2

∫
vol

∇ϕ · ∇ϕdV (3.22)

where the integration is carried over the entire volume containing the electric

field. Suppose the charges on the conductors are moved slightly from their

equilibrium position while keeping potentials constant, then the potential

distribution in the surrounding space also changes. The change in the energy

function is given by

We =
ε

2

∫
vol

∇δϕ · ∇δϕdV (3.23)

where δϕ is an incremental change in ϕ. If a trial function for the potential

distribution which differs by a small quantity δϕ from the correct value is
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inserted, the resulting value of We will change from its value by an amount

proportional to (δϕ)2. In other words, for a first-order change in ϕ, the

change in We is only of second-order. The energy function We is a positive

stationary function for the equilibrium conditions. Hence the true value of

We is a minimum since any change from the equilibrium increases the energy

function We [15].

The energy stored in the electrostatic field per unit length along the trans-

mission line is given by

We =
ε

2

∫∫
xy−plane

|∇tϕ|2 dxdy =
1

2
CV 2

0 (3.24)

where C is the capacitance per unit length of the line and V0 is the potential

difference between the two conductors. The upper bound on capacitance per

unit length of the line is given by

C =
ε

V 2
0

∫∫
xy−plane

|∇tϕ|2 dxdy =
ε
∫∫

xy−plane |∇tϕ|2 dxdy(∫ S2

S1
∇tϕ · dl

)2 (3.25)

where V0 is the line integral of ∇tϕ from S1 to S2.

The authors of [15] have elaborated in detail on variational expressions for

upper and lower bounds on capacitance. The lower bound on capacitance is

given by:
1

C
=

1

Q2

∫
S2

ϕ(x, y)ρ(x, y)dl (3.26)

where ρ(x, y) is the unknown charge distribution for which a suitable trial

function would be substituted later.

3.3.2 Analysis using Variational Method

The unified approach combines the variational method with transverse trans-

sion line technique for determination of capacitance. The comprehensive

review of the unified approach can be found in [12].

69



Figure 3.12: Configuration of the interconnect with a bottom ground plane
aperture

Consider the structure shown in Figure 3.12, where the bottom ground

aperture with width ws is assumed to be symmetrical with respect to the

center of the signal line with width w. Three isotropic dielectric layers have

heights b1, b2 and b3 as well as relative permittivities ε1, ε2 and ε3 respectively.

The short circuits at either end of the structure correspond to ground planes

at y = 0 and y = b. Due to the inhomogeneous structure, and partial

opening in the ground plane, the substrate region (region 2) is divided into

three vertical profiles I, II and III.

Similar to the previous analysis, there are three possible boundary condi-

tions:

Case a. Electric walls at x = 0 and c (Dirichlet type, G = 0):

βn(x) =
nπ

c
(3.27)

Case b. Electric wall at x = 0 (Dirichlet type, G = 0) and magnetic wall

x = (c− ws) /2 (Neumann type, ∂G/∂n = 0):

βn(x) =
(2n+ 1)π

c− ws
, n = 0, 1, 2, . . . ,∞ (3.28)

Case c. Magnetic walls at x = (c− ws) /2 and x = (c+ ws) /2 (Neumann
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type, ∂G/∂n = 0):

βn(x) =
nπ

Ws

(3.29)

where n = 1, 3, 5, . . . ,∞.

Consider an infinitesimally thin strip conductor S as shown in Figure 3.12.

The charge distribution can be assumed as:

ρ(x, y) = f(x)δ(y − y0) (3.30)

where f(x)is the charge distribution in the x -direction.

Substituting the charge distribution function in Equation (3.26), the varia-

tional expression for the capacitance per unit length of a multilayer structure

with side walls can be found as:

1

C
=

∫∫
S
G(x, y|x0, y0)f(x)f(x0)dxdx0[∫

S
f(x)dx

]2 (3.31)

Thus, Green’s function for various boundary conditions at the side walls

derived in the previous section as Equations (3.17), (3.19) and (3.21) can be

substituted in the above equation. Expressions for capacitance for the three

cases of side wall conditions take the following form:

Case a. Electric walls at x = 0 and c (Dirichlet type, G = 0):

C =

[∫
S
f(x)dx

]2∑∞
n=1

2
nπY

[∫
S
f(x) sin nπx

c
dx
]2 (3.32)

Case b. Electric wall at x = 0 (Dirichlet type, G = 0) and magnetic wall

x = c (Neumann type, ∂G/∂n = 0):

C =

[∫
S
f(x)dx

]2∑∞
n=0

4
(2n+1)πY

[∫
S
f(x) sin (2n+1)πx

2c
dx
]2 (3.33)

Case c. Magnetic walls at x = 0 and c (Neumann type, ∂G/∂n = 0):

C =

[∫
S
f(x)dx

]2∑∞
n=1

2
nπY

[∫
S
f(x) cos nπx

c
dx
]2 (3.34)

where the admittance at the charge plane Y = Y+ + Y−. The expression for

the admittance can be easily obtained by using the standard transmission
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line formula for the input admittance Yin of a section of transmission line. If

lj is the length of the j th section, its input admittance Yin,j is given by

Yin,j = Ycj

[
YLj + Ycj tanh(γjlj)

Ycj + YLj tanh(γjlj)

]
(3.35)

where YLj is the load admittance of the j th section which is the same as the

input admittance Yin,j+1of the (j+1)th section. Ycj and γj are the charac-

teristic admittance and propagation constant of the j th section. Assuming

isotropic dielectric layer, Ycj = εj and γj = nπ
c

for cases (a) and (c) while for

case (b) γj = (2n+1)π
2c

.

It is found that a trial function given by the following gives very accurate

results for practical engineering purposes [13] :

f(x) =

{
(1/w) [1 + A |(2/w) (x− c/2)|3] for (c− w) /2 ≤ x ≤ (c+ w) /2

0 otherwise

(3.36)

Substitute Equation (3.36) into Equation (3.32) and simplify the capacitance

expression:

C =
(1 + 0.25A)2∑

nodd (Ln + AMn)2 Pn/Y
(3.37)

where

Ln = sin (βnw/2)

Mn = (2/βnw)3

 3
{

(βnw/2)2 − 2
}

cos (βnw/2)

+ (βnw/2)
{

(βnw/2)2 − 6
}

· sin (βnw/2) + 6


Pn = (2/nπ) (2/βnw)2

βn = nπ/c

To determine the value A, solve ∂C/∂A = 0 and obtain

A = −

[∑
nodd

(Ln − 4Mn)LnPn/Y

]/∑
nodd

(Ln − 4Mn)MnPn/Y
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The only parameter left to be evaluated is the admittance Y at the charge

plane. The admittance parameter at the charge plane is obtained by applying

the transmission line formula (3.35). The admittance of the top layer is given

by

Y+ = Yin,3 = ε0ε3 coth(γ3b3) (3.38)

where γ3 = nπ
c

is defined in case a above.

The admittance parameter below the charge plane is given by

Y− = YI + YII + YIII (3.39)

with

YI = YIII = ε0ε2 coth(γ2b2) (3.40)

YII = ε0ε2 coth(γ2,IIb2) (3.41)

where γ2 = βn(x) = (2n+1)π
c−ws

is defined in case b above and γ2,II = nπ
Ws

is

defined in case c above.

The total admittance is given by Y = Y+ + Y− , which is then substituted

back to (3.37) for computation of capacitance per unit length.

A comparison with the EM field solver using numerical methods and the

unified approach using the variational method in closed-form analytical so-

lution is shown in Figure 3.13, along with the physical parameters used, in

Table 3.1.

Table 3.1: Physical Parameters

Physical Parameter Value
h (=b2) 0.78mm
ho (=b3) 50*b2

ε1 1
ε2 2.17
ε3 1
w 0.6
c 100*b2
L 10mm
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Figure 3.13: Comparison between the unified approach using variational
method in closed-form analytical solution and EM field solver using
numerical methods

The modified boundary condition is based on the fact that vertical profiles

I and III belong to the situation where the electric wall is on one side and the

magnetic wall on the other. With the modified boundary condition and the

unified approach (variational method combined with transverse transmission

line technique), capacitance of the multilayer structure with side walls is

calculated using Green’s function for various boundary conditions at the side

walls combined with the transverse transmission line technique, and thus the

characteristic impedance of the whole structure. Comparison to simulation

using field solver proves the accuracy of this analysis.

3.3.3 Analysis using Conformal Mapping

The variational method in closed-form has been shown to enable fast and

accurate simulations. Conformal mapping, one of the analytical methods

that provide exact solution, is an alternative for interconnect analysis. Fig-

ures 3.14 and 3.15 show the characteristic impedance versus dielectric height

and conductor width of a single stripline model, using both conformal map-

ping and variational methods. Figures 3.16 to 3.18 are the odd and even

impedances versus the structure for coupled striplines, and all the results

show good agreements using both conformal mapping and variational meth-
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ods.

Figure 3.14: Single line: characteristic impedance vs. dielectric height,
using conformal mapping and variational method

Figure 3.15: Single line: characteristic impedance vs. conductor width,
using conformal mapping and variational method
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Figure 3.16: Coupled line: characteristic impedance vs. dielectric height,
using conformal mapping and variational method

Figure 3.17: Coupled line: characteristic impedance vs. conductor widths,
using conformal mapping and variational method
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Figure 3.18: Coupled line: characteristic impedance vs. conductor spacing,
using conformal mapping and variational method

3.4 Example: High-Speed Double Data Rate (DDR)

Memory Interconnect

In this example, a high-speed double data rate (DDR) memory intercon-

nect with branching network is simulated using previously discussed analysis

methods.

Figure 3.19 shows a simplified picture of a dual-in-line memory module

(DIMM), with the transmitter (TX) on the memory controller sending the

signal through the motherboard trace to connector pins (also known as the

fingers), then to the module-to-package trace, and all the way down to the

receiver (RX) mounted on both sides of the DIMM. Looking inside from the

top view of the DIMM, the PCB module-to-package trace is split into two for

the so-called clamshell double-side assembly structure as shown in Figure 3.20

[16]. The module-to-package vias, package solder balls and bond-wires can

be modeled using lumped elements, while all traces are modeled using causal

transmission line models by analytical methods using closed-form solutions.

The equivalent model in ADS is shown in Figure 3.21, and the simulated S-

parameters using analytical method comparing to ADS simulation are shown

in Figure 3.22
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Figure 3.19: DIMM

Figure 3.20: Clamshell double-side assembly

Figure 3.21: ADS schematic of the equivalent model
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Figure 3.22: Comparison of simulated S-parameter between analytical
methods and ADS

For commercial motherboards on the market, up to 4 slots of DDR DIMM

are common, as shown in Figure 3.23. The previous model was cascaded to

handle multiple branches and multiple slots of the DDR DIMM. The equiva-

lent model in ADS is shown in Figure 3.24, and the simulated S-parameters

using analytical method compared to ADS simulation is shown in Figures

3.25 to 3.28.

Figure 3.23: A motherboard with 4 slots for DIMM
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Figure 3.24: ADS schematic of the equivalent model with 4 slots

Figure 3.25: Comparison of simulated S-parameter from Tx to Rx at slot 1
between analytical methods and ADS
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Figure 3.26: Comparison of simulated S-parameter from Tx to Rx at slot 2
between analytical methods and ADS

Figure 3.27: Comparison of simulated S-parameter from Tx to Rx at slot 3
between analytical methods and ADS

Figure 3.28: Comparison of simulated S-parameter from Tx to Rx at slot 4
between analytical methods and ADS
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To analyze the problem in time-domain, a single input bit pulse is launched

down the channel from Tx to Rx, as shown in Figure 3.29, and the single-bit

response (SBR) is displayed as a function of time as shown in Figures 3.30

to 3.33.

Figure 3.29: Single-bit pulse

Figure 3.30: Single-bit response at slot 1
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Figure 3.31: Single-bit response at slot 2

Figure 3.32: Single-bit response at slot 3
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Figure 3.33: Single-bit response at slot 4

Similarly, clock pattern input can be generated, as shown in Figure 3.34,

and sent to the channel from Tx to Rx. Clock pattern response is impor-

tant because unlike SerDes applications, where asynchronous embedded clock

generated by clock recovery circuit is used, forward-clock channel is utilized

for memory applications. Shown in Figures 3.35 to 3.38 are the clock pattern

responses (CPRs) at slot 1, slot 2, slot 3 and slot 4. More sophisticated and

random data patterns can be created and launched down the channel to see

the channel response for optimization purposes.

Figure 3.34: Clock pattern
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Figure 3.35: Clock pattern response at slot 1

Figure 3.36: Clock pattern response at slot 2
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Figure 3.37: Clock pattern response at slot 3

Figure 3.38: Clock pattern response at slot 4
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CHAPTER 4

EYE DIAGRAM, JITTER AND NOISE
MEASUREMENT OF HIGH-SPEED DATA

LINKS

For high-speed serial data link analysis, a standard way to evaluate the signal

quality would be the eye diagram, also known as the eye pattern, which

is a time-folded representation of a signal that carries digital information.

Large eye openings ensure that the receiver (Rx) can reliably decide between

high and low logic states even when the decision threshold fluctuates or the

decision time instant varies.

Traditionally, eye diagram construction in the real-time scopes are based

on hardware clock recovery and trigger circuitry. As the record length and

memory depth of the oscilloscope has increased over the years, an alternative

method called real-time eye rendering that is based on long record acquisition

and software post-processing, has been adopted in modern high-speed real-

time oscilloscopes. The eye rendering consists of the following procedures

[17] performed internally inside the scope:

1. Capture the waveform record;

2. Determine the measured edge times;

3. Determine the edge labels (bit labels);

4. Determine the recovered edge times - clock recovery;

5. Slice the record into unit intervals, and overlay the segments;

6. Display the result as an eye diagram.

As data rates kept being pushed higher, ensuring the overall system achieved

a target bit error ratio (BER) and maintaining high signal integrity became

critical for system design. In high-speed digital systems, the timing un-

certainties causes bit errors. The industry term for timing uncertainties in

digital transmission systems is called jitter. Jitter analysis evaluates the
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waveform in the horizontal direction, and is based on when the waveform

crosses a horizontal reference line. Similarly, along the vertical dimension

the signaling uncertainties is called noise, which is measured based on a ver-

tical reference point, typically around 50%. Measuring both jitter and noise

enables a two-dimensional view of the system behavior.

4.1 Measurement Overview

To characterize the performance of a high-speed serial link in real time, a high

bandwidth real-time scope is necessary. Probes and measurement system

need to be carefully designed for robust and accurate measurement. The

equipment used in this example is listed below:

• MSO-V334 Mixed Signal Oscilloscope 33 GHz 80 GSa/s

• N2803A 30GHz InfiniiMax III Series Probe Amplifier

• N2836A InfiniiMax III 26GHz Solder-in Probe Head

• N5443A Performance Verification and Deskew Fixture for InfiniiMax

III Probing System

The key measurement parameters include the rise/fall time, clock data

recovery rate, time interval error (TIE), de-emphasis, eye height, eye width,

random jitter, deterministic jitter (including periodic jitter, inter-symbol in-

terference and duty cycle distortion), total jitter, random noise, deterministic

interference (including periodic interference, bounded uncorrelated interfer-

ence) and total interference.

4.2 Probe Calibration

For any high-speed measurement, it is crucial to make sure the probes are

properly calibrated before they are soldered down on the DUT. It is rec-

ommended to re-calibrate the probe system whenever the probe headers are

newly connected to the probe amplifier. To properly calibrate the probe

system, follow the steps below:
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1. With the 50 Ω SMA terminator attached, connect the SMA female

connector of the N5443A Deskew and Performance Verification Kit

to the Cal Out SMA male connector of the MSO-V334 Mixed Signal

Oscilloscope. Turn the nut on the Cal Out counter-clockwise to tighten.

For best connectivity, hold the fixture upright with one hand, use an 8

lbs-in torque wrench to fully tighten the connector.

2. Attach the N2803A 30GHz InfiniiMax III Series Probe Amplifier to the

scope, screw counterclockwise until it is securely connected followed by

a click sound. The DC Cal LED light of the probe amplifier would be

orange when it is newly connected to the scope and needed calibration.

Note that even though the LED light may be green after DC Cal has

been done once on that channel of the scope with the same type of

probe head, it is always recommended to re-calibrate the probe system

before the probe header is soldered down for new measurements.

3. Connect the N2836A InfiniiMax III 26GHz Solder-in Probe Head to the

probe amplifier. Insert the amplifier into the top of the fixture holder.

The amplifier can slide up and down in the holder to adjust the probe

head position, as shown in Figure 4.1.
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Figure 4.1: N5443A performance verification and deskew fixture

4. On the deskew fixture, the center gold trace is signal and the large

plates on either side are both ground. Use the spring-loaded fingers to

clamp the probe head tip “+” lead to signal trace and “-” lead to the

ground, as shown in Figure 4.2. Press Autoscale on the front panel; a

stable step on screen should be observed if the probe head tip leads are

connected correctly.
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Figure 4.2: Probe head tip leads: “+” to signal trace and “-” to ground

5. In the scopes main software Infiniium, click on Setup→ Channel 1. The

Channel Configuration window should show up, as shown in Figure 4.3.

Click on the Probe. . . button.

Figure 4.3: Channel configuration
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6. Inside the Probe Configuration window, a simple block diagram of the

probe system is shown. Immediately after the probe amp is plugged

in, the scope automatically recognizes the serial number of the probe

amp. However, the type of probe head used needs to be specified by

clicking the Select Head button, as shown in Figure 4.4.

Figure 4.4: Channel configuration

7. Choose the appropriate probe head model from the list and click OK,

as shown in Figure 4.5.

Figure 4.5: Channel configuration

8. Back to the Channel Configuration window (Figure 4.3), click on the

Probe Cal. . . button. Within the Probe Calibration window, there are
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three subsections, as shown in Figure 4.6. Start by performing the DC

Attenuation/Offset Cal, carefully following the instruction, and then

the Skew Calibration as well as AC Response Calibration. It is neces-

sary to allow 15 minutes for probe warmup before starting calibration.

Figure 4.6: Probe calibration

9. Once the calibration is successful, the DC Cal LED light of the probe

amplifier should turn green, indicating that the particular combination

of probe amplifier, probe head, and oscilloscope channel input has been

calibrated.

10. A quick sanity check before removing the calibration fixture should be

done by inspecting the waveform on that channel. With vertical scale

for the displayed channels set to100 mV/div and horizontal scale to

1.00 ns/div, one should be able to see a waveform similar to that in

Figure 4.7, if calibration was performed successfully. Press Autoscale:

a repetitive square wave signal should be observed similar to that in

Figure 4.8.
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Figure 4.7: Sanity check of successful calibration -1

Figure 4.8: Sanity check of successful calibration - 2
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4.3 Measurement Setting and Bandwidth

Considerations

After a successful calibration, the next step is to solder the probe head to

the designated location on the DUT. A good measurement cannot be made

without high quality and precision of the soldering. When requesting board

rework to lab technicians, it is highly recommended to follow these few guide-

lines:

1. Directly soldering down the probe head tip leads on the pad is preferred.

Avoid using any extra wires.

2. If the pad location is unreachable by the probe head tip lead, lab wire

with ∼ 8 mil diameter and less than 3 mm long is acceptable. Avoid

bending wires.

3. Avoid excessive solder, especially solder ball formations.

4. Keep the mini-axial lead resistors roughly parallel as shown in Figure

4.9, and use the tip wires on the mini-axial leads to get the desired

span.

Figure 4.9: Proper position of resistors

After the probes are calibrated and soldered down on the designated lo-

cations, connect the probe heads to the probe amps and complete the mea-

surement setup. Start configuring the scope setting by following the steps:

1. Press Default Setup on the front panel to set the scope to a known

state. Doing so will NOT erase the probe calibration data.

2. Power on the DUT, and press Auto Scale on the front panel for a

quick sanity check of the signal. Press the Run/Stop button on the

front panel and one should be able to see a waveform similar to that in

Figure 4.12.
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3. Go to Setup → Bandwidth Limit, make sure the Global Bandwidth

Limit of the scope is set as Automatic. The upper bandwidth limit

should be bounded by the lowest hardware bandwidth, which is 26

GHz for the probe head.

4. To include measurement items, go to Measure→ Add Measurement; a

window should pop up as shown in Figure 4.10. In the setup section,

choose the measurement source, and - very importantly - change the

measurement thresholds by clicking the Thresholds button. For rise

and fall time measurements, choose the 20, 50, 80% of Top, Base defi-

nition, as shown in Figure 4.11. The measured waveform without BW

limitation, as well as all the selected measurement items are shown in

Figure 4.12.

Figure 4.10: Add measurement window
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Figure 4.11: Measurement thresholds

Figure 4.12: Waveform without BW limitation
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Bandwidth Considerations

In general, to characterize a high-speed serial communication link with NRZ

coding, the system bandwidth of the scope and probes should satisfy certain

rules. A rule of thumb for the hardware bandwidth requirement, including

both the scope and probe system, is 3 times the bit rate (6 times the fun-

damental) which ensures the 5th harmonic to pass. Figures 4.13 -4.16 show

the effect of BW limitation to the waveform:

Figure 4.13: Waveform with 20 GHz BW limitation
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Figure 4.14: Waveform with 12 GHz BW limitation

Figure 4.15: Waveform with 7 GHz BW limitation
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Figure 4.16: Waveform with 3 GHz BW limitation

Clearly the system bandwidth limitation can adversely affect the key mea-

surement parameters (such as Rise Time, Fall Time, CDR rate, etc.) as well

as the waveform shape and consequently the eye diagram.

4.4 Jitter and Noise Measurement

To start jitter and noise measurements, follow the steps below:

1. Go to Analyze → Jitter/Noise (EZJIT Complete) to setup Jitter and

Noise Measurements, as shown in Figure 4.17.
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Figure 4.17: Jitter and noise measurement setup

2. Click on the Setup Wizard button and carefully read the instruction

before moving forward. Start by adjusting the vertical scale for all

active channels by clicking the Autoscale Vertical button as shown in

Figure 4.18. Typically there are only 256 (=28) vertical quantization

levels of a high-speed scope; the process of quantization adds vertical

noise with a standard deviation of one-twelfth of a quantization level

to the signal. To optimize the vertical dynamic range, it is important

to use the full range of the scopes analog-to-digital converter (ADC).
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Figure 4.18: Scope vertical scale setup

3. The next very important and critical step for jitter and noise measure-

ments, is to choose the appropriate RJ/RN separation method. When

strong interference of crosstalk is present where bounded uncorrelated

jitter (BUJ) needs to be considered, use Spectral & Tail Fit. For this

application, use Spectral Only for both RJ and RN method as shown

in Figure 4.19.

Figure 4.19: RJ/RN separation method settings
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4. Followed by the RJ/RN methods, it is important to choose the jit-

ter measurement method. Time interval error (TIE) is the preferred

method for jitter measurement, which calculates the difference in time

between an edge in the measured data and the corresponding edge in

the recovered clock. Choose Both for Edges and 50% for measurement

location as shown in Figure 4.20.

Figure 4.20: Measurement source type

5. The jitter analysis package EZJit Complete has the ability to automat-

ically detect the presence and length of a cyclically repeating pattern.

Choose Periodic and Auto for pattern length, since the configured test

pattern in the PHY setting is PRBS7. Although the jitter/noise decom-

position and the bathtub curve creation do not require the knowledge

of target BER level, this parameter does determine the point at which

the eye opening as well as total jitter are reported. Enter 1E-12 as the

target BER level as shown in Figure 4.21.
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Figure 4.21: Test pattern and BER level setup

6. Clock recovery setup is absolutely fundamental to jitter measurement,

since serial communication signals carry their own timing information

without external clocking source. An incorrect clock recovery configu-

ration can cause failure to recover the clock signal, leading to extremely

high jitter results and a closed eye diagram. In most standard serial

communication links, a PLL-based clock data recovery (CDR). In this

example, use First Order PLL as the clock recovery method, 5.40 Gb/s

for the nominal data rate and 10 MHz for the loop bandwidth, as shown

in Figure 4.22.
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Figure 4.22: Clock recovery setup

7. The voltage thresholds are the reference levels that define when sig-

nificant timing events occur. Voltage level can significantly affect the

measured jitter. For differential signaling, the right choice of the volt-

age threshold is usually defined to be 0 V. In the thresholds setting

window, choose Snap to 0 for threshold level, and click on the Auto set

thresholds button as shown in Figure 4.23. By doing this, the scope will

lock the switching threshold at 0 V while adding hysteresis to prevent

false edges due to noise.
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Figure 4.23: Voltage threshold setup

8. To minimize the effects of vertical noise on jitter measurements, it is

generally recommended to set the scope’s sample rate to be about 3

to 5 samples per edge if possible. In this case, choose Set maximum

sample rate (80 Gsa/s) and set the memory depth to be 4.61 Mpts, as

shown in Figure 4.24.

Figure 4.24: Acquisition setup
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9. It is possible to manually remove the scope’s random jitter and random

noise by measuring the scope’s random noise at the current vertical

sensitivity, as shown in Figure 4.25; however, this step is optional.

Figure 4.25: Random noise calibration

4.5 Eye Diagram Measurement and Mask Test

In order to determine whether an eye diagram formally meets the specifica-

tion or certain measurement standard, it is important to perform eye mask

testing. Follow the steps below to start eye diagram analysis on the scope:

1. Go to Analyze → RTEye/Clock Recovery (SDA); a window called Se-

rial Data Analysis should pop up as shown in Figure 4.26.

Figure 4.26: Serial data analysis window
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2. Click on the Setup Wizard button and carefully read the instruction

before moving forward. Start by adjusting the vertical scale for all

active channels by clicking the Autoscale Vertical button as shown in

Figure 4.27. This will optimize the vertical dynamic range to use the

full range of the scopes digitizer. Select the clock recovery method by

choosing First Order PLL in the dropdown menu.

Figure 4.27: Vertical scale and clock recovery method

3. Configure the phase-locked loop (PLL) setting by entering the nominal

data rate of the signal as shown in Figure 4.28. In this application,

the nominal data rate would be 5.4 Gb/s. To best mimic the receiver,

loop bandwidth for the scope PLL clock emulation is set to be 10 MHz,

which is the frequency below which the clock is expected to track.
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Figure 4.28: PLL configuration

4. The next important step it to set the Receiver Switching Threshold,

which is the level at which the clock switches. For differential signaling

applications, the right choice is usually defined to be 0 V. Choose Snap

to 0, and click Auto Set Thresholds, as shown in Figure 4.29. This

will lock the switching threshold to be 0 V while adding hysteresis to

prevent false edges due to noise.

Figure 4.29: Receiver switching threshold setting

5. The next two steps in the setup wizard will let the user turn on the

Time Interval Error measurement relative to the recovered clock (Data

TIE) as well as the real-time eye display.
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6. Finally, in the acquisition setting page, set the Memory Depth to be

4.61 Mpts and Sampling Rate to be 80 GSa/s. Click finish, and the

real-time eye diagram should look similar to that in Figure 4.30.

Figure 4.30: Real-time eye diagram

7. To load an eye mask from a file, go to Analyze→Mask Test, and select

Enable. Select the corresponding channel source, then click Load Mask

to select the mask file as shown in Figure 4.31.
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Figure 4.31: Real-time eye diagram

8. In the bottom left corner of the mask test window, change Run Until to

Unit Intervals for 20000000 (20MUIs). It may take a few minutes for the

scope to run the mask test depending on the number of measurement

items and settings. Figure 4.32 shows the eye diagram after eye mask

test is finished.
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Figure 4.32: Eye diagram with eye mask test

4.6 Embedding and De-embedding

When performing measurements for high-speed digital designs, it is very com-

mon to encounter situations where the physical measurement fixture differs

from the desired configuration. It is critical for the engineer to be able to

observe what the waveform looks like at the specific locations, as well as to

apply “what if” scenarios where circuit or channel elements are changed from

those taken from the original acquisition. Fortunately, many modern high-

speed scopes with the latest software allow engineers to perform embedding

and de-embedding easily, making the following two tasks possible:

1. Relocating measurement point of the circuit or channel, due to me-

chanical or electrical considerations;

2. Removing and/or inserting channel elements for feasibility study.

To perform actuate channel embedding and de-embedding, network pa-

rameters of the channel components need to be measured by a properly

calibrated vector network analyzer (VNA), or simulated using appropriate

3D/2.5D full-wave EM solvers. Differential 2-port networks can model odd

mode of the signals while ignoring the even mode, and hence can only be
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used to model highly balanced differential circuits where there is very lit-

tle coupling between the even and odd modes. When ultimate precision is

needed, it is better to use 4-port networks, which can capture the amount of

crosstalk between the coupled transmission lines, ensuring better accuracy

for differential channel modeling. While the scope may accept either 2-port

or 4-port network models for embedding/de-embedding, it is recommended

to use 4-port network models in most of the scenarios for differential signaling

applications.

In practice, S-parameter is the preferred network parameter model for high-

frequency applications. It is worth mentioning that the frequency range of the

S-parameters plays an important role in the embedding/de-embedding pro-

cess. By default, the scope automatically limits the global measuring band-

width based on the scope, probe system, as well as the S-parameter models,

whichever is the smallest. It is important to ensure the S-parameter models

have the required higher frequency components so that the embedding/de-

embedding will not be band-limited due to S-parameters. Also, be sure to

include the DC value when simulating the S-parameters. If low-frequency

data points are not available, extrapolation must be performed down to DC.

To perform on-scope real-time channel embedding, follow the following

steps:

1. Choose the corresponding channel for embedding by going to Setup→
Channel: the channel configuration window should pop up as shown in

Figure 4.33.
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Figure 4.33: Channel configuration window

2. In the lower right corner of the channel configuration window, within

the InfiniiSim section, choose 4 Port (Channel 3) in the dropdown

menu. Since the each individual channel is probing differentially, there

is no need to refer one channel to another: i.e., do not choose 4 Port

(Channel 1&3) unless each channel is measured single-endedly. Choose

Differential for port extraction, and click the Setup button.

3. If a transfer function has been created before, select the corresponding

.tr4 file by locating the file in the scopes local drive or through USB

flash drive, as shown in Figure 4.34. Within the InfiniiSim Setup win-

dow there are options to configure the bandwidth limit and filter size.

To create a new transfer function .tf4 file, click on the button Create

Transfer Function from Model.
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Figure 4.34: InfiniiSim setup window

4. To create the transfer function from model, it is necessary to choose the

proper configuration to represent the measurement and simulation cir-

cuit. InfiniiSim provides 13 different templates under the Application

Preset dropdown menu as shown in Figure 4.35.

Figure 4.35: Application preset for InfiniiSim model setup

5. In the Application Preset dropdown menu, choose the General Purpose

Probe configuration; the block diagram of the serial link is shown as in
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Figure 4.36.

Figure 4.36: InfiniiSim setup window with block diagram of the serial link

6. Click on the block to open up the InfiniiSim Block Setup window as

shown in Figure 4.37. The Measurement Circuit, as the name suggests,

represents the actual physical circuit that produced the measured wave-

form. The Simulation Circuit, on the other hand, models the hypothet-

ical electrical circuit that exhibits the desired electrical characteristics.

In other words, the measurement circuit is what the probe actually

measures while the simulation circuit is what one wishes the probe

would have been able to measure. One needs to specify the block type

for both the measurement circuit and the simulation circuit.
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Figure 4.37: InfiniiSim block setup

If needed, it is possible to change the block name to something that

represents the details of the block. In the Simulation Block Port Type,

there are options to choose 2 Port, 2 Port Differential or 4 Port. In this

application, choose 4 Port for the block. For each block, one may define

it as Ideal Thru, Open, Probe Load, S-parameter File, or Combination

of Sub-circuits, depending on the need. In this example, Combination

of Sub-circuits was chosen and the relationship among the sub-circuits

is Cascade, while other options include Parallel and Series.

7. If a combination of sub-circuits is chosen, there will be 3 sub-circuit

blocks for the measurement circuit and the simulation circuit. Click

on each of the sub-circuit blocks to open up the InfiniiSim Sub-circuit

Block Setup window as shown in Figure 4.38. Similarly, the block type

can be configured as S-parameter File, Probe Load, Open, Ideal Thru

and Unused. If S-parameter File is used, choose the corresponding

touchstone file from the scope’s local drive or USB flash drive. It is

critical to ensure the port assignment is in the correct order, otherwise

one may need to flip the model or renumber the 4 port.
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Figure 4.38: InfiniiSim sub-circuit block setup for S-parameter file

8. If Probe Load is chosen for the block, choose the corresponding touch-

stone file from the scope. The S-parameter file for the probe is a 2-port

touchstone file (.s2p) with port 1 & 2 as thru. Even though symbol

shown is a 4-port S-parameter block (this is a software bug), choose

the 2-port touchstone file for the probe as shown in Figure 4.39.
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Figure 4.39: InfiniiSim sub-circuit block setup for probe load

9. If there is a need to adjust the source and load impedances, click on

the resistor symbol at the transmitter side or the receiver end of the

serial link model: a window called Circuit Source & Load Impedances

will pop up as shown in Figure 4.40.
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Figure 4.40: Source and load impedances setting

The default setup is 50 Ω for both the source and load impedances

for all ports, including measurement circuit and simulation circuit. To

adjust individual impedance, uncheck the Applies to all option and

type in the desired value for the specific resistor.

10. After all the blocks have been properly specified, it is always a good

idea to double check them before finishing. Move the mouse cursor

over the block and a quick summary of the measurement circuit and

the simulation circuit setup will appear as shown in Figure 4.41.
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Figure 4.41: Quick view for individual block setting

11. If everything looks fine, choose the location where the .tf4 file will be

saved and click the Save Transfer Function button: a process indicator

pop-up window will appear as shown in Figure 4.42. It could take a

few minutes for the scope to compute the transfer function, depending

on the complexity of the channel as well as the bandwidth of the S-

parameter files.

Figure 4.42: Process indicator showing progress

12. In case there is an error, there will be a message showing where the error

is coming from and transfer function cannot be saved until the error

is fixed. Figure 4.43 shows an example of error where the S-parameter

file is missing.
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Figure 4.43: Example of an error message

13. Once the transfer function has been successfully created, the process

indicator should change to the message showing it is successful as shown

in Figure 4.44.

Figure 4.44: Message showing successful computation of transfer function

In the main window there should be a new section called InfiniiSim

showing the Frequency Response of the transfer function newly created.

As shown in Figure 4.45, the yellow curve represents the frequency

response of the transfer function for embedding purpose. As expected,

embedding (inserting) a passive lossy channel should have a frequency

response less than 0 dB and decrease as frequency increases. The green

spectrum belongs to live signal measuring by the probe, while the blue

spectrum belongs to the simulated signal after the embedding transfer

function. Once again, it is expected that the simulated spectrum has

lower magnitude after embedding the passive lossy channel.
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Figure 4.45: Frequency response of the transfer function for embedding

Besides the frequency response, it is important to check the time-

domain responses and ensure the filter size is large enough. In the

dropdown menu called Type, one may change Frequency Response to

Step Response and Impulse Response as shown in Figure 4.46 and Fig-

ure 4.47. In case the impulse response and step response are not settling

down within the time span of the filter, increase the Max Time Span

of the Filter size in the InfiniSim Setup window (see Figure 4.34).

Figure 4.46: Step response of the transfer function for embedding
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Figure 4.47: Impluse response of the transfer function for embedding

With embedding, the measurement point can be relocated from the middle

of the channel to other test points down the channel. As shown in Figure

4.48, the eye diagram measured at the middle of the channel can be used to

compute the eye diagram at the receiver by applying the embedding filter.

From the comparison, one can easily observe that the eye shape is very close

to the eye diagram measured at the receiver, even though physically the eye

diagram is measured at the middle of the channel. This will be useful when

the target measurement point is physically hard to reach, while there are

other locations along the channel available for probing.

Similarly, de-embedding can be done with similar procedures shown above.

Effectively, de-embedding is removing channel components, and therefore the

frequency response would be the opposite of the embedding filter, typically

above 0 dB, as shown in Figure 4.49. One may use de-embedding to relocate

the measurement point similar to embedding. Figure 4.50 shows that the eye

diagram measured at the receiver can be used to compute the eye diagram

measured at the middle of the channel by applying the de-embedding filter.

De-embedding will be also useful when some of the channel components or

measurement fixtures (such as connectors or cables) need to be removed.
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Figure 4.48: Eye diagrams comparison after applying the embedding filter

Figure 4.49: Frequency response of the transfer function for deembedding

Figure 4.50: Eye diagrams comparison after applying the deembedding filter
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CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Conclusion

In summary, the work presented in this thesis laid down a path necessary to

gain knowledge of designing and building the essential components of a simple

high-speed serial link (HSSL). Fully functional serializer and deserializer cir-

cuits, as well as transmitter output driver, equalizer, receiver, and PLL-based

CDR have been designed, created and simulated using Cadence Virtuoso. A

complete channel that connects the transmitter and receiver through pack-

age to board, including the wire bonding, package trace, package via, solder

bump, PCB via, and PCB trace, has been successfully designed in HFSS and

simulated in Agilent ADS. The entire link system was integrated in Cadence

Virtuoso for performance analysis. In addition, techniques used for modeling

high-speed interconnects have been covered, with examples to help under-

standing the channel effects in modern high-speed digital systems. Finally,

the detailed process for eye diagram, jitter and noise measurement using a

high-speed real-time scope is provided to illustrate some of the real-world

issues many engineers will face when characterizing high-speed digital links.

With that, the author hopes all the examples presented in this thesis will

be helpful and educational for anyone who wishes to conduct research on or

pursue a career related to high-speed digital links.

5.2 Future Work

As for the future work, there are many aspects of the entire SerDes system

one may improve in order to meet the industry standard, such as higher

speed, better signal integrity and lower power consumption. Fine-tuning of
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components and optimization are needed to increase the robustness of the

entire high-speed serial link system and minimize the overall power consump-

tion. Furthermore, alternative designs or topologies for any sub-component

such as driver topologies (current-mode vs. voltage-mode), timing and signal-

ing techniques (single-ended vs. differential), and PLL-based CDR (classical

analog PLL vs. all digital PLL) could be candidates to explore. One may

conduct feasibility studies on how different topologies affect the overall sys-

tem performance, and replace the components of the existing design based on

the simulation result. Finally, more in-depth signal and power integrity anal-

ysis could be done in the future on the entire high-speed serial link system

in order to discover more advanced techniques to mitigate unwanted effects

such as crosstalk, inter-symbol interference (ISI) and jitter/phase noise.

127



REFERENCES

[1] C. Hagen, K. Khan, M. Ciobo, J. Miller, D. Wall,
H. Evans, and A. Yadav, “Big data and the cre-
ative destruction of today’s business models,” Jan. 2013.
[Online]. Available: https://www.atkearney.com/strategic-it/
ideas-insights/article/-/asset publisher/LCcgOeS4t85g/content/
big-data-and-the-creative-destruction-of-today-s-business-models/
10192

[2] D. Friedman, “International solid-state circuits conference 2014 tech
trends,” Feb. 2014. [Online]. Available: http://isscc.org/doc/2014/
2014 Trends.pdf

[3] D. Stauffer, J. Mechler, K. Dramstad, C. Ogilvie, A. Mohammad,
J. Rockrohr, and M. Sorna, High Speed Serdes Devices and Applications.
New York: Springer, 2008.

[4] W. Beyene and M. Aleksic, “A study of optimal data rates of high-speed
channels,” presented at DesignCon 2011. Santa Clara, CA, Jan. 2011.

[5] A. C. J. Rabaey and B. Nikolic, Digital Integrated Circuits: A Design
Perspective. Upper Saddle River, New Jersey: Prentice Hall, 2003.

[6] M. Horowitz, “Transmitter and receiver design,” 2000. [Online].
Available: http://www-classes.usc.edu/engr/ee-s/577bb/lect.15.pdf

[7] W. Dally and J. Poulton, Digital Systems Engineering. Cambridge
University Press, 1998.

[8] R. Crampagne, M. Ahmadpanah, and J.-L. Guira, “A simple method
for determining the green’s function for a large class of mic lines having
multilayered dielectric structures,” IEEE Transactions on Microwave
Theory and Techniques, vol. 26, no. 2, pp. 82–87, Feb. 1978.

[9] Y. Chang and I. Chang, “Simple method for the variational analysis of
a generalized n-dielectric layer transmission line,” Electronics Letters,
vol. 6, no. 3, pp. 49–50, Feb. 1970.

128



[10] R. E. Collin, Field Theory of Guided Waves. New York: McGraw-Hill,
1960.

[11] D. E. Vitkovitch, Field Analysis. Experimental and Computational
Methods. D. Van Nostrand, 1966.

[12] B. Bhat and S. K. Koul, “Unified approach to solve a class of strip and
microstrip-like transmission lines,” IEEE Transactions on Microwave
Theory and Techniques, vol. 30, no. 5, pp. 679–686, May 1982.

[13] C. Nguyen, Analysis Methods for RF, Microwave, and Millimeter-Wave
Planar Transmission Line Structures. New York: Wiley, 2003.

[14] R. Sharma and T. Chakravarty, Compact Models and Measurement
Techniques for High-Speed Interconnects. New York: Springer, 2012.

[15] B. Bhat and S. Koul, Stripline-like Transmission Lines for Microwave
Integrated Circuits. New York: Wiley, 1989.

[16] D. Wang, “A talk on memory buffers,” 2014. [Online]. Available:
http://www.cs.utah.edu/thememoryforum/wang.pdf

[17] D. Derickson and M. Müller, Digital Communications Test and Mea-
surement: High-Speed Physical Layer Characterization. Prentice Hall,
2007.

129


