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ABSTRACT 

 Infectious diseases are a continuing threat to human health. In particular, the rapid 

development of bacterial antibiotic resistance not only decreases the effectiveness of known 

antibiotics, but also increases the need for the ongoing discovery of novel drugs. Since the 

discovery of penicillin, natural products have become a great source of templates for the 

development of new antibiotics. Derivatization of known drugs is one approach commonly used 

to combat rapidly evolving bacterial strains. However, the mechanisms of actions of derivatized 

drugs are more often than not very similar to the parent compound, making it difficult to develop 

drugs with new and unique modes of action by generating analogs. Ribosomally synthesized and 

post-translationally modified peptide (RiPP) natural products are a rapidly expanding class of 

compounds with antimicrobial activity. Sublancin is one of five members of the glycocin family 

of RiPPs, and contains an unusual S-linked glycosylation. This unprecedented post-translational 

modification, as well as its increased stability, when compared to known RiPP antimicrobials, 

suggests a unique antibacterial mode of action. In an effort to understand the remarkable stability 

of sublancin, the three-dimensional NMR structure was solved, as described in chapter 2, 

revealing that hydrophobic interactions as well as hydrogen bonding are responsible for the 

stable and well-structured peptide.  

Unlike better-understood natural products, the molecular target of sublancin is currently 

unknown. In order to further understand how sublancin exerts its activity against bacteria, a 

number of sublancin analogues were made. These analogues were prepared either by 

heterologous expression followed by in vitro modification, as well as by solid phase peptide 

synthesis. The antimicrobial activity of all analogues was then assessed against sensitive bacteria 

and sublancin-resistant mutant strains.  
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While sublancin exhibits sub-micromolar activity against Gram-positive bacteria, its 

molecular target is currently unknown. Chapter 3 describes studies focused on understanding 

sublancin’s mode of action. In chapter 4 we performed super resolution microscopy and 

determined that sublancin localizes to the cell membrane. Furthermore, the mechanism of action 

of the S-glycosyltransferase SunS, the enzyme responsible for installing an S-linked sugar onto 

sublancin, was studied in chapter 5, which provided insights into its enzymatic mechanism. The 

understanding of the biosynthesis of these unique peptides can aid in the bioengineering of other, 

more potent complex molecules. 
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CHAPTER 1. THE GLYCOCIN FAMILY OF RIPP NATURAL PRODUCTS 

1.1 INTRODUCTION 

The human body harbors close to ten trillion cells and it is home to a hundred trillion 

bacteria, in other words our human cells are outnumbered 10:1.1,2 The collection of resident 

bacteria in the human body is collectively known as the microbiome. The microbiome is 

essential in maintaining our health and the largest and most diverse population of bacteria is 

known to reside in our guts.1-3 These residents help in the digestion of food, in manufacturing 

nutrients that we are unable to make, and in protecting us by suppressing the growth of 

pathogens.1,2 For the most part, the bacteria are our allies, but when bacteria acquire genes that 

make them resistant to our antibiotics, they can be turned into our enemies. Antimicrobial 

resistance is a present-day global threat.4,5 It is estimated that over 700,000 people die each year 

as a consequence of antibiotic resistant infections across the world, and that by 2050 over 10 

million lives will be lost each year.5  

The discovery of new antibacterial agents that function through novel modes of action 

would be an important contribution in the struggle against multidrug-resistant infections. The 

rise in antibiotic resistance is of increasing concern due to the limited number of targets affected 

by our current pool of antibiotics. There are over two hundred approved antibacterial drugs that 

target essentially the same bacterial processes, which include protein synthesis, DNA replication, 

RNA synthesis, folate biosynthesis, and cell wall biosynthesis.6-8 However, an increasing number 

of strains have overcome the action of these drugs  through selective pressure that caused them to 

acquire mutations in the original targets rendering them resistant to the drug used to treat them.9 

Such target modifications can bestow resistance to drugs with analogous binding sites, a 

common scenario.8 Given our current situation with regards to the emergence of antibiotic 
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resistance, one solution involves the discovery and development of new antimicrobial drugs that 

act on previously unexploited targets. Nature has proven to be a rich source of natural product 

therapeutics. Therefore there may be no better place to discover new pharmaceutically relevant 

compounds than investigating what nature has already designed and evolved.10  

A fast-growing class of natural compounds is the ribosomally synthesized and post-

translational modified peptide (RiPPs) natural products. RiPPs display remarkable diversity in 

their structures, bioactivities and organisms that produce them. Their structures include the 20 

proteinogenic amino acids, as well as modified amino acids and various decorations to their 

peptide scaffolds.11,12 These modifications are important because of their ability to convert a 

flexible linear peptide into a conformational rigid structure. This rigidity is hypothesized to be 

important for target binding and increased metabolic stability.11-13 Importantly, there is a 

unifying characteristic in that these molecules are biosynthesized in a similar fashion. These 

compounds are ribosomally synthesized as inactive precursor peptides that comprise an N-

terminal leader peptide followed by a C-terminal core peptide that undergoes extensive enzyme-

mediated post-translational modifications that convert them into their biologically active forms 

(Figure 1.1).10,11 
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Figure 1.1 General biosynthetic scheme for ribosomally synthesized and post-translationally modified peptide 

natural products. 

 

1.2 OVERVIEW OF GLYCOCINS 

 One class of ribosomally synthesized and post-translationally modified peptide natural 

products are the glycocins.11 Glycocins are produced by bacteria and have potent antimicrobial 

activities. They are characterized by the presence of one or multiple sugar moieties in their core 

peptide and two disulfide bonds that serve to stabilize the structure.14 To date there are five 

known members of the glycocin family of natural products, including glycocin F, sublancin 168, 

plantaricin ASM1 (a.k.a ASM1), thurandacin A and thurandacin B.14-18 

In 1998, Paik and coworkers reported the discovery of a novel lantibiotic, which they 

named sublancin 168.19 The reported structure of sublancin contained a dehydroalanine residue 

and thioether crosslink, specifically a methyllanthionine moiety that is characteristic of 

lantibiotics. It was also reported to contain two disulfide bridges, which at the time were 

unprecedented in lantibiotics (Figure 1.2).19 Lantibiotics are also part of the RiPP class of natural 

products and are characterized by the presence of dehydro amino acids dehydroalanine (Dha) 

and dehydrobutyrine (Dhb) and thioether crosslinks termed lanthionine or methyllanthionine.20,21 
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Figure 1.2 Originally proposed structure of sublancin 168. 
Figure reproduced from Dr. Trent Oman’s thesis. 
 

Sublancin, produced by Bacillus subtilis 168 was shown to be extremely stable and displayed 

antimicrobial activity against a subset of Gram-positive bacteria.19 In 2011, Dr. Oman, a former 

graduate student in the van der Donk laboratory, revised the structure of sublancin 168 from a 

lantibiotic to a novel S-linked glycopeptide.15 Dr. Oman showed that the precursor peptide was 

being modified by the glycosyltransferase SunS, which installs a glucose via a β-S-linkage to 

Cys22 thereby reclassifying it as the first member of the glycocins (Figure 1.3).15  

The remaining glycocins are also modified by dedicated glycosyltransferases. Glycocin F 

is secreted by Lactobacillus plantarum KW30 and is modified by the glycosyltransferase GccA 

and contains an N-acetylglucosamine β-O-linked to Ser18, and an N-acetylhexosamine-β-S-

linked to its C-terminal Cys43.16,22 ASM1 was originally discovered in 2010, and it was also 

believed to be part of the lantibiotic family but was later reclassified after analysis of the 

biosynthetic gene cluster revealed no lanthipeptide post-translational modifying enzymes.18 

ASM1, secreted by Lactobacillus plantarum A-1, is an orthologue of glycocin F differing in five 
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residues, all of which are located in the flexible C-terminal tail (Figure 1.3).14,16 Early in 2014 

thurandacin A and B were added to the glycocin family after Dr. Huan Wang, a former member 

of the van der Donk group reconstituted the putative products of a biosynthetic gene cluster from 

Bacillus thruingiensis serovar andalousiensis BGSC 4AW1. Thurandacin A is modified by a 

glucose moiety at both Ser19 and Cys28, while thurandacin B is modified only at Cys28 (Figure 

1.3) by the glycosyltransferase ThuS.17 

 
 
Figure 1.3 Glycocin family of natural products.  

Sublancin (top left), glycocin F (middle left) thurandacin A (top right), thurandacin B (middle right), and ASM1 

(bottom). 
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1.3 GLYCOCIN MODE OF ACTION 

At present, the mode of action of sublancin and other members of the glycocin family 

remains elusive. We do know, however, that carbohydrates are abundant biomolecules that can 

be found appended to lipids, proteins, peptides, and natural products.23 Glycosylation is an 

essential post-translational modification in eukaryotic cells where a carbohydrate is typically 

linked to the oxygen atom of Ser/Thr or the nitrogen atom of Asn.23 In addition, glycosylation 

plays important roles in protein folding and secretion, cell-cell signaling, modulation of 

bioactivity of natural products and proteolytic stability. Glycosylated natural products such as 

vancomycin, teicoplanin, bleomycin and others, are commonly used as antimicrobial drugs, and 

today some glycosylated natural products are becoming promising anti-cancer drug candidates.24-

29 Some of the advantages of appending a sugar moiety include decreased toxicity and increased 

solubility.30,31 The glycosylations present in the glycocin family of natural products are unusual 

because (1) bacteria do not typically glycosylate peptides and proteins, and (2) current members 

contain the only known cysteine S-glycosylations of ribosomally synthesized antimicrobial 

peptides.32-34 Conjugation to Cys through an S-linked glycosidic linkage is extremely rare.  To 

date, only a few studies have reported carbohydrates linked to the sulfur atom of Cys.15,16 The 

earliest reports of S-linked glycopeptides date back to 1971 and include compounds found in 

human urine,35 human erythrocyte membrane36,37 and white muscle albumin in cod.38 To 

determine the S-linkages, these compounds were subjected to dansyl-Edman degradation, acid 

hydrolysis and derivatization for gas chromatography identification of the sugar. No further 

extensive characterizations of the glycosylated proteins has been performed.16  

S-glycosylation to Cys is more stable than the O-glycosylation to Ser, both at low and high 

pH.32-34 Sulfur is less electronegative than oxygen and thus has a lower affinity for protons and 
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less likely to form the conjugate acid intermediate involved in glucoside hydrolysis.39 This 

explains why S-linked sugars are more stable against glycosidases.40 Due to the desirable 

characteristics of S-linked glycopeptides they have been the subject of several investigations.41-45  

Since glycosylation is conserved in all reported glycocins to date, it is hypothesized that it 

must be involved in the mechanism of action of these natural products. Many natural products 

(ribosomally synthesized or not) with antibacterial activity inhibit the biosynthesis of the 

peptidoglycan (Figure 1.4).46 For example, the non-ribosomally synthesized glycopeptide 

vancomycin acts by binding to the pentapeptide of the peptidoglycan monomers and non-

crosslinked polymers thus blocking the formation of the peptide cross-links by transpeptidase 

enzymes.47,48 Nisin, a prominent RiPP, acts against bacteria via a dual mechanism of action. It 

forms pores in the cytoplasmic membrane by using lipid II as a docking molecule49,50 

sequestering lipid II, thus making it unavailable for the biosynthesis of peptidoglycan.51-53 Given 

the known membrane disruption potential of these natural products, in chapter 3, we investigated 

the possibility of sublancin acting upon the cell membrane, and we now know that this is not the 

case as sublancin was shown to not inhibit lipid II polymerization nor disrupt the membrane 

potential of the cell.54 Furthermore, the sugar moieties found on the glycocins has been shown to 

be essential for activity. Work by Oman et al. have shown that the release of the glucose moiety, 

via acid-hydrolysis, from sublancin resulted in the loss of activity of the peptide.15 Work to 

understand the role of the sugar moiety is still underway.  
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Figure 1.4 Peptidoglycan biosynthesis inhibitors.  

Structures of Vancomycin (left) and nisin (right), two well-studied antimicrobial agents that disrupt bacterial 

peptidoglycan biosynthesis.  

 
Factors affecting the susceptibility of Gram-positive strains to sublancin have been studied 

by van Dijl and coworkers. The NaCl content of the growth medium has been shown to be a key 

determinant in the susceptibility of Bacillus and Staphylococcus strains but it does not affect the 

stability, activity and production of sublancin.55 Based on this observation, it was proposed that 

sublancin affects the mechanosensitive ion channels of the cell. Mechanosensitive ion channels 

are membrane embedded channels found in archaea and eukaryotes, and are especially 

widespread among bacteria (Figure 1.5).56-60 The channels control the efflux of osmoprotectants 

and osmolytes upon hypo-osmotic shock. When cells experience an abrupt decrease in the 

osmolarity of their extracellular environment they allow ions and osmolytes to rapidly exit from 

the cytoplasm in order to maintain adequate turgor pressure. The release of ions protects the cells 

from lysis due to overpressure caused by an equilibrium driven influx of water. 

Mechanosensitive ion channels are classified into large, small and mini, and designated as MscL, 

MscS, and MscM respectively.56,57 MscL has the largest pore size and opens when the pressure 

applied is high. The structures of the proteins Mycobacterium tuberculosis (TBMscL),61 

Staphylococcus aureus (SaMscL),62 and Escherichia coli (EcMscL)63,64 have been solved by 
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crystallography or proposed based on structural homology. TBMscL and SaMscL have an 

overall sequence similarity of 37 and 51 percent compared to EcMscL.65  

 

Figure 1.5 Mechanosensitive ion channels structure. 

Molecular model of E. coli mechanosensitive large ion channel (EcMscL) in the closed-resting (left), intermediate 

open (middle) and fully open (right) conformations. The channels are multimers of a subunit containing an N-

terminal helix S1 (orange), two transmembrane helices TM1 (yellow) and TM2 (blue), a periplasmic loop (green) 

and cytoplasmic helix S3 (purple). Figure adapted with permission from Mechanosensitive channels: what can we 

learn from ‘simple’ model systems?66 

 

Van Dijl and coworkers have shown that the susceptibility of B. subtilis and S. aureus 

strains to sublancin increases if the bacteria overexpress the MscL channel. When the NaCl 

concentration in the media was increased from 1% to 5% the bacteria were less sensitive to 

sublancin at higher salt concentrations.55 Moreover, the growth of B. subtilis and S. aureus MscL 

deletion mutants was hardly inhibited when exposed to sublancin.55 Whether sublancin takes 
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advantage of the changes in turgor pressure to block the Msc channels or as means to enter the 

cells and affect a cytoplasmic target is yet to be determined.  

 

 

Figure 1.6 Surface models of EcMscL with sublancin.  

Surface molecular model of E. coli mechanosensitive large ion channel (EcMscL) in the closed-resting conformation 

(left), intermediate open conformation (middle) and sublancin (green) docked in the channel of the fully open (right) 

conformations. 

 

More recent studies that were part of my graduate studies, discussed in chapter 3, describe 

how sublancin exhibits sub-micromolar activity against bacteria and will focus on understanding 

how it exerts its activity by interaction with the phosphoenolpyruvate:sugar phosphotransferase 
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system (PTS). The study of S-linked glycopeptides will expand our knowledge of these unique 

RiPPs, and perhaps elucidate their hypothesized novel modes of actions. Furthermore, 

elucidation of the mechanism of action of such compounds could help us develop structurally 

similar and more potent antimicrobial peptides. 

1.4 BIOSYNTHESIS 

1.4.1 Gene organization 

Like other members of the RiPP family of natural products glycocin biosynthetic genes 

are clustered. At present a universal gene designation has not been established for the glycocin 

family. So far, each individual glycocin has its own gene designation for identification. For 

example, the sublancin biosynthetic genes are designated as sun and those for glycocin F are 

designated as gcc. For the purpose of this thesis the generic gene designation glyc will be used to 

represent the locus symbol for glycocins in general. Thus far, only a few glycocin gene clusters 

have been identified via homology, and these studies show similar gene organization for 

glycocin production.67-69 In almost all known glycocins and putative glycocins, the biosynthetic 

gene cluster includes genes encoding for a precursor peptide (glycA) and the modification 

enzymes responsible for glycosylation (glycS), a thiol-disulfide oxidoreductase(s) (glycO), an 

immunity gene (glycI), and a transporter/protease (glycT) responsible for the removal of the 

leader peptide followed by extracellular transport of the mature glycocin (Figure 1.7). Additional 

genes, such as those that encode for regulation, may also be found within these clusters or they 

may be located on closely linked operons.21 For sublancin these genes are known as sunA, bdbB 

and bdbA, sunI, and sunT respectively, and are located on a SPβ prophage, a viral genome that 

was integrated in to the circular DNA chromosome of B. subtilis 168.  
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The order of events for the biosynthetic modifications that occur on the sublancin 

precursor peptide, SunA, are yet to be determined. Experimental observations (Chapter 6) point 

towards the glycosyltransferase, SunS, attaching the sugar moiety first, followed by the folding 

of the peptide by the thio-disulfide oxidoreductases, and leader sequence removal by SunT as the 

mature peptide, sublancin, is transported out of the cell. Whether some glycocins are capable of 

undergoing additional post-translational modification aside from the formation of disulfide 

bridges and O- and/or S-linked glycosylation is yet to be uncovered.  

1.4.2 Precursor peptides 

The production of mature glycocins begins with the translation of glycA genes. These 

genes encode a precursor peptide (GlycA) that contains an N-terminal leader peptide region that 

can range anywhere from 19 to 38 amino acids in length and a C-terminal core peptide region 

that will undergo post-translational modification and ultimately become the mature glycocin. The 

C-terminal peptide region of known and putative glycocins can vary in length between 37 to 48 

amino acids.15-17 The leader and core amino acid peptide sequences of sublancin, thurandacin A 

& B, glycocin F and ASM1 contain serine residues, but only some of those located in the core 

peptide undergo glycosylation. In addition only the core peptides of these five natural products 

contain Cys, and all of them are involved either in disulfide formation or are post-translationally 

modified with a sugar moiety (Figure 1.8).  

Similar to the lantibiotic family of RiPPs, the glycocins have leader peptides that are 

typically rich in Lys, Glu and Leu residues, as observed in the JKLX (J = E, K, or S) and 

KEBXXXELEXXXG motifs (B = V, L, or I), and usually end in a GG or GS motif (Figures 

1.8A and 1.9).10 Analysis of the leader peptides using the protein sequence analysis workbench 

PSIPRED predicts that the leader peptides form a hydrophilic helical structure (Figure 1.8 B, C). 
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Figure 1.7 Organization of representative glycocin biosynthetic gene clusters.  

The biosynthetic gene cluster for the production of known glycocins including sublancin, thurandacin, and glycocin 

F, and the biosynthetic gene clusters for the production of putative glycocins. The precursor peptide is colored in 

black, glycosyltransferase in green, thioredoxin oxidoreductases in yellow, transporter in red, immunity protein in 

blue, putative regulation signals in purple and unknown genes in grey.   
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Several hypotheses have been proposed to help explain the role(s) of the leader peptides 

for many classes of RiPPs. Potential roles include acting as a secretion signal. Most RiPPs have 

little homology to small molecule natural products regularly secreted across the cytoplasmic 

membrane through either the Sec-pathway or Tat-pathway.10,12 The Sec-pathway or Secretion 

route, translocates unfolded proteins while the Tat-pathway or Twin-arginine translocation 

pathway, serves to transport folded proteins. 

The leader peptide serving as a recognition motif for the modification enzymes is another 

hypothesis.70 If the leader peptide is in fact acting as a recognition motif, it could allow for the 

engineering of natural product analogs with different core topologies.10,12 Oman et al. 

investigated the role of the sublancin leader peptide and showed that the leader peptide is 

important for the efficient glycosylation activity of SunS, but not essential. Incubation of SunS 

and SunA core peptide resulted in full glycosylation at Cys22 in SunA.15 Alternatively the leader 

may assist the modification enzymes in folding or stabilizing the precursor peptide against 

degradation by behaving like a cis-acting chaperone.71 It has been additionally proposed that the 

leader peptide could be inactivating the natural product until it is fully modified and secreted 

outside the producing organism.72 Indeed, antimicrobial assays of in vitro glycosylated and 

oxidatively folded precursor SunA peptide, that had the leader peptide still attached, showed loss 

of bioactivity against sublancin sensitive cells.70,73  
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Figure 1.8 Leader sequence conservation among known and putative glycocins.  

Sequence alignment as performed by PRALINE of leader peptides of some members of the glycocin family of 

natural products. (a) Sequence alignment displaying the degree of amino acid conservation, blue indicates low 

conservation and red indicates high conservation. (b) Sequence alignment displaying the degree of hydrophobicity. 

(c) Sequence alignment displaying all cysteine residues in green and serine residues in pink. (d) Sequence alignment 

using the workbench PSIPRED indicating predicted secondary structures, red indicates a predicted helix and blue 

indicates beta strands. 
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Figure 1.9 Glycocin leader peptide sequence alignment. 

Glycocins have leader peptides that are typically rich in Lys, Glu and Leu residues, as observed in the JKLX (J = E, 

K, or S) and KEBXXXELEXXXG motifs (B = V, L, or I), and usually end in a GG or GS motifs. 

 
 

The core peptides of the glycocin family have low sequence identity but contain two 

conserved nested disulfide bridges that help fold the peptide into a hairpin and stabilize the 

overall structure. Thus far, all known glycocins have a CX6C-Xn-CX6C or (CX6C)2 motif (Figure 

1.3). It has been observed, however, that putative glycocins contain either the (CX6C)2 motif, or 

a (CX13C)2 motif (Figures 1.10C and 1.11).14 The (CX6C)2 motifs had been predicted by 

PSIPRED to be embedded within helical structures in the core peptide.74 NMR solution 

structures of both sublancin and glycocin F have confirmed the predicted helical structures,75,76 

which confer a helix-loop-helix topology to the core peptides (Figure 1.10D). The N-terminal 

helix (Helix A) is more hydrophobic than the C-terminal helix (Helix B) and the interhelical 

region contains anywhere between 9 to 14 residues and mainly those with small or no side chains 

such as glycine (Figure 1.10B). A CXnC motif is not uncommon in the natural product world. 

Quite a few unmodified peptide toxins (arthropod toxins, conotoxins, and antifungals) contain 

the CXnC-Xm-CXoC motif within a helix-loop-helix conformation.77-79 It is important to note that 

the integrity of the disulfide bridges holding the hairpin structure together is essential for peptide 

activity.14,15,70  
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Figure 1.10 Core peptide sequence conservation among glycocins.  

Sequence alignment as performed by PRALINE of the core peptides of some members of the glycocin family of 

natural products. (a) Sequence alignment displaying the degree of amino acid conservation, blue indicates low 

conservation and red indicates high conservation. (b) Sequence alignment displaying the degree of hydrophobicity. 

(c) Sequence alignment displaying all cysteine residues in green and serine residues in pink. (d) Sequence alignment 

using the workbench PSIPRED indicating predicted secondary structures, red indicates a predicted helix and glue 

indicated beta strands. 
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Figure 1.11 Glycocin core peptide sequence alignment. 

The (CX6C)2 motifs as predicted by PSIPRED is embedded within helical structures in the core peptide. Cysteines 

involved in disulfide bridge formation are shown in green with purple lines indicating corresponding disulfide bond. 

 

1.4.3 Glycocin glycosyltransferases 

The formation of the glycosidic linkage to serine or cysteine residues of the core peptides 

is performed by a glycosyltransferase modifying enzyme (GlycS). It has been speculated that the 

S-glycosidic linkages may have evolved because of their stability32 and relative resistance to 

cleavage by extracellular and cell envelope glycosidases and transglycosylases, similar to the 

strategy of incomportaing D-amino acids into peptides to decrease the chance of 

proteolysis.33,34,80 GlycS proteins are normally medium to small in size with close to 430 amino 

acids (approximately 50 kDa). The sequence identity within the GlycS protein family is only 

around 28% (Figure 1.12) and in silico analysis of the primary sequence of GlycS proteins 

reveals overall hydrophilic structures (Figure 1.13). Structural prediction tools (PSIPRED) 

anticipated a series of helical regions and beta strands (Figure 1.14).74 In vitro studies of SunS, 

the glycosyltransferase of the sublancin cluster, demonstrated high regioselectivity. When 

reduced SunA was incubated with SunS, only Cys22 was glycosylated even though SunA has 

five available cysteine residues available.15 
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Figure 1.12 Glycocin glycosyltransferase sequence alignment and amino acid conservation. 

Sequence alignment of known S-glycosyltransferases associated with glycocins showing their conservation using 

PRALINE. The scoring scheme works from 0 for the least conserved alignment position up to 10 (designated as an 

*) for the most conserved alignment position. The black box shows important conserved catalytic residues also 

known as the DxD motif. 
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Figure 1.13 Glycocin glycosyltransferase sequence alignment and amino acid hydrophobicity. 

Sequence alignment of known S-glycosyltransferases showing their overall hydrophobicity using PRALINE.  
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Figure 1.14 Glycocin glycosyltransferase sequence alignment and secondary structure prediction. 

Sequence alignment of known S-glycosyltransferases showing their predicted secondary structures using PRALINE. 

Red indicates a predicted helical structure and blue indicates a beta strands. 
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Oman et al. performed in vitro experiments, using a SunA substrate with an engineered 

Factor Xa cleavage site between the leader and core peptides (SunAXa), to study the substrate 

selectivity of SunS. Surprisingly, SunS is highly substrate tolerant with respect to the nucleotide 

sugar donor.15 When SunS is incubated with activated sugar donors including: UDP-N-

acetylglucosamine (UDP-GlcNAc), UDP-galactose (UDP-Gal), GDP-mannose (UDP-Man), or 

UDP-xylose (UDP-Xyl), SunAXa was successfully glycosylated at Cys22 although the reactions 

with these substrates were less efficient when compared to UDP-glucose (UDP-Glc) (Figure 

1.15). The substrate specificity of SunS will be further discussed in chapter 6. 

 

Figure 1.15 Sublancin sugar analogs produced in vitro with the glycosyltransferase SunS. 
 

Due to the observation that three out of four of the cysteines involved in disulfide bond in 

sublancin are flanked by alanine and glutamine, a few SunA mutants were generated by Dr. 

Huan Wang to study the whether these residues were involved in SunS substrate recognition 

(Figure 1.16). The flanking residues of Cys22 were mutated to a series of charged and uncharged 

residues.15 Although the mutant SunA peptides were substrates for SunS, Oman et al. and Wang 

et al. showed that the flanking residues do affect the efficiency of catalysis.70 These studies 

opened up the possibility that the overall peptide sequence is responsible for guiding the activity 

of the glycosyltransferase rather than the flanking residues of the glycosylated amino acid. Wang 
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et al. further investigated the peptide substrate specificity and selectivity of SunS by generating 

SunA mutants containing amino acid insertions or deletions that resulted in a “change in 

register”. Both the SunAXaΔIle and SunAXa-S16-G17insAAA (triple Ala insertion mutant 

between Ser16 and Gly17) mutants were fully glycosylated by SunS at Cys22. Insertions or 

deletions after the helical region did not have an effect on the selectivity of SunS. In addition, a 

double glycosylated SunA was observed when the flanking residues of Cys14 were mutated to 

Gly. But when Thr19 was mutated to Cys two monoglycosylated peptides were detected (i.e. 

either Cys19 or Cys22 was glycosylated).  A truncated SunA mutant expanding residues 5 to 33 

with an W11P mutation, SunA(5-33)W11P, was not a substrate for SunS while the SunA(5-33) 

peptide was. Incorporating a helix breaking residue Pro disrupts Helix A and suggests that SunS 

recognizes the N-terminal helix of the core peptide to glycosylate Cys22 in the adjacent flexible 

loop.70 

 
Figure 1.16 Substrate specificity and selectivity of SunS. 

SunAXaΔIle and SunAXa-S16-G17insAAA (triple Ala insertion mutant between Ser16 and Gly17) mutants were 

fully glycosylated by SunS at Cys22. A double glycosylated SunA was observed when the flanking residues of 

Cys14 were mutated to Gly. When Thr19 was mutated to Cys two monoglycosylated peptides were detected (i.e. 

either Cys19 or Cys22 was glycosylated).  A truncated SunA mutant encompassing residues 5 to 33 with W11P 

mutation, SunA(5-33)W11P, was not a substrate for SunS while the SunA(5-33) peptide was. Single asterisk = 

double mutant Gln and Ala, double asterix = double mutant Gly resulting in Cys22 glycosylation and Cys14 

glycosylation. When Thr19 was mutated to Cys either Cys19 or Cys22 were glycosylated but not both. 
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1.4.4 Thiol-disulfide oxidoreductases (TDORs) 

The characteristic disulfide bridges of the glycocin family of natural products are 

installed by thiol-disulfide oxidoreductases (TDORs) and these disulfide bonds are critical for 

the biological activity of glycocins.81 Disulfide bonds are found mostly in extracellular proteins 

and peptides and tend to be highly conserved among protein families.82 Structurally important 

disulfide modifications are known to provide natural products with unusually high structural 

stability thus making them difficult to degrade.83,84 Once the mature product forms it is difficult 

to gain access to the disulfides in order to unfold the product due to the formation of 

hydrophobic cores.85,86 TDORs involved in sublancin disulfide formation are encoded within the 

biosynthetic gene cluster. These genes are known as Bacillus disulfide bond genes, or bdb.81,87 

Bacillus subtilis contains four such bdb genes, bdbA, B, C and D, The SPβ prophage that 

contains sublancin’s operon, includes bdbB and bdbA (Figure 1.7). Dorenbos et al. have shown 

that bdbB and bdbC are involved in the production of sublancin, but that bdbA is not absolutely 

required for activity of the peptide. bdbB however, has a major role in sublancin production and 

bdbC can partly replace bdbB.81  

1.4.5 Proteolysis and export 

Quite a few ribosomally synthesized natural product gene clusters code for proteins that 

are responsible for the enzymatic removal of the leader peptide followed by the extracellular 

transport of the mature product. The glycocin biosynthetic gene clusters contain the glycT gene 

that encodes the proteolytic GlycT enzyme. As mentioned previously glycocins have leader 

peptides that usually end in a “double glycine” GG or GS motifs which are known to be cleavage 

sites for natural product proteases such as those found in the class II lantibiotic biosynthetic 
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clusters. BLAST sequence analysis of the glycT genes for sublancin (SunT) and glycocin F 

(GccB) predicts a bifunctional ABC transporter with features including an amino-terminal 

cytoplasmic peptidase domain and a carboxyl terminal ATP-binding domain (Figure 1.17).16,88,89 

These features would allow the GlycT to cleave after the double glycine moiety and transport the 

product out of the cell.90 Dorenbos et al. have shown that SunT is indispensable for sublancin 

production,81 and it is believed that the glycocin leader peptide inactivates the mature product 

while it is still located inside of the cell. In addition, it is thought that the GlycT protein 

transports the product and cleaves the leader peptide off before it is released to the extracellular 

environment.91  

 

Figure 1.17 Graphical representation of SunT conserved domains. 

Pink: Peptidase family C39 mostly contains bacteriocin-processing endopeptidases from bacteria. The cysteine 

peptidases in family C39 cleave the "double-glycine" leader peptides from the precursors of various bacteriocins. 

The cleavage is mediated by the transporter as part of the secretion process. Orange: ABC transporter 

transmembrane region; This family represents a unit of six transmembrane helices. Blue: P-loop containing 

Nucleoside Triphosphate Hydrolases; Members of the P-loop NTPase domain superfamily are characterized by a 

conserved nucleotide phosphate-binding motif.  

 

1.4.6 Immunity 

Bacteriocin-producing bacteria have several mechanisms to protect themselves against 

toxic effects of their natural products. One such mechanism is by employing an ABC transporter 

that can actively pump the toxin out of the cell, thus preventing a toxic level buildup of the 

bacteriocin inside of the cell.92,93 Alternatively, the bacteria can produce small immunity proteins 

that are associated with the cell membrane and can intercept the toxin by binding to it before it 

can damage the cell. The latter case is seen mainly in the immunity proteins produced by 
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lantibiotics called LanI.94-96 Another option is to change the charge of the cell membrane or cell 

wall thus making the membrane more positively charged and therefore more resistant to cationic 

bacteriocins.97,98 

For years it was unclear which gene of the SPβ prophage was responsible for the immunity 

of Bacillus subtilis 168 against sublancin. In 1999 all 187 genes located in the SPβ prophage 

were screened by Lazarevic et al. for homology to known producer immunity genes, but no 

homology was determined at the time. It was not until 2009 that Dubois et al. showed that only 1 

of the 187 genes is indispensable for immunity of B. subtilis 168 against sublancin. The required 

gene was named sunI. SunI is a 105 residue protein (12.1 kDa) that was predicted to be a 

membrane protein with an N-terminal transmembrane domain and an Nout-Cin topology with the 

majority of the protein localized in the cytoplasm. Due to low sequence similarity to other 

immunity proteins and its unique topology, SunI was classified in a new class of bacteriocin-

producer immunity proteins.89  

1.5 OUTLOOK 

The glycocin family of ribosomally synthesized peptide natural products has only recently 

been established. Their hypothezised novel mechanisms of actions has the potential to offer 

novel therapeutics and their biosynthetic enzymes have the potential to become novel tools for 

chemical biology research. Sublancin has bactericidal activity against Bacillus strains and 

methicillin-resistant Staphylococcus aureus strains.99,100 Research to understand one particular 

member of this family, sublancin, spans over 17 years of work but the mechanism by which 

glycocins exert their activity is still not fully understood. In order to provide additional insight 

into the mode of action of sublancin, this thesis describes the nuclear magnetic resonance (NMR) 

solution structure determination of sublancin (Chapter 2), efforts in elucidating the mechanism of 
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action of sublancin by studying the Phosphotransferase system  (Chapter 3) and through 

sublancin structural analogs (Chapter 4), localization studies of sublancin by super resolution 

microscopy (Chapter 5), and mechanistic investigations of the glycosyltransferase SunS 

responsible for installing a glucose moiety at Cys22 of sublancin (Chapter 6). 
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CHAPTER 2. HIGH RESOLUTION NMR STRUCTURE OF THE S-LINKED 

GLYCOPEPTIDE SUBLANCINa, b 

2.1 INTRODUCTION 

 
 Glycocins, as discussed in chapter 1, belong to the family of ribosomally synthesized and 

post-translationally modified peptide (RiPPs) natural products.1 One such glycocin is sublancin 

168, a 37 amino acid peptide produced by Bacillus subtilis 168 (Figure 2.1).2,3 To understand 

glycocin peptides in more depth and obtain insight into their potential mode of action, it is 

essential to elucidate their three-dimensional structures at high resolution. Glycocin F (GccF), a 

43 amino acid peptide produced by Lactobacillus plantarum KW30, was the second peptide to 

be classified as a member of the glycocin family (Figure 2.1).4 Pascal and coworkers reported the 

nuclear magnetic resonance (NMR) structure of GccF, which contains both S- and O-linked N-

acetyl glucosamine (Figure 2.1).5 The primary sequences of sublancin 168 and glycocin F 

display similarities as well as some key differences. Both peptides contain two disulfides and a 

loop region, but the loop in sublancin is longer than that in glycocin F. Furthermore, the C-

terminus of sublancin is shorter by 13 residues, it contains one glycosylation compared to two in 

GccF, and the S-linked sugar is located in the loop region rather than at the C-terminal residue. 

Furthermore, the primary sequences of the two peptides are quite different (Figure 2.1). Because 

of the unknown role(s) of the glycosylations in glycocins, we determined the three-dimensional 

structure of sublancin 168 to compare it to the structure of GccF.  

____________________________________________________ 

a Reproduced in part with permission from: “NMR structure of the S-linked glycopeptide sublancin 168.” ACS 
Chem. Biol. 2014, 9, 796-801. Copyright 2014 American Chemical Society. 
bAll NMR experiments and data analysis were performed with the help of Dr. Lingyang Zhu, NMR Laboratory, 
School of Chemical Sciences, University of Illinois at Urbana−Champaign.   
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Figure 2.1 Structure of sublancin and glycocin F. 

a) Sublancin 168 b) Glycocin F. Helical regions are depicted in blue and loop regions in magenta. 

 

2.2 RESULTS AND DISCUSSION 

2.2.1 Structure determination 

 The 1H-15N HSQC spectrum of sublancin produced 36 amide backbone signals and 10 

side chain nitrogen resonances (Figure 2.2). All resonances were assigned (Table 2.3) and the 

structure of sublancin 168 was solved with 634 structural constraints derived from 3D 1H-13C-

15N HNCA, 3D 1H-13C-15N CBCA(CO)NH, 2D 1H-15N HSQC, 2D 1H-13C HSQC (Figure 2.3), 

3D 15N HSQC-NOESY, 3D 15N HSQC-TOCSY, 2D 1H-1H TOCSY (Figure 2.4), 2D 1H-1H 

NOESY (Figure 2.5), 3D 15N HNHA, and DQCOSY experiments.  
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An ensemble of 15 sublancin structures with the lowest NMR constraint violations and 

lowest XPLOR energies6,7 were used for detailed analysis, with the structural statistics given in 

Table 2.1. All experimental NMR constraints were satisfied in the structures, with all Nuclear 

Overhauser Effect (NOE) violations below 0.5 Å, J-coupling violations below 1 Hz, and dihedral 

angle constraints below the 5o violation limit. 

 

Figure 2.2 1H-15N HSQC spectrum of sublancin.  

The cross peaks correspond to the backbone amide region of 1H-15N correlations in the HSQC spectrum recorded at 

25 °C. Specific amino acid assignments are indicated. Side chain nitrogen resonances are located within the boxed 

region.  
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Figure 2.3 1H-13C HSQC spectrum of sublancin. 
The cross peaks correspond to the aromatic and aliphatic carbon region of 1H-13C correlations in the HSQC 

spectrum recorded at 25 °C.  
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Figure 2.4 1H-1H TOCSY spectrum of sublancin. 
Total correlation spectroscopy spectrum recorded at 80 ms and 25 °C.  
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Figure 2.5 1H-1H NOESY spectrum of sublancin. 
Nuclear overhauser effect spectroscopy spectrum recorded at 250 ms and 25 °C.  
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Table 2.1 Structural statistics for sublancin 168. 

 
 

Procheck analysis of an ensemble of 15 conformers shows Cys22 in a generously allowed 

region of the Ramachandran plot (Figure 2.6). This finding is not uncommon for Cys. Previous 

studies have shown that Ser followed by Cys are the residues with the highest propensity for 

location in generously allowed and disallowed regions.8 Two additional residues, Leu2 and Ala5, 

are also found in the generously allowed regions (Figure 2.6). The average pairwise root-mean-

square deviation (rmsd) for backbone heavy atoms (C′, Cα, N) of all residues (1–37) is 0.79 Å, 

with smaller values in well-structured regions (Table 2.1). 

 
Total restraints used 634 

Total NOE restraints 531  

     Intraresidue  184 

     Sequential (|i – j| = 1) 185 

     Medium (1 < |i – j| � 4) 100 

     Long range (|i – j| > 4) 62 

Dihedral  

     ϕ Angles 23 

     Χ1Angles 16 

Disulfide Bridges (Cys7-Cys36, Cys14-Cys29) 2 

Hydrogen bonds? 62 

r.m.s.d. from experimental distance restraints  

     Bonds (Å) 0.006� 0.000 

     Bond angles (degrees) 0.682� 0.029 

     Improper torsions (degrees) 0.498� 0.025 

Average pairwise r.m.s.d (Å)  

     Backbone atoms in helical regions (6-16) 0.38 

     Backbone atoms in helical regions (26-35) 0.28 

     All backbone atoms (residues 1-37) 0.65 

     All heavy atoms in helical regions (6-16) 0.79 

     All heavy atoms in helical regions (26-35) 1.17 

     All heavy atoms (residues 1-37) 1.45 

Procheck analysis  

     Residues in most favorable regions (%) 85.7 

     Residues in additional allowed regions (%) 0.0 

     Residues in generously allowed regions (%) 14.3 

     Residues in disallowed regions (%) 0.0 

aHelical regions include residues 6-16 and 26-35. 
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The restraints that have the greatest weight in a structure calculation are those of 

medium- and long-range NOEs.9 The three-dimensional structure of sublancin was obtained 

from over 160 medium- and long-range restraints, resulting in well-defined α helices as well as 

loop regions. Overall, an average of more than 17 NMR constraints per residue was used for the 

structural calculation. 

 

Figure 2.6 Ramachandran plot.  

The quality of the NMR structure composed of 15 conformers was evaluated using PROCHECK. 
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2.2.2 Description of the structure  

 The ribbon diagram of a representative structure of sublancin is shown in Figure 2.7a. As 

predicted by analysis of the primary sequence and on the basis of backbone dihedral angles and 

characteristic NOEs, the solution structure shows two well-defined alpha helices encompassing 

residues 6-16 and 26-35. Superposition of the backbone Cα atoms of the 15 lowest energy 

conformers is shown in Figure 2.7b illustrating the highly ordered structure. Helices A and B are 

not antiparallel but rather offset from one another at an approximately 25 degree angle. The two 

helices are connected by an extended loop region. This interhelical loop (residues 17-25) is not 

flexible, but has a well-defined conformation, with the loop folded on top of both helices (Figure 

2.7). In addition, the N-terminal pentapeptide of sublancin is also well defined. The ordered 

conformation of the interhelix and N-terminal loops is evidenced by 24% of all long range NOEs 

coming from these regions. The N-terminal amino group is partially solvent accessible, it is 

inserted between the two helices (Figure 2.7a), and the N-terminal amine is stabilized by cation-π 

interactions with the aromatic side chain of Phe35 (Figure 2.8).10,11 

The superposition of the structures shows that the sugar moiety is the least well-defined section 

of the structure (Figure 2.9), also indicated by the lack of NOE restraints between the glucose 

unit and the loop region. We did observe an NOE restraint between one of the β protons of 

Cys22 to the H1 proton of the glucose moiety, that supports the β-linkage of the glucose to the 

sulfur atom of Cys22 reported previously.2 No obvious hydrophobic interactions were observed 

between the hydrophobic face of the glucose and amino acids of the peptide. The structure of the 

C-terminal portion of sublancin is also well-defined as indicated by the observed medium and 

long range NOE restraints. In addition, the surface model representation of the structure (Figure 

2.10) shows how the sulfur atoms of Cys7, Cys29, and Cys36, involved in disulfide bridges, are 
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partially solvent exposed. The very compact structure of sublancin (Figure 2.7b, c) provides a 

possible explanation for the extraordinary high chemical stability of sublancin reported 

previously.3  

 
Figure 2.7 Three-dimensional solution structure of sublancin 168.  

a) Ribbon diagram of the lowest energy conformer with helices labeled and colored in cyan, the loop regions, with 

N- and C- termini labeled, are colored pink, and the disulfide bridges in yellow. b) Ensemble of the 15 lowest energy 

conformers depicting all backbone atoms. c) Ball and stick representation of the lowest energy conformer with the 

loop regions in pink coming together to seal off one face of the helices. Exposed sulfur atoms are labeled. 
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Figure 2.8 Cation-π interaction between Gly1 and Phe35. 
The protonated N-terminal amine group of Gly1 displays cation-π interactions with the side 
chain of Phe35 at a distance of 4.7 Å. 
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Figure 2.9 Three-dimensional solution structure of sublancin 168.  

Ribbon diagram of the final ensemble of 15 conformers. Helices colored in cyan, the loop regions, and N- and C- 

termini are colored pink, the sugar is colored in orange, and cysteine residues in beige. 
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Figure 2.10 Sublancin surface model representation.  

The sulfur atoms of Cys7, Cys29, and Cys36, involved in disulfide bridges, are partially solvent exposed. Exposed 

sulfur atoms are shown in yellow. 

 
 

2.2.3 Hydrogen bond interactions  

 The ensemble of the 15 lowest energy conformers calculated without hydrogen bond 

restraints was analyzed using Chimera software to predict tentative hydrogen bond interactions 

between residues in the interhelical loop and the helices (Figure 2.11). Hydrogen bond 

interactions were investigated with a series of deuterium exchange 1H-15N HSQC experiments 

with a 15N-labeled sublancin sample. Within the first few minutes, we observed protection from 

exchange of 27 backbone amide protons as well as the side chain protons of Asn31 (Table 2.2). 
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Figure 2.11 Calculated sublancin backbone ribbon diagram without hydrogen bond restraints. 

Sublancin backbone ribbon diagram of the 15 lowest energy conformers calculated without hydrogen bond 

restraints. The figure also displays predicted hydrogen bonds (cyan) obtained using the Chimera software package. 
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 Table 2.2 Hydrogen bond identification by deuterium exchange. 
Time # Signals HN signals observed 
7 min 27 G3, Q6, C7, A8, A9, L10, W11, L12, Q13, C14, A15, S16, G17, 

G18, I20, A26, V27, A28, C29, Q30, N31, Y32, R33, Q34, F35, 
C36, R37 

14 min 20 C7, A8, A9, L10, W11, L12, Q13, C14, A15, S16, A28, C29, Q30, 
N31, Y32, R33, Q34, F35, C36, R37 

30 min 15 A9, L10, W11, L12, Q13, C14, A15, C29, Q30, N31, Y32, R33, 
Q34, F35, C36 

60 min 12 A9, L10, W11, L12, Q13, C14, A15, Y32, R33, Q34, F35, C36 
45 h 8 L10, W11, L12, Q13, C14, Y32, F35, C36 
 

 

As expected, most of the hydrogen bond donors belonged to residues involved in helix 

formation, but several hydrogen bond interactions were located in the loop region, including the 

amide hydrogens of Gly17, Gly18, and Ile20 (Figure 2.12a). On the basis of hydrogen bond 

distance restrictions, the amide protons from Gly17 and Gly18 interact with the carbonyl oxygen 

of the side chain of Gln13. In addition, the amide proton of Ile20 hydrogen bonds with the side 

chain oxygen atom from Thr19. The well-defined turn is reinforced by additional hydrogen 

bonds between the amide N–H of Ser16, the last residue in helix A, and the side chain carbonyl 

of Gln13 (Figure 2.12a).  The other end of the loop is held in place by hydrogen bonds involving 

the amide protons of Ala26, Val27, and Ala28, located in helix B, which interact with the 

carbonyl oxygen atoms of Gly24 and Gly25 (Figure 2.12b). These hydrogen bond interactions 

located at the beginning and end of the loop offer a plausible explanation as to why the loop is 

folded on top of the two helices, although the flexibility of the loop seen in Figure 2.7b is also 

reflected in exchange of most of the protons involved in hydrogen bond interactions of the loop 

residues by 14 min (Table 2.2). After 45 h, 8 amide protons were still protected from 

exchange (Table 2.2). Of these, 5 protons are located in helix A (Leu10, Trp11, Leu12, Gln13, 

Cys14) and 3 in helix B (Tyr32, Phe35, and Cys36). 
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Figure 2.12 Hydrogen bond interactions in the interhelical loop region.  

Ribbon diagram showing the hydrogen bonds between residues in the loop and the helices. Hydrogen bond 

interactions are depicted in red. 

 

2.2.4 Hydrophobic interactions  

 The compact and well-defined structure of sublancin is also enforced in part by 

hydrophobic interactions. As shown in Figure 2.13, a hydrophobic core consisting of Leu2, 

Leu10, Trp11, Ala28, Tyr32, and Phe35 helps maintain the structure, including a hydrophobic 

interaction between Ile20 in the loop and Leu10 in helix A. Use of the program IsoCleft Finder12 

identified Gly1, Gln6, Leu10, Ile20, Gly21, Gly23, Val27, Ala28, Asn31, and Phe35 as residues 

involved in creating a small hydrophobic cleft (Figure 2.14) that may be important for target 

binding. 
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Figure 2.13 Hydrophobic interactions.  

Ribbon diagram of sublancin depicting the hydrophobic residues in (a) sticks or (b) spheres. 

 
 

 
Figure 2.14 Sublancin surface model representation.  

A small hydrophobic cleft is formed by Gly1, Gln6, Leu10, Ile20, Gly21, Gly23, Val27, Ala28, Asn31 and Phe35 

might be a site for interaction with a target. 
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2.2.5 Glycocin structural comparison  

 The three-dimensional structures of GccF and sublancin were superimposed to visualize 

structural similarities and differences of these two glycocins (Figure 2.15). The orientation of the 

helices matches very closely, with both structures displaying the 25-degree offset, even though 

the primary sequences of the amino acids involved in helix formation are vastly different. As 

expected based on the primary sequences, the helices in sublancin are longer. The location and 

orientation of the sugar moiety in the interhelix loop is quite different in GccF and sublancin 168 

and the N-and C-terminal segments are also oriented quite differently (Figure 2.15). The lack of 

defined contacts between the glucose and the peptide in the sublancin structure does not provide 

any evidence for a role of the sugar in folding of the peptide as is often seen for glycopeptides,13-

17 although an interaction with the biosynthetic thiol-disulfide oxidoreductases18 cannot be ruled 

out. Biochemical evidence shows that glycosylation takes place before folding (Chapter 6) The 

conformational flexibility of the sugar does provide a possibly explanation for the ease by which 

the S-linked glucose in sublancin could be substituted by several other hexoses during 

biosynthesis as described in previous work.2 The previous observation that the stereochemistry 

of the hexose in these analogs was not critical for antimicrobial activity of sublancin 168,2 

combined with the initial observation that the Cys22Ser analog was active (but see chapter 4), 

and that the glucose in the structure shown here is conformationally flexible suggests that the 

sugar in sublancin 168 may not be installed for target recognition. These findings are consistent 

with the previous suggestion that the sugar in sublancin might fulfill a role in self-protection in 

the producing strain.19 However, data presented in chapter 3 on the mode of action of sublancin 

indicate a link to glucose uptake that appears more than coincidental in light of the glucose 

conjugated to the molecule. 
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Figure 2.15 Superposition of sublancin 168 and glycocin F. 

Sublancin is depicted in cyan and glycocin F in magenta.  

 

2.3 SUMMARY 

In summary, the solution structure of sublancin 168, a member of a small group of 

glycosylated antimicrobial peptides known as glycocins and a 37-amino-acid peptide produced 

by Bacillus subtilis 168, was solved by NMR spectroscopy. Sublancin’s structure is highly 

compact with well-defined N- and C-terminal regions, two nearly antiparallel helices, and a 

conformationally highly structured interhelix loop that carries the glucose. The two helices span 

residues 6–16 and 26–35, and the loop region encompasses residues 17–25. The 9-amino-acid 

loop region contains a β-S-linked glucose moiety attached to Cys22. Hydrophobic interactions as 

well as hydrogen bonding are responsible for the well-structured loop region. The three-

dimensional structure provides an explanation for the previously reported extraordinary high 
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stability of sublancin 168. Further studies, described in chapter 3, have been performed to better 

understand the mode of action of the glycocin group of antimicrobial peptides. 

 

2.4 EXPERIMENTAL 

2.4.1 Materials, cultures, and conditions 

 All chemicals and HPLC grade solvents were purchased from Sigma-Aldrich.. Growth 

media were obtained from Difco Laboratories (Detroit MI),. CHCA (α-cyano-4-

hydroxycinnamic acid, MALDI matrix) was obtained from Fluka.  Matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was performed at the 

Mass Spectrometry Laboratory from the School of Chemical Sciences at UIUC using a Bruker 

Daltonics UltrafleXtreme MALDI TOFTOF and an Applied Biosystems Voyager-DE STR 

(Foster City CA) instruments. Salt-containing MS samples were purified via Millipore Zip-

TipC18 pipette tips (Billerica MA). 

2.4.2 Production of sublancin 

Sublancin was isolated from Bacillus subtilis 168 as previously described by Dr. Oman.2 

Briefly, a culture of B. subtilis 168 was grown in LB media under aerobic conditions at 37 °C for 

12-15 h. The overnight culture was used to inoculate (at 1%) 500 mL volumes of Medium A in 2 

L flasks. Medium A consisted of 900 mL of Medium A nutrient broth combined with 100 mL of 

10X Medium A salts. Medium A nutrient broth was prepared by dissolving 20 g sucrose, 11.7 g 

citric acid, 4 g Na2SO4, 4.2 g (NH4)2HPO4, and 5 g yeast extract in 900 mL of millipore water. 

The pH was adjusted to 6.8-6.9 using NaOH and the medium was autoclaved. Medium A salts 

(10X) were prepared by dissolving 7.62 g KCl, 4.18 g MgCl2-6 H2O, 0.543 g MnCl2-4 H2O, 0.49 

g FeCl3-6 H2O, and 0.208 g ZnCl2 in 1 L of millipore water followed by sterilization via 0.22 
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mm filtration. The Medium A cultures were grown under aerobic condition at 37 °C for 28-48 h 

with vigorous agitation. A color change to pinkish-brown was observed and the pH of cultures 

had lowered to 6-6.5, the Sublancin production was consistently observed when these events 

occurred. The cultures were grown an additional 24-48 h after the color change was observed.  

 Cultures were acidified to pH 2.5 with concentrated phosphoric acid (85% in water) and 

centrifuged to remove cells and insoluble material. Sublancin was isolated by ammonium sulfate 

precipitation. Briefly, a 500 mL volume of sublancin-containing culture supernatant was 

combined with 245 g (NH4)2SO4
 in a 1 L glass bottle to provide a 75% ammonium sulfate 

saturation at 4 °C. The precipitation mixture was stirred at 4 °C for 24 h and precipitated 

sublancin was isolated from the solution by centrifugation. The pelleted peptide was re-

solubilized in 50/50 ACN/water with 0.1% TFA and was analyzed by MALDI-TOF MS. A 1 mL 

aliquot of sample was combined with 1 mL of matrix consisting of saturated a-cyano-4-hydroxy-

cinnamic acid matrix in 50% ACN/50% water with 0.1% TFA, and the total volume was spotted 

onto a MALDI target and dried under ambient conditions prior to analysis. The sublancin 

containing product were combined, lyophilized to dryness, and stored under N2 at −80 °C until 

purification by preparative HPLC.   

 Preparative HPLC was performed using a Waters Delta 600 instrument equipped with a 

Phenomenex Jupiter Proteo C12 column (10 mm, 90 Å, 250 mm x 15 mm) equilibrated in 2% B 

(solvent A =  0.1% TFA in water, solvent B = 0.0866% TFA in 80% ACN/20% water). Dry 

sublancin material was resuspended in 2% B and was applied to the column. Sublancin was 

eluted by maintaining the mobile phase at 2% B for 1 min, followed by an increase to 100% B 

over 45 min with a flow rate of 10.0 mL/min. Under these conditions, sublancin eluted at 21.6 

min. All fractions were analyzed by MALDI-TOF MS as described above. Purified sublancin 
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was lyophilized to dryness and stored under N2 at −80 °C until further use. Typical yields were 8 

mg sublancin per liter of processed Medium A culture. 

2.4.3 Production of isotopically labeled sublancin 

Cells containing 13C-labeled sublancin were obtained by growing B. subtilis 168 on M9 

minimal medium containing uniformly 13C-labeled glucose. A culture of B. subtilis 168 was 

grown in LB medium for 15 h with aeration. This culture was used to inoculate a 500 mL 

volume of minimal media in a 2 L flask. The minimal media contained the following 

components per 500 mL total volume: 25 mL of 20% 13C-glucose, 100 mL of 5X M9 salts, 5 mL 

of 4 mg mL-1 leucine, 500 µL of 20 mg mL-1 CaCl2, 500 µL of 120 mg mL-1 MgSO4, 100 µL of 

5 mg mL-1 D-biotin, 100 µL of 5 mg mL-1 thiamine-HCl, 500 µL of 1000X heavy metal stock 

solution, and 368.3 mL of millipore water to bring the total volume to 500 mL. The 5X M9 salts 

solution consisted of 64 g Na2HPO4 7H2O, 15 g KH2PO4, 2.5 g NaCl, 5 g NH4Cl, and 1 L 

millipore water. The 1000X heavy metal stock solution was prepared by combining the all 

components in 1 M HCl, stirring overnight at 25° C, and sterilizing by filtration to remove 

insoluble material (Table 2.3). 

Cells containing 15N-labeled sublancin sample were obtained by growing B. subtilis 168 

on M9 minimal medium containing glucose. A culture of B. subtilis 168 was grown in LB 

medium for 15 h with aeration. This culture was used to inoculate a 500 mL volume of minimal 

media in a 2 L flask. The minimal media contained the following components per 500 mL total 

volume: 25 mL of 20% glucose, 100 mL of 5X M9 salts, 5 mL of 4 mg mL-1 leucine, 500 µL of 

20 mg mL-1 CaCl2, 500 µL of 120 mg mL-1 MgSO4, 100 µL of 5 mg mL-1 D-biotin, 100 µL of 5 

mg mL-1 thiamine-HCl, 500 µL of 1000X heavy metal stock solution, and 368.3 mL of millipore 

water to bring the total volume to 500 mL. The 5X M9 salts solution consisted of 64 g Na2HPO4 
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7H2O, 15 g KH2PO4, 2.5 g NaCl, 5 g 15NH4Cl, and 1 L millipore water. The 1000X heavy metal 

stock solution was prepared (Table 2.3). 

Cells containing 13C/15N-labeled sublancin sample were obtained by growing B. subtilis 

168 on M9 minimal medium containing uniformly 13C-labeled glucose  25and 15NH4Cl. The 

minimal media contained the following components per 500 mL total volume: 25 mL of 20% 

13C-glucose, 100 mL of 5X M9 salts, 5 mL of 4 mg mL-1 leucine, 500 µL of 20 mg mL-1 CaCl2, 

500 µL of 120 mg mL-1 MgSO4, 100 µL of 5 mg mL-1 D-biotin, 100 µL of 5 mg mL-1 thiamine-

HCl, 500 µL of 1000X heavy metal stock solution, and 368.3 mL of millipore water to bring the 

total volume to 500 mL. The 5X M9 salts solution consisted of 64 g Na2HPO4 7H2O, 15 g 

KH2PO4, 2.5 g NaCl, 5 g 15NH4Cl, and 1 L millipore water. The 1000X heavy metal stock 

solution was prepared (Table 2.3). 

Table 2.3 1000X heavy metal stock solution recipe. 
Component Amount 

MoNa2SO4•2H2O 500 mg 

CoCl2 250 mg 

CuSO4•5H2O 175 mg 

MnSO4•H2O 1 g 

MgSO4•7H2O 8.75 g 

ZnSO4•7H2O 1.25 g 

FeCl2•4H2O 1.25 g 

CaCl2•2H2O 2.5 g 

H3BO3 1 g 

1 M HCl to 1 L 
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For the production of the cells containing labeled sublancin a culture of B. subtilis 168 

was grown in LB medium for 15 h with aeration. This culture was used to inoculate a 500 mL 

volume of minimal media described above in a 2 L flask and was grown at 37° C with aeration. 

The production of labeled sublancin was monitored by periodic sampling of the growing culture 

and analysis via MALDI-TOF mass spectrometry. Briefly, a 1 mL aliquot of B. subtilis 168 

minimal media culture was acidified to pH 2 with concentrated phosphoric acid (85% in water). 

The sample was centrifuged to remove cells and the supernatant was ZipTipC18 desalted, and 

analyzed by mass spectrometry. Typically, isolation and purification process was started 24 h 

after the first detection of labeled product. Labeled sublancin was generally observed within 48-

72 h post-inoculation. Isotopically labeled sublancin was purified by preparative HPLC using a 

Waters Delta 600 instrument equipped with a Phenomenex Jupiter Proteo C12 column (10 µm, 

90 Å, 250 mm x 15 mm) equilibrated in 2% B (solvent A =  0.1% TFA in water, solvent B = 

0.0866% TFA in 80% ACN/20% water). Dry sublancin material was resuspended in 2% B and 

was applied to the column. Sublancin was eluted by maintaining the mobile phase at 2% B for 1 

min, followed by an increase to 100% B over 45 min with a flow rate of 10.0 mL/min. Under 

these conditions, sublancin eluted at 21.7 min. All fractions were analyzed by MALDI-TOF MS 

as described above. Purified sublancin was lyophilized to dryness and stored under N2 at −80 °C 

until further use. A natural abundance sublancin sample was prepared during the preparation of 

the labeled peptides as a control. 

2.4.4 Sample preparation 

One wild type and three isotopically labeled sublancin samples were prepared for NMR 

analysis. NMR samples contained 2.5 mM peptide in 90%H2O/10%D2O or 100% D2O. For a 

sample in 100% D2O, lyophilized sublancin was dissolved in 100% D2O (Cambridge Isotope 
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Laboratories) to exchange amide protons and simplify the NMR spectrum in the down field 

region. The sample was lyophilized, the procedure was repeated twice, and the final sample was 

dissolved in D2O to a final concentration of approximately 2.5 mM. For a sample in 90% 

H2O/10% D2O, lyophilized sublancin was dissolved in 90% H2O/10% D2O to a final 

concentration of approximately 2.5 mM.  

 

 

 

Figure 2.16 Mass spectrum of natural abundance sublancin. 

MALDI-TOF mass spectrum of purified natural abundance sublancin that was produced in parallel with the isotopic 

labeling preparations except using natural abundance culture growth medium. Expected [M+H]: 3876.74, observed: 

3880.76 
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Figure 2.17 Mass spectrum of 15N-labeled sublancin.  

MALDI-TOF mass spectrum of purified, uniformly 15N-labeled sublancin. Expected [M+H]: 3926.31, observed: 

3926.89. 

 

 

Figure 2.18 Mass spectrum of 13C-labeled sublancin.  

MALDI-TOF mass spectrum of purified uniformly 13C-labeled sublancin. Expected [M+H]: 4040.38, observed: 

4038.96. 

 
 



 
 

61 

 
Figure 2.19 Mass spectrum of 13C/15N-labeled sublancin.  

MALDI-TOF mass spectrum of purified uniformly 13C/15N-labeled sublancin. Expected [M+H]: 4090.38, observed: 

4086.41. 

 

2.4.5 NMR spectroscopy 

All NMR experiments were performed at 25 oC on Varian INOVA 500 MHz, 600 MHz 

and 750 MHz spectrometers equipped with a 5 mm triple resonance (1H-13C-15N) triaxial 

gradient probe and pulse-shaping capabilities. The VNMRJ 2.1B software with the BioPack suite 

of pulse sequences was used. The spectra were processed with NMRPipe software,20 and 

analyzed by Sparky21 and VNMRJ (Agilent Technology). 
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Table 2.4 Sublancin chemical shift assignments. 
 

Residue CA CB HN N HA HB HG HD HE Other 
Gly 1 45.2   108.2 3.93 

3.86 
     

Leu 2 55.0 43.9 8.34 121.1 4.41 1.63 1.514 0.714   
Gly 3 44.5  8.34 108.3 4.20 

4.02 
     

Lys 4 54.9 41.2 8.49 119.4 3.98 1.89 1.585, 
1.474 

1.722, 
1.29 

3.03 HZ  
7.38 

Ala 5 55.3 18.1 8.74 121.7 4.26 1.46     
Gln 6 59.3 28.5 8.14 119.6 4.21 2.29, 

2.01 
2.555, 
2.456 

   

Cys 7 60.8 40.7 8.62 119.3 4.63 3.17     
Ala 8 55.5 17.7 8.49 124.0 4.40 1.60     
Ala 9 55.3 18.0 7.72 120.9 4.27 1.58     
Leu 10 57.7 43.6 8.18 119.9 4.24 2.39, 

2.02  
1.85 1.126, 

1.041 
  

Trp 11 60.5 28.1 8.78 120.2 3.70 3.69, 
3.28  

 6.902 9.97, 
6.27 

HZ  
7.35,  
NE  
128.5 

Leu 12 58.0 41.8 7.73 117.5 3.80 1.86, 
1.68 

1.849 0.959   

Gln 13 58.6 29.0 7.73 118.5 3.94 2.15, 
1.99 

2.517, 
2.303 

 7.59, 
6.94 

NE  
112.5 

Cys 14 57.7 38.7 8.21 118.3 4.33 2.56     
Ala 15 54.0 17.7 8.17 121.6 3.76 0.71     
Ser 16 59.4 63.7 7.60 111.8 4.33 3.91     
Gly 17 45.6  7.84 109.7 3.99      
Gly 18 45.8  8.15 108.2 4.05 

3.94 
     

Thr 19 62.3 69.8 8.06 113.3 4.35 4.26 1.221    
Ile 20 61.9 38.3 8.06 122.3 4.14 1.88 1.512, 

1.206 
0.919   

Gly 21 45.3  8.42 112.4 4.06 
3.89 

     

Cys 22 61.0 33.8 8.28 120.3 4.67 3.27, 
3.03 

    

Gly 23 45.9  8.65  112.7 4.07, 
3.95 

     

Gly 24 45.4  8.37 108.8 3.98      
Gly 25 46.1  8.39 109.4 3.90      
Ala 26 54.8 18.8 8.06 123.1 4.16 1.47     
Val 27 65.8 31.9 8.10 119.9 3.77 2.05 1.07, 

0.965 
   

Ala 28 55.7 18.3 8.03 122.9 4.24 1.51     
Cys 29 56.9 38.8 8.27 114.3 4.45 3.21, 

3.08 
    

Gln 30 59.2 28.2 8.11 121.5 4.08 2.20 2.417  7.41, 
6.85 

NE  
111.5 

Asn 31 59.4 38.5 8.72 119.1 4.53 3.00, 
2.87 

 7.417, 
7.088 

 ND  
111.4 

Tyr 32 62.9 38.6 8.86 122.1 3.89 3.36, 
3.20 

 7.27 6.88  

Arg 33 59.2 30.1 8.06 117.0 3.90 2.03, 
1.95 

1.707 3.301, 
3.229 
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Table 2.4 (cont.) 
Gln 34 58.2 29.3 7.70 115.5 3.94 1.68, 

1.29 
1.822  7.28, 

6.76 
NE  
110.6 

Phe 35 58.2 41.4 7.99 113.2 4.98 3.33, 
2.87 

    

Cys 36 55.8 43.1 8.09 117.3 4.85 2.62, 
2.16 

    

Arg 37 57.3  7.52 125.3 4.18 1.89, 
1.76 

1.60, 
1.53 

   

 H1, C1 H2, C2 H3, C3 H4, C4 H5, C5 H6, C6     
GLC 4.60, 

88.3 
3.31, 
75.2 

3.52, 
80.2 

3.43, 72.6 3.53, 
82.8 

3.93, 
3.72, 
64.0 

    

 

2.4.6 Peptide chemical shift assignments 

 Backbone resonance assignments (15N, 13Ca, and 13Cb) were obtained from 3D 1H-13C-

15N HNCA spectra recorded with a spectral width of 14 ppm (2048 points), 36 ppm (32 points) 

and 36 ppm (32 points) in 1H, 13C, and 15N dimensions, respectively, 3D 1H-13C-15N 

CBCA(CO)NH spectra were recorded with a spectral width of 14 ppm (2048 points), 96 ppm (32 

points), and 36 ppm (32 points) for 1H, 13C and 15N dimensions, respectively and 1H-15N HSQC 

spectra were recorded with a spectral width of 14 ppm (2048 points) and 36 ppm (256 points) in 

the 1H and 15N dimensions The proton signals from the amino acid side chains were assigned by 

analysis of 3D 15N HSQC-NOESY (150 ms NOESY mixing time), and 3D 15N HSQC-TOCSY 

(80 ms TOCSY mixing time) spectra and two-dimensional 1H-1H TOCSY (80 ms mixing time) 

and 1H-1H NOESY (200 ms mixing time). 

The dihedral angle restrains were obtained based on 3JHN-Hα coupling constants measured in an 

HNHA experiment using 15N-labeled sublancin and were obtained from the Torsion Angle 

Likelihood Obtained from Shift and Sequence similarity (TALOS)20,22 program based on 

backbone chemical shifts.  
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2.4.7 Hydrogen bond identification by deuterium exchange 

 A sample lyophilized from 90%H2O/10%D2O was dissolved in 100% D2O. A series of 

1H-15N HSQC spectra with a 7 min duration each were collected. Hydrogen bonding donors were 

identified within the first 7 min with 27 backbone and 1 side chain NH observed, with 3 three 

signals belonging to residues located in the loop region (Gly17, Gly18 and Ile20). After the first 

30 min, 15 signals were still present, by 60 min 12 signals were present, and by 45 h 8 signals 

could still be observed (Table 2.2).  

2.4.8 Sugar chemical shift assignments 

 Sugar assignments were obtained by analysis of TOCSY (80 ms mixing time), 1H-13C 

HSQC, and DQCOSY spectra for identification of neighboring protons. 

2.4.9 Structure calculations (XPLOR, Dih, Hbond) 

 The three-dimensional structure of the peptide was calculated based on both distance and 

angle restraints by using the simulated annealing protocol in the NIH version of X-PLOR6,7 3.1 

and the quality of the NMR structures was evaluated using the program PROCHECK.23-25 

Distance restraints were derived from NOE peak heights in the 15N HSQC NOESY with a 150 

ms mixing time and from two-dimensional NOESY spectra with a 200 ms mixing time collected 

on unlabeled material. The distance restraints were grouped by classifying the NOE cross-peak 

heights into ranges of 2.5, 3.5, 5.0, and 6.0 Å (strong, medium, weak, and very weak, 

respectively). The peptide backbone restraints extracted from JNHα and TALOS were used as 

dihedral phi and psi angle restraints. A list of the number of NMR distances and angle restraints 

used for structural calculations is given in Table 2.1. In total 150 structures were calculated. An 

ensemble of 15 structures with the lowest total energy was chosen for structural analysis. 
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CHAPTER 3. THE PHOSPHOENOLPYRUVATE:SUGAR PHOSPHOTRANSFERASE 

SYSTEM IS INVOLVED IN SENSITIVITY TO SUBLANCINa, b 

3.1 INTRODUCTION 

Many bacteriocins are heavily post-translationally processed during their biosynthesis and 

these modifications are required for activity.1 As discussed briefly in chapter 1, nisin is the most 

studied bacteriocin and belongs to the lantibiotic family.2 The mode of action of nisin involves 

binding to lipid II, which prevents further cell wall synthesis, followed by formation of pores 

within the membrane. Leakage of essential metabolites from these cells results in death of the 

bacteria. Targeting of lipid II by bacteriocins is a common mechanism of action.3-5 Other 

mechanisms include the targeting of phosphotransferase systems,6,7 acting as Trojan horses,8,9 

parasitizing iron-uptake pathways,10 and causing the collapse of membrane potential together 

with leakage of ions and/or a decrease in intracellular ATP concentrations.11 There is much 

interest in bacteriocins for use in control of bacterial infections and therefore in their mechanisms 

of action. 

Sublancin is capable of killing several species of Gram-positive bacteria, such as 

Staphylococcus aureus, including methicillin resistant S. aureus (MRSA).12 The genes necessary 

for the synthesis of sublancin are also included in the SPβ prophage region and are expressed 

from two promoters. The biosynthetic operon is made up of five individual genes, which are 

responsible for producing active sublancin. The sunT gene is responsible for the export of 

sublancin and cleavage of its leader sequence. Two thiol-disulfide oxidoreductases, encoded by 

________________________________________________________________________________________________________________________________________________ 

a Reproduced in part with permission from: “The Phosphoenolpyruvate:Sugar Phosphotransferase system is 
involved in sensitivity to the glycosylated bacteriocin sublancin.” Antimicrob. Agents Chemother. 2015, 
doi:10.1128/AAC.01519-15. Copyright 2015 Antimicrobial Agents and Chemotherapy.  
bAll B. subtilis ∆SPβ mutagenesis and knockout studies were performed by the van Dijl research group   
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bdbA (the only gene of the operon that is dispensable for active sublancin production) and bdbB, 

are responsible for creating the two disulfide bonds of sublancin. These disulfide bonds involve 

four of the five cysteine residues that are present in the sublancin peptide.13 The fifth cysteine 

residue undergoes glucosylation by the glucosyltransferase encoded by the sunS gene.14 The 

second promoter drives expression of a gene encoding the immunity protein SunI that is also 

required for the production of active sublancin by protecting the producing organism from 

sublancin.15  

Chapter 1 discussed how sublancin is one of five bacteriocins that have so far been 

described as being S-glycosylated. The mechanisms by which glycosylated bacteriocins kill 

sensitive cells are currently unknown. Previous work has identified several genes in B. subtilis 

and S. aureus that alter the sensitivity to sublancin. The mscL gene encodes the large 

mechanosensitive channel and its deletion confers sublancin resistance in both S. aureus and B. 

subtilis.16 Addition of increased amounts of NaCl also results in increased resistance to 

sublancin, presumably due to the MscL channel being forced closed. This observation has led to 

speculation as to whether sublancin is able to enter the cell through this channel. Interestingly, 

since the connection between sublancin and MscL was reported, streptomycin has also been 

reported to use the MscL channel to enter the cell.17 In B. subtilis the alternative sigma factor σW 

is known to play a role in the resistance to sublancin through its regulation of the yqeZ-yqfA-yqfB 

operon.18 The role these genes play in resistance to sublancin is unknown, but it is likely to be at 

the cell surface due to their membrane localization.19  

This chapter, presents studies showing that the phosphoenolpyruvate:sugar 

phosphotransferase system (PTS) of B. subtilis plays a major role in sensitivity to sublancin. In 

the case of other bacteriocins where the PTS was found to be involved, addition of the PTS-
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requiring sugars resulted in increased sensitivity to the respective bacteriocin. However, for 

sublancin, the addition of PTS-requiring sugars leads to increased resistance, suggesting that 

sublancin has a distinct mechanism of action.  

3.2 RESULTS AND DISCUSSION 

3.2.1 Sublancin displays sub micromolar MIC against Bacillus strains 

The antibacterial activity of sublancin against selected Bacillus strains was first 

determined by solid agar diffusion assays containing sublancin at a range of concentrations 

(0.097 mM – 50 mM). After confirmation that B. subtilis ATCC 6633 and B. halodurans C-125 

were sensitive, the minimum inhibitory concentrations (MICs) were determined by the broth 

dilution method.20,21 A series of dilutions of sublancin (0.097 µM – 50 µM) were made and 

incubated with a defined number of bacterial cells in LB medium. Plates were incubated for 18-

24 h at 37 °C, and growth was assessed by measuring the optical density of each well at 

O.D.600nm. The MICs were determined by fitting the data to a dose-response curve. The MICs of 

sublancin against B. halodurans C-125 and B. subtilis ATCC 6633, in liquid cultures, were 0.312 

µM and 0.625 µM, respectively (Figure 3.1).  

3.2.2 Bactericidal activity of sublancin 

 One element for consideration, when trying to understand how an antimicrobial 

compound functions, is whether it is bactericidal or bacteriostatic. Furthermore, some bacteria 

lyse after being killed, others lyse immediately, and yet others undergo non-lytic death.22,23 The 

ability of sublancin to kill or arrest the sensitive Bacillus strains was therefore evaluated. B. 

subtilis ATCC 6633 and B. halodurans C-125 cultures were grown to mid log phase, transferred  
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Figure 3.1 Determination of the specific activity of sublancin against Bacillus subtilis ATCC 6633 (left) and 

Bacillus halodurans C‐125. 

Determination of the specific activity of sublancin against Bacillus subtilis ATCC 6633 (left) and Bacillus 

halodurans C-125 (right) by the broth dilution method. Shown are the means of a single experiment conducted in 

triplicate as a representative of three independent experiments. For both graphs R2 > 0.99. Error bars indicate 

standard deviations. When error bars are not visible, the error was smaller than the size of the symbol. 

 

to a 48-well plate and exposed to sublancin (1x and 4x MIC). After the addition of sublancin, the 

O.D.600nm was monitored periodically. After a 6-hour incubation period, the B. halodurans C-125 

and B. subtilis ATCC 6633 cultures showed a decrease in optical density, suggesting sublancin 

has bactericidal activity (Figure 3.2). To verify whether sublancin’s activity was bactericidal, 

colony forming units (CFUs) were determined by plating, which confirmed the bactericidal 

activity observed by O.D. readings. The decrease in optical density was not nearly as large as the 

decrease in CFUs, which implies that sublancin kills without immediate lysis.  
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Figure 3.2 Growth inhibition of B. subtilis ATCC 6633 and B. halodurans C-125 by sublancin 168. 

Time-dependent changes in O.D.600nm of cultures of B. subtilis ATCC 6633 in the absence (circles) or presence of 

sublancin 168 at 1xMIC (squares) and 4xMIC (triangles). (b) Aliquots of the cultures in panel (a) were analyzed for 

colony forming units (CFUs). (c) Time-dependent changes in O.D.600nm of cultures of B. halodurans C-125. The 

same symbols are used as in panel (a). (d) Aliquots of the cultures in panel (c) were analyzed for CFUs.  The mean 

values of the data from one experiment conducted in triplicate are shown. The data are representative of three 

independent experiments. Error bars indicate standard deviations. When error bars are not visible, they were a 

smaller than the size of the symbol used. 
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3.2.3 Sublancin does not affect the integrity of the cell membrane  

 Some bacteriocins destabilize the membrane or form pores.4,24 Nisin is the prototypical 

pore-forming bacteriocin, which binds to lipid II within the membrane.2 To determine whether 

sublancin affects membrane integrity, we challenged cultures of B. subtilis ∆SPβ, B. subtilis 

ATCC 6633 and B. halodurans C-125 with several different concentrations of sublancin. We 

monitored the membrane integrity of B. subtilis ATCC 6633 and B. halodurans C-125 by flow 

cytometric analysis, using the cell impermeable propidium iodide (PI) dye, after a 30 min 

exposure to sublancin. Our nisin control showed an increase in fluorescence due to membrane 

permeabilization, but sublancin did not, even at concentrations as high as 32xMIC for B. subtilis 

ATCC 6633 and 64xMIC for B. halodurans C-125 (Figure 3.3). In addition, our collaborators in 

the van Dijl group monitored the membrane integrity of B. subtilis ∆SPβ with the LIVE/DEAD® 

BacLight™ bacterial cell viability assay at 30 and 90 min after addition of sublancin (Figure 

3.4). At both time points we found no change in membrane integrity. When the same strain was 

exposed to nisin as a positive control, a dramatic loss of membrane integrity was seen already 

after 30 min incubation. Collectively, these experiments show that sublancin does not affect 

membrane integrity and likely acts through an alternative mechanism. 
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Figure 3.3 Membrane integrity assays by measuring propidium iodide (PI) uptake. 

Addition of sublancin at the indicated concentrations (black bars) does not alter the membrane permeability of (a) B. 

halodurans C-125 and (b) B. subtilis ATCC 6633. Nisin was used as positive control (grey bars). * indicates a P < 

0.05 between nisin (0.1 µM – 20 µM) treated cells relative to no treatment. In all experiments in which the cells 

were exposed to sublancin, the increase in MFI relative to control was not statistically significant (P > 0.05). The 

means of the data from a single experiment conducted in triplicate are shown. The data are representative of those 

from three independent experiments. Error bars indicate standard deviations. 
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Figure 3.4 Sublancin does not affect the integrity of the bacterial membrane. 

(Top) Growth curve of the B. subtilis ∆SPβ strain in the presence of different concentrations of sublancin. Sublancin 

was added at O.D.600nm 0.5 (vertical grey line). Measurements were performed in the Synergy™ H4 Hybrid Multi-

Mode Microplate BioTeK plate Reader every 10 minutes, in triplicate, and the means of the growth curve was 

plotted. (Bottom) LIVE/DEAD® BacLight™ bacterial cell viability assay of the ∆SPβ strain 30 (left) and 90 (right) 

min after exposure to sublancin. Grey bars depict bacteria with an intact membrane and white bars depict bacteria 

with a compromised membrane, error bars depict standard deviation of the triplicate. A 100 nM sublancin, B 200 

nM sublancin, C 300 nM sublancin, D 400 nM sublancin, E 500 nM sublancin, F Nisin (10 nM) was used as a 

positive control that does affect the integrity of the membrane, and G negative control, no addition of an 

antimicrobial agent. Figure courtesy of Dr. Emma Denham. 
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3.2.4 Resistance frequency 

 The manifestation of antibiotic resistance to clinically used antibiotics suggests that 

resistance is likely to develop against any antibacterial compound. It is useful however to 

analyze the frequency at which resistance to novel antibacterial compounds arises.25 The 

spontaneous resistance frequency is defined as the number of resistant mutants per total number 

of viable cells that grow after an established period of time. The resistance frequency of 

sublancin was determined by plating aliquots of bacterial culture onto agar containing the 

antibacterial compound at 4xMIC. Aliquots were also plated onto agar plates with no antibiotic 

to determine the number of viable bacterial cells in the liquid culture. The resistance frequencies 

determined were relatively high, with resistance frequencies of 10-5 for B. halodurans C-125 and 

10-6 for B. subtilis ATCC 6633. To verify that colonies observed were indeed resistant to the 

antibiotic, they were sub-cultured in sublancin-free LB media and plated on LB agar containing 

the antibacterial compound at a concentration of 4xMIC. For both strains, the plated resistant 

strains grew a full lawn.  

 

3.2.5 Identification of B. subtilis chromosomal regions that affect sensitivity to sublancin  

 We aimed at finding genetic factors that affect sensitivity to sublancin. To do this, our 

collaborators in the van Dijl group first employed the set of deletion mutants described by 

Tanaka et al.26 These mutants were created in a strain in which the prophages of B. subtilis had 

been deleted, including SPβ. Therefore, all mutant strains lack the gene encoding the immunity 

protein for sublancin, sunI,27 making it an ideal collection of mutants for identifying interesting 

genomic regions with respect to sublancin sensitivity. During the screening, the van Dijl group 

used LB agar without NaCl, as it was previously shown that B. subtilis is more sensitive to 
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sublancin in low osmotic conditions.16 The strains were plated in duplicate on LB agar plates and 

spotted with 2 µL of an overnight culture of the sublancin-producing strain B. subtilis 168. Strain 

JJS-DIn010, in which rsiW and sigW are deleted, was found to have increased sensitivity (i.e. a 

larger zone of clearing around the producing colony) (Figure 3.5). This finding is in concordance 

with previously reported observations,18 suggesting that the assay was able to identify strains 

with altered sensitivity. Another strain was identified (JJS-DIn042), in which the genes ykvS, 

ykvT, ykvU, stoA, zosA, ykvY, ykvZ, glcT, ptsG, ptsH and ptsI were deleted. JJS-DIn042 was 

resistant to the effects of sublancin (Figure 3.5) under conditions where the ∆SPβ strain did not 

survive. Because of this interesting observation, the van Dijl group investigated this region 

further by constructing several different individual gene deletion mutants. This approach 

revealed that only the deletion of the pts operon (ptsGHI) resulted in resistance to sublancin 

(Figure 3.6 and Table 3.1). In contrast, a deletion of glcT, which plays a regulatory role in the pts 

operon,28 did not result in sublancin resistance (Fig. 3.6).  

 

 

 

 

 
 

Figure 3.5 B. subtilis strain screen for reduced sublancin sensitivity. 

The B. subtilis strains described by Tanaka et al 26 were screened for increased and reduced sensitivity to sublancin. 

The parental strain of the collection is labelled as ‘master strain’. In JJS-DIn042 the region from ykvS to ptsI is 

deleted and in JJS-DIn010 rsiW and sigW are deleted. Figure courtesy of Dr. Emma Denham. 
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Figure 3.6 B. subtilis deletion mutant growth curves. 

Growth curves of mutant strains with individual deletions of the genes that are responsible for the resistance in strain 

JJS-DIn042. Top panel - Blue line – B. subtilis ∆SPβ, green line - B. subtilis ∆SPβ-glcT. Bottom panel - black line - 

B. subtilis ∆SPβ-ptsG, red line - B. subtilis ∆SPβ-ptsH, orange line B. subtilis ∆SPβ-ptsI. Solid lines – no sublancin. 

Dotted lines – 200 nM sublancin added at 100 min as indicated by the vertical grey line. Deletion of any of the genes 

within the ptsGHI operon results in resistance to sublancin. Deletion of the gene encoding the transcriptional anti-

terminator glcT had no effect on the sensitivity of B. subtilis to sublancin. The means of the data from a single 

experiment conducted in triplicate are shown. The data are representative of those from three independent 

experiments. Figure courtesy of Dr. Emma Denham. 
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Table 3.1 Phenotype of single gene deletion strains of B. subtilis ∆SPβ upon exposure to sublancin. 
 

 

 

 

 

 

 

 

 

 

PtsG is the major glucose transporter of the phosphotransferase system,29 and PtsH and 

PtsI are general components of the sugar transport system that phosphorylates the incoming 

sugar (Figure 3.7).30 PtsH is more commonly known as HPr, and I will refer to it as such in this 

chapter; PtsI is also called EI. In B. subtilis, the PTS transfers a phosphate group from 

phosphorylated PtsI to HPr, which in turn transfers the phosphate to a variety of different PTS 

permeases. For utilization of glucose, HPr transfers the phosphate to the IIA domain of the sugar 

permease PtsG. The IIA domain then phosphorylates the IIB domain of PtsG, which in turn 

transfers the phosphate to the incoming sugar. Lastly, the phosphorylated sugar moves into 

glycolysis. It is intriguing that the PTS was identified in our screen for sublancin sensitivity, as 

the most common PTS substrate is glucose whereas sublancin is glycosylated. A functional 

homologue of HPr is present in B. subtilis, i. e. Crh. Our collaborators in the van Dijl group 

therefore tested a crh deletion mutant in the presence of sublancin, but no change in sensitivity 

Mutation Sublancin resistant or sensitive 

ykvS Sensitive 

ykvT Sensitive 

ykvU Sensitive 

stoA Sensitive 

zosA Inconclusive 

ykvY Sensitive 

ykvZ Sensitive 

glcT Sensitive 

ptsG Resistant 

ptsH Resistant 

ptsI Resistant 



 
 

 80 

was observed compared to the wild-type (data not shown), suggesting the sensitivity to sublancin 

is specifically dependent on HPr. 

 

Figure 3.7 Representation of the glucose phosphotransferase system in Bacilli. 

PtsG is the major glucose transporter of the phosphotransferase system,29 and PtsH and PtsI are general components 

of the sugar transport system that phosphorylates the incoming sugar.30 PtsH is more commonly known as HPr, and 

PtsI is also called EI. In B. subtilis, the PTS transfers a phosphate group from phosphorylated PtsI to HPr, which in 

turn transfers the phosphate to a variety of different PTS permeases. For utilization of glucose, HPr transfers the 

phosphate to the IIA domain of the sugar permease PtsG. The IIA domain then phosphorylates the IIB domain of 

PtsG, which in turn transfers the phosphate to the incoming sugar. Lastly, the phosphorylated sugar moves into 

glycolysis 

3.2.6 Comparative genomics 

 Bacteria often acquire stable resistance to antibiotics due to gene mutations. A 

comparative genomics analysis was therefore performed to identify the mutations that conferred 

resistance to B. halodurans C-125 after exposure to sublancin. The gDNA of sensitive B. 

halodurans C-125 cells and of four of the spontaneous resistant mutants obtained as described 

above was extracted and sequenced using a HiSeq2000 Illumina sequencer. The wild-type B. 

halodurans strain was mapped to the published B. halodurans C-125 genome sequence 
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(accession no. NC_002570.2) to generate a consensus sequence that was used for SNP detection 

in sublancin-resistant mutants of B. halodurans. Comparison of gDNA of the wild-type sensitive 

strain with the four sublancin resistant mutants revealed several mutations (Table 3.2). One strain 

contained three mutations in the intergenic region between the transcriptional anti-terminator 

(Locus tag: BH0845) and ptsG (Locus tag: BH0844), another strain contained a missense 

mutation in the gene for mannitol-1-phosphate 5-dehydrogenase (Locus tag: BH3851), and most 

interestingly, the three strains that did not have a mutation in the intergenic region mentioned 

above all had non-sense mutations in the gene for the glucose-specific transporter subunit IIC 

that is part of the multidomain protein PtsG (Figure 3.7 and Table 3.3). The missense mutation 

prevents production of PtsG, and the three mutations in the intergenic region between the 

antiterminator and ptsG are predicted to considerably stabilize the structure of the terminator 

(Figure 3.8), thus potentially also preventing ptsG transcription. Once more, these findings point 

to the PTS being important for sensitivity to sublancin. 

Table 3.2 SNPs in genes of sublancin-resistant B. halodurans C-125 mutants determined by Illumina 
sequencing. 

Nucleotide 
position 

Locus tag Genetic component Frequency SNP 
mutation 

919515 BH0844 PTS system glucose-specific 
transporter subunit IIC 

3/4 G " T 

920055 
920075 
920079 

Between 
BH0844 & 

BH0845 

Intergenic region between 
transcriptional antiterminator and PTS 
system glucose-specific enzyme II, 
ABC components 

1/4 G " A 
C " T 
A " G 

 
3977494 BH3851 Mannitol-1-phosphate 5-

dehydrogenase 
1/4 T " C 

 

SNPs in genes of sublancin-resistant B. halodurans C-125 mutants determined by Illumina sequencing. The 

mutation in BH0844 results in a stop codon instead of a Tyr codon at position 160. The predicted domain 

organization of PtsG of B. halodurans C-125 is: amino acids 1-424 domain IIC, 425-524 domain IIB, and 525-675 

domain IIA (see schematic drawing of the predicted domain organization in table 3.3). Hence, the stop codon would 

delete most of PtsG and the respective truncated product would likely not be expressed as a stable protein. The 

mutation in BH3851 results in a His to Arg mutation. As shown in Figure 3.8, the mutations in the intergenic region 

result in a change in the predicted terminator structure that may affect transcription of ptsG. 
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Table 3.3 Predicted topology of PtsG from B. halodurans C-125. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predicted topology of PtsG from B. halodurans C-125 (BH0844). The multidomain PtsG is 675 amino acids in 

length. PtsG IIC (region 1-424) is a transmembrane domain. PtsG IIB (region 425-524) and PtsG IIA (region 525-

675) are cytoplasmic domains. Prediction obtained from the CAMPS (Computational Analysis of the Membrane 

Protein Space) database (identifiers: Q9KEK8_BACHD, GI:15613407). 

 

Begin End Length Localization 
1 11 11 Inside 
12 32 21 Membrane 
33 43 11 Outside 
44 60 17 Membrane 
61 66 6 Inside 
67 83 17 Membrane 
84 88 5 Outside 
89 109 21 Membrane 
110 120 11 Inside 
121 149 29 Membrane 
150 168 19 Outside 
169 189 21 Membrane 
190 209 20 Inside 
210 232 23 Membrane 
233 276 44 Outside 
277 295 19 Membrane 
296 301 6 Inside 
302 319 18 Membrane 
320 324 5 Outside 
325 349 25 Membrane 
350 355 6 Inside 
356 373 18 Membrane 
374 378 5 Outside 
379 401 23 Membrane 
402 675 274 Inside 
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Figure 3.8 B. halodurans ptsG terminator. 

Predicted secondary structures of the terminator of (top) wild-type B. halodurans C-125 (accession no. 

NC_002570.2) and (bottom) the sublancin resistant mutant ptsG leader mRNA.  Inset shows a schematic 

representation of the genomic locus. Terminators are shown in the antisense strand since flanking genes translate in 

an antisense fashion. The terminator starts at position 920136 and ends at position 920046. The ptsG starts at 

position 919994. Single nucleotide polymorphisms (SNPs) are labelled in red. The RNAstructure Web Server 

(http://rna.urmc.rochester.edu/RNAstructure Web/index.html) at the University of Rochester Medical Center and the 

RNAfold Web Server (http://rna.tbi.univie.ac.at/) at the University of Vienna were used to predict the secondary 

structures using default parameters. All three mutations result in new Watson-Crick base-paired bases that increase 

the strength of the terminator. The predicted free energy values for the terminator loops were calculated using the 

RNAstructure Web Server. 
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3.2.7 Gene expression profile by microarray analysis of B. halodurans C-125 

 Antimicrobial resistance mutants provide valuable insights, but the information obtained 

from a resistance phenotype is not always representative of the identity of the target. We 

therefore also monitored changes in global gene expression upon exposure of B. halodurans C-

125 to sublancin. The expression profiles revealed four genes that are part of sulfur metabolism 

that are highly up-regulated (changes from 9-14 fold, Table 3.4). The analysis also revealed up-

regulated genes involved in transmembrane transporter activities, whereas genes involved in 

amino sugar and nucleotide sugar metabolism were up- and down-regulated. Interestingly, the 

genes for HPr and for PtsG that were also identified in the set of deletion mutants and in the 

comparative genomics analysis were down-regulated (Table 3.4) as was another PTS protein that 

is homologous to YpqE in B. subtilis, a putative phosphotransferase enzyme IIA component.31 

These data again suggest that, like in B. subtilis, the PTS is involved in the sensitivity of B. 

halodurans towards sublancin. 
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Table 3.4 Expression profile of B. halodurans C-125 in response to sublancin. 

Category and  Locus 
Tag 

Entrez Gene 
ID Gene Name Fold Change in 

transcript level 

Sulfur metabolism     

BH1487 890521 sat Sulfate adenyltransferase 16 

BH1486 890994 cysH 3'-phosphoadenosine 5'-
phosphosulfate reductase 14 

BH0088 891637 cysK cysteine synthase A 11 

BH1489 890544 NA adenylylsulfate kinase 9 

     
Transmembrane 

transporter activity     

BH1488 890630 NA sodium-dependent phosphate 
transporter 12 

BH3129 890493 cysW sulfate ABC transporter 
(permease) 7 

BH3128 890497 cysT sulfate ABC transporter 
(permease) 5 

BH3127 894370 NA sulfate ABC transporter (sulfate-
binding protein) 5 

BH3130 890510 cysA sulfate ABC transporter (ATP-
binding protein) 5 

     
Amino sugar and 
nucleotide sugar 

metabolism 
    

BH0421 892066 nagA N-acetylglucosamine-6-
phosphate deacetylase 9 

BH3130 894561 nagB N-acetylglucosamine-6-
phosphate isomerase 5 

BH0675 893039 NA beta-hexosamidase A precursor 5 

BH1086 894063 glgD required for glycogen 
biosynthesis 4 

BH1087 892001 glgC glucose-1-phosphate 
adenylyltransferase 4 

BH0422 893420 NA 
PTS system, N-

acetylglucosamine-specific 
enzyme II, ABC component 

3 

BH1874 892569 XSA alpha-L-arabinosidase 3 
Continued on next page 
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Changes in transcript levels in B. halodurans C-125 in response to the addition of sublancin. Positive numbers 

indicate up-regulated transcripts, negative numbers indicate down-regulated transcripts.  

 

 

 

 

 

 

 

 

Table 3.4 (cont.) 

Category and  Locus 
Tag 

Entrez Gene 
ID Gene Name Fold Change in 

transcript level 

BH0673 893046 NA 

PTS system, n-
acetylglucosamine-specific 
enzyme II, ABC component 

(EIIABC-Nag) 

2 

BH3784 894582 murZ UDP-N-acetylglucosamine 1-
carboxyvinyltransferase -2 

BH0065 892269 gcaD UDP-N-acetylglucosamine 
pyrophosphorylase -2 

BH2564 894513 murB 
UDP-N-

acetylenolpyruvoylglucosamine 
reductase 

-2 

BH0797 892380 NA Glucose kinase -2 

BH0267 894435 NA phosphoglucosamine mutase -3 

BH0844 892408 ptsG PTS system, glucose-specific 
enzyme II, ABC component -4 

BH3715 894300 NA UDP-glucose 4-epimerase -6 

BH3343 891275 pgi glucose-6-phosphate isomerase -8 

BH3074 890548 ptsH PTS system, histidine-containing 
phosphocarrier protein (HPr) -8 

BH1515 890569 ypqE* PTS system, glucose-specific 
enzyme II, A component -9 

* Closest homolog in B. subtilis is a IIA stand-alone domain YpqE with unknown specificity.  
NA: specific gene name not available for B. halodurans C-125. 
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3.2.8 Addition of PTS sugars to the growth media results in increased resistance to 

sublancin 

 Several bacteriocins have previously been shown to target PTS proteins as part of their 

mode of action. In these reported cases, addition of the relevant sugar resulted in an increased 

sensitivity to the bacteriocin.6,7,11 This effect is due to elevated uptake of the respective 

bacteriocins via the PTS. We therefore investigated whether this was also true for sublancin. The 

PTS is able to use many sugars, employing a different transporter for each sugar together with 

the HPr and PtsI proteins (Figure 3.7). Once the sugar is phosphorylated, it moves into glycolysis 

at the relevant metabolic junction. To investigate the influence of added sugars, the van Dijl 

group diluted B. subtilis ∆SPβ cultures in LB media (without NaCl) containing different sugars 

and grew these in 96-well microtiter plates with shaking to an O.D.600nm 0.5 before addition of 

sublancin at the MIC of 200 nM, as measured for this strain under these conditions. The presence 

of the PTS sugars glucose, sucrose and fructose, prevented the growth inhibition imposed by 

sublancin (Figure 3.9) since no significant reduction in O.D. was observed. In contrast, the non-

PTS sugars citrate, galactose and succinate had no influence on sublancin’s activity (Figure 3.9). 

The two exceptions were the non-PTS sugars glycerol and malate. In this respect it is noteworthy 

that the glycerol kinase GlpK requires phosphorylation by HPr for glycerol utilization.29,32 

Malate is a preferred carbon source for B. subtilis and is known to influence the carbon catabolite 

repression response.33 In this context it is noteworthy that a decrease in antimicrobial activity 

was also reported for glycocin F upon supplementation of the media with GlcNAc, which is the 

sugar that is attached to glycocin F at two positions (further discussion in chapter 4).34 

To further delineate the effects of sugars on sublancin sensitivity, our collaborators in the 

van Dijl group spotted purified sublancin onto lawns of B. subtilis ∆SPβ, which were grown on 
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agar plates containing the defined M9 minimal medium supplemented with glucose, malate or 

citrate. When glucose was present the cells were always resistant to sublancin. In contrast, with 

citrate a large zone of clearing was observed. In the presence of malate an intermediately sized 

zone of inhibition was observed. This observation underpins the view that the carbon source 

affects the sensitivity to sublancin (Figure 3.10). 

 

Figure 3.9 Effect of the addition of PTS sugars on growth of B. subtilis ∆SPβ treated with sublancin. 

Addition of PTS sugars to LB blocks growth inhibition by sublancin (a) Growth curves of B. subtilis ∆SPβ in LB 

medium with salt with added PTS sugars. Blue line – no addition of sublancin, red line – addition of sublancin, 

black solid line – addition of 0.3% glucose, black dotted line – addition of 0.3% fructose, black long dashed line – 

addition of 0.3% sucrose, black short dashed line – addition of 0.3% glycerol. Sublancin was added at 120 min as 

indicated by the vertical grey line. (b) Growth curve of the ∆SPβ strain in LB medium with addition of non-PTS 

sugars. Blue line – no addition of sublancin, red line – addition of sublancin, green line – addition of 0.4% malate, 

grey short dashed line – addition of 0.4 % citrate, grey dotted line – addition of 0.4% galactose, grey solid line – 

addition of 0.4% succinate. The means of the data from a single experiment conducted in triplicate are shown. The 

data are representative of those from three independent experiments. Figure courtesy of Emma Denham. 
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Figure 3.10 B. subtilis ∆SPβ growth on M9 agar plates with a variety of carbon sources. 

B. subtilis ∆SPβ was spread over M9 agar plates containing 0.3% glucose, 0.4% citrate or 0.4% malate. Sublancin (2 

µL of 100 nM) was spotted on the plates. The presence of glucose in the media resulted in resistance to sublancin. 

Figure courtesy of Emma Denham. 

 

  Since glucose was found to prevent the effect of sublancin, we wondered whether it 

would be possible to rescue sublancin-treated cells by addition of glucose. Dr. Emma Denham 

therefore grew the bacteria on LB medium (with NaCl) and added sublancin at O.D.600nm 0.5. 

The cells were then incubated for 30 min before addition of the same PTS and non-PTS sugars as 

in the previous experiment (Figure 3.11). Glucose almost instantaneously rescued the cells from 

the growth inhibition that sublancin imposed on the cells. Fructose also rescued the cells, but to a 

smaller extent than glucose. The non-PTS sugar glycerol rescued the cells in a similar manner to 

fructose. Malate was also able to rescue the cells, but this took approximately 100 min following 

the addition of the sugar, whereas the effect for glycerol and fructose was observed immediately 

after the addition of the respective sugar. In contrast, the addition of the other non-PTS sugars or 

sucrose had no effect on the survival of the bacteria.  

 

M9-­‐Glucose M9-­‐
Citrate 

M9-­‐
Malate 
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Figure 3.11 Effect of PTS sugars on growth of Bacteria after a 30 min after exposure to sublancin.  

(Top) Growth curve of the ∆SPβ strain with sublancin added at 150 min followed by the addition of PTS and non-

PTS sugars 30 min later as depicted by the two vertical lines, respectively. Blue line – no sublancin, blue dashed line 

– addition of sublancin, black line – 0.3% glucose, purple line – 0.3% fructose, orange line – 0.3% glycerol, green 

line - 0.4% malate, (final concentration of sugars shown). (Bottom) Growth curve of the ∆SPβ strain with sublancin 

added at 150 min followed by the addition of PTS and non-PTS sugars 30 min later as depicted by the two vertical 

lines, respectively. Blue line – no sublancin, blue dashed line – addition of sublancin, grey line – 0.4% citrate, red 

line – 0.3% sucrose, pink line – 0.4% galactose, green line – 0.4% succinate (final concentration of sugars shown). 

The means of the data from a single experiment conducted in triplicate are shown. The data are representative of 

those from three independent experiments. Figure courtesy of Emma Denham. 
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The observed rescue of growth by addition of the different PTS sugars and glycerol 

suggests that the PTS transporter is not being irreversibly inactivated by sublancin, but perhaps 

instead sublancin affects the pathway that leads to phosphorylation of the sugar. The addition of 

sublancin and the PTS sugar at the same time could result in competition for phosphorylation of 

the sugar or the glucose on sublancin (or its metabolite). With this in mind we looked at the 

phosphorylation sites on the HPr protein. 

 

3.2.9 Phosphorylation of HPr is responsible for sensitivity to sublancin 

 The HPr protein is phosphorylated on two sites. The first, His15, is phosphorylated by 

PtsI. HPr then transfers the phosphate group to PtsG, and the phosphate is subsequently used to 

phosphorylate the incoming sugar. The second, Ser46, is phosphorylated by HPr kinase (HPrK) 

in conditions of large glycolytic flux. This phosphorylation subsequently allows HPr to form a 

complex with the catabolite control protein A (CcpA). This HPr-CcpA complex mediates carbon 

catabolite repression by binding to its cognate operator regions. To link sublancin sensitivity to 

one of these HPr-mediated processes, our collaborators in the van Dijl group tested two B. 

subtilis ∆SPβ strains with point mutations at one of the two HPr phosphorylation sites. As shown 

in Figure 3.12, B. subtilis ∆SPβ carrying the S46A point mutation in HPr was fully sensitive to 

sublancin. In contrast, the strain carrying the H15A point mutation in HPr displayed an increased 

level of resistance to sublancin. This observation suggests that hprK and ccpA deletion mutants 

would remain sensitive to sublancin, since the carbon catabolite-repressing function of HPr is not 

affected. This prediction was indeed confirmed, as the deletion of either of these two genes had 

no effect on sublancin sensitivity (Figure 3.12). Also, the addition of glucose to the ∆ccpA 

mutant conferred resistance to sublancin (not shown), providing further evidence that it is not the 
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carbon catabolite-repressing branch of HPr regulation that leads to sublancin sensitivity. Instead, 

it seems to be the PTS branch involving the His15 phosphorylation site that is responsible for the 

effects on sublancin sensitivity. However, how phosphorylation of His15 of HPr is exactly tied to 

sublancin sensitivity is presently unknown. 

 
Figure 3.12 The H15A mutation in HPr results in increased resistance to sublancin. 

(a) The two phosphorylation sites in the HPr protein were mutated individually to alanine residues. The growth 

curves of the resulting strains are shown, with 200 nM sublancin added at 120 min as depicted by the vertical line. 

Blue line - B. subtilis ∆SPβ, grey line - B. subtilis ∆SPβ-H15A, black line - B. subtilis ∆SPβ-S46A. Solid line – no 

sublancin. Dashed line – plus sublancin. (b) Blue line - B. subtilis ∆SPβ, grey line - B. subtilis ∆SPβ-hprK, black 

line - B. subtilis ∆SPβ-ccpA. Solid line – no sublancin. Dashed line – plus sublancin. The ∆ccpA and ∆hprK 

mutations have no effect on the sensitivity of the cells to sublancin. 200 nM sublancin added at 120 min. The means 

of the data from a single experiment conducted in triplicate are shown. The data are representative of those from 

three independent experiments. Figure courtesy of Emma Denham. 
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3.3 SUMMARY 

 Sublancin is a bacteriocin that was recently found to be glycosylated as part of its 

maturation process and this glucosylation is required for activity.14 We show in this chapter that 

sublancin is bactericidal and that it does not kill by pore formation or disruption of membrane 

integrity. Four different lines of evidence point towards the phosphoenolpyruvate:sugar 

phosphotransferase system as a factor affecting the activity of the bacteriocin. Experiments with 

deletion mutants of B. subtilis identified PtsG, HPr, and PtsI, but not GlcT and Crh, as important 

for sensitivity to sublancin. In addition, three of four B. halodurans sublancin-resistant mutants 

contained stop-codon mutations within the ptsG gene, with the fourth resistant strain having 

three mutations that potentially interfere with ptsG expression. The transcriptional profile also 

indicated a strong down-regulation of PTS genes upon exposure to sublancin and, lastly, addition 

of PTS sugars decreased the sensitivity to sublancin.  

The PTS has been previously described as affecting sensitivity to other bacteriocins, 

including dysgalacticin and lactococcin A.6,7,35 Dysgalactin appears to bind to the glucose and 

mannose transporters of the PTS.7 Dysgalacticin was shown to block the uptake of glucose and 

the non-metabolisable analog 2-deoxyglucose, and also to perturb the membrane of the cell 

causing the dissipation of membrane potential.7 This activity appears to be different from the 

mechanism used by sublancin as addition of glucose or any other PTS sugar blocked the killing 

activity of sublancin and membrane disruption was not observed. Lactococcin A also uses 

components of the mannose PTS in its mode of action. Lactococcin A binds to the membrane-

located complex of the IIC and IID subunits of the mannose transporter,6 resulting in dissipation 

of the membrane potential.24 Like the observations with dysgalactin, decreased growth rates were 
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observed for cells grown with mannose or glucose as the sole carbon source in the presence of 

lactococcin A.6 The studies in this chapter suggest that sublancin is also functioning in a different 

manner to lactococcin A, since the studies with gene deletion strains and spontaneous resistance 

mutants both point at the phosphorylation components of the PTS as being key to sublancin 

sensitivity rather than the membrane components. Furthermore, when we monitored sublancin 

susceptibility using M9 minimal medium supplemented with glucose as the single carbon source, 

cells were completely immune to the effects of sublancin. A third bacteriocin, the circular 

molecule garvicin ML requires the maltose-binding protein for activity. Growth in media where 

the sole carbon source is either maltose or galactose again resulted in increased sensitivity to this 

bacteriocin.36 

Two regions of the B. subtilis chromosome have now been identified that result in 

resistance to sublancin. The first being mscL, encoding a mechanosensitive channel as described 

by Kouwen et al.,16 and in this work the proteins encoded by the ptsGHI operon. Several 

scenarios may describe the mechanism by which sublancin is interacting with the PTS. Firstly, it 

is intriguing that it is the glucose transporter that was identified, given that sublancin is modified 

with an S-linked glucose moiety. The glucose moiety on sublancin could potentially be 

recognized by the transporter to facilitate entry into the cell or potentially to kill it through its 

interaction with this system. A competition between the sublancin and glucose could explain the 

observed decrease in sensitivity upon addition of glucose. We note that HPr and domains IIAB 

of PtsG are located in the cytoplasm (Figure 3.7), and hence for this mechanism to be correct, the 

glucose on sublancin would have to traverse the transporter or bypass the glucose transporter via 

the MscL channel. In this respect it is noteworthy that the other sugars that were able to protect 

the bacteria from sublancin are either gluconeogenic, or feed into glycolysis lower down the 
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pathway, therefore possibly bypassing the need for the glucose transporter. When we tested 

strains that express variants of the HPr protein with point mutations that remove the 

phosphorylation sites, the mutation that led to increased resistance to sublancin was H15A. 

Phosphorylation of His15 is responsible for transferring a phosphate group to the incoming PTS 

sugar. This points towards a critical role of phosphorylation in the growth inhibition by sublancin 

and seems to suggest that sublancin may need to be phosphorylated upon its entry into the cell in 

order to exert its bactericidal effect. Interestingly, bacterial growth was rescued when PTS sugars 

were added to the growth medium 30 min after the challenge with sublancin. This finding 

implies that either the specific growth-inhibiting mechanism employed by sublancin is 

reversible, or that the addition of the PTS sugars results in the cell using a different biological 

process that allows survival.   

In conclusion, we show that sublancin exerts its bactericidal effects in a novel manner. At 

present it is not clear how exactly sublancin is interacting with the PTS and several questions 

remain for future research. Is there a physical interaction between sublancin and the PTS in the 

inhibited cells? Is there a link between the PTS and the MscL channel? How is sublancin actually 

inhibiting growth of the cell? How does the strong structural similarity of glycocin F and 

sublancin fit into the mechanism and what role does the three-dimensional structure of the 

peptide components of these glycocins (chapter 2) play?37,38 In a time where bacteria are 

becoming resistant to the antimicrobial compounds that we currently use in clinical practice, 

research to understand how infections can be fought in alternative manners is essential. The 

apparently novel mechanism by which sublancin kills sensitive species of bacteria, such as the 

major pathogen S. aureus, may offer biological insights for the development of new 

antimicrobial strategies.  
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3.4 EXPERIMENTAL 

3.4.1 Materials, cultures, and conditions 

 All chemicals and HPLC grade solvents were purchased from Sigma-Aldrich (St. Louis 

MO). Growth media were obtained from Difco Laboratories (Detroit MI). Tris, MOPS, and 

HEPES buffers were obtained from Fisher. Matrix-assisted laser desorption/ionization time-of-

flight mass spectrometry (MALDI-TOF MS) was performed at the Mass Spectrometry 

Laboratory within the School of Chemical Sciences at UIUC using a Bruker Daltonics 

UltrafleXtreme MALDI TOFTOF instrument.  Salt-containing MS samples were purified via 

Millipore Zip-TipC18 pipette tips (Billerica MA).  Ninety-six and forty-eight well assay plates 

were from Corning Incorporated (Corning NY) and were read using a multi mode, single-

channel Synergy H4 microplate reader from Biotek® instruments, Inc (Winooski, VT). Trays 

used for agar well diffusion assays were obtained from Nalge Nunc (Rochester NY).  

3.4.2 Bacterial growth 

 
For all strains used in this study, see Table 3.6. B. subtilis 168, B. subtilis ATCC 6633 and B. 

halodurans C-125 were grown in Lysogeny Broth (LB) at 37 °C with vigorous shaking (250 

rpm) and on LB agar plates. B. subtilis was also grown on M9 agar plates (M9 as described,39 but 

with the addition of 1.5 % final concentration agar) with and without the addition of sugars at 

final concentrations of 0.3 % glucose, 0.4 % malate or 0.4 % citrate as specified below. The LB 

agar used for sublancin inhibition plate assays did not include NaCl. 

________________________________________________________________________________________________________________________________________________ 

c I would like to thank Dr. Barbara Pilas for assistance with the flow cytometry,d Dr. Alvaro Hernandez for 
assistance with the comparative genomics and e Dr. Jenny Drnevich and Dr. Mike Band at the Roy J. Carver 
Biotechnology Center and W.M. Keck Center for Comparative and Functional Genomics for assistance with the 
microarray data. 
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 Antibiotics were used for selection when necessary at the following concentrations: 

spectinomycin 100 µg/mL, kanamycin 20 µg/mL, phleomycin 4 µg/mL, chloramphenicol 5 

µg/mL and erythromycin 2 µg/mL. Stock sublancin solutions were prepared using PBS. 

 

3.4.3 Production and isolation of sublancin 168 

 Purification of sublancin from its natural producer, Bacillus subtilis 168, was performed 

as previously reported.14 Briefly, a culture of B. subtilis 168 was grown in LB media at 37 °C for 

12-15 h under vigorous agitation. The overnight culture was used to inoculate (at 1%) 500 mL 

volumes of Medium A in 2 L flasks. Medium A consists of 900 mL of Medium A nutrient broth 

combined with 100 mL of 10X Medium A salts. Medium A nutrient broth was prepared by 

dissolving 20.0 g sucrose, 11.7 g citric acid, 4.0 g Na2SO4, 4.2 g (NH4)2HPO4, and 5.0 g yeast 

extract in 900 mL of millipore water. The pH was adjusted to 6.8-6.9 using NaOH and the 

medium was autoclaved. Medium A salts (10X) were prepared by dissolving 7.62 g KCl, 4.18 g 

MgCl2-6 H2O, 0.543 g MnCl2-4 H2O, 0.49 g FeCl3-6 H2O, and 0.208 g ZnCl2 in 1 L of millipore 

water followed by sterilization via 0.22 µm filtration. The Medium A cultures were grown at 37 

°C for 28-48 h with vigorous agitation. A color change to pinkish-brown was observed and the 

pH of cultures had lowered to 6-6.5. Cultures were acidified to pH 2.5 with concentrated 

phosphoric acid and centrifuged to remove cells and insoluble material. Sublancin was isolated 

by ammonium sulfate precipitation. Briefly, a 500 mL volume of sublancin-containing culture 

supernatant was combined with 245 g (NH4)2SO4
 in a 1 L glass bottle to provide a 75% 

ammonium sulfate saturation at 4 °C. The precipitation mixture was stirred at 4 °C for 24 h and 

precipitated sublancin was isolated from the solution by centrifugation. The pelleted peptide was 

re-solubilized in 50/50 ACN/water with 0.1% TFA and was analyzed by MALDI-TOF MS. A 1 
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µL aliquot of sample was combined with 1 µL of matrix consisting of saturated α-cyano-4-

hydroxy-cinnamic acid matrix in 50% ACN/50% water with 0.1% TFA, and the total volume 

was spotted onto a MALDI target and dried under ambient conditions prior to analysis. The 

sublancin containing product were combined, lyophilized to dryness, and stored under N2 at −80 

°C until purification by preparative HPLC.   

 Preparative HPLC was performed using a Waters Delta 600 instrument equipped with a 

Phenomenex Jupiter Proteo C12 column (10 µm, 90 Å, 250 mm x 15 mm) equilibrated in 2% B 

(solvent A = 0.1% TFA in water, solvent B = 0.0866% TFA in 80% ACN/20% water). 

Lyophilized sublancin material was resuspended in 2% B, filtered with a 0.45 µm filter and 

applied to the column. Sublancin was eluted by maintaining the mobile phase at 2% B for 1 min, 

followed by an increase to 100% B over 45 min with a flow rate of 10.0 mL/min. Under these 

conditions, sublancin eluted at 22.7 min. All fractions were analyzed by MALDI-TOF MS as 

described above. Fractions containing purified sublancin were lyophilized to dryness and stored 

under N2 at −80 °C until further use. Typical yields were 9 mg sublancin per liter of processed 

Medium A culture. 

3.4.4 Strain construction 

 Chromosomal DNA was prepared from B. subtilis 168 using a standard procedure as 

previously described.40 Deletion mutants in B. subtilis 168 were created as described by Tanaka 

et al.26 and oligonucleotides used are shown in Table S1 in the supplemental material. B. subtilis 

168 was transformed using PCR products or chromosomal DNA following a standard procedure 

as previously described.41 
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Table 3.5 Oligonucleotides used in generation of B. subtilis deletion mutants. 
yvkS-ykvWP1 ttctacacgaggcattacatt 
yvkS-ykvWP2 CGACCTGCAGGCATGCAAGCTcccttttctttctattgacga 
yvkS-ykvWP3 CGAGCTCGAATTCACTGGCCGTCGaggctgctggctttttat 
yvkS-ykvWP4 cacatgggtttcttcatttt 
ykvY-glcTP1 ctttgataaaaccggaactg 
ykvY-glcTP2 CGACCTGCAGGCATGCAAGCTtgttcctccctgccattt 
ykvY-glcTP3 CGAGCTCGAATTCACTGGCCGTCGattcagtttatccttataacgtg 
ykvY-glcTP4 gtgtttgatgttttcctggt 
ptsG-ptsIP1 ctacaaagaggcattggaag 
ptsG-ptsIP2 CGACCTGCAGGCATGCAAGCTaagaattgacctcctcttttt 
ptsG-ptsIP3 CGAGCTCGAATTCACTGGCCGTCGtaacatggctaggagggata 
ptsG-ptsIP4 aggaaaaacgaccctgtg 

Oligonucleotides used to generate deletion mutants described in Table 3.1. Capital letters indicate overlapping 

regions with phleomycin resistance cassette, lower case letters indicate regions complementary to B. subtilis 

genome. 

 

3.4.5 Minimum inhibitory concentration (MIC) determination 

 MICs were determined by the broth dilution method.42 Serial dilutions of sublancin were 

prepared in sterile deionized water (SDW). Forty-eight well microtiter plates (Corning Costar) 

were utilized for both B. subtilis ATCC 6633 and Bacillus halodurans C-125. The total volume 

of culture in each well was 300 µL; the experimental wells contained 30 µL of 10x stock 

sublancin at defined concentrations and 270 µL of a 1-in-10 dilution (approximately 1 x 108 

colony-forming units (CFU) mL-1) of a culture of indicator strain diluted in fresh LB growth 

medium. In addition, each plate contained several blanks (270 µL fresh growth medium and 30 

µL SDW) and control wells (270 µL of untreated 1-in-10 diluted culture and 30 µL SDW). The 

optical density at 600 nm (O.D.600nm) was recorded at hourly intervals from 0 to 6 h with an 

additional measurement at 18 h using a BioTek Synergy 4H plate reader. Plates were incubated 

under vigorous agitation at 37 °C. The readings of triplicate experiments were averaged. Growth 

curves were developed using control (culture and SDW only) readings to ensure sufficient O.D. 
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changes for accurate inhibition assessment. Curve fits for MIC determination were produced by 

fitting the data with Origin8.5 software using a dose-response curve with the equation: y = A1 + 

(A2 – A1) / (1 +10(Logx0 – x)p), with p = variable Hill slope.  

 

Table 3.6 Strains. 
Strain Genotype Reference 

168 Wild-type B. subtilis strain Laboratory 

Collection 

∆SPβ Wild-type B. subtilis 168 strain lacking the entire 

SPβ prophage  

13 

C-125 Wild-type B. halodurans 43 

ATCC 6633 Wild-type B. subtilis 44 

168 Deletion 

collection 

Collection of B. subtilis mutants lacking large 

genomic regions 

26 

∆SPβ::cat Chloramphenicol selectable ∆SPβ prophage mutant 

of B. subtilis 
13  

∆yvkS-yvkW B. subtilis ∆yvkS-yvkW::phleo This study 

∆ykvY-glcT B. subtilis ∆ykvY-glcT::phleo This study 

∆ptsG-ptsI B. subtilis ∆ptsG-ptsI::phleo This study 

∆SPβ-QB5435 B. subtilis ∆pstG::cat; QB5435 → SPβ 28 

∆SPβ-MZ303  B. subtilis ΔptsH::cat; MZ303 → SPβ 45 

∆SPβ-GP864  B. subtilis ∆ptsI::ermC; GP864 → SPβ 46 

∆SPβ-QB5407  B. subtilis ∆ccpA::spec; QB5407 → SPβ 47 

∆SPβ-GP202  B. subtilis ∆hprK::spec; GP202 → SPβ  48 

∆SPβ::cm-

GP506 

B. subtilis ptsH H15A; SPβcm → GP506 49 

∆SPβ::cm-

GP507  

B. subtilis ptsH S46A; SPβcm → GP576 50 
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3.4.6 Sublancin killing kinetics against sensitive Bacillus species 

 Sensitive cultures were grown to mid log phase in LB medium as described above, 

transferred to 48-well microtiter plates (Corning Costar) and exposed to sublancin at 1x and 

4xMIC. Immediately after the addition of sublancin, the O.D.600nm was determined using a 

BioTek Synergy H4 plate reader. The cultures were incubated for 6 h and the O.D.600nm was 

recorded every 30 min. To verify that cells were killed, CFU counting was performed by serial 

dilution and plating. 

3.4.7 Sublancin sensitivity screen of a gene deletion collection of B. subtilis  

 Sublancin-induced growth inhibition assays were performed using the procedure 

described by Dorenbos et al.,13 but with modification to enable the screening of large numbers of 

strains. Overnight cultures of B. subtilis mutants and background control strain were grown in 

96-well microtiter plates in a plate shaker at 37 °C with shaking at 800 rpm. Bioassay dishes 

were prepared with LB agar without adding salt. The plates were thoroughly dried before being 

divided into 48 squares for inoculation. Cotton swabs were dipped into individual wells of the 

overnight culture before being spread on the appropriate square. Plates were allowed to dry, 

before spotting 2 µL of an overnight culture of the B. subtilis 168 wild-type strain in the centre of 

each inoculated square. Plates were incubated overnight and visual analysis was used to 

determine zones of inhibition that were smaller or larger than that of the background strain. 

Strains with altered zones of inhibition were checked a further three times to ensure the 

phenotype was reproducible. 

3.4.8 Sublancin sensitivity assay in liquid medium 

 Overnight cultures of B. subtilis grown in LB were diluted 1:100 in the same medium and 

grown to O.D.600nm 0.5. The bacteria were then diluted 1:20 in a 96-well microtiter plate before 
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growth was monitored in a Synergy4 Biotek plate reader every 10 min (37 °C, with shaking). 

When the bacteria reached O.D.600nm 0.185 (equivalent to 0.5 for a 1 cm path length), sublancin 

was added at the desired concentration, before resuming the monitoring of growth. Sugars were 

added at the following final concentrations: glucose 0.3%, malate 0.4%, sucrose 0.3 %, fructose 

0.3%, glycerol 0.3%, citrate 0.4%, galactose 0.4% and succinate 0.4%. 

3.4.9 Membrane integrity assay c 

 B. subtilis was grown to O.D.600nm 0.5, before purified sublancin was added at different 

concentrations (100 – 500 nM). As a positive control, nisin was added at 10 nM final 

concentration and a negative control sample contained no bacteriocin. Samples were taken at 30 

and 90 min and prepared for LIVE/DEAD® BacLight™ analysis (Molecular Probes, Life 

Technologies).51 Samples were monitored by flow cytometry using an Accuri C6. The 

percentages of cells with intact or reduced membrane integrity were calculated. In addition 

membrane potential was also measured using the membrane potential-sensitive dye, 3-3’ 

diethyloxacarbocyanine iodide (DiOC2, Molecular Probes/Invitrogen). B. subtilis ATCC 6633 

and B. halodurans C-125 cultures (in triplicate) were grown to a density of 4 x 106 cells mL-1 

and aliquots were transferred to tubes containing DiOC2 (final concentration of 300 nM). Cells 

were incubated with the dye for 20 min at 30 °C under aeration conditions prior to the addition 

of either sublancin or nisin at 1 and 4xMIC. Following addition of peptides, cultures were 

incubated at room temperature with aeration for an additional 15 min prior to analysis. The 

membrane potential was assessed by measuring the B. subtilis-associated DiOC2 fluorescence by 

flow cytometry (BD Biosciences LSR II flow cytometer) with excitation at 488 nm with an 

argon laser and measurement of emission through a band-pass filter at 530/30 nm. A minimum 

of 10,000 events were detected for each sample and the data was analyzed using the FCS 
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Express 3.00.0311 V Lite Stand-alone software. The data were plotted as the geometric mean of 

the fluorescence intensity (MFI). 

3.4.10 Propidium iodide uptake c 

Membrane integrity was also evaluated by measuring the uptake of propidium iodide 

(PI). B. subtilis ATCC 6633 and B. halodurans C-125 cultures were grown to a density of 4 x 

106 cells mL-1 and then diluted with fresh LB medium to an O.D.600nm of 0.1. Cells were 

transferred to tubes containing PI (final concentration 25 µM; Molecular Probes Inc., Leiden, 

NL), HEPES (1 mM), and sublancin (0, 0.2, 2.0, 20 µM) or nisin (0, 0.2, 2.0, 20 µM), incubated 

for 30 min at RT, and analyzed. Data acquisition was performed with a BD Biosciences LSR II 

flow cytometer, using excitation at 488 nm with an argon laser and measurement of emission 

through a band-pass filter at 695/40 nm. A minimum of 50,000 events was detected for each 

sample, and experiments were performed in triplicate. Data analysis to calculate the geometric 

mean fluorescence intensity (MFI) of gated cell populations was performed using FCS Express 

3.00.0311 V Lite Stand-alone software. 

 

3.4.11 Generation of stable sublancin resistant mutants and resistant mutant frequency 

determination 

 Genetically stable, sublancin resistant mutants were generated by growing the sublancin 

susceptible strains B. halodurans C-125 and B. subtilis ATCC 6633 in LB as described above 

(no additional sugars added) until an O.D.600nm of 1.0 (mid log phase, 1 cm light path). The 

cultures were plated on agar plates containing 1x or 4x their respective sublancin MICs. Distinct 

colonies were observed by 24 h. Resistant colonies were picked, grown in LB and plated on LB 

plates containing sublancin at 4xMIC to confirm resistance. This procedure generated genetically 
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stable sublancin mutants. The number of resistant mutants that emerged from each sublancin 

susceptible culture was obtained by generating a serial dilution of each culture. Each dilution 

was plated on sublancin-containing plates. The total number of cells was determined by plating 

an appropriate (10-5, 10-6, 10-7, 10-8, 10-9) dilution of the cultures on non-selective LB agar 

medium. Colonies from sublancin-containing and non-selective plates were counted after 24 h of 

incubation. The resistance frequency was determined as the mean number of resistant cells 

divided by the total number of viable cells per culture. 

 

3.4.12 Single Nucleotide Polymorphism (SNP) detected by whole genome sequencing d 

 Genomic DNA (gDNA) of the wild-type B. halodurans C-125 and four different 

sublancin resistant isolates was extracted using an UltraClean® Microbial DNA isolation kit 

(MO BIO). The gDNAs thus obtained were sequenced using a HiSeq2000 Illumina sequencer, 

which generated close to 180 million single-reads per lane, for an overall coverage of 360x for 

the 5 MB genomes. All libraries were individually barcoded and constructed with the TruSeq 

Sample Prep kits (Illumina). The SNPs and the corresponding genes for resistant B. halodurans 

C-125 were identified. In addition, the wild-type B. halodurans C-125 strain was mapped to the 

published B. halodurans C-125 sequence (accession no. NC_002570.2) with CLC Genomics 

Workbench (CLC bio), using default parameters. A consensus sequence of the wild-type and 

reference genome was obtained and used for SNP detection in sublancin resistant mutants of B. 

halodurans.  
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3.4.13 PCR amplification and validation of B. halodurans resistant mutants single 

nucleotide polymorphisms  

PCR validation can serve as an iterative and informative process to modify and optimize 

the SNP filtering criteria to improve SNP calling.52 Primers flanking SNP-containing genes were 

synthesized and used for PCR amplification of the respective genes. The mutations reported 

herein were all confirmed by PCR (Table S2 in the supplemental material).  

3.4.14 B. halodurans C-125 gene expression profile e 

A culture of B. halodurans C-125 was grown in LB at 37 °C with vigorous shaking until 

mid log phase, at which point the culture was split into two 150 mL cultures with one subjected 

to a sub-inhibitory concentration of sublancin (0.5xMIC). RNA isolation was performed using 

the RNeasy mini kit (Qiagen) and subsequently treated with RNase-Free DNase (Qiagen). The 

RNA was dissolved in RNase-free water and quantified using a NanoDrop 2000c 

spectrophotometer (Thermo Scientific). For each sample (i.e. with and without sublancin), 20 µg 

of total RNA was isolated from three biological replicates. cDNA synthesis was performed using 

the SuperScript® Double-Stranded cDNA Synthesis Kit (Invitrogen) as per the manufacturer’s 

instructions (NimbleGen Arrays User’s Guide, Version 5.1) and quantified with NanoDrop. 

Total cDNA was labeled overnight with the One-Color DNA labeling kit (NimbleGen) as per the 

manufacturer’s instructions. Arrays were scanned using an Axon 4000B array scanner.  

A B. halodurans C-125 Nimblegen custom array, containing a probe set of 22 unique 

45mer-60mer oligonucleotide probes for each of the 4066 genes of this bacterium, was used. 

NimbleScan software (v 2.6.0.0, Roche NimbleGen) was used to generate one normalized value 

per probe set using the RMA algorithm (background correction, normalization and 

summarization; data not logged). The data were then imported into R53 using the limma 
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package54 and log2-transformed. Statistical analysis for differential expression between the 

mutant and wild-type groups was performed, taking into account the correlation due to 

processing batch.55,56 Raw p-values were corrected for multiple hypotheses testing using the 

False Discovery Rate method.57 Annotation for the probe sets was primarily provided by 

Nimblegen and included BH ids (e.g., BH0001), gene names, descriptions, genomic locations 

and URL links to NCBI. Entrez Gene IDs and official gene symbols were downloaded from the 

B. halodurans genome record in NCBI (NC_002570). For analysis, we filtered to identify those 

genes that were altered by at least a 1.5-fold change in transcription (up-regulation and down-

regulation). For data mining, we used DAVID bioinformatics resources that consist of an 

integrated biological knowledge base and analytic tools that use the results from the statistical 

analysis to explore and interpret gene regulation data.58 
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CHAPTER 4. DELINEATING THE ROLE OF GLYCOSYLATION ON SUBLANCIN'S 

BIOLOGICAL ACTIVITY 

4.1 INTRODUCTION 

Some of the unique properties of sublancin as an antimicrobial have been defined in 

chapter 3. Sublancin is bactericidal, it does not compromise the integrity of the cell membrane, 

and multiple lines of evidence have determined that the phosphotransferase system is involved in 

the sensitivity to sublancin. This chapter describes the importance of the sugar moiety for 

antimicrobial activity in addition to other studies designed to provide further insights into 

sublancin’s mode of action. 

 

4.2 RESULTS AND DISCUSSION 

4.2.1 Cross-resistance determination 

In an effort to understand sublancin’s mode of action, chapter 3 described the generation 

of sublancin-resistant B. halodurans C-125 mutant strains. Susceptibility assessments of 

sublancin-resistant B. halodurans C-125 strains with commercially available antimicrobials 

allowed for the comparison of sublancin’s antibacterial activity in order to determine whether 

patterns of cross-resistance occurred. Even though cross-resistance is undesirable in a clinical 

setting it can help in the identification of sublancin’s target since compounds with similar 

binding sites are expected to exhibit similar resistance profiles.1,2 The antibacterial activity of 

sublancin and commercially available antimicrobial agents against B. halodurans C-125 and 

sublancin-resistant B. halodurans C-125 strains was determined by the MIC broth dilution 

method.3,4 A series of dilutions of sublancin (0.097 µM – 100 µM) were made and incubated 

with a defined number of bacterial cells in LB medium. Plates were incubated for 18-24 h at 37 
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°C, and growth was assessed by measuring the optical density of each well at O.D.600nm. The 

MICs were determined by fitting the data to a dose-response curve. The MICs of sublancin and 

commercially available antimicrobials against B. halodurans C-125 and sublancin-resistant B. 

halodurans C-125 are shown in Table 4.1. There was no cross-resistance observed given that the 

MIC values of common antibiotics for sensitive B. halodurans C-125 strains were comparable to 

those for the sublancin-resistant B. halodurans C-125 mutant strains. The lack of cross resistance 

indicates that sublancin is not likely to exert its antimicrobial action by inhibiting protein 

synthesis, DNA replication or cell wall biosynthesis in a manner similar to the compounds tested.  

 

Table 4.1 Cross-resistance susceptibility of sublancin-resistant B. halodurans C-125 strains. 

 
The MIC of sublancin and commercially available antimicrobial agents was determined using the MIC broth 

dilution method against B. halodurans C-125 and sublancin-resistant B. halodurans C125. Shown are the MICs in 

µM. There was no cross-resistance observed given that the MIC values determined for sensitive B. halodurans C-

125 strains were comparable to those for the sublancin-resistant B. halodurans C-125 mutant strains. 
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4.2.2 Sublancin post-antimicrobial effect (PAE) 

An important parameter is the post-antimicrobial effect (PAE) that describes the 

persistent suppression of cells regrowth following exposure and later removal of the 

antimicrobial compound. Growth inhibition activity can occur reversibly or irreversibly. 

Irreversible growth inhibition can occur if the antimicrobial strongly binds to its target or alters it 

in a way that makes it detrimental for cell growth (i.e. it is toxic). On the other hand, reversible 

activity happens when the antimicrobial binds weakly and can be washed off allowing the cells 

to recover from its effects. We wondered whether sublancin’s growth inhibition was reversible. 

To answer this question, an overnight culture of B. subtilis ATCC 6633 was grown to 

exponential phase and divided into three sets of three samples (Figure 4.1): untreated, treated 

with 1 time the sublancin MIC (1xMIC), and 4 times the sublancin MIC (4xMIC). Cultures were 

incubated for 2 h, optical density was measured, and cells were then pelleted. Cell pellets were 

resuspended in the same media (set 1) or in fresh media with (set 2) or without (set 3) sublancin. 

Growth was assessed at 6 h and 18 h. At 6 h, sublancin continued to show growth inhibitory 

activity, but at 18 h cells were growing. There are a number of explanations for the observed 

increase in bacterial growth. Sublancin may be degraded following target binding and cell death, 

and cells that survive initial sublancin exposure continue to grow. Alternatively, resistant 

mutants may be present, or an enzyme could be secreted that deactivates sublancin (e.g. a 

protease or glycosidase).  We further tested whether the growth observed at 18 h was due to 

resistance. Cells at the 18 h time point were washed and re-exposed to fresh sublancin (i.e., 

untreated, 1xMIC, and 4xMIC).  Optical density measurements were taken at 2, 6, and 18 h from 

the time fresh sublancin was added. It was observed that the cells in all three samples continued 

to grow, thus suggesting that the cells may have acquired resistance.  
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Figure 4.1 Sublancin post-antimicrobial effect. 

 (1) An overnight culture of B. subtilis ATCC 6633 was grown to exponential phase and divided into three sets of 

three samples (Figure 4.1): untreated, 1 time the sublancin MIC (1xMIC), and 4 times the sublancin MIC (4xMIC). 

(2) Cultures were incubated for 2 h, optical density was measured, and cells were then pelleted. (3) Cell pellets were  

resuspended in the same media (set 1) or in fresh media with (set 2) or without (set 3) sublancin. Growth was 

assessed at 6 h and 18 h. At 6 h, sublancin continued to show growth inhibitory activity, but at 18 h, cells were 

growing. (4) Cells at the 18 h time point were washed and re-exposed to fresh sublancin (i.e., untreated, 1xMIC, and 

4xMIC).  Optical density measurements were taken at 2, 6, and 18 h from the time fresh sublancin was added. It was 

observed that the cells continued to grow, thus suggesting that the cells may have acquired resistance.  
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4.2.3 Sublancin-resistant Bacillus mutants present after an 18 h incubation  

To establish whether B. subtilis growth at the 18 h time point was due to resistance, an 

overnight culture of B. subtilis ATCC 6633 was grown to exponential phase and split into three 

aliquots (Figure 4.2): (1) untreated B. subtilis ATCC 6633 cells, (2) cells grown at 1xMIC of 

sublancin, and (3) cells grown at 4xMIC of sublancin. After the 18 h incubation period, an 

aliquot of each sample was plated on 4xMIC sublancin plates or LB plates without sublancin. 

Greater than 90% resistance was observed in plates from aliquots obtained from samples 

incubated with sublancin and close to 0.001% resistance was observed in the control plates (i.e. 

cells that were not previously treated with sublancin). Consequently, the growth observed at 18 h 

in the experiments described above could be attributed to the relatively rapid emergence of 

resistance. 

 

Figure 4.2 Percentage of sublancin-resistant Bacillus mutants after an 18 h incubation.  

An overnight culture of B. subtilis ATCC 6633 was grown to exponential phase and split into three aliquots (Figure 

4.2): (1) untreated B. subtilis ATCC 6633 cells, (2) cells grown at 1xMIC of sublancin, and (3) cells grown at 

4xMIC of sublancin. After the 18 h incubation period, an aliquot of each sample was plated on 4xMIC sublancin 

plates or LB plates without sublancin. 
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4.2.4 Solid agar diffusion bioactivity assay of Bacillus cells incubated with sublancin for  

18 h 

We suspected that sublancin degradation could be an additional plausible explanation for 

the increase in viable cells observed at 18 h. Degradation could be caused by the presence of a 

secreted peptidase or glycosidase. We first addressed the question of degradation by analytical 

HPLC. We investigated whether sublancin could be observed in the supernatant of sublancin-

exposed cells (both sensitive or resistant) after incubating for 18 h. Unfortunately the complex 

media mixture produced after 18 h hindered the clean observation of sublancin or its degradation 

products. 

Due to the inability to detect whether sublancin was present at the 18 h incubation period, 

we decided to address the issue of degradation via a solid agar diffusion assay. B. subtilis ATCC 

6633 sensitive cells and sublancin-resistant B. subtilis ATCC 6633 cells were treated with 

sublancin for 18 h. The cells were centrifuged and the supernatant spotted on a bioassay plate 

containing sensitive B. subtilis ATCC 6633. We observed that supernatant from sublancin-

sensitive and sublancin-resistant B. subtilis ATCC 6633 cultures did not inhibit growth. The 

previously pelleted cells were then re-suspended in fresh media with fresh sublancin for an 

additional hour, the cells were centrifuged and the supernatant from the re-exposed (sublancin-

sensitive and sublancin-resistant B. subtilis ATCC 6633) cultures was plated. Even though fresh 

sublancin was added, these samples produced partial zones of inhibition, suggestive of sublancin 

being degraded. It is important to note that the concentration of sublancin used was 4xMIC rather 

than 1xMIC which may explain the partial inhibition zones after the additional hour of exposure 

to sublancin (i.e. at 4xMIC it is more difficult for the cells to degrade all sublancin when 
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compared to incubation at 1xMIC). The data suggest that sublancin may be degraded by the 

resistant strains thus offering a potential explanation to the growth observed at 18 h of incubation 

with sublancin. However, since spent medium of sensitive B. subtilis ATCC 6633 also resulted 

in a decrease in the zone of growth inhibition, it appears that sublancin is inherently unstable 

under these conditions. 

 

Figure 4.3 Solid agar diffusion bioactivity assay of 18 h sublancin incubated Bacillus cells. 

B. subtilis ATCC 6633 sensitive cells and B. subtilis ATCC 6633 resistant cells were grown in LB media and treated 

with sublancin for 18 h at 37 oC. The cells were centrifuged and 10 µL of supernatant was spotted on a bioassay 

plate containing sensitive B. subtilis ATCC 6633. For each numbered panel the following samples were spotted: (1) 

Water (2) LB media (3) 4xMIC sublancin in water (4) 4xMIC sublancin incubated in water for 18 h. (5) Supernatant 

from 4xMIC sublancin incubated in LB media for 18 h. (6) Supernatant from B. subtilis ATCC 6633, no sublancin 

added. (7) Supernatant from B. subtilis ATCC 6633 treated with 4xMIC sublancin. (8) Supernatant from sublancin-

resistant B. subtilis ATCC 6633, no sublancin added. (9) Supernatant from sublancin-resistant B. subtilis ATCC 

6633 treated with 4xMIC sublancin. We observed that supernatant from sublancin-sensitive and sublancin-resistant 

B. subtilis ATCC 6633 cultures treated with 4xMIC sublancin did not significantly inhibit growth. The previously 

pelleted cells were then re-suspended in fresh media with fresh sublancin for an additional hour, the cells were 

centrifuged and the supernatant plated on the bioassay plate. 
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4.2.5 Importance of glycosylation in the activity of sublancin 

The generation of structural analogs of antibiotics allows for a deeper understanding of 

potential regions that may be important for an antibiotic’s activity. Oman et al. reported that the 

acid hydrolysis of the glucose moiety from sublancin abolished sublancin’s activity.5 It was 

hypothesized that without glycosylation, the correct disulfide bridges are not formed given that 

the free thiol would cause the rearrangement of the disulfide bonds by thiol-disulfide exchange. 

However, from the NMR structure of sublancin shown in chapter 2 it appears very unlikely that 

there would be thiol-disulfide exchange due to the compact and well defined structure of 

sublancin.6 Further investigation by Dr. Huan Wang, a former postdoctoral student in the van der 

Donk lab, suggested that the S-glycosylation of sublancin by its S-glycosyltransferase (SunS) 

might be important for the self-resistance of B. subtilis 168 against sublancin 168. Dr. Wang 

reconstituted unglycosylated sublancin-C22S in vitro and showed that the sublancin-C22S 

analog was active against B. subtilis ATCC 6633 and sublancin’s producer, B. subtilis 168. In 

contrast, Stepper et al. showed that in the case of glycocin F, de-O-GlcNac-glycocin F was 

inactive showing that the O-linked GlcNac moiety is essential for glycocin F activity.7 Intrigued 

by the conflicting findings of whether or not the sugar installed on sublancin was in fact required 

for activity, we decided to make additional unglycosylated sublancin analogs, and if active, test 

whether the mechanism of action of these analogs was similar to that of wild type sublancin. 

4.2.5.1 Heterologous expression of sublancin-C22S, C22N and C22T in E. coli 

We generated sublancin-C22S, C22N, and C22T by heterologous expression of the 

corresponding SunA-C22X mutant in E. coli followed by in vitro modifications. The SunA-

C22X precursor was cloned with a factor Xa cleavage site between the leader and core peptide 

sequence and as an N-terminal fusion protein with a hexa-histidine tag (His6-SunAXa-C22X). 
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Upon purification by immobilized metal affinity chromatography and desalting by solid phase 

extraction (SPE), His6-SunAXa-C22X was folded in the presence of oxidized glutathione and 

reduced glutathione. The leader peptide of folded His6-SunAXa-C22X was then cleaved with 

factor Xa to afford the desired analogs.5 The extent of the modifications and oxidative folding 

was verified by MALDI-TOF MS (Figures 4.4, 4.5 and 4.6). 

 

Figure 4.4 MALDI-TOF MS analysis of sublancin-C22S. 

Sublancin-C22S was obtained by heterologous expression of His6-SunAXa-C22S in E. coli followed by in vitro 

oxidative folding and leader peptide removal. The reaction was analyzed by MALDI-TOF MS. Expected [M+H]+: 

3701.19, observed: 3701.42. 

 

 
Figure 4.5 MALDI-TOF MS analysis of sublancin-C22N. 

Sublancin-C22N was obtained by heterologous expression of His6-SunAXa-C22N in E. coli followed by in vitro 

oxidative folding and leader peptide removal. The reaction was analyzed by MALDI-TOF MS. Expected [M+H]+: 

3728.21, observed: 3728.40. 
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Figure 4.6 MALDI-TOF MS analysis of sublancin-C22T. 

Sublancin-C22T was obtained by heterologous expression of His6-SunAXa-C22T in E. coli followed by in vitro 

oxidative folding and leader peptide removal. The reaction was analyzed by MALDI-TOF MS. Expected [M+H]+: 

3715.21, observed: 3715.48. 

4.2.5.2 Synthesis of sublancin C22S 

Sublancin C22S, C22N, and C22T were originally obtained by heterologous expression 

of the corresponding SunA mutants in E.coli. Due to the low yield observed by overexpression, a 

synthetic route was identified as a more feasible method of obtaining larger amounts of such 

analogues. Wild type sublancin has been previously synthesized by native chemical ligation 

(NCL).8 Sublancin C22S was synthesized following the previously published methodology with 

a few modifications (Figure 4.7). Sublancin C22S was first synthesized in two fragments by 

microwave assisted solid phase peptide synthesis (SPPS). The N-terminal fragment contained 

amino acids 1-13 (Figure 4.8) and the C-terminal fragment contained amino acids 14-37 (Figure 

4.9).8 After preparation of the fragments by microwave assisted SPPS the thioesterification 

(treatment with ethyl-3-mercaptopriopionate, N,N’-diisopropylcarbodiimide (DIC), 1-

hydroxybenzotriazole (HOBt), and N,N-diisopropylethylamine (DIPEA) as base) was performed 

manually to the N-terminal fragment. Both fragments were cleaved from resin and purified by 

HPLC. The identity of the purified fragments was confirmed by MALDI-TOF MS. Linear 

sublancin C22S was obtained by native chemical ligation (Figure 4.10). The thioester N-terminal 
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fragment was reacted with the C-terminal fragment in the presence of mercaptophenylacetic acid 

(MPAA) and tris(2-carboxyethylphosphine (TCEP) in 6 M guanidine hydrochloride/ 0.2 M 

Na2HPO4 buffer at pH 7.2 followed by HPLC purification. The disulfide bridges were formed by 

oxidative folding by addition of oxidized glutathione, and reduced glutathione.5 The extent of 

oxidative folding was verified by MALDI-TOF MS. 

 
Figure 4.7 Synthesis of sublancin C22S. 

An N-terminal fragment encompassing amino acids 1 to 13 and a C-terminal fragment including amino acids 14 to 

37 were generated by microwave-assisted SPPS. The N-terminal fragment was derivatized by attachment of a 

thioester moiety. Native chemical ligation united the two fragments followed by oxidative folding. The N-terminal 

thioester fragment was reacted with the C-terminal fragment in the presence of mercaptophenylacetic acid (MPAA) 

and tris 2-carboxyethylphosphine (TCEP) in guanidine hydrochloride/Na2HPO4 buffer followed by HPLC 

purification. The glucose moiety was not attached and the disulfide bridges were formed by oxidative folding by 

addition of oxidized glutathione, and reduced glutathione.5 The extent of oxidative folding was verified by MALDI-

TOF MS. 
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Figure 4.8 MALDI-TOF MS analysis of sublancin1-13 thioester fragment. 

The N-terminal fragment containing residues 1 to 13 was prepared by microwave assisted SPPS followed by manual 

thioesterification. The product was analyzed by MALDI-TOF MS. Expected [M+H]+: 1474.75, observed: 1474.42. 

 
Figure 4.9 MALDI-TOF MS analysis of sublancin-C22S-14-37 fragment. 

The C-terminal fragment containing residues 14 to 37 of sublancin-C22S was prepared by microwave assisted 

SPPS. The product was analyzed by MALDI-TOF MS. Expected [M+H]+: 2364.63, observed: 2365.26. 
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Figure 4.10 MALDI-TOF MS analysis of the NCL of sublancin1-13 thioester fragment and sublancin-C22S-
14-37 fragment. 
Sublancin-C22S was obtained by NCL of sublancin1-13 thioester fragment and sublancin-C22S-14-37 fragment. 

The reaction was analyzed by MALDI-TOF MS. Expected [M+H]+: 3705.21, observed: 3704.79. 

 

4.2.5.3 Sublancin C22S, C22N, and C22T analogues are inactive against Bacillus species  

Bioassays of sublancin-C22S, C22N, and C22T against sublancin producer B. subtilis 

168 and sublancin sensitive B. subtilis ATCC 6633 demonstrated that the peptide analogs were 

not bioactive (Figure 4.11) even at concentrations 300X MIC of wild type sublancin (Figure 

4.12). The peptides were folded with different ratios of reduced and oxidized glutathione in order 

to push sublancin into the folded state (Figures 4.13 and 4.14). These findings contradict the 

observations made by Dr. Huan Wang and show that the sugar is required for activity as 

originally described by Dr. Oman.5 The reaction buffer used by Dr. Huan Wang for oxidative 

folding and leader peptide removal contained TCEP. To test whether TCEP affected bacterial 

growth, a control bioassay plate of increasing concentrations of TCEP against sublancin sensitive 

B. halodurans C-125 was performed. We observed that at concentrations higher than 6.25 mM 

TCEP was able to inhibit bacterial growth (Figure 4.13). We believe that the discrepancy of 

sublancin-C22S activity is due to the addition of TCEP to the buffer.  
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Figure 4.11 Bioassay of heterologously expressed and in vitro modified sublancin-C22S, C22N, and C22T 

against Bacillus strains. 

Bioassays of sublancin-C22S, C22N, and C22T against sensitive Bacillus subtilis ATCC 6633 (right) demonstrated 

that all sublancin-C22X analogs are inactive when compared to wild type sublancin. A faint inhibition zone was 

observed for wild type sublancin against Bacillus subtilis 168 due to the high concentrations of sublancin spotted on 

the plates (left). Each peptide was folded using a 1:1 ratio of reduced and oxidized glutathione, 10 µL of each 

peptide was spotted.  

 

 
 
Figure 4.12 Bioassay of sublancin-C22S against Bacillus strains. 

Bioassays of sublancin-C22S against sensitive Bacillus subtilis ATCC 6633 (left) and sublancin-producer B. subtilis 

168 (right). Peptide was oxidatively folded with different ratios of reduced and oxidized glutathione. The bioassays 

demonstrated that sublancin-C22S was inactive even at concentrations 300X MIC when compared to wild type 

sublancin. Each peptide was folded using a 1:1, 1:3, or 1:5 ratio of reduced and oxidized glutathione, 10 µL of each 

peptide was spotted.  
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Figure 4.13 MALDI-TOF MS folded sublancin-C22S. 

Sublancin-C22N was obtained by in vitro oxidative folding of the product from the NCL reaction. The reaction was 

analyzed by MALDI-TOF MS. Expected [M+H]+: 3705.21, observed [M+H]+: 3705.58, expected [M+H-4Da]+: 

3701.19, observed [M+H-4Da]+: 3701.11.  

 

 
Figure 4.14 MALDI-TOF MS analysis of sublancin digested with chymotrypsin. 

Sublancin-C22S was digested with chymotrypsin under reducing conditions and analyzed by MALDI-TOF MS. The 

resulting mass spectrum is shown. Chymotrypsin cleavage sites include F, W, Y, L and N residues. The masses of 

the observed ions and their corresponding digest fragments are assigned. The results are consistent with sublancin-

C22S being oxidatively folded to generate the native disulfide topology. 
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Figure 4.15 Bioassay of TCEP against Bacillus strains. 

Bioassays of TCEP against sensitive Bacillus halodurans C-125. TCEP dilutions were prepared and 20 µL of 

indicated stocks were spotted. The bioassays demonstrated that at concentrations higher than 6.25 mM TCEP was 

able to inhibit bacterial growth 
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4.2.5.4 Phenotype of sublancin-sugar analogs when PTS sugars are added to the growth 

media of Bacillus cells 

In 2011, Dr. Oman probed the NDP-sugar specificity of SunS and observed that when 

SunS was incubated with His6-SunA and Mg2+ in the presence of UDP-Glc, UDP-GlcNAc, 

UDP-Gal, GDP-Man or UDP-Xyl, SunA was glycosylated at Cys22.5 In addition, all sugar-

modified peptides were amenable to oxidative folding producing various sublancin analogues 

with the correct disulfide connectivities as determined by proteolytic digests and ESI-MSn 

analysis.9 In order to probe the phenotypes of the reconstituted sublancin-sugar analogs we 

followed the same procedure implemented by Dr. Oman. We prepared sublancin-Glc, sublancin-

GlcNAc, sublancin-Gal, and sublancin-Man. The biological activity of sublancin-sugar analogs 

was tested against sensitive B. halodurans C-125 and sublancin-resistant B. halodurans C-125 

mutant strains grown in LB agar media and M9 minimal media supplemented with various 

carbon sources. When 20 µL of 10 µM reconstituted sublancin-sugar analogs were spotted on LB 

agar plates containing B. halodurans C-125, the peptide retained its antimicrobial activity against 

the sensitive strain regardless of what sugar was installed on sublancin (Figure 4.16). Given that 

PTS sugars were able to rescue Bacillus sensitive cells (as described in Chapter 3) from the 

effect of sublancin,10 the phenotypes of sensitive and sublancin-resistant B. halodurans C-125 

cells were probed against all sublancin-sugar analogs produced in vitro. The bacterial cells tested 

were grown in M9 minimal media plates supplemented with various carbon sources. When 20 

µL of 10 µM reconstituted sublancin-sugar analogs were spotted on M9 minimal media agar 

plates containing B. halodurans C-125 and supplemented with a single carbon source (either 

glucose, N-acetylglucosamine, mannose, galactose or fructose), regardless of what sugar was 

installed on sublancin, or what carbon source the bacteria grew in, the peptide retained its 
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antimicrobial activity against sensitive strains and was inactive against sublancin-resistant strains 

(Figure 4.17 and Table 4.2). These findings are intriguing since Stepper et al. showed that out of 

twelve sugars added to MRS agar medium (sorbitol, rhamnose, ManNAc, mannose, glucose, 

glucosamine, GalNAc, galactose, fructose, xylose, MurNAc and GlcNAc) only GlcNAc was 

fully protective of ATCC 8014 cells when exposed to glycocin F and ManNAc was only 

partially protective.7 One possible explanation could be that only 2.5 µL of 0.5 M carbon source 

was added to the MRS agar medium whereas in our experiment we added 3% (final 

concentration) of carbon source to the M9 minimal media agar plates.  

 
 
Figure 4.16 Bioassay of reconstituted sublancin-sugar analogs against B. halodurans C-125. 

Sublancin-Glc, sublancin-GlcNAc, sublancin-Gal, and sublancin-Mann were reconstituted in vitro as previously 

described by Dr. Oman.9 A bioassay of sublancin-sugar analogs against sensitive Bacillus halodurans C-125 

demonstrated that regardless of what sugar was installed on sublancin the peptide retains its antimicrobial activity. 

Each peptide was folded using a 1:1 ratio of reduced and oxidized glutathione, 20 µL of each peptide was spotted.  
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Figure 4.17 Bioassay of reconstituted sublancin-sugar analogs against B. halodurans C-125. 

Sublancin-Glc, sublancin-GlcNAc, sublancin-Gal, and sublancin-Man were reconstituted in vitro as previously 

described by Dr. Oman.9 Shown is a representative example for bacteria grown in M9 minimal media supplemented 

with mannose. A bioassay of sublancin-sugar analogs against sensitive Bacillus halodurans C-125 demonstrated that 

regardless of what sugar was installed on sublancin the peptide retained its antimicrobial activity. Each peptide was 

folded using a 1:1 ratio of reduced and oxidized glutathione, 20 µL of each peptide was spotted. Similar inhibition 

phenotypes were observed for bacteria grown in M9 minimal media supplemented with glucose, N-

acetylglucosamine or galactose. 

 
Table 4.2 Results from bioassay of reconstituted sublancin-NDP-sugar analogs against B. halodurans C-125 
and sublancin-resistant B. halodurans C-125. 

 
Sublancin-Glc, sublancin-GlcNAc, sublancin-Gal, and sublancin-Man were prepared in vitro as previously 

described by Dr. Oman.9 B. halodurans C-125 and sublancin-resistant B. halodurans C-125 were grown in M9 

minimal media with either glucose, N-acetylglucosamine, mannose, fructose or galactose as the carbon source. 

Indicated with numbers are the antimicrobial peptides that displayed activity against each particular strain. The 

right-most column displays the results from the bacterial strains grown in LB media as shown previously in Figure 

4.16. The plates for growth with mannose are show in in Figure 4.17. The lack of growth of resistant B. halodurans 

C-125 on M9 medium with glucose is consistent with a disabled PTS system for glucose and consistent with the 

genome sequencing data in chapter 3. 
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4.3 SUMMARY  

Sublancin’s antimicrobial properties were further studied. We were unable to 

demonstrate cross-resistance of other antibiotics with sublancin-resistant B. halodurans C-125, 

which suggests that sublancin is not likely exerting its antimicrobial action in a manner similar to 

the commercially available compounds examined. In addition, sublancin demonstrated a PAE of 

18 h when B. subtilis ATCC 6633 sensitive cells were exposed to up to 4xMIC of sublancin for 

120 min followed by removal of the peptide. Furthermore, it was demonstrated that sublancin 

shows bactericidal kinetics. The growth observed after 18 h of exposure of sensitive cells to 

sublancin was due to sublancin degradation and/or generation of resistant mutants. My studies 

also addressed the question of whether or not the sugar moiety of sublancin is important for its 

activity. Bioactivity assays of sublancin-C22S, C22N, and C22T demonstrated that the sugar 

moiety of sublancin is required for activity. What sugar is installed on the peptide is not as 

critical since all sublancin-sugar analogs were active against Bacillus-sensitive cells. In chapter 5 

attempts to identify sublancin’s localization in the target cell will be discussed.  

4.4 EXPERIMENTAL 

4.4.1 Materials, cultures, and conditions 

All chemicals and HPLC grade solvents were purchased from Sigma-Aldrich (St. Louis MO) and 

growth media were obtained from Difco Laboratories (Detroit MI). Tris, MOPS, and HEPES 

buffers were obtained from Fisher and α-cyano-4-hydroxy-cinnamic acid was obtained from 

Fluka. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS) was performed at the Mass Spectrometry Laboratory of the School of Chemical 

Sciences at UIUC using a Bruker Daltonics UltrafleXtreme MALDI TOFTOF instrument. Salt-
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containing MS samples were purified via Millipore Zip-TipC18 pipette tips (Billerica MA). Forty-

eight well assay plates were purchased from Corning Incorporated (Corning NY) and were read 

using a multi mode, single-channel Synergy H4 microplate reader from Biotek® instruments, Inc 

(Winooski, VT). Trays used for agar well diffusion assays were obtained from Nalge Nunc 

(Rochester NY). 

4.4.2 Minimum inhibitory concentration (MIC) determination for cross-resistance analysis 

 MICs were determined by the broth dilution method.11 Serial dilutions of sublancin were 

prepared in sterile deionized water (SDW). Forty-eight well microtiter plates (Corning Costar) 

were utilized for both B. subtilis ATCC 6633 and Bacillus halodurans C-125. The total volume 

of culture in each well was 300 µL; the experimental wells contained 30 µL of 10x stock 

sublancin at defined concentrations (0.097 mM – 100 mM) and 270 µL of a 1-in-10 dilution 

(approximately 1 x 108 colony-forming units (CFU) mL-1) of a culture of indicator strain diluted 

in fresh LB growth medium. In addition, each plate contained several blanks (270 µL fresh 

growth medium and 30 µL SDW) and control wells (270 µL of untreated 1-in-10 diluted culture 

and 30 µL SDW). The optical density at 600 nm (O.D.600nm) was recorded at hourly intervals 

from 0 to 6 h with an additional measurement at 18 h using a BioTek Synergy 4H plate reader. 

Plates were incubated under vigorous agitation at 37 °C. The readings of triplicate experiments 

were averaged. Growth curves were developed using control (culture and SDW only) readings to 

ensure sufficient O.D. changes for accurate inhibition assessment. Curve fits for MIC 

determination were produced by fitting the data with Origin8.5 software using a dose-response 

curve with the equation: y = A1 + (A2 – A1) / (1 +10(Logx0 – x)p), with p = variable Hill slope.  
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4.4.3 Construction of His6-SunA_Xa-C22X mutant plasmid 

Site-directed mutagenesis of SunA /SunAXa was performed by multistep PCR. First, the 

amplification of SunAXa was carried out by thirty cycles of denaturing (94 °C for 20s), 

annealing (58 °C for 30 s), and extending (72 °C for 20s) using the SunAXA-FP (Table 4.3) and 

an appropriate mutant reverse primer to yield the 5’ fragment of the mutant SunAXA gene (FP 

reaction). The PCR mixtures included 1×FailSafe PreMix G (PICENTRE Biotechnologies), 

DMSO (4%), Phusion DNA polymerase (Finnzymes) (0.04 U/µL), dNTP (2 mM) and primers (1 

µM each). In parallel, a PCR reaction using an appropriate mutant forward primer and the 

SunAXA-RP primer was also conducted to produce 3’ fragments of the mutated SunA gene 

using the same PCR conditions as the FP reaction (RP reaction). The overlapping products from 

the FP and RP reaction were combined in equal amounts and extended by seven cycles of 

denaturing, annealing and extending using the same PCR conditions. Following the extension, 

the SunA-FP and SunA-RP primers were added (final concentration, 2 µM) and the mixture was 

incubated for another 25 cycles of denaturing, annealing and extending. The product was 

amplified by PCR and then purified by 2% agarose gel electrophoresis. The resulting DNA 

fragments and the pET15 vector were digested with NdeI and XhoI at 37 °C for 2 h. The 

digested products were purified by agarose gel electrophoresis. The resulting DNA insert was 

ligated with the digested pET15 vector at 24 °C for 5 h using T4 DNA ligase. E. coli DH5α cells 

were transformed with the ligation mixtures by heat shock. Cells were plated on LB-ampicillin 

agar plates and grown for 15 h at 37 °C. Several colonies were picked and used to inoculate 

separate 5 mL cultures of LB-ampicillin medium. The cultures were grown at 37 °C for 15 h, and 

plasmids were isolated using a QIAprep Spin Miniprep Kit (QIAGEN). The sequences of the 

resulting plasmid products were confirmed by DNA sequencing. 
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Table 4.3 Primer sequences used for the construction of SunAXa-C22X analogs. 
Primers Sequence (5’ to 3’) 

SunAXa_FP CTAGG CATATG ATG GAA AAG CTA TTT AAA GAA GTT AAA CTA GAG 
GAA CTC GAA AAC 

SunAXa_RP CTGGA CTCGAG TTA TCT GCA GAA TTG ACG ATA GTT TTG ACA AGC 
AAC AGC TCC GCC 

SunAXa-C22S_FP GCT AGT GGC GGT ACA ATT GGT AGC GGT GGC GG 

SunAXa-C22S_RP ACA AGC AAC AGC TCC GCC ACC GCT ACC AAT TGT ACC 

SunAXa-C22N_FP GCT AGT GGC GGT ACA ATT GGT AAC GGT GGC GG 

SunAXa-C22N_RP ACA AGC AAC AGC TCC GCC ACC GTT ACC AAT TGT ACC 

SunAXa-C22T_FP GCT AGT GGC GGT ACA ATT GGT ACC GGT GGC GG 

SunAXa-C22T_RP ACA AGC AAC AGC TCC GCC ACC GGT ACC AAT TGT ACC 

The restriction sites for NdeI and XhoI are shown in bold and mutated bases are underlined. 

4.4.4 Overexpression and purification of His6-SunA_Xa-C22X mutant precursor peptides  

E. coli BL21(DE3) cells were transformed via electroporation with either a pET15b 

SunA_Xa-C22S, SunA_Xa-C22N or SunA_Xa-C22T mutant construct. A single colony 

transformant was used to inoculate a 100 mL culture of LB media supplemented with 100 µg/mL 

ampicillin. The culture was grown at 37 °C for 12 h and was used to inoculate 2 L of TB 

containing 100 µg/mL ampicillin and cells were grown at 37 °C to OD600 ≈ 0.8-1.0. IPTG was 

added to a final concentration of 0.2 mM and the culture was incubated at 18 °C for additional 12 

h. Cells overexpressing His6- SunA_Xa-C22X were harvested by centrifugation at 12,000 xg for 

20 min at 4 °C, and the pellet was resuspended in 30 mL of start buffer (20 mM NaH2PO4, pH 

7.5, 500 mM NaCl, 0.5 mM imidazole, 20% glycerol) and sonicated (cycles of 4 s bursts, 9.9 s 

rest) on ice for 20 min to lyse the cells. Cell debris was removed by centrifugation at 23,700 xg 

for 30 min at 4 °C. The supernatant was discarded and the pellet containing the insoluble peptide 

was resuspended once more in 30 mL of start buffer. The sonication and centrifugation steps 
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were repeated. The pellet was then resuspended in 30 mL of buffer 1 (6 M guanidine HCl, 20 

mM NaH2PO4, pH 7.5, 500 mM NaCl, 0.5 mM imidazole). Insoluble material was removed by 

centrifugation at 14000 ×g for 30 min at 4 °C, followed by filtration of the supernatant through a 

0.45 µm filter. The filtered sample was applied to a 5 mL HisTrap HP (GE Healthcare Life 

Sciences) immobilized metal affinity chromatography (IMAC) column previously charged with 

NiSO4 and equilibrated in buffer 1. The column was washed with two column volumes of buffer 

1, followed by two column volumes of buffer 2 (4 M guanidine HCl, 20 mM NaH2PO4 , pH 7.5, 

500 mM NaCl, 30 mM imidazole). The peptide was eluted with 2 column volumes of elution 

buffer (4 M guanidine HCl, 20 mM NaH2PO4 (pH 7.5), 500 mM NaCl, 1 M imidazole). The 

fractions were desalted using a ZipTipC18 and analyzed by MALDI-TOF MS.  The Ni-NTA-

purified peptides were desalted by two different methods depending on scale. The first method 

involved preparative reversed-phase HPLC (Waters Delta 600) employing a Waters C4 PrepPak 

cartridge. The purification was performed at room temperature by applying a linear gradient of 

2% solvent A (80% acetonitrile and 0.1% TFA in water) to 100% solvent A over 45 min with the 

second solvent 0.1% TFA in water (solvent B). The flow rate was set to 8 mL/min and the 

absorbance at 220 nm was monitored. Fractions containing the desired peptide were pooled and 

lyophilized (Labconco). The product was analyzed by MALDI-ToF MS and stored at −20 °C. 

This desalting method was performed with cultures over 4 L. Peptides obtained from small 

cultures were desalted by using C4 solid phase extraction columns (Grace Vydac) as directed by 

the product manual. All fractions were analyzed by MALDI-TOF-MS and fractions containing 

the desired product were combined and lyophilized. The product was kept at −20 °C for short-

term storage and −80 °C for long-term storage. Typical yields from 2 L of culture were 0.05 mg 
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for His6_SunA-C22S mutant, 0.1 mg for His6_SunA-C22N mutant and 0.1 mg for His6_SunA-

C22T mutant. 

4.4.5 Overexpression and purification of His6-SunS 

E. coli BL21 (DE3) cells were transformed via electroporation with the pET28b SunS 

construct obtained from Dr. Trent Oman.5 A single colony transformant was used to inoculate a 

30 mL culture of LB supplemented with 50 µg/mL kanamycin. The culture was grown at 37 °C 

for 12 h and was used to inoculate 3 L of LB containing 50 µg/mL kanamycin, and cells were 

grown at 37 °C to OD600 ≈ 0.6. The culture was incubated at 4 °C on ice for 20 min, then IPTG 

was added to a final concentration of 0.5 mM and the culture was incubated at 18 °C for an 

additional 16-20 h. Cells were harvested by centrifugation at 12,000 ×g for 15 min at 4 °C, and 

the pellet was resuspended in 30 mL of start buffer (20 mM Tris (pH 8.0), 500 mM NaCl, 1 mM 

TCEP, 10% glycerol) and stored at −80 °C. All protein purification steps were performed at 4 

°C. The cell paste was suspended in start buffer and the cells were lysed using a high pressure 

homogenizer (Avestin, Inc.). Cell debris was pelleted via centrifugation at 23,700 ×g for 20 min 

at 4 °C. The supernatant was injected via a superloop onto a fast protein liquid chromatography 

(FPLC) system (ÄKTA, GE Heathcare Life Sciences) equipped with a 5 mL HisTrap HP IMAC 

column previously charged with Ni2+ and equilibrated in start buffer. The column was washed 

with 50 mL of buffer A (30 mM imidazole, 20 mM Tris, pH 7.5, 300 mM NaCl) and the protein 

was eluted using a linear gradient of 0-100% B (buffer B = 200 mM imidazole, 20 mM Tris, pH 

7.5, 300 mM NaCl) over 40 min at a 2 mL/min flow rate. UV absorbance (280 nm) was 

monitored and fractions were collected and analyzed by SDS-PAGE (4-20% Tris-glycine 

READY gel, BioRAD). The fractions containing SunS were combined and concentrated using an 

Amicon Ultra-15 Centrifugal Filter Unit (10 kDa MWCO, Millipore). Gel filtration purification 
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was used to further purify SunS. The concentrated protein sample was injected onto an FPLC 

system (ÄKTA) equipped with an XK16 16/60 (GE Healthcare Life Sciences) column packed 

with SuperDex 75 resin previously equilibrated in 20 mM HEPES (pH 7.5), 200 mM KCl. The 

protein was eluted with a flow rate of 0.9 mL/min. Both UV (280 nm) and conductance were 

monitored and fractions were collected. Misfolded/aggregated protein was efficiently separated 

from soluble, correctly folded protein and the desired fractions were combined and concentrated 

using an Amicon Ultra-15 Centrifugal Filter Unit. The resulting protein sample was stored at −80 

°C. Protein concentration was determined using a Bradford Assay Kit (Pierce) and typically 

yields were 8 mg of His6-SunS from 3 L of cell culture. 

 

4.4.6 Glycosylation of SunAXa by SunS 

Sugar modified His6-SunAXa was prepared in 1000 µL of 50 mM Tris (pH 7.5), 1 mM 

MgCl2, 1 mM TCEP, 50 mM NDP-sugar, 200 µM His6-SunA and 10 µM His6-SunS. The 

reaction was incubated at 25 °C for 12 h. The extent of sugar modification was verified by 

removing a 5 µL aliquot of the reaction, quenching with 5% TFA to pH 1-2, desalting using a 

ZipTipC18, and analysis by MALDI-TOF and ESI Q/TOF MS. 

 

4.4.7 In vitro oxidative folding of sublancin analogues 

Peptides were dissolved in 50 mM Tris buffer (500 µL, pH 7.5) containing oxidized 

glutathione (GSH) (2 mM final conc.), and reduced GSH (2 mM final conc.). The mixture was 

incubated at 25 oC and the reaction monitored by MALDI-TOF and ESI Q/TOF MS. A loss of 4 

Da indicated the formation of two disulfide bonds. Folded analogues were purified by 

preparative HPLC using a linear gradient of 2% solvent A (80% acetonitrile and 0.1% TFA in 

water) to 40% solvent A over 40 min with the second solvent 0.1% TFA in water (solvent B). 
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4.4.8 Synthesis of sublancin-C22S_1-13 fragment, de-allylation and C-terminal 

thioesterification 

The N-terminal fluorescently labeled sublancin analog was synthesized using the 

procedure applied by Hsieh and coworkers8 to prepare wild type sublancin with a few 

modifications. Ser was used at position 22 rather than glycosylated Cys when elongating the 

fragment containing amino acids 14 to 37 by microwave assisted solid phase synthesis. Briefly, 

standard cycles for SPPS were performed using a fritted glass reaction vessel equipped with a N2 

inlet for resin/reagent agitation and a suction outlet for draining. Fmoc deprotection was 

achieved by agitating resin with 20% piperidine in dimethylformamide (DMF) for 20 min. After 

draining the reaction vessel, the resin was washed with DMF (3 x 30 s) and CH2Cl2 (2 x 30 s). 

The appropriately side-chain protected Fmoc-amino acid (5 equiv.) in DMF (5-10 mL) was pre-

activated with (N,N’-diisopropylcarbodiimide) (DIC) and HOBt (5 equiv. each) for 5 min, then 

added to the resin and agitated for 45-60 min. After draining the reaction vessel, the resin was 

washed with DMF (3 x 30 s) and CH2Cl2 (2 x 30 s). The completion of all couplings was 

assessed by a Kaiser test; double couplings were performed as needed but were generally 

unnecessary. Test cleavages were performed after all coupling steps by removing a small portion 

of resin from the reaction vessel and treating with 90:5:5 TFA:H2O:triisopropylsilane for 1 h 

under N2. After removing the cleaved resin by filtration, the filtrate was concentrated under a 

stream of N2. The peptide was precipitated with cold Et2O, isolated by centrifugation and 

dissolved in 1:1 H2O/MeCN. An aliquot of this solution was analyzed by MALDI-TOF MS.  

Allyl deprotection: The fully assembled resin (25 µmol) was swollen in dry CH2Cl2 (3 

mL) for 30 min under nitrogen, followed by addition of a solution of Pd(PPh3)4 (25 mg, 22 

µmol) and PhSiH3 (123 µL, 108 mg, 1 mmol, 40 equiv.) in 1:1 CH2Cl2:DMF (5 mL).  The resin 
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was shaken for 2 h and subsequently washed with DCM (5 x 5 mL), DMF containing 0.5 % 

diethyldithiocarbamate (DEDTC) as a palladium scavenger (3 x 2 mL), DMF (5 x 5 mL) and 

DCM (5 x 5 mL). An aliquot of this solution was analyzed by MALDI-TOF MS.  

N-terminal Fmoc deprotection: A solution of 1:4 piperidine:DMF (2 x 5 mL) was added 

to the resin and the flask was agitated for 5 min. The resin was subsequently drained and washed 

with DMF (5 x 3 mL), CH2Cl2 (5 x 3 mL) and DMF (5 x 3 mL).  

C-terminal thioesterification: A solution of ethyl-3-mercaptopropionate (77 µl, 600 umol, 

24 equiv.), HCTU (310 mg, 750 µmol 30 equiv.), and DIPEA (161 µl, 121 mg, 938 µmol, 37.5 

equiv.) in 4:1 CH2Cl2DCM:DMF (1.5 mL) was added to the resin-bound peptide and the reaction 

vessel was shaken for 1 h at 25 ºC. The procedure was repeated once and the resin was washed 

with CH2Cl2 (5 x 5 mL), DMF (5 x 5 mL) and CH2Cl2 (10 x 5 mL).  

Cleavage from resin: A mixture of TFA, triisopropylsilane and water (90:5:5) was added 

to the resin. After 2 h, the resin was washed with TFA (4 x 4 mL).  After removing the cleaved 

resin by filtration, the filtrate was concentrated under a stream of N2. The peptide was 

precipitated with cold Et2O, isolated by centrifugation and dissolved in 1:1 H2O/MeCN. An 

aliquot of this solution was spotted onto a MALDI-TOF MS target for analysis. If the test 

cleavage was successful and MALDI-TOF MS spectra looked good, all peptide was cleaved 

from resin by treating with 90:5:5 TFA:TIPS:H2O. After removing the cleaved resin by filtration, 

the filtrate was concentrated under a stream of N2. The peptide was precipitated with cold Et2O, 

isolated by centrifugation and dissolved in 1:1 H2O/MeCN. The peptide was then lyophilized to 

dryness, taken up in 0.1% TFA/H2O and analyzed by analytical RP-HPLC affording the desired 

N-terminal fragment. 
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4.4.9 Synthesis of sublancin-C22S_14-37 fragment, de-allylation and C-terminal 

thioesterification 

Fmoc-Arg-Wang resin (0.8 g) was used with a loading capacity of 0.5 mmol/g. The resin 

was first swollen in 5 mL of dimethylformamide (DMF) by sparging with N2 in a coarse fritted 

filter. After draining the reaction vessel, the resin was washed with DMF (3 x 30 s). Fmoc 

deprotection was achieved by agitating the resin with 20% piperidine in DMF for 20 min. The 

resin was then drained and washed with DMF (3 x 30 s), CH2Cl2 (2 x 30 s) and DMF (3 x 30 s). 

A Kaiser test to probe the efficiency of the deprotection was completed as necessary. Three 

solutions were used: 5 g of ninhydrin in 100 mL of ethanol, 80 g of phenol in 20 mL of ethanol, 

and 2 mL of 1 mM aq. KCN in 98 mL of pyridine. A small amount of beads was removed from 

the reaction vessel and placed in a 6x50 mm test tube. Three drops of each of the three solutions 

were then added to the test tube. Three drops of each solution were also added to a second test 

tube containing no beads, which serves as the negative control. The test tube was shaken in front 

of a heat gun or put in a hot water bath for 1 min. A deep blue-purple color observed after 30 s to 

1 min indicates a positive test (i.e. the presence of a free amine).  

Coupling steps were completed using 4 equivalents of amino acids relative to the resin loading. 

The appropriate side-chain protected Fmoc-amino acid in DMF (5-10 mL) was pre-activated 

with DIC (N,N’-diisopropylcarbodiimide) and HOBt (4 equiv. each, 1.6 mmol) for 5 min, then 

added to resin and agitated for 45-60 min. After draining the reaction vessel, the resin was 

washed with DMF (3 x 30 s), CH2Cl2 (2 x 30 s) and DMF (3 x 30 s). The completion of all 

couplings was assessed by a Kaiser test; Test cleavages were performed after all coupling steps 

by removing a small portion of dry resin from the reaction vessel and treating with 90:5:5 

TFA/H2O/triisopropylsilane for 1 h under N2.  After removing the cleaved resin by filtration, the 
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filtrate was concentrated under a stream of N2. The peptide was precipitated with cold Et2O, 

isolated by centrifugation and dissolved in 1:1 H2O/MeCN. An aliquot of this solution was 

spotted onto a MALDI-TOF MS target for analysis. Any remaining free resin sites were capped 

by agitation in 90:8:2 DMF:acetic anhydride:DIPEA for 15 min. If the test cleavage was 

successful and MALDI spectra looked good, all peptide was cleaved from the resin by treating 

with 90:5:5 TFA:TIPS:H2O. After removing the resin by filtration, the filtrate was concentrated 

under a stream of N2. The peptide was precipitated with cold Et2O, isolated by centrifugation and 

dissolved in 1:1 H2O/MeCN. The peptide was then lyophilized to dryness, taken up in 0.1% 

TFA/H2O and analyzed by analytical RP-HPLC. 

 

4.4.10 Native chemical ligation 

Ligation buffer was prepared by dissolving 4-mercaptophenylacetic acid (MPAA, final 

conc. = 200 mM) and TCEP (final conc. = 20 mM) in 6 M guanidine hydrochloride/0.2 M 

Na2HPO4 buffer. The pH was adjusted to 7.2 by the addition of 5.0 M HCl and the mixture was 

degassed with argon. A solution of the sublancin1-13 thioester (1 mM) and sublancin14-37-

C22X (0.5 mM) was prepared in the above ligation buffer and the pH was carefully adjusted to 

7.0-7.2 by addition of 2.0 M NaOH. The reaction was flushed with argon and allowed to 

incubate at 25 ºC for 24 or 42 h with reaction monitoring by LC-MS. The reaction was quenched 

by the addition of 0.1% formic acid in water at 24 h and 42 h. TCEP (20 mg/mL) was added to 

the ligation mixture prior to purification by reversed phase (C18) analytical HPLC.  

4.4.11 Chymotrypsin digests of sublancin and sublancin analogs under non-reducing 

conditions 

Sublancin and sublancin analogs were digested in 100 mM Tris (pH 7.5), and 0.1 mg/mL 
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chymotrypsin (Worthington). All reactions were incubated at 25 °C for 5 h and then quenched 

with 5% TFA to pH 1-2. Quenched samples were desalted with a ZipTipC18 prior to analysis by 

MALDI-TOF MS or analyzed by LC-ESI-Q/TOF MS.  

4.4.12 Phenotype of sublancin-sugar analogs when PTS sugars are added to the growth 

media of Bacillus cells 

Sublancin and sublancin analogs were first prepared by in vitro modification of His6-

SunAXa peptide by SunS to install the sugars. Oxidative folding afforded the disulfide linkages 

and the leader peptide was removed by proteolytic cleavage by Factor Xa. Sugar modified His6-

SunA Xa was prepared in 100 µL of 50 mM Tris (pH 7.5), 1 mM MgCl2, 1 mM TCEP, 5 mM 

NDP-sugar, 200 µM His6-SunA Xa, and 2 µM His6-SunS. The reaction was incubated at 25 °C 

for 12 h. The extent of sugar modification was verified by removing a 5 µL aliquot of the 

reaction, quenching with 5% TFA to pH 1-2, desalting using a ZipTipC18, and analysis by 

MALDI-TOF and ESI Q/TOF MS. Following analysis, the disulfides of the modified sublancin 

and sublancin analog core peptide were formed by addition of Tris (pH 7.5), oxidized glutathione 

(GSSG), and reduced glutathione (GSH), to final concentrations of 50 mM, 2 mM, and 2 mM, 

respectively. The total volume of the oxidative folding reaction was 100 µL and the reaction was 

incubated at 25 °C for an additional 12 h. The extent of disulfide formation was monitored by 

removing a 5 µL aliquot of the reaction, quenching with 5% TFA to pH 1-2, desalting using a 

ZipTipC18, and analyzing by MALDI-TOF MS. Following analysis, the leader peptide was 

proteolytically cleaved by the addition of NaCl and CaCl2 to 100 mM and 2 mM, respectively, 

and the addition of Factor Xa to 0.075 mg/mL (final concentrations). The reaction was incubated 

at 25 °C for 1 h and the extent of cleavage was monitored by MALDI-TOF MS as stated above. 
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Disulfide formation was observed as a peak with a −4 Da mass difference compared with 

material that was not subjected to oxidative folding. 

For each prepared sublancin analog 15 µL of the 100 µL reactions described above were 

spotted on either an overnight culture of sensitive B. halodurans C-125 or sublancin resistant B. 

halodurans C-125. B. halodurans C-125 strains were grown in LB or M9 minimal media,  

supplemented with various carbon sources, under aerobic conditions at 37 °C for 16 h. Ninety-

six well agar plates were prepared by combining 20 mL of molten LB or M9 minimal medium 

agar (cooled to 42 °C) with 100 µL of dense overnight culture (approx 108-109 CFU/mL). The 

seeded agar was poured into a sterile OmniTray (Nunc) and allowed to solidify at 25 °C for 30 

min. An additional 30 mL of molten LB medium was cooled to 42 °C, combined with 150 µL of 

culture, and poured over the lower solidified agar layer. A sterile 96-well PCR plate was placed 

in the molten agar upper layer and was allowed to solidify at 25 °C for 45 min. After sufficient 

solidification, the 96-well PCR plate was removed. The total 20 µL volume of each concentrated 

in vitro reaction was dispensed into separate newly formed wells. Authentic sublancin standards 

were spotted in 15 µL volumes at the concentrations indicated. Plates were left at 25 °C for 24 h 

and antibacterial activity was qualitatively determined by the presence or absence of growth 

inhibition.  
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CHAPTER 5. SUBLANCIN IN VIVO LOCALIZATION STUDIES a  

5.1 INTRODUCTION 

 Bacteriocins are ribosomally synthesized peptides produced by a wide range of bacterial 

species. Given the known pore forming activity of several families of antimicrobial peptides,1-4 

chapter 3 described whether sublancin dissipated the membrane potential of Bacilli at levels 

comparable to nisin.5 Extensive dissipation of membrane potential was observed within a few 

minutes of incubation with nisin. However, sublancin did not appear to damage the cell 

membrane as no significant decrease in the membrane potential was observed (Figures 3.3 and 

3.4). Furthermore, Oman et al. demonstrated that sublancin does not bind to lipid II, a common 

mode of action of many natural product antibiotics.5,6 Collectively these experiments suggest that 

sublancin does not compromise the cell membrane integrity but do not rule out recruitment of 

key components from the membrane as playing a role in the mechanism of action.  

 As discussed in chapter 3, the phosphotransferase system is important for sublancin 

sensitivity. Different components of the PTS have different localization. Govindarajan et al. have 

shown that EI and HPr are located near the poles in Escherichia coli and Bacillus subtilis cells.7,8 

Enzyme II (EII) permeases, which transport the sugar into the cell, are multidomain structures 

that can either exist as a single polypeptide, IIABC or as two peptides, IIBC and IIA.9 The 

IIABC and IIBC sugar permeases have been shown to be located in the cell membrane. The 

individual IIA components are spread evenly throughout the cytoplasm of the bacterial cells.8 To 

characterize the antibacterial action of sublancin it is important to determine where this rare 

________________________________________________________________________________________________________________________________________________ 

a All STORM and SR-SIM images were obtained in collaboration with Seonjin Park from Taekjip Ha research 
group. 
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ribosomally synthesized and post-translationally modified S-glycopeptide localizes within the 

cell of a sensitive bacterium.  

To this end, as described in this chapter, we have used confocal and super-resolution 

fluorescence microscopy together with tagged sublancin analogs to visualize sublancin in the 

cell. For this purpose, fluorescent groups were incorporated into sublancin using two strategies: 

1) reaction at the N-terminus with N-hydroxysuccinimide (NHS) esters and 2) coupling of 

amines with the unique carboxylic acid at the C-terminus of sublancin. Here we describe the 

application of these fluorescent tags to investigate whether sublancin localizes to the cell 

membrane, and, if so, whether it is uniformly localized or is present at septa and/or poles of the 

bacteria.  

5.2 RESULTS AND DISCUSSION 

5.2.1 N-terminal fluorescent sublancin analogs are inactive against Bacillus sensitive cells 

 
 Fluorescent labeling of antibiotics is a strategy used to understand how these compounds 

localize in their target cells.10 For the purpose of gaining insight into the mechanism by which 

sublancin exhibits bactericidal activity, sublancin analogs were produced. Hsieh et al. had 

previously synthesized sublancin by solid phase peptide synthesis (SPPS) and native chemical 

ligation (NCL).11 We implemented a similar methodology to synthesize fluorescently labeled 

SunA analogs (Figure 5.1). We similarly employed the use of commercially available Fmoc-Glu-

OAllyl, which was immobilized onto Rink amide resin for the synthesis of the N-terminal 

fragment, and NovaPEG Wang resin carrying immobilized Fmoc-Arg(Pbf)-OH for the C-

terminal fragment. Instead of using thioglycosyltamino acids to put on the sugar moiety we 

synthesized the full-length peptide first followed by in vitro glycosylation by SunS. 
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Sublancin, a 37 amino acid peptide, was first synthesized in two fragments designed 

based on the requirement of an available cysteine for NCL. The peptide bond between Gln13 and 

Cys14 was a suitable junction for native chemical ligation, therefore an N-terminal fragment 

containing amino acids 1-13 and a C-terminal fragment containing amino acids 14-37 bearing an 

N-terminal cysteine were synthesized.11 After preparation of the fragments by microwave 

assisted Fmoc SPPS, the fluorescent labeling and thioesterification were performed manually on 

the N-terminal fragment. Both fragments were then cleaved from the resin while simultaneously 

deprotecting the side chains, purified by HPLC, and characterized by MALDI-TOF MS (Figures 

5.2, 5.3, and 5.4). Unglycosylated fluorescent linear sublancin was obtained by NCL of the two 

fragments (Figure 5.5). The thioester N-terminal fragment was reacted with the C-terminal 

fragment in the presence of mercaptophenylacetic acid (MPAA) and tris 2-

carboxyethylphosphine (TCEP) in guanidine hydrochloride/Na2HPO4 buffer followed by HPLC 

purification. The glucose moiety was subsequently attached to Cys22 by an in vitro enzymatic 

modification performed by the glycosyltransferase SunS followed by HPLC purification (Figure 

5.6). Ultimate incorporation of disulfides by oxidation in the presence of oxidized glutathione 

and reduced glutathione afforded the desired analogs.12 The extent of the sugar modification and 

oxidative folding was verified by MALDI-TOF MS. 
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Figure 5.1 Synthesis of fluorescently labeled sublancin. 

An N-terminal fragment encompassing amino acids 1 to 13 and a C-terminal fragment including amino acids 14 to 

37 were generated by microwave-assisted SPPS. The N-terminal fragment was derivatized by attachment of both 

fluorescein and thioester moieties. Native chemical ligation united the two fragments followed by glycosylation and 

oxidative folding. The N-terminal thioester fragment was reacted with the C-terminal fragment in the presence of 

mercaptophenylacetic acid (MPAA) and tris 2-carboxyethylphosphine (TCEP) in guanidine hydrochloride/Na2HPO4 

buffer followed by HPLC purification. The glucose moiety was later attached to Cys22 by an in vitro enzymatic 

modification performed by the glycosyltransferase SunS followed by purification via HPLC. 
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Figure 5.2 MALDI-TOF MS analysis of sublancin1-13 thioester fragment.  

A control N-terminal fragment, without the fluorescein, was synthesized. The N-terminal fragment containing 

residues 1 to 13 was extended by microwave assisted SPPS followed by manual thioesterification. The product was 

analyzed by MALDI-TOF MS. Expected [M+H]+: 1474.75, observed: 1474.55. 

 

 

Figure 5.3 MALDI-TOF MS analysis of fluorescein-sublancin1-13 thioester fragment.  

The fluorescein N-terminal fragment containing residues 1 to 13 was extended by microwave assisted SPPS 

followed by manual fluorescent labeling and thioesterification. The product was analyzed by MALDI-TOF MS. 

Expected [M+H]: 1832.80, observed: 1832.71.  
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Figure 5.4 MALDI-TOF MS analysis of sublancin14-37 fragment. 

The C-terminal fragment containing residues 14 to 37 was extended by microwave assisted SPPS. The product was 

analyzed by MALDI-TOF MS. Expected [M+H]: 2380.69, observed: 2380.15. 
 

 

Figure 5.5 MALDI-TOF MS analysis of fluorescein labeled linear SunA core peptide (no glucose).  

Unglycosylated fluorescent labeled linear SunA core peptide was obtained by NCL of the two fragments. The 

product was analyzed by MALDI-TOF MS. Expected [M+H]: 4079.59, observed: 4079.38. 
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Figure 5.6 MALDI-TOF MS analysis of fluorescein-sublancin. 

Linear fluorescein-sublancin was obtained by native chemical ligation of the two fragments, followed by in vitro 

glycosylation and oxidative folding. The reaction was analyzed by MALDI-TOF MS. Expected [M+H]: 4241.73, 

observed: 4241.39. 

 

Bioassays of N-terminal fluorescein-labeled sublancin against sublancin-sensitive strains 

B. halodurans C-125 and B. subtilis ATCC 6633 demonstrated that the peptide was not bioactive 

(Figure 5.7). A possible explanation for the loss of activity is the inability of sublancin to fold 

correctly. As seen in Chapter 2, the N-terminus of sublancin folds inwards and helps keep the 

loop region in place. We suspect that the fluorescein moiety sterically blocks interactions 

between the N-terminal portion and the loop region, thus preventing the correct folding of the 

fluorescent peptide. 
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Figure 5.7 Bioassay of N-terminal fluorescein labeled sublancin against Bacillus strains. 

Antimicrobial activity assays of synthetic N-terminally labeled fluorescein-sublancin and sublancin (control) against 

B. subtilis ATCC 6633 (top) and B. halodurans C-125 (bottom). The concentration of peptide used is indicated. 

Authentic sublancin standards produced by and purified from B. subtilis 168 were used as positive controls. 

 

5.2.2  C-terminal fluorescent sublancin analogs are active against sensitive Bacillus cells  

Given that N-terminal labeling of sublancin resulted in the loss of activity, we shifted our 

focus to other potential modifications. Previous studies on peptides that target lipid II have taken 

advantage of unique carboxylic acids in the peptide structure of interest.13 Fortunately, sublancin 

also contains a unique carboxylic acid at the C-terminus due to the lack of glutamates and 

aspartate residues throughout its core sequence. In addition, the solution NMR structure of 

sublancin (Figures 2.5, 2.7, and 2.8) shows that the C-terminal tail does not interact with the bulk 

of the structure and therefore it is not expected to affect the folding of sublancin; thus, we hoped 

that C-terminally labeled sublancin would be bioactive. 

The unique carboxylic acid of naturally produced sublancin was labeled with 

fluoresceinyl glycine amide (a.k.a. 5-(aminoacetamido)fluorescein (AAA-flu), Figure 5.8) via a 

HOAt/EDC coupling reaction in dimethylformamide (DMF) followed by HPLC purification and 

MALDI-TOF MS analysis (Figure 5.9). Bioassays of C-terminal fluoresceinyl glycine amide 

labeled sublancin against B. subtilis ATCC 6633 demonstrated roughly four-fold decrease in 
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activity as compared to wild type sublancin based on the size of the zone of growth inhibition 

(Figure 5.10). We also tested the activity of this fluorescent analog against the producer strain, 

Bacillus subtilis 168, as a control. The producer strain contains the immunity protein SunI and 

was thus expected to be resistant to the labeled analogs. The faint inhibition zones observed 

against the producer strain are due to the very high concentrations of sublancin and sublancin 

analogs used.  

 

Figure 5.8 Amine-containing fluorophores used for labeling of sublancin at the C-terminus. 

Fluoresceinyl glycine amide (left), LissamineTMRhodamine B ethylenediamine (center) and BODIPY®TR 

Cadaverine (right) dyes were used to label wild type sublancin at the C-terminus via HOAt/EDC coupling in DMF. 

 

 
Figure 5.9 MALDI-TOF MS analysis of sublancin-fluorescein. 

The unique carboxylic acid of naturally produced sublancin was labeled with fluoresceinyl glycine amide via a 

HOAt/EDC coupling in DMF followed by HPLC purification and MALDI-TOF MS analysis. Expected [M+H]: 

4265.76, observed: 4266.11. 
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Figure 5.10 Sublancin-fluorescein bioactivity assay against producer and sensitive Bacillus strains. 

Bioactivity assay of sublancin-fluorescein against its producer strain Bacillus subtilis 168 (panels 1 & 2) and the 

sensitive strain Bacillus subtilis ATCC 6633 (panels 3 & 4). In panels 1 and 3, 10 µL of 100 µM sublancin-

fluorescein were spotted. In panels 2 and 4, 10 µL of 25 µM of sublancin were spotted. Faint inhibition zones were 

observed due to the high concentrations of sublancin and sublancin analogs spotted on the plates. 

 

5.2.3 Confocal fluorescent microscopy studies  

Wide-field fluorescence microscopy images are produced by flooding the entire sample 

evenly with light from the source. In contrast, confocal microscopy uses a pinhole in front of the 

detector to eliminate any out-of-focus signal.14 Confocal microscopy produces higher resolution 

images as compared to wide-field fluorescence microscopy, but unfortunately any fluorophores 

within 200 nm of each other will appear as one fuzzy spot.15  

Bacillus halodurans C-125 sensitive cells were incubated with sublancin-fluorescein, 

washed with buffer and immobilized with 2% low-gelling agarose before being imaged by 

confocal microscopy. Confocal microscopy imaging revealed the localization of the peptide to 

specific regions throughout the Bacillus cells, with higher fluorescence observed concentrated at 

the poles and septa. It was difficult to obtain clear images using fluorescein due to the rapid 

photobleaching under extensive laser exposure.16 Furthermore, extensive laser exposure caused 
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the 2% low-gelling agarose to start melting, allowing the cells to move. To solve the issue of 

photobleaching, more photo stable fluorescent sublancin analogs were synthesized. Due to the 

higher stability of rhodamine and BODIPY dyes, I labeled sublancin with both LissamineTM 

rhodamine B ethylenediamine and BODIPY®TR cadaverine (Figure 5.8) at the C-terminus 

following the procedure used for fluoresceinyl glycine amide (Figures 5.11 and 5.12). Bioassays 

of sublancin C-terminally labeled with LissamineTM rhodamine B ethylenediamine or 

BODIPY®TR cadaverine against sensitive Bacillus subtilis ATCC 6633 demonstrated a 

decrease in activity compared to wild type sublancin (Figure 5.13).  

 

Figure 5.11 MALDI-TOF MS analysis of sublancin-LissamineRhodamine. 

Sublancin was labeled with LissamineTM rhodamine B ethylenediamine via a HOAt/EDC coupling in DMF followed 

by purification by reversed phase (C18) HPLC and analyzed by MALDI-TOF MS. Expected [M+H]: 4462.13, 

observed: 4461.82. 
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Figure 5.12 MALDI-TOF MS analysis of sublancin-BODIPY. 

Sublancin was labeled with BODIPY®TR cadaverine via HOAt/EDC coupling in DMF followed by purification by 

reversed phase (C18) HPLC and analyzed by MALDI-TOF MS. Expected [M+H]: 4469.68, observed: 4468.86. 

 

 

Figure 5.13 Sublancin-BODIPY and sublancin-LissamineRhodamine bioassays against sublancin producer 

and sensitive Bacillus strains. 

Bioassays of C-terminal BODIPY®TR cadaverine and LissamineTM rhodamine B ethylenediamine labeled sublancin 

against sensitive Bacillus subtilis ATCC 6633 (right) demonstrated a decrease in activity compared to wild type 

sublancin. Faint inhibition zones were observed due to the high concentrations of sublancin and sublancin analogs 

spotted on the plates (left).  
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Confocal microscopy with sublancin-BODIPY and sublancin-LissamineRhodamine 

resulted in a more intense and stable fluorescent signal under extensive laser exposure. As with 

fluorescein, untreated cells and sublancin treated Bacilli did not display autofluorescence. Figure 

5.14 shows data demonstrating localization of sublancin to specific regions of the bacterial cells. 

Obtaining Z-stacks of the samples resulted in the melting of the agarose used to immobilize the 

cells. Unfortunately we were unable to determine with precision whether sublancin localizes to 

the cell membrane or inside the cell. 

 

Figure 5.14 Confocal fluorescence microscope images of Bacillus halodurans C-125 cells treated with 

sublancin-LissamineRhodamine. 

 Bacillus halodurans C-125 cells were treated with sublancin-LissamineRhodamine at 37 ºC for 30 min. Images 

were collected under 560 nm excitation. Dark left most panels show the fluorescence images, middle panels show 

the differential interference contrast (DIC) or bright field images and the right panels show the overlay image for not 

treated (top), 1 µM sublancin treated (middle) and 3 µM sublancin-LissamineRhodamine treated Bacillus cells 

(bottom).  
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5.2.4 Localization studies using super resolution microscopy 

Every fluorescent molecule is able to give out a finite number of photons before it is 

bleached; in other words, every photon is precious. Stochastic optical reconstruction microscopy 

(STORM) is a technique that utilizes the successive activation and time-resolved localization of 

photoswitchable fluorescent molecules to create high-resolution images.17,18 STORM offers an 

alternative method to confocal microscopy for determining with higher precision whether the 

fluorescent sublancin analogs localize to the cell membrane. The fluorescent dyes used so far 

(fluorescein, BODIPY, Lissamine Rhodamine) are not photoswitchable. We proceeded to label 

sublancin with Cyanine 5-amine a bright, far-red-fluorescent dye with excitation ideally suited 

for 647 nm lasers (Figures 5.15 and 5.16). As demonstrated for other sublancin C-terminal 

fluorescent analogs, sublancin-Cy5 was active against Bacillus strains (Figure 5.17). The 

minimum inhibitory concentration (MIC) of sublancin-Cy5 against Bacillus halodurans C-125 

was determined to be 1.82 µM, about 5.5 times higher than that for wild type sublancin (Figure 

5.17).  

 

Figure 5.15 Cyanine 5-amine dye structure and absorption and emission spectra. 
Adsorption spectra (blue) and emission spectra (red) are shown (http://www.lumiprobe.com/p/cy5-amine) 
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Figure 5.16 MALDI-TOF MS analysis of sublancin-Cy5. 

Sublancin was labeled with Cyanine 5-amine via a HOAt/EDC coupling in DMF followed by purification by 

reversed phase (C18) HPLC and analyzed by MALDI-TOF MS. Expected [M+H]: 4442.17, observed: 4441.68. 

 

 

Figure 5.17 Bioactivity assay and MIC of sublancin-Cy5 against B. halodurans C-125. 

Bioactivity assay of sublancin-Cy5 (left). The following were spotted in the bioassay: (1) 60 µM sublancin-Cy5, (2) 

Phosphate-buffered saline (PBS), (3) 100 µM Cyanine 5-amine (observed spot is the blue dye) and (4) 25 µM 

sublancin. MIC determination of sublancin-Cy5 against B. halodurans C-125 (right). The MIC was determined to be 

1.82 µM, about 5.5 times greater than that of B. subtilis 168 produced sublancin.  
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STORM images from Bacillus halodurans C-125 treated with 3 µM or 1 µM sublancin-Cy5 and 

then washed five times with buffer had too much background (Figure 5.18a,b). Treating the 

bacteria with 1 µM sublancin-Cy5 and washing 10 times resulted in reduced background 

intensity (Figure 5.18c,d,e). B. halodurans C-125 cells grow in chains, making it difficult to 

distinguish one cell from the next. To do so, we examined a smaller area in more detail (Figure 

5.18c,d), combining the 20,000 frames taken to create the STORM images to generate a  3D 

representation of the area surrounding three intense fluorescent signals (Figure 5.18d). A screen 

shot of the 3D representation clearly shows the outline of a cell with increased fluorescence at 

the poles (Figure 5.18e).   
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Figure 5.18 STORM image of sublancin-Cy5 incubated with Bacillus halodurans C-125. 

STORM images from Bacillus halodurans C-125 treated with (a) 3 µM or (b) 1 µM sublancin-Cy5 and then washed 

five times with buffer had too much background. (c,d,e) Bacillus halodurans C-125 treated with 1 µM sublancin-

Cy5 and washed 10 times. (d) Zoomed in image of the red boxed area from (c), image (d) was used to create a 3D 

representation of the area surrounding the three intense fluorescent signals. (e) A 2D screen shot of the 3D 

representation of (d) showing the outline of a cell with increased fluorescence at the poles. The orange line 

represents the outline of the cell based on the bright field image. 
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Unable to determine convincingly whether sublancin acts by entering the cells because of the 

background fluorescent noise, Seonjin Park from the Taekjip Ha lab and I proceeded to take 

images using super resolution structured illumination microscopy (SR-SIM). Unlike STORM, 

which takes advantage of photoactive molecules, SR-SIM is a wide field technique that uses a 

grating pattern to illuminate the sample. The pattern aids in the computational removal of out-of-

focus blur.19 SIM images also have enhanced lateral resolution achieved by acquiring multiple 

raw images of the biological sample while rotating the grid pattern at a specified angle (usually 

60 degrees) and using a specialized algorithm to reconstruct a final image.19 A Zeiss Elyra S1 

instrument was used to take Z-stack images of B. halodurans C-125 treated with 1 µM 

sublancin-Cy5. The SIM images showed that sublancin localizes to the membrane of the cell and 

is not spread inside the cell (Figures 5.19, and 5.20). Consistent with data from confocal 

microscopy and STORM, areas of intense fluorescence include the septa and the poles.  

 

Figure 5.19 SR-SIM image of sublancin-Cy5 incubated with Bacillus halodurans C-125. 

(a, d) Wide field images, (b, e) overlays of fluorescent and wide field images (c, f) fluorescent images taken using a 

642 nm laser showing sublancin-Cy5 localizing to the membrane and poles of the bacteria. The red lines denote a 2 

µm length. Red arrows point to the septa and poles of the cells. 
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Figure 5.20 SR-SIM Z-stack slides of sublancin-Cy5 incubated with Bacillus halodurans C-125. 

Consecutive SR-SIM Z-stack images (a) bottom of stack and (m) top of stack of Bacillus halodurans C-125 cells 

treated with 1 µM sublancin-Cy5. The slides are each 0.100 µm of a 1.60 µm total thickness. The red lines denote a 

2 µm length. 
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5.2.5 Unlabelled wild type sublancin decreases the binding of sublancin-Cy5 as observed 

by SR-SIM 

SR-SIM imaging showed that sublancin-Cy5 localizes to the cell membrane and poles. 

To determine whether sublancin-Cy5 and naturally produced sublancin both bind to the same 

target we carried out competition experiments between the two peptides. Bacillus halodurans C-

125 cells were grown to exponential phase and treated with 1 µM sublancin-Cy5 only, 1 µM 

sublancin-Cy5 and 0.2 µM sublancin, or 1 µM sublancin-Cy5 and 1 µM sublancin. The samples 

were then incubated for 30 min at 37 ºC, followed by 10 washes with buffer before analysis by 

SR-SIM. As the concentration of sublancin was increased we observed a decrease in the 

normalized mean fluorescence intensity per bacterial cells suggesting that these two antibiotics 

may compete for the same target (Figure 5.21). The normalized mean fluorescence was 

calculated by the addition of fluorescence from all Z-stacks taken from a single imaging event 

and dividing by the number of bacteria imaged. 

 
Figure 5.21 Competition of sublancin and sublancin-Cy5. 

Bacillus halodurans C-125 cells were grown to exponential phase and treated with 1 µM sublancin-Cy5, 1 µM 

sublancin-Cy5 and 0.2 µM sublancin, or 1 µM sublancin-Cy5 and 1 µM sublancin. As the concentration of wild type 

sublancin was increased the fluorescence intensity decreased, suggesting that the two peptides compete for the same 

target. * indicates a P < 0.05 between addition of sublancin relative to sublancin-Cy5 treated cells. The means of the 

data from a single experiment conducted in triplicate are shown. The data are representative of those from three 

independent experiments. Error bars indicate standard deviations. 
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5.2.6 Glucose and NaCl decrease the binding of sublancin-Cy5 to sensitive bacterial cells 

Glucose and sodium chloride have both been found to affect the sensitivity to sublancin. 

When sensitive strains are exposed to sublancin and grown in media containing glucose, the 

activity of sublancin is lost (Chapter 3). When sublancin sensitive strains are grown in media 

lacking sodium chloride a clear inhibition zone is observed after the addition of sublancin. As the 

salt content of the media is increased from 0 to 5%, the sensitive cells become resistant to the 

effect of sublancin.20 We investigated whether the addition of glucose, sodium chloride or a 

combination of both at either 5% or 10% concentration had an effect on the binding of sublancin-

Cy5. In order to obtain more evidence that sublancin-Cy5 and sublancin share the same target, 

Bacillus halodurans C-125 cells were treated for 30 min with sublancin-Cy5 and glucose and/or 

sodium chloride. By SR-SIM we observed that as the percentage of glucose or sodium chloride 

was increased, the fluorescence decreased. The greatest effect was observed when glucose and 

sodium chloride were added in combination (Figure 5.22). The glucose-induced decrease in 

fluorescence is in agreement with the observation described in chapter 3 that the growth of 

sensitive strains with PTS sugars (e.g. glucose) results in sublancin resistance. If sublancin-Cy5 

competes with glucose it is expected that increased availability of glucose would inhibit the 

interaction of sublancin and the PTS system. The decrease in fluorescence resulting from 

addition of sodium chloride agrees with MscL channel involvement in sublancin sensitivity.20 As 

described in chapter 1, the MscL channel controls the efflux of osmoprotectants and osmolytes 

upon osmotic shock. When cells experience an abrupt decrease or increase in the osmolarity of 

their extracellular environment they allow ions and osmolytes to rapidly exit or enter the cell in 

order to maintain adequate turgor pressure. It is hypothesized that sublancin susceptibility relates 



 
 

 166 

an open state of the MscL channel by acting in an opportunistic fashion. When the channel opens 

sublancin is able to enter the cell.  

 

 
Figure 5.22 Effect of glucose and NaCl on the activity of sublancin-Cy5. 

Bacillus halodurans C-125 cells were treated for 30 min with sublancin-Cy5 and glucose and/or sodium chloride. As 

the percentage of glucose or sodium chloride was increased the fluorescence decreased. The greatest effect was 

observed when glucose and sodium chloride were added in combination. * indicates a P < 0.05 between addition of 

glucose, sodium chloride or a combination of both relative to sublancin-Cy5 treated cells. The means of the data 

from a single experiment conducted in triplicate are shown. The data are representative of those from three 

independent experiments. Error bars indicate standard deviations. 

 

5.3 SUMMARY AND OUTLOOK 

 In an effort to identify sublancin’s localization in bacterial cells, a series of fluorescent 

analogues were synthesized and studied by fluorescent microscopy. The work presented in this 

chapter involved the use of manual and microwave assisted solid phase peptide synthesis to 

obtain an N-terminally labelled sublancin analog and the use of regular peptide coupling with the 

native producer to obtain C-terminally labelled sublancin analogs. The evidence shown 

represents the first in vivo localization studies of the glycocin class of RiPP natural products. The 
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competition experiments with wild type sublancin, glucose and sodium chloride show that the 

fluorescent analogs have the same target as wild type, as revealed by a decrease in fluorescence. 

Furthermore, although sublancin does not disrupt the membrane potential of the cell (chapter 3), 

we observed that it localizes to the cell membrane, poles and septa of sensitive Bacillus cells. In 

chapter 3 I discussed the involvement of the PTS in sublancin sensitivity. It has been shown that 

in E.coli, EII is localized to the cell membrane, and that EI and HPr are at the poles until HPr is 

phosphorylated and later released from the poles to then localize throughout the cell.8 In the 

future, it would be very interesting to monitor the localization of GFP-HPr B. subtilis8 when 

incubated with glucose, sublancin-Cy5, and both.  

5.4 EXPERIMENTAL 

5.4.1 Materials, cultures, and conditions 

 All chemicals and HPLC grade solvents were purchased from Sigma-Aldrich (St. Louis 

MO). Growth media were obtained from Difco Laboratories (Detroit MI) and Luria Bertoni (LB) 

was also purchased from BD Biosciences. Tris, MOPS, and HEPES buffers were obtained from 

Fisher and α-cyano-4-hydroxy-cinnamic acid was obtained from Fluka. Matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was performed at the 

Mass Spectrometry Laboratory within the School of Chemical Sciences at UIUC using a Bruker 

Daltonics UltrafleXtreme MALDI TOFTOF instrument. Salt-containing MS samples were 

purified via Millipore Zip-TipC18 pipette tips (Billerica MA). Forty-eight well assay plates were 

purchased from Corning Incorporated (Corning NY) and were read using a multi mode, single-

channel Synergy H4 microplate reader from Biotek® instruments, Inc (Winooski, VT). Trays 

used for agar well diffusion assays were obtained from Nalge Nunc (Rochester NY).  
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5.4.2 Synthesis of N-terminal fluorescently labeled sublancin analog 

The N-terminal fluorescently labeled sublancin analog was synthesized using the 

procedure applied by Hsieh and coworkers11 to prepare wild type sublancin with the exception of 

the attachment of a NHS-fluorescein tag to Gly1 of the N-terminal fragment (containing amino 

acids 1-13) following de-O-allylation of the fragment. Unless otherwise noted, standard cycles 

for SPPS were performed using a fritted glass reaction vessel equipped with a N2 inlet for 

resin/reagent agitation and a suction outlet for draining. Fmoc deprotection was achieved by 

agitating resin with 20% piperidine in dimethylformamide (DMF) for 20 min. After draining the 

reaction vessel, the resin was washed with DMF (3 x 30 s) and CH2Cl2 (2 x 30 s). The appropriately 

side-chain protected Fmoc-amino acid (5 equiv.) in DMF (5-10 mL) was pre-activated with (N,N’-

diisopropylcarbodiimide) (DIC) and HOBt (5 equiv. each) for 5 min, then added to the resin and 

agitated for 45-60 min. After draining the reaction vessel, the resin was washed with DMF (3 x 30 s) 

and CH2Cl2 (2 x 30 s). The completion of all couplings was assessed by a Kaiser test; double 

couplings were performed as needed but were generally unnecessary. Test cleavages were performed 

after all coupling steps by removing a small portion of dry resin from the reaction vessel and treating 

with 90:5:5 TFA:H2O:triisopropylsilane for 1 h under N2. After removing the cleaved resin by 

filtration, the filtrate was concentrated under a stream of N2. The peptide was precipitated with cold 

Et2O, isolated by centrifugation and dissolved in 1:1 H2O/MeCN. An aliquot of this solution was 

analyzed by MALDI-TOF MS.  

5.4.3 De-allylation of sublancin 1-13 fragment and C-terminal thioesterification 

Allyl deprotection: The fully assembled resin (25 µmol) was swollen in dry CH2Cl2 (3 

mL) for 30 min under nitrogen, followed by addition of a solution of Pd(PPh3)4 (25 mg, 22 

µmol) and PhSiH3 (123 µl, 108 mg, 1 mmol, 40 equiv.) in 1:1 CH2Cl2:DMF (5 mL).  The resin 
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was shaken for 2 h and subsequently washed with DCM (5 x 5 mL), DMF containing 0.5 % 

diethyldithiocarbamate (DEDTC) as a palladium scavenger (3 x 2 mL), DMF (5 x 5 mL) and 

DCM (5 x 5 mL). An aliquot of this solution was analyzed by MALDI-TOF MS.  

N-terminal Fmoc deprotection: A solution of 1:4 piperidine:DMF (2 x 5 mL) was added 

to the resin and the flask was agitated for 5 min. The resin was subsequently drained and washed 

with DMF (5 x 3 mL), CH2Cl2 (5 x 3 mL) and DMF (5 x 3 mL). The resulting resin-bound amine 

was reacted immediately with fluorescein NHS.  

N-terminal Fluorescein NHS coupling: Fluorescein NHS (2 equiv.), the N-terminal 

amine, and DIPEA (43.5 µl, 32.3 mg, 10 equiv.) were combined in DMF (5 mL). The completion 

of the couplings was assessed by a Kaiser test. The reaction was shaken for 8 h followed by 

washing with DCM (5 x 5 mL), DMF (5 x 5 mL) and DCM (10 x 5 mL). An aliquot of this 

solution was analyzed by MALDI-TOF MS. 

C-terminal thioesterification: A solution of ethyl-3-mercaptopropionate (77 µl, 600 umol, 

24 equiv.), HCTU (310 mg, 750 µmol 30 equiv.), and DIPEA (161 µl, 121 mg, 938 µmol, 37.5 

equiv.) in 4:1 CH2Cl2DCM:DMF (1.5 mL) was added to the resin-bound fluorescein-labeled 

peptide and the reaction vessel was shaken for 1 h at 25 ºC. The procedure was repeated once 

and the resin was washed with CH2Cl2 (5 x 5 mL), DMF (5 x 5 mL) and CH2Cl2 (10 x 5 mL).  

Cleavage from resin: A mixture of TFA, triisopropylsilane and water (90:5:5) was added 

to the resin. After 2 h, the resin was washed with TFA (4 x 4 mL).  After removing the cleaved 

resin by filtration, the filtrate was concentrated under a stream of N2. The peptide was 

precipitated with cold Et2O, isolated by centrifugation and dissolved in 1:1 H2O/MeCN. An 

aliquot of this solution was spotted onto a MALDI-TOF MS target for analysis. If the test 

cleavage was successful and MALDI-TOF MS spectra looked good, all peptide was cleaved from 
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resin by treating with 90:5:5 TFA:TIPS:H2O. After removing the cleaved resin by filtration, the 

filtrate was concentrated under a stream of N2. The peptide was precipitated with cold Et2O, 

isolated by centrifugation and dissolved in 1:1 H2O/MeCN. The peptide was then lyophilized to 

dryness, taken up in 0.1% TFA/H2O and analyzed by analytical RP-HPLC affording the desired 

N-terminal fragment. 

 

5.4.4 Synthesis of Sublancin 14-37 fragment  

Fmoc-Arg-Wang resin (0.8 g) was used with a loading capacity of 0.5 mmol/g. The resin 

was first swollen in 5 mL of dimethylformamide (DMF) by sparging with N2 in a coarse fritted 

filter. After draining the reaction vessel, the resin was washed with DMF (3 x 30 s). Fmoc 

deprotection was achieved by agitating the resin with 20% piperidine in DMF for 20 min. The 

resin was then drained and washed with DMF (3 x 30 s), CH2Cl2 (2 x 30 s) and DMF (3 x 30 s). 

A Kaiser test to probe the efficiency of the deprotection was completed as necessary. Three 

solutions were used: 5 g of ninhydrin in 100 mL of ethanol, 80 g of phenol in 20 mL of ethanol, 

and 2 mL of 1 mM aq. KCN in 98 mL of pyridine. A small amount of beads was removed from 

the reaction vessel and placed in a 6x50 mm test tube. Three drops of each of the three solutions 

were then added to the test tube. Three drops of each solution were also added to a second test 

tube containing no beads, which serves as the negative control. The test tube was shaken in front 

of a heat gun or put in a hot water bath for 1 min. A deep blue-purple color observed after 30 s to 

1 min indicates a positive test (i.e. the presence of a free amine).  

Coupling steps were completed using 4 equivalents of amino acids relative to the resin loading. 

The appropriate side-chain protected Fmoc-amino acid in DMF (5-10 mL) was pre-activated 

with DIC (N,N’-diisopropylcarbodiimide) and HOBt (4 equiv. each, 1.6 mmol) for 5 min, then 

added to resin and agitated for 45-60 min. After draining the reaction vessel, the resin was 
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washed with DMF (3 x 30 s), CH2Cl2 (2 x 30 s) and DMF (3 x 30 s). The completion of all 

couplings was assessed by a Kaiser test; Test cleavages were performed after all coupling steps 

by removing a small portion of dry resin from the reaction vessel and treating with 90:5:5 

TFA/H2O/triisopropylsilane for 1 h under N2.  After removing the cleaved resin by filtration, the 

filtrate was concentrated under a stream of N2. The peptide was precipitated with cold Et2O, 

isolated by centrifugation and dissolved in 1:1 H2O/MeCN. An aliquot of this solution was 

spotted onto a MALDI-TOF MS target for analysis. Any remaining free resin sites were capped 

by agitation in 90:8:2 DMF:acetic anhydride:DIPEA for 15 min. If the test cleavage was 

successful and MALDI spectra looked good, all peptide was cleaved from the resin by treating 

with 90:5:5 TFA:TIPS:H2O. After removing the resin by filtration, the filtrate was concentrated 

under a stream of N2. The peptide was precipitated with cold Et2O, isolated by centrifugation and 

dissolved in 1:1 H2O/MeCN. The peptide was then lyophilized to dryness, taken up in 0.1% 

TFA/H2O and analyzed by analytical RP-HPLC. 

5.4.5 Native chemical ligation of sublancin fragments 

Ligation buffer was prepared by dissolving 4-mercaptophenylacetic acid (MPAA, final 

conc. = 200 mM) and TCEP (final conc. = 20 mM) in 6 M guanidine hydrochloride/0.2 M 

Na2HPO4 buffer. The pH was adjusted to 7.2 by the addition of 5.0 M HCL and the mixture was 

degassed with argon. A solution of the NHS-Fluorescein-sublancin1-13 thioester (1 mM) and 

sublancin14-37 (0.5 mM) was prepared in the above ligation buffer and the pH was carefully 

adjusted to 7.0-7.2 by addition of 2.0 M NaOH. The reaction was flushed with argon and allowed 

to incubate at 25 ºC for 24 or 42 h with reaction monitoring by LC-MS. The reaction was 

quenched by the addition of 0.1% formic acid in water at 24 h and 42 h. TCEP (20 mg/mL) was 

added to the ligation mixture prior to purification by reversed phase (C18) analytical HPLC.  
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5.4.6 Synthesis of C-terminal fluorescently labeled sublancin 

Fluoresceinyl glycine amide (5-(aminoacetamido)fluorescein, AAA-flu), LissamineTM 

rhodamine B ethylenediamine, BODIPY® TR cadaverine or Cy5-amine, were coupled to the 

unique carboxylic acid of sublancin by incubation overnight at room temperature in 100 µl DMF 

containing 50 nmol peptide, 50 nmol fluorophore-amine and 60 nmol of both EDC and HOAt. 

After evaporation of the DMF, the labeled sublancin was purified from the reaction mixture 

using reversed phase (C18) HPLC. 

5.4.7 Preparation of culture samples for microscopy  

Overnight cultures of B. halodurans C-125 and B. subtilis ATCC 6633 were prepared in 

LB and grown at 37 ºC under vigorous agitation. A 150 µL aliquot from each overnight culture 

was used to inoculate 5 mL of LB. The cultures were grown to an OD of 0.5 then transferred to 

2.0 mL Eppendorf tubes and centrifuged at 1,500 × g for 3 min. Into the tubes with cells were 

added cold solutions of fluorescently labeled sublancin at the desired concentration in 1X 

Dulbecco’s Phosphate-Buffered Saline (D-PBS) (1 mL, Fisher Scientific). The reactions were 

incubated at 37 ºC for 30 min then centrifuged at 1,500 × g for 1 min at 25 °C. The supernatant 

was carefully removed and the cells were carefully suspended in 1 mL of 1X D-PBS. The 

solution was again centrifuged at 1,500 × g for 1 min at 25 °C, the supernatant was removed, and 

cells were carefully suspended in 1 mL of 1X D-PBS. Finally, the suspension was centrifuged 

and D-PBS was removed to give a final volume of 250 µL.  

5.4.8 Confocal microscopy slide preparation 

Aliquots of the suspension (10 µL) and liquified low-gelling agarose (10 µL, 1.5%) were 

added to a microscopy plate and the localization of the lantibiotic was analyzed by confocal 

fluorescence microscopy. The microscopy images were taken by focusing the cells first in the 
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bright field channel and recording an image. The channel was later switched to the fluorescence 

settings with appropriate excitation. An excitation wavelength of 488 nm was used for 

fluorescein and 560 nm for Lissamine Rhodamine and Bodipy. The laser power was adjusted and 

the confocal plane was changed stepwise to a obtain a clear image. 

5.4.9 Stochastic super resolution (STORM) and SR-SIM microscopy slide preparation 

 
Microscopy slides were coated with poly-L-lysine (Sigma, sold as 0.10% (w/v) solution 

in water), a positively charged amino acid polymer, by incubation with the coating solution 30 

min at room temperature followed by washing with water or buffer. The surface was then dried 

with nitrogen. The bacterial cells treated with fluorescently labeled sublancin were resuspended 

in 500 µL (final volume) of Tris buffer (10 mM NaCl, 50 mM Tris pH 8.5, 10% glucose). For 

every 500 µL of Tris buffer, 5 µL of 1 M MEA (2-mercaptoethylamine hydrochloride, 10 µM 

final concentration), 3 µL of 70 mg/mL pyranose oxidase and 1 µL of 16 mg/ml of catalase were 

added. Pyranose oxidase and catalase function as oxygen scavengers to suppress photobleaching 

by oxygen. MEA serves as oxygen scavenger and as a triplet quencher, thereby recovering 

molecules from the dark state to let them blink over and over. A 405 nm laser was used for 

STORM. The microscopy images were taken by focusing the cells first in the bright field 

channel and recording an image. The channel was later switched to the fluorescence settings with 

appropriate excitation for cyanine 5-amine. An excitation wavelength of 642 nm was used. The 

laser power was adjusted and the confocal plane was changed stepwise to a obtain a clear image. 
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5.4.10 Competition experiment between sublancin-Cy5 and sublancin, glucose or sodium 

chloride. 

Overnight cultures of B. halodurans C-125 were prepared in LB and grown as described 

under the culture sample microscopy preparation, with the exception that into the 2.0 mL 

Eppendorf tubes cold solutions of fluorescently labeled sublancin and either glucose, sodium 

chloride or sublancin were added, at the desired concentration in 1X Dulbecco’s Phosphate-

Buffered Saline (D-PBS) (1 mL, Fisher Scientific). The reactions were incubated at 37 °C for 30 

min. At this time the reactions were centrifuged at 4 °C (1 min, 1,500 × g). The supernatant was 

carefully removed and the cells were carefully suspended in 1 mL of 1X D-PBS (wash step). The 

solution was again centrifuged, the supernatant was removed, and cells were carefully suspended 

in 1 mL of 1X D-PBS a total of 10 times. Finally, the suspension was centrifuged and D-PBS 

was removed to give a suspension of around 250 µL. The microscopy slides were prepared as 

described above. The microscopy images were taken by focusing the cells first in the bright field 

channel and recording an image. The channel is later switched to the fluorescence settings with 

appropriate excitation for cyanine 5-amine. An excitation wavelength of 642 nm was used. The 

laser power was adjusted and the confocal plane was changed stepwise to a obtain a clear image. 
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CHAPTER 6. MECHANISTIC UNDERSTANDING OF SUBLANCIN’S S-

GLYCOSYLTRANSFERASE SUNSa  

6.1 INTRODUCTION 

 Five glycocins have been characterized in recent years, sublancin 168,1 glycocin F,2 

thurandacin A and B,3 and ASM1.4,5 These five compounds share the highly unusual structural 

feature of a sugar moiety that is β-linked to the thiol of a Cys. Sublancin, the shortest known 

glycocin, and contains a glucose moiety linked to Cys22 (Figure 1.3)1,6 that is installed by the S-

glycosyltransferase SunS, which selectively transfers sugar moieties from activated nucleotide 

sugars to the thiol group of Cys22.1,7 On the basis of its sequence as well as structural 

characterization of sublancin (chapter 2), SunS is an inverting glycosyltransferase and belongs to 

the GT-A glycosyltransferases of the GT-2 family.8 SunS demonstrates high chemo- and site-

selectivity for the thiol group of Cys22 of the substrate peptide SunA but exhibits tolerance 

towards various nucleotide sugar donors.1 The work described in this chapter presents the first 

X-ray structure of an S-glycosyltransferase and the kinetic characterization of mutants of various 

residues in its active site that provide insights into the enzymatic mechanism. 

 

 

 

 

 

________________________________________________________________________________________________________________________________________________ 

a In this chapter I performed the SunS substrate binding studies and obtained the kinetic parameters for the 
glycosyltransferase SunS, as well as the kinetic parameters for two SunS mutants. All other experiments were 
performed by former lab members Dr. Huan Wang and Dr. Ran Zhang. 
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6.2 RESULTS AND DISCUSSION 

6.2.1 Determination of SunS kinetic parameters 

To determine the kinetic parameters of catalysis by SunS, Dr. Ran Zhang and Dr. Huan 

Wang, previous postdocs in the van der Donk group, first used a continuous coupled assay that 

measures the rate of UDP formation. Because UDP formation reports on both transglycosylation 

of the sugar moiety from UDP-glucose to the SunA peptide and on hydrolysis of UDP-glucose, 

they also determined the rate of hydrolysis in the absence of SunA. In addition, I developed a 

non-continuous LC-MS assay to report specifically on transglycosylation. As shown in Table 

6.1, for wild type SunS, kcat for transglycosylation was 53 ± 5 min-1 with Km values for UDP-

glucose and SunA below the detection limits of the coupled assay (<10 µM). The LC-MS assay 

did allow determination of the Km values for UDP-glucose (4 ± 1 µM) and SunA (1.5 ± 0.3 µM). 

The kcat for hydrolysis of UDP-glucose in the absence of SunA was about an order of magnitude 

slower than transglycosylation (Table 6.1), indicating that the peptide is a better glycosyl 

acceptor than water; the Km value of UDP-Glc for hydrolysis measured by the coupled assay 

remained below 10 µM.  

 
Figure 6.1 Kinetics of SunS with UDP-Glc and SunA peptide as determined by the LC-MS assay. 
The LC-MS assay determination of the Km values for (a) UDP-glucose (4 ± 1 µM) and (b) SunA (1.5 ± 0.3 µM). 
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Table 6.1 Kinetic parameters of catalysis by SunS determined by the coupled assay. 

 Km kcat 

Enzymatic hydrolysis 
(SunS + UDP-Glc) <10 µM 4.7 ± 0.2 min-1 

Glycosylation 
(saturated UDP-Glc + varied [SunA]) <10 µM 56 ± 1 min-1 

Glycosylation 
(saturated [SunA] + varied UDP-Glc]) <10 µM 55 ± 1 min-1 

 

6.2.2 Substrates binding order 

The order of substrate binding was investigated by examining the patterns of product 

inhibition. We performed inhibition assays in which SunS was inhibited by UDP at non-

saturating UDP-Glc concentrations (1.0 µM) and varying peptide concentrations (0.2 to 16 µM). 

For an ordered mechanism where UDP-Glc is the first substrate to bind and UDP leaves last, 

UDP would be expected to be a non-competitive inhibitor with respect to SunA under these 

conditions. Analysis of the data is consistent with non-competitive inhibition. The Km was not 

affected. At UDP concentrations of 0, 15, and 30 µM the Km values were 1.6, 1.6, and 1.8 µM 

respectively, but the effective Vmax decreased, 0.74, 0.38, and 0.18 µM/min respectively. Km 

and Vmax values were obtained from non-linear regression of the data using the Michaelis-

Menten equation (Figure 6.2). We then performed inhibition assays to evaluate SunS inhibition 

by UDP at saturating peptide concentrations (40 µM) and varying UDP-Glc concentrations (0.49 

µM to 31 µM). For an ordered mechanism where UDP-Glc is the first substrate to bind and UDP 

the last product to leave, UDP is expected to be a competitive inhibitor with respect to UDP-Glc 

under these conditions. Analysis of the data was consistent with competitive inhibition by UDP 

with respect to UDP-Glc at saturating SunA concentrations (Figure 6.3). Vmax was not affected, 

but the effective Km increased. Vmax values of 15.9, 13.3 and 15.3 µM/min and Km values of 5, 
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12, and 39 µM were obtained for 0, 50, and 100 µM UDP respectively by non-linear regression 

of the data using the Michaelis-Menten equation (Figure 6.3).  Alternative modes of inhibition 

were statistically less well supported as indicated by the α-values (Figure 6.2 and 6.3). Graphpad 

Prism59 was used for the statistical analysis. The mixed model is a general equation, that 

includes competitive, uncompetitive and noncompetitive inhibition as special cases. The mixed 

model contains the alpha (α) parameter, and this parameter indicates the mechanism of 

inhibition.9 When α =1, the inhibitor does not alter binding of substrate to the enzyme, and the 

mixed-model describes noncompetitive inhibition. When α is much larger than 1, binding of 

inhibitor prevents binding of the substrate and the mixed-model becomes identical to competitive 

inhibition. The observations (α = 1.02 for UDP inhibition of UDP-Glc and α = 17.02 for UDP- 

inhibition of SunA) are consistent with an ordered bi bi kinetic mechanism in which UDP-

glucose binds first and UDP is released from the enzyme last (Figure 6.4).   
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Figure 6.2 UDP a noncompetitive inhibitor of SunS with respect to SunA. 

Michaelis-Menten curves for the inhibition of SunS by UDP at non-saturating UDP-Glc concentrations (1.0 µM) 

and varying peptide concentrations (0.2 to 16 µM). Shown are curves fitted to all possible modes of inhibition (a) 

competitive, (b) uncompetitive, (c) noncompetitive. Graphpad Prism5 was used for the statistical analysis. The 

mixed model is a general equation, that includes competitive, uncompetitive and noncompetitive inhibition as 

special cases. The mixed model contains the alpha (α) parameter, and this parameter indicates the mechanism of 

inhibition. When α =1, the inhibitor does not alter binding of substrate to the enzyme, and the mixed-model 

describes noncompetitive inhibition. The data is consistent with noncompetitive inhibition by UDP with respect to 

sunA. 
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Figure 6.3 UDP a competitive inhibitor of SunS with respect to UDP-Glc.  

Michaelis-Menten curves for the inhibition of SunS by UDP at saturating peptide concentrations (40 µM) and 

varying UDP-Glc concentrations (0.49 µM to 31 µM). Shown are curves fitted to all possible modes of inhibition (a) 

competitive, (b) uncompetitive, (c) noncompetitive. Graphpad Prism5 was used for the statistical analysis. The 

mixed model is a general equation, that includes competitive, uncompetitive and noncompetitive inhibition as 

special cases. The mixed model contains the alpha (α) parameter, and this parameter tells you about the mechanism 

of inhibition. When α is much larger than 1, binding of inhibitor prevents binding of the substrate and the mixed-

model becomes identical to competitive inhibition. The data is consistent with competitive inhibition by UDP with 

respect to UDP-Glc. 
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Figure 6.4 Proposed substrate binding order of SunS. 

Depiction of SunS ordered bi-bi mechanism of substrate binding. The ordered mechanism is based on the co-crystal 

structure complex and supporting kinetic experiments. A: UDP-Glc, B: SunA, P: SunA-Glc, Q: UDP, E: SunS, EA: 

SunS#UDP-Glc complex, EAB: SunS#UDP-Glc#SunA complex, EPQ#SunS#SunA-Glc#UDP complex, and EQ: 

SunS#UDP complex. 

 

6.2.3 Crystal structure of the S-glycosyltransferase SunS 

Our collaborators in the Nair laboratory at the University of Illinois solved the crystal 

structure of the 422 amino acid SunS protein and a co-crystal structure of truncated SunS-1-335 

with bound UDP-Glc (Figure 6.5). SunS is comprised of three distinct regions, an N-terminal 

catalytic domain with a Rossmann-like architecture,10 followed by a tetratricopeptide repeat 

(TPR) unit11,12 domain and a C-terminal dimerization domain. Sequence alignment of SunS with 

O-glycosyltransferases (OGTs) that have high sequence similarity, identified by BLAST 

analysis, show that it contains the conserved short DxD motif in the enzyme’s active site (Figure 

6.6). On the basis of its sequence as well as structural characterization of sublancin, SunS is an 

inverting glycosyltransferase and belongs to the GT-A glycosyltransferases of the GT-2 family 

(Figure 6.7). 
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Figure 6.5 Overall structure of SunS and SunS-1-335 complex with UDP-Glc. 

(a) Overall fold of SunS and (b) SunS-1-335:UDP-Glc complex in a ribbon representation. The N-terminal 

catalytic domain is shown in orange, the TRP domain in cyan, the C-dimerization domain in green, the UDP-Glc 

substrate is shown in black and the divalent Mg2+ metal in purple. 
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                                              1                                               50 
                        SunS NP_390028    (1) ------------------------------------------------MK 
B. thuringiensis BGSC 4AW1 ZP_04099941    (1) -----------------------------------------------MET 
B. thuringiensis BGSC 4CC1 ZP_04082010    (1) ---------------MTNFNYVSKELRYNINFFEIACNKLLTMNIDDNSL 
      B. cereus BDRD-ST196 ZP_04265312    (1) ---------------MGNFNYISNELRYNINFFEISYNKLLAMNINDDNL 
Y. frederiksenii ATCC 33641 ZP_04632793   (1) ----------------------MSDINYFNSNYLIRLKDFILNSIAESDK 
       B. tusciae DSM 2912 YP_003590384   (1) MRGPTVPPHEEMRRALEEKDWIKVERLGFKALRADPADTKAWEILGEALL 
                             Consensus    (1)                M    YI  EL Y    F I     L   I D  L 
                                              51                                             100 
                        SunS NP_390028    (3) LSDIYLELKKGYADSLLYSDLSLL-----VNIMEYEKDIDVMSIQSLVAG 
B. thuringiensis BGSC 4AW1 ZP_04099941    (4) LNDLVTRLEHSHPNSSLLKDLSLIQGNEQYNYIKWGDLSNSQNLNELVFQ 
 B thuringiensis BGSC 4CC1 ZP_04082010   (36) LKKVEKRLALLKHIHKYSEEVNELLCELNSDTVDEINHLSDIQFIEMLKR 
       B. cereus BDRD-ST196 ZP_04265312  (36) LNKVSKRISLLRHINKYSEEANGLLSDLHSNVVKELNCLSDTKFIEILKN 
Y. frederiksenii ATCC 33641 ZP_04632793  (29) INLLNNWLDKVSFILEIDPRLNCFVVMD-NTFHDIYLDKILNDILVLFER 
       B. tusciae DSM 2912 YP_003590384  (51) RQGYGTSARKAFRRAYLFQPQKQLARWNGPAEEGDPILNNGRSHPLVEQL 
                             Consensus   (51) LN L  RL KL  IS L  DLN LL     N VDE   L    IIELL   
                                              101                                            150 
                        SunS NP_390028   (48) YEKSDTPTITCGIIVYNESKRIKKCLNSVKDDFNEIIVLDSYSTDDTVDI 
B. thuringiensis BGSC 4AW1 ZP_04099941   (54) YEKAPYPSITCGILTYNEERCIKRCLDSLGSQFDEILVLDSHSTDNTTKI 
B. thuringiensis BGSC 4CC1 ZP_04082010   (86) FLVTKRIKVSVNIMTLNEERCIERCIRSIKNFADEIIVLDTGSTDKTLEI 
       B. cereus BDRD-ST196 ZP_04265312  (86) FLTTKKIKISVNIMTLNEERCIARCIESIQDLADEIIILDTGSTDKTREI 
Y. frederiksenii ATCC 33641 ZP_04632793  (78) IYQVSLPTISAVIIVKDEERCIYRCIESILDYVDEIVIVDTGSTDSTMDI 
       B. tusciae DSM 2912 YP_003590384 (101) LAWPRVPTVAAVIVAKNESRCIGRCLESLKGAVDEILVVDTGSTDDTAAL 
                             Consensus  (101) F  TK PTIS  IIT NEERCI RCIESIKD  DEIIVLDTGSTD TLDI 
                                              151                                    * *     200 
                        SunS NP_390028   (98) IKCDFPD-VEIKYEKWKNDFSYARNKIIEYATSEWIYFIDADNLYSKE-N 
B. thuringiensis BGSC 4AW1 ZP_04099941  (104) INRDFPM-VKVIYEPWIDDFSFHRNKLISLTSSEWIYYIDADN-YCVD-S 
B. thuringiensis BGSC 4CC1 ZP_04082010  (136) IQKEFPD-VKLYCTEWKDNFSECRNQLIDYSTGDWIFQIDADEDLEIN-Q 
       B. cereus BDRD-ST196 ZP_04265312 (136) IRNNFPD-AKLYRIEWKNDFSECRNRLIDYSTGDWVLQIDADEHLEIK-Q 
Y. frederiksenii ATCC 33641 ZP_04632793 (128) INSIVSDKIKTYSTPWENDFSHARNFAKRKAKKDWLMFIDADEYLDGKGD 
       B. tusciae DSM 2912 YP_003590384 (151) AETFPG--VRVLFYAWKDDFAAARNFGLDHIAADWVLWIDADEWVHPDDK 
                             Consensus  (151) IN DFPD VKLYY  WKNDFS ARNKLIDYATSDWIYFIDADE LEID Q 
                                              201                                            250 
                        SunS NP_390028  (146) KGKIAKVARVLEFFSID--CVVSPYIEEYTGHLYSDTR---RMFRLNGKV 
B. thuringiensis BGSC 4AW1 ZP_04099941  (151) TNKFKRVAKLIQFLSID--CIISPMIKEHIGHVYTDNR---KMFSVKKGI 
B. thuringiensis BGSC 4CC1 ZP_04082010  (184) EDLRDFLELFYEFPKSP--MVICPKIKNHDNQELDFNK---RIFKKNDNL 
       B. cereus BDRD-ST196 ZP_04265312 (184) KDIREFLELLYEFPISP--VVICPKIKNHDNQELDFNK---RIFRKKDNL 
Y. frederiksenii ATCC 33641 ZP_04632793 (178) YNEVKEILLILQFLSIKNEMVICPFISNHNGYNVTTVR---RFFLNNTDI 
       B. tusciae DSM 2912 YP_003590384 (199) PLIREAAAMLDAVTPTP---VLHPMIVNRLGSTTSIAMNVPRLFPRRGDL 
                             Consensus  (201)   IRE LALLLEF SIP  MVICP IKNH GH LS NR   RIFRKN  L 
                                              251                                            300 
                        SunS NP_390028  (191) KFHGKVHEEP-----MNYNHSLPFNFIVNLKVYHNGYNPSENNIKSKTRR 
B. thuringiensis BGSC 4AW1 ZP_04099941  (196) QFKGKVHEEP-----INADGSIPQNITVDIMICHDGYDPEVINLSEKNDR 
B. thuringiensis BGSC 4CC1 ZP_04082010  (229) RYFGMIHEDLRYN--IQKKGDDLIYFTTDFVLNHDGYKPEIIELKNKYKR 
       B. cereus BDRD-ST196 ZP_04265312 (229) KYFGIIHEDLRYD--IQKKGSDLIYFTTDFTFNHDGYKPEIRESKNKCKR 
Y. frederiksenii ATCC 33641 ZP_04632793 (225) NYFGLVHEEP------RINNTKPYYISVNITFIHDGYMHEIVKNKRKTDR 
       B. tusciae DSM 2912 YP_003590384 (246) RFHGRIHEQIAPVKGNRYTDLRTRDYLVMIRILHDGYDPAHTDIRAKLQR 
                             Consensus  (251) KFFGLIHEEP     IN  GS P YFTVDI I HDGY PEIIEIK K KR 
                                              301                                            350 
                        SunS NP_390028  (236) NINLTEEMLRLEPENPKWLFFFGREL-HLLDKDEEAID------YLKKSI 
B. thuringiensis BGSC 4AW1 ZP_04099941  (241) NIKLTRQMMEEEPSNPKWLYFYAREL-HYASEDTHIIET-----LLIKAI 
B. thuringiensis BGSC 4CC1 ZP_04082010  (277) NLDLENEMVRIEPDNIRWFYFLARERKLAGYSDEAVIHT-----LVQGIK 
       B. cereus BDRD-ST196 ZP_04265312 (277) NLKLQHKMMHIEPDNIRWYYFLAREQKQAIYSDEEVVNT-----LVQGIE 
Y. frederiksenii ATCC 33641 ZP_04632793 (269) NLSLLSKMMLLEPNNLRWKYFYYRDGIEVIDLLNAEVGIKSSLILNEQYD 
       B. tusciae DSM 2912 YP_003590384 (296) NIRLLNQMVQEEPADPTWLMYLGREVLSAGDVKKG-TS------LLLAAE 
                             Consensus  (301) NIKL   MM IEPDNPRWLYFLAREL  AID DEAVI T     LL GAE 

 
Figure 6.6 (continued on next page)   
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                                              351                                            400 
                        SunS NP_390028  (279) NNYKKFNDQRHFIDALVLLCTLLLQRNNYVDLTLYLDILETEYPRCVDVD 
B. thuringiensis BGSC 4AW1 ZP_04099941  (285) DLYKQSTYKRYQPEAILLLCSILFQKRQIRKLNEYLDLLEELQPLCSDVN 
B. thuringiensis BGSC 4CC1 ZP_04082010  (322) NSKNEQKTNHFYFLSLLMLADIYHNNHNFEALHGIANELSNGFPYCIDGL 
       B. cereus BDRD-ST196 ZP_04265312 (322) NSKDNHENNHFYLRSLLMLADIYDSQRDFEALHGIVNELSNRFPYCIDGL 
Y. frederiksenii ATCC 33641 ZP_04632793 (319) FSKSNIREDEFTFALLDLLAKNNLRQSKFDDVDIITDIMNCFLPENSNSY 
       B. tusciae DSM 2912 YP_003590384 (339) ERAKTTPGFGALLEIQRLLVQAYLFESAYDEAERVAERMQETDPQFPDSH 
                             Consensus  (351) NSKKN   N FYLEALLLLA IYLQQ NFDDL  ILDIL   FP CID   
                                              401                                            450 
                        SunS NP_390028  (329) YFRSAILLVDMQNKLTSLSNMIDEA---LTDERYSAINTTKDHFKRILIS 
B. thuringiensis BGSC 4AW1 ZP_04099941  (335) YYRSLILFYDIRLKTGKLLDTLKSSE--LENNKYSFIDSSKDHIKALLIE 
B. thuringiensis BGSC 4CC1 ZP_04082010  (372) YYNLISSWAYQSSQISLLTEKSFQHM-RKVESPYSIINSNGYHIFYLLGM 
       B. cereus BDRD-ST196 ZP_04265312 (372) YYSLINNWANQSSQISNLIQNTFQHM-RKIESPFSIINSNGYHMFYLLGM 
Y. frederiksenii ATCC 33641 ZP_04632793 (369) YYKCLINIVELKSKYKELLDKTILYRERNIDPQY---------------- 
       B. tusciae DSM 2912 YP_003590384 (389) YYLAHIRVEKAKRLLQAAEEDLRRLR-AQGDDYAGLVNVDADIHAWKADL 
                             Consensus  (401) YYRSII W DIKSKIS LLD T  H  R ID  YSIINS GDHI YLL M 
                                              451                                            500 
                        SunS NP_390028  (376) LNIQLENWERVKEISGEIKNDNM------KKEIKQYLANSLHNIEHVLKG 
B. thuringiensis BGSC 4AW1 ZP_04099941  (383) LYCSIDDWEGAFTLFDELQSTEA------RNKFLRRVKTINTHISKKI-- 
B. thuringiensis BGSC 4CC1 ZP_04082010  (421) LYFNVGNYAKAFQMFSIIKDDIM------LDEIKSNLNVLKDNIENFLSK 
       B. cereus BDRD-ST196 ZP_04265312 (421) LYFNLGNYEKSFQMFSIIKDDTL------LDEIRSKLNAIKDNIENFSSK 
Y. frederiksenii ATCC 33641 ZP_04632793 (403) -------------------------------------------------- 
       B. tusciae DSM 2912 YP_003590384 (438) LQANLCGLTGRIAEAKARYTDLYGHCPGYDEAIAQQIALIDQQARQIIQN 
                             Consensus  (451) LY NL NWEKAF MF  IK D M       DEIK  L  I  NIEN I   
                                              501 
                        SunS NP_390028  (420) IEV-- 
B. thuringiensis BGSC 4AW1 ZP_04099941  (425) ----- 
B. thuringiensis BGSC 4CC1 ZP_04082010  (465) ----- 
       B. cereus BDRD-ST196 ZP_04265312 (465) ----- 
Y. frederiksenii ATCC 33641 ZP_04632793 (403) ----- 
       B. tusciae DSM 2912 YP_003590384 (488) PQQDR 
                             Consensus  (501)       

 
Figure 6.6 BLAST sequence alignment of SunS with glycosyltransferases. 

Sequence alignment of SunS with glycosyltransferases that have high sequence homology identified by BLAST 

analysis. All proteins (hypothetical and experimentally characterized in bold font) are located in a cluster with a 

putative peptide substrate. Shown is the sequence alignment of SunS and the top hits from the BLAST search. The 

conserved DxD motif involved in coordinating a divalent metal cation (usually Mg2+ or Mn2+) is marked by two 

asterisks.  
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Figure 6.7 SunS fold compared to previously reported glycosyltransferase folds.  

Overall folds observed for glycosyltransferase enzymes. (Top left) The GT-A fold of the inverting 

glycosyltransferase SpsA from Bacillus subtilis, Protein Data Bank (pdb, 1qgq), (Top right) the GT-B fold of the 

bacteriophage T4 B-glucosyltransferase (pdb, 1jg7), and (Bottom) the SunS fold. SunS resembles the GT-A fold. 

The figures representing the GT-A and GT-B fold are reproduced with permission from “Glycosyltransferases: 

Structures, Functions, and Mechanisms” 2008. Annu. Rev. Biochem. 77, 521-555.8 

 

The truncated SunS-1-335 was unable to perform the transglycosylation reaction, even 

though the C-terminal 87 amino acids do not obviously interact with the active site in the wild 

type structure. The abolished activity of SunS-1-335 may explain why intact UDP-Glc was 

present in the structure of the truncated protein. Analytical gel filtration analysis demonstrated 

that SunS exists as a dimer in vitro whereas the C-terminally truncated SunS-1-335 is a 

monomer, indicating the importance of the C-terminal domain for dimerization in vitro and 
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suggesting that dimerization is important for enzyme activity. The GT-A fold of SunS harbors 

the binding site for UDP-Glucose in a pocket in the catalytic domain adjacent to the interface 

with the TPR domain (Figures 6.5 and 6.8). TPR domains are proposed to mediate protein-

protein interactions and to help in the assembly of multiple protein complexes.13 The catalytic 

and TPR domains line a narrow cleft, which likely accommodates the peptide substrate for 

binding (Figure 6.9). The shape of the cleft requires the peptide substrate to be in an extended 

conformation to bind. Indeed, we found that for SunS activity to be observed, the peptide 

substrate SunA needed to be in the reduced form in which it can adopt such an extended 

conformation; SunS did not modify peptides containing the disulfide cross-links that are present 

in mature sublancin.  

 

Figure 6.8 UDP-Glc binding pocket. 

The binding site for UDP-Glucose in a pocket in the catalytic domain adjacent to the interface with the TPR domain. 

Catalytic domain depicted in cyan, TPR domain depicted in magenta, UDP-Glc substrate is shown in yellow and 

important substrate binding residues are labeled in white. 
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Figure 6.9 SunA peptide putative binding cleft. 

The catalytic and TPR domains line a narrow cleft, which likely accommodates the peptide substrate for binding 

The shape of the cleft requires the peptide substrate to be in an extended conformation to bind. Catalytic domain 

depicted in cyan, TPR domain depicted in magenta, UDP-Glc substrate is shown in yellow and the putative SunA 

binding cleft is shown in grey as a space filling projection. 

 

6.2.4 Site directed mutagenesis studies 

The structure of the SunS-1-335-UDP-Glc complex identified potentially important 

substrate binding residues (Figure 6.10). The side chain carboxyl oxygen atoms of Asp136 form 

hydrogen bonds with the O2 and O3 hydroxyl groups of glucose, and the side chain carboxylate 

oxygens of Glu198 interact with the O4 and O6 hydroxyl groups of glucose. Moreover, the η-

nitrogen of Arg120 forms hydrogen bonds with the O4 hydroxyl group and the carboxylate 

oxygen of Asp136. To investigate the importance of these residues, Dr. Huan Wang individually 

mutated these potentially important substrate-binding residues to Ala. The mutations did not 

greatly affect the UDP-Glc hydrolysis activity but abolished glycosyltransferase activity, as 

determined by the coupled enzymatic assay and LC-MS analysis, respectively (Figure 6.10, 

Table 6.2). Given the observed well-defined glucose binding network, it was surprising that 
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SunS was able to conjugate several other sugars to the SunA peptide in previous studies.1 

However, 69% to 95% conversion was observed when those studies were conducted at high 

concentrations of nucleotide sugars (5 mM). Determination of the kinetic parameters for glycosyl 

transfer in this work clearly demonstrates the strong preference of SunS for UDP-Glc as the kcat 

values for transglycosylation with UDP-GlcNAc and GDP-Man were strongly attenuated and the 

Km values were also considerably higher (Table 6.3). UDP-Gal was a better substrate with 

respect to kcat but its Km was greatly increased to 2.1 ± 0.4 mM. Surprisingly, the rates and Km 

values for hydrolysis of these substrate analogs were not substantially changed compared to 

those for UDP-Glc (Table 6.4). These observations suggest that binding of the SunA substrate 

imposes more stringent restrictions on the sugar-nucleotide binding pocket, probably because of 

a conformational change upon peptide binding. Although we were unable to obtain a structure of 

a ternary complex, a conformational change upon substrate binding was observed for the O-

glycosyltransferase OGT that conjugates GlcNAc to Ser and Thr residues.14 

 

Figure 6.10 Glucose binding residues. 

The side chain carboxyl oxygen atoms of Asp136 form hydrogen bonds with the O2 and O3 hydroxyl groups of 

glucose, and the side chain carboxylate oxygens of Glu198 interact with the O4 and O6 hydroxyl groups of glucose. 

The protons attached to the η-nitrogen of Arg120 forms hydrogen bonds with the O4 hydroxyl group and the 

carboxylate oxygen of Asp136. Distances in angstroms are depicted in red.  
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Table 6.2 Summary of the hydrolytic activity and glycosyltransferase activity of SunS and SunS mutants 
obtained by the coupled enzymatic assay. 

SunS mutants kcat-hydrolysis / min-1 a kcat-glycosylation / min-1 a Relative activity 
determined by 

LC-MS / % 
wt-SunS 4.7 ± 0.2 d 55± 5c, 55 ± 4 d  100 ± 5 e 

SunS-1-335 0.29 ± 0.03 d -b <5 e 
E65A 2.9 ± 0.4 d 210 ± 20c, 127 ± 14 

d 
90 ± 2 e 

W112F 1.9 ± 0.2 d 170 ± 20c, 122 ± 17 
d 

82 ± 5 e 

R120A 2.9 ± 0.6 d -b <5 e 
D136A 4.2 ± 0.1 d -b <5 e 
D138A 4.7 ± 0.8 d -b <5 e 

D138A/D136A 2.2 ± 0.3 d -b <5 e 
H197F 6.5 ± 0.5 d -b <5 e 
H197N 2.1 ± 0.3 d -b <5 e 
E198A 7.2 ± 0.5 d -b <5 e 
H219A 1.3 ± 0.2 d -b <5 e 
K232A 5.7 ± 0.5 d 11 ± 1 d 15 ± 2 e 
R235A 4.8 ± 0.6 d 15 ± 1 d 34 ± 4 e 
R259A 4.3 ± 0.2 d -b <5 e 
R259H 4.8 ± 0.6 d -b <5 e 

 

a The kcat values of hydrolytic and glycosyltransferase activity were measured by the coupled enzymatic assay. In all 

cases, Km for UDP-glucose was <10 µM. b The enzymatic coupled assay detects the generation of UDP. When kcat-

glycosylation is close to kcat-hydrolysis, the enzymatic coupled assay cannot accurately measure the rate of glycosylation 

reactions. In all cases labeled b, we did not detect transglycosylation activity by LC-MS under the conditions of the 

coupled assay. For the other mutants (E65A, W112F, K232A, K235A), the LC assay demonstrated that 

transglycosylation occurred (kcat-glycosylation: wt-SunS 58 ± 21 min-1, E65A 47 ± 6 min-1, W112F 57 ± 17 min-1). c 

Values obtained in my work using the LC-MS assay. d values obtained by Dr. Huan Wang using the coupled assay. e 

Values obtained by DR. Huan Wang using the LC-MS assay. 

 

Table 6.3 Michaelis-Menten kinetic parameters for transglycosylation of different nucleotide-sugars at 
saturating concentration of SunA with wt-SunS as measured by the coupled enzymatic assay. 

Nucleotide Sugar Km / µM kcat-glycosylation / min-1 

UDP-Glc 1.5 ± 0.3 55 ± 4 
UDP-Gal (2.1 ± 0.4) × 103 32 ± 2 
GDP-Man 16 ± 2 1.9 ± 0.1 

UDP-GlcNAc 12 ± 2 1.3 ± 0.1 
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Table 6.4 Michaelis-Menten kinetic parameters of SunS catalyzed hydrolysis of different nucleotide sugars as 
measured by the coupled enzymatic assay.   

Nucleotide Sugar Km / µM kcat-hydrolysis / min-1 

UDP-Glc <10 2.7 ± 0.4 
UDP-Gal <10 2.3± 0.2 
GDP-Man <10 2.6± 0.2 

UDP-GlcNAc <10 2.5± 0.1 
 

In most known inverting GT-A glycosyltransferases, a divalent metal cation such as Mg2+ 

or Mn2+ is important to facilitate the departure of the nucleoside diphosphate leaving group.8 In 

the Sun-1-335-UDP-Glc complex, a Mg2+ is coordinated by three pyrophosphate oxygens of 

UDP-Glc, two carboxyl oxygens of Asp138, and the ε2N of the imidazole side chain of His219 

(Figure 6.11). Replacement of Asp138 and His219 with Ala by site-directed mutagenesis showed 

that both residues are strictly required for transglycosylation activity. Three pyrophosphate 

oxygen atoms of UDP-Glc also form hydrogen bonds to the side chains of Lys232, Arg235, and 

Asn236 (Figure 6.11). The positively charged Lys232 and Arg235 may facilitate catalysis by 

stabilizing the developing negative charge on the pyrophosphate during the glycosyl transfer 

reaction. Unlike the mutants in the glucose binding pocket and the metal binding ligands, SunS-

K232A and R235A still retained partial transglycosylation activity (Figure 6.12, Table 6.2). 

However, mutation of Asn236, which interacts with both the β-phosphate of UDP-Glc and the 

guanidine group of Arg235, to Ala abrogated the transglycosylation activity of SunS. 

 SunS interacts with the hydroxyl groups of the ribose moiety of UDP-Glc through the 

carboxyl oxygen of Glu65, the backbone amide nitrogens of Ala137 and Tyr63, and the 

backbone amide oxygen of Ile61. The indole of Trp112 is nearly coplanar with the uracil moiety 

of UDP-Glc and might also contribute to substrate binding. Indeed, the SunS mutants E65A and 

W112F both displayed increased Km values for UDP-Glc compared to wt-SunS without 

impairing the glycosyltransferase activity (Table 6.2), consistent with roles as non-catalytic 
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substrate binding residues. Surprisingly, the kcat values measured by the coupled enzyme assay in 

the presence of SunA for SunS-E65A and SunS-W112F are larger than the kcat of wt-SunS. To 

verify that these numbers indeed reflect transglycosylation, LC-MS was also used to monitor the 

kinetics. The kcat values thus obtained showed that two mutants had very similar activities than 

wt-SunS. Thus the presence of SunA likely promotes UDP-Glc hydrolysis to account for the 

higher kcat values in the coupled assay. 

 

 

Figure 6.11 UDP binding residues. 

A Mg2+ is coordinated by three pyrophosphate oxygens of UDP-Glc, two carboxyl oxygens of Asp138, and the ε2N 

of the imidazole side chain of His219. Three pyrophosphate oxygen atoms of UDP-Glc form hydrogen bonds to the 

side chains of Lys232, Arg235, and Asn236 which interacts with both the β-phosphate of UDP-Glc. SunS interacts 

with the hydroxyl groups of the ribose moiety of UDP-Glc through the carboxyl oxygen of Glu65, the backbone 

amide nitrogens of Ala137 and Tyr63, and the backbone amide oxygen of Ile61. The indole of Trp112 is nearly 

coplanar with the uracil moiety of UDP-Glc and might also contribute to substrate binding. Pyrophosphate moiety is 

shown in red, the ribose moiety in purple and the uracil moiety in blue. 
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Figure 6.12 Relative activities of SunS on SunA core peptide relative to SunA. 

Histogram showing the relative activity of wild-type SunS (wt-SunS) protein (kcat) on SunA core peptide relative to 

SunA as substrate. The relative activities were determined by the coupled enzymatic assay. 

 

The identity of the catalytic residue that accepts the proton from the peptide-based 

nucleophile is of particular interest in protein glycosyltransferases. Because we have been unable 

to obtain a ternary structure with a nucleotide and SunA or a synthetic peptide, an active site base 

cannot be identified with certainty, although even with ternary structures, identification of the 

active site base is not straightforward for glycosyl transferases.15,16 His197 and Arg259 are both 

highly conserved in characterized and putative S-glycosyltransferases (Figure 6.6) and are 

positioned in the binary complex in the area above the β-face of the glucose where a catalytic 

base would be expected. Mutation of His197 to Asn or Phe abolished the transglycosylation 

activity of SunS. Similarly, SunS-R259A exhibited no glycosyltransferase activity. To further 

investigate the potential identity of the catalytic base, the pH-activity profile of SunS was 

determined by Dr. Ran Zhang. A fit of the profile suggests that a residue with a pKa of 6.5 needs 

to be deprotonated, which is close to the pKa of protonated histidine (Figure 6.13). Considering 
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the high pKa of the guanidinium group of arginine (pKa ~12), Arg259 is not likely to be the 

catalytic base.  

 

Figure 6.13 pH profile of the glycosyltransferase activity of SunS. 

The kcat-apparent-pH profile of the glycosyltransferase activity of SunS. At each pH value, Dr. Ran Zhang verified that 

substrate concentrations were saturating. Because of the very low Km values that could not be determined with our 

assays, only the dependence of kcat on pH could be investigated. 

 

Recent studies on human OGT suggested that the α-phosphate of the nucleotide-sugar might 

serve as the catalytic base.16 However, in the crystal structure of SunS-1-335 in complex with 

UDP-Glc, the α-phosphate is positioned on the α-face of glucose and at a relatively long distance 

from C1 of glucose, and none of the other pyrophosphate oxygens appears to be in an 

appropriate position to act as a catalytic base. Therefore, we tentatively propose a mechanism 

with His197 as the catalytic base (Figure 6.14), although a general base may not be needed if the 

mechanism of glycosyl transfer to Cys resembles that of other inverting glycosyl transfer 

processes, which are thought to occur via an oxocarbenium ion–like transition state.8,15,17 Even in 

the neutral form (i.e. not deprotonated), Cys would still be a relatively good nucleophile to trap 

the electrophilic oxocarbenium structure, and this may explain the selectivity of SunS for Cys 

over Ser. 
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Figure 6.14 Proposed mechanism of SunS. 

The mechanism shown is based on the structure and the co-crystal complex of truncated SunS-1-334 with UDP-Glc 

and supporting kinetic experiments. The SunA peptide is shown in blue with only the reactive cysteine thiol shown. 

His197 is the proposed catalytic base, although a general base may not be needed if the mechanism of glycosyl 

transfer to Cys resembles that of other inverting glycosyl transfer processes, which are thought to occur via an 

oxocarbenium ion–like transition state. 

 

6.2.5 Substrate selectivity with respect to SunA 

 SunA is initially synthesized with an N-terminal leader peptide, which is thought to be 

removed in the last step of maturation, and a C-terminal core peptide that is converted into 

sublancin. Previous studies have shown that SunS can be used to glycosylate SunA mutants, but 

the efficiency of this process has not been investigated.1,7 We first investigated the importance of 

the leader peptide. Comparison of the kinetics of modification of full length SunA and just the 

core peptide, showed that the kcat is two-fold larger for the full-length peptide; the Km for both 

substrates remained below 10 µM. These results indicate that the leader peptide of SunA 

contributes to substrate processing by SunS but is not essential. We next turned to mutants in 

which the two Gly residues flanking Cys22 were replaced with either Ala, Phe, Glu or Lys 
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(Table 6.5). These mutations did not significantly alter the low Km values for the peptide 

substrate. Ala mutations of the flanking residues of Cys22 also had minimal effects on kcat, but 

mutation to Phe and Glu reduced the kcat values by about 5-fold. Interestingly, the G21K and 

G23K mutants of SunA could not be modified by SunS under the conditions of the coupled 

enzymatic assay, indicating that the positive charge of the Lys side chain has a significant 

detrimental impact. The observed kinetic parameters for these substrate mutants are consistent 

with a previous model that a helical segment of the substrate spanning residues 6-16 is important 

for substrate recognition and that Cys22 located on a flexible loop then accesses the 

glycosylation active site, which is quite tolerant of changes in the sequence in the loop. 

 

Table 6.5 Michaelis-Menten kinetic parameters of SunA mutants at saturating concentration of UDP-Glc. 
peptide Km (µM) kcat (min-1) 

SunA <10 55 ± 2 

SunA G21A <10 21 ± 1 

SunA G23A <10 57 ± 1 

SunA G21E <10 11 ± 1 

SunA G23E <10 12 ± 1 

SunA G21F <10 15 ± 1 

SunA G23F <10 11 ± 1 

SunA G21K - - 

SunA G23K - - 

 

Michaelis-Menten kinetic parameters of SunA mutants at saturating concentration of UDP-Glc with wt-SunS during 

glycosyl transfer reactions measured by the coupled enzymatic assay. Values of kcat may include a contribution of 

hydrolysis, which is around 1-2 min-1. 
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6.3 SUMMARY 

Five glycocins have been characterized in recent years and all five peptides share the 

highly unusual structural feature of a sugar moiety that is β-linked to the thiol of a Cys. The 

structures reported here represent the first X-ray structures of an S-glycosyltransferase and 

revealed an unusual domain architecture. BLAST sequence alignment analysis as well as 

structural characterization of SunS classified the enzyme as an inverting glycosyltransferase that 

belongs to the GT-A glycosyltransferases of the GT-2 family. The order of substrate binding was 

investigated by examining the patterns of product inhibition. The observations from the assays 

were consistent with an ordered bi bi kinetic mechanism in which UDP-glucose binds first and 

UDP is released from the enzyme last. Site directed mutagenesis identified catalytically 

important amino acids and the kinetic characteristics of mutants of various residues in the SunS 

active site provided insights into the enzymatic mechanism. Understanding the mechanism of S-

glycosyltransferases may assist in the development of enzymes capable of installing S-linked 

sugars onto natural products and peptides, thus potentially increasing the therapeutic value of 

such compounds given that glycosylated natural products are readily found in nature and S-

linkages are more stable than O-linkages. 

6.4 EXPERIMENTAL 

6.4.1 Materials, cultures, and conditions 

 All oligonucleotides were purchased from Integrated DNA Technologies. Restriction 

endonucleases, DNA polymerases and T4 DNA ligase were purchased from New England 

Biolabs or Invitrogen. Media components for bacterial cultures were purchased from Difco 

laboratories. Chemicals were purchased from Fisher Scientific or from Sigma-Aldrich unless 

noted otherwise. E. coli DH5α was used as host for cloning and plasmid propagation, and E. coli 



 
 

 199 

BL21 (DE3) was used as a host for expression of proteins and peptides. Pyruvate kinase/lactate 

dehydrogenase enzymes from rabbit muscle were purchased from Sigma-Aldrich.  

All polymerase chain reactions (PCR) were carried out on a C1000™ thermal cycler (Bio-Rad). 

DNA sequencing was performed by the Biotechnology Center at the University of Illinois at 

Urbana-Champaign, using appropriate primers. Matrix-assisted laser desorption/ionization time-

of-flight mass spectrometry (MALDI-ToF MS) was carried out on Voyager-DE-STR (Applied 

Biosystems) and Bruker Daltonics UltrafleXtreme MALDI TOFTOF instruments.  Salt-

containing MS samples were purified via Millipore Zip-TipC18 pipette tips (Billerica MA).  All 

kinetic assays were carried out in a Cary 4000 UV-Vis spectrometer equipped with a circulating 

water bath and Agilent 1100 LC/MSD Trap XCT Plus (LC/MS). The SunA and SunS mutants 

were prepared by site-directed mutagenesis. 

6.4.2 Construction of His6-SunS, His6-SunS mutant genes and His6-SunA mutant genes 

 Site-directed mutagenesis of SunA and SunS was performed by multistep PCR. First, the 

amplification of sunA was carried out by thirty cycles of denaturing (94 °C for 20 s), annealing 

(58 °C for 30 s), and extending (72 °C for 20 s) using the forward primer (SunA-FP) and an 

appropriate mutant reverse primer (SunA-RP) to yield the 5’ fragment of the mutant SunA gene 

(FP reaction). The amplification of sunS was carried out by thirty cycles of denaturing (94 °C for 

20 s), annealing (58 °C for 30 s/kb), and extending (72 °C for 20 s) using the forward primer 

(SunS-FP) and an appropriate mutant reverse primer (SunS-RP) to yield the 5’ fragment of the 

mutant SunS gene (FP reaction). The PCR mixtures included 1×FailSafe PreMix G (PICENTRE 

Biotechnologies), DMSO (4%), Phusion DNA polymerase (Finnzymes; 0.04 U/µL), dNTPs (2 

mM) and primers (1 µM each). In parallel, a PCR reaction using an appropriate mutant forward 

primer and the SunA-RP or SunS-RP primer was also conducted to produce 3’ fragments of the 
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mutated sunA and sunS genes using the same PCR conditions as the FP reaction (RP reaction). 

The overlapping products from the FP and RP reaction were combined in equal amounts and 

extended by seven cycles of denaturing, annealing and extending using the same PCR 

conditions. Following the extension, the SunA-FP and SunA-RP primers were added (final 

concentration, 2 µM) and the mixture was incubated for another 25 cycles of denaturing, 

annealing and extending. Amplification of the final PCR product was confirmed and purified by 

2% agarose gel electrophoresis. The resulting DNA fragments and the pET15 (for sunA) or 

pET28 (sunS) vectors were digested at 37 °C for 2 h.  The digested products were purified by 

agarose gel electrophoresis.  The resulting DNA insert was ligated with the digested vector at 16 

°C for 10 h using T4 DNA ligase. E. coli DH5α cells were transformed with 2.5 µL of the 

ligation product by heat shock, and cells were plated on LB-ampicillin agar plates (pET15) or 

LB-kanamycin agar plates (pET28) and grown for 15 h at 37 °C. Several colonies were picked 

and used to inoculate separate 5 mL cultures of LB-ampicillin medium. The cultures were grown 

at 37 °C for 15 h, and plasmids were isolated using a QIAprep Spin Miniprep Kit (QIAGEN). 

The desired sequences of the resulting plasmid products were confirmed by DNA sequencing. 

Table 6.6 Primer sequences used for the construction of SunAXa-C22X analogs. 
SunA Primers Sequence (5’ to 3’) 

SunA_G21K FP  AGT GGC GGT ACA ATT AAA TGT GGT GGC GGA GCT 
SunA_G21K RP  AGC TCC GCC ACC ACA TTT AAT TGT ACC GCC ACT 
SunA_G21F FP  AGT GGC GGT ACA ATT TTC TGT GGT GGC GGA GCT 
SunA_G21F RP  AGC TCC GCC ACC ACA GAA AAT TGT ACC GCC ACT 
SunA_G23F FP  GGT ACA ATT GGT TGT TTC GGC GGA GCT GTT GCT 
SunA_G23F RP  AGC AAC AGC TCC GCC GAA ACA ACC AAT TGT ACC 
SunA_G21E FP  AGT GGC GGT ACA ATT GAA TGT GGT GGC GGA GCT 
SunA_G21E RP  AGC TCC GCC ACC ACA TTC AAT TGT ACC GCC ACT 
SunA_G21A FP  AGT GGC GGT ACA ATT GCG TGT GGT GGC GGA GCT 
SunA_G21A RP  AGC TCC GCC ACC ACA CGC AAT TGT ACC GCC ACT 
SunA_G23K FP  GGT ACA ATT GGT TGT AAA GGC GGA GCT GTT GCT 
SunA_G23K RP  AGC AAC AGC TCC GCC TTT ACA ACC AAT TGT ACC 
SunA_G23E FP  GGT ACA ATT GGT TGT GAA GGC GGA GCT GTT GCT 
SunA_G23E RP  AGC AAC AGC TCC GCC TTC ACA ACC AAT TGT ACC 
SunA_G23A FP  GGT ACA ATT GGT TGT GCG GGC GGA GCT GTT GCT 



 
 

 201 

Table 6.6 (cont.) 
SunA_G23A RP  AGC AAC AGC TCC GCC CGC ACA ACC AAT TGT ACC 
SunA_FP  CGG CAG CCA TAT GGA AAA GCT ATT TAA AGA 
SunA_RP  GAT CCT CGA GTT ATC TGC AGA ATT GAC GAT AG  

 

Table 6.7 Primer sequences used for the construction of SunS mutants. 
 
SunS Primers 
 

Sequence (5’ to 3’) 
 

SunS-FP GGC CAC ATA TGA AAC TGA GTG ATA TTT ATT TGG AAT TAA AGA 
AAG GCT ATG CCG ATT C 

SunS-RP ATG GCC TCG AGT CAT ACT TCA ATT CCT TTC AGG ACG TGT TCA ATA 
TTG TGG AGT GAG TTG 

SunS-H197N FP GGT AAA GTT AAA TTT CAT GGG AAA GTG AAC GAA GAA CCT ATG 
AAT TAT AAT CAT AGT C 

SunS-H197N RP GAC TAT GAT TAT AAT TCA TAG GTT CTT CGT TCA CTT TCC CAT GAA 
ATT TAA CTT TAC C 

SunS-H197F FP GGT AAA GTT AAA TTT CAT GGG AAA GTG TTT GAA GAA CCT ATG 
AAT TAT AAT CAT AGT C 

SunS-H197F RP GAC TAT GAT TAT AAT TCA TAG GTT CTT CAA ACA CTT TCC CAT GAA 
ATT TAA CTT TAC C 

SunS R259A-FP GG TTA TTC TTT TTC GGC GCC GAACTA CAT TTA CTT GAT AAA GAT G 
SunS R259A-RP CAT CTT TAT CAA GTA AAT GTA GTT CGG CGC CGA AAA AGA ATA 

ACC 

SunS-R259H FP CCA AAA TGG TTA TTC TTT TTC GGC CAT GAA CTA CAT TTA CTT GAT 
AAA GAT GAA 

SunS-R259H RP TTC ATC TTT ATC AAG TAA ATG TAG TTC ATG GCC GAA AAA GAA 
TAA CCA TTT TGG 

SunS D138A-FP GG ATT TAT TTT ATT GAT GCA GCC AAT TTA TAC TCT AAA GAA AAC 
AAA GGG 

SunS D138A-RP CCC TTT GTT TTC TTT AGA GTA TAA ATT GGC TGC ATC AAT AAA ATA 
AAT CC 

SunS D136A-FP CT TCC GAA TGG ATT TAT TTT ATT GAT GCA GAT AAT TTA TAC TCT 
AAA GAA AAC AAA GGG 

SunS D136A-RP CCC TTT GTT TTC TTT AGA GTA TAA ATT ATC TGC ATC AAT AAA ATA 
AAT CCA TTC GGA AG 

SunS-D136AD138A FP CCG AAT GGA TTT ATT TTA TTG CGG CAG CGA ATT TAT ACT CTA 
AAG AAA ACA AAG GG 

SunS-D136AD138A RP CCC TTT GTT TTC TTT AGA GTA TAA ATT CGC TGC CGC AAT AAA ATA 
AAT CCA TTC GG 

SunS-H219A FP GTG AAC CTT AAG GTT TAC GCG AAT GGA TAT AAT CCT TCA GAG 
SunS-H219A RP CTC TGA AGG ATT ATA TCC ATT CGC GTA AAC CTT AAG GTT CAC 
SunS W112F-FP CCT GAT GTT GAA ATT AAA TAT GAA AAG TTT AAG AAT GAT TTT 

TCC TAT GCT AG 
SunS W112F-RP CTA GCA TAG GAA AAA TCA TTC TTA AAC TTT TCA TAT TTA ATT TCA 

ACA TCA GG 

SunS-W112A FP CCT GAT GTT GAA ATT AAA TAT GAA AAG GCG AAG AAT GAT TTT 
TCC TAT GCT AG 

SunS-W112A RP CTA GCA TAG GAA AAA TCA TTC TTC GCC TTT TCA TAT TTA ATT TCA 
ACA TCA GG 

SunS-E65A FP ACA TGC GGT ATT ATA GTT TAT AAC GCG AGC AAG AGA ATT AAA 
AAG TGT TTA 
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Table 6.7 (cont.) 

SunS-E65A RP TAA ACA CTT TTT AAT TCT CTT GCT CGC GTT ATA AAC TAT AAT ACC 
GCA TGT 

SunS-E198A-FP CGA AGA ATG TTT CGG CTC AAT GGT AAA GTT AAA TTT CAT GGG 
AAA GTG CAT 

SunS-E198A-RP ATG CAC TTT CCC ATG AAA TTT AAC TTT ACC ATT GAG CCG AAA 
CAT TCT TCG 

SunS R120A-FP TCC TAT GCT GCG AAT AAA ATT ATA GAG TAT GCT ACT TCC GAA 
TGG ATT TAT TTT 

SunS R120A-RP TTT ATT CGC AGC ATA GGA AAA ATC ATT CTT CCA CTT TTC ATA TTT 
AAT TTC AAC ATC 

SunS-K232A-FP TGA TTT TAT ATT ATT CTC TGA AGG ATT ATA TCC ATT ATG GTA AAC 
CTT AAG G 

SunS-K232A-RP TGA TTT TAT ATT ATT CTC TGA AGG ATT ATA TCC ATT ATG GTA AAC 
CTT AAG G 

SunS-R235A RP TTC TTC TGT GAG ATT TAT ATT CGC TCG TGT TTT TGA TTT TAT ATT 

SunS-R235A FP AAT ATA AAA TCA AAA ACA CGA GCG AAT ATA AAT CTC ACA GAA 
GAA 

SunS-Y222A-FP ATA ATG GAG CGA ATC CTT CAG AGA ATA ATA TAA AAT CAA AAA 
CAC GAA GGA ATA TAA AT 

SunS-Y222A-RP AGG ATT CGC TCC ATT ATA TTA TGG TAA ACC TTA AGG TTC ACA 
ATG AAA TTA AAA GG 

SunS-N236A FP GAG AAT AAT ATA AAA TCA AAA ACA CGA AGG GCG ATA AAT CTC 
ACA GAA GAA ATG 

SunS-N236A RP CAT TTC TTC TGT GAG ATT TAT CGC CCT TCG TGT TTT TGA TTT TAT 
ATT ATT CTC 

 

6.4.3 Overexpression and purification of His6-SunA precursor peptides 

 E. coli BL21 (DE3) cells were transformed via electroporation with a pET15b SunA or 

SunA mutant construct. A single colony transformant was used to inoculate 30 mL of LB 

supplemented with 100 µg/mL ampicillin. The culture was grown at 37 °C for 12 h and was used 

to inoculate 3 L of LB containing 100 µg/mL ampicillin and cells were grown at 37 °C to OD600 

≈ 0.6-0.8. IPTG was added to a final concentration of 0.75 mM and the culture was incubated at 

37 °C for 3 h. Under such conditions, His6-SunA peptides were expressed as insoluble peptides. 

Cells were harvested by centrifugation at 12,000 ×g for 25 min at 4 °C, and the pellet was 

resuspended in 30 mL of start buffer (20 mM NaH2PO4, pH 7.5, 500 mM NaCl, 0.5 mM 

imidazole, 20% glycerol) and stored at −80 °C.  The cell paste was suspended in start buffer and 

the suspension was sonicated on ice for 20 min to lyse the cells. Cell debris was removed by 
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centrifugation at 23,700 ×g for 30 min at 4 °C. The supernatant was discarded and the pellet 

containing the insoluble peptide was resuspended in 30 mL of start buffer. The sonication and 

centrifugation steps were repeated. Again the supernatant was discarded and the pellet was 

resuspended in 30 mL of buffer 1 (6 M guanidine HCl, 20 mM NaH2PO4, pH 7.5, 500 mM NaCl, 

0.5 mM imidazole). The sample was sonicated and insoluble material was removed by 

centrifugation at 23,700 ×g for 30 min at 4 °C, followed by filtration of the supernatant through a 

0.45 µm filter. The filtered sample was applied to a 5 mL HisTrap HP (GE Healthcare Life 

Sciences) immobilized metal affinity chromatography (IMAC) column previously charged with 

NiSO4 and equilibrated in buffer 1. The column was washed with two column volumes of buffer 

1, followed by two column volumes of buffer 2 (4 M guanidine HCl, 20 mM NaH2PO4, pH 7.5, 

500 mM NaCl, 30 mM imidazole). The peptide was eluted with 1-2 column volumes of elution 

buffer (4 M guanidine HCl, 20 mM NaH2PO4, pH 7.5, 500 mM NaCl, 1 M imidazole). The 

fractions were desalted using a ZipTipC18 and analyzed by MALDI-TOF MS. The fractions 

containing the desired peptide were pooled and desalted using C4 solid phase extraction columns 

(Grace Vydac) as directed by the product manual. The desalted peptide was lyophilized and 

purified by analytical reversed-phase high-performance liquid chromatography (RP-HPLC) 

using a Beckman Coulter System Gold HPLC equipped with a Grace-Vydac Protein C18 column 

(5 µm, 300 Å, 250 mm x 4.6 mm). Solvents for the RP-HPLC were solvent A (0.1% TFA in 

water) and solvent B (0.086% TFA in 80% acetonitrile / 20% water). A gradient of 2-100% of 

solvent B was executed for over 45 min at a flow rate of 1 mL/min, and peptides were detected 

by absorbance at 220 nm. The fractions were analyzed by MALDI-TOF-MS. All the fractions 

containing the desired product were combined and the organic solvents were removed by rotary 

evaporation, followed by lyophilization. The product was kept at −20 °C for short-term storage 
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and −80 °C for long-term storage. Typical yields from 1 L culture were 50 µg of His6-SunA and 

His6-SunA mutants. 

6.4.4 Overexpression and purification of His6-SunS and SunS mutants 

E. coli BL21 (DE3) cells were transformed via electroporation with the pET28b SunS 

construct obtained from Dr. Trent Oman.1 A single colony transformant was used to inoculate a 

30 mL culture of LB supplemented with 50 µg/mL kanamycin. The culture was grown at 37 °C 

for 12 h and was used to inoculate 3 L of LB containing 50 µg/mL kanamycin, and cells were 

grown at 37 °C to OD600 ≈ 0.6. The culture was incubated at 4 °C on ice for 20 min, then IPTG 

was added to a final concentration of 0.5 mM and the culture was incubated at 18 °C for an 

additional 16-20 h. Cells were harvested by centrifugation at 12,000 ×g for 15 min at 4 °C, and 

the pellet was resuspended in 30 mL of start buffer (20 mM Tris (pH 8.0), 500 mM NaCl, 1 mM 

TCEP, 10% glycerol) and stored at −80 °C. All protein purification steps were performed at 4 

°C. The cell paste was suspended in start buffer and the cells were lysed using a high pressure 

homogenizer (Avestin, Inc.). Cell debris was pelleted via centrifugation at 23,700 ×g for 20 min 

at 4 °C. The supernatant was injected via a superloop onto a fast protein liquid chromatography 

(FPLC) system (ÄKTA, GE Heathcare Life Sciences) equipped with a 5 mL HisTrap HP IMAC 

column previously charged with Ni2+ and equilibrated in start buffer. The column was washed 

with 50 mL of buffer A (30 mM imidazole, 20 mM Tris, pH 7.5, 300 mM NaCl) and the protein 

was eluted using a linear gradient of 0-100% B (buffer B = 200 mM imidazole, 20 mM Tris, pH 

7.5, 300 mM NaCl) over 40 min at a 2 mL/min flow rate. UV absorbance (280 nm) was 

monitored and fractions were collected and analyzed by SDS-PAGE (4-20% Tris-glycine 

READY gel, BioRAD). The fractions containing SunS were combined and concentrated using an 

Amicon Ultra-15 Centrifugal Filter Unit (10 kDa MWCO, Millipore). Gel filtration purification 
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was used to further purify SunS. The concentrated protein sample was injected onto an FPLC 

system (ÄKTA) equipped with an XK16 16/60 (GE Healthcare Life Sciences) column packed 

with SuperDex 75 resin previously equilibrated in 20 mM Tris (pH 7.5), 100 mM KCl, 1 mM 

TCEP, and 10% glycerol. The protein was eluted with a flow rate of 0.9 mL/min. Both UV 

absorbance (280 nm) and conductance were monitored and fractions were collected. 

Misfolded/aggregated protein was efficiently separated from soluble, correctly folded protein 

and the desired fractions were combined and concentrated using an Amicon Ultra-15 Centrifugal 

Filter Unit. The resulting protein sample was stored at −80 °C. Protein concentration was 

determined using a Bradford Assay Kit (Pierce) and typically yields were 8 mg of His6-SunS or 

SunS mutants from 3 L of cell culture. 

6.4.5 Kinetic assays of the glycosyltransferase activities of SunS and SunS mutants with 

SunA peptides using a coupled spectrophotometric assay 

 Typically, SunA or SunA mutant peptide (10-40 µM) was pre-incubated in 50 mM 

HEPES buffer (pH 7.5), 1 mM MgCl2, 1 mM TCEP, 100 µM~5 mM nucleotide sugars, 0.7 mM 

phosphoenolpyruvate (PEP), 300 µM NADH, 20 units of pyruvate kinase and 28 units of lactate 

dehydrogenase at 37 °C for 10 min. Reactions were monitored at 340 nm for spontaneous 

hydrolysis of nucleotide sugars. When the spontaneous hydrolysis of nucleotide sugars reached a 

stable rate, enzymatic glycosylation was initiated by the addition of SunS or SunS mutants (0.02- 

2 µM). The initial rates of enzymatic hydrolysis and transglycosylation (<10% conversion) were 

determined by subtracting the spontaneous hydrolysis rate from the reaction rate after enzyme 

addition. All kinetic assays were carried out in a Cary 4000 UV-Vis spectrometer equipped with 

a circulating water bath. The assay volume was 100 µL. All the data were fitted using Origin 9.0 

software or Graphpad prism 5. 
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6.4.6 Kinetic assay of the glycosyltransferase activities of SunS and SunS mutants towards 

SunA peptides by LC-MS analysis. 

 Typically, 40 µM SunA peptide was incubated with 1 mM TCEP, 1 mM MgCl2, 1 mM 

UDP-Glc and 0.02 - 0.3 µM SunS or SunS mutant in 50 mM HEPES buffer (final 

concentrations), pH 7.5 at room temperature for 1 to 5 min. The reaction was quenched by 

addition of formic acid to a final concentration of 5% and subjected to LC-MS analysis without 

further manipulation. A 5 µL volume of quenched SunS reaction was applied to a Phenomenex 

Jupiter 5µ C18 300 Å (150 x 1.0 mm) column. Sugar-modified and unmodified His6-SunA 

mutant peptide material were eluted by maintaining the mobile phase at 2% B for 1 min, 

followed by an increase to 80% B over 20 min with a flow rate of 1.0 mL/min. All fractions were 

analyzed by MALDI-TOF MS as described above. The relative amounts of sugar-modified and 

unmodified His6-SunA peptide was determined by quantifying the peak area (A220 nm) 

corresponding to the M+8H ion of the substrate and product peptide by integration. Percent 

conversion was calculated by dividing the peak area of sugar-modified peptide by the sum of the 

sugar-modified and unmodified peak areas (Figures 6.15 and 6.16). 

 

Figure 6.15 Standard curve for quantifying the conversion of SunA into the corresponding glycopeptide 
during in vitro kinetic assays. 
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Figure 6.16 Extracted ion chromatograms of SunA and SunA-Glc. 
The relative amounts of sugar-modified and unmodified His6-SunA peptide was determined by quantifying the peak 
area (A220 nm) corresponding to the M+8H ion of the (a) substrate and (b) product peptide by integration. Percent 
conversion was calculated by dividing the peak area of sugar-modified peptide by the sum of the sugar-modified and 
unmodified peak areas. (c and d) isotopic distribution of substrate (SunA) and product (SunA-Glc) peptides. 
Expected SunA [M+ 8H]8+: 1002.87 and Expected SunA-Glc [M+ 8H]8+: 1030.0. 
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