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ABSTRACT 
 

Cancer and antibiotic-resistant bacterial infections are currently two of the major health 

concerns facing the United States. Novel therapeutics capable of specifically targeting either 

cancer or resistant bacteria are greatly needed. Described herein are three separate efforts to 

address these needs. 

Described in Chapter 2 is the development of a targeted anticancer agent 

deoxynyboquinone (DNQ) which is specifically activated by the enzyme NAD(P)H:quinone 

oxidoreductase-1 (NQO1). NQO1 is a 2-electron reductase that is known to be overexpressed 

in many solid tumors. Development of an anticancer quinone that is bioactivated by NQO1 has 

long been a goal of cancer therapy. Previously, several putative NQO1 substrates have been 

developed including mitomycin C, RH1, streptonigrin, and β-Lapachone (β-Lap). Recently the 

Hergenrother laboratory discovered the small molecule DNQ which has potent anticancer 

activity. Due to its quinone moiety and the fact that it causes reactive oxygen species (ROS) 

dependent cell death, we hypothesized that its activity was due to activation by NQO1.  

Described herein is a set of assays that was developed to determine the NQO1-

dependence of anticancer compounds. Of the putative NQO1 substrates, only β-Lap and DNQ 

were found to be selectively activated by NQO1. Due to its excellent potency and 

pharmacokinetic profile, DNQ was explored further. Mechanistic evaluation of DNQ revealed 

that after reduction by NQO1, DNQ undergoes reduction-oxidation cycling which concurrently 

results in the formation of ROS. ROS causes extensive DNA damage that then activates 

poly(ADP-ribose) polymerase-1 dependent cell death. DNQ was found to be efficacious a 

murine model of lung cancer. Utilizing a modified version of the DNQ synthesis previously 

developed by the Hergenrother laboratory, derivatives were synthesized and evaluated. Several 

were found that have potent activity against a panel of breast and lung cancers along with 

improved solubility and toxicity profiles compared to DNQ. These derivatives are currently under 

investigation for in vivo activity. 
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Described in Chapter 3 is the development of deoxynybomycin (DNM) as an antibiotic 

with potent activity against fluoroquinolone-resistant (FQR) bacteria. DNM is a natural product 

that has been shown previously to have antibiotic activity. Recently DNM was found to have 

potent activity against FQR Methicillin-resistant S. aureus (MRSA).  This activity is due to the 

ability of DNM to inhibit the mutant DNA gyrase (specifically S84L gyrA) responsible for FQR. At 

the start of the studies described here, two main challenges to the further development of DNM 

existed: 1) Difficulty in attaining significant quantities of pure DNM for biological evaluation and 

2) The poor solubility of DNM. The first issue was addressed by the development of a synthesis 

of DNM. A single reaction from a late stage intermediate of the DNQ synthesis allowed for the 

generation of DNM. The modular nature of the synthesis also allowed for the synthesis of a 

variety of derivatives some of which showed similar potency against FQR MRSA and greatly 

improved solubility.  

DNM and its derivative DNM-2 were tested against a variety of bacterial species to 

determine the activity profile for this class of compounds. The best activity was observed for 

FQR MRSA with S84L mutant of DNA gyrase and FQR VRE with S84I mutation. Less potent 

activity was observed for bacteria that commonly have other mutations such as S84F or S84Y. 

In vitro inhibition assays suggest that DNM is less potent against DNA gyrase with these 

mutations, but further studies need to be performed to confirm this. Additionally, DNM is inactive 

against Gram-negative bacteria likely due to its inability to traverse the outer membrane. Further 

studies to identify compounds active against Gram-negative bacteria are ongoing. Resistance to 

DNM was found to occur via regeneration of the WT DNA gyrase, thus re-sensitizing bacteria to 

FQs. This resistance cycling suggests that bacteria which develop resistance to DNM would be 

treatable. 

After determining that DNM and DNM-2 have good potency against FQR MRSA, studies 

evaluating their in vivo activity were performed. Initial pharmacokinetic analysis revealed that 

oral administration of DNM is not a useful administration route likely due to its poor solubility. 
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However, DNM-2 has excellent oral absorption with area under the curve values which predict 

good in vivo efficacy. DNM-2 was used in further studies. Toxicity studies revealed no significant 

effects of DNM-2 on mice when treated at 50 mg/kg for ten consecutive days. Excitingly, DNM-2 

was the first compound in the deoxynybomycin class to show in vivo activity, saving mice with 

FQR MRSA sepsis. 

Described in Chapter 4 is the analysis of the anticancer compound ersindole, an 

actiniophyllic acid analogue synthesized by the Martin laboratory. The anticancer activity of 

ersindole was discovered by the Hergenrother laboratory via a high throughput screen for 

compounds which induce breast cancer cell death. One of the most striking features of 

ersindole-induced cancer cell death is the shape of the dose response curve. Specifically, it has 

a very steep Hill slope and high Emax. These attributes reflect consistent and efficient induction 

of cancer cell death and suggest that ersindole is a very promising anticancer drug. Analysis of 

multiple cell lines and timepoints reveal that the steep Hill slope and high Emax of the ersindole 

dose response curve are general attributes of the compound. Previous mechanistic studies with 

ersindole suggested that it induced cancer cell death via induction of endoplasmic reticulum 

stress. This was further confirmed here via Western blot analysis and siRNA knockdown 

studies. Future efforts should focus on determining the molecular target of ersindole. 

Unfortunately, ersindole was found to induce hemolysis of red blood cells. A set of 

derivatives was investigated in an effort to find compounds that do not lyse red blood cells. 

Ersindole-9 was found to be nearly as potent as ersindole against a panel of cancer cell lines 

and to have a similarly shaped dose-response curve. Gratifyingly, ersindole-9 does not induce 

significant hemolysis. For this reason, ersindole-9 was studied in a murine model of breast 

cancer where it was found to have good efficacy.  Evaluation of a second set of derivatives was 

then performed in order to find additional derivatives that are potent and do not induce 

hemolysis. Several leads were discovered. Further analysis of these compounds is needed to 

determine the best compound for future evaluation. 
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Chapter 1. Introduction 

Portions of this Chapter are reprinted with permission from Parkinson, E.I.; Hergenrother, P.J. 

“Deoxynyboquinones as Personalized Anticancer Therapeutics” Acc. Chem. Res. Submitted 

2015., Parkinson, E. I.; Hergenrother, P. J. "Runaway ROS as a Selective Anticancer 

Strategy" Chem Med Chem 2011, 6, 1957-1959., and Bair, J. S.; Palchaudhuri, R.; Hergenrother, 

P. J. "Chemistry and Biology of Deoxynyboquinone, a Potent Inducer of Cancer Cell Death" J. 

Am. Chem. Soc. 2010, 132, 5469-5478. 

1.1 Deoxynyboquinones as personalized cancer therapeutics 

Cancer is the second-leading cause of death in the United States and is expected to 

surpass heart disease as the leading cause of death within the next few years.1 It is estimated 

that there will be 1,658,370 new cancer cases and 589,430 cancer deaths in 2015.1 Treatment of 

cancer typically relies on a combination of surgery, radiotherapy, and chemotherapeutics.2  The 

majority of chemotherapeutics used in the clinic target macromolecules important for general cell 

survival, such as DNA, topoisomerase, and tubulin (e.g., cisplatin, doxorubicin, and paclitaxel, 

respectively). While these agents are effective at killing many types of cancer cells, they also 

affect rapidly dividing normal cells, such as those in the intestinal lining and bone marrow, 

resulting in dose-limiting toxicities that reduce efficacy against many solid tumors and metastatic 

disease. A goal of personalized therapy as applied to cancer is to understand the precise defects 

in the cancer cell, which may only be present in one particular type of cancer and/or a small subset 

of patients, and to develop drugs that exploit these differences. A small number of such cancer-

specific therapies exist. These treatments commonly target a unique characteristic of cancer, 

such as a translocation, mutation, or protein with elevated expression.3 The poster child for this 

approach is imatinib (Gleevec), which inhibits the tyrosine kinase domain of the Bcr-abl protein, 

the product of a translocation between chromosomes 9 and 22 often observed in patients with 

chronic myeloid leukemia. Analogous success stories have appeared, including erlotinib 
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(Tarceva), which inhibits a mutated version of the epidermal growth factor receptor (EGFR) 

protein found in some non-small-cell lung cancers,3 and trastuzumab (Herceptin), a monoclonal 

antibody that targets the Her-2/neu receptor that is overexpressed in some breast cancers.3  As 

effective as these therapies are for their target populations, they are only useful for a subset of 

cancer patients.  One of the major goals of cancer research is the identification of novel targets 

and associated targeted therapeutics that would be effective against other groups of cancer 

patients.   

1.1.1 NQO1 and cancer 

NQO1 is a 2-electron reductase responsible for the detoxification of xenobiotics such as 

quinones.4 It is known to be overexpressed in many solid tumors including non-small cell lung 

carcinoma,5-13 breast cancer,5,8-9,14 colon cancer,5,9,15-16 pancreatic cancer,17-20 and ovarian 

cancer,9,21 among others.5,9,22-24 High NQO1 expression correlates with later clinical stage, 

metastasis, lower disease-free survival, and lower overall survival.12-14,16,21-23 While the reason for 

NQO1 overexpression in cancer is not fully understood, it possibly enables cancer cells to cope 

with increased oxidative stress.25 NQO1 expression is under the control of the transcription factor 

Nrf2, which with its repressor KEAP1 makes up one of the major signaling cascades for stress 

response.26 Normally Nrf2 is bound to KEAP1 and cannot induce expression of its target proteins. 

Upon exposure to electrophiles or ROS, KEAP1 is inactivated, thus allowing for activation of 

Nrf2.25-26 In cancers including lung,27-28 breast,29 and ovarian,30 Nrf2 is often constitutively 

activated by mutations to itself or KEAP1 or by changes in copy number.25 These mutations and 

their downstream effects (e.g. overexpression of NQO1) are hypothesized to be drivers of 

oncogenesis.28,31-32 Based on this alteration of NQO1 in cancer, it was speculated that inhibiting 

NQO1 would be an effective anticancer strategy as this inhibition could lead to toxic oxidative 

stress levels.33 However, studies with NQO1 inhibitors indicate that there is no correlation 

between NQO1 inhibition and cancer cell cytotoxicity.34-35  
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NQO1 has two characterized polymorphisms, NQO1*2 and NQO1*3, either of which 

results in inactivation of the enzyme.4 NQO1*2 is the more common polymorphism with ~4% of 

Caucasians and ~20% of Asians homozygous for it.36 While some studies suggest that individuals 

with the NQO1*2 polymorphism have a higher risk of developing cancer, others suggest that the 

effect is small if it does exist.37-38 Regardless, individuals with these polymorphisms that have 

cancer would not benefit from a therapy that targets overexpression of NQO1; facile methods 

exist for the detection of this polymorphism allowing for convenient patient screening for NQO1 

status.39 

1.1.2 NQO1 substrates as reduction-oxidation cyclers and anticancer agents  

Given its dramatic overexpression in most solid tumors, exploitation of the ability of NQO1 

to activate certain compounds to toxic species has been explored. NQO1 catalyzes a 2-electron 

reduction of a variety of substrates including quinones (to give hydroquinones, Figure 1.1), 

quinoneimines, nitroaromatics and azo dyes.40 The 2-electron reduction of quinones, including 

endogenous quinones (e.g. estradiol-3,4-quinone40 and ubiquinone,41 Figure 1.2A) and 

exogenous quinones (menadione41 and benzo[α]pyrene 3,6-quinone41, Figure 1.2A), is generally 

believed to be a detoxification process as most hydroquinones are stable (or at least more stable 

than their semiquinone counterpart) and easily conjugated to glutathione or glucuronic acid and 

excreted.41-42 However, certain hydroquinones are not stable and have the potential to induce cell 

death (Figure 1.1).4  Three main mechanisms of NQO1-dependent death been proposed.  The 

first is a direct alkylation of DNA by the hydroquinones.36,43-45 While there is evidence that some 

quinones (e.g. mitomycin C and RH1, Figure 1.2B) are activated by NQO1 to DNA alkylators,36,43-

45 there is controversy over the importance and magnitude of this effect.4,36,46-48 Recent head-to-

head comparisons (as discussed herein) indicate that most of these compounds are not 

bioreductively activated by NQO1 in cancer cells in culture.49 The second mechanism is inhibition 

of Hsp90 by hydroquinones.50-51 It appears that certain quinones (e.g. geldanamycin and its 
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derivative 17-AAG, Figure 1.2B) upon reduction to their corresponding hydroquinones by NQO1 

become potent inhibitors of Hsp90.4,50-51 However, the NQO1 dependence of this conversion has 

been questioned in other studies.52  

 

 

Figure 1.1. Reduction pathways and subsequent reactions of quinones.  

 

Figure 1.2. A) Quinones detoxified by NQO1. B) Quinones reported to be bioactivated by NQO1. 

 The final and most substantiated NQO1-dependent mode-of-action for anticancer agents 

is the redox cycling quinones (Figure 1.1 and 1.2B).11,49,53 Upon reduction by NQO1, the 

respective hydroquinones rapidly react with molecular oxygen in the cell to give two moles of 
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superoxide and regenerate the quinone.  Because these compounds rapidly and catalytically 

generate large quantities of toxic ROS only in NQO1-expressing cells, they have considerable 

potential as anticancer agents.  Three main NQO1 substrates that are redox cyclers have been 

described (Figure 1.2B), streptonigrin (STN), β-lapachone (β-Lap), and deoxynyboquinone (DNQ, 

described further in Chapter 2). STN is a moderate NQO1 substrate,49,54 but is also activated by 

other enzymes55 and likely because of this has severe in vivo toxicity.56 β-Lap is a good substrate 

for NQO149,57 that has been convincingly shown to induce NQO1-dependent death of cancer 

cells49,57-63 and has shown promise in initial clinical trials.4,64 As described in detail herein, DNQ 

has also been found to be activated by NQO1 and undergo redox cycling.49,53  

1.1.3 Tools for determining NQO1 dependence 

 Two general methods exist for determining whether a compound induces NQO1-

dependent cancer cell death. The first is a chemical method. With this method, cells are treated 

with compound of interest alone or are co-treated with compound of interest and an NQO1 

inhibitor. If the compound must be activated by NQO1 to induce cancer cell death, co-treatment 

with an NQO1 inhibitor should result in greatly reduced cell death (Figure 1.3A).  

 
Figure 1.3. (A) Dose-response curve for an NQO1-overexpressing cell line is treated with 
compound in the presence (red) and absence (blue) of an NQO1 inhibitor. (B) Dose-response 
curve for isogenic NQO1-overexpressing cell lines transfected with either nonsense shRNA (WT 
Cell Line, blue) or shRNA against NQO1 (Cell Line + shNQO1, purple) and treated with 
compound. (C) Dose-response curve for isogenic NQO1*2-cell lines transfected with either 
empty vector (NQO1*2, blue) or the gene for NQO1 (NQO1*2 + nqo1 gene, yellow) and treated 
with compound. 
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Two NQO1 inhibitors are commonly used in these types of assays. The first is dicoumarol (DIC, 

Figure 1.4), a coumarin which originally was used as an anticoagulant.65 DIC is a competitive 

inhibitor of NQO1 (KI = 1-10 nM) that interacts with the NAD(P)H binding site.66 The second 

inhibitor is ES936 (Figure 1.4), a potent mechanism based inhibitor which alkylates key tyrosine 

residues within the NQO1 active site.34 While neither DIC nor ES936 has perfect specificity for 

NQO1,34,67-68 both DIC and ES936 are widely used in studies of NQO1-mediated cell death,53,57-

58,69-70 as incubation of cells with these inhibitors is effective in blocking the enzymatic activity of 

NQO1.33,70-72 

 

Figure 1.4. NQO1 inhibitors 

 The second method for determining whether an anticancer compound requires activation 

by NQO1 is the genetic method. The first example of the genetic method is utilizing a cell line 

which normally expresses high levels of NQO1 and knocking down NQO1 using shRNA against 

it. The WT cell line should be sensitive to the compound while the NQO1-knockdown cell line 

should have greatly reduced sensitivity (Figure 1.3B). This strategy was previously used with the 

pancreatic cell line MIA PaCa-2 to demonstrate that NQO1-dependence of β-Lap.61 The second 

strategy uses cell lines derived from individuals with the NQO1*2 polymorphism described earlier 

in section 1.1.1 which results in undetectable NQO1 activity. Testing of isogenic cell line pairs of 

the NQO1*2 cell line transfected with either empty vector or the gene for NQO1 is another 

excellent way to determine the NQO1 dependence of a compound. The compound should show 
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little-to-no activity against the NQO1*2 cell line and greatly improved activity against the NQO1*2 

cell line transfected with the nqo1 (Figure 1.3C). This technique is commonly used to determine 

NQO1 dependence of a compound.11,73-74  

1.1.4 Discovery and synthesis of DNQ 

DNQ was initially synthesized in 1961 by Rinehart and Renfroe as part of studies aimed 

at elucidating the structure of the natural product nybomycin,75 and in 2012 was found to be a 

natural product.76-77 The potent anticancer activity of DNQ was discovered during a high 

throughput screen of the UIUC Heritage library78 as well as in a study by the National Cancer 

Institute.79   

To further study its activity and generate derivatives, a scalable synthetic route to DNQ 

was required. While Rinehart and coworkers developed a synthesis of the structurally related 

compound deoxynybomycin (DNM)80-81 that could then be converted to DNQ using concentrated 

nitric acid,75 this route was low yielding (<0.8% overall yield) and not amenable to derivative 

synthesis.  For this reason the Hergenrother laboratory developed a novel, modular route to DNQ 

that could provide the large quantities of compound required for animal studies and allow 

construction of derivatives.  This route involves a mixed Suzuki cross-coupling followed by ring 

closing to afford the core, deprotection, and salcomine-catalyzed oxidation to the quinone 

(Scheme 1.1).82 Using this route significant quantities of compound was generated for biological 

evaluations, and 25 novel derivatives were synthesized that will be discussed further below.49 As 

described in Chapter 3, a variation of this route can be used to construct DNM, and through 

derivative synthesis and screening we identified a non-natural version of DNM that has impressive 

antibacterial activity in mice infected with MRSA.83 



8 
 

 

Scheme 1.1. Synthesis of DNQ.82 

 

1.1.5 Mode of action of DNQ 

When certain cancer cells are treated with DNQ, large amounts of ROS are 

generated,53,82,84 and the potency of DNQ is reduced either in co-treatments with antioxidants (e.g. 
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N-acetylcysteine) or treatment under reduced oxygen atmosphere (hypoxia), suggesting that its 

mechanism is dependent upon ROS generation (Figure 1.5).82 This mechanism was further 

supported by transcript profiling data of cells treated with DNQ where the top up-regulated genes 

were HMOX1, the gene that encodes for the antioxidant enzyme heme oxygenase-1, and other 

oxidative stress related genes.82,84 

 

Figure 1.5. Effect of DNQ on HeLa cells in hypoxia and normoxia, and in the presence of N-
acetylcysteine (NAC).82  

 

For quinones, two major pathways for ROS generation exist: 1) 2-electron reduction by NQO1 

followed by redox cycling of the unstable hydroquinone as described earlier or 2) 1-electron 

reduction by one of the various 1-electron reductases to an unstable semiquinone that then redox 

cycles (Figure 1.1).82,85  

When I joined the Hergenrother laboratory, the mechanism by which DNQ induces ROS 

was unknown. We hypothesized that DNQ was activated by NQO1. As described earlier in 

Section 1.12, many compounds have been hypothesized to be NQO1-activated anticancer 

compounds. These studies often utilized only a single technique to “prove” NQO1-activation of a 

compound. Additionally, few studies directly compare compounds making it difficult to assess 

which putative NQO1-substrate is the most promising.  In order to determine if DNQ is activated 

by NQO1, we chose to examine it in a variety of assays including in vitro activation, cell culture 

studies with chemical inhibitors, and cell culture studies with genetic modulation of NQO1 levels. 

Utilization of these different techniques decreases the possibility of false positive results. 
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Additionally, we examined other putative NQO1 substrates in the same set of assays at the same 

time in order to directly compare them. This allows us to definitely determine which of the NQO1-

substrates is the most promising.   

As is shown in Chapter 2, we found that DNQ is an excellent substrate for NQO1 and 

potently induces NQO1-dependent cell death in a variety of cancer cell lines. Additionally, we 

found that many of the other compounds (e.g. MMC, RH1, and STN) are activated by reductases 

other than NQO1. β-Lap was found to be a good substrates for NQO1 and induced NQO1-

depedent cell death. However, the studies performed here suggest that DNQ is the most 

promising of the putative NQO1 substrates. With this data in hand, we chose to perform a full 

mechanistic analysis and determine the in vivo activity of DNQ in murine models of cancer.   While 

DNQ showed good activity in a murine model of lung cancer, its low solubility combined with its 

dose-limiting toxicity mean that it is likely not the best lead compound. For this reason, another 

goal of my project was to design DNQ derivatives that retain activity but have increased solubility 

and tolerability. 

1.1.6 Summary 

Due to the widespread prevalence of cancer and the large number of deaths that it causes 

each year, more effective anticancer drugs are needed. One strategy to develop novel anticancer 

agents is to find compounds capable of specifically targeting cancer cells over normal cells. 

NQO1-mediated activation of an anticancer agent is an excellent targeted strategy as NQO1 is 

often dramatically overexpressed in cancer cells compared to normal cells. Discovery of a small 

molecule substrate that is capable of redox cycling back to the parent molecule is particularly 

promising both because of the targeted nature of the activation and the low amount of compound 

that is required. As described in Chapter 2, DNQ is just such a substrate. The quinone was 

discovered to be a potent inducer of cancer cell death during a high throughput screen. 

Development of a modular synthesis of DNQ allowed for further biological characterization.  
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Preliminary mechanistic studies found it to induce ROS dependent cell death consistent with 

activation by NQO1 and subsequent redox cycling. In Chapter 2, we provide evidence that DNQ 

is in fact an excellent substrate for NQO1. Utilizing DNQ and other active derivatives, we 

demonstrate that an NQO1-activated compound has great potential as a targeted anticancer 

agent.  

1.2 Development of antibiotics that target antibiotic resistant bacteria 

“There is the danger that the ignorant man may easily underdose himself [with antibiotics] and 

by exposing his microbes to non-lethal quantities of the drug make them resistant.” 

-Alexander Fleming, Nobel Lecture, Dec. 11, 1945  

This warning presented by Sir Alexander Fleming during his acceptance speech of the 

1945 Nobel Prize in Physiology and Medicine86 highlights the strong possibility for the 

development of clinically significant antibiotic resistant bacteria. Unfortunately, since then, 

widespread antibacterial resistance has occurred with clinically relevant resistance being 

observed for all major classes of antibiotics.87 The CDC estimates that there were 2 million 

illnesses and 23,000 deaths due to antibiotic resistant bacteria in the United States in 2013.88 

Additionally, many bacteria are resistant to multiple (and in some rare cases all) available 

antibiotics prompting the CDC to warn of a potential post-antibiotic era.89 While underdosing 

patients is one of the causes of resistance, many other factors contribute to resistance including 

natural resistance already present in the environment, use of antibiotics for diseases not caused 

by bacteria, and the widespread use of antibiotics in livestock.90 Regardless of the cause, 

resistance has emerged as a major world-wide health concern leading to a desperate need for 

novel antibiotics.   

To overcome antibiotic resistance, there has been a push to develop antibiotics with 

orthogonal mechanisms that would retain activity against the resistant bacteria.91 While new 
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antibiotics with previously unexplored targets would be useful, this strategy continues the cycle 

which has been termed the “resistance treadmill”.92 This treadmill refers to the constant arms race 

between humans and bacteria where “[r]esistance development limits the useful lifespan of 

antibiotics and results in the requirement for a constant introduction of new compound.”93 As soon 

as humans develop a novel antibiotic (i.e. run faster on the treadmill), it is only a matter of time 

until the bacteria develop resistance (i.e. turn up the speed on the treadmill) leaving us in same 

desperate position we were in before. Co-treatment of bacterial infections with antibiotics having 

distinct mechanisms has been proposed as a way to slow the treadmill.94 While this is likely to 

delay the development of resistance, it is unlikely to completely prevent it (e.g. multi-drug resistant 

M. tuberculosis has occurred despite the fact that the bacteria is routinely treated with a 

combination of antibiotics).88 Another proposal to slow resistance development is to inhibit the 

machinery necessary for infecting the host such as virulence factors rather than trying to kill the 

bacteria.95 This is advantageous because the selective pressure to develop resistance is much 

lower compared to when the goal of the therapeutic is bacterial cell death. Here we explore an 

alternative strategy: developing antibiotics that inhibit the modulated targets which cause 

antibiotic resistance. This may be a way to get off the treadmill completely by pressuring bacteria 

to return to the wild type phenotype and thus become re-sensitized to the older antibiotics. In 

order to explore this possibility further, we will first examine the most common antibiotic resistance 

mechanisms. 

1.2.1 Antibiotic resistance mechanisms 

Three main causes of antibiotic resistance exist96:  

1) Reduced permeability and/or efflux of the antibiotic 

2) Inactivation of the antibiotic 

3) Modification of the target of the antibiotic 
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These mechanisms are prevalent across the different classes of antibiotics as can be seen in 

Table 1.1. They are discussed in more detail below along with previous attempts to develop novel 

antibiotics that target them.  

1.2.1.1 Resistance via reduced permeability and/or efflux of antibiotics 

Two of the most common mechanisms of antibiotic resistance are 1) To decrease the 

permeability of the bacterial cell wall to the antibiotic or 2) To increase the efflux of the antibiotic 

out of the cell.97  These mechanisms are most often observed in Gram-negative bacteria (which 

are already intrinsically resistant to many antibiotics due to their outer membrane) but are also 

observed in some Gram-positive bacteria.96 While these modes of resistance alone often do not 

cause clinically relevant resistance,97-98 there are cases where they do.  

Reduced Permeability. Antibiotics that are active against Gram-negative bacteria generally enter 

the cell via porins.96 Bacteria can develop resistance to these agents via downregulation of these 

porins or even complete replacement of the porins with more selective channels resulting the 

compounds being unable to enter the cell (and thus unable to kill the bacteria).96 Mutations of 

porins and/or reduction in their production have been found to cause clinically relevant resistance 

to carbapenems in E. coli and K. pneumoniae in the absence of other mechanisms of resistance.96   

Efflux. Both Gram-negative and Gram-positive bacteria develop antibiotic resistance by 

increasing the expression of efflux pumps to actively transport antibiotics out of the cell before 

they can accumulate.96 These efflux pumps can have wide substrate tolerance such as the 

multidrug efflux pumps which confer resistance to a wide range of antibiotics. Alternatively, they 

can be very specific such as the tetracycline efflux pumps that are capable of differentiating 

subclasses of tetracyclines.97  Increased efflux of tetracyclines by these pumps is one of the 

primary causes of tetracycline resistance seen in the clinic.97  
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Table 1.1. Mechanisms of antibiotic resistance to different antibiotic classes96-97,99-100  

 

Targeting Reduced Permeability and Efflux. Two main strategies have been employed to 

overcome these observed resistances. The first is increasing cell permeability. This strategy relies 

on molecules such as the polymyxins (e.g. colistin) that are capable of disrupting the outer 

membrane of Gram-negative bacteria.101-102 While these drugs have shown efficacy in the clinic, 

they are typically used as drugs of last resort due to their nephrotoxicity.97 Additionally, resistance 

to these agents via alteration of the outer membrane has been observed in the clinic further 

reducing their utility.101-102 The second strategy is to develop efflux pump inhibitors with the goal 
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of using them as adjuvant therapies. One of the most well-studied efflux pump inhibitor is the 

peptidomimetic phenylalanine-arginine β-naphthylamide which shows good activity in vitro but 

significant toxicity in vivo.103 Current efforts are aimed at developing compounds with similar 

activities and decreased toxicities.103  

1.2.1.2 Resistance via inactivation of the antibiotic 

 Another common mechanism of antibiotic resistance is inactivation of the antibiotic by 

enzymatic degradation. β-lactamases hydrolyze the lactam ring in β-lactams antibiotics resulting 

in their inactivation and are the most well-studied example of this mechanism of resistance. Some 

β-lactamases are only active against first generation β-lactams, but others such as the extended-

spectrum β-lactamases (ESBL) and the carbapenemases are capable of targeting a wider variety 

of substrates.96,104 These enzymes are such a significant cause of resistance that the CDC has 

labeled the bacteria that express them as a serious and urgent threat.88 Other clinically relevant 

examples of antibiotic inactivating enzymes include enzymes responsible for the inactivation of 

aminoglycosides, tetracyclines, macrolides, chloramphenicol, and rifamycin.97 

 Inhibition of antibiotic inactivating enzymes has been an area of success in targeting 

antibiotic resistant bacteria. Specifically, β-lactamase inhibitors such as clavulanic acid, 

sulbactam and tazobactam have greatly extended the lifetime of traditional β-lactams such as 

ampicillin and piperacillin.97 However, these compounds are not active against all β-lactamases 

and do not inhibit the carbapenemases. Novel β-lactamase inhibitors such as avibactam are 

capable of targeting these enzymes and will likely be very valuable in the fight against bacteria 

that produce these antibiotic inactivating enzymes.105  

1.2.1.3 Resistance via modification of the target of the antibiotic 

 The final mechanism of resistance is modification of the antibiotic target resulting in the 

antibiotic being unable to bind and exert its action. As can be seen in Table 1.1, this is a common 
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cause of resistance for all antibiotic classes. However, the type of modification of the target varies 

based on the antibiotic. 

Sulfonamides. Sulfonamides are structural analogues of p-aminobenzoic acid (PABA) that act 

by inhibiting dihydropteroate synthase (DHPS), the enzyme responsible for converting PABA and 

dihydropteroate diphosphate into dihydrofolic acid, a precursor of folic acid.97  E. coli resistance 

to sulfonamides occurs after a single base pair substitution in the folP gene (encodes 

dihydropteroate synthase) resulting in a mutant DHPS with either F28I or F28L mutant.106 These 

mutants show greatly decreased binding to the sulfonamides (~150X) while only moderate 

decreases in binding to the natural substrate (~10X). Point mutations in DHPS are found in other 

sulfonamide resistant bacteria, but the mutations differ across species.106 Additionally and 

potentially more clinically relevant, many sulfonamide resistant bacteria (e.g. A. baumannii, E. 

coli, K. pneumoniae, and P. aeruginosa) express sulfonamide resistant DHPSs via acquired 

plasmids containing one of two DHPS genes (sul1 and sul2).107-108    

Trimethoprim. Trimethoprim, similar to the sulfonamides, also inhibits folate biosynthesis but 

does so by inhibiting dihydrofolic acid reductase (DHFR), the enzyme responsible for the 

conversion of dihydrofolic acid to tetrahydrofolic acid.97 In S. aureus, the majority of trimethoprim 

resistant strains have either H30N/F98Y or H149R/F98Y mutations in DHFR with the F98Y 

mutation believed to be responsible for the loss in affinity.109-110 Other trimethoprim resistant 

bacteria also have mutations in DHFR but they differ in location (e.g. I100L for S. pneumoniae111 

or many different mutations for E. coli112). Additionally, many trimethoprim resistant bacteria have 

mutations in the promoter for DHFR resulting the overexpression of the enzyme.113 Similar to the 

sulfonamides, plasmid-mediated resistance is also common for trimethoprim-resistant bacteria 

with multiple plasmids containing genes for trimethoprim-resistant DHFRs.114 

β-lactams. β-lactams act by inhibiting the penicillin binding protein (PBP), the enzyme that 

catalyzes the transpeptidation reaction necessary to form strong cell walls.97 While antibiotic 
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inactivation by β-lactamases is the most common form of resistance to β-lactams for most 

bacteria, development of methicillin-resistant S. aureus and penicillin-resistant S. pneumoniae 

and Enterococcus species is primarily due to an alteration of their PBPs.97,115 For S. aureus the 

acquisition of an alternative PBP called PBP2a from a mobile genetic carrier called the 

staphylococcal cassette chromosome mec is the cause of the resistance.115-116  PBP2a has 

greatly reduced affinity for methicillin compared to PBP and a lower rate of β-lactam mediated 

acylation.115 S. pneumoniae have been found to express modified versions of their own class A 

and class B PBP from mosaic pbp genes as well as point mutations in the gene. These modified 

PBPs are poorly acylated by β-lactams.116 One of the PBPs from Enterococcus (a class B PBP) 

is intrinsically β-lactam resistant and takes over when other PBPs are inhibited.116 

Vancomycin. Vancomycin inhibits cell wall synthesis by binding to the terminal D-Ala-D-Ala of 

peptidoglycan pentapeptides preventing the transglycosylation and ultimately weakening the 

peptidoglycan layer.97 Clinical resistance to vancomycin results from installation of D-Ala-D-Lac 

or D-Ala-D-Ser instead of D-Ala-D-Ala resulting in the loss of an essential hydrogen bond and a 

~1000-fold decrease in binding affinity.97,117-118 The machinery to install these alternative residues 

is obtained from a transposon (e.g. TN1546)119 which likely originated from the bacteria which 

naturally produce vancomycin.93,120 

Daptomycin. Daptomycin is a calcium dependent antibiotic which causes bacterial cell death via 

disruption of the bacterial cell membrane.97 While the exact mechanisms of daptomycin resistance 

are still under investigation, they primarily involve alteration of the thickness, charge and/or 

composition of the cell wall.121  

Aminoglycosides. Aminoglycosides are irreversible protein synthesis inhibitors that bind the 

30S-subunit ribosomal proteins where they can either interfere with the initiation complex, cause 

misreading of mRNA, or disrupt polysomes into nonfunctional monosomes.97 While the most 

common mechanism for clinical resistance to aminoglycosides is inactivation by transferase 
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enzymes, methylation of the 16S rRNA can result in high level resistance and has been found in 

a variety of clinical isolates.122 The actinomycetes that produce aminoglycosides are intrinsically 

resistant to aminoglycosides often via methylation of specific nucleotides (either A1408 or G1405) 

within the A-site of rRNA.123 Bacteria that are not intrinsically resistant (e.g. E. coli, K. pneumoniae, 

and P. aeruginosa) obtain the genes to produce the methylase on transferable plasmids.124   

Tetracyclines. Tetracyclines are reversible protein synthesis inhibitors that bind the 30S subunit 

of the bacterial ribosome and act by blocking the binding of the aminoacyl-tRNA to the acceptor 

site.97 While a variety of resistance mechanisms exist for the tetracyclines, the two most clinically 

relevant mechanisms are efflux pumps and the production of ribosomal protection proteins 

(RPPs).97,125 The RPPs are believed to have originated from the producer of the tetracyclines 

Streptomyces rimosus and to have been transferred to other bacteria via plasmids.126 The RPPs 

are capable of dislodging tetracyclines from the ribosome in a GTP dependent manner thus 

resulting in clinically significant resistance.125 While this mechanism differs from many of the other 

target site modifications, upon binding the RPPs are believed to significantly distort the binding 

site for tetracyclines resulting in its dissociation and expulsion from the ribosome.126-127 

Macrolides. Macrolides are protein synthesis inhibitors that bind the 50S rRNA and block peptide 

elongation.97 Similar to the aminoglycosides, methylation of the ribosomal-binding site is a major 

cause of clinical resistance to macrolides.96-97 Specifically, the erythromycin-resistance methylase 

(Erm) is a methyltransferase responsible for the mono- or dimethylation of the 23S rRNA at 

nucleotide A2058, which confers resistance to macrolides.125 However, the Erm 

methyltransferase is only expressed when a macrolide is present likely due to its high fitness cost 

(methylation of A2058 results in different translation patterns).125  

Chloramphenicol. Continuing the theme of protein synthesis inhibitors, chloramphenicol inhibits 

protein synthesis via reversible binding to the 50S subunit of the bacterial ribosome and inhibits 

the peptidyl transferase step.97 As with the aminoglycosides and macrolides, chloramphenicol 
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resistance is mediated by methylation of its target RNA. Specifically, the chloramphenicol-

florfenicol resistance (cfr) methyltransferase transfers a methyl to A2503 of the 23S rRNA.128 This 

methylation has very little fitness cost thus explaining its widespread occurrence.125  

Oxazolidinones. Oxazolidinones including linezolid (the first FDA-approved oxazolidinone 

antibiotic) are synthetic antimicrobials that bind a unique site (23S rRNA) on the 50S subunit 

resulting in inhibition of the initiation of protein synthesis.97 Similar to the other protein synthesis 

inhibitors, methylation of its associated rRNA can result in resistance to linezolid.125 A more 

common resistance mechanism to linezolid is the mutation of rRNA (C2534U) which has been 

observed in S. pneumonia, S. aureus, S. epidermis, S. hominis, S. simulans, and 

Enterococcus.97,129 This mutation in combination with mutations in ribosomal proteins L3 and L4 

results in a very high level linezolid resistance.125 

Rifamycins. Rifamycin inhibits RNA synthesis by binding to the β-subunit of the DNA-dependent 

RNA polymerase. The major form of resistance to rifamycin is point mutations in rpoB, the gene 

for the β-subunit of the RNA polymerase.97 For M. tuberculosis, almost all mutations occur at the 

rif I region of the protein with 41% of rifamycin-resistant clinical isolates having a mutation at S455, 

36% at H440, and 9% at D430.130 

Fluoroquinolones. FQs act by inhibiting bacterial type IIA topoisomerases, specifically DNA 

gyrase and topoisomerase IV, which catalyze the introduction of negative supercoils and the 

decatenation of interlinked chromosomes, respectively 131-132. Both DNA gyrase and 

topoisomerase IV are tetramers made up of two copies of two different subunits and containing 

two active sites. For DNA gyrase, the subunits consist of GyrA (contains the active site tyrosine 

responsible for DNA strand breakages) and GyrB (responsible for hydrolyzing ATP thus providing 

energy for the reaction). Topoisomerase IV consists of similar subunits with ParC being equivalent 

to GyrA and ParE acting like GyrB 131. The general mechanism of DNA gyrase begins with the 

binding of the G strand of DNA (green strand in part 1 of Figure 1.6A).131,133 After binding, two 
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ATP molecules bind to the ATPase domains and the G strand of DNA is cleaved via the active 

site tyrosine (insert and part 2 of Figure 1.6A). Hydrolysis of one ATP results in the passage of 

the T-strand of DNA (purple strand) through the cleaved G strand (part 3 in Figure 1.6A). The 

DNA is then released (part 4 in Figure 1.6A) and hydrolysis of the last ATP resets the enzyme. 

FQ inhibition of DNA gyrase is usually monitored by either the supercoiling or cleavage 

assay (Figure 1.6B).134 As the names suggest, the supercoiling assay monitors the ability of a 

compound to inhibit the supercoiling of DNA that is catalyzed by DNA gyrase. The cleavage assay 

monitors the ability of a compound to stabilize an enzyme-DNA complex ultimately resulting in 

cleavage of the DNA (see Figure 1.6B). The FQs inhibit DNA gyrase causing double stranded 

breaks that appear as a buildup of L DNA in a DNA gyrase cleavage assay.135 Maxwell and 

coworkers have demonstrated that FQs initially stabilize a single phosphotyrosine bond as 

evidenced by an initial buildup of OC DNA during the cleavage assay (Figure 1.6C).135 However, 

the FQ stabilization of a single strand break causes an even faster second cleavage event that is 

also stabilized by FQs thus explaining the rapid buildup of linear DNA.135 For this reason, many 

suggest that the FQs inhibit step 2 of the DNA gyrase mechanism (Figure 1.6A). Another DNA 

gyrase inhibitor, GSK299423, acts via a different mechanism 133. Unlike FQs that bind within the 

two active sites, it binds between the active sites stabilizing either an uncleaved or a single-

stranded cleaved DNA (step 1 of the DNA gyrase mechanism, Figure 1.6A). The stabilization 

induced by GSK299423 differs from that of CIP in that it does not result in a second cleavage 

event and instead causes a buildup of OC DNA (Figure 1.6C). 
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Figure 1.6. (A) DNA gyrase mechanism. This figure was adapted from figures in recent 
reviews.131,133 1) The G strand of DNA (green) binds to the DNA gate. 2) The G strand is cleaved 
allowing for passage of the T strand of DNA (purple). The insert shows the cleavage complex with 
the active site Tyr122 bound to the DNA. 3) The G strand is re-ligated. 4) The DNA is released. 
(B) The cleavage assay measures the ability of a small molecule to stabilize the topoisomerase-
DNA complex that is normally formed during the enzyme catalyzed reaction. Supercoiled DNA is 
co-incubated with DNA gyrase and the compound of interest. DNA is then cleaved from DNA 
gyrase using SDS. The DNA is then run on agarose gel. DNA is visualized with ethidium bromide. 
Three different forms of DNA are observed: Supercoiled (S), Singly-nicked DNA (aka OC DNA), 
and linear (i.e. doubly nicked DNA). CIP causes primarily double stranded breaks and thus a 
buildup of linear DNA as seen in the below gel (S. pneumoniae  gyrase with 1 – 40 µM CIP). All 
gels were taken from a protocol by Fisher and Pan.134 (C) A timecourse analyzing the effect of 
CIP on DNA in the DNA cleavage assay. Initial buildup of singly nicked (OC) DNA gives way to 
primarily doubly nicked (linear, L) DNA. The experiment was performed by Maxwell and 
coworkers.135 (D) A dose-response experiment analyzing the effect of GSK299423 on DNA in the 
DNA cleavage assay. Unlike CIP, GSK299423 results in a buildup of OC DNA, not L DNA. This 
experiment was performed by Gwynn and coworkers.133 (E) A dose-resposne experiment 
analyzing the effect of nybomycin on DNA in the DNA cleavage assay. Similarly to GSK299423, 
it appears to result in a buildup of OC DNA. This experiment was performed by Hiramatsu and 
coworkers.136  
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Target site mutation is the major contributor to FQR 98,137, with high-level resistance 

observed in bacteria possessing key mutations in both GyrA and ParC 98. Nearly all FQR bacteria 

harbor these target site mutations, with point mutations in the quinolone resistance-determining 

region (QRDR) of the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV. 

One of the most commonly mutated sites is the Ser84 on GyrA (S. aureus numbering). As 

discussed further in Chapter 3, this Ser is well conserved across bacterial species including Gram-

positive and Gram-negative bacteria. Additionally, its mutation almost always leads to clinically 

relevant FQR. Another less commonly observed mechanism of resistance are the plasmid-

mediated quinolone resistance genes such as qnr.98 Qnr encodes a pentapeptide-repeat motif 

that binds to the bacterial topoisomerases and prevents binding FQs.  

Targeting Modified Targets. Small molecules capable of targeting the first two mechanisms of 

resistance (reduced permeability/efflux and inactivation of the antibiotic) exist and have been 

relatively successful with each having clinically approved agents (colistin and the β-lactamase 

inhibitors, respectively). However, to the best of our knowledge, very little work has been done to 

develop small molecules capable of inhibiting the third mechanism of resistance (modified target). 

One of the few examples is work by Boger and co-workers where they developed vancomycin 

derivatives capable of targeting the D-Ala-D-Lac peptide responsible for vancomycin 

resistance.118 Until very recently83,136 there were no examples of small molecules that specifically 

target modified enzyme targets in bacteria. This idea of specifically inhibiting the modified target 

is particularly attractive because it is possible that resistance would develop via cycling back to 

the WT target thus re-sensitizing the bacteria to the original antibiotic (see Figure 1.7).83,136,138  

This drug cycling is exactly what has been observed with the small molecule deoxynybomycin 

(DNM), which has been shown to target the mutated DNA gyrase responsible for fluroquinolone 

resistance (FQR).83,136 The rest of Chapter 1.2 and Chapter 3 will focus on our work on DNM, its 

derivatives, and their unique mode of action. It is likely that a similar strategy could be employed 

to target the mutated targets of many of the antibiotics discussed above (e.g. the mutated DHPS 
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responsible for sulfonamide resistance; the mutated DHFR responsible for trimethoprim 

resistance; the methylated rRNA responsible for resistance to aminoglycosides, macrolides, and 

chloramphenicol; the mutated rRNA and ribosomal protein responsible for resistance to linezolid; 

the mutated RNA polymerase responsible for rifamycin resistance).  

 
Figure 1.7. Resistance cycling with complementary antibiotics. Purple bacteria are sensitive to 
drug A which hits a wild type (WT) target. Upon exposure to A, selection occurs whereby bacteria 
resistant to drug A dominate via modification of a target (green bacteria). Green bacteria are 
sensitive to drug B which hits the modified target. Upon exposure to B, the bacteria develop 
resistance to drug B via reversion to the original WT target. 
 

1.2.2 History of DNM 

Nybomycin (NM, Figure 1.8) is a natural product first identified from a culture of a 

streptomycete (strain A717) isolated from a Missouri soil sample and found to have antibacterial 

activity including activity against S. aureus, M. smegmatis, and Bacillus species.139-140 During 

efforts to determine its structure, Rinehart and coworkers synthesized a related compound, 
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deoxynybomycin (DNM, Figure 1.8), which was later found also to be a natural product and to 

have more potent activity than NM against a range of bacteria.75,141. As described above, DNM 

was recently found to target FQR MRSA by inhibiting mutant DNA gyrase.83,136 Specifically, it was 

shown to target bacteria with a S84L mutation in gyrA. Additionally, NM was shown to inhibit the 

mutant DNA gyrase in vitro in a cleavage assay (Figure 1.6E).  

 

Figure 1.8. Structure of nybomycin (NM) and deoxynybomycin (DNM). 

1.2.3 Common mutations in DNA gyrase that result in FQR 

As discussed earlier in Section 1.2.1.1, the major mechanism of FQR for bacteria involves 

the mutation of FQ targets DNA gyrase and topoisomerase IV. While nearly all FQR bacteria 

found to date have such mutations, the exact mutation can vary based on the bacterium. For 

MRSA, the major mutations occur at S84 of GyrA and S80 of ParC with nearly 100% have the 

S84L mutation in DNA gyrase.136,142-149 Similarly, B. anthracis,150  E. coli,151 Shigella species,152-

153 and A. baumannii154 also having the analogous Ser mutated to Leu. In VRE155 the S is mutated 

to multiple different residues (Ile, Arg, and Tyr) while in S. pneumoniae,156 K. pneumonia,157 and 

N. gonorrhoeae158 this Ser is often changed to either Phe or Tyr.155-162 P. aeruginosa differs in that 

it naturally has a Thr instead of the Ser.163 However, P. aeruginosa is similar to VRE in that the 

Thr is mutated to an Ile in the majority (75-96%) of FQR strains.163-166 Finally, Mycobacteria 

species differ in that it naturally has an Ala instead of a Ser and mutates A90V in approximately 

20% of FQR strains of M. tuberculosis.167 
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Figure 1.9. Possible gyrA mutations for different bacteria after a single base change. In the center 
is the WT codon (residue) at the key resistance determining position. Clinically relevant mutations 
are bolded. (A) S. aureus, B. anthracis, A. baumannii. (B) E. coli and Shigella species. (C) 
Enterococcus species. (D) S. pneumoniae, K. pneumonia, and N. gonorrhoeae. (E) P. 
aeruginosa. (F) M. tuberculosis. 
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The S83 (E. coli numbering) of gyrA is relatively well conserved across bacterial species 

with the exception of P. aeruginosa and Mycobacteria (See Chapter 3, Figure 3.4A). However, as 

evidenced by the data discussed above, development of FQR can occur via mutation of this 

residue to a variety of different residues (e.g. Leu, Ile, Arg, Tyr, Phe, Val) depending on the 

bacterial species. The reason for these different mutations in response to the same FQs is not 

known but may be related to the native codon that encodes the Ser in each species. Specifically, 

we hypothesize that the mutations are dependent upon what codons are possible after a single 

base change in the initial codon (Figure 1.9). For S. aureus,168 B. anthracis,150 and A. 

baumannii169-172 the codon for the conserved Ser is TCA (Figure 1.9A). A single base change in 

this codon can result in multiple different substitutions including the clinically observed Leu. For 

E. coli151 and Shigella species,152,173-174 the codon for Ser is TCG and a single base change can 

also result in the commonly observed mutation, S83L (Figure 1.9B). For Enterococcus species,155 

the codon for Ser is AGT and a single base change can cause the frequently seen Ile and Arg 

(Figure 1.9C). For S. pneumoniae,156,175-176 K. pneumonia,157,177-179 and N. gonorrhoeae,158 the 

codon for Ser is TCC and a single base change can result in the clinically relevant Phe and Tyr 

(Figure 1.9D). For P. aeruginosa,163 the codon for Thr is ACC, and a single base change can 

result in Ile (Figure 1.9E). Finally, for M. tuberculosis,167,180 the codon for Ala is GCG, and a single 

base change can result in Val (Figure 1.9F). It is interesting to note that for many of these bacteria 

a single base change could result in Ala, Thr, or Pro but none of the resistant strains have these 

mutations. For Ala and Thr, it may be that such enzymes would still be sensitive the FQs given 

that these are the WT forms for P. aeruginosa and M. tuberculosis, respectively. For Pro, it is 

possible that it would distort the protein structure and may result in an inactive enzyme. Other 

possible mutations that are not commonly observed are Trp, Cys, Asn, and Glu. While the reason 

for this is not known, they may result in too high of a fitness cost. 
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1.2.4 Summary  

 Antibiotic resistance is one of the major challenges facing modern medicine. Novel 

antibiotics capable of treating these resistant bacteria are greatly needed. While the development 

of antibiotics with novel mechanisms is a worthwhile goal, eventually resistance will develop to 

these antibiotics resulting in the constant need for new antibiotics. One potential way of 

overcoming this challenge is to develop antibiotics that specifically target the cause of antibiotic 

resistance. While this strategy has previously been explored for two mechanisms of resistance 

(i.e. decreased permeability and inactivation of antibiotics by β-lactamases), developing 

compounds to inhibit the modified targets which cause antibiotic resistance is not well 

investigated. We hypothesize that inhibiting these modified targets may be a highly effective way 

both to kill the antibiotic resistant bacteria and to prevent novel mechanisms of resistance by 

pressuring the bacteria to revert to the wild type phenotype. In Chapter 3, we provide evidence to 

support this hypothesis by exploring the compound DNM and its ability to inhibit mutant DNA 

gyrase responsible for fluoroquinolone resistance.   

 

1.3 Discovering novel anticancer agents from cell-based phenotypic screens 

 The discovery of novel anticancer agents from cell-based phenotypic screens has been 

described previously in great detail.181 Described herein are (1) the importance of factors other 

than potency in choosing lead compounds, and (2) the induction of endoplasmic reticulum (ER) 

stress as an anticancer strategy.  

1.3.1 The importance of the shape of the dose-response curve on anticancer efficacy  

Phenotypic screening of compound libraries, especially cell-based screening for 

cytotoxicity, has led to the discovery of promising antitumor agents.182-183 Prioritization of lead 

anticancer compounds identified in high throughput screens is often based on potency and 
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selectivity, but recent reports have highlighted the importance of other parameters in evaluating 

candidate molecules.184 Specifically, drug efficacy is related to the slope of the dose-response 

curve (Hill slope) and the fraction of the population killed at high compound concentrations (Emax). 

Steep slopes (e.g., Hill slope > 1) reflect a lower degree of variation in response to compound 

within a given population, whereas high Emax values (e.g., Emax of 100 = 100% death) indicate 

efficient induction of cell death at concentrations above the IC50.184 

 A steep Hill slope indicates that reduced amounts of compound above the IC50 are needed 

to efficiently kill a population of cells. For example, a compound with an Emax of 100, an IC50 of 1 

µM, and a Hill slope of 1 will require a 100 µM concentration to kill 99% of the cells. In contrast, 

for a compound with a Hill slope of 2 and identical values for Emax and IC50 as above, only a 10 

µM concentration is required to achieve 99% cell death (Figure 1.10).184 The full potential of 

anticancer compounds with steep Hill slopes and high Emax values remains to be determined; 

however, it is reasonable to believe that such compounds are more likely to be maximally active 

in vivo at lower doses (based on the steep Hill slope), and the quantitative cell death (100% Emax) 

could help prevent or delay the development of resistance.   

 
Figure 1.10. General cytotoxicity dose-response curve with different Hill slope values. HS = Hill 
slope. 
 

 The importance of Hill slope and Emax is well established in the context of anti-retroviral 

therapy. Anti-retroviral agents with steep Hill slopes have greater antiviral activity at clinically 

relevant concentrations and are key components of the most effective drug combinations.185 
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Further, mutations associated with clinical resistance to anti-retrovirals such as the protease 

inhibitor atazanavir can cause minimal changes in IC50 but significantly reduce the Hill slope.186 

Recently, the importance of Hill slope and Emax for anticancer therapy was thoroughly 

examined.184 Among anticancer agents, HDAC inhibitors and proteasome inhibitors had 

significantly higher Hill slopes than the other classes of drugs (average Hill slope ~1.5 to 2.6). The 

highest average Hill slope observed for clinically used anticancer agents were 2.9 ± 0.8 for the 

Bcr-Abl inhibitor imatinib and 2.8 ± 1.0 for the receptor tyrosine kinase inhibitor sunitinib.184 These 

parameters have significant clinical implications, as illustrated by the much steeper Hill slope of 

imatinib against cancer cells expressing wild type Bcr-Abl compared to cells with mutant Bcr-Abl 

proteins. This change in Hill slope upon mutation of Bcr-Abl correlates with the poor efficacy of 

imatinib in cancer patients with these mutations.187 

1.3.2 Induction of endoplasmic reticulum stress as an anticancer strategy 

 The ER is responsible for Ca2+ storage and for the folding and maturation of many secreted 

and transmembrane proteins.188 ER stress is defined as any disturbance in normal ER function 

that activates the unfolded protein response (UPR).189 It can be caused by a variety of events 

including improper redox regulation, glucose deprivation, Ca2+ misregulation, energy fluctuations, 

DNA damage, and viral infections.189-191  

 ER stress is signaled by the activation of any one of three transmembrane proteins within 

the ER: IRE1α, PERK, and ATF6 (Figure 1.11). Activation of IRE1α causes dimerization, 

autophosphorylation, and splicing of XPB1 mRNA, which leads to the expression of a subset of 

UPR genes that promote ER-associated degradation of misfolded proteins and ER biogenesis 

(Figure 1.11A).192-193 Phosphorylation of IRE1α is commonly used as a biochemical marker of 

IRE1α activation,194 although downstream markers of IREα activation such as XPB1 splicing can 

be observed more easily.188  

 ER stress also induces dimerization and autophosphorylation of PERK, as well as 
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phosphorylation of eIF2α by PERK.189 Phosphorylation of eIF2α leads to a reduction in translation 

of most genes, as well as activation of AT4, which induces expression of UPR genes such as 

amino acid transporters and the transcription factor CHOP (Figure 1.11B).193 CHOP subsequently 

activates transcription of GADD34, a regulatory subunit of the phosphatase PP1 that 

dephosphorylates phospho-eIF2α (p-eIF2α). Levels of p-eIF2α are commonly used to measure 

PERK activation.188,194 

 

Figure 1.11. The three families of signal transducers for ER stress: (A) IRE1α, (B) PERK, and 
(C) ATF6. This figure is adapted from figures found in two recent reviews.195-196  
 

   ATF6 is activated in a different manner than IRE1α and PERK are activated. Upon 

ER stress, ATF6 translocates to the Golgi, where it is cleaved by proteases.189 This cleavage 

allows the transcription factor to migrate to the nucleus, where it induces the expression of UPR 

genes such as XBP1 (Figure 1.11C).193 As with IRE1α and PERK, it is generally challenging to 
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monitor the proteolysis of ATF6 directly.188 Instead, activation of ATF6 is more reliably determined 

by examining mRNA levels of its target genes, including GRP78197 and HRD1.188 

 While mild ER stress promotes a pro-survival response, acute ER stress results in pro-death 

signaling that leads to cell death through a variety of pathways.189,195,198-199 Due to the nutrient 

deprivation and dysregulation of protein synthesis in cancer cells, ER stress is often more 

common in tumor cells than in associated healthy tissues.190-191 Increased expression of XBP1, 

ATF6, CHOP, and ER chaperone BIP (also known as GRP78) have been detected in breast 

cancer, hepatocellular carcinomas, gastric tumors, and esophageal adenocarcinomas.191 

Because of the high secretory nature of rare mucinous and secretory breast cancers and 

myelomas, including Burkitt’s lymphoma and multiple myeloma, they are particularly prone to 

elevated levels of ER stress compared to associated normal tissues.190  

 Due to increased ER stress in cancer cells, over-activation of ER stress has been 

recognized as a possible targeted anticancer strategy.191 ER stress-inducing compounds can 

selectively activate ER stress pathways in cancer cells, both in cell culture and in vivo, to induce 

cell death, while inducing minimal ER stress in normal cells.200-202 Both the FDA-approved agent 

bortezomib (a proteasome inhibitor) and the investigational compound 17-AAG (an Hsp90 

inhibitor) induce cancer cell death via ER stress.203-204 In addition, other compounds that induce 

ER stress in the laboratory are now under investigation as potential anticancer agents.  The two 

most common chemical tools for the study of ER stress and its downstream effects are 

thapsigargin, a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor,205 and tunicamycin, 

a heterogeneous natural product mixture that inhibits N-glycosylation.206 Tunicamycin has 

recently been shown to potentiate the effects of cisplatin in murine models of hepatocellular 

carcinoma.207 An antigen-targeted prodrug of thapsigargin, G-202, is currently in Phase 2 clinical 

trials for liver, brain, and prostate cancers (clinicaltrials.gov, NCT01777594 and NCT02067156). 
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1.3.3 Summary 

 Phenotypic screens have led to the discovery of many anticancer agents with unique 

characteristics and modes of action. While lead compounds are traditionally chosen based on 

potency of the compound, many other factors, including the shape of the dose-response curve, 

are also important to consider before advancement of a given compound. Further evaluation of 

hit compounds with steep Hill slopes and high Emax values may aid in the discovery of anticancer 

agents with slower rates of resistance development. Additionally, investigation of anticancer leads 

that act through traditionally underrepresented modes of action such as induction of ER stress is 

advantageous due to the potential for these compounds to show improved activity against certain 

cancers (e.g. those with high secretory rates). 
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Chapter 2. Deoxynyboquinones as NQO1-targeted anticancer agents  

Portions of this Chapter are reprinted with permission from Huang, X.; Dong, Y.; Bey, E. A.; 

Kilgore, J. A.; Bair, J. S.; Li, L.-S.; Patel, M.; Parkinson, E. I.; Wang, Y.; Williams, N. S.; Gao, J.; 

Hergenrother, P. J.; Boothman, D. A. “An NQO1 Substrate with Potent Anti-Tumor Activity that 

Selectively Kills by PARP-1-Induced Programmed Necrosis” Cancer Res. 2012, 72, 3038-3047 

and  Parkinson, E. I.; Bair, J. S.; Cismesia, M.; Hergenrother, P. J. “Efficient NQO1 Substrates 

are Potent and Selective Anticancer Agents”  ACS Chem. Biol. 2013, 8, 2173-2183., and 

Parkinson, E.I.; Hergenrother, P.J. “Deoxynyboquinones as Personalized Anticancer 

Therapeutics” Acc. Chem. Res. Submitted 2015. Copyright 2012 American Association of Cancer 

Research and Copyright 2013 American Chemical Society. Contributions of others are noted 

when applicable. 

 

2.1 Deoxynyboquinone (DNQ) is an NQO1-activated anticancer agent with activity in vivo  

As discussed in Chapter 1.1.5, DNQ is an anticancer agent that causes reactive oxygen 

species (ROS) dependent cell death. However when this work was started, the mechanism by 

which DNQ induces ROS had not been elucidated. In collaboration with the Prof. David Boothman 

(UT-Southwestern) and his laboratory, we discovered that DNQ is an NQO1-activated anticancer 

agent with potent activity in vitro and in vivo. Additionally, we directly compared DNQ to the other 

putative NQO1 substrates reported in the literature and found that DNQ and derivatives appear 

to be the most promising NQO1-activated anticancer drugs. 

2.1.1 Mechanisms by which quinones cause reactive oxygen species formation 

For quinones, two major pathways for ROS generation exist: 1) 2-electron reduction by 

NQO1 followed by reduction-oxidation (redox) cycling of the unstable hydroquinone as previously 

discussed in Chapter 1.1.2 or 2) 1-electron reduction by one of the various 1-electron reductases 

to an unstable semiquinone that then redox cycles (Scheme 2.1).1-2 We chose to first investigate 
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the NQO1-dependence of the DNQ due to the overexpression of NQO1 in many cancer types 

(see Chapter 1.1.1 for a further discussion of NQO1-overexpression in cancer).  

 

 

Scheme 2.1. Reduction pathways and subsequent redox cycling of quinones. 

2.1.2 In vitro Activation of DNQ by NQO13 

 In order to elucidate the mechanism by which DNQ causes ROS formation, we first 

investigated the ability of NQO1 to reduce DNQ along with other putative NQO1 substrates (β-

Lap, STN, RH1 and MMC) in vitro (Figure 2.1A). In this assay, the quinone is co-incubated with 

both NQO1 as well as an excess of NADH, and oxidation of NADH is followed by the decrease in 

absorbance at 340 nm. DNQ, β-Lap, and STN were all substrates for NQO1 and each utilized 

greater than one equivalent of NADH over the course of the assay, demonstrating the ability of 

these quinones to redox cycle (Figure 2.1B-D). From these data Michaelis-Menten curves were 

generated, and apparent catalytic efficiencies were calculated (apparent because they also reflect 

the kinetics of redox cycling for each compound). As shown in Figure 2.1A, DNQ is a highly 

efficient substrate and redox cycler, with an apparent catalytic efficiency that approaches the 

diffusion controlled limit (kcat/KM = 6.2 x 107 M-1s-1).  DNQ is processed over 9 times faster than 

the next best compound, β-Lap (kcat/KM = 0.67 x 107 M-1s-1), and 24 times faster than STN (kcat/KM 
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= 0.26 x 107 M-1s-1).  RH1 and MMC are extremely poor substrates for NQO1 in this assay with 

observed activity less than 100 µmol/min/µmol of enzyme. 

 

 

Figure 2.1. (A) Michaelis-Menten curves for DNQ, β-Lapachone (β-Lap), and streptonigrin (STN) 
with NQO1.  Virtually no activity (<100 µmol/min/µmol) is observed with RH1 and mitomycin C 
(MMC) at these concentrations (data not shown). (B) Analysis of number of moles NADH used 
after coincubation with 2 nmol DNQ and NQO1. Blue = DMSO control, Orange, grey, and yellow 
= representative technical replicates. Black line represents the stoichiometric amount of NADH 
compared to DNQ. (C) Same as B but with β-Lap. (D) Same as B but with STN. 
 
2.1.3 DNQ kills cancer cells in an NQO1-dependent manner3-4  

 After determining that DNQ is a highly efficient NQO1 substrate, the correlation between 

NQO1 activity in vitro and anticancer potency in cell culture was investigated. 

2.1.3.1 NQO1 inhibitors protect high NQO1-expressing cell lines from DNQ3 

DNQ, β-Lap, STN, RH1, and MMC were investigated for their potency against cancer cells 

that overexpress NQO1.  The lung adenocarcinoma cell line A549 and the breast cancer cell line 

MCF-7 both have robust expression of NQO1,4 and we measured the NQO1 activity in the cell 
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lysates at 2700 nmol/min/µg protein and 1900 nmol/min/µg protein, respectively (compared to 

<10 nmol/min/µg for cells that do not express NQO1,4 see section 2.5.1 for details).  A549 and 

MCF-7 cells were exposed to each of the five quinones for 2 hours, and cell death was assessed 

at 72 hours.  As shown by the logistical dose response curves (Figures 2.2A-D), the five quinones 

show considerably different potency in their ability to induce cell death, with DNQ, STN and RH1 

being the most potent (See Figure 2.2E for the IC50 of each compound).   

The quinones were also tested against A549 and MCF-7 cells in the presence of the NQO1 

inhibitor dicoumarol (DIC, 25 µM, Figure 2.2). Details of this inhibitor are described in Chapter 

1.1.3. As shown in Figure 2.2A-B, co-incubation with DIC dramatically protects A549 and MCF-7 

cells from DNQ-mediated cell death, shifting the IC50 53-fold and 8-fold respectively (the fold is 

the ratio of the IC50 of co-treatment with quinone and inhibitor to the IC50 of treatment with only 

quinone, and a higher ratio indicates greater protection and greater NQO1 selectivity).  DIC also 

significantly protect cells from β-Lap-induced cell death, shifting the IC50 10-fold and 2-fold for 

A549 and MCF-7 cells, respectively (Figure 2.2C-E).  DIC has little-to-no effect on STN, MMC, or 

RH1-induced cell death, suggesting that only DNQ and β-Lap kill in this assay by an NQO1-

dependent mechanism.   
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Figure 2.2. (A) Cell death curves of A549 cells treated for 2h with DNQ in the presence (red) 
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Figure 2.2. (cont.) and absence (blue) of the NQO1 inhibitor dicoumarol (DIC, 25 µM) (B) Same 

as A only with MCF-7 breast cancer cells. (C) Same as A but for β-Lap, streptonigrin (STN), 

mitomycin C (MMC), and RH1. (D) Same as B but for β-Lap, STN, MMC, and RH1. (E) Table of 

IC50 values and fold protections (Fold Change) for each treatment with standard error (n ≥ 3).   

The fold change is (
𝐼𝐶50 𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑤𝑖𝑡ℎ 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟

𝐼𝐶50𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑜𝑛𝑒
). *p < 0.05, **p < 0.01, ***p < 0.001, paired 

t-tests on the IC50 values comparing treatments with or without inhibitor. 

 

Similar studies were also performed with A549 cells and the NQO1 inhibitor ES936 (100 

nM, Figure 2.3) discussed further in Chapter 1.1.3. As shown in Figure 2.3A, co-incubation with 

ES936 also dramatically protects A549 cells from DNQ-mediated cell death, shifting the IC50 

>170-fold.  ES936 also protect cells from β-Lap-induced cell death, shifting the IC50 6-fold (Figure 

2.3B-C).  A small but not statistically significant difference in IC50 values was observed for STN, 

RH1, and MMC with ES936. 
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Figure 2.3. (A) Cell death curves of A549 cells treated for 2h with DNQ in the presence (green) 

and absence (blue) of the NQO1 inhibitor ES936 (100 nM) (B) Same as A but for β-Lap, STN, 

MMC, and RH1. (C) Table of IC50 values and fold protections (Fold change) for each treatment 

with standard error (n ≥ 3). The fold change is (
𝐼𝐶50 𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑤𝑖𝑡ℎ 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟

𝐼𝐶50𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑜𝑛𝑒
). *p < 0.05, **p 

< 0.01, ***p < 0.001, paired t-tests on the IC50 values comparing treatments with or without 

inhibitor. 
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2.1.3.2 Activity of DNQ depends on presence of active NQO13-4 

 After demonstrating the NQO1 dependence of DNQ and β-Lap utilizing high NQO1 

expressing cell lines and the NQO1 inhibitors DIC and ES936, we chose to confirm this activity 

utilizing isogenic cell lines expressing different levels of NQO1. First, the pancreatic cell line MIA 

PaCa-2 was investigated. MIA PaCa-2 cells naturally express high levels of active NQO1 (NQO1 

activity = 1130 nmol/min/µg protein, Figure 2.4A).3 The Boothman laboratory previously generated 

isogenic MIA PaCa-2 cell lines which express low levels of active NQO1 using shRNA against 

NQO15 (NQO1 activity = 87 nmol/min/µg protein, Figure 2.4A).3 DNQ shows good activity against 

MIA PaCa-2 transformed with a nonsense shRNA (MIA PaCa-2 NS, IC50 = 0.31 µM) and 

significantly less potent activity against the MIA PaCa-2 cells transformed with shRNA against the 

gene for NQO1 (MIA PaCa-2 shNQO1, IC50 = 1.6 µM, Figure 2.4B). The difference in potency 

against the shRNA provides further evidence that the activity of DNQ is NQO1 dependent. The 

fact that DNQ still has a small amount of activity against NQO1-knockdown cells is not surprising 

because the knockdown is not complete. β-Lap, STN, MMC, and RH1 also all showed potent 

activity against MIA PaCa-2 NS cells (Figure 2.4C-D).  β-Lap showed a slight decrease in 

sensitivity to the MIA PaCa-2 shNQO1 cells, but the difference was not statistically significant. 

This is in agreement with a previously published paper which showed that β-Lap needed ~90 U 

of NQO1 (the approximate amount that the MIA PaCa-2 shNQO1 has) to show full activity.5 STN 

showed no change in activity against MIA PaCa-2 cells in response to the change in NQO1 levels 

consistent with the lack of protection provided by NQO1 inhibitors seen in Figure 2.2. There was 

slight protection against MMC in the shNQO1 cells but the difference was not statistically 

significant. Interestingly, RH1 appears to be sensitized to MIA PaCa-2 upon knockdown of NQO1. 

Previously, RH1 activity has been shown to be dependent upon NQO2 expression.6 It is possible 

that knocking down NQO1 causes changes in NQO2 expression and thus sensitivity to RH1 

although this is not confirmed. 



57 
 

 
Figure 2.4. (A) NQO1 expression and activity of the isogenic pancreatic cell lines MIA PaCa-2 

NS (nonsense shRNA) and shNQO1 (shRNA against NQO1). (B) Cell death curves of DNQ 

against the cell lines in A. (C) Same as B but for β-Lap, STN, MMC, and RH1. (D) Table of IC50 

values and fold protections (Fold Change) for each treatment with standard error (n ≥ 3).   The 

fold change is (
𝐼𝐶50 𝑜𝑓 𝐷𝑁𝑄 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑀𝐼𝐴 𝑃𝑎𝐶𝑎−2 𝑠ℎ𝑁𝑄𝑂1

𝐼𝐶50𝑜𝑓 𝐷𝑁𝑄 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑀𝐼𝐴 𝑃𝑎𝐶𝑎−2 𝑁𝑆
). *p < 0.05, paired t-tests on the IC50 values 

comparing NS with shNQO1 cell lines. 
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The Boothman laboratory performed a similar analysis using the human prostrate cancer 

cell line PC-3.4 The WT cell line has high NQO1 levels (200 ± 5 nmol/min/µg protein) and is very 

sensitive to DNQ (IC50 = 0.07 µM) and β-Lap (IC50 = 3.2 µM).4 When the cell line has NQO1 

knocked down using shNQO1, the NQO1 activity is decreased significantly (26 ± 10 nmol/min/µg 

protein) and shows much lower sensitivity to DNQ (IC50 > 1 µM, >14 fold change) and β-Lap (IC50 

> 20 µM,  >6 fold change). This data is consistent with the MIA PaCa-2 data for DNQ, further 

confirming its dependence on NQO1. The Boothman laboratory did not analyze STN, MMC or 

RH1 in these cell lines so no conclusions can be made about these compounds. 

As mentioned in Chapter 1.1.1, some humans have a polymorphism in NQO1 (oftentimes 

NQO1*2) which results in degradation of the enzyme. Cell lines derived from these individuals do 

not express active NQO1 and thus serve as a perfect backdrop to assess the effect of this enzyme 

on the potency of DNQ (and the other quinones). First, the breast cancer cell line MDA-MB-231 

(which is known to contain the NQO1*2 polymorphism4) was explored. The Boothman laboratory 

has generated isogenic cell line pairs which have been transformed with plasmids containing 

either empty vector (231-) or the nqo1 gene (231+).4 231- has very low NQO1 expression and 

activity (13 nmol/min/µg protein) consistent with having this polymorphism while the 231+ has 

greatly increased activity (1500 nmol/min/µg protein, Figure 2.5A).3 Unsurprisingly, DNQ has very 

little activity against 231- (IC50 > 10 µM, Figure 2.5B) and is significantly sensitized to 231+ (IC50 

= 1.1 µM, >9 fold change). The Boothman laboratory saw even greater sensitization in their 

viability assay with this cell line (231- IC50 > 1 µM and 231+ IC50 = 0.06 µM; fold > 17). While the 

reason for this difference in sensitization is not clear, it may relate to the different viability readouts 

used in these assays (protein content by sulforhodamine B staining7 vs. DNA content by Hoechst 

33258 staining8). β-Lap was also not particularly sensitive to 231- (IC50 = 36 µM, Figure 2.5C). 

However, we observed no significant sensitization to β-Lap the 231+ cells (IC50 = 39 µM).  

 

 



59 
 

 

Figure 2.5. (A) NQO1 expression and activity of the isogenic breast cancer cell lines MDA-MB-

231 transfected with empty vector (231-) and the gene for NQO1 (231+). (B) Cell death curves of 

DNQ against the cell lines in A. (C) Same as B but for β-Lap, STN, MMC, and RH1. (D) Table of 

IC50 values and fold protections (Fold Change) for each treatment with standard error (n ≥ 3).   

The fold change is (
𝐼𝐶50 𝑜𝑓 𝐷𝑁𝑄 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 231−

𝐼𝐶50𝑜𝑓 𝐷𝑁𝑄 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 231+
). *p < 0.05, **p < 0.01, ***p < 0.001, paired t-tests on 

the IC50 values comparing 231- and 231+. 

 



60 
 

This is in contrast to previous publications that showed a modest increase of 

approximately 2 fold in sensitivity.4 As with DNQ, slight differences in the assay might explain 

these incongruities. Interestingly, STN is significantly sensitized to MDA-MD-231 upon 

introduction of NQO1 (Figure 2.5C). This data is consistent with the modest protection observed 

for A549 cells co-treated with STN and the inhibitor ES936 and the in vitro data showing that STN 

is a moderate substrate for NQO1. Together these data suggest that STN can be activated by 

NQO1. MMC is also more sensitive to 231+ than to 231-. However, the effect is small. This is 

consistent with data showing that MMC can be activated by NQO1 but that this is likely not the 

clinically relevant mode of action.9-10 RH1 is also slightly more sensitive to 231+ than to 231-. 

Similar to MMC, RH1 has been shown to be activated by NQO1 but this activation is likely not the 

primary mechanism of action.6 

The sensitivity of the lung cancer cell line H596, which also has the NQO1*2 

polymorphism, to DNQ was then also explored. The Boothman laboratory also generated paired 

isogenic cells with either empty vector (H596-) or the nqo1 gene (H596+). Similar results were 

observed as with the MDA-MB-231 paired cell lines. Unsurprisingly, H596- had very low NQO1 

activity (30 nmol/min/µg protein), and H596+ had greatly increased NQO1 activity (1740 

nmol/min/µg protein, Figure 2.6A). DNQ had little to no activity against H596- (IC50 > 10 µM) and 

increased activity against H596+ (IC50 = 3.5 µM, >3 fold change, Figure 2.6B). Similar to the MDA-

MB-231 cell lines, the Boothman laboratory saw even greater sensization (H596- IC50 >1 µM, 

H596+ IC50 = 0.1 µM, >10 fold change). Little sensitization was seen with β-Lap upon expression 

of NQO1 (Figure 2.6C). However, the Boothman laboratory saw sensitization to β-Lap with 

increase in NQO1 expression (H596- IC50 > 20 µM, H596+ IC50 = 3.8 µM, >5 fold change). STN, 

MMC, and RH1 all had higher activities against H596+ than H596- similar to what was observed 

in MDA-MB-236.   
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Figure 2.6. (A) NQO1 expression and activity of the isogenic lung cancer cell lines H596 

transfected with empty vector (H596-) and the gene for NQO1 (H596+).  (B) Cell death curves of 

DNQ against the cell lines described in A. (C) Same as B but for β-Lap, STN, MMC, and RH1. 

(D) Table of IC50 values and fold protections (Fold Change) for each treatment with standard error 

(n ≥ 3).   The fold protection is (
𝐼𝐶50 𝑜𝑓 𝐷𝑁𝑄 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻596−

𝐼𝐶50𝑜𝑓 𝐷𝑁𝑄 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻596+
). *p < 0.05, **p < 0.01, ***p < 0.001, paired 

t-tests on the IC50 values comparing H596- and H596+. 
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Overall, the results from the chemical and genetic inhibition studies demonstrate that the 

anticancer activity of DNQ is dependent on the expression of high levels of active NQO1. Similar 

results, although to a less impressive degree, were observed with β-Lap. STN, MMC, and RH1 

are inconsistent in their response to decreased NQO1 levels. Generally, it seems that they might 

be activated by NQO1 to a small degree but that this is not the primary mechanism of their activity.  

It should be noted that extended treatment times reduces the selectivity of DNQ for NQO1-

expressing cell lines (Figure 2.7). In these studies performed by the Boothman, A549 cells were 

treated with DNQ alone or with DNQ and DIC for the indicated times. At 2 and 8 h exposures, the 

selectivity for cells treated with DNQ alone is clear (Figure 2.7A-B). However, at longer treatment 

times (e.g. 24 and 48 h), the DIC treated cells also begin to die (Figure 2.7C-D). A similar 

phenomenon was observed for the isogenic H596+/- cells (Figure 2.7E-F). Additionally, the 

Hergenrother laboratory has observed that it is possible to kill low NQO1-expressing cell lines 

(e.g. U937) by extended treatment times.1 The effect seen at the longer treatment times is likely 

due to activation by other reductases such as one electron reductases (e.g. cytochrome P450 

reductase and cytochrome b5 reductase). Studies with purified one-electron reductases need to 

be performed to confirm this. This is not expected to be a problem in vivo given the 

pharmacokinetics of the compound (see Chapter 2.1.4.2). However, one future direction of this 

work is to develop a prodrug that would mask the quinone and thus prevent any toxicity due to 

one-electron reductases. An alternative future direction is the development of DNQ derivatives 

which are worse substrates for one-electron reductases than DNQ. This would allow for an 

increased therapeutic window.  
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Figure 2.7. DNQ shows a broad NQO1-dependent therapeutic window. Relative survival was 
monitored in A549 cells treated with various DNQ concentrations (µM) ± dicoumarol (Dic, 40 µM) 
for (A) 2 hours, (B) 8 hours, (C) 24 hours, or  (D) 48 hours. Graphed are means, ± SE of duplicate 
experiments, repeated in sextuplets. (E) Same as A only with H596+ and H596- cells instead of 
A549 cells ± Dic. (F) Same as D only with H596+ and H596- cells instead of A549 cells ± Dic. 
Graphed are means, ± SE of sextuplets from a representative experiment. T/C = treated 
compared to control. 
 

2.1.4 DNQ causes NQO1-dependent ROS formation, DNA damage, and parthanatos4 

 Previously, the Hergenrother laboratory had determined that DNQ kills cancer cells in a 

ROS-dependent mechanism.1 In collaboration with the Boothman laboratory, we have established 

that DNQ causes ROS generation in an NQO1-dependent manner, that this ROS generation is 
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catalytic in DNQ, and that ROS causes DNA damage which leads to parthanatos (i.e. PARP-1 

dependent cell death). In the following paragraphs are the experiments that the Boothman 

laboratory performed to confirm this.  

First, the oxygen consumption rates (OCR) of A549 cells treated with either β-Lap or DNQ 

were determined (Figure 2.8A-D). Both compounds cause a rapid increase in the OCR with DNQ 

doing so at 20-fold lower concentration. This rapid increase in oxygen consumption is consistent 

with the redox cycling that was discussed earlier (see Chapter 1.1.1 and Scheme 2.1). 

Importantly, for DNQ the oxygen consumption at 0.25 µM was completely prevented by the NQO1 

inhibitor DIC suggesting that the oxygen consumption is dependent upon reduction of DNQ by 

NQO1. β-Lap still has a small level of oxygen consumption in the presence of DIC suggesting that 

it is partly reduced by one-electron reductases. Similar results were observed for the isogenic cell 

line pair with H596+ showing large increases in oxygen consumption upon treatment with DNQ 

and H596- showing little to no change in oxygen consumption over the blank control. The high 

OCRs of both β-Lap and DNQ-treated cells suggest that both compounds likely redox cycle after 

reduction by NQO1. The in vitro studies performed with compound, NADH, and NQO1 further 

support this since each mole of compound results in the oxidation of more than one mole of NADH 

(Figure 2.1B-C), suggesting that the compounds are reduced more than once during the course 

of the experiment. 
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Figure 2.8. Elevated oxygen consumption in DNQ treated cells. (A) Oxygen consumption rates 
(OCR) in A549 cells treated with β-Lap ± dicoumarol (Dic, 40 µM). OCR was monitored every 8 
minutes for 2 h. Data are means ± SEM normalized to untreated controls. n = 3. (B) Quantitative 
data of A after 30 minutes. (C) Same as A but with DNQ instead of β-Lap.  (D) Same as B but for 
DNQ. (E) Same as C but with H596+ and H596- cells. (F) Same as D but for H596+ and H596- 
cells. ***P ≤ 0.001, comparing ± Dic treatments.  
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 After confirming oxygen consumption, the ability of these compounds to produce ROS 

was explored. As discussed earlier in Chapter 1.1.4, the Hergenrother laboratory had previously 

shown that DNQ results in ROS formation and that DNQ-induced cell death is dependent upon 

ROS formation.1 The Boothman laboratory confirmed that A549 cells treated with DNQ have 

increased levels of superoxide and that this increase is NQO1 dependent (Figure 2.9A). 

Additionally, they confirmed that ROS is necessary for DNQ-induced cancer cell death by showing 

that A549 cells are protected from DNQ upon co-treatment with catalase (CAT, an enzyme 

responsible for catalyzing the conversion of hydrogen peroxide to water and oxygen, Figure 2.9B)  

 

Figure 2.9. Elevated ROS formation in NQO1-overexpressing cell lines upon treatment with DNQ. 
(A) A549 cells were cells were treated with or without DNQ (0.25 µM) ± dicoumarol (Dic, 40 µM). 
ROS formation was assessed by dihydroethidium (DHE) staining. Results are means, ± SE of 
arbitrary units measured by staining intensity from 100 cells using NIH Image J. (B) DNQ (µM, 2 
hours) -exposed A549 cells were cotreated with ± catalase (CAT, 1,000 U) and clonogenic 
survival was monitored. ***, P ≤ 0.001, comparing DNQ-treated A549 cells ± CAT cotreatment.  
 
  

After confirming that DNQ causes ROS-dependent cell death, the Boothman laboratory 

investigated the type of cell death induced by DNQ. ROS is known to cause DNA damage, 

especially DNA base and single stranded break lesions.4 Poly(ADP-ribose) polymerase 1 (PARP-

1) is typically recruited to these breaks where it synthesizes poly(ADP-ribose) polymers (PAR) 

that recruit DNA repair proteins.11 In cases of extensive DNA damage, PARP-1 can be 

overactivated resulting in PARP-1-dependent cell death called parthanatos.11-12 Within five 

minutes of treating the NQO1-overexpressing cancer cell line A549 with DNQ, significant PAR 
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formation is observed (Figure 2.10A-B).4 This PAR formation is inhibited by co-incubation with the 

NQO1 inhibitor DIC suggesting that this formation is dependent upon DNQ activation by NQO1. 

Additionally, in the same cell line, there is a significant reduction in both NAD+ and ATP levels 

after treatment with DNQ that is concentration, time and NQO1 dependent (Figure 2.10C-F), 

consistent with overactivation of PARP-1 and parthanatos.4 A similar result was seen with the 

paired isogenic cell line H596 with the NQO1 expressing cell line (H596+) showing significant 

ATP loss and the cell line lacking active NQO1 (H596-) showing very little reduction in ATP levels 

(Figure 2.10G). Additionally, the ATP reduction observed in H596+ cells was prevented by co-

treatment with DIC (Figure 2.10H).   
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Figure 2.10. DNQ induces NQO1-dependent PARP-1 hyperactivation and nucleotide depletion. 
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Figure 2.10. (cont.) (A) PARP-1 hyperactivation, monitored by poly(ADP)-ribosylated protein 
(PAR) formation using an ELISA method, was detected in A549 cells treated with DNQ ± 
dicoumarol (Dic, 40 µM). Data are means, ± SEM from 3 independent experiments. (B) Western 
blot assays confirmed PAR formation (PAR-PARP-1, ~120 kDa) in A549 cells treated with or 
without 0.25 µM DNQ at indicated times (minutes). Cells were treated with H2O2 (1 mM, 15 
minutes) as a positive control for PAR formation. Loading was controlled by α-tubulin (α-tub) 
levels. Dose-dependent NAD+ (C) and ATP (D) loss in A549 cells after various DNQ doses ± Dic 
(40 µM). NAD+ (E) and ATP (F) depletion was analyzed at indicated times, with or without DNQ 
(0.25 µM) ± Dic (40 µM). (G) Dose-dependent ATP loss in H596+ and H596- cells after DNQ 
treatment . (H) Same as D only for H596+ cells. Data are means, ± SEM from 3 independent 
experiments. *, P ≤ 0.05; ***, P ≤ 0.001. 
 

To further demonstrate that DNQ induces NQO1-dependent parthanatos, the effects of 

DNQ on a PARP-1 knockdown cell line was explored. A549 cells were transfected with siRNA 

against PARP-1 resulting in a transient knockdown of PARP-1 (Figure 2.11A). Transient 

knockdown of PARP-1 decreased cell death following exposure to DNQ as evidenced by both 

micrographs and the TUNEL assay (Figure 2.11B-C).4 Additionally, knockdown of PARP-1 

significantly decreased NAD+ and ATP loss (Figure 2.11 D-E). Together these data strongly 

implicate parthanatos as the major form of DNQ-induced cell death.  
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Figure 2.11. DNQ induces NQO1-dependent parthanatos. (A) Steady-state PARP-1,NQO1, and 
α-tubulin (α-tub) levels were assessed by Western blots in mock-transfected (parental), 
nontargeted siRNA (siNT), or transiently PARP-1 knockdown (siPARP-1) A549 cells 48 hours 
posttransfection. Loading was monitored by α-tub. (B) Micrographs of DNQ-treated nontargeted 
(siNT) or PARP-1-specific (siPARP-1) siRNA knockdown A549 cells at 24 hours posttreatment 
with LD50 (0.125 µM) or lethal doses (0.25 µM), ± dicoumarol (Dic, 40 µM). (C) PARP-1 
knockdown significantly protects A549 cells from DNQ-induced programmed necrosis (%TUNEL+ 
cells). Treatment conditions were as in B. (D) PARP-1 is essential for NAD+ loss at the indicated 
times (minutes) in DNQ-treated (0.25 µM) A549 cells. P values compare NAD+ levels in PARP-1 
knockdown versus parental or siNT A549 cells. *P ≤ 0.05; ***P≤ 0.001 (E) ATP levels in DNQ-
treated A549 cells transfected with either non-silencing siRNA (siSCR) or siRNA specific for 
PARP-1 (siPARP-1). Data are means, ± SEM from three independent experiments. **P ≤ 0.01; 
***P≤ 0.001 
 
 

2.1.5 DNQ has in vivo anticancer efficacy 

2.1.5.1 In vitro toxicity to normal cells 

Before investigating the in vivo activity of DNQ, its effect on normal cells was assessed. 

First, the lung fibroblast cell line IMR90 which expresses no detectable NQO1 (Figure 2.12A, 
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insert) was examined. This cell line has low-to-no sensitivity to DNQ (IC50 > 10 µM) as one would 

expect based on its NQO1 expression.   

 

Figure 2.12. (A) Cell death curves of IMR90 cells treated for 2h with DNQ in the presence (red) 
and absence (blue) of the NQO1 inhibitor dicoumarol (DIC, 25 µM) (B) Proposed oxidation of 
hemoglobin to methemoglobin by menadione.13-18 Methemoglobin is converted back to 
hemoglobin by the enzymes cytochrome-b5 reductase and NADPH methemoglobin reductase.19 
(C) Dose-response curves of methemoglobin (MHb) formation induced in human erythrocytes by 
sodium nitrite (NaNO2), DNQ, β-Lap, MMC, and RH1 after 1 h shaking at 37 °C. Percent MHb 
calculated by dividing amount of MHb by total heme.  
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The effect of DNQ on red blood cells (RBCs) was then assessed. While DNQ does not 

induce hemolysis (data not shown), it does cause the RBC pellet to turn dark brown/black. This 

change in color was concerning since this is often indicative of methemoglobin formation.20 

Methemoglobin is formed when the iron in hemoglobin (Fe2+) is oxidized to Fe3+ resulting in the 

hemoglobin having a higher affinity for oxygen and thus decreasing the amount of oxygen 

released into the body. While small amounts of methemoglobin (1-2% of total hemoglobin) are 

normal, higher levels can result in toxicities such as cyanosis (10-20%), headaches, dyspnea, 

and anxiety (~20-50%), coma, seizures, and acidosis (50-70%) and death (>70%).21 

Methemoglobin formation is most often due to exposure to oxidizing agents.22 Many chemicals 

are known to cause methemoglobin formation including the antimalarial chloroquine, some 

sulfonamide antibiotics, and local anesthetics such as benzocaine.20,22 Quinones such as 

menadione are known to oxidize hemoglobin to methemoglobin and it has been proposed that 

this is via direct oxidation (see Figure 2.12B).13-18 Alternatively, some propose that the 

methemoglobin is formed indirectly: reduction of the quinone to the semiquinone which redox 

cycles to form superoxide which causes the oxidation of the heme iron.13-18 There is also evidence 

to suggest that quinones such as menadione are capable of reducing methemoglobin back to 

hemoglobin under certain conditions likely by acting as an electron shuttle in the NADPH-

depedent methemoglobin reductase system.23-24  

We investigated the ability of DNQ, β-Lap, MMC, and RH1 to induce methemoglobin 

formation via a modified version of the method developed by Evelyn and Malloy25 with sodium 

nitrite used as a positive control. For the sodium nitrite control, potent methemoglobin formation 

is observed (IC50 = 2.0 ± 0.2 µM). Methemoglobin formation was also observed for DNQ (IC50 = 

4.2 ± 1.0 µM) and β-Lap (IC50 = 49 ± 10 µM). No methemoglobin formation was observed for 

either MMC or RH1. While methemoglobin formation is an undesirable attribute of DNQ, IV 

administration of methylene blue is an effective treatment for most mild-to-moderate cases of 
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methemoglobin.20,22 It could be used as a co-treatment with DNQ if methemoglobin proves to be 

a significant problem in vivo. Another alternative is to develop derivatives or prodrugs with 

decreased methemoglobin formation. This is an ongoing area of research in the laboratory. 

2.1.5.2 In vivo toxicity and pharmacokinetics 

 While methemoglobin formation does occur, the anticancer activity is approximately 70-

fold more potent that the methemoglobin formation. We hypothesized that this would likely provide 

us with a reasonable therapeutic window, and thus we chose to go forward with animal studies. 

We found that DNQ has a maximum tolerated dose (MTD) of 10 mg/kg when treated every other 

day either i.v.4 or 5 mg/kg when treated every day by i.p injection. Mice that received five doses 

of this treatment showed no long term pathological effects in the liver (Figure 2.13A), lung, bone 

marrow, spleen, or thymus.4 The Boothman laboratory reported observing methemoglobin 

formation in vivo after a 10 mg/kg dose, 4 but we were never able to observe it (see section 2.2.6). 

With the establishment of the MTD, both the Boothman laboratory and Prof. Tim Fan (UIUC) 

determined pharmacokinetic parameters for DNQ. The Boothman laboratory found that DNQ has 

a markedly longer half-life, higher Cmax, and higher AUC compared to β-Lap (Figure 2.13B-C). 

Additionally, Prof. Fan found that DNQ has good oral bioavailability (Figure 2.13D).  
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Figure 2.13. (A) Female athymic nude mice bearing visible tumors were treated once every other 
day for 5 IV injections. Normal tissues were assessed with no long-term pathologic injury noted; 
shown here is H&E-stained livers (B) Mice were dosed IV with either 30 mg/kg of β‐Lap or 10 

mg/kg DNQ formulated with hydroxypropyl‐‐cyclodextrin (HPCD).  At varying times after 

dosing, the mice were sacrificed and plasma samples taken out to 120 mins for ‐Lap and 1440 
mins for DNQ.  Plasma levels were monitored by LC/MS/MS after extraction of the compounds 

from the plasma matrix by solid phase extraction (Lap) or simple removal of plasma proteins 
by precipitation with acetonitrile (DNQ).    Recoveries of both compounds were near 100% for 
both methods (C) Calculated noncompartmental pharmacokinetic parameters for B. t1/2 = half life, 
Cmax = maximal concentration, AUC = area under the concentration-time curve, Vz = volume of 
distribution, Cl = clearance. (D) Mice were dose either IV or orally (PO) with 9 mg/kg DNQ 

formulated with HPCD. At At varying times after dosing, the mice were sacrificed and plasma 
samples were obtained. Plasma levels were monitored by LC/MS/MS. 
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2.1.5.3 In vivo activity 

 Based on the promising in vivo toxicity and pharmacokinetics data, an extremely 

aggressive orthotopic Lewis Lung Carcinoma (LLC) model in athymic mice was performed to 

examine the antitumor efficacy of DNQ. Mice were treated every other day for a total of 5 injections 

with either HPβCD alone, DNQ (2.5, 5, or 10 mg/kg) or β-Lap (30 mg/kg). After 18 days, lungs 

were removed, weighed, and visually scored for tumor nodules (Figure 2.14A and B). DNQ (5 and 

10 mg/kg) and β-Lap treated mice showed significant tumor growth reductions, confirmed by 

decreases in tumor nodule formation and histology (Figure 2.14A-B). Overall survival confirmed 

significant antitumor efficacy of DNQ (5 mg/kg; P≤0.04), at a 6-fold lower dose than β-Lap (30 

mg/kg; Figure 2.14C). Finally, PAR formation and energy (ATP) losses in LLC tumors after DNQ 

or β-Lap exposures confirmed that the mechanism of cell death in vivo is consistent with the one 

observed in vitro (Figure 2.14D-E); tumor-specific ATP losses were confirmed by LC/MS/MS 

analyses. In contrast, associated normal lung tissue was unaffected, showing no PARP-1 

hyperactivation or ATP loss (Figure 2.14D-E).  
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Figure 2.14. (A) Female athymic nude mice bearing visible tumors were treated once every other 
day for 5 injections. On day 18, mice were sacrified and tumor nodules were confirmed visually 
and histologically (data not shown). 5 mice per group. (B) Average wet weights from A. UT = 
vehicle (HPβCD) treated control. *P ≤ 0.04, **P ≤ 0.01. (C) Kaplan-Meier survival curves showing 
significant (P ≤ 0.04) survival advantage of DNQ (5 mg/kg) or β-Lap (30 mg/kg) groups. Treatment 
groups were HPβCD alone (1,000 mg/kg), DNQ (2.5 and 5.0 mg/kg), and β-Lap (30 mg/kg). 5 
mice per group. *P ≤ 0.04. (D) PAR formation and (E) ATP loss were observed in LLC tumors 
where animals were treated with 3 doses of either vehicle (HPβCD), DNQ, or β-Lap and sacrified 
24 h later. Lungs were removed and tumor and normal tissues were analyzed. **P ≤ 0.01, ***P ≤ 
0.001. α-tub = α-tubulin (loading control). 
 

2.2 Design, synthesis, and activity of DNQ derivatives 

As DNQ is processed by NQO1 near the diffusion controlled limit, it would be unlikely to 

find a derivative that is a better NQO1 substrate.  However, derivatives were sought to determine 
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what makes an excellent NQO1 substrate and to find compounds with improved solubility and 

tolerability profiles. 

2.2.1 In silico design of DNQ derivatives 

A suite of compounds that are structurally related, but processed by NQO1 at different 

rates, would be valuable toward establishing the relationship between in vitro NQO1 processing 

and anticancer activity.  Thus, due to the remarkable processing of DNQ by NQO1, and the clear 

NQO1-dependent activity of DNQ against cancer cells in culture, derivatives of this compound 

were designed.   

The NQO1-mediated bioreduction of quinones initially involves a hydride transfer from 

NAD(P)H to the associated FAD cofactor, which subsequently transfers the hydride to the 

substrate.26  Crystallographic data with known substrates such as duroquinone show that NQO1 

substrates typically π-stack with the isoalloxazine ring of the FAD.26-28  Additionally, depending on 

the substrate, the quinone oxygens can hydrogen bond with Tyr-126, Tyr-128, or His-161.  

Therefore we hypothesized that DNQ and its active derivatives would π-stack and hydrogen bond 

similarly to these known substrates.     

To address this hypothesis computationally, DNQ and its derivatives were docked into the 

active site of NQO1 (PDB 1DXO)27 using the Molecular Operating Environment.29  Previously, a 

correlation was observed between NQO1 catalytic efficiency and the docked distance between 

the substrate (carbon α to quinone carbonyl) and the FAD co-factor (nitrogen which transfers the 

hydride), with compounds that have a shorter predicted “hydride donor-acceptor distance” being 

better NQO1 substrates.30  Therefore, we analyzed this key distance parameter for DNQ and 

representative derivatives.   

DNQ was found to form π-stacking interactions with the isoalloxazine ring of the 

associated FAD co-factor and hydrogen bonds with Tyr 126 and 128 (Figure 2.15A), very similar 

to duroquinone.27  Additionally, the hydride donor-acceptor distance for DNQ was found to be 

3.88 Å (Figure 2.15B).  Many DNQ derivatives, depending on the position of substitution, fit well 
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into the active site.  For example, compounds with bulky substitutions in place of the N-methyl 

such as isobutyl-DNQ (IB-DNQ, compound 2) still fit deep into the active site and maintain π-

stacking with FAD and hydrogen bonding with Tyr-126 and Tyr-128 (Figure 2.15C, hydride donor-

acceptor distance of 4.41 Å), suggesting they would be excellent substrates for NQO1.  

Alternatively, compounds with multiple substitutions (e.g. 3) did not fit deeply into the active site 

and thus did not π-stack or make the appropriate hydrogen bonds (Figure 2.15D, hydride donor-

acceptor distance of 5.65 Å), suggesting that these compounds would be poorer substrates for 

NQO1.   

 

Figure 2.15.  Modeling of DNQ and derivatives in the NQO1 active site. (A) The π-stacking and 
hydrogen bonding interactions between DNQ (blue), the cofactor FAD (green), and Tyr-126 and 
128 (yellow) with NQO1.  (B) DNQ fits deeply into the active site pocket (d = hydride donor-
acceptor distance).  (C) Derivative IB-DNQ (compound 2, difference from DNQ highlighted in red) 
also fits deeply into the active site.  (D)  Derivative 3 does not fit as deeply into the active site and 
has a longer hydride donor-acceptor distance.  
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Overall, these computational results were encouraging, with many derivatives fully 

entering the NQO1 active site, and others being at least partially occluded.  A collection of DNQ 

derivatives was therefore synthesized to provide structurally related compounds predicted to be 

differentially processed by NQO1. 

2.2.2 Synthesis of DNQ derivatives 

With the modeling data in hand, a diverse set of 25 DNQ derivatives (compounds 2-26, 

Figure 2.16A) that were expected to have a range of NQO1 activities were synthesized. This was 

accomplished using a modified version of the original DNQ synthesis (Scheme 2.2).  Compounds 

2-19, and 21-23 were synthesized via the four step protocol outlined in Scheme 2.2, with isolated 

yields comparing favorably to those from the original synthesis (average yield over 4 steps = 12%, 

see Section 2.5.2 for complete characterization).1 

 
Scheme 2.2.  General synthesis used for the construction of DNQ derivatives 2-19, 21-23.  These 
compounds were prepared in an average yield of 12% from the aryl bispinacol borane. 
 

Although some of the amides bore very bulky substituents, we were pleased to find that 

the Suzuki-Miyaura cross-couplings and Buchwald-Hartwig amidations all proceeded uniformly 

well.  However, a handful of intermediates, specifically those en route to the isopropyl (20), 

cyclopropyl (24), cyclooctyl (25), and alcohol (26) derivatives, were not amenable to deprotection 

under the harsh hydrobromic acid conditions.  In these cases, an alternative deprotection strategy 

was utilized via treatment with trifluoroacetic acid followed by BBr3 to provide the penultimate 

phenols; these compounds were subsequently oxidized under standard conditions (salcomine 

and O2) to give the desired products (Scheme 2.3).   
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Scheme 2.3.  Alternative deprotection conditions used for preparation DNQ derivatives 20, 24-

26. 

 

2.2.3 Evaluation of DNQ derivatives as NQO1 substrates. 

 In order to compare the newly constructed derivatives to DNQ, the in vitro catalytic 

efficiency of NQO1 with these derivatives as substrates was first assessed as described in section 

2.1.2.  All compounds were found to be substrates of NQO1, with a range of catalytic efficiencies, 

consistent with the in silico modeling; the structure of the DNQ derivatives together with their 

catalytic efficiencies with NQO1 are listed in Figure 2.16A.  Derivatives with multiple substitutions, 

such as 3, 5, and 6, are less efficient substrates, processed 30, 11, and 15 times less efficiently 

than DNQ, respectively.  In contrast, substitution of the N-methyl (R1 in Scheme 2.2) with alkyl 

groups has little effect on the catalytic efficiency, with even bulky compounds such as 21-24 being 

processed very efficiently by NQO1.  The computational modeling suggests that extensions at 

this position project out of the active site while still allowing the quinone core access to the deep 

pocket (for example, Figure 2.15C).  However, extremely bulky or lengthy substitution at R1 (such 

as 13 or 25) were less efficient NQO1 substrates. 



81 
 

 

Figure 2.16.  (A) DNQ derivatives. Below each structure is the catalytic efficiency (kcat/KM) with 
NQO1 and IC50 against A549 cells (first value) and MCF-7 cells (second value) in culture. 
Correlation between in vitro processing of DNQ analogues by NQO1 (kcat/KM in M-1s-1) with their 
ability to induce death (IC50 in µM) in (B) A549 cells and (C) MCF-7 cells.  Red points are DNQ 
and IB-DNQ. 
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2.2.4 Evaluation of DNQ derivatives versus cancer cells in culture 

 In an effort to probe the relationship of NQO1 processing with the ability to induce death 

of NQO1-expressing cancer cells, the collection of DNQ analogues was assessed versus A549 

and MCF-7 cancer cells in culture (Figure 2.16A). Each derivative was assessed as before: cells 

were incubated with compound for 2 hr followed by analysis of cell death at 72 hr and IC50 values 

were calculated from logistical dose response curves. Graphing the NQO1 catalytic efficiency 

versus the IC50 value for A549 cells (Figure 2.16B) and MCF-7 cells (Figure 2.16C) reveals a clear 

trend: compounds that are efficient NQO1 substrates are also potent cancer cell death inducers. 

 To confirm this correlation, we performed the same experiments that were initially 

performed with DNQ (see Section 2.1.3) on compounds that were good NQO1 substrates (e.g. 

IB-DNQ and 23) and less efficient NQO1 substrates (e.g. 3 and 13). First, the ability of the NQO1 

inhibitor DIC to protect from compound-induced cell death was explored. Co-treatment with DIC 

(Figure 2.17) significantly protects A549 and MCF-7 cells from compounds that were good NQO1 

substrates (e.g. 2 and 23) while having little to no effect on compounds that were poor substrates 

(e.g. 3 and 13). This is seen most clearly in the fold protection. As would be expected, cell death 

induced by compounds that are better substrates for NQO1 (higher kcat/Km) is prevented to a 

greater extent by DIC (higher fold protection) (Figure 2.18A-B).   
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Figure 2.17. (A) Cell death curves of A549 cells treated for 2h with DNQ derivatives that are good 

NQO1 substrates (IB-DNQ and 23) and less efficient NQO1 substrates (3 and 13) in the presence 

(red) and absence (blue) of the NQO1 inhibitor dicoumarol (DIC, 25 µM) (B) Same as A only with 

MCF-7 breast cancer cells. (C) Table of IC50 values and fold protections (Fold Change) for each 

treatment with standard error (n ≥ 3).   DNQ values from Figure 2.2 are included for comparison. 

The fold protection is (
𝐼𝐶50 𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑤𝑖𝑡ℎ 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟

𝐼𝐶50𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑜𝑛𝑒
). *p < 0.05, **p < 0.01, ***p < 0.001, 

paired t-tests on the IC50 values comparing treatments with or without inhibitor. 
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Figure 2.18. Correlation of catalytic efficiency with the fold protection by DIC in (A) A549 cells 
and (B) MCF-7 cells. Red points are DNQ and IB-DNQ.  
 

 

Similar to the results with DIC, the NQO1 inhibitor ES936 significantly protects A549 cells 

from IB-DNQ and 23 while having little effect on 3 and 13 (Figure 2.19).  
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Figure 2.19. (A) Cell death curves of A549 cells treated for 2h with DNQ derivatives in the 

presence (green) and absence (blue) of the NQO1 inhibitor ES936 (100nM) (B) Table of IC50 

values and fold protections (Fold) for each treatment with standard error (n ≥ 3).   The fold 

protection is (
𝐼𝐶50 𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑤𝑖𝑡ℎ 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟

𝐼𝐶50𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑜𝑛𝑒
). *p < 0.05, **p < 0.01, ***p < 0.001, paired t-tests 

on the IC50 values comparing treatments with or without inhibitor. 

 

This specificity was further confirmed by analysis of select derivatives with the isogenic 

cell line pairs described earlier (MDA-MB-231+/−, H596+/−, and MIA PaCa-2 NS and shNQO1, 

Figure 2.20).  The isogenic cell lines showed a similar pattern to that observed with the chemical 

inhibitors. DNQ derivatives IB-DNQ and 23 were significantly more potent against cell lines that 

expressed active NQO1 than those with that did not (compare 231+/- and H596+/-, Figure 2.20A-

B). Additionally, shRNA knockdown of NQO1 caused these compound to be less sensitive (Figure 

2.20C). As expected, derivative 3 and 13 were not sensitized to cell lines upon introduction of 

NQO1 or desensitized to cell lines upon knockdown of NQO1 (Figure 2.20A-C). This data is 
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summarized in Figure 2.20D. The Boothman laboratory is currently performing further mechanistic 

investigations to confirm that IB-DNQ is acting in the same way as DNQ.  

 
Figure 2.20. (A) Cell death curves of DNQ derivatives against the isogenic breast cell lines MDA-
MB-231 transfected with empty vector (231-) and the gene for NQO1 (231+). (B) Cell death curves 
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Figure 2.20. (cont.) of DNQ derivatives against the isogenic breast cell lines H596 transfected 
with empty vector (H596-) and the gene for NQO1 (H596+). (C) Cell death curves of DNQ against 
the isogenic pancreatic cell lines MiaPaCa-2 NS (nonsense shRNA) and shNQO1 (shRNA 
against NQO1). (D) Table of IC50 values and fold protections (Fold Δ) for each treatment with 
standard error (n ≥ 3).   The fold protection are the same as described previously. *p < 0.05, **p 
< 0.01, ***p < 0.001, paired t-tests on the IC50 values comparing treatments with or without 
alteration of NQO1 levels. MP = MIA PaCa-2. 
 
 

2.2.5 Solubility of DNQ derivatives31  

It has previously been noted that DNQ has poor solubility in aqueous media (PBS solubility 

= 115 µM).31 While utilization of the adjuvant HPβCD does increase its solubility to a usable range 

for in vivo studies (20% HPβCD solubility = 3.3 mM), discovery of more soluble derivatives make 

dosing simpler and thus is advantageous. Previously, Dr. Joseph Bair found that several DNQ 

derivatives have increased solubility in either PBS or HPβCD compared to DNQ (Table 2.1).31 

The low solubility of DNQ is likely due to its ability to π-stack with itself, as was observed in its 

crystal structure.32 The addition of alkyl chains likely interferes with the π-stacking, allowing for 

better aqueous and organic solubility; a similar phenomenon is observed for DNM and its 

derivatives (see Chapter 3.2).33  The solubilities of these derivatives are promising for application 

in vivo.   

Table 2.1. Solubility data for DNQ and its derivatives 

 

Solubility was assessed by LC-MS. Fold Δ = fold change from DNQ solubility  
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 2.2.6 Tolerability of DNQ derivatives 

Before investigating the in vivo activity of DNQ derivatives, the effect of each on the lung 

fibroblast cell line IMR90 was determined. IMR90 cells showed low sensitivity to both IB-DNQ 

(IC50 = 20 µM, Figure 2.21A) and 23 (IC50 = 30 µM, Figure 2.21B). Additionally, no protection was 

observed upon co-treatment with the NQO1 inhibitor DIC as one would expect based on the very 

low expression of NQO1 by this cell line (see Figure 2.12).   

 

Figure 2.21. (A) Cell death curves of IB-DNQ against the lung fibroblast cell line IMR-90 treated 
with or without the NQO1 inhibitor DIC (25 µM). (B) Same as A but for derivative 23. (C) Table of 
IC50 values and fold protections (Fold Δ) for each treatment with standard error (n ≥ 3).   The fold 

protection is (
𝐼𝐶50 𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑤𝑖𝑡ℎ 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟

𝐼𝐶50𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑜𝑛𝑒
). *p < 0.05, **p < 0.01, ***p < 0.001, paired t-tests 

on the IC50 values comparing treatments with or without alteration of NQO1 levels.  
 

The ability of derivatives to induce methemoglobin formation was also explored. Both 

active derivatives and inactive derivatives (defined as having an IC50 > 1 µM in A549) were 

explored. All of the derivatives appear to cause less methemoglobin formation compared to DNQ 

(Table 2.2) suggesting that they may be better tolerated in vivo. 

Maximum tolerated dose (MTD) studies were then performed with some of the most active 

derivatives. All compounds were better tolerated than DNQ (Table 2.2). Interestingly, tolerability 

did not track with methemoglobin formation suggesting either the toxicity that is observed in vivo 

is not due to methemoglobin formation or that the assay does not accurately predict 

methemoglobin formation in vivo. While the Boothman laboratory reports having seen 

methemoglobin after treatment with DNQ in vivo, our attempts to detect methemoglobin after 
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administration of compound to mice were unsuccessful (Figure 2.22). This could be either 

because methemoglobin formation does not occur or because mice have high levels of 

cytochrome b5 reductase and are thus able to rapidly convert methemoglobin back to 

hemoglobin.19 An alternative explanation for the toxicity is that cytochrome b5 reductase is known 

to reduce certain quinones to toxic semiquinones.34 If DNQ is a even a modest substrate for this 

reductase, the high levels of cytochrome b5 reductase in mice might explain the toxicity of DNQ 

and could mean that humans would see less toxicity due to the lower levels of this enzyme. 

Studies examining the ability of DNQ to be reduced by this one-electron reductase along with 

others would be valuable in accessing the major mode of toxicity (i.e. is it methemoglobin 

formation or conversion to the semiquinone by one-electron reductases).  

Table 2.2. Potency, methemoglobin formation, and MTD of DNQ derivatives 

 

A549 potencies are from Figure 2.16A. Methemoglobin (MHb) formation is reported as the concentration needed to cause 50% of the 
hemoglobin to be converted to MHb. For maximum tolerated dose (MTD) studies, compounds were formulated in HPβCD. They were 
administered i.p. daily into C57BL/6 mice for 5 days unless otherwise noted. *DNQ was administered every other day. DNQ MTD is 5 
mg/kg daily if administered i.p. 
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Figure 2.22. (A) In vitro methemoglobin (MHb) formation is observed for human blood treated 
with NaNO2 (red) and IB-DNQ but not the PBS control (gray) as evidenced by the increase in 
absorption at 635 nm (noted with arrow). (B) In vivo MHb formation was not observed after 
treatment with DNQ. Mice received 5 treatments of either HPβCD vehicle (control) or DNQ (5 
mg/kg every day). On the day of the last treatment, mice were treated and sacrificed after 1 hr. 
Blood was collected and analyzed for MHb formation. No increase in OD635 was observed. (C) 
Same as B but with 22 mg/kg of 23.  
 

2.2.7 In vivo activity of DNQ derivatives 

 After determining that compound 23 was the most well tolerated compound, we chose to 

perform an in vivo efficacy study. For the study, 10 million A549 lung cancer cells were injected 

subcutaneously into right flank of female athymic nude mice. Treatment began when the tumor 

volume reached 80 mm3. Mice were treated with either vehicle (HPβCD), DNQ (5 mg/kg), or 23 

(22 mg/kg) daily for 5 days followed by 5 days off for a total of 19 treatments. DNQ showed some 

activity but it was not statistically significant (Figure 2.23). Derivative 23 showed no activity. The 

reason for the difference in activity of 23 and DNQ is unclear. Also, the poor activity of DNQ in 

this model is slightly concerning given the fact that A549 cells express very high levels of NQO1. 

It is possible that a subcutaneous model is not a good model for these compounds because the 

subcutaneous tumor is likely able to develop a hypoxic center which would limit the ability of DNQ 

and its derivatives to redox cycle. Alternatively, the tumors could have been implanted too 

shallowly resulting in poor vasculature and thus poor exposure to compound. The poor 

vasculature would also explain why the tumors were very slow to establish and grow.  
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Figure 2.23. A549 mouse model. 10 million A549 cells were injected into right flank of female 
athymic nude mice. When the tumors reached 80 mm3, the mice were split into treatment groups 
including vehicle (950 mg/kg HPβCD), DNQ (5 mg/kg formulated in HPβCD), and 23 (22 mg/kg 
formulated in HPβCD). Each group contained 10 mice. Mice received a total of 19 treatments 
(Days 2-6, 12-16, 22-26, 32-35) all injected i.p. Tumors were measured and volumes calculated 
using the formula V = 0.5LW2 where V = volume, L = length, and W = width. Mice were sacrificed 
on day 80. (A) Tumor growth curves. Mean ± SEM. (B) Tumor mass from day 80. Mean ± SEM. 

 

The Boothman laboratory is performing in vivo studies with IB-DNQ in different mouse 

models.  A preliminary survival study from a collaboration between the Boothman and Gao 

laboratories at UT-Southwestern showed promising results with IB-DNQ significantly extending 

the survival of mice inoculated subcutaneously with 4T1 cells (murine breast cancer, Figure 2.24). 

Future work with a larger number of mice is needed to confirm this result. 
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Figure 2.24. 4T1 mouse model. 100,000 4T1 cells were injected into right flank of Balb/c mice. 
Mice were then treated with either β-Lap (20 mg/kg), IB-DNQ (15 mg/kg), or a β-Lap ester prodrug 
in micelles (GB-085, 30 mg/kg). Each treatment was given i.v. every 4 days for a total of 4 
treatments. (A) Tumor growth curves. (B) Kaplan-Meier survival curves. (C) Table with more 
details of the study. 

 

2.3 Exploring the scope of the deoxynyboquinones as anticancer agents 

 In the previous sections, we have shown that DNQ and its derivatives show potent activity 

against the NQO1-overexpressing lung cancer cell line A549 and breast cancer cell line MCF-7. 

In order to demonstrate the generality of this approach, the activity of DNQ and its derivatives 

against other cancer cell lines was explored. 

2.3.1 Breast Cancer 

 The first type of cancer that we explored was breast cancer. Breast cancer is the most 

commonly diagnosed cancer in women with 231,840 estimated new cases (29% of cancer 

diagnoses in women) and 40,290 predicted deaths (15% of cancer deaths in women) in the United 
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States in 2015.35 Differences in aggressiveness and response to chemotherapeutics along with 

genetic profiling demonstrate that breast cancer is quite heterogeneous, with at least five 

molecular subtypes (Luminal A, Luminal B, Her2, Triple Negative (TNBC), and normal breast–like 

cancers).36-38 Each subtype responds differently to chemotherapeutic agents with luminal and 

HER2 subtypes being generally responsive to targeted therapies (tamoxifen and Herceptin, 

respectively).39 TNBC treatment, however, continues to rely on traditional cytotoxic agents such 

as anthracyclines, taxanes, and alkylating agents.39-41 Initially, TNBC responds well to these 

agents with high rates of pathologic complete response (27% for TNBC compared to 7% for 

luminal, P < 0.0001).41-42 Despite this initial response, patients with TNBC have worse overall 

prognoses compared to all other types of breast cancers with increased risk of relapse (33.9% 

versus 20.4%, P < 0.0001) and likelihood of death (42.2% versus 28%, P < 0.0001) in the first 

five years.41-42 For this reason, novel targeted therapeutics for TNBC with enhanced efficacy are 

needed. TNBC clinical trials of targeted therapies such as PARP-1 inhibitors and VEGF ligands 

have been performed, but thus far have had mixed results, with subsets of patients showing 

increased response.43-44 These mixed results are likely due to the heterogeneity of TNBC.43,45 As 

such, identification and validation of multiple targets and corresponding therapeutics are needed 

for TNBC. Additionally, effective therapies for the other subtypes would also be useful given the 

observation of tamoxifen46 and herceptin47 resistant tumors. 
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Figure 2.25. (A) NQO1 mRNA expression in normal vs. breast cancer tissue. Data are from tumor 
and associated normal tissue. y-axis is NQO1 expression levels, log2. P = 4.1 X 10-43 (B) Western 
blot for NQO1, catalase (CAT), and actin as the loading control in the breast cancer cell lines 
indicated. *Triple negative breast cancer cell line. Below the western is the NQO1 activity and 
catalase activity of each cell line along with IC50 values and fold protections (Protect) for each 

treatment with standard error (n ≥ 3).   The fold protection is (
𝐼𝐶50 𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑤𝑖𝑡ℎ 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟

𝐼𝐶50𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑜𝑛𝑒
). 

ND = not determined. (C) Catalase mRNA expression in normal vs. breast cancer tissue. Data 
are from tumor and associated normal tissue from the same patients as in A. y-axis is catalase 
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Figure 2.25. (cont.) expression levels, log2. P = 2 X 10-45 (D) Ratio of NQO1 to catalase mRNA 
expression in matched tumor and normal tissues. 

 

As discussed previously in Chapter 1.1.1, NQO1 is often overexpressed in breast cancer. 

The Boothman laboratory confirmed this by analyzing NQO1 mRNA expression of breast cancer 

and the associated normal tissue (Figure 2.25A). They found that the NQO1 transcript is 

significantly elevated (~4 fold) in breast cancers compared to healthy tissue (p<0.0001, Figure 

2.25A). A similar study has been performed with just TNBC and analogous results were found 

(data not shown).  After confirming the clinical relevance of NQO1 expression, I evaluated 13 

breast cancer cell lines (10 of which were TNBC) cell lines for NQO1 expression (Figure 2.25B). 

Many of the breast cancer cell lines showed strong NQO1 expression with the exception of 

HCC1806, DU4475, T47D and MDA-MB-231. It is known that MDA-MB-231 contains a known 

polymorphism (NQO1*2) resulting in an unstable NQO1 protein,48 and it is possible that the other 

low-expressing cell lines do as well. Enzyme activity in lysates of each cell line was determined 

and matched the Western blot data (Figure 2.25B). After determining that many breast cancer 

cell lines overexpress NQO1, the sensitivity of breast cancer cell lines to DNQ, IB-DNQ, and 23 

was determined. IB-DNQ and compound 23 were chosen because each has potent activity in 

other cancer cell lines and favorable solubility and toxicity profiles. Cell lines with NQO1 activity 

over a certain threshold (~500 nmol/min/mg protein) were sensitive to DNQ, IB-DNQ, and 23 (IC50 

< 1 µM). Additionally, cell lines were significantly protected by co-treatment with the NQO1 

inhibitor DIC, confirming NQO1 as the primary determinant of activity in TNBC (Figure 2.25B).  

As we were performing these studies, we noticed that the potency of the DNQ and its 

derivatives did not always correlate with increased NQO1 activity. For example, MDA-MB-436 

has good NQO1 activity (1050 nmol/min/mg protein) but is not very sensitive to DNQ. Also, Hs578t 

and HCC1937 have similar NQO1 activities but the sensitivity to DNQ differs by approximately 

10-fold. While there are many possible explanations for this, one is that these cell lines express 
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different amounts of enzymes that help the cancer cell deal with oxidative stress. One such 

enzyme is catalase (CAT), which catalyzes the conversion of hydrogen peroxide to water and 

oxygen. Recently, it was observed that higher levels of catalase decrease sensitivity to β-Lap.49 

It may be that higher catalase levels also decrease sensitivity to the deoxynyboquinones. This 

appears to be true in both MDA-MB-436 and Hs578t which have high levels of CAT expression 

compared to HCC1937. While the ratio of NQO1 to CAT levels do not explain all the differences 

that are observed here (Figure 2.25B), there are many other enzymes (e.g. superoxide dismutase 

and glutathione peroxidase) that also help the cell to cope with higher oxidative stress levels. It is 

likely that these cancer cell lines express varied levels of these enzymes which may help to 

explain the variation in sensitivity to DNQ. Intriguingly, the Boothman laboratory has also recently 

found that CAT levels are generally lower in cancer cells compared to normal cells (Figure 2.25C-

D) suggesting that the deoxynyboquinones have an even higher chance of success.  

2.3.2 Lung Cancer 

 The second type of cancer that was explored was lung cancer. Lung cancer is the second 

most commonly diagnosed cancer in both men and women with 115,610 (14%) and 105,590 

(13%) estimated new cases, respectively, in the United States in 2015.35 Additionally, lung cancer 

causes the most deaths of any type of cancer in both men and women with 86,380 (28%) and 

71,660 (26%) estimated deaths, respectively, in the United States in 2015.35 This high numbers 

of death makes lung cancer an especially important disease to try to target. Given the high 

incidence of NQO1 overexpression in lung cancer samples from patients (discussed more 

extensively in Chapter 1.1.1), we expected that DNQ and its derivatives would have potent activity 

against lung cancer cell lines.  
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Figure 2.26. (A) NQO1 mRNA expression in normal vs lung cancer tissue. Samples are from 432 
patients and consist of tumor and associated normal tissue. y-axis is NQO1 expression levels, 
log2. (B) Same as A but for catalase (CAT) mRNA expression. (C) Western blot for NQO1, CAT, 
and actin as the loading control in the lung cancer cell lines indicated. * Below the western is the 
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Figure 2.26. (cont.) NQO1 activity of each cell line along with IC50 values and fold protections 
(Protect) for each treatment with standard error (n ≥ 3).   The fold protection is 

(
𝐼𝐶50 𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑤𝑖𝑡ℎ 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟

𝐼𝐶50𝑜𝑓 𝐷𝑁𝑄 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑜𝑛𝑒
). ND = not determined.  

 

 The Boothman laboratory confirmed NQO1-overexpression in lung cancer by analyzing 

NQO1 mRNA expression of lung cancer and the associated normal tissue (Figure 2.26A). At the 

same time, they also analyzed CAT mRNA expression of the same samples (Figure 2.26B). The 

lung cancer samples had a similar pattern to that of the breast cancer samples (Figure 2.25A and 

C) with significantly overexpressed NQO1 and decreased CAT mRNA. I evaluated 8 lung cancer 

cell lines and 1 lung fibroblast cell line (IMR90). Many of the lung cancer cell lines showed strong 

NQO1 activity with the exception of H596 which is known to contain a polymorphism (NQO1*2) 

resulting in the inactivation of the enzyme.  IMR90 also expressed low levels as would be 

expected in a non-cancerous cell line. The sensitivity of these cell lines to DNQ, IB-DNQ, 23, and 

the inactive DNQ derivative 3 was determined. Generally, DNQ is very active against lung cancer 

cell lines that express high levels of NQO1. An exception to this was H1993. H1993 expresses 

high levels of CAT which could explain this low sensitivity. Another anomaly was H1299 which 

had relatively low NQO1 levels and high CAT expression but still was sensitive to DNQ (IC50 = 

0.36 µM). This result is perplexing, but it is possible that this cell line already has very high levels 

of oxidative stress compared to the other cell lines and is thus sensitized to DNQ. 

2.4 Conclusions and future directions 

NQO1 Activation of Quinones: NQO1-mediated activation of an anticancer agent is an excellent 

targeted strategy as NQO1 is often dramatically overexpressed in cancer cells compared to 

normal cells. Many quinones have been touted as being activated by NQO1 and thus have been 

proposed as potential targeted anticancer agents. In this Chapter, we have described a set of 

experiments which can be utilized to determine whether a quinone is in fact bioactivated by NQO1 

and whether this mechanism is responsible for its anticancer activity: 1) In vitro reduction by 
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NQO1, 2) Protection of NQO1-overexpressing cell lines by small molecule inhibitors of NQO1 or 

shRNA knockdown of NQO1, and 3) Sensitization to NQO1*2 cell lines upon transfection with WT 

cDNA for NQO1. Utilizing these techniques, we have found that while many of these quinones 

(specifically MMC, RH1, and STN) are activated by NQO1 to some extent, their primary modes 

of activation are via other reductases. β-Lap and DNQ, on the other hand, do appear to be 

primarily dependent upon NQO1 for their anticancer activities. However, based on the data set 

presented here, DNQ is the most promising NQO1-activated anticancer drug. Discussed below 

is a summary of the findings (both previous literature reports and our findings reported in this 

Chapter) which support these conclusions. 

Mitomycin C. It is well accepted that MMC must first be bioreduced before it can alkylate DNA 

and ultimately cause cancer death. 50 However, the enzyme responsible for the reduction remains 

controversial. One way of determining which enzyme is responsible for the bioactivation of MMC 

(as well as other quinones) is to determine what enzymes can reduce MMC in vitro. While MMC 

previously has been shown to be an in vitro substrate for NQO1, its processing is pH dependent 

with increasing amounts of metabolism being observed as pH is decreased from 7.8 to 5.8.9 Little-

to-no reduction of MMC was previously observed at physiological pH (i.e. pH 7.4).9 These results 

are consistent with our in vitro assay (run at pH 7.4) during which we saw no detectable reduction 

of MMC by NQO1.3 Additionally, others have found that MMC actually inhibits NQO1 at this pH,51 

suggesting that NQO1 likely does not activate MMC in vivo. MMC is an excellent substrate for 

other reductases such as NADPH cytochrome P450 reductase52 or xanthine oxidase53, and one 

of these enzymes is likely responsible for bioactivation of MMC. 

As discussed in Chapter 1.1.3 and this Chapter, another way to determine whether NQO1 is 

responsible for bioactivation of MMC (or other quinones) is to examine the ability of NQO1 

inhibitors to protect NQO1-overexpressing cell lines from the compound. When the mouse breast 

cancer EMT6 was co-treated with DIC in normoxia, a slight decrease in toxicity of MMC was 
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observed.54 This differs from our results where we saw no protection of human lung (A549) or 

breast (MCF-7) cancer cell lines (Figure 2.2). However, these studies used a higher amount of 

DIC (100 µM versus 25 µM) and examined a different cell line which may explain the small 

difference. Another interesting finding of this study was that dicoumarol actually increases toxicity 

of MMC in hypoxia suggesting that MMC, at least in a hypoxic environment, is not dependent 

upon NQO1 activation and is instead detoxified by it. To the best of our knowledge, no previous 

studies examining the effect of ES936 on the potency of MMC have been reported. However, our 

results with this NQO1 inhibitor were similar to those previously reported for DIC with slight 

protection occurring in normoxia (Figure 2.3).3,54 

A final way of examining the enzymes responsible for bioactivation of MMC (or other 

quinones) is to examine cell lines with different levels of enzyme and correlate the enzyme levels 

with compound activity. Fitzsimmons and co-workers analyzed sensitivities of the NCI 60 and 

found that aerobic sensitivity to MMC was highly correlated with NQO1 activity but not to the one 

electron reductases NADPH cytochrome P450 reductase and cytochrome b5 reductase.10 

Additionally, another study showed that transfection of a non-NQO1 expressing cell with the cDNA 

for NQO1 results in a slight increase in sensitivity to MMC.55 A different study with an NQO1*2 

cell line, however, found no change in sensitivity of MMC upon expression of NQO1.52 Overall, 

these results are consistent with our results with the NQO1+/- cell lines (MDA-MB-231+/- and 

H596+/-) which saw modest (although not statistically significant) sensitization to MMC upon 

expression of NQO1 (Figure 2.5 and 2.6).3 Additionally, they are consistent with the modest 

protection we observed for A549 cells co-treated with the NQO1 inhibitor ES936. While MMC can 

be activated by NQO1 in normoxia, it does not require NQO1 for bioactivation and is also activated 

by other reductases. 

RH1. While RH1 has previously been found to be a substrate for NQO1 in vitro,56 we did not 

observe activation upon incubation with NQO1 in our assay.3 Assay conditions did differ slightly 
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(they utilized NADPH and observed at absorbance at 370 nm whereas we utilized NADH and 

observed at absorbance at 340 nm) and absorption of RH1 at the wavelengths used may explain 

the difference in results.56 RH1 is also an in vitro substrate for NADPH cytochrome P450 

reductase, xanthine oxidase/xanthine dehydrogenase, and NQO2.6,56  

Previous literature on co-treatment of RH1 with the NQO1 inhibitor DIC is contradictory. Some 

studies report good protection,56-57 but both of these studies used cell lines with very low NQO1 

activity (e.g. T47D) which complicates the interpretation of these results. A study that examined 

the effect of DIC on NQO1-overexpressing cell lines (e.g. H460 and MCF-7) saw no protection 

from RH158 consistent with our results with both A549 and MCF-7 cells (Figure 2.2).3 Previous 

reports investigating co-treatment of RH1 with the NQO1 inhibitor ES936 have shown modest 

protection,59-60 consistent with our results (Figure 2.3).3 These findings suggest that RH1 is 

activated by NQO1 but likely has other modes of activation.  The difference in the DIC and ES936 

protection likely results from different modes of inhibition of NQO1 with ES936 being a more 

efficient inhibitor. 

Similar to MMC, previous work had shown that transfecting a cell line with an NQO1*2 

polymorphism (e.g. MDA-MB-468 and BE) sensitizes cells to treatment with RH1.6,60-62 This is in 

agreement with our data where both MDA-MB-231 and H596 cells were modestly sensitized to 

RH1 upon expression of active NQO1 suggesting that RH1 is activated by NQO1 (Figure 2.5 and 

2.6).3 However, studies analyzing the NCI 60 suggest that there is no correlation between the 

NQO1 activity of a cell line and the anticancer activity of RH1.58 Additionally, similar to studies 

with MMC,63 cells treated with RH1 in hypoxia are unaffected by overexpression of NQO1 with 

the NQO1*2 cell lines having approximately equal sensitivity to those transfected with WT NQO1 

gene.64 This suggests that while NQO1 may activate RH1, other enzymes are also important 

(probably more important) for its activation. The effect of different concentrations of NADPH 

cytochrome P450 reductase and cytochrome b5 reductase was explored but no correlations were 
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found.6 However, it was found that the cell lines could be greatly sensitized to RH1 by 

overexpression of NQO2.6 The importance of NQO2 in RH1 activation was further demonstrated 

in an analysis of cell lines of pediatric tumors. Several of the tumors expressed no detectable 

NQO1 (but moderate to high levels of NQO2) and were sensitive to RH1.65 Overall, previous 

literature reports combined with the data presented here suggest that RH1 can be activated by 

NQO1 but is also activated by other reductases. 

Streptonigrin. STN has previously been shown to be a good substrate for NQO166 but is also 

known to be processed by other reductases such as xanthine oxidase and xanthine 

dehydrogenase.67 In agreement with these previous studies, we found that STN is a good NQO1 

substrate (much more efficiently processed than either MMC or RH1, Figure 2.1).3 STN was 

previously found to have activity against cell lines that do not express NQO1 (e.g. the human 

colon cell line BE62 and the breast cancer cell line MDA-MB-46861 which both have the NQO1*2 

polymorphism). However, it is greatly sensitized to both of these cell lines upon expression of 

NQO1. In fact, STN consistently has a more potent sensitization upon expression of NQO1 

compared to both MMC and RH1.61-62 Consistent with the literature reports mentioned above, we 

found that induction of expression of NQO1 in NQO1-deficient cell lines (MDA-MB-231+/- and 

H596+/-) greatly sensitizes cells to STN (and to a greater degree than for MMC or RH1, Figure 

2.5 and 2.6).3 Previous reports also found that both DIC68 and ES93669 protect NQO1-

overexpressing cells from STN. While we did not observe protection with DIC (Figure 2.2), we 

saw similar protection with ES936 (Figure 3.3).3 Overall, these studies suggest that the anticancer 

activity of STN is more NQO1-dependent than that of MMC or RH1. However, as will be discussed 

next, β-Lap and DNQ appear to have even greater selectivity. 

DNQ versus β-Lap. Previous studies5,49,70-72 along with the studies presented in this chapter3-4 

strongly suggest that β-Lap is activated by NQO1. It is a very efficient substrate for NQO1 in vitro 

(Figure 2.1),3 is significantly protected by both DIC and ES936 (Figure 2.2 and 2.3),3-4 and has 
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been shown to be sensitized to NQO1*2 cell lines upon transfection with the WT gene for NQO1 

(Figure 2.5 and 2.6).4 DNQ shows a similar profile, but it has several advantages over β-Lap. 

First, it is more potent than β-Lap. In cell culture, it consistently has an approximately 20-fold more 

potent IC50 than β-Lap. It is also more potent in vivo, showing similar activity in a murine lung 

cancer model at approximately 3 to 6-fold lower concentrations (Figure 2.14). This is 

advantageous because it allows for lower compound use.  

Second, DNQ appears to have a wider therapeutic window than β-Lap, at least in cell culture. 

When cell lines that overexpress NQO1 are co-treated with either DIC or ES936, the fold 

protection for treatment with DNQ is consistently higher than that observed for β-Lap (3 to 5 fold 

higher for DIC and >28 fold higher for ES936, Figure 2.2 and 2.3).3 Additionally, NQO1*2 that are 

transfected with WT NQO1 cDNA are sensitized to a greater extent with DNQ than they are with 

β-Lap (Figure 2.5 and 2.6).3-4 This is further supported by oxygen consumption studies. When 

DNQ is co-treated with DIC, no observable increase in oxygen consumption occurs (Figure 2.8C-

D).4 This is in contrast to β-Lap which still has a slight increase in oxygen consumption (Figure 

2.8A-B).4 Together, these results suggest that DNQ might be more selective for activation by 

NQO1 compared to β-Lap. Specifically, β-Lap might be processed by one electron reductases to 

a greater extent than DNQ. Studies examining the ability of other reductases to process both β-

Lap and DNQ should be performed in order to confirm this. 

A third advantage that DNQ has over β-Lap is its pharmacokinetic properties. The half-life of 

DNQ is over 30-times longer than that of β- Lap (Figure 2.13).4 Additionally, the DNQ Cmax is 7- 

times higher and the AUC is 27-times higher allowing for longer exposure to the tumor in vivo. 

The greater compound exposure combined with the better potency of DNQ compared to β-Lap 

strongly suggest that DNQ is the more promising compound going forward. 
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DNQ induces DNA damage and death by parthanatos: After determining that DNQ is the most 

promising NQO1-activated anticancer agent of the previously reported NQO1 substrates, the 

mechanism of its cell death was determined. In agreement with previous studies,1,31 DNQ was 

found to induce ROS formation that causes DNA damage.4 At concentrations of DNQ above the 

IC50, extensive DNA damage occurs resulting in PARP-1 hyperactivation, depletion of NAD+, and 

ultimately PARP-1 dependent cell death (a.k.a. parthanatos).4 These events could be prevented 

by inhibition of NQO1 further demonstrating the NQO1 dependence of DNQ activation. 

Additionally, cell death was prevented by transient knockdown of PARP-1. With this extensive 

mechanistic investigation in hand, one future direction would be investigation of synergistic 

combinations. In the clinic, nearly all cancers are treated with combination therapy.73 These 

combinations are advantageous both because they often allow for lower amounts of compound 

to be used73-74 and often result in decreased resistance development.74 Below are a few 

compound classes that have the potential to synergize with DNQ and would likely be fruitful to 

explore.  

PARP-1 inhibitors. PARP-1 is a DNA damage repair enzyme which activates the base-excision 

repair process upon single stranded breaks.11 PARP-1 inhibition has been extensively explored 

as an anticancer therapy, specifically with a focus on treating BRCA-deficient cancers due to the 

potential for synthetic lethality.75 Recently, the PARP-1 inhibitor olaparib was approved by the 

FDA for the treatment of BRCA-deficient ovarian cancers.76 In addition to their single-agent use, 

PARP-1 inhibitors have also been investigated in combination studies with DNA damaging 

agents. Cell cultures studies showed good synergy with DNA methylating agents (e.g. 

temozolomide and dacarbazine), topoisomerase inhibitors (e.g. camptothecin), and platinum 

alkylating agents (e.g. cisplatin and carboplatin),77 likely due to the decreased ability of the cells 

to repair damaged DNA. However, clinical trials of combinations of PARP-1 inhibitors with 

cisplatin, gemcitabine, dacarbazine, and temozolomide all showed significantly higher toxicity 
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than initially expected, even at relatively low doses.78 This toxicity is likely due to the untargeted 

nature of the DNA damaging agents described above. Utilization of a targeted DNA damaging 

agent could decrease the toxicity while demonstrating a similar synergy with PARP-1 inhibitors.  

Initial studies with DNQ suggest that it should not synergize with PARP-1 inhibitors. 

Specifically, transient knockdown of PARP-1 actually de-sensitized cell lines to DNQ.4 However, 

these experiments were performed with relatively high levels of DNQ (greater than or equal to the 

IC50) which result in extensive DNA damage causing the cell to undergo PARP-1 dependent cell 

death (parthanatos). It is likely that if sub-lethal doses of DNQ were used, this would cause 

activation of PARP-1 dependent DNA damage repair instead of PARP-1 dependent cell death. 

Concurrent inhibition of PARP-1 with olaparib or one of the other PARP-1 inhibitors would prevent 

repair of the single stranded breaks caused by DNQ. Upon replication the single stranded breaks 

would become double stranded breaks, and these double stranded breaks would ultimately kill 

the cell.79 This technique holds especially great promise for tumors that already have mutations 

that disrupt other DNA repair pathways (e.g. BRCA deficient breast and ovarian cancer, see below 

for a further discussion of this). 

NAD+ synthesis inhibitors. NAD+ is essential to many cellular processes including anabolic 

metabolism and proliferation in cancer cells as well as cell signaling such as the buildup of PAR 

polymers on PARP-1 in response to DNA damage.80 An emerging anticancer technique is the 

inhibition of NAD+ synthesis via inhibition of the enzyme nicotinamide phosphoribosyltransferase 

(NAMPT) which catalyzes the rate-limiting step in this process.81 The NAMPT inhibitor FK866 has 

been tested in clinical trials as a single agent, but its efficacy has generally been very low.81 

NAMPT inhibitors FK866 and GMX1778 have been shown to synergize with ROS generating 

compounds likely due to the ability of ROS to deplete NAD+ levels via PARP-1 activation 

(discussed further in the next section).80 Recently, FK866 was found to potently synergize with β-
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Lap in NQO1 over-expressing cell lines.80 It is expected that similar synergy would be observed 

for DNQ. 

Lactate dehydrogenase A inhibitors. In 1956, Otto Warburg observed that cancer cells have 

high rates of aerobic glycolysis.82 Lactate dehydrogenase A (LDH-A) is a key enzyme in 

glycolysis, catalyzing the conversion of pyruvate to lactate and in the process regenerating NAD+ 

from NADH, which is necessary for the continued ATP production in the absence of aerobic 

oxidation of NADH.83 Since this discovery, inhibition of LDH-A has been proposed as a promising 

anticancer strategy. Genetic alteration of LDH-A levels results in reduced viability and 

tumorigenicity of cancer cells.83 The Hergenrother laboratory in collaboration with the Minutolo 

laboratory (University of Pisa) has discovered a novel class of LDH-A inhibitors, the N-

hydroxyindole (NHI) LDH-A inhibitors, which show promising activity in cell culture.84  

Recently, Dr. Hyang Yeon Lee has found that NHI-Glc-2 (a glucose linked NHI)83 potently 

synergizes with DNQ against lung cancer cell lines that over-express NQO1 (data not shown). A 

veterinary medicine student Andrew Lee saw similar results in breast cancer cell lines that over-

express NQO1 (data not shown). While the mechanism of this synergy is not known, it is possibly 

due to the change in NADH/NAD+ ratio upon inhibition of LDH-A. NQO1 uses NADH to reduce 

DNQ initiating the redox cycle that kills the cancer cell. Increased levels of NADH upon inhibition 

of LDH-A may allow for faster or longer cycling of DNQ. Alternatively, the synergy may be due to 

the decrease in NAD+ levels. Some suggest that PARP-1 dependent cell death is due to energy 

depletion (i.e. the rapid decreases in NAD+ which occurs when NAD+ is used to build PAR chains 

in response to DNA damage).80 Further decrease of NAD+ due to inhibition of LDH-A may 

excacerbate this mode of cell death. A final potential mechanism of synergy is that both DNQ and 

inhibition of LDH-A result in increased ROS production. Transient knockdown of LDH-A as well 

as inhibition of LDH-A with the small molecule FX-11 have been shown to lead to increased 

oxygen consumption and ROS production that can be prevented by co-treatment with the 
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antioxidant NAC.85 Dr. Hyang Yeon Lee has seen a similar ROS production with NHI-Glc-2 (data 

not shown). The dual mechanisms of ROS production may result in synergistic cancer cell death. 

Further studies are needed to confirm which of these mechanisms is responsible for this synergy. 

Regardless of the mechanism, additional investigations into the therapeutic potential of this 

combination should be performed. 

Predictability of DNQ activity in cell culture: After determining the mechanism of cell death induced 

by DNQ, we then explored the scope of cancers which are amenable to this cancer-targeted 

strategy. Both breast cancer (including the especially the difficult to treat TNBC) and lung cancer 

show good response to both DNQ and its most active derivatives. Additionally, the work presented 

in this chapter shows that NQO1 is required for the anticancer activity of DNQ against these cell 

lines. Testing DNQ against panels of other cancer types that commonly overexpress NQO1 such 

as colon and pancreatic cancer would be useful to further probe its potential scope. Recently, a 

veterinary medicine student Gosia Pajak found that DNQ has activity against feline squamous 

cell carcinoma cell lines which over express NQO1. Our collaborator Prof. Tim Fan will be 

performing further evaluation of these head and neck cancers both in mice and in cats. If 

successful, this would strongly support the use of DNQ for human head and neck cancers which 

have been shown to be very similar to those of cats.86  

While the anticancer activity of DNQ depends on activation by NQO1, the potency of DNQ 

against different cell lines does not always correlate with the NQO1 activities of these cell lines. 

Studies performed by Boothman and co-workers with β-Lap suggest that a threshold of NQO1 

activity is necessary for activity.5  Specifically, utilizing isogenic pancreatic cell lines expressing 

different levels of NQO1, they found that if the cell lines have NQO1 activities over 90 nmol/min/µg 

protein, they have similar sensitivities to β-Lap. However, studies presented in this Chapter of 

non-isogenic cancers from the same tissue of origin suggest that sensitivity to NQO1-activated 

anticancer agents is more complicated than a simple threshold effect. For example the breast 
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cancer cell lines Hs578t and HCC1937 have similar NQO1 activities (1900 and 1600 nmol/min/µg 

protein, respectively), but the potency of DNQ is approximately 10-fold lower for Hs578t compared 

to HCC1937 (IC50 = 0.33 and 0.036 µM, respectively, Figure 2.25). Analagous results were seen 

for lung cancer cell lines A549 and HCC15 that have similar NQO1 activities (2600 and 2800 

nmol/min/µg protein, respectively) but drastically different sensitivities to DNQ (IC50 = 0.064 and 

0.46 µM, respectively, Figure 2.26).  

Oxidative Stress Enzymes. One explanation for the difference in potency is that the less 

sensitive cell lines (i.e. Hs578t and HCC15) express higher levels of enzymes capable of dealing 

with oxidative stress (e.g. catalase, superoxide dismutase, glutathione-S-transferase, glutathione 

peroxidase, peroxiredoxin, thioredoxin, and thioredoxin reductase).87-88 compared to the sensitive 

cell lines (e.g. HCC1937 and A549). This would ultimately result in these cell lines having reduced 

amounts of ROS and thus lower levels of DNA damage after treatment with DNQ.  Previously, 

addition of exogenous catalase has been shown to decrease sensitivity to both DNQ and β-Lap 

in NQO1-overexpressing cell lines.4,49   Similar results were observed for treatment with β-Lap in 

combination with either addition of exogeneous superoxide dismutase or forced overexpression 

of catalase in NQO1 over-expressing cell lines.49 Analysis of the level of catalase in the breast 

and lung cancer cell lines investigated here (Figure 2.25 and 2.26) suggest that this does affect 

sensitivity of the cell line. The less DNQ-sensitive cell lines (Hs578t and HCC15) express higher 

levels of catalase than more sensitive cell lines (HCC1937 and A549).  However, this is not a 

complete explanation because some sensitive cell lines such as HCC70 and H460 express levels 

of catalase similar to the less sensitive cell lines. Further investigation into the levels of the other 

oxidative stress enzymes in these cell lines is needed. If one or several of these enzymes is found 

to be predictive of response, a diagnostic that examines their level of expression could be 

developed in order to choose patients that best respond to DNQ. ELISA assays for determination 
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of catalase,89 superoxide dismutase,89 and peroxiredoxin90 levels in patient tumor samples already 

exist and could be easily applied for this purpose. 

DNA Repair Pathways. Another potential explanation for the difference in sensitivity to DNQ 

is differences in the DNA repair pathways of these cell lines. The Boothman laboratory has 

demonstrated that IB-DNQ causes extensive DNA base lesions and single-strand breaks that are 

converted to lethal double-strand breaks (DSB) during replication (data not shown). In order to 

avoid death due to these breaks, cancer cells must repair their DNA. A variety of DNA repair 

pathways exist including mismatch repair (MMR), base-excision repair (BER), nucleotide-excision 

repair (NER), translesion synthesis (TLS), nonhomologous end joining (NHEJ), and homologous 

recombination (HR).91 BER is the primary mode of repairing single-stranded breaks and involves 

activation of PARP-1 which recruits BER factors such as XRCC1 to the site of injury. HR is the 

primary mode of repairing double-stranded breaks and unlike NHEJ is known as an “error-free” 

repair pathway.  HR repair depends on multiple enzymes including ATM, CHK2, BRCA1, BRCA2, 

and PALB2. Many cancers commonly have defects in these DNA repair pathways.91 One of the 

most common examples is BRCA1/2 mutations in ovarian and breast cancer. It has been shown 

that cell lines with these mutations are more sensitive to DNA-damaging agents such as platinum 

agents compared to cell lines with WT BRCA1/2.92  

It is possible that the highly DNQ-sensitive cell lines have mutations in DNA damage repair 

machinery. In agreement with this, the DNQ-sensitive breast cancer cell line HCC1937 is known 

to have a BRCA1 mutation whereas the less sensitive breast cancer cell line Hs578t has WT 

BRCA1.93 However, this is also not a full explanation because the sensitive cell line BT549 is WT 

in BRCA1 and the less sensitive cell line MDA-MB-436 has a BRCA1 mutation.  Further 

investigations of the sensitivity of BRCA1/2 mutant cell lines is needed before conclusions can be 

made. Also, other cancer types are known to have mutations in repair pathways (e.g. colorectal 

cancers have mutations in MMR and HR pathways and prostate cancers have impaired HR and 
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NER pathways).91 If BRCA mutations (or mutations in other DNA repair pathways) do turn out to 

be important predictors for cancer cell sensitivity to DNQ, genetic testing for such mutations is 

already a commonly performed procedure94 and could be used to identify patients that would 

respond to DNQ. 

Optimization of DNQ: In order to further explore NQO1-activation as a mechanism to induce 

cancer cell death, DNQ derivatives were designed that were expected to have different 

efficiencies as substrates for NQO1. Through a modified version of the synthesis of DNQ, we 

were able to synthesize these derivatives. Testing of these molecules both in vitro and using the 

previously described cell culture experiments, we were able to identify many derivatives with 

similar activity and better solubility properties. Additionally, some of the derivatives appear to be 

much better tolerated by mice than DNQ (e.g. IB-DNQ and 23, Table 2.2). Further exploration of 

these compounds in vivo will more fully elucidate their promise as an anticancer agents. One 

question that also needs to be addressed is the cause of the dose-limiting toxicity. Discussed 

below are the two most likely possibilities. 

Methemoglobin formation. As noted in this Chapter, DNQ results in methemoglobin formation 

in vitro. Many of the derivatives also cause methemoglobin formation in vitro, but all derivatives 

cause less methemoglobin formation than the parent. Interestingly, we were never able to detect 

methemoglobin formation in vivo in mice although the Boothman laboratory reports having seen 

it. Additionally, the maximum tolerated dose of the derivatives does not correlate with the in vitro 

methemoglobin formation. Little data exists on how well the in vitro assay predicts methemoglobin 

formation in vivo. However, a similar technique is used to detect methemoglobinemia in hospital 

settings. Specifically, a co-oximeter is used to measure the absorbance of blood at several 

wavelengths and is capable of accurately calculating the levels of methemoglobin.95 The similarity 

in the assay techniques suggests that DNQ likely does cause methemoglobin formation in vivo, 

but methemoglobin formation may not be the main cause of toxicity. Further investigations using 
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a different assay such as an ELISA assay against methemoglobin or utilizing the co-oximeter 

used in hospital settings will hopefully aid in elucidating its role in the toxicity of DNQ. If 

methemoglobin is the dose limiting toxicity of DNQ and a derivative cannot be designed that does 

not induce methemoglobinemia, the toxicity can likely be controlled. Mild methemoglobinemia is 

typically treated by supplemental oxygen therapy whereas moderate to severe 

methemoglobinemia is often handled by treatment with methylene blue.96 Either of these 

procedures could be performed along with administration of DNQ to reduce this toxicity.  

Reduction by other reductases followed by redox cycling. Cell culture experiments 

demonstrate that DNQ has selectivity for cancer cell lines that overexpress NQO1. However, if 

treatment times are extended, DNQ and its derivatives are capable of killing cells that have no 

active NQO1 (e.g. cell lines with the NQO1*2 polymorphism). While there are many possibilities 

for how DNQ is killing, it is likely that it is being processed by one electron reductases such as 

NADPH cytochrome P450 reductase or cytochrome b5 reductase and subsequently redox cycling 

to produce ROS. Because both of these enzymes are typically expressed in all mammalian cells,97 

reduction of DNQ by these enzymes would result in ROS formation in a variety of tissues, not just 

cancer tissues, and could explain the toxicity that is observed. Future directions should include 

determining if DNQ is an in vitro substrate for these enzymes. If DNQ is a moderate-to-good 

substrate for these one electron reductases, derivatives that are poor substrates for the one 

electron reductases should be investigated. If this is not possible, development of a DNQ prodrug 

similar to the ester protected quinone that has been developed with β-Lap98 could decrease the 

toxicity of the compound by decreasing the amount of free quinone that comes into contact with 

the one electron reductases.  

Overall, the studies described in this Chapter demonstrate the cancer cell selectivity, 

potency, and outstanding in vivo properties of DNQ and its derivatives. This work suggests the 

great potential of the deoxynyboquinones as a new class of personalized anticancer therapy. 
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2.5 Materials and methods 

2.5.1 Biology materials and methods 

Chemicals, reagents, and antibodies. Deoxynyboquinone was synthesized as described.1 β-

Lapachone and dicoumarol were obtained from Prof. David Boothman (UT Southwestern). 

Streptonigrin, mitomycin C, menadione, Hoechst 33258, hydrogen peroxide (H2O2), cytochrome 

c, propidium iodide, and Sulforhodamine B, resazurin, and ES936 were purchased from Sigma-

Aldrich. All quinones and were dissolved in dimethyl sulfoxide (DMSO).  Dihydroethidium (DHE, 

5 mmol/L in DMSO) was purchased from Invitrogen Life Technologies. RH1 was provided by Prof. 

David Boothman who obtained it from Dr. David Ross (University of Colorado Health Science 

Center, Denver, CO). α-NQO1 (A180, Cell Signaling) α-PAR (BD Pharmingen), which detects 

poly (ADP-ribosyl)ated (PAR) proteins (typically ADP-ribosylated PARP1), and α-PARP1 (sc-

8007, Santa Cruz Biotechnology) antibodies were used at 1:4,000 and 1:2,000 dilutions, 

respectively. Either α-tubulin or α-actin (13E5, Cell signaling) was monitored for loading. 

In vitro NQO1 Assay. Deoxynyboquinone, β-Lapachone, and other quinones (0.1 – 100 µM) 

were monitored as NQO1 substrates using an NADH recycling assay99 and recombinant NQO1 

(Sigma, St. Louis, MO), in which NADH oxidation to NAD+ was monitored by absorbance (A340 

nm) on a SpectraMax Plus 384 (Molecular Devices, Sunnyvale, CA).  Compounds in DMSO stock 

(2 µL of 10X stock per well) were added to a 96 well plate.  NADH (400 µM) and NQO1 (1.4 

µg/mL) in 50 mM potassium phosphate buffer (pH = 7.4) was added to each well (198 µL).  Data 

was recorded at 2 second intervals for 5 minutes. Changes in absorbance were converted to 

changes in NADH concentration using a calibration curve for NADH.  NADH oxidation rates were 

compared with reactions lacking compound or containing dicoumarol (10 µM). Initial velocities 

were calculated and data expressed as dicoumarol-inhibited relative units (µmol NADH 

oxidized/min/µmol protein).  Initial velocities were calculated for a variety of concentrations and 
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Michaelis-Menten curves were generated using KaleidaGraph4 (Syngergy Software, Reading, 

PA). 

Cell Lines and Culture. Cell lines were obtained from either ATCC, the Boothman lab (UT 

Southwestern), or the Bey lab (WVU).  A549, BT549, HCC70, HCC1937, HCC38, HCC1954, 

HCC1806, DU4475, T47D, H460, H1650, H1299, HCC15, H1993, and H226 cells were grown in 

RPMI 1640 medium with 10% fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL 

streptomycin.  MCF-7 and IMR90 cells were grown in EMEM with 10% fetal bovine serum, 100 

U/mL penicillin, and 100 µg/mL streptomycin. Hs578t and MDA-MB-436 cells were grown in 

DMEM with 10% fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin. MDA-MB-

231 cells were grown in RPMI 1640 medium with 10% fetal bovine serum, 100 U/mL penicillin, 

and 100 µg/mL streptomycin, and 1 µg/mL puromycin to select for transfected cells. H596 and 

MIA Paca-2 cells were grown in DMEM with 10% fetal bovine serum, 100 U/mL penicillin, and 

100 µg/mL streptomycin, and 1 µg/mL puromycin to select for transfected cells. Cells were 

cultured at 37 °C in a 5% CO2-95% air humidified atmosphere. 

Cytotoxicity Assays. Cells were seeded at 2000 (A549, IMR90, MDA-MB-231, H596, MIA PaCa-

2, H460, HCC15, H1299, H1993, H1650), 5000 (MCF-7, HCC70, HCC1806, HCC38, HCC1937, 

HCC1954, Hs578t, H226, BT549, T47D, MDA-MB-436), or 15,000 (DU4475) cells per well in 96 

well plates and allowed to attach overnight.  Cells were then treated with various concentrations 

of compound (0.3 nM to 100 µM unless solubility prevented this; for less soluble compounds 0.03 

nM to 10 µM was used).  When investigating the effect of dicoumarol, cells were co-treated with 

vehicle or 25 µM dicoumarol and the compound of interest for 2h with at least five technical 

replicates.  When determining the effect of ES936, cells were pre-treated for 1 h with 100 nM 

ES936 and then co-treated with 100 nM ES936 and compound of interest for 2h with at least five 

technical replicates. In either case, drug-free medium was then added and cells were allowed to 

grow for 48 to 72 hours until control cells reached ~100% confluence.  Viability was assessed 
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using the sulforhodamine B (SRB) assay for the adherent cell lines (all but DU4475).100  Briefly, 

cells were fixed with 3% trichloroacetic acid for 1h and then dyed with 0.057% SRB in 1% acetic 

acid.  The dye was solubilized in 10 mM Tris base pH 10.4 and absorption (A510 nm) was read on 

a SpectraMax Plus 384 (Molecular Devices, Sunnyvale, CA).   For DU4475, viability was 

assessed using Alamar blue. Briefly, after 48-72 h 20 µL of Alamary blue (440 µM resazurin in 

sterile PBS) was added and plates were allowed to incubate for 4-8 h at 37 °C (or until live control 

were purple/pink and dead control were still blue). Fluorescence was read on an Analyst HT (or 

or a Molecular Devices SpectraMax 3 (excitation = 555 nm, emission = 585 nm, emission cutoff 

= 570 nm). Percent death was calculated by subtracting background from all wells and setting 0% 

death to DMSO-treated controls.  Percent death was plotted against concentration and this data 

was fitted to a Logistic dose response curve (𝑦 =  
𝐴1−𝐴2

1+(
𝑥

𝑥𝑜
)𝑝

+ 𝐴2 𝑤ℎ𝑒𝑟𝑒 𝐴1 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒, 𝐴2 =

𝑓𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒, 𝑥𝑜 = 𝑐𝑒𝑛𝑡𝑒𝑟, 𝑝 = 𝑝𝑜𝑤𝑒𝑟) using Origin 9.0.0 (Northampton, MA).  Statistical 

significance was determined using a paired t-test to compare the IC50 values. All data are 

averages of at least 3 independent replicates. 

Cytotoxicity Assays performed in the Boothman laboratory. Relative survival assays were 

assessed as described8 and correlated well with colony forming assays.101 Results were reported 

as means, SE from sextuplate repeats. Experiments were independently repeated 3 times. 

Western Blot Analysis. Cells were grown to 70-90% confluency at which point they were 

trypsinized and harvested. After centrifugation and washing, the cells were lysed with RIPA lysis 

buffer containing protease inhibitor and cell debris was removed by centrifugation (16000 x g for 

5 min). Protein concentration was determined by the Pierce BCA Assay (Thermo Scientific, 

Rockford, IL) and whole cell lysate (20-40 μg) was resolved by 4-20% SDS-PAGE gel 

electrophoresis at 120 V for 90 min after which proteins were transferred onto nitrocellulose 

membranes (45 V for 2 h) and blocked in 5% milk TBST overnight at 4 ºC. The membranes were 
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blotted for molecules of interest with anti-NQO1 (1:2000 in 2% milk TBST), and anti-actin (1:1000 

in 2% milk TBST) overnight at 4 ºC. The bound primary antibodies were detected using 

appropriate secondary HRP conjugated antibodies (1:20000 for NQO1 and 1:10000 for actin in 

TBST) for 1 hr at room temperature and visualized by ECL autoradiography. The membranes 

were stripped in acidic methanol and re-probed as necessary. 

NQO1 Activity Assay. Cells were grown to 70-90% confluency in T-75 flasks and harvested by 

trypsinization.  Supernatants were prepared as previously described.99 Cells were washed twice 

in ice-cold PBS and resuspended in 500 µL of PBS, pH 7.4 containing 10 µg/µL aprotinin.  Cell 

suspensions were sonicated on ice four times using 3 second pulses and then centrifuged at 

14000 x  g for 20 min.  Protein concentration was determined using the Pierce BCA Assay (Thermo 

Scientific, Rockford, IL).  The NQO1 activity assay was then performed as previously 

described.99,102  Samples containing 0, 10, 25, and 50 µg protein were analyzed.  Supernatant 

was added to a 1-mL quartz cuvette.  To this was added the reaction medium containing 77 µM 

cytochrome c (Sigma), 0.14% bovine serum albumin, 200 µM NADH as the electron donor, and 

10 µM menadione as the intermediate electron acceptor in Tris-HCl buffer (50 mM, pH 7.5).  The 

initial rate of change of absorbance (A550 nm) was read on a SpectraMax Plus 384 (Molecular 

Devices, Sunnyvale, CA) and the extinction coefficient for cytochrome c (21.1 mM-1cm-1) was 

used to determine the change in concentration.  These experiments were repeated in the 

presence of 25 µM dicoumarol.  NQO1 activity was calculated as the dicoumarol inhibited 

oxidoreductase activity.  At least three independent replicates were performed. 

Oxygen consumption rates. Assays were carried out using Seahorse 24-well dishes in 

conjunction with an XF24 sensor cartridge and a XF24 Extracellular Flux Analyzer (Seahorse 

Biosciences) as per the manufacturer's instructions. Briefly, 30,000 cells per well were seeded 

using a 2-step process, and cells grown as above with unseeded background correction wells. O2 

consumption rates (OCR) and proton production rates were measured using the XF24 Analyzer 
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and Assay Wizard software. Data represent means, %treated/control (T/C,%) SE from quadruplet 

assessments. 

ROS formation. ROS (superoxide) formation was monitored by DHE staining and microscopy. 

Quantitative data were analyzed using NIH ImageJ software, in which data are means, SE of 100 

cells and duplicate experiments conducted in triplicate. 

 PAR formation. PAR formation in vivo was assessed by Western blotting controlled for α-tubulin. 

Chemiluminescence ELISA assays, to quantify PAR formation, were carried out by HT PARP in 

vivo Pharmacodynamic II Assays (Trevigen, Inc.). Untreated or treated cells were incubated with 

α-PAR antibody, then with goat α-rabbit IgG-horseradish peroxidase. Chemiluminescence by 

PeroxyGlow assays were expressed as means, SE from 3 independent experiments. 

Nucleotide analyses. Changes in intracellular NAD+ pools were measured using Fluorescent 

NAD/NADH Detection Kits (Cell Technology, Inc.103). NAD+/NADH levels were graphed as means, 

SE from at least 3 independent experiments carried out in sextuplets each. Changes in ATP in 

vivo were measured as described previously8,71,103 and using a colorimetric/fluorometric assay 

(BioVision). 

PARP1 siRNA knockdown. siRNA specific to the open reading frame of PARP1, 50-

CCAAAGGAATTCCGAGAAA-30 (Thermo Fisher Scientific) was transiently transfected into 

cancer cells. PARP1 knockdown was confirmed using Western blot assays. Results were 

confirmed using the ON-TARGETplus PARP1 SMARTpool. 

TUNEL assays. Terminal deoxynucleotidyl transferase dUTP nick endlabeling (TUNEL) assays 

were carried out by FC-500 flow cytometry (Beckman Coulter Electronics70), and data were 

means, SE from 3 independent experiments, carried out in triplicate. 

Methemoglobin formation.   

In vitro Dose Response. 100 µL of human blood (Bioreclamation) was centrifuged at 300 rpm for 

5 min. The pellet was washed 3X with 100 µL of PBS and resuspended in 1 mL of PBS. 1 µL of 
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compound stock was then added to an 0.5 mL eppendorf tube. 99 µL of blood suspension is 

added to each sample and the solution is gently pipetted up and down to mix. It is then placed in 

a 37 °C incubator for 1 h. The suspension was then centrifuged at 300 rpm for 5 min. The 

supernatant was removed and the pellet was washed with 100 µL PBS. The cells were then lysed 

by resuspending the pellet in 100 µL of PBS with 1% Triton X-100. 10 µL of this solution was 

added to a well of a 96 well plate and 90 µL of PBS was added. Absorbance was then read at 

635 nm. After documenting these absorbances, 4 µL of a 20% potassium ferricyanide was added 

and allowed to sit for ~5 minutes. Potassium ferricyanide converts all hemoglobin to 

methemoglobin. Absorbance was then read again at 635 nm.  

In vivo Full Spectrum. received 5 treatments of either HPβCD vehicle (control) or DNQ (5 mg/kg 

every day). On the day of the last treatment, mice were treated and sacrificed after 1 hr. Blood 

was collected from the posterior vena cava. The blood was then centrifuged for 2 min at 16,000 

X g. Plasma and supernatant was removed. The pellet was resuspended in 50 µL of PBS with 

1% Triton X-100 and vortexed to lyse. After 30 min sitting on ice, lysis was complete. 1 mL of PBS 

was added and the samples were centrifuged for 5 min at 16,000 X g. Diluted 1:10 in PBS and 

read on a UV-Vis for MHb formation (scan of 300 – 700 nm). 

Pharmacokinetic assessments. Mice were dosed IV with either 30 mg/kg of  β‐Lap or 10 mg/kg 

DNQ formulated with hydroxypropyl‐‐cyclodextrin as described previously.72 At varying times 

after dosing, the mice were sacrificed and whole blood isolated with an ACD (acidified sodium 

citrate‐dextrose) coated syringe and needle.  Samples were taken out to 120 mins for ‐Lap and 

1440 mins for DNQ.  Plasma was isolated from whole blood by centrifugation at 4⁰C for 10 mins 

at 9,300xg.   For β‐Lap: 100 µL of plasma was mixed with 200 µL of acetonitrile.  Samples were 

vortexed 15 s and set at room temperature for 10 mins.    700 µL of ddH2O was added and the 

samples were vortexed.   Samples were spun for 5 mins at 16,100xg.   The supernatant was 

collected and 1 mL of ddH2O was added.  The supernatant solution was then loaded onto an 
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Oasis HLB 3cc extraction column (Waters) that had been previously washed with 2 mL MeOH 

and equilibrated with 2 mL dH2O.    The sample column was then washed twice with 2 mL of 5% 

MeOH/95% dH2O.  The sample was eluted with 2 mL of 100% MeOH.  2 mL of ddH2O and 0.2% 

formic acid were added to the sample and then analyzed by HPLC/MS/MS using an Applied 

Biosystems/MDS Sciex 3200‐QTRAP coupled to a Shimadzu Prominence LC.  Chromatography 

conditions were as follows.   Buffer A consisted of 25% Isopropanol/75% HPLC grade H2O + 

0.1% formic acid.   Buffer B consisted of 25% Isopropanol/75% Methanol + 0.1% formic acid.    The 

column flow rate was 0.5 ml/min using a Phenomenex Synergi Fusion RP 75 X 2 mM, 4 micron 

packing column.  The gradient conditions were: 0‐2 min 100% A, 2‐3 min gradient to 100% B, 3‐ 

7 min 100% B, 7‐7.5 min gradient to 100% A, 7.5‐8.5 min 100%A. β‐Lap was detected in MRM 

mode following the 243.1 to 187.2 transition.  Back‐calculation of standard curve and quality 

control samples were accurate to within 25% for 74% of these samples at concentrations ranging 

from 5 to 10000 ng/ml.  For DNQ, 100 µl of plasma was mixed with 400 µl of acetonitrile containing 

0.5% formic acid and 10 ng/ml tolbutamide (internal standard, Sigma‐Aldrich).  Samples were 

vortexed 15 s and set at room temperature for 10 mins.  Samples were spun for 5 mins at 

16,100xg. The supernatant (480 µL) was removed and spun a second time for 5 mins at 

16,100xg.  The supernatant was then analyzed by HPLC/MS/MS again using an Applied 

Biosystems/MDS Sciex 3200‐QTRAP coupled to a Shimadzu Prominence LC.  Chromatography 

conditions were as follows.  Buffer A consisted of HPLC grade dH2O + 0.1% formic acid and 

Buffer B consisted of MeOH + 0.1% formic acid. The column flow rate was 0.5 ml/min using a 

Phenomenex Synergi Fusion RP 75 X 2 mM, 4 micron packing column.   The gradient conditions 

were as for ‐Lap.   Both DNQ and tolbutamide were monitored in MRM mode following the 283.0 

to 255.0 transition for DNQ and the 269.1 to 169.9 transition for tolbutamide.  Back‐calculation of 

standard curve and quality control samples were accurate to within 20% for 75% of these samples 

at concentrations ranging from 1 ng/ml to 10,000 ng/ml. 
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LLC Murine Model.  

Antitumor efficacy. LLC cells (0.5 X 106) were intravenously injected into the tail veins of female 

(~22 g) athymic nude mice. Two days later, randomized groups of mice (5 per group) were treated 

intravenously with hydroxypropyl-β-cyclodextrin (HPβCD) vehicle alone, or β-Lapachone (30 

mg/kg) or deoxynyboquinone (2.5–10 mg/kg) dissolved in HPbCD,72 every other day for 5 

injections; mice treated with HPβCD (600 or 1,000 mg/kg for β-Lapachone or deoxynyboquinone, 

respectively) did not influence tumor growth or survival. Later (18 days posttumor inoculation), 

mice were euthanized, lungs removed, and average lung wet weights of tumor-bearing minus 

control nontumor-bearing animals calculated. Lungs were visually examined to confirm LLC 

nodules. Tumors and associated normal lung tissue were also assessed for PARP1 

hyperactivation (PAR formation) and ATP loss. Experiments were carried out twice and average 

lung wet weights graphed/group.  

Survival. LLC-bearing mice were treated with HPβCD alone, β-Lap-HPbCD (30 mg/kg), or DNQ-

HPbCD (5 mg/kg) as above and monitored for changes in weight and survival, and Kaplan-Meier 

curves generated. P values were reported with asterisks. All animal protocols have Institutional 

Animal Care and Use Committee approval (#2008-1080, UT Southwestern). 

Molecular Modeling of DNQ in NQO1. DNQ (or derivative) was built and a 10 Å water layer was 

built around the molecule.  The DNQ structure was then energy minimized using MOE29 with a 

MMFF94x forcefield using gas phase calculations and a cutoff of 0.01.  Charges were then fixed 

using an MMFF94 forcefield.  The NQO1 structure was downloaded from the PDB (1DXO).27  One 

of the homodimers was extracted and protonated.  DNQ was then modeled into the protein active 

site, using the site of duroquinone to identify the active site.  It was docked using the Dock program 

in MOE which uses Triangle Matching for the placement of the small molecule and London dG 

for rescoring of the placement of the small molecule.  Using LigX, the top configuration was 

protonated and energy minimized. 

Maximum Tolerated Dose Studies for DNQ derivatives.  
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Compound Preparation. First, compounds were dissolved in the excipient HPβCD. It had 

previously been noted that DNQ and its derivatives have much higher solubility in basic solutions31 

so basic HPβCD is initially used. Briefly, 60 mM HPβCD is made basic by the addition of 1-2 drops 

of 10 M NaOH (final pH ~11 to 12). Solid DNQ or a derivative is weighed into a vial and HPβCD 

is added to the appropriate concentration. The slurry is then vortexed and sonicated until all solid 

dissolves. The solution is then brought back to pH 7.5 to 8.5 with 1 M HCl. Note: if the solution is 

made more acidic than pH 7.5, the compound will fall out of solution.  

Compound administration. Maximum tolerated dose (MTD) was tested in 6-8 week old female 

C57BL/6 mice (Charles River). Briefly, a dose of compound was administered to three mice via 

intraperitoneal injection (i.p.) using insulin syringes.  The mice were then monitored for toxicity for 

at 1, 4, 8, 12, and 24 h. Criteria used to judge toxicity will include excess weight loss (>20% of 

aged match control), unhealthy appearance (for example, ruffled coat, hunched posture, 

distended abdomen), prolonged diarrhea and diuresis, and respiratory diseases. If life-limiting 

toxicity (defined above) was during the first 24 hours, the animals were removed from the study 

and humanely euthanized. Also, this dose was established as the MTD. If no clinical signs were 

observed in the mice 24 hours after the first compound administration, the next dose was be 

administered and observations were made in the same manner as described previously. If at any 

point during the 5 days of treatment life-limiting toxicity is observed, the mice were humanely 

euthanized and this dose will be established as the MTD. If the 5 continuous days of treatment of 

the lowest dose did not result in any significant toxicity, this same procedure was followed for the 

next dose with three naïve mice. As long as no toxicity was observed, this process was repeated 

with three naïve mice for each increasing dose. All animal protocols have Institutional Animal 

Care and Use Committee approval (#11178, UIUC). 

A548 Murine Model. Ten million A549 cells were prepared in HBSS and injected subcutaneously 

on the right flank of sedated (ketamine/xylazine) female athymic nude mice (NCI Frederick). By 

three hours postinjection the injection bleb was no longer evident. By day 30, tumors that were 
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~80 mm3 had formed and thus treatment began on that day.  Mice were randomized into three 

treatment groups of 10 mice each: vehicle (950 mg/kg HPβCD), DNQ (5 mg/kg formulated in 

HPβCD), and 23 (22 mg/kg formulated in HPβCD). Mice received a total of 19 treatments (Days 

2-6, 12-16, 22-26, 32-35) all injected i.p. Tumors were measured and volumes calculated using 

the formula V = 0.5LW2 where V = volume, L = length, and W = width. Mice were sacrificed on 

day 80 and tumors were excised and weighed. All animal protocols have Institutional Animal Care 

and Use Committee approval (#11178, UIUC). 

4T1 Murine Model. 100,000 4T1 cells were injected into right flank of Balb/c mice. Mice were 

then treated with either β-Lap (20 mg/kg), IB-DNQ (15 mg/kg), or a β-Lap ester prodrug in micelles 

(GB-085, 30 mg/kg). Each treatment was given i.v. every 4 days for a total of 4 treatments. This 

was all the information which Prof. Gao provided. All animal protocols have Institutional Animal 

Care and Use Committee approval (UT Southwestern). 

Catalase Activity Assay. This assay was performed by Jessica White (an undergraduate at 

UIUC). The assay was performed using the Invitrogen Amplex Red Catalase Assay kit according 

to its instructions. 
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2.5.2 Chemistry materials and methods 

 General chemical reagents were purchased from Sigma Aldrich.  Metal catalysts and 

ligands were purchased from Strem Chemicals Inc. (Newburyport, MA). Alkynes were purchased 

from GFS Chemicals (Powell, OH) and bis-pinacolboronate was purchased from Frontier 

Scientific (Logan, UT).  All reagents were used without further purification unless otherwise noted. 

Solvents were dried by passage through columns packed with activated alumina (THF, CH2Cl2, 

diethyl ether) or activated molecular sieves (DMSO). Amines were freshly distilled over CaH2 

under a nitrogen atmosphere. Reactions involving n-BuLi were performed using standard Schlenk 

techniques under argon 

 1H-NMR and 13C-NMR spectra were recorded on Varian Unity spectrometers at 500 MHz 

and 125 MHz, respectively. Spectra generated from a solution of CDCl3 were referenced to 

residual chloroform (1H: δ 7.26 ppm, 13C: δ 77.16 ppm). Spectra generated in mixtures of CDCl3 

and CD3OD were referenced to CD3OD (1H: δ 3.31 ppm, 13C: δ 49.0 ppm). Spectra generated 

from d-TFA were referenced to residual H (1H: δ 11.50 ppm) or F3CCO2D (13C: δ 164.2 ppm). 

 

General protocol A: Amidation of ester 

To a solution of alkynyl ester (1 equiv.) in methanol (1 M), chilled in an ice-water bath was added 

alkyl amine (1.2 equiv.). The reaction was stirred at 0 ºC for 14h. The solvent was evaporated 

directly from the flask and the residue was separated by silica gel chromatography (9:1 

hexanes:ethyl acetate to 1:1 hexanes:ethylacetate) to yield the desired alkynyl amide as a mixture 

of rotamers. 
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General protocol B: Amidation of acid chloride 

 To an oven-dried Schlenk flask with a stirbar was added the iodoacid and the flask was 

evacuated and backfilled with argon. Dry CH2Cl2 (0.4 M iodoacid) was added and the solution 

was chilled on an ice-water bath. Oxalyl chloride (3 equiv.) was added by syringe and the cold 

bath was removed. After 5h at room temperature the volatile components were evaporated 

directly from the flask. Dry CH2Cl2 (0.5 M) was added to the residual oil and the vial was chilled 

on a dry ice/isopropanol bath. Freshly distilled p-methoxybenzyl amine (1.1 equiv.) was added 

dropwise by syringe followed by NEt3 (1.2 equiv.). The mixture was stirred for 10 minutes then 

was allowed to warm to RT. 1 M HCl (1.5 mL per mmol) was added and the solution was poured 

into a separatory funnel with CH2Cl2 (1.5 mL per mmol), shaken and separated. The aqueous 

fraction was extracted with CH2Cl2 (0.8 mL per mmol, 3 times) then dried over MgSO4 and 

evaporated. The residue was purified by silica gel chromatography. 

 

or 

 

General protocol C: Hydroiodination 

Alkynyl amide (1 equiv.), NaI (2 equiv.), and acetic acid (10 equiv.) were combined and heated to 

110 ºC for 8h. Reaction completion was determined by removing aliquots for 1H-NMR analysis. 
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The deep red reaction mixture was diluted with water (1-2 mL per mmol alkyne) and CH2Cl2 (3-4 

mL per mmol alkyne), treated with NaHSO3 until colorless, and carefully neutralized with a 

saturated aqueous solution of NaHCO3. This mixture was poured into a separatory funnel with 

CH2Cl2, shaken and separated. The aqueous fraction was extracted with CH2Cl2 (4-5 mL per 

mmol alkyne, 2 times). The combined organic fractions were washed with brine, dried over 

MgSO4, and evaporated to yield the desired iodoamide. 

 

 

General protocol D: Suzuki cross-coupling 

To a Schlenk flask with a stir bar was added pure (recrystallized) 2,6-dichloro-3,5-

bis(pinacolboronato)anisole (70)1 (1 equiv.), PdCl2(dppf) (20 mol%), K2CO3 (6 equiv.), and both 

desired iodoamides (1.3 equiv. of amide bearing PMB, 1.5 equiv. of N-alkyl amide) and the flask 

was evacuated and backfilled with argon three times. Water (1 mL per mmol bispinacolboronate) 

and DME (9 mL per mmol bispinacolboronate) were added by syringe after degassing the solvents 

by bubbling with argon for 45 minutes. The flask was plunged into an oil bath at 80 ºC for 3h. The 

mixture was poured into a separatory funnel and diluted with water (12-13 mL per mmol 

bispinacolboronate). The mixture was extracted with EtOAc (12-13 mL per mmol 

bispinacolboronate, 2 times). The combined organic extracts were dried over MgSO4, filtered and 

evaporated to a deep red oil. The crude product was dissolved in CH2Cl2 and separated by silica 

gel chromatography (100:0 to 70:30 to 30:70 to 0:100 hexanes:ethyl acetate). The purity of the 

diamide product was highly variable and the product was subjected to intramolecular amidation 

without further purification. 
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General protocol E: Intramolecular aryl amidation 

In a Schlenk flask or a vial with a Teflon-lined cap were combined the diamide starting material, 

K2CO3 (6 equiv.), Pd/X-Phos (10 mol%), and X-Phos (10 mol%). The flask was cycled between 

vacuum and argon three times and argon-sparged i-PrOH (20-30 mL per mmol diamide) was 

added by syringe. The mixture was heated to 80 ºC with stirring for 14h. Insoluble materials were 

removed by filtration through Celite and rinsed with CH2Cl2. The filtrate was evaporated and the 

residue was used directly in the next step. 

 

 

General protocol F: HBr deprotection 

The crude diazaanthracene was dissolved in 48% HBr (12-13 mL per mmol diazaanthracene) 

and heated to 110 ºC. After 19 hours the reaction was removed from heat. The mixture was cooled 

on an ice bath and was carefully rendered basic by adding 10 M NaOH. The residual solid was 

removed by filtration through hardened filter paper and discarded. The filtrate was rendered acidic 

with 1 M HCl, whereupon a colloidal precipitate formed. The mixture was then centrifuged (3220 

x g for 5 minutes). The resulting semi-compact gelatinous solid was collected by filtration through 
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hardened filter paper and dried to a constant mass under vacuum to yield the desired 

diazaanthracenol in frequently high purity as assessed by NMR. 

 

 

General protocol G: TFA and BBr3 deprotection  

For substrates that proved sensitive to global deprotection by HBr, the following protocol was 

employed. 

The product of intramolecular amidation (General Protocol E) was dissolved in TFA (15-20 mL 

per mmol) and heated to reflux for 1h. The solvent was then evaporated and the residue was 

purified by silica gel chromatography (DCM, 0-5% MeOH). 

In a Schlenk flask containing the PMB-deprotected material under Ar was added DCM (70 mL per 

mmol) and the solution was cooled in a dry ice/isopropanol bath. BBr3 (6 equiv.) was added by 

syringe and the solution was stirred until starting material was consumed as shown by TLC. 

Residual BBr3 was quenched by the addition of conc. NaHCO3 solution until pH neutral. The 

solvents were evaporated. The residue was taken directly to oxidation (General Protocol H) 

without further purification. 

 

 

General protocol H: Oxidation 
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To a flask containing the diazaanthracenol starting material was added salcomine (10 mol%) and 

DMF (~0.02 to 0.04 mL per mg of impure diazaanthracenol). A balloon containing O2 was fitted 

over the mouth of the flask and the slurry was stirred at room temperature. The solid dissolved 

after about 30 minutes. After 3h stirring, the mixture was diluted with one volume each of DCM 

and hexanes and loaded directly onto a chromatography column consisting of a layer of basic 

alumina (5 cm) under a layer of silica gel (5 cm) prepared in DCM. The column was flushed with 

increasing amounts of methanol (0-2%) in DCM until the red product band entered the alumina 

layer which retained the product, allowing coeluting impurities to be removed. The product was 

then released from the basic alumina by adding 1% HOAc to the mobile phase. The red fractions 

were evaporated and purified by chromatography through silica gel (0-5% MeOH in DCM) to yield 

the desired DNQ derivative as an orange, red, or red-pink solid. 

 

 

27 

Synthesized from ethyl-2-butynoate and isobutylamine by General Protocol A. 50% yield. 

Compound is a light yellow oil at rt. 

1H-NMR (CDCl3, 500 MHz): δ 5.78 (bs, 1H, major rotamer, NH), 3.21 (t, 2H, J = 6.5 Hz, minor 

rotamer, NCH2), 3.10 (t, 2H, J = 6.5 Hz, major rotamer, NCH2), 2.01 (s, 3H, minor rotamer, allylic 

CH3), 1.93 (s, 3H, major rotamer, allylic CH3), 1.78 (sept, 1H, J = 6.5 Hz, major rotamer, CH), 0.94 

(d, 6H, J = 7.0 Hz, minor rotamer CH(CH3)2), 0.91 (d, 6H, J = 6.5 Hz, major rotamer, CH(CH3)2) 

13C-NMR (CDCl3, 125 MHz) δ 153.68 (major), 83.17 (major), 75.11 (major), 50.90 (minor), 47.15 

(major), 29.56 (minor), 28.50 (major), 20.16 (major), 19.96 (minor), 4.13 (minor), 3.80 (major) 

HRMS (ESI) calcd for C8H14NO (M+H)+: 140.1075, found: 140.1070. 
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Melting Point Not determined (oil). 

IR (cm-1, thin film in CCl4): 3450 (w), 3292 (b, m), 3062 (b, w), 2962 (m), 2254 (m), 1654 (s), 1544 

(s), 1468 (m) 1275 (m), 1006 (w). 

 

 

28 

Synthesized from 27 by General Protocol C. 95% yield. Compound is a yellow/orange solid. 

1H-NMR (CDCl3, 500 MHz): δ 6.25 (q, 1H, J = 1.0 Hz, vinyl CH), 5.75 (bs, 1H, NH), 3.17 (t, 2H, J 

= 6.5 Hz, NCH2), 2.66 (d, 3H, J = 1.5 Hz, allylic CH3), 1.85 (sept, 1H, J = 6.5 Hz, CH), 0.95 (d, 

6H, J = 6.5 Hz, CH(CH3)2) 

13C-NMR (CDCl3, 125 MHz) δ 165.00, 129.73, 105.42, 46.97, 35.78, 28.50, 20.37. 

HRMS (ESI-TOF) calcd for C8H15NOI (M+H)+: 268.0198, found: 268.0197. 

Melting Point:  49.3-51.2 °C 

IR (cm-1, thin film in CHCl3): 3450 (m), 3280 (b, m), 3060 (b, w), 2962 (m), 1650 (s), 1620 (m), 

1430 (w), 1410 (w), 1370 (w), 1330 (w), 1230 (w), 1160 (m). 

 

 

2 
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Synthesized from 70,1 (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide,1 and 28 by General 

Protocols D, E, F, and H. 9% yield over 4 steps. Compound is an orange/red solid at rt. 

1H-NMR (CDCl3 500 MHz): δ 6.78 (d, 1H, J = 1.0 Hz, vinyl CH), 6.67 (d, 1H, J = 1.5 Hz, vinyl 

CH), 4.64 (d, 2H), 2.62 (d, 3H, J = 1.0 Hz, allylic CH3), 2.60 (d, 3H, J = 1.0 Hz, allylic CH3), 1.88 

(sept, 1H, J = 7.0 Hz, CH), 0.93 (d, 6H, J = 6.5 Hz, CH(CH3)2).  

13C-NMR (CDCl3, 125 MHz): δ 181.71, 175.38, 161.47, 160.73, 151.21, 149.01, 138.99, 137.93, 

128.64, 128.35, 120.11, 114.49, 50.58, 29.83, 23.49, 22.33, 20.07. 

HRMS (ESI-TOF) calcd for C18H19N2O4 (M+H)+: 327.1345, found: 327.1347. 

Melting Point >250 °C.  

IR (cm-1, thin film in CDCl3): 1676 (m), 1653 (b, s), 1607 (m), 1592 (m), 1467 (w), 1401 (w), 1376 

(m), 1350 (w), 1290 (m), 1203 (w), 1101 (w). 

 

 

29 

Synthesized from 2-hexynoic acid by General Protocol C. 83% yield. Compound is an off-white 

solid at rt. 

1H-NMR (CDCl3, 500 MHz): δ 6.40 (t, 1H, J = 1.2 Hz, vinyl CH), 2.71 (dt, 2H, J = 1.2 Hz, 7.2 Hz, 

allylic CH2), 1.65 (sext, 2H, J = 7.2 Hz, CH2CH2), 0.93 (t, 3H, J = 7.2 Hz, CH2CH3) 

13C-NMR (CDCl3, 125 MHz): δ 169.78, 125.11, 124.62, 50.35, 22.69, 12.83. 

HRMS (ESI-TOF) calcd for C6H11NOI (M+Na)+: 262.9545, found: 262.9555. 

Melting Point:  55.2-55.8 °C.   
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IR (cm-1, thin film in CDCl3): 2964 (b, s), 2709 (m), 2596 (m), 1704 (s), 1616 (s), 1464 (m), 1405 

(s), 1311 (s), 1240 (s), 1212 (s). 

 

 

30 

Synthesized from 29 and 4-methoxybenzylamine by General Protocol B. 99% yield. Compound 

is an off-white solid. 

1H-NMR (CDCl3, 400 MHz): δ 7.23 (d, 2H, J = 8.8 Hz, aryl CH), 6.84 (d, 2H, J = 8.8 Hz, aryl CH), 

6.26 (s, 1H, vinylic CH), 5.96 (bs, 1H, NH), 4.42 (d, 2H, J = 5.6 Hz, NCH2), 3.77 (s, 3H, OCH3), 

2.54 (t, 2H, J = 7.2 Hz, allylic CH2), 1.57 (sext, 2H, J = 7.2 Hz), 0.88 (t, 3H, J = 7.2 Hz) 

13C-NMR (CDCl3, 125 MHz): δ 164.85, 159.10, 129.96, 129.49, 128.40, 114.42, 114.10, 55.36, 

49.06, 43.15, 22.49, 12.84. 

HRMS (ESI-TOF) calcd for C14H19NO2I (M+H)+: 360.0461, found: 360.0471. 

Melting Point: 57.2-59.2 °C.   

IR (cm-1, thin film in CDCl3): 3421 (b, s), 3262 (s), 3033 (m), 2959 (s), 2835 (w), 1618 (s), 1514 

(s), 1460 (m), 1303 (w), 1237 (m), 1177 (w), 1038 (w). 

 

31 

Synthesized by from ethyl-2-hexynoate and butylamine by General Protocol A. 68% yield. 

Compound is a pale yellow oil. 
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1H-NMR (CDCl3, 500 MHz): δ 6.07 (s, 1H, minor rotamer, NH), 5.95 (s, 1H, major rotamer, NH), 

3.35 (dq, 2H, minor rotamer, J = 7.0 Hz, 2.0 Hz, NCH2), 3.24 (dq, 2H, major rotamer, J = 7.0 Hz, 

2.0 Hz, NCH2), 2.22 (dt, 2H, J = 7.0 Hz, 2.0 Hz, allylic CH2), 1.54 (dq, 2H, J = 7.0 Hz, 2.0 Hz), 

1.46 (quint, 2H, J = 7.0 Hz), 1.32 (sext, 2H, J = 7.5 Hz), 0.96 (dt, 3H, J = 7.0 Hz, 2.0 Hz), 0.88 (dt, 

3H, J = 7.5 Hz, 2.0 Hz) 

13C-NMR (CDCl3, 125 MHz): δ 153.68 (major), 93.69 (minor), 86.89 (major), 75.87 (major), 73.56 

(minor), 43.14 (minor), 39.59 (major), 32.71 (minor), 31.45 (major), 21.37 (major), 20.60 (major), 

20.08 (major), 19.76 (minor), 13.73 (major), 13.56 (major).  

HRMS (ESI) calcd for C10H15NO (M+H)+: 168.1388, found: 168.1382. 

Melting Point Not determined (oil). 

IR (cm-1, thin film in CCl4): 3588 (m), 3294 (b, m), 3060 (b, w), 2964 (m), 2247 (m), 2221 (m), 

1637 (s), 1515 (s), 1460 (m), 1278 (m), 1095 (w). 

 

 

32 

Synthesized from 31 by General Protocol C. 98% yield. Compound is a yellow/brown oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.26 (s, 1H, vinyl CH), 3.25 (q, 2H, J = 7.0 Hz), 2.51 (t, 2H, J = 7.5 

Hz), 1.54 (sext, 2H, J = 7.5 Hz), 1.48 (pent, 2H, J = 7.5 Hz), 1.32 (sext, 2H, J = 8.0 Hz), 0.86 (t, 

3H, J = 7.0 Hz), 0.85 (t, 3H, J = 7.5 Hz).  

13C-NMR (CDCl3, 125 MHz): δ 165.13, 128.87, 113.51, 49.01, 39.36, 31.54, 22.51, 20.27, 13.81, 

12.83. 

HRMS (ESI-TOF) calcd for C10H19NOI (M+H)+: 296.0511, found: 296.0503. 
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Melting Point Not determined (oil).  

IR (cm-1, thin film in CHCl3): 3439 (m), 3324 (b, m), 3073 (w), 2965 (m), 1655 (s), 1621 (m), 1467 

(m), 1335(w), 1283 (w), 1239 (w), 1204 (w), 1087 (w).  

 

 

3 

Synthesized from 70, 30, and 32 by General Protocols D, E, F, and H. 13% yield over 4 steps. 

Compound is a red/pink solid.   

1H-NMR (CDCl3, 500 MHz): δ 9.67 (s, 1H, NH), 6.77 (s, 1H, vinyl CH), 6.68 (s, 1H, vinyl CH), 4.49 

(m, 2H), 2.98 (t, 2H, J = 7.0 Hz, allylic CH2), 2.95 (t, 2H, J = 7.0 Hz, allylic CH3), 1.69 (pent, 2H, J 

= 8.5 Hz, CH), 1.72-1.65 (m, 2H), 1.65-1.55 (m, 4H), 1.47 (sext, 2H, J = 7.5 Hz), 1.03 (t, 3H, J = 

7.0 Hz), 1.03 (t, 3H, J = 7.5 Hz), 1.00 (t, 3H, J = 7.5 Hz, CH3). 

13C-NMR (CDCl3

127.93, 127.62, 120.10, 114.69, 46.31, 37.09, 36.23, 31.41, 23.25, 22.98, 20.40, 14.28, 14.14, 

13.93. 

HRMS (ESI-TOF) calcd for C22H27N2O4 (M+H)+: 383.1971, found: 383.1969. 

Melting Point: >200 °C. 

IR (cm-1, thin film in CHCl3): 2940 (b, w), 1649 (b, s), 1587 (w), 1382 (w), 1299 (w), 1281 (w), 1254 

(w). 
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Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 32 by General 

Protocols D, E, F, and H. 6.3% yield over 4 steps. Compound is a pink/red solid at rt. 

1H-NMR (CDCl3, 500 MHz): δ 9.46 (s, 1H, NH), 6.77 (s, 1H, vinyl CH), 6.67 (d, 1H, J = 1.0 Hz, 

vinyl CH), 4.50 (m, 2H), 2.97 (t, 2H, J = 7.5 Hz, allylic CH2), 2.61 (d, 3H, J = 1.0 Hz, allylic CH3), 

1.69 (pent, 2H, J = 8.0 Hz), 1.60 (sext, 2H, J = 7.5 Hz), 1.47 (sext, 2H, J = 8.0 Hz), 1.03 (t, 3H, J 

= 7.5 Hz, CH3), 0.99 (t, 3H, J = 7.5 Hz, CH3). 

13C-NMR (CDCl3, 125 MHz): δ 181.73, 175.37, 161.47, 160.91, 153.23, 151.31, 139.49, 137.78, 

128.40, 127.82, 119.67, 114.98, 46.35, 39.15, 31.40, 23.14, 22.40, 20.40, 14.28, 13.93. 

HRMS (ESI-TOF) calcd for C20H23N2O4 (M+H)+: 355.1658, found: 355.1655. 

Melting Point: >270 °C.  

IR (cm-1, thin film in CDCl3): 1680 (m), 1651 (s), 1608 (m), 1535 (w), 1458 (w), 1396 (w), 1368 

(w), 1281 (w), 1153 (w), 1108 (w). 

 

 

33 

Synthesized from ethyl-2-butynoate and butylamine by General Protocol A. 78% yield. Compound 

is a clear, colorless oil at rt. 
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1H-NMR (CDCl3, 500 MHz): δ 6.01 (bs, 1H), 3.34 (q, 2H, J = 7.0 Hz, minor rotamer NCH2), 3.23 

(q, 2H, J = 6.0 Hz, major rotamer NCH2), 1.98 (s, 3H, minor rotamer allylic CH3), 1.89 (s, 3H, 

major rotamer allylic CH3), 1.46 (pent, 2H, J = 7.0 Hz), 1.31 (sext, 2H J = 7.5 Hz), 0.88 (t, 3H, J = 

7.5 Hz). 

13C-NMR (CDCl3, 125 MHz): δ 153.71 (major), 89.96 (major), 75.13 (major), 45.15 (minor), 41.57 

(major), 23.92 (minor), 22.69 (major), 11.39 (major), 11.18 (minor), 3.69 (major). 

HRMS (ESI-TOF) calcd for C8H14NO (M+H)+: 140.1075, found: 140.1071. 

Melting Point Not determined (oil).   

IR (cm-1, thin film, neat): 3512 (b, w), 3271 (m), 3066 (w), 2954 (m), 2878 (m), 2257 (m), 2216 

(w), 1651 (s), 1538 (s), 1285 (m), 1226 (w), 1150 (w).  

 

 

34 

Synthesized from 33 by General Protocol C. 97% yield. Compound is a light yellow/brown oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.23 (d, 1H. J = 1.5 Hz, vinyl CH), 3.26 (q, 2H, J = 7.0 Hz, NCH2), 

2.59 (d, 3H, J = 1.5 Hz, allylic CH3), 1.48 (p, 2H, J = 7.5 Hz), 1.32 (sext, 2H, J = 7.5 Hz), 0.87 (t, 

3H, J = 7.5 Hz). 

13C-NMR (CDCl3, 125 MHz): δ 164.93, 129.47, 105.41, 39.35, 35.75, 31.55, 20.26, 13.83.  

HRMS (ESI-TOF) calcd for C8H15NOI (M+H)+: 268.0198, found: 268.0197. 

Melting Point Not determined (oil).  
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IR (cm-1, thin film in CHCl3): 3441 (m), 3324 (b,m), 3073 (b, w), 2965 (m), 1653 (s), 1628 (s), 1515 

(s), 1435 (m), 1331 (w), 1269 (w), 1232 (m), 1154 (w), 1080 (w). 

 

 

 

 

 

5 

Synthesized from 70, 30, and 34 by General Protocols D, E, F, and H. 6.7% yield over 4 steps. 

Compound is a pink/red solid at rt. 

1H-NMR (CDCl3, 500 MHz): δ 9.52 (s, 1H, NH), 6.77 (d, 1H, J = 1.0 Hz, vinyl CH), 6.68 (s, 1H, 

vinyl CH), 4.52-4.49 (m, 2H), 2.99 (t, 2H, J = 7.5 Hz, allylic CH2), 2.59 (d, 3H, J = 1.0 Hz, allylic 

CH3), 1.68 (pent, 2H, J = 7.5 Hz), 1.61 (sext, 2H, J = 8.0 Hz, CH2CH2CH3), 1.47 (sext, 2H, J = 8.0 

Hz, CH2CH2CH3), 1.04 (t, 3H, J = 7.5 Hz, CH3), 1.00 (t, 3H, J = 7.5 Hz, CH3). 

13C-NMR (CDCl3, 125 MHz): δ 181.67, 175.28, 161.28, 160.96, 155.41, 149.27, 138.84, 138.25, 

128.69, 127.59, 120.12, 114.40, 46.20, 36.30, 31.40, 23.53, 22.88, 20.39, 14.13, 13.92.  

HRMS (ESI-TOF) calcd for C20H23N2O4 (M+H)+: 355.1658, found: 355.1658. 

Melting Point: >270 °C.  

IR (cm-1, thin film in CHCl3): 1677 (w), 1651 (b, s), 1604 (w), 1555(w), 1455 (w), 1399 (w), 1306 

(w), 1285 (w), 1212 (w), 1108 (w). 
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35 

Synthesized from ethyl-2-pentynoate and methylamine by General Protocol A. 78% yield. 

Compound is a yellow oil at rt. 

1H-NMR (CDCl3, 500 MHz): δ 5.95 (bs, 1H), 2.99 (d, 3H, J = 5.0 Hz, minor rotamer), 2.82 (d, 3H, 

J = 5.0 Hz, major rotamer), 2.37 (t, 2H, J = 7.0 Hz, minor rotamer), 2.27 (t, 2H, J = 7.0 Hz, major 

rotamer), 1.20 (t, 3H, J = 7.5 Hz, minor rotamer), 1.15 (t, 3H, J = 7.5 Hz, major rotamer). 

13C-NMR (CDCl3, 125 MHz): δ 157.11 (minor), 154.40 (major), 95.38 (minor), 87.96 (major), 74.62 

(major), 72.25 (minor), 29.56 (minor), 26.17 (major), 12.66 (minor), 12.58 (major), 12.33 (minor), 

12.40. 

HRMS (ESI-TOF) calcd for C6H10NO (M+H)+: 112.0762, found: 112.0765. 

Melting Point Not determined (oil).   

IR (cm-1, thin film in CHCl3): 3501 (w), 3282 (b, m), 3069 (w), 2981 (m), 2259 (m), 2223 (m), 1629 

(s), 1540 (s), 1413 (m), 1317 (m), 1286 (m), 1162 (w).  

 

 

36 

Synthesized from 35 by General Protocol C. 92% yield. Compound is a yellow/brown oil. 
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1H-NMR (CDCl3, 500 MHz): δ 6.28 (q, 1H. J = 1.5 Hz, vinyl CH), 5.9 (bs, 1H, NH), 2.88 (d, 3H, J 

= 5.0 Hz, NCH3), 2.62 (dq, 2H, J = 1.5 Hz, 7.5 Hz, allylic CH2), 1.11 (t, 3H, J = 7.5 Hz, -CH3). 

13C-NMR (CDCl3, 125 MHz): δ 166.14, 127.91, 115.56, 40.94, 26.39, 14.67. 

HRMS (ESI-TOF) calcd for C6H11NOI (M+H)+: 239.9885, found: 239.9885. 

Melting Point Not determined (oil). 

IR (cm-1, thin film in CHCl3): 3455 (m), 3323 (b, m), 3082 (b, w), 2978 (m), 1653 (s), 1626 (m), 

1524 (m), 1411 (w), 1342 (w), 1292 (w), 1220 (m), 1161 (w), 1069 (w).  

 

 

37 

Synthesized from 2-pentynoic acid by General Protocol C. 91% yield. Compound is an off-white 

solid.   

1H-NMR (CDCl3, 500 MHz): δ 6.40 (t, 1H, J = 1.0 Hz, vinyl CH), 2.78 (dq, J = 7.5 Hz, 1.0 Hz, 2H, 

allylic CH2), 1.16 (t, 3H, J = 7.5 Hz, CH2CH3)  

13C-NMR (CDCl3, 125 MHz): δ 169.66, 126.56, 123.62, 42.36, 14.72. 

HRMS (ESI-TOF) calcd for C5H7NOI (M+H)+: 225.9491, found: 225.9507. 

Melting Point:  67.0-67.9 °C. 

IR (cm-1, thin film in CHCl3): 3233 (b, m), 2703 (w), 2578 (w), 1694 (s), 1626 (s), 1455 (m), 1418 

(w), 1310 (w), 1237 (m), 1077 (w).  
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38 

Synthesized from 37 and 4-methoxybenzylamine by General Protocol B. 84% yield. Compound 

is an off-white/light yellow solid. 

1H-NMR (CDCl3, 400 MHz): δ 7.23 (d, 2H, J = 8.4 Hz, aryl CH), 6.83 (d, 2H, J = 8.8 Hz, aryl CH), 

6.26 (s, 1H, vinylic CH), 6.01 (bs, 1H, NH), 4.42 (d, 2H, J = 5.6 Hz, NCH2), 3.76 (s, 3H, OCH3), 

2.61 (q, 2H, J = 7.6 Hz, allylic CH2), 1.08 (t, 3H, J = 7.2 Hz) 

 13C-NMR (CDCl3, 125 MHz): δ165.00, 159.04, 129.95, 129.44, 127.41, 115.90, 114.06, 55.34, 

43.11, 40.91, 14.55. 

HRMS (ESI-TOF) calcd for C13H17NO2I (M+H)+: 346.0304, found: 346.0308. 

Melting Point: 60.7-63.3 °C. 

IR (cm-1, thin film in CDCl3): 3519 (w), 3283 (b, s), 3059 (m), 2970 (m), 2834 (m), 1651 (s), 1505 

(s), 1455 (m), 1250 (m), 1175 (m), 1033 (m). 

 

 

 

6 

Synthesized from 70, 36, and 38 by General Protocols D, E, F, and H. 17% yield over 4 steps. 

Compound is a pink amorphous solid. 
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1H-NMR (CDCl3, 500 MHz): δ 10.28 (bs, 1H), 6.83 (s, 1H, vinyl CH), 6.75 (s, 1H, vinyl CH), 3.93 

(s, 3H), 3.07 (dq, 2H, J = 7.5 Hz, 1.0 Hz), 3.04 (dq, 2H, J = 7.5 Hz, 1.0 Hz), 1.25 (t, 3H, J = 7.5 

Hz), 1.24 (t, 3H, J = 7.5 Hz). 

13C-NMR (2:1 CDCl3:CD3OD, 125 MHz): δ 181.29, 175.34, 162.29, 162.15, 157.28, 155.52, 

140.00, 138.78, 33.96, 27.90, 27.27, 13.62, 13.34. 

HRMS (ESI-TOF) calcd for C17H17N2O4 (M+H)+: 313.1188, found: 313.1193. 

Melting Point: >280 °C.  

IR (cm-1, thin film in CDCl3): 1684 (w), 1648 (s), 1604 (w), 1580 (w), 1507 (w), 1406 (w), 1363 (w), 

1289 (w), 1153 (w), 1101 (w). 

 

 

39 

Synthesized from ethyl-2-butynoate and ethylamine by General Protocol A. 83% yield. Compound 

is a pale yellow oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.25 (bs, 1H), 3.35 (pent, 2H, J = 7.0 Hz, minor rotamer NCH2), 

3.23 (pent, 2H, J = 7.5 Hz, major rotamer), 1.95 (s, 3H, minor rotamer), 1.85 (s, 3H, major 

rotamer), 1.12 (t, 3H, J = 7.5 Hz, minor rotamer), 1.08 (t, 3H, J = 7.0 Hz, major rotamer).  

13C-NMR (CDCl3, 125 MHz): δ 153.58 (major), 82.80 (major), 75.05 (major), 38.20 (minor), 34.66 

(major), 15.91 (minor), 14.51 (major), 3.93 (minor), 3.59 (major).  

HRMS (ESI) calcd for C6H10NO (M+H)+: 112.0762, found: 112.0764. 

Melting Point Not determined (oil).   
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IR (cm-1, neat): 3438 (m), 3291 (b, m), 3066 (b, w), 2983 (m), 2240 (m), 2209 (m), 1641 (s), 1520 

(s), 1437 (m), 1379 (w), 1283 (m), 1149 (w). 

 

 

40 

Synthesized from 39 by General Protocol C. 98% yield. Compound is a pale yellow/brown oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.28 (bs, 1H, NH), 6.22 (s, 1H, vinyl CH), 3.30 (pent, 2H, J = 7.5 

Hz, NCH2), 2.59 (s, 3H, allylic CH3), 1.12 (s, 3H). 

13C-NMR (CDCl3, 125 MHz): δ 164.85, 129.28, 105.58, 35.75, 34.45, 14.74. 

HRMS (ESI-TOF) calcd for C6H11NOI (M+H)+: 139.9885, found: 139.9884. 

Melting Point Not determined (oil).  

IR (cm-1, thin film in CHCl3): 3441 (m), 3322 (b, m), 3073 (b,w), 2976 (m), 1653 (s), 1626 (m), 

1515 (m), 1432 (m), 1375 (w), 1326 (w), 1269 (w), 1211 (m), 1152 (w), 1080 (m). 

 

 

7 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 40 by General 

Protocols D, E, F, and H. 13% yield over 4 steps. Compound is a red/orange solid at rt. 
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1H-NMR (2:1 CDCl3:CD3OD, 500 MHz): δ 6.76 (d, 1H, J = 1.0 Hz, vinyl CH), 6.67 (d, 1H, J = 1.0 

Hz, vinyl CH), 4.51 (q, 2H, J = 8.0 Hz), 2.36 (m, 6H, allylic CH3), 1.45 (t, 3H, J = 7.0 Hz).  

13C-NMR (CDCl3, 125 MHz): δ 182.06, 175.64, 162.52, 162.29, 152.29, 150.66, 140.21, 139.27, 

127.93, 127.71, 119.94, 115.35, 42.97, 23.42, 22.39, 14.36. 

HRMS (ESI-TOF) calcd for C16H15N2O4 (M+H)+: 299.1032, found: 299.1034. 

Melting Point: >280 °C.  

IR (cm-1, thin film in CHCl3): 1680 (w), 1647 (b, s), 1601 (w), 1580 (w), 1374 (m), 1292 (m), 1161 

(m).  

 

 

41 

Synthesized from ethyl-2-butynoate and propylamine by General Protocol A. 71% yield. 

Compound is a clear, colorless oil. 

1H-NMR (CDCl3, 500 MHz): δ 5.99 (bs, 1H), 3.35 (q, 2H, J = 7.0 Hz, minor rotamer NCH2), 3.24 

(q, 2H, J = 7.5 Hz, major rotamer NCH2), 2.02 (s, 3H, minor rotamer allylic CH3), 1.93 (s, 3H, 

major rotamer allylic CH3), 1.53 (sext, 2H, J = 7.5 Hz), 0.93 (t, 3H, J = 7.5 Hz). 

13C-NMR (CDCl3, 125 MHz): δ 156.60 (minor), 153.62 (major), 89.57 (minor), 82.71 (major), 74.90 

(major), 72.54 (minor), 44.97 (minor), 41.34 (major), 23.68 (minor), 22.43 (major), 11.21 (major), 

10.98 (minor), 3.83 (minor), 3.50 (major). 

HRMS (ESI-TOF) calcd for C7H12NO (M+H)+: 126.0919, found: 126.0914 

Melting Point Not determined (oil).  
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IR (cm-1, thin film in CHCl3): 3441 (m), 3300 (b, m), 3066 (b, w), 2967 (m), 2249 (s), 2224 (m), 

1649 (s), 1517 (s), 1440 (w), 1272 (m), 1162 (w).  

 

 

 

 

42 

Synthesized from 41 by General Protocol C. 98% yield. Compound is a clear, colorless oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.23 (d, 1H. J = 1.5 Hz, vinyl CH), 6.22 (bs, 1H, NH), 3.23 (d, 2H, 

J = 7.0 Hz, NCH2), 2.60 (d, 3H, J = 1.5 Hz, allylic CH3), 1.53 (sext, 2H, J = 7.0 Hz), 0.90 (t, 3H, 

7.5 Hz). 

13C-NMR (CDCl3, 125 MHz): δ 164.98, 129.47, 105.47, 41.34, 35.76, 22.77, 11.61. 

HRMS (ESI-TOF) calcd for C7H13NOI (M+H)+: 254.0042, found: 254.0044. 

Melting Point Not determined (oil).  

IR (cm-1, thin film in CHCl3): 3437 (m), 3324 (b, m), 3073 (b, w), 2967 (m), 1654 (s), 1628 (m), 

1513 (m), 1455 (w), 1428 (w), 1377 (w), 1338 (w), 1283 (w), 1154 (w), 1080 (w).  

 

 

8 
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Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 42 by General 

Protocols D, E, F, and H. 13% yield over 4 steps. Compound is a red/orange solid. 

1H-NMR (CDCl3, 500 MHz): δ 6.77 (d, 1H, J = 1.0 Hz, vinyl CH), 6.68 (d, 1H, J = 1.5 Hz, vinyl 

CH), 4.60 (m, 2H), 2.62 (d, 3H, J = 1.5 Hz, allylic CH3), 2.60 (d, 3H, J = 1.0 Hz, allylic CH3), 1.73 

(sext, 2H, J = 8.0 Hz, CH), 1.04 (t, 3H, J = 7.5 Hz).  

13C-NMR (CDCl3, 125 MHz): δ 182.08, 175.69, 162.52, 162.38, 152.31, 150.63, 140.01, 139.25, 

127.94, 127.73, 120.05, 115.39, 48.50, 23.45, 22.77, 22.38, 11.29. 

HRMS (ESI-TOF) calcd for C17H17N2O4 (M+H)+: 313.1188, found: 313.1192. 

Melting Point:  >260 °C.  

IR (cm-1, thin film in CDCl3:MeOH, 2:1): 1651 (b, s), 1557 (w), 1535 (w), 1401 (w), 1289 (w), 1153 

(w), 1094 (w). 
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Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 34 by General 

Protocols D, E, F, and H. 9.9% yield over 4 steps. Compound is a red solid. 

1H-NMR (CDCl3, 500 MHz): δ 9.54 (bs, 1H), 6.77 (q, 1H, J = 1.0 Hz, vinyl CH), 6.68 (q, 1H, J = 

1.0 Hz, vinyl CH), 4.53-4.50 (m, 2H), 2.62 (d, 3H, J = 1.0 Hz, allylic CH3), 2.60 (d, 3H, J = 1.0 Hz, 

allylic CH3), 1.68 (pent, 2H, J = 7.5 Hz), 1.47 (sext, 2H, J = 7.5 Hz), 1.00 (t, 3H, J = 7.5 Hz). 
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13C-NMR (CDCl3, 125 MHz): δ 13C NMR (126 MHz, CD3OD) δ 181.79, 175.38, 162.20, 162.06, 

152.03, 150.29, 139.65, 138.89, 127.71, 127.50, 119.82, 115.11, 48.76, 31.16, 29.76, 23.20, 

22.14, 20.27, 13.61. 

HRMS (ESI-TOF) calcd for C18H19N2O4 (M+H)+: 327.1345, found: 327.1358. 

Melting Point:  >270 °C.   

IR (cm-1, thin film in CDCl3): 1670 (m), 1651 (b, s), 1609 (w), 1587 (w), 1466 (w), 1401 (w), 1375 

(w), 1289 (w), 1157 (w), 1100 (w), 1046 (w).  

 

 

43 

Synthesized from ethyl-2-butynoate and pentylamine by General Protocol A. 86% yield. 

Compound is a clear, colorless oil. 

1H-NMR (CDCl3, 500 MHz): δ 5.91 (bs, 1H), 3.35 (q, 2H, minor rotamer, J = 6.8 Hz, NCH2), 3.24 

(q, 2H, major rotamer, J = 6.8 Hz, NCH2), 1.99 (s, 3H, minor rotamer, allylic CH3), 1.90 (s, 3H, 

major rotamer, allylic CH3), 1.48 (quint, 2H, J = 7.2 Hz), 1.28 (m, 4H), 0.86 (t, 3H, J = 6.8 Hz) 

13C-NMR (CDCl3, 125 MHz): δ 156.37 (minor), 153.54 (major), 89.39 (minor), 82.51 (major), 

74.86 (major), 72.49 (minor), 43.15 (minor), 39.57 (major), 30.01 (minor), 28.82 (major), 28.74 

(major), 28.45 (minor), 22.13 (major), 22.05 (minor), 13.75 (major), 3.71 (minor), 3.39 (major)  . 

HRMS (ESI) calcd for C9H16NO (M+H)+: 154.1232, found: 154.1231. 

Melting Point: Not determined (oil).  

IR (cm-1, thin film in CDCl3): 3498 (m), 3270 (b, s), 3063 (m), 2933 (s), 2861 (m), 2256 (m), 2216 

(m), 1651 (s), 1539 (s), 1455 (m), 1373 (m), 1288 (m), 1211 (w), 1149 (w). 
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Synthesized from 43 by General Protocol C. 81% yield. Compound is a pale yellow/brown oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.22 (d, 1H. J = 1.5 Hz, vinyl CH), 5.77 (bs, 1H, NH), 3.32 (q, 2H, 

J = 7.0 Hz, NCH2), 2.64 (d, 3H, J = 1.5 Hz, allylic CH3), 1.55 (pent, 2H, J = 7.0 Hz), 1.35-1.30 (m, 

4H), 0.89 (t, 3H, J = 7.0 Hz) 

13C-NMR (CDCl3, 125 MHz): δ 164.60, 128.78, 105.36, 39.36, 35.62, 29.00, 28.92, 22.19, 

13.87. 

HRMS (ESI-TOF) calcd for C9H17NOI (M+H)+: 282.0355, found: 282.0356. 

Melting Point: Not determined (oil).  

IR (cm-1, thin film in CDCl3): 3498 (m), 3288 (b, s), 3072 (m), 2928 (s), 2859 (s), 1651 (s), 1618 

(s), 1557 (s), 1434 (m), 1374 (m), 1337 (m), 1228 (m), 1149 (w), 1087 (m). 

 

 

10 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 44 by General 

Protocols D, E, F, and H. 11% yield over 4 steps. Compound is a red amorphous solid. 
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1H-NMR (2:1 CDCl3:CD3OD, 500 MHz): δ 6.76 (d, 1H, J = 1.0 Hz, vinyl CH), 6.67 (d, 1H, J = 1.5 

Hz, vinyl CH), 4.48-4.43 (m, 2H), 2.63 (d, 3H, J = 1.5 Hz, allylic CH3), 2.63 (d, 3H, J = 1.0 Hz, 

allylic CH3), 1.77 (pent, 2H, J = 7.5 Hz), 1.48-1.40 (m, 4H), 0.95 (t, 3H, J = 7.0 Hz). 

13C-NMR (2:1 CDCl3:CD3OD, 125 MHz): δ 181.47, 175.05, 161.83, 161.68, 151.66, 149.89, 

139.31, 138.53, 127.40, 127.19, 119.45, 114.75, 28.82, 28.48, 22.87, 22.07, 21.81, 13.58. 

HRMS (ESI-TOF) calcd for C19H21N2O4 (M+H)+: 341.1501, found: 341.1496. 

Melting Point:  >250 °C.  

IR (cm-1, thin film in CDCl3): 1683 (m), 1651 (b, s), 1613 (m), 1591 (w), 1471 (w), 1399, (w), 1368 

(w), 1290 (w), 1160 (w), 1053 (w). 

 

 

45 

Synthesized from ethyl-2-butynoate and hexylamine by General Protocol A. 79% yield. 

Compound is a white crystalline solid. 

1H-NMR (CDCl3, 500 MHz): δ 5.95 (bs, 1H, major rotamer NH), 3.34 (q, 2H, J = 7.0 Hz, minor 

rotamer), 3.23 (q, 2H, J = 7.0 Hz, major rotamer), 1.98 (s, 3H, minor rotamer), 1.89 (s, 3H, major 

rotamer), 1.47 (pent, 2H, J = 7.0 Hz), 1.33-1.23 (m, 6H), 0.84 (t, 3H, J = 7.0 Hz). 

13C-NMR (CDCl3, 125 MHz) δ 153.58 (major), 82.92 (major), 75.05 (major), 43.37 (minor), 39.85 

(major), 31.49 (major), 30.56 (minor), 29.33 (major), 26.57 (major), 26.22 (minor), 22.59 (major), 

14.06 (major), 3.69 (major). 

HRMS (ESI) calcd for C10H18NO (M+H)+: 168.1388, found: 168.1391. 

Melting Point:  39.0-39.8 °C.  
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IR (cm-1, thin film in CHCl3): 3540 (b, s), 2957 (m), 2858 (w), 2252 (w), 2222 (w), 1635 (s), 1541 

(m), 1458 (w), 1291 (w). 

 

 

46 

Synthesized from 45 by General Protocol C. 98% yield. Compound is a light yellow/brown oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.22 (q, 1H. J = 1.5 Hz, vinyl CH), 5.73 (bs, 1H, NH), 3.32 (q, 2H, 

J = 7.0 Hz), 2.64 (d, 3H, J = 1.5 Hz, allylic CH3), 1.55 (pent, 2H, J = 7.0 Hz), 1.38-1.27 (m, 6H), 

0.88 (t, 3H, J = 7.0 Hz). 

13C-NMR (CDCl3, 125 MHz) δ 164.51, 128.65, 105.27, 39.35, 35.58, 31.27, 29.14, 26.49, 22.33, 

13.83. 

HRMS (ESI-TOF) calcd for C10H19NOI (M+H)+: 296.0511, found: 296.0510. 

Melting Point Not determined (oil).  

IR (cm-1, thin film in CDCl3): 3291 (b, s), 3070 (m), 2954 (s), 2857 (s), 1654 (s), 1625 (m), 1542 

(m), 1458 (m), 1437 (m), 1375 (w), 1339 (w), 1226 (m), 1078 (w). 
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11 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 46 by General 

Protocols D, E, F, and H. 12% yield over 4 steps. Compound is a pink/red solid. 

1H-NMR (2:1 CDCl3:CD3OD, 500 MHz): δ 6.76 (s, 1H), 6.67 (s, 1H), 4.45 (m, 2H), 2.63 (d, 3H, J 

= 1.0 Hz, allylic CH3), 2.63 (d, 3H, J = 1.0 Hz, allylic CH3), 1.76 (pent, 2H, J = 7.5 Hz), 1.46 (pent, 

2H, J = 7.0 Hz), 1.40-1.34 (m, 4H), 0.92 (t, 3H, J = 7.0 Hz). 

13C-NMR (2:1 CDCl3:CD3OD, 125 MHz): δ181.46, 175.04, 161.82, 161.66, 151.65, 149.88, 

139.30, 138.53, 127.40, 127.20, 119.44, 114.74, 46.57, 31.18, 28.76, 26.36, 22.87, 22.35, 21.81, 

13.58.  

HRMS (ESI-TOF) calcd for C20H23N2O5 (M+H)+: 355.1658, found: 355.1660. 

Melting Point:  >250 °C.   

IR (cm-1, thin film in CDCl3):  1677 (m), 1651 (b, s), 1613 (m), 1586 (m), 1469 (w), 1434 (w), 1402 

(m), 1386 (m), 1328 (w), 1291 (m), 1150 (w), 1102 (m), 1060 (w).  

 

 

47 

Synthesized from ethyl-2-butynoate and heptylamine by General Protocol A. 72% yield. 

Compound is white crystalline solid. 

1H-NMR (CDCl3, 500 MHz): δ 5.95 (bs, 1H, NH), 3.34 (q, 2H, J = 7.0 Hz, minor rotamer NCH2), 

3.22 (dt, 2H, J = 7.0 Hz, major rotamer), 1.98 (s, 3H, minor rotamer), 1.89 (s, 3H, major rotamer), 

1.47 (pent, 2H, J = 7.5 Hz), 1.30-1.20 (m, 8H), 0.84 (t, 3H, J = 7.0 Hz). 
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13C-NMR (CDCl3, 125 MHz): δ 156.51 (minor), 153.65 (major), 89.75 (minor), 82.97 (major), 75.14 

(major), 72.80 (minor), 43.44 (minor), 39.93, (major), 31.84 (major), 30.67 (minor), 29.44 (major), 

29.04 (major), 28.97 (minor), 26.94 (major), 26.59 (minor), 22.69 (major).  

HRMS (ESI-TOF) calcd for C11H20NO (M+H)+: 182.1545, found: 182.1550. 

Melting Point:  50.1-52.2 °C. 

IR (cm-1, thin film in CHCl3): 3449 (b, s), 2960 (m), 2250 (w), 2202 (w), 1636 (s), 1278 (m).  
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Synthesized from 47 by General Protocol C. 86% yield. Compound is a pale yellow oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.24 (q, 1H. J = 1.5 Hz, vinyl CH), 5.73 (bs, 1H, NH), 3.33 (q, 2H, 

J = 6.5 Hz),  2.65 (d, 3H, J = 1.5 Hz, allylic CH3), 1.55 (pent, 2H, J = 7.0 Hz), 1.38-1.23 (m, 8H), 

0.88 (t, 3H, J = 7.0 Hz). 

13C-NMR (CDCl3, 125 MHz): δ 164.72, 129.06, 105.40, 39.52, 35.68, 31.68, 29.37, 28.92, 

26.95, 22.52, 14.02. 

HRMS (ESI-TOF) calcd for C11H21NOI (M+H)+: 310.0668, found: 310.0654. 

Melting Point Not determined (oil).  

IR (cm-1, thin film in CHCl3): 3289 (b, s), 3069 (m), 2926 (s), 2855 (s), 1651 (b, s), 1539 (s), 1435 

(m), 1229 (m), 1077 (w).  
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12 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 48 by General 

Protocols D, E, F, and H. 10% yield over 4 steps. Compound is an orange solid.   

1H-NMR (2:1 CDCl3:CD3OD, 500 MHz): δ 6.76 (q, 1H, J = 1.5 Hz, vinyl CH), 6.66 (q, 1H, J = 1.0 

Hz, vinyl CH), 4.47-4.44 (m, 2H), 2.63 (d, 3H, J = 1.0 Hz, allylic CH3), 2.63 (d, 3H, J = 1.0 Hz, 

allylic CH3), 1.77 (bpent, 2H, J = 8.0 Hz), 1.46 (bpent, 2H, J = 8.0 Hz), 1.42-1.26 (m, 6H), 0.90 (t, 

3H, J = 7.0 Hz). 

13C-NMR (CDCl3, 125 MHz): δ 182.01, 175.59, 162.40, 162.24, 152.24, 150.46, 139.86, 139.09, 

127.95, 127.73, 120.01, 115.32, 47.14, 32.13, 29.39, 29.26, 27.23, 23.43, 22.89, 22.37, 14.20. 

HRMS (ESI-TOF) calcd for C21H25N2O4 (M+H)+: 369.1814, found: 369.1811. 

Melting Point:  >220 °C. 

IR (cm-1, thin film in CHCl3): 1651 (b, s), 1611 (m), 1587 (w), 1397 (w), 1323 (w), 1292 (w), 1177 

(w), 1102 (w). 

 

 

49 
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Synthesized from ethyl-2-butynoate and dodecylamine by General Protocol A. 72% yield. 

Compound is a white amorphous solid.   

1H-NMR (CDCl3, 500 MHz): δ 5.72 (bs, 1H, major rotamer NH), 5.64 (bs, 1H, minor rotamer NH), 

3.37 (q, 2H, J = 7.0 Hz, minor rotamer NCH2), 3.26 (q, 2H, J = 7.0 Hz, major rotamer NCH2), 2.01 

(d, 3H, J = 1.0 Hz,  minor rotamer allylic CH3), 1.93 (d, 3H, J = 1.0 Hz, major rotamer allylic CH3), 

1.50 (pent, 2H, J = 7.0 Hz), 1.34-1.20 (m, 18H), 0.87 (t, 3H, J = 7.0 Hz).  

13C-NMR (CDCl3, 125 MHz): δ 153.61 (major), 82.73 (major), 75.05 (major), 43.36 (minor), 39.81 

(major), 31.92 (major), 30.55 (minor), 29.66 (major), 29.64 (major), 29.61(major), 29.56 (major), 

29.37 (major), 29.31 (2C, major), 26.90 (major), 26.53 (minor), 22.69 (major), 14.12 (major), 3.95 

(minor), 3.62 (major).  

HRMS (ESI-TOF) calcd for C16H30NO (M+H)+: 252.2327, found: 252.2327. 

Melting Point:  63.4-64.6 °C.  

IR (cm-1, thin film in CDCl3): 3300 (b, w), 3273 (m), 3059 (w), 2956 (w), 2918 (m), 2848 (m), 2258 

(w), 2216 (w), 1645 (w), 1615 (s), 1541 (m), 1474 (m), 1296 (w). 

 

 

50 

Synthesized from 49 by General Protocol C. 98% yield. Compound is an off-white solid. 

1H-NMR (CDCl3, 500 MHz): δ 6.22 (q, 1H. J = 1.5 Hz, vinyl CH), 5.93 (bs, 1H, NH), 3.29 (q, 2H, 

J = 6.0 Hz), 2.62 (d, 3H, J = 1.5 Hz, NCH3), 1.52 (pent, 2H, J = 7.5 Hz), 1.35-1.20 (m, 18H), 0.85 

(t, 3H, J = 7.0 Hz).  
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13C-NMR (CDCl3, 125 MHz): δ 164.97, 129.73, 105.42, 39.74, 35.80, 32.07,29.80, 29.79, 29.74, 

29.71, 29.59, 29.50, 29.46, 27.20, 22.84, 14.27. 

HRMS (ESI-TOF) calcd for C16H31NOI (M+H)+: 380.1450, found: 380.1452. 

Melting Point:  51.9-53.6 °C. 

IR (cm-1, thin film in CDCl3): 3512 (b, s), 3308 (s), 3094 (m), 2916 (s), 2850 (s), 1651 (s), 1632 

(s), 1557 (s), 1470 (m), 1431 (w), 1372 (w), 1337 (w), 1237 (m), 1157 (w), 1076 (w). 

 

 

13 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 50 by General 

Protocols D, E, F, and H. 15% yield over 4 steps. Compound is an orange solid. 

1H-NMR (CDCl3, 500 MHz): δ 10.3 (bs, 1H, NH), 6.75 (d, 1H, J = 1.0 Hz, vinyl CH), 6.68 (s, 1H, 

vinyl CH), 4.48 (t, 2H, J = 8.0 Hz, NCH2), 2.61 (d, 3H, J = 0.5 Hz, allylic CH3), 2.59 (d, 3H, J = 1.0 

Hz, allylic CH3), 1.69 (pent, 2H, J = 7.5 Hz, NCH2CH2-), 1.42 (pent, 2H, J = 7.5 Hz, NCH2CH2CH2-

), 1.38-1.18 (m, 16H), 0.86 (t, 3H, J = 7.0 Hz, -CH2CH3). 

13C-NMR (CDCl3, 125 MHz): δ181.78, 175.27, 161.27, 130.99, 151.38, 149.30, 139.13, 137.98, 

128.64, 128.40, 119.69, 114.66, 46.50, 32.12, 29.87, 29.85, 29.81, 29.80, 29.55, 29.44, 29.39, 

27.14, 23.55, 22.88, 22.44, 14.32. 

HRMS (ESI-TOF) calcd for C26H35N2O4 (M+H)+: 439.2597, found: 439.2595. 

Melting Point:  >180 °C.   
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IR (cm-1, thin film in CHCl3): 2919 (m), 2850 (m), 1680 (m), 1651 (b, s), 1613 (m), 1557 (w), 1470 

(w), 1401 (m), 1302 (m), 1157 (w), 1052 (w).  

 

 

14 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 36 by General 

Protocols D, E, F, and H. 7.4% yield over 4 steps. Compound is a red solid. 

1H-NMR (2:1 CDCl3:CD3OD, 500 MHz): δ 6.81 (d, 1H, J = 1.0 Hz, vinyl CH), 6.67 (d, 1H, J = 1.0 

Hz, vinyl CH), 3.92 (s, 3H), 3.09 (dq, 2H, J = 7.0, 0.5 Hz, allylic CH2), 2.64 (d, 3H, J = 1.5 Hz, 

allylic CH3), 1.26 (t, 3H, J = 7.5 Hz, CH3).  

13C-NMR (CDCl3, 125 MHz): δ181.33, 175.31, 162.29, 161.90, 155.57, 151.68, 140.24, 138.50, 

127.15, 125.27, 118.83, 115.06, 33.98, 27.88, 21.83, 13.55. 

HRMS (ESI-TOF) calcd for C16H15N2O4 (M+H)+: 299.1032, found: 299.1034. 

Melting Point:  >290 °C.  

IR (cm-1, thin film in CHCl3): 3024 (w), 2905 (w), 1684 (m), 1653 (b, s), 1607 (m), 1583 (w), 1458 

(w), 1399 (m), 1363 (m), 1291 (m), 1264 (w), 1165 (w), 1035 (w).  

 

 

51 
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Synthesized from ethyl-2-hexynoate and methylamine by General Protocol A. 92% yield. 

Compound is a pale yellow oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.04 (bs, 1H, major rotamer NH), 5.89 (bs, 1H, minor rotamer), 2.99 

(d, 3H, J = 5.0 Hz, minor rotamer), 2.81 (d, 3H, J = 5.0 Hz, major rotamer), 2.33 (t, 2H, J = 7.0 

Hz, minor rotamer), 2.22 (t, 2H, J = 7.0 Hz, major rotamer), 1.59 (sext, 2H, J = 7.0 Hz, minor 

rotamer), 1.54 (sext, 2H, J = 7.0 Hz, major rotamer), 0.99 (t, 3H, J = 7.5 Hz, minor rotamer), 0.96 

(t, 3H, J = 7.5 Hz, major rotamer). 

13C-NMR (CDCl3, 125 MHz): δ 54.47 (major), 87.18 (major), 75.76 (major), 29.87 (minor), 26.58 

(major), 21.43 (major), 20.97 (minor), 20.65 (major), 13.60 (major).  

HRMS (ESI) calcd for C7H12NO (M+H)+: 126.0919, found: 126.0920. 

Melting Point Not determined (oil).  

IR (cm-1, thin film in CHCl3): 3455 (m), 3307 (b, m), 3070 (b, w), 2967 (m), 2251 (m), 2217 (m), 

1649 (s), 1520 (m), 1411 (w), 1267 (m), 1163 (w).  

 

 

52 

Synthesized from 51 by General Protocol C. 96% yield. Compound is a yellow/brown oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.40 (bs, 1H, NH), 6.30 (s, 1H, vinyl CH), 2.82 (d, 3H, J = 5.0 Hz, 

NCH3), 2.53 (t, 2H, J = 7.0 Hz, allylic CH2), 1.54 (sext, 2H, J = 7.5 Hz), 0.86 (t, 3H, J = 7.5 Hz).  

13C-NMR (CDCl3, 125 MHz): δ 165.86, 128.49, 114.01, 49.03, 26.30, 22.52, 12.82.  

HRMS (ESI-TOF) calcd for C7H13NOI (M+H)+: 254.0042, found: 254.0045. 
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Melting Point Not determined (oil).  

IR (cm-1, thin film in CHCl3): 3455 (m), 3328 (b, m), 3080 (b, w), 2965 (m), 1658 (s), 1624 (m), 

1524 (m), 1414 (m), 1333 (w), 1285 (w), 1237 (w), 1165 (w), 1087 (w).  
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Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 52 by General 

Protocols D, E, F, and H. 3.4% yield over 4 steps. Compound is a red/orange solid. 

1H-NMR (CDCl3, 500 MHz): δ 6.80 (s, 1H, vinyl CH), 6.68 (d, 1H, J = 1.0 Hz, vinyl CH), 3.93 (s, 

3H), 2.98 (t, 2H, J = 7.5 Hz, allylic CH2), 2.62 (d, 3H, J = 1.0 Hz, allylic CH3), 1.61 (q, 2H, J = 7.5 

Hz), 1.03 (t, 3H, J = 7.5 Hz, CH(CH3)2). 

HRMS (ESI-TOF) calcd for C17H17N2O4 (M+H)+: 313.1188, found: 313.1189. 

Melting Point:  >220°C. 

IR (cm-1, thin film in CDCl3): 2954 (w), 2912 (w), 2850 (w), 1651 (b, s), 1542 (s), 1632 (m), 1557 

(w), 1538 (w), 1505 (w), 1455 (w), 1399 (w), 1288 (m), 1163 (w).   

 

 

53 
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To an oven-dried Schlenk flask was added 1-tetradecyne (0.748 g, 3.85 mmol) and THF (10 mL). 

Chilled to -78 ºC. Added n-BuLi (2.7 mL, 4.32 mmol) dropwise then stirred for 10 minutes. Added 

ethyl chloroformate (0.56 mL, 5.86 mmol) then allowed the reaction to warm to RT. The solvent 

was evaporated and the residue was purified by silica gel chromatography. Product was collected 

as a colorless oil (1.01 g, 3.79 mmol, 98.5% yield). Compound is a clear, colorless oil. 

1H-NMR (CDCl3, 500 MHz): δ 4.19 (q, 2H, J = 7.5 Hz), 2.30 (t, 2H, J = 7.5 Hz), 1.56 (pent, 2H, J 

= 7.5 Hz), 1.37 (bpent, 2H, J = 8.0 Hz), 1.29 (t, 3H, J = 7.5 Hz), 1.28-1.21 (m, 16H), 0.86 (t, 3H, 

J = 7.0 Hz). 

13C-NMR (CDCl3, 125 MHz): δ 154.06, 89.66, 73.33, 61.91, 32.10, 29.82, 29.81, 29.77, 29.60, 

29.53, 29.21, 29.04, 27.73, 22.87, 14.29, 14.21.  

HRMS (ESI-TOF) calcd for C17H31O2 (M+H)+: 267.2324, found: 267.2327. 

Melting Point Not determined (oil).  

IR (cm-1, thin film, neat): 2952 (s), 2855 (s), 2320 (w), 2235 (s), 1714 (b, s), 1464 (m), 1366 (m), 

1248 (s), 1073 (s). 
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Synthesized from 53 and methylamine by General Protocol A. 66% yield. Compound is a white 

amorphous solid. 

1H-NMR (CDCl3, 500 MHz): δ 6.42 (bs, 1H, major rotamer NH), 6.24 (bs, 1H, minor rotamer NH), 

2.93 (d, 3H, J = 5.0 Hz, minor rotamer NCH3), 2.75 (d, 3H, J = 5.0 Hz, major rotamer NCH3), 2.29 

(t, 2H, J = 7.0 Hz, minor rotamer allylic CH2), 2.18 (t, 2H, J = 7.0 Hz, J = 7.0 Hz, major rotamer 
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allylic CH2), 1.50 (pent, 2H, J = 7.0 Hz, minor rotamer), 1.45 (pent, 2H, J = 7.5 Hz, major rotamer), 

1.29 (bpent, 2H, J = 7.5 Hz, major rotamer), 1.25-1.13 (m, 16H), 0.79 (t, 3H, J = 7.0 Hz). 

13C-NMR (CDCl3, 125 MHz): δ 157.35 (minor), 154.47 (major), 94.59 (minor), 87.17 (major), 75.50 

(major), 73.14 (minor), 31.92 (major), 29.66 (major), 29.64 (2C, major), 29.48 (major), 29.36 

(major), 29.10 (major), 28.90 (major), 27.83 (major), 26.43 (major), 22.69 (major), 18.57 (major), 

14.11 (major).  

HRMS (ESI-TOF) calcd for C16H30NO (M+H)+: 252.2327, found: 252.2327. 

Melting Point:  49.2-50.2 °C. 

IR (cm-1, thin film in CDCl3): 3428 (b, m), 3290 (s), 2958 (m), 2920 (s), 2849 (m), 2250 (w), 2221 

(w), 1625 (s), 1557 (m), 1469 (m), 1414 (w), 1292 (w), 1160 (w).  

 

 

55 

Synthesized from  54 by General Protocol C. 100% yield. Compound is a yellow solid. 

1H-NMR (CDCl3, 500 MHz): δ 6.27 (s, 1H, vinyl CH), 5.74 (bs, 1H, NH), 2.89 (d, 3H, J = 4.5 Hz), 

2.59 (t, 2H, J = 7.5 Hz), 1.56 (bt, 2H, J = 7.0), 1.33-1.22 (m, 18H), 0.88 (t, 3H, J = 7.0 Hz). 

13C-NMR (CDCl3, 125 MHz): δ 165.96, 128.50, 114.45, 47.23, 32.07, 29.81, 29.80, 29.77, 29.66, 

29.51, 29.50, 29.36, 28.44, 26.36, 22.84, 14.29.  

HRMS (ESI-TOF) calcd for C16H31NOI (M+H)+: 380.1450, found: 380.1451. 

Melting Point:  45.1-48.8 °C. 
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IR (cm-1, thin film in CDCl3): 3470 (b, w), 3291 (m), 3080 (w), 2924 (s), 2853 (s), 1651 (s), 1618 

(m), 1557 (m), 1464 (w), 1410 (w), 1350 (w), 1234 (w), 1161 (w), 1091 (w).  

 

16 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 55 by General 

Protocols D, E, F, and H. 7.0% yield over 4 steps. Compound is a peach solid. 

1H-NMR (2:1 CDCl3:CD3OD, 500 MHz): δ 6.78 (s, vinyl CH), 6.67 (d, 1H, J = 1.0 Hz, vinyl CH), 

3.91 (s, 3H), 3.03 (t, J = 8.0 Hz), 2.64 (d, 3H, J = 1.0 Hz, allylic CH3), 1.58 (p, 2H, J = 7.5 Hz), 

1.44 (p, 2H, J = 7.5 Hz), 1.27-1.4 (m, 16H), 0.89 (t, 3H, J = 7.5 Hz).  

13C-NMR (d-TFA, 125 MHz): δ182.13, 176.16, 166.58 (bs), 163.92 (bs), 160.66, 141.89, 139.75, 

128.19 (bs), 126.92, 125.93, 120.93, 38.25, 37.45, 33.96, 32.05, 31.63 (2C), 31.57, 31.52, 31.41, 

31.36, 31.15, 24.53, 23.41, 14.85. 

HRMS (ESI-TOF) calcd for C26H35N2O4 (M+H)+: 439.2597, found: 439.2600. 

Melting Point:  >220 °C.   

IR (cm-1, thin film in CHCl3): 3066 (w), 2916 (m), 2849 (m), 1662 (b, s), 1612 (w), 1583 (w), 1469 

(w), 1399 (m), 1297 (m), 1257 (w), 1163 (w), 1095 (w). 

 

 



159 
 

17 

Synthesized from 70, (Z)-3-iodo-N-methylbut-2-enamide,1 and 38 by General Protocols D, E, F, 

and H. 6.2% yield over 4 steps. Compound is a red solid at rt. 

1H-NMR (2:1 CDCl3:CD3OD, 500 MHz): δ 6.78 (d, 1H, J = 1.0 Hz, vinyl CH), 6.70 (s, 1H, vinyl 

CH), 3.92 (s, 3H), 3.09 (qd, 2H, J = 7.5, 1.0 Hz), 2.64 (d, 3H, J = 1.0 Hz, allylic CH3), 1.26 (t, 3H, 

J = 7.5 Hz, CH(CH3)2). 

13C-NMR (2:1 CDCl3:CD3OD, 125 MHz): δ 181.96, 175.93, 162.89, 162.72, 158.05, 150.81, 

140.47, 139.74, 127.48, 125.97, 119.98, 115.12, 34.49, 27.94, 23.36, 13.93. 

HRMS (ESI-TOF) calcd for C16H15N2O4 (M+H)+: 299.1032, found: 299.1041. 

Melting Point:  >290 °C.   

IR (cm-1, thin film in CHCl3): 3036 (w), 2968 (w), 2926 (w), 1680 (m), 1651 (b, s), 1601 (m), 1583 

(m), 1397 (w), 1375 (w), 1348 (m), 1287 (w), 1156 (w), 1100 (w). 

 

18 

Synthesized from 70, (Z)-3-iodo-N-methylbut-2-enamide, and 30 by General Protocols D, E, F, 

and H. 11% yield over 4 steps. Compound is an orange solid. 

1H-NMR (CDCl3, 500 MHz): δ 9.48 (bs, 1H, NH), 6.79 (d, 1H, J = 1.5 Hz, vinyl CH), 6.69 (s, 1H, 

vinyl CH), 3.93 (s, 3H), 3.00 (t, 2H, J = 7.5 Hz) 2.61 (d, 3H, J = 1.0 Hz, allylic CH3), 1.62 (sext, 

2H, J = 7.5 Hz), 1.04 (t, 3H, J = 7.5 Hz). 
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13C-NMR (CDCl3, 125 MHz): δ 181.55, 175.57, 162.35, 156.13, 150.44, 140.04, 139.38, 127.23, 

126.62, 119.70, 114.83, 36.32, 34.18, 23.08, 22.95, 13.83. 

HRMS (ESI-TOF) calcd for C17H17N2O4 (M+H)+: 313.1188, found: 313.1187. 

Melting Point:  >280 °C.   

IR (cm-1, thin film in CDCl3): 3031 (w), 2961 (w), 2912 (w), 1680 (m), 1651 (b, s), 1604 (w), 1583 

(w), 1455 (w), 1398 (w), 1350 (m), 1289 (m), 1261 (w), 1160 (w), 1105 (w). 

 

 

56 

To an oven-dried Schlenk flask was added 1-tetradecyne (0.748 g, 3.85 mmol) and THF (10 mL). 

Chilled to -78 ºC. Added n-BuLi (2.7 mL, 4.32 mmol) dropwise then stirred for 10 minutes. Added 

a large excess of solid carbon dioxide then allowed the reaction to warm to RT. The solvent was 

evaporated and the residue was purified by silica gel chromatography. Product was collected as 

a colorless oil (1.01 g, 3.79 mmol, 88% yield). Followed by General Protocol C, 71% yield.  

1H-NMR (CDCl3, 500 MHz): δ 6.39 (s, 1H, vinyl CH), 2.72 (t, 2H, J = 7 Hz), 1.60 (bp, 2H, J = 7.0), 

1.33-1.22 (m, 18H), 0.88 (t, 3H, J = 7.0 Hz). 

13C-NMR (CDCl3, 125 MHz): δ 168.90, 125.50, 124.24, 48.54, 32.07, 29.79, 29.78, 29.74, 

29.61, 29.50, 29.46, 29.44, 28.39, 22.85, 14.29. 

HRMS (ESI-TOF) calcd for C17H17N2O4 (M+Na)+: 389.0954, found: 389.0950. 

Melting Point Not determined (oil).  

IR (cm-1, thin film in CHCl3): 3533 (b, s), 3295 (s), 3080 (m), 2954 (m), 2864 (m), 1651 (s), 1633 

(m), 1557 (s), 1538 (m), 1431 (w), 1365 (w), 1330 (w), 1228 (w), 1208 (w).  
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Synthesized from 56 and 4-methoxybenzylamine by General Protocol B. 90% yield. Compound 

is an off-white solid. 

1H-NMR (CDCl3, 500 MHz): δ 7.11 (d, 2H, J = 8.5 Hz, aryl CH), 6.72 (d, 2H, J = 8.5 Hz, aryl CH), 

6.31 (s, 1H, vinylic CH), 4.251 (d, 2H, J = 5.5 Hz, NCH2), 3.66 (s, 3H, OCH3), 2.49 (t, 2H, J = 7 

Hz), 1.47 (bp, 2H, J = 7.0), 1.33-1.22 (m, 18H), 0.83 (t, 3H, J = 7.0 Hz). 

13C-NMR (CDCl3, 125 MHz): δ 164.88, 159.12, 129.96, 129.50, 128.16, 114.77, 114.11, 55.41, 

55.37, 55.32, 55.28, 47.25, 43.18, 31.99, 29.70, 29.56, 29.42, 29.30, 28.38, 22.77, 14.22. 

HRMS (ESI-TOF) calcd for C17H17N2O4 (M+H)+: 486.1869, found: 486.1862. 

Melting Point:  50.2-55.0 °C 

IR (cm-1, thin film in CHCl3): 3417 (b, s), 3303 (s), 3066 (m), 2925 (s), 2853 (m), 1651 (s), 1621 

(s), 1540 (m), 1513 (s), 1464 (m), 1337 (w), 1302 (2), 1248 (m), 1175 (m), 1084 (w).  

 

 

19 

Synthesized from 70, (Z)-3-iodo-N-methylbut-2-enamide, and 57 by General Protocols D, E, F, 

and H. 20% yield over 4 steps.  Compound is an orange solid. 
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1H-NMR (2:1 CDCl3:CD3OD, 500 MHz): δ 6.78 (s, vinyl CH), 6.67 (s, 1H), 3.92 (s, 3H), 3.03 (t, J 

= 7.5 Hz), 2.64 (d, 3H, J = 1.0 Hz, allylic CH3), 1.58 (p, 2H, J = 7.5 Hz), 1.44 (p, 2H, J = 7.5 Hz), 

1.27-1.4 (m, 16H), 0.89 (t, 3H, J = 7.5 Hz). 

13C-NMR (d-TFA, 125 MHz): δ182.21, 176.18, 166.64, 166.55, 165.56, 158.87, 141.347, 140.27, 

128.14, 127.13, 126.09, 120.54, 37.93, 36.73, 33.95, 31.84, 31.61 (2H), 31.54, 31.42, 31.38, 

31.34, 31.13, 24.50 24.37, 14.79. 

HRMS (ESI-TOF) calcd for C26H35N2O4 (M+H)+: 439.2597, found: 439.2590. 

Melting Point:  >230 °C.   

IR (cm-1, thin film in CHCl3): 2954 (w), 2918 (m), 2850 (m), 1677 (s), 1651 (s), 1639 (s), 1587 (w), 

1505 (w), 1408 (w), 1352 (w), 1290 (w), 1254 (w), 1160 (w), 1087 (w).  

 

 

 

 

58 

Synthesized from (Z)-3-iodobut-2-enoic acid1 and isopropylamine by General Protocols B. 74% 

yield over 4 steps. Compound is a off-white solid. 

1H-NMR (CDCl3, 500 MHz): δ 6.19 (d, 1H. J = 1.5 Hz, vinyl CH), 5.52 (bs, 1H, NH), 4.18 (sextet, 

1H, J = 7.5 Hz), 2.64 (d, 3H, J = 1.5 Hz, allylic CH3), 1.20 (d, 6H, J = 7.5 Hz).  

13C-NMR (CDCl3, 125 MHz): δ 164.85, 129.28, 105.58, 35.75, 34.45, 14.74. 25Oct11_8-167-

1_VXR500 
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HRMS (ESI-TOF) calcd for C7H13NOI (M+H)+: 254.0042, found: 254.0043. 

Melting Point: 68.8-71.3 °C. 

IR (cm-1, thin film in CHCl3): 3248 (m), 3060 (w), 2965 (m), 1642 (m), 1628 (s), 1557 (s), 1466 (w), 

1347 (w), 1333 (w), 1240 (m), 1163 (w), 1073 (w). 

 

 

20 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 58 by General 

Protocols D, E, G, and H. 20% yield over 4 steps. Compound is a yellow/orange oily solid. 

1H-NMR (CDCl3, 500 MHz): δ 9.74 (bs, 1H, NH), 6.67 (d, 1H, J = 1.0 Hz, vinyl CH), 6.62 (d, 1H, 

J = 1.0 Hz, vinyl CH), 5.00 (sept, 1H, J = 7.0 Hz), 2.61 (d, 3H, J = 1.0 Hz, allylic CH3), 2.56 (d, 

3H, J = 1.0 Hz, allylic CH3), 1.67 (d, 6H, J = 7.0 Hz, CH(CH3)2). 

13C-NMR (2:1 CDCl3:CD3OD, 125 MHz): δ 181.83, 176.18, 163.26, 162.57, 152.34, 149.75, 

143.05, 139.79, 129.12, 127.42, 120.40, 115.16, 55.91, 23.01, 22.32, 20.29. 

HRMS (ESI-TOF) calcd for C17H17N2O4 (M+H)+: 313.1188, found: 313.1197. 

Melting Point:  >280 °C. 

IR (cm-1, thin film in CHCl3): 2982 (b, w), 1677 (w), 1647 (b, s), 1611 (m), 1587 (w), 1396 (w), 

1344 (w), 1288 (w).  
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59 

Synthesized from ethyl-2-butynoate and isoamylamine by General Protocol A. 73% yield. 

Compound is a white crystalline solid. 

1H-NMR (CDCl3, 500 MHz): δ 5.84 (bs, 1H, major rotamer, NH), 3.37 (q, 2H, J = 7.0 Hz, minor 

rotamer, NCH2), 3.27 (q, 2H, J = 7.0 Hz, major rotamer, NCH2), 1.99 (d, 3H, J = 1.5 Hz, minor 

rotamer, allylic CH3), 1.90 (d, 3H, J = 1.5 Hz, major rotamer, allylic CH3), 1.59 (sept, 1H, J = 6.5 

Hz, major rotamer, CH), 1.38 (q, 2H, J = 7.5 Hz, major rotamer CH2CH2CH), 0.91 (d, 6H, J = 6.5 

Hz, minor rotamer CH(CH3)2), 0.88 (d, 6H, J = 6.5 Hz, major rotamer, CH(CH3)2) 

13C-NMR (CDCl3, 125 MHz) δ  156.19 (minor), 153.45 (major), 89.12 (minor), 82.24 (major), 

74.74 (major), 72.37 (minor), 41.28 (minor), 39.12 (minor), 37.70 (major), 37.63 (major), 25.40 

(major), 25.05 (minor), 22.02 (major), 3.50 (minor), 3.22 (major). 

HRMS (ESI) calcd for C9H16NO (M+H)+: 154.1232, found: 154.1233. 

Melting Point:  42.2-43.3 °C. 

IR (cm-1, thin film in CHCl3): 3626 (b, s), 3303 (s), 3073 (m), 2955 (m), 2871 (w), 2256 (w), 2219 

(w), 1651 (s), 1557 (m), 1470 (w), 1455 (w), 1368 (w), 1299 (w), 1230 (w), 1158 (w).  
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60 

Synthesized from 59 by General Protocol C. 95% yield. Compound is a light gold oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.22 (q, 1H, J = 1.5 Hz, vinyl CH), 5.82 (bs, 1H, NH), 3.33 (dq, 2H, 

J = 7.5, 1.0 Hz), 2.63 (d, 3H, J = 1.5 Hz, allylic CH3), 1.64 (sept, 1H, J = 6.5 Hz), 1.43 (q, 2H, J = 

7.0 Hz), 0.91 (d, 6H, J = 6.5 Hz).  

13C-NMR (CDCl3, 125 MHz) δ  165.02, 129.91, 105.08, 50.64, 35.74, 31.98, 27.43, 27.20. 

HRMS (ESI-TOF) calcd for C9H17NOI (M+H)+: 282.0355, found: 282.0351. 

Melting Point Not determined (oil).  

IR (cm-1, thin film in CDCl3): 3519 (b, w), 3307 (s), 3074 (m), 2957 (s), 1651 (s), 1633 (s), 1538 

(s), 1470 (m), 1455 (m), 1434 (w), 1367 (w), 1231 (w), 1090 (w).  

 

 

21 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 60 by General 

Protocols D, E, F, and H. 12% yield over 4 steps. Compound is a red solid. 

1H-NMR (2:1 CDCl3:CD3OD, 500 MHz): δ 6.76 (q, 1H, J = 1.0 Hz, vinyl CH), 6.67 (q, 1H, J = 1.5 

Hz, vinyl CH), 4.52-4.49 (m, 2H), 2.64 (d, 3H, J = 1.0 Hz, allylic CH3), 2.63 (d, 3H, J = 1.0 Hz, 
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allylic CH3), 1.81 (sept, 1H, J = 7.0 Hz, CH), 1.68-1.63 (m, 2H, CH2CH2CH), 1.03 (d, 6H, J = 6.5 

Hz, CH(CH3)2).  

13C-NMR (2:1 CDCl3:CD3OD, 125 MHz): δ 181.48, 175.02, 161.83, 161.65, 151.69, 149.89, 

139.30, 138.50, 127.42, 127.23, 119.52, 114.77, 45.45, 37.28, 26.49, 22.89, 22.02, 21.83.  

HRMS (ESI-TOF) calcd for C19H21N2O4 (M+H)+: 341.1501, found: 341.1507. 

Melting Point:  >280 °C.   

IR (cm-1, thin film in CDCl3): 1684 (m), 1651 (b, s), 1611 (m), 1590 (m), 1469 (w), 1402 (w), 1290 

(w), 1261 (w), 1157 (w), 1056 (w).  

 

 

61 

Synthesized from ethyl-2-butynoate and neopentylamine by General Protocol A. 38% yield. 

Compound is a white crystalline solid.   

1H-NMR (CDCl3, 500 MHz): δ 5.75 (bs, 1H, major rotamer NH), 3.17 (d, 2H, J = 7.0 Hz, minor 

rotamer NCH2), 3.09 (d, 2H, J = 6.5 Hz, major rotamer NCH2), 2.01 (s, 3H, minor rotamer allylic 

CH3), 1.94 (s, 3H, major rotamer allylic CH3), 0.93 (s, 9H, minor rotamer), 0.92 (s, 9H, major 

rotamer). 

13C-NMR (CDCl3, 125 MHz): δ 156.81, 153.77, 89.95, 83.20, 75.08, 72.77, 55.08, 50.77, 32.22, 

31.99, 27.19, 27.07, 4.01, 3.72. 

HRMS (ESI) calcd for C9H16NO (M+H)+: 154.1232, found: 154.1233. 

Melting Point:  76.5-78.5 °C. 
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IR (cm-1, thin film in CDCl3): 3310 (b, s), 1961 (m), 2248 (m), 2213 (m), 1651 (s), 1574 (m), 1434 

(w), 1366 (w), 1281 (m), 1211 (w).  
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Synthesized from 61 by General Protocol C. 96% yield. Compound is white amorphous powder.   

1H-NMR (CDCl3, 500 MHz): δ 6.29 (q, 1H. J = 1.5 Hz, vinyl CH), 5.78 (bs, 1H, NH), 3.16 (d, 2H, 

J = 6.0 Hz), 2.66 (d, 3H, J = 1.0 Hz), 0.96 (s, 9H).  

13C-NMR (CDCl3, 125 MHz): δ 165.02, 129.91, 105.08, 50.64, 35.74, 31.98, 27.43, 27.20. 

HRMS (ESI-TOF) calcd for C9H17NOI (M+H)+: 282.0355, found: 282.0354. 

Melting Point:  92.3-94.5 °C. 

IR (cm-1, thin film in CDCl3): 3442 (b, m), 3298 (s), 3080 (w), 2956 (m), 1652 (s), 1633 (s), 1557 

(m), 1463 (w), 1428 (w), 1365 (w), 1228 (m), 1208 (m), 1063 (w). 

 

 

22 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 62 by General 

Protocols D, E, F, and H. 10% yield over 4 steps. Compound is a red solid. 
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1H-NMR (2:1 CDCl3:CD3OD, 500 MHz): δ 6.75 (d, 1H, J = 1.0 Hz, vinyl CH), 6.67 (d, 1H, J = 1.0 

Hz, vinyl CH), 4.95 (bs, 1H), 4.86 (bs, 1H), 2.64 (s, 6H, allylic CH3), 0.87 (s, 9H, (CH3)3). 

13C-NMR (CDCl3, 125 MHz): δ181.20, 176.32, 162.40, 149.55, 141.41, 139.05, 127.31, 127.19, 

119.33, 114.87, 51.10, 34.31, 27.58, 22.80, 21.67. 

HRMS (ESI-TOF) calcd for C19H21N2O4 (M+H)+: 341.1501, found: 341.1498. 

Melting Point:  >270 °C.   

IR (cm-1, thin film in CHCl3): 1663 (s), 1651 (s), 1628 (s), 1462 (w), 1396 (w), 1367 (w), 1301 (w), 

1106 (w), 1073 (w).  

 

 

 

63 

Synthesized ethyl-2-butynoate and 3,3-dimethylbutan-1-amine by General Protocol A. 76% yield. 

Compound is a white amorphous solid. 

1H-NMR (CDCl3, 500 MHz): δ 6.00 (bs, 1H, minor rotamer NH), 5.60 (bs, 1H, major rotamer NH), 

3.39 (m, 2H, minor rotamer NCH2), 3.29 (m, 2H, major rotamer NCH2), 2.02 (s, 3H, minor rotamer 

allylic CH3), 1.93 (s, 3H, major rotamer allylic CH3), 1.46 (m, 2H, minor rotamer), 1.42 (m, 2H, 

major rotamer), 0.94 (s, 9H, minor rotamer), 0.92 (s, 9H, major rotamer).  

13C-NMR (CDCl3, 125 MHz): δ 153.56, 82.97, 75.14, 43.10, 36.64, 30.04, 29.49, 3.78. 

HRMS (ESI) calcd for C10H18NO (M+H)+: 168.1388, found: 168.1387. 

Melting Point:  70.5-72.0 °C. 
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IR (cm-1, thin film in CDCl3): 3289 (b, m), 3064 (w), 2955 (s), 2255(m), 2216 (m), 1636 (s), 1540 

(s), 1473 (m), 1365 (m), 1309 (m), 1286 (m), 1189 (w), 1075 (w). 
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Synthesized from 63 by General Protocol C. 93% yield. Compound is a pale brown oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.21 (q, 1H, J = 1.5 Hz, vinyl CH), 6.02 (bs, 1H, NH), 3.31-3.27 (m, 

2H), 2.61 (d, 3H, J = 1.5 Hz, NCH3), 1.44-1.41 (m, 2H), 0.89 (s, 9H).  

13C-NMR (CDCl3, 125 MHz): δ 164.78, 129.39, 105.53, 43.17, 36.31, 35.77, 30.02, 29.50. 

HRMS (ESI-TOF) calcd for C10H19NOI (M+H)+: 296.0511, found: 296.0513. 

Melting Point Not determined (oil).  

IR (cm-1, thin film, neat): 3289 (b, m), 3073 (w), 2955 (s), 2857 (m), 1653 (s), 1621 (m), 1541 (s), 

1474 (w), 1431 (w), 1364 (w), 1333(w), 1229 (m), 1074 (w). 

 

23 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 64 by General 

Protocols D, E, F, and H. 17% yield over 4 steps. Compound is a red solid. 
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1H-NMR (2:1 CDCl3:CD3OD, 500 MHz): δ 6.75 (d, 1H, J = 1.0 Hz, vinyl CH), 6.66 (d, 1H, J = 1.0 

Hz, vinyl CH), 4.57-4.53 (m, 2H), 2.63 (d, 3H, J = 1.0 Hz, allylic CH3), 2.62 (d, 3H, J = 1.0 Hz, 

allylic CH3), 1.66 (m, 2H, CH2CH2C(CH3)3, 1.07 (s, 9H, C(CH3)3).  

13C-NMR (2:1 CDCl3:CD3OD, 125 MHz): δ 181.46, 174.98, 161.81, 161.60, 151.64, 149.82, 

139.35, 138.45, 127.38, 127.21, 119.53, 114.74, 43.73, 41.45, 29.97, 28.87, 22.88, 21.81. 

HRMS (ESI-TOF) calcd for C20H23N2O4 (M+H)+: 355.1658, found: 355.1664. 

Melting Point:  >290 °C.   

IR (cm-1, thin film in CDCl3): 2940 (w), 1652 (b, s), 1614 (w), 1583 (w), 1386 (w), 1372 (w), 1331 

(w), 1293 (w), 1177 (w), 1108 (w). 

 

 

65 

Synthesized from ethyl-2-butynoate and cyclopropylmethanamine by General Protocol A. 94% 

yield. Compound is a clear, colorless oil. 

1H-NMR (CDCl3, 500 MHz): δ 5.94 (bs, 1H, major rotamer NH), 5.91 (bs, 1H, minor rotamer 

NH), 3.25 (dd, 2H, J = 5.5 and 1.5 Hz, minor rotamer NCH2CH), 3.13 (dd, 2H, J = 5.5 Hz and 

1.5 Hz, major rotamer NCH2CH), 1.99 (s, 3H, minor rotamer  CH3), 1.92 (s, 3H,  major rotamer 

CH3), 0.92 (m, 1H, J = 0.9 Hz, NCH2CH(CH2)2), 0.48 (m, 2H, NCH2CH(CH2)2), 0.19 (m, 2H, 

NCH2CH(CH2)2).   

13C-NMR (CDCl3, 125 MHz): δ 153.47 (major), 83.15 (major), 76.90 (major), 48.22 (minor), 

44.66 (major), 11.52 (minor), 10.55 (major), 3.73 (major), 3.52 (major).  

HRMS (ESI) calcd for C8H12NO (M+H)+: 138.0919, found: 138.0916. 
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Melting Point Not determined (oil).  

IR (cm-1, thin film in CCl4): 3276 (b, m), 3080 (b, w), 2964 (w), 2253 (m), 2217 (m), 1632 (s), 1536 

(s), 1437 (m) 1287 (s), 1168 (w). 

 

 

66 

Synthesized from 65 by General Protocol C. 65% yield. Compound is a yellow/orange oily solid. 

1H-NMR (CDCl3, 500 MHz): δ 6.24 (d, 1H. J = 1.5 Hz, vinyl CH), 5.80 (bs, 1H, NH), 3.20 (dd, 

2H, J = 5.5 and 1.0 Hz, NCH2CH), 2.66 (d, 3H, J = 1.5 Hz, allylic CH3), 1.01 (m, 1H, 

NCH2CH(CH2)2), 0.53 (m, 2H, NCH2CH(CH2)2), 0.24 (m, 2H, NCH2CH(CH2)2).  

13C-NMR (CDCl3, 125 MHz): δ 164.81, 129.47, 105.71, 44.41, 35.76, 10.63, 3.64. 

HRMS (ESI-TOF) calcd for C8H13NOI (M+H)+: 266.0042, found: 266.0041. 

Melting Point Not determined. 

IR (cm-1, thin film in CHCl3): 3438 (w), 2960 (w), 1655 (s), 1620 (m), 1560 (w), 1508 (m) 1466 (m), 

1381 (w), 1208 (w), 1094 (w). 
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24 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 66 by General 

Protocols D, E, G, and H. 16% yield over 4 steps. Compound is an orange solid.   

1H-NMR (CDCl3, 500 MHz): δ 6.78 (d, 1H, J = 1.0 Hz, vinyl CH), 6.69 (d, 1H, J = 1.5 Hz, vinyl 

CH), 4.61 (d, J = 7.0 Hz, 2H), 2.62 (d, 3H, J = 1.0 Hz, allylic CH3), 2.61 (d, 3H, J = 1.0 Hz, allylic 

CH3), 1.19 (sept, 1H, J = 6.5 Hz, CH), 0.50 (d, J = 6.5 Hz 4H, CH(CH2)2).  

13C-NMR (CDCl3, 125 MHz): δ 181.73, 175.33, 161.55, 160.55, 151.25, 149.24, 138.83, 137.76, 

128.96, 128.46, 119.99, 114.54, 49.24, 23.51, 22.37, 11.54, 4.35. 6-29-11_BIP2-77_13C_u500  

HRMS (ESI-TOF) calcd for C18H17N2O4 (M+H)+: 325.1188, found: 325.1181. 

Melting Point:  >260 °C.   

IR (cm-1, thin film in CDCl3): 1677 (w), 1651 (s), 1632 (w), 1604 (w), 1392 (w), 1375 (w), 1358 (w), 

1293 (w), 1205 (w), 1167 (w), 1098 (w).  

 

 

67 

Synthesized from (Z)-3-iodobut-2-enoic acid and cyclooctylamine by General Protocols B. 92% 

yield. Compound is a yellow/brown oil.   

1H-NMR (CDCl3, 500 MHz): δ 6.19 (d, 1H. J = 1.5 Hz, vinyl CH), 5.81 (bs, 1H, NH), 4.06 (m, 1H, 

NCH), 2.61 (d, 3H, J = 1.5 Hz, allylic CH3) 1.86 (m, 2H), 1.65 (m, 2H), 1.54 (m, 10H).  

13C-NMR (CDCl3, 125 MHz): δ 163.76, 129.87, 105.07, 49.56, 35.67, 32.05, 27.27, 25.46, 

23.76.  
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HRMS (ESI-TOF) calcd for C12H21NOI (M+H)+: 322.0668, found: 322.0667. 

Melting Point: Not determined (oil). 

IR (cm-1, thin film in CHCl3): 3424 (w), 3293 (b, m), 3060 (w), 2923 (w), 1649 (s), 1624 (s), 1539 

(s), 1473 (m), 1447 (m), 1426 (m), 1375 (w), 1351 (w), 1226 (s), 1128 (w), 1081 (m). 

 

 

25 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 67 by General 

Protocols D, E, G, and H. 4% yield over 4 steps. Compound is a yellow/orange oily solid. 

1H-NMR (CDCl3, 400 MHz): δ 6.65 (d, 1H, J = 1.0 Hz, vinyl CH), 6.63 (d, 1H, J = 1.5 Hz, vinyl 

CH), 5.02 (m, 1H), 2.60 (d, 3H, J = 1.0 Hz, allylic CH3), 2.55 (d, 3H, J = 1.0 Hz, allylic CH3), 1.79 

(m, 14 HCH2)7),  

13C-NMR (CDCl3, 125 MHz): δ 181.71, 175.87, 161.81, 161.07, 151.51, 148.69, 141.52, 138.64, 

129.80, 128.02, 120.01, 114.55, 32.97, 26.60, 26.56, 26.31, 23.24, 22.42. 

HRMS (ESI-TOF) calcd for C22H25N2O4 (M+H)+: 381.1814, found: 381.1820. 

Melting Point:  >250 °C. 

IR (cm-1, thin film in CHCl3): 2925 (m), 1666 (s), 1651 (s), 1611 (m), 1587 (w), 1470 (w), 1397 (w), 

1375 (w), 1354 (w), 1295 (w), 1170 (w), 1110 (w). 
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68 

Synthesized from ethyl-2-butynoate and 3-methoxypropan-1-amine by General Protocol A. 65% 

yield. Compound is a clear, colorless oil. 

1H-NMR (CDCl3, 500 MHz): δ 6.27 (bs, 1H, major rotamer NH), 6.02 (bs, 1H, minor rotamer NH), 

3.46 (t, 2H, J = 6.0 Hz), 3.38 (q, 2H, J = 6.5 Hz), 3.34 (s, 3H), 1.92 (s, 3H), 1.77 (pent, 2H, J = 6.0 

Hz). 

13C-NMR (CDCl3, 125 MHz): δ 156.37 (minor), 153.62 (major), 89.82 (minor), 82.95 (major), 75.00 

(major), 72.58 (minor), 71.28 (major), 70.45 (minor), 58.77 (major), 41.34 (minor), 38.04 (major), 

30.15 (minor), 28.87 (major), 3.97 (minor), 3.64 (major).  

HRMS (ESI-TOF) calcd for C8H14NO2 (M+H)+: 156.1025, found: 156.1029. 

Melting Point Not determined (oil).  

IR (cm-1, thin film, neat): 3491 (b, m), 3273 (s), 3064 (w), 2928 (s), 2829 (w), 2255 (m), 2222 (m), 

1651 (s), 1539 (s), 1446 (m), 1391 (w), 1287 (m), 1225 (w), 1191 (w), 1114 (m), 1029 (w). 

 

 

69 

Synthesized from 68 by General Protocol C. 96% yield. Compound is a light yellow oil. 
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1H-NMR (CDCl3, 500 MHz): δ 6.26 (bs, 1H, NH), 6.21 (d, 1H. J = 1.0 Hz, vinyl CH), 3.49 (t, 2H, J 

= 6.0 Hz), 3.42 (q, 2H, J = 6.5 Hz), 3.34 (s, 3H), 2.64 (d, 3H, J = 1.5 Hz), 1.81 (pent, 2H, J = 6.0 

Hz). 

13C-NMR (CDCl3, 125 MHz): δ 164.90, 129.40, 105.51, 71.65, 58.93, 38.02, 35.78, 29.07. 

HRMS (ESI-TOF) calcd for C8H15NO2I (M+H)+: 284.0148, found: 284.0147. 

Melting Point Not determined (oil).  

IR (cm-1, thin film, neat): 3491 (m), 3290 (s), 3069 (m), 2927 (s), 2872 (s), 1651 (s), 1538 (s), 1434 

(m), 1374 (w), 1336 (w), 1229 (s), 1190 (m), 1080 (m), 1031 (w). 

 

 

26 

Synthesized from 70, (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide, and 69 by General 

Protocols D, E, G, and H. 22% yield over 4 steps. Compound is an orange solid. 

1H-NMR (2:1 CDCl3:CD3OD, 500 MHz): δ 6.76 (d, 1H, J = 1.0 Hz, vinyl CH), 6.65 (d, 1H, J = 1.0 

Hz, vinyl CH), 4.58 (t, 2H, J = 7.5 Hz), 3.70 (t, 2H, J = 6.0 Hz), 2.63 (d, 3H, J = 1.0 Hz, allylic CH3), 

2.63 (d, 3H, J = 1.0 Hz, allylic CH3), 2.06-2.01 (m, 2H). 

13C-NMR (CDCl3, 125 MHz): δ 181.76, 175.59, 162.35, 151.91, 150.60, 140.16, 139.33, 127.45, 

127.40, 119.76, 115.06, 59.79, 44.48, 31.66, 23.21, 22.15. 

HRMS (ESI-TOF) calcd for C17H17N2O5 (M+H)+: 329.1137, found: 329.1129. 

Melting Point:  >270 °C. 
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IR (cm-1, thin film in CHCl3): 3446 (b, s), 1646 (s), 1642 (s), 1635 (s), 1392 (w), 1373 (w), 1306 

(w), 1292 (w).  
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Chapter 3. Deoxynybomycins as antibacterial agents for fluoroquinolone resistant bacteria 

Portions of this Chapter are reprinted with permission from Parkinson, E. I.; Bair, J. S.; Nakamura, 

B.; Lee, H. Y.; Kuttab, H. I.; Southgate, E. H.; Lezmi, S. Lau, G. W.; Hergenrother, P. J. Nat. 

Commun. 2015, 6, 6947. Copyright 2015 Nature Publishing Group. Contributions of others are 

noted when applicable. 

3.1 Limitations of deoxynybomycin 

 As has been discussed in Chapter 1.2, antibiotic resistance is one of the largest challenges 

facing the healthcare community. Previous reports describing the small molecule 

deoxynybomycin (DNM) have shown it to have antibacterial activity against a variety of bacteria 

including M. smegmatis, Bacillus species, as well as fluoroquinolone resistant (FQR) S. aureus.1-

2 More recent studies show it specifically targets the mutant DNA gyrase responsible for FQR 

(see Ch. 1.2.2 for more details).2 While these activities are very promising, at least two main 

hurdles exist for the translation of DNM from a laboratory curiosity to a potentially useful antibiotic: 

1) Challenges in obtaining large quantities of pure material and 2) Poor solubility of the natural 

products. We hypothesized that we could access large quantities of DNM from a late stage 

intermediate of the DNQ synthesis3 developed by Dr. Joseph Bair and that we could utilize the 

modular synthesis to develop DNM derivatives that would retain activity while possessing better 

solubility profiles. Described in this Chapter are our efforts towards overcoming these challenges 

and biological evaluations of the promising derivatives that we found. 

3.1.1 Challenges in obtaining DNM 

Both isolation and synthesis of DNM have been described in the literature.1,4-6 However, 

until now (see section 3.2), neither strategy has been able to efficiently produce large quantities 

of pure DNM. This point is made clear in a paper describing a complex purification procedure for 

DNM and the related nybomycin that states “Nybomycin and [DNM] do not yet have a real 

application because an efficient production (fermentation and synthesis) and downstream 

process does not exist.”4  
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Isolation of DNM was first described by Umezawa and co-workers from an Okinawan soil 

Streptomyces.1 Since then the isolation of DNM has been reported by others2,4-6 but they have 

not reported yields. Instead, one isolation report notes that “Deoxynybomycin is not normally 

detected in thin-layer chromatograms of ethanol extracts from fermentation broths, possibly 

because of its low concentration,”6 causing one to suspect that the yields are not provided 

because they are very poor. 

Until our total synthesis (described in 3.2),7 the only total synthesis of DNM was that 

developed by Prof. Kenneth Rinehart.8-9  While this synthesis was quite impressive for the time, 

it required 10 steps and had an overall yield of 0.83%. The low yield combined with the fact that 

the synthesis was not amenable to the development of derivatives limited its use in the further 

study of DNM as an antibacterial agent. 

3.1.2 Poor solubility of DNM 

 In addition to being difficult to obtain, DNM is also extremely insoluble in almost all 

solvents. The initial isolation of DNM reported it to be soluble in hydrochloric and acetic acid with 

limited to no solubility in water, methanol, ethyl acetate, chloroform, acetone, as well as other 

organic solvents.1 We have also found this to be true and this is further highlighted in section 3.2. 

A potential reason for this insolubility is that DNM is likely able to π-stack with itself in the solid 

state. A similar π-stacking has been seen in the crystal structure of the structurally related DNQ 

reported by Li and co-workers.10 Previously, we were able to develop DNQ derivatives with 

extended alkyl chains capable of breaking up this π-stacking allowing for improved aqueous and 

organic solubility (see Chapter 2.2.5).11  We hypothesized that we would likely be able to do the 

same with DNM. 
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3.2 Synthesis of DNM and DNM derivatives with improved solubility profiles7 

Due to the documented difficulty of isolating DNM from natural sources,4,6 we aimed to 

develop an efficient, modular, and flexible synthesis of DNM that could also be used to construct 

derivatives. Dr. Joseph Bair, a previous graduate student in the Hergenrother laboratory, 

developed a synthesis of the natural product deoxynyboquinone (DNQ) that relies on a mixed 

Suzuki cross coupling followed by a palladium-catalyzed ring closing and deprotection to give 

diazaanthracenol (1 in Fig. 3.1A, see section 3.12 General Procedures A and B for the full 

synthesis).3 To construct DNQ, 1 is oxidized to give the desired quinone.3 We found that 1 could 

be converted to DNM in a single step by insertion of the methylene bridge in a reaction inspired 

by Rinehart’s degradation studies and by bridge insertions in similar systems.12-14 Reaction of 1 

with dibromomethane gave DNM in a 73% yield (Fig. 3.1A). Through this route, DNM was 

obtained in 7 steps with an overall yield of 11%, an improvement over the only other reported total 

synthesis (10 steps, 0.83% overall yield).12-13  

 

 
Figure 3.1. Synthesis and antibacterial activity of DNM and derivatives. (A) Final step in the 
synthesis of DNM. The letters A, B, C, and D around the structure of DNM denote sites of 
derivitization. (B) Structure of DNM and derivatives and their activities against wild type S. aureus 
(ATCC 29213, WT) and fluoroquinolone resistant S. aureus (NRS3, FQR). Activity is from three 
independent replicates of the microdilution broth assay and is reported as the MIC in µg mL-1.  



188 
 

This flexible synthetic route also allowed for rapid generation of a variety of unnatural 

derivatives. We hypothesized that addition of alkyl chains would disrupt π-stacking between DNM 

molecules, thus increasing both aqueous and organic solubility, similar to what was observed with 

DNQ derivatives (see Chapter 2.2.5).11 By changing the iodoamides used in the Suzuki cross 

coupling (see section 3.12 General Procedure A), three compounds were synthesized that 

substituted ethyl for methyl at positions A, B, and C (compounds 2, 3, and 4 respectively, Fig. 

3.1B). The derivative with a methyl substitution at D was generated by using 1,1-dibromoethane 

in place of dibromomethane in the final step to provide compound 5 (Fig. 3.1B). Other compounds 

with single sites of derivatization (6-12) and multiple sites of derivatization (13-15) were also 

constructed. Full synthetic routes along with experimental details and characterization data can 

be found in the Materials and Methods Section (Section 3.12). Compounds with small alkyl 

appendages have markedly improved solubility (3 to 13 fold) in pH 7.4 phosphate buffered saline 

relative to DNM (Table 3.1), and all compounds synthesized also have improved DMSO solubility 

compared to the parent compound (Table 3.1). 
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Table 3.1. Solubility and activity of DNM and its derivatives

 

The solubility in PBS (pH 7.4) was determined by weighing a small amount of compound (0.5 – 2.0 mg) into a 1.7 mL 
Eppendorf tube. Enough PBS was added to make a 1 mg/mL solution. Compounds were then assessed by LC-MS and 
compared to a calibration curve to determine the solubility. More details can be found in the Supplementary Materials 
and Methods. Data shown is from three independent replicates ± SEM. ND = not determined. DMSO solubility of 
compounds was determined by weighing a small amount of compound (typically 1-2 mg) into a glass vial and adding 
DMSO dropwise until the compound was fully dissolved. Between DMSO additions, the vial was vortexed and 
sonicated. MICs with ciprofloxacin (CIP), daptomycin (DAPT), vancomycin (VANC), linezolid (LINEZ), deoxynybomycin 
(DNM), and DNM derivatives were determined using the microdilution broth method as outlined by the Clinical and 

Laboratory Standards Institute (CLSI).15 

 

3.3 Evaluation of DNM and derivatives against FQR Gram-positive bacteria  

Gram-positive bacteria (so named because they are stained by crystal violet dye) have a 

single cell membrane surrounded by a thick layer of peptidoglycan.16 The CDC estimates that in 

2013 approximately 64% of the 2,049,442 illnesses and 85% of the 23,488 deaths due to antibiotic 

resistant bacteria were due to Gram-positive infections. Specifically, methicillin-resistant S. 

aureus (MRSA) was estimated to cause 80,461 illnesses (~4%) and 11,285 deaths (~49%) while 

vancomycin-resistant Enterococcus (VRE) were estimated to cause 20,000 illnesses (~1%) and 

1,300 deaths (~6%).17 While some antibiotics are still effective against these infections (e.g. 

vancomycin, daptomycin and linezolid), further resistance has been observed even to these 

agents.18-22 Additionally, linezolid is the only agent effective against these resistant pathogens that 
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is available for oral administration, highlighting the desperate need for novel orally available 

antibiotics.23 For this reason, we chose to explore the potency of DNM against FQR Gram-positive 

bacteria.  

3.3.1 Activity of DNM and derivatives against clinical isolates of S. aureus7 

Previously, Hiramatsu and co-workers had demonstrated that DNM and nybomycin 

isolated from Streptomyces both showed excellent activity against FQR S. aureus with a S84L 

gyrA mutation.2 Our synthetic DNM showed a similar activity profile. DNM was evaluated against 

both FQ sensitive S. aureus (ATCC 29213) and FQR MRSA (NRS3 which has GyrA S84L and 

ParC S80F). DNM showed modest activity against the FQ-sensitive (FQS) strain 29213 (MIC > 1 

µg/mL). However, DNM showed excellent activity against the FQR NRS3 (MIC = 0.03 µg mL-1, 

Fig. 3.1B and 3.2A). This MIC compares favorably with standard of care treatments for Gram-

positive infections including vancomycin (VANC, MIC for NRS3 = 8 µg mL-1), daptomycin (DAPT, 

MIC for NRS3 = 8 µg mL-1) and linezolid (LINEZ, MIC for NRS3 = 0.5 µg mL-1, Figure 3.2B). DNM 

derivatives were also evaluated against both FQ sensitive S. aureus (ATCC 29213) and FQR 

MRSA (NRS3), and their MIC values are listed in Figure 3.1B. Similar to DNM, most derivatives 

showed significantly enhanced activity against FQR NRS3 compared to FQS 29213. In general, 

compounds with a single methyl addition retained good activity against NRS3 (2-5). Further 

substitution at B was relatively well tolerated (6), while substitution at C was generally less well 

tolerated (7). Compounds possessing longer chains at A generally retained potency (8-10). 

However, compounds with bulky substitutions at A (11-12), multiple substitutions (13-15), or 

without the methylene bridge (1) were less active. 
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Figure 3.2. Sensitivity of MRSA isolates to DNM, DNM-2, DNM-8, ciprofloxacin (CIP), and other 
Gram-positive antibiotics. (A) Dose response curves for FQ sensitive S. aureus (29213) and FQR 
S. aureus (NRS3) treated with DNM. Data shown is from three independent replicates ± the 
standard error (SEM). (B) Dose response curves for FQR S. aureus (NRS3) treated with DNM, 
DNM-2, linezolid (LINEZ), vancomycin (VANC), daptomycin (DAPT) and CIP. (C) The percentage 
of MRSA clinical isolates (n = 21) with an MIC at or lower than the concentration shown.  

 

DNM and two of the most potent derivatives (DNM-2 and DNM-8) were evaluated against 

a panel of MRSA clinical isolates (Fig. 3.2C and Table 3.2) by Cubist Pharmaceuticals. As shown 

in Fig. 3.2C, all MRSA strains were sensitive to these compounds and resistant to ciprofloxacin 

(CIP). In order to understand this selectivity, the quinolone resistance determining regions 

(QRDRs) of GyrA and ParC for many of these isolates were sequenced (Table 3.2). While 

different substitution patterns were found for MRSA ParC, all sequenced strains have the same 

mutation in GyrA (S84L) consistent with the notion that this mutation sensitizes bacteria to DNM. 

The activity of the DNM-2 and DNM-8 against these panels of clinical isolates closely mirrors that 

of DNM (Fig. 3.2C). Full details of the sensitivity of each strain can be found in Table 3.2. 
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Table 3.2. Sensitivity of MRSA clinical isolates to CIP, DNM, DNM derivatives, and other 
antibiotics and tabulated data from Figure 3.2C 

 

The ciprofloxacin (CIP) sensitivity where a strain was considered sensitive (S) if it had an MIC ≤ 4 µg mL-1, intermediate 
(I) with a 16 > MIC > 4 µg mL-1, or resistant (R) with a MIC ≥ 16 µg mL-1. MICs with CIP, DNM, DNM-2, DNM-8, 
Vancomycin (Vanc), Ampicillin (Amp), and Novobiocin (Novo) were determined using the microdilution broth method 

as outlined by the CLSI.15 QRDR mutations were determined as described in the text using primers (primer sequences 

can be found in Table 3.13). Clinical isolates were obtained from Cubist Pharmaceuticals (Lexington, MA). ND = not 
determined. CIP resistant strains are graphed in Figure 3.2C. 

 

3.3.2 Activity of DNM and derivatives against FQR Enterococcus7 

The sensitivity of FQR VRE was also explored. DNM had no detectable activity against 

FQ sensitive Enterococcus (ATCC 29212, MIC > 1.0 µg mL-1), but it potently inhibited the growth 

of FQR VRE (clinical isolate S235 which has GyrA S83I and ParC S80I, MIC = 0.125 µg mL-1, 

Fig. 3.3A). After discovering that DNM has activity against FQR VRE, DNM, DNM-2, and DNM-8 

were evaluated against a panel of VRE clinical isolates (Fig. 3.3B).  
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Figure 3.3. Sensitivity of VRE clinical isolates to DNM, DNM-2, DNM-8, and ciprofloxacin (CIP). 
(A) Dose response curves for FQ sensitive Enterococcus (29212) and FQR Enterococcus (S235) 
treated with DNM. Data shown is from three independent replicates ± SEM. (B) The percentage 
of VRE clinical isolates (n = 22) with an MIC at or lower than the concentration shown.  

 

Similar to MRSA, all VRE strains are sensitive to these compounds, resistant to CIP, and 

have many different substitutions in ParC which do not appear to correlate with sensitivity. Unlike 

the MRSA isolates, the majority of VRE isolates have two different substitutions for GyrA (S83I or 

S83R). The sensitivity of these strains is affected by this substitution, with VRE harboring the S83I 

mutation being very sensitive to DNM (MIC = 0.125 to 1 µg mL-1) and those with the S83R 

mutation being less sensitive (MIC ≥ 1 µg mL-1). Again, the activity of DNM-2 and DNM-8 are 

similar to that of DNM (Fig. 3.3B). Full details of the sensitivity and QRDR mutational status of 

each strain can be found in Table 3.3. 
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Table 3.3. Sensitivity of ATCC strains and VRE clinical isolates to CIP, DNM, and DNM 
derivatives and tabulated data from Figure 3.3B 

 

The ciprofloxacin (CIP) sensitivity where a strain was considered sensitive (S) if it had an MIC ≤ 4 µg mL-1, intermediate 
(I) with a 16 > MIC > 4 µg mL-1, or resistant (R) with a MIC ≥ 16 µg mL-1. MICs with CIP, DNM, DNM-2, and DNM-8 

were determined using the microdilution broth method as outlined by the CLSI.15 QRDR mutations were determined 

as described in the text using primers (primer sequences can be found in Table 3.13).  CIP resistant strains are graphed 
in Figure 3.3B. 

 

3.3.3 Activity of DNM and derivatives against other Staphylococcus species 

In addition to analyzing S. aureus strains, Cubist Pharmaceuticals also tested DNM, DNM-

2, and DNM-8 against several coagulase-negative Staphylococcus species including FQR S. 

epidermis and S. haemolyticus. Coagulase-negative Staphylococcus are Staphyloccus species 

that do not produce the enzyme coagulase which causes blood to clot. They are normally found 

in the skin and mucous membranes of humans, but can cause life-threatening bactermia in 

hospital settings, especially for immunocompromised patients and neonates.24-25 In recent years, 
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high rates of antibiotic resistance have been observed in these bacteria with ~50-80% of the 

clinical isolates being FQR.24-25 While we were not provided with the gyrA mutational status of 

these strains, generally the gyrA mutations observed for these FQR strains are as follows: FQR 

S. haemolyticus generally mutates S84 to either L (82-100%) or F (0-18%).26-27 S. epidermis gyrA 

S84 generally has mutations to either Y (0-30%) or F (70-100%).26-29 As expected, none of the 

FQS strains were particularly sensitive to DNM or its derivatives (Table 3.4). Both of the FQR S. 

haemolyticus strains had good sensitivity to DNM and its derivatives. The S. haemolyticus strains 

likely have a S84L mutation similar to S. aureus thus explaining their sensitivities. One of the FQR 

S. epidermis strains showed good sensitivity to DNM while the other two strains were more similar 

to the FQS strain. The FQR S. epidermis strains almost certainly have a different mutation than 

S. aureus and S. haemolyticus (S84Y/F instead of S84L) and this difference may explain the 

generally lower sensitivities seen with these strains. In vitro inhibition studies with the mutant 

enzymes support this hypothesis (see section 3.6.1). Further evaluation of FQR Coagulase-

negative Staphylococcus species with known mutational statuses are needed to confirm this.  

 

Table 3.4. Sensitivity of coagulase-negative Staphylococcus clinical isolates to CIP, DNM, 
DNM derivatives, and other antibiotics 

 

The ciprofloxacin (CIP) sensitivity where a strain was considered sensitive (S) if it had an MIC ≤ 4 µg mL-1, intermediate 
(I) with a 16 > MIC > 4 µg mL-1, or resistant (R) with a MIC ≥ 16 µg mL-1. MICs with CIP, DNM, DNM-2, and DNM-8 

were determined using the microdilution broth method as outlined by the CLSI.15  
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3.3.4 Activity of DNM and derivatives against FQR B. anthracis 

While natural resistance of B. anthracis to FQs has not occurred, it has been generated in 

a laboratory setting.30 There is fear that such strains could be used for a bioterrorist attack, 

especially since the front-line treatment for exposure to anthrax is ciprofloxacin. Similar to S. 

aureus and S. haemolyticus, FQR B. anthracis strains also have the characteristic S85L gyrA 

mutation (analogous to S84L in S. aureus).30 Additionally, previous reports showed activity of 

DNM against B. anthracis as well as other Bacillus species.1 Together these data strongly 

suggested that B. anthracis would be sensitive to DNM and its derivatives.   

 

Table 3.5. Sensitivity of FQS & FQR B. anthracis to CIP & DNM-2 

 

The ciprofloxacin (CIP) sensitivity where a strain was considered sensitive (S) if it had an MIC ≤ 4 µg mL-1, intermediate 
(I) with a 16 > MIC > 4 µg mL-1, or resistant (R) with a MIC ≥ 16 µg mL-1. MICs with CIP and DNM-2 were determined 

using the microdilution broth method as outlined by the CLSI.15 QRDR mutations were determined as described in the 

text using primers (primer sequences can be found in Table 3.13).   

 

FQS and FQR B. anthracis strains were obtained from the Mitchell lab (UIUC), who 

originally obtained them from Lawrence Livermore National Labs. After sequencing the strains 

and finding several with either WT (S85) or S85L mutant gyrA, we tested these strains for 

sensitivity to CIP and DNM-2 (Table 3.5). CIP sensitivity was as expected with mutant strains 

being resistant to CIP. Addtionally, potency of DNM-2 against B. anthracis strains with WT S85 

gyrA was comparable to the activities seen with FQS S. aureus. However, DNM-2 was less 

effective against the S85L gyrA B. anthracis strains compared to the S84L gyrA S. aureus strains. 

The reason for this remains unclear but is likely due to differences in DNA gyrase for S. aureus 

and B. anthracis. Uniprot alignment shows that gyrA for the two enzymes have ~62% identity and 

the QRDRs (amino acids 68-106) are 82% identical (see Figure 3.4A for sequence alignment). 
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While this is a relatively high level of identity, it is possible that some of the differences that exist 

are important for activity. Another possibility is that a difference exists in the other subunit of DNA 

gyrase, gyrB. Upon examination of a crystal structure of S. aureus DNA gyrase bound to DNA 

and CIP, a few main contacts with CIP were found to be important for binding. These include 

contacts with a Mn ion, the DNA, S84 on gyrA and R458 and E477 on gyrB (Figure 3.4B-C). 

Sequence alignment of gyrB from different bacteria revealed that there may be a correlation 

between the residue analogous to R458 in S. aureus and sensitivity of the bacteria to DNM-2. 

Specifically, when the residue is R458, there appears to be good sensitivity to DNM-2 (e.g. S. 

aureus, Enterococcus sp., and M. tuberculosis discussed in section 3.4). Alternatively, when the 

residue is R458 (S. aureus numbering), DNM-2 appears to be less potent (e.g. B. anthracis, N. 

gonorrhoeae, and the Gram-negative bacteria).  More investigations into this observation are 

needed to confirm this correlation and determine an explanation for it. 

 



198 
 

 
 
Figure 3.4. Comparison of DNA gyrase for B. anthracis, S. aureus, and other bacteria. (A) 
Sequence alignment of QRDR for gyrA of various bacteria. Key serine (S84 for S. aureus) or 
analogous residue is highlighted in red. (B) The crystal structure of S. aureus DNA gyrase with 
DNA (red) and CIP (green). Image generated with Maestro 9.7. (C) The ligand interaction map 
for B generated using Maestro. (D) The sequence alignment for gyrB for several species with the 
key arginine/lysine (R458 for S. aureus) highlighted in red. 
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3.3.5 Activity of DNM and derivatives against FQR S. pneumoniae 

 S. pneumoniae is one of the main causes of pneumonia, bacteremia, otitis media, and 

meningitis.31 Fluoroquinolones (e.g. moxifloxacin or levofloxacin) are commonly prescribed for S. 

pneumonia infections.31-32 While clinical isolates of FQR S. pneumonia are still relatively rare (≤1% 

worldwide),31,33 more widespread resistance has been observed in some countries (e.g. 10.1% 

Israel, 14.1% Japan, and 22.3% Hong Kong, Emerging Infectious Diseases • www.cdc.gov/eid • 

Vol. 10, No. 10, October 2004) and is likely to increase with continued use of these agents. Similar 

to S. epidermidis, the most common gyrA mutations observed are S81F and S81Y.34-35  Both 

Cubist Pharmaceuticals and UT Health Science Center (San Antonio, TX) tested DNM and its 

derivatives DNM-2 and DNM-8 against isolates of S. pneumoniae along with class A (e.g. S. 

pyogenes) and B Streptococcus (Table 3.6).   

Table 3.6. Sensitivity of Streptococcus clinical isolates to CIP, DNM, DNM derivatives, and 
other antibiotics 

 

CIP sensitivity where a strain was considered sensitive (S) if it had an MIC ≤ 4 µg mL-1, intermediate (I) with a 16 > MIC 
> 4 µg mL-1, or resistant (R) with a MIC ≥ 16 µg mL-1. . MICs with CIP, DNM, DNM-2, and DNM-8 were determined 

using the microdilution broth method as outlined by the CLSI.15 

 

Most of the strains tested were sensitive to CIP and showed sensitivity to DNM similar to 

WT S. aureus (MIC ≥ 1 µg/mL). Only two strains (SPN.1007 and CO 314937) are FQR, but their 

mutational status is unknown. Neither of these strains showed sensitization to DNM suggesting 
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that either they do not have the gyrA mutation or DNM is not as good an inhibitor of the SF/Y 

compared to the SL gyrA. The latter explanation is supported by in vitro evidence which shows 

poor inhibition of S83F/Y DNA gyrase by DNM (section 3.6.1), but further evaluation of FQR 

Streptococcus strains with known mutational statuses is needed to confirm this. 

 3.4 Evaluation of DNM and derivatives against atypical Gram-negative bacteria 

Normal Gram-negative bacteria have an inner membrane surrounded by a thin layer 

peptidoglycan and a second outer membrane. On the outside of this second membrane, the 

bacteria normally have lipopolysacchardies (LPS) made up of lipid A, an inner core of conserved 

sugars such as KDO, an outer core of sugars, and a highly variable O-polysaccharide chain.36 

Atypical Gram-negative bacteria are similar to Gram-negative bacteria in that they are not colored 

by staining with crystal violet. However, their outer membranes typically differ from that of normal 

Gram-negative bacteria. For example, instead of the LPS, Mycobacteria have a layer of mycolic 

acid covalently linked to the arabinogalactan-peptidoglycan inner leaflet.37 This difference in cell 

wall and its greater impermeability compared to LPS is thought to be the reason that Mycobacteria 

are less susceptible to traditional antibiotics than normal Gram-negative bacteria. Alternatively, 

Neisseria have lipooligosaccharides (LOS) instead of LPS. LOS differs from LPS in that they lack 

the O-polysaccharide chain.36 This difference in structure helps to explain the greater permeability 

of Neisseria compared to typical Gram-negative bacteria.38 Both Mycobacteria (especially M. 

tuberculosis) and Neisseria (especially N. gonorrhoeae) are serious health threats, and antibiotic 

resistant strains are particularly worrying. We chose to investigate whether DNM might be 

effective against these atypical Gram-negative bacteria.   

3.4.1 Mycobacteria 

In 2013, TB was the second leading cause of death from an infection worldwide with 9.0 

million new cases and 1.5 million deaths.39 480,000 of the new cases and 210,000 of the deaths 

are multidrug-resistant (MDR, resistant to at least 2 of the first-line treatments) with ~9% of the 

MDR cases being extensively drug-resistant (XDR, also resistant to fluoroquinolones and at least 
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one injectable second-line treatment).39 Based on previous data suggesting than M. smegmatis 

is sensitive to DNM,1 we hypothesized that DNM and its active derivatives may be active against 

FQR TB. We collaborated with the Global TB Alliance who tested these compounds against WT 

and FQR TB. Specifically, they tested active DNM derivatives DNM-2, DNM-3, and DNM-8 along 

with inactive derivatives DNM-12, DNM-13, and DNM-14 in the microplate alamar blue assay 

(MABA40) which mimics the active infection, and  the low oxygen recovery assay (LORA41) which 

mimics the latent infection.  

 

Table 3.7. Sensitivity of Mycobacteria to moxifloxacin (MOX), DNM, DNM derivatives, and 
other antibiotics 

 

Interestingly, DNM-2 and DNM-3 were active against both WT and FQR TB in both MABA 

and LORA (Table 3.7). This may be due to the fact that TB naturally has an A (not S!) at the gyrA 

position, which is commonly mutated.42-43 The lack of a Ser at this position may sensitize the WT 

TB to DNM. Only one FQR strain (rMox #3) was examined and it had a similar sensitivity to WT 

TB. The gyrA mutational status of rMox #3 is unknown. Approximately 20% of FQR TB are 

predicted to have an A90V (analogous to the S84L mutation in S. aureus) while other FQR strains 

have different mutations in gyrA (Note: M. tuberculosis do not have topoisomerase IV and 

therefore mutations in parC are not a cause of FQR).43 Further analysis of other FQR TB strains 
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with known gyrA statuses is necessary to determine what effect the A90V mutation will have on 

sensitivity to DNM. Kobayashi and co-workers recently found that nybomycin also has activity 

against WT TB although it is less potent than DNM-2 (H37 Rv MIC = 4.2 µg/mL).5 

 

Figure 3.5. Sequence alignment of the quinolone resistance determining region of DNA gyrase 
for Mycobacteria and S. aureus. The key A/S is in red. 
 

The TB alliance also examined the sensitivity of other Mycobacteria including M. bovis 

(causes tuberculosis in cows) as well as nontuberculous mycobacteria such as M. abscesuss, M. 

chelonae, M. marinum, M. avium, and M. kansasii to DNM-2 (Table 3.7). All of these strains have 

very good homology to M. tuberculosis in the region of A90 (see Figure 3.5). While M. bovis was 

relatively sensitive to DNM-2 (MIC ~ 2 µg/mL), none of the nontuberculous Mycobacteria were 

sensitive to DNM-2. Additionally, none of the nontuberculous Mycobacteria were sensitive to 

isoniazid (INH), one of the first-line therapies for TB. There is evidence to suggest that the 

nontuberculous Mycobacteria have a different outer membrane that causes them to be even less 

permeable than M. tuberculosis.44-45 This impermeability may explain their lack of sensitivity to 

DNM derivatives and M. tuberculosis standard-of-care agents such as INH. 

3.4.2 N. gonorrhoeae 

In 2013, the CDC put out a report detailing the state of antibiotic-resistant bacteria in the 

United States. In this report, they categorized drug-resistant N. gonorrhoeae as an urgent threat 

(the highest level they assigned). Of the estimated 820,000 infections per year, 246,000 (30%) 

are drug resistant and ~1% of the resistant infections are resistant to ceftriaxone, the currently 

recommended treatment and the last line of defense against N. gonorrhoeae. The fact that 

resistant N. gonorrhoeae strains have been observed for all available antibiotics demonstrates 
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the extreme need for a new antibiotic. FQs were previously a recommended treatment for N. 

gonorrhoeae but when FQR reached ~10% in 2007, the CDC announced that FQs should no 

longer be used for N. gonorrhoeae.46 Nearly all of the FQR N. gonorrhoeae have a mutation in 

S91 (analogous to S84 in S. aureus) with it going to either F (98-100%) or Y (0-2%) in the majority 

of cases.47-48  Initially, I tested a WT N. gonorrhoeae strain (MS11) for its sensitivity to DNM-2 and 

found it to have an MIC of 2 µg/mL. The fact that this value is comparable to the MIC of DNM-2 

against WT S. aureus suggests that DNM-2 is capable of getting past the outer membrane of N. 

gonorrhoeae and suggests that it might have activity against FQR clinical isolates. We 

collaborated with the NIH/NIAID who tested DNM-2 against 94 clinical isolates of N. gonorrhoeae 

(93% of which were FQR).The MIC50 and MIC90 for these strains was 8 µg/mL and there was no 

apparent correlation between FQR and sensitivity to DNM-2 (Table 3.8). Similar to S. 

epipdermidis and S. pneumonia, this lack of sensitivity may be because of the different mutation 

(S91F/Y vs. S84L for S. aureus) that is common for N. gonorrhoeae.  

 

 

 

 

 

 

 

 

 

 

 

 

 



204 
 

Table 3.8. Sensitivity of N. gonorrhoeae to DNM-2, CIP and other antibiotics 

 

CIP = ciprofloxacin, Azi = azithromycin, Cfx = Cefixime, Cro = Ceftriaxone,  Pen = penicillin, Tet = tetracycline. MICs 

were determined using the agar dilution method as outlined by the CLSI.15 
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3.5 Evaluation of DNM and derivatives against Gram-negative bacteria 

 Gram-negative bacteria are another class of bacteria that are rapidly developing 

resistance to standard-of-care antibiotics. While the CDC estimates that antibiotic resistant Gram-

negative bacteria currently cause fewer infections (490,100 or 24%) and deaths (3328 or 14%) 

than Gram-positive infections (Note: These numbers do not include healthcare associated C. 

difficile infections. When they are included, Gram-negative bacteria account for 32% of antibiotic 

resistant infections and 46% of deaths due to antibiotic resistant bacteria), Gram-negative 

bacteria are generally more difficult to treat due to their difficult to penetrate LPS layer. This is 

evidenced by the large number of antibiotics that are not effective against Gram-negative bacteria 

and the difficulty of developing novel Gram-negative antibiotics.49 Fluoroquinolones have 

historically been very active against Gram-negative bacteria,50 which has resulted in extensive 

FQR in Gram-negative bacteria.17 Due to the activity of DNM against FQR Gram-positive bacteria, 

we chose to evaluate the activity of DNM against FQR Gram-negative bacteria. 

3.5.1 Single agent activity of DNM-2 against Gram-negative bacteria  

DNM-2 was evaluated against a panel of Gram-negative bacteria (Table 3.8). It showed 

no detectable activity against wild type or FQR P. aeruginosa or A. baumannii.  Moderate activity 

consistent with the activity seen in WT Gram-positive bacteria was seen with DNM-2 against a 

FQS permeabilized strain of E. coli (MIC = 2 µg/mL), suggesting that DNM-2 is unable to penetrate 

Gram-negative bacteria. 

Table 3.9. Sensitivity of Gram-negative bacteria to CIP and DNM-2 along with gyrA and 
parC mutations 
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3.5.2 Permeability of DNM-2 in E. coli 

In order to further explore the possibility that the lack of DNM-2 activity in Gram-negative 

bacteria is due to an inability to get into Gram-negative bacteria, Michelle Richter tested DNM-2 

for its ability to accumulate in E. coli (Figure 3.6). She found that it accumulated to a similar level 

to other low accumulating compounds (e.g. Gram-positive only antibiotic erythromycin). However, 

upon co-treatment with twice the MIC of colistin (COL), a polymixin antibiotic known to 

permeabilize the outer membrane of Gram-negative bacteria,51-52 for ten minutes DNM-2 

accumulates to a similar level as high accumulating compounds (e.g. ciprofloxacin and 

tetracycline).  

 

Figure 3.6. Accumulation of DNM-2 (40 µM) in MG1655 E. coli alone and after 10 min pre-
treatment with 2X MIC of colistin. ** p<0.005 
 

3.5.3 Activity of DNM-2 in combination with COL against Gram-negative bacteria 

 Previously, COL was found to sensitize A. baumannii to Gram-positive antibiotics such as 

vancomycin (VANC) by permeabilizing their outer membrane allowing for accumulation of these 

otherwise impermeable compounds.53-54 After confirming that COL is able to permeabilize Gram-

negative bacteria allowing for accumulation of DNM-2 (Fig. 3.3), we chose to examine the ability 

of COL to sensitize Gram-negative bacteria to DNM-2.  
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3.5.3.1 A. baumannii 

 We chose to examine the ability of COL to sensitize clinical isolates of A. baumannii to 

DNM-2. First, the single agent sensitivities of the strains to COL, CIP, VANC, and DNM-2 were 

determined (Table 3.10). The gyrA and parC mutational status of these strains had previously 

been determined.55 All six strains have similar sensitivity to COL (MIC = 0.25 to 0.38 µg/mL). As 

expected, those with mutations in gyrA and parC were resistant to CIP (MIC = 16 to >64 µg/mL) 

while those with WT gyrA and parC were sensitive to CIP (MIC = 0.25 to 0.5 µg/mL). All strains 

were resistant to the Gram-positive antibiotic VANC. Most strains were completely resistant to 

DNM-2 with two strains (BD335 and WO22) showing very weak sensitivity (MIC = 24 µg/mL). 

 

Table 3.10. Sensitivity of ATCC strains and clinical isolates of A. baumannii to colistin 
(COL), ciprofloxacin (CIP), vancomycin (VANC) and DNM-2 along with previously reported 
gyrA and parC mutations55 
 

 

 

After determining that the strains had similar sensitivity to COL, the ability of COL to 

sensitize strains to DNM-2 was explored utilizing a checkerboard assay similar to previous 

studies.53-54 The results of the checkerboard assay with the strain IF101 are shown in Figure 3.7A. 

As can be seen, COL successfully sensitized the strain to DNM-2. This sensitization was 

synergistic in the IF101 strain of A. baumannii as evidenced by the combination index values 

(Figure 3.7B) calculated using Compusyn software which indicate strong synergism for 

combinations of sub-MIC COL (<0.375 µg/mL) and DNM-2.  
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Another way of determining synergistic interactions is to use the Bliss independence 

values.56 Bliss independence assumes that the relative effect of one drug is independent of that 

of the other.  Bliss independence values are calculated using the equation Eind = (EA +EB) – (EA X 

EB) where Eind = the effect if the two drugs act independently, EA = effect of drug A alone, and EB 

= effect of drug B alone. If Eind > 0 then the drugs act synergistically and if Eind < 0 then they act 

antagonistically. Bliss independence calculations for DNM-2 in combination with ¼ MIC of COL 

(lines in Figure 3.7C and Figure 3.7D) for IF101 suggest strong synergism. Similar results were 

seen for other A. baumannii strains (Figure 3.7E-L). This sensitization provides further 

confirmation that the lack of activity observed in Gram-negative bacteria is likely due to an inability 

to penetrate the outer membrane. Interestingly, no significant difference was observed for strains 

containing the S83L gyrA (IF101, KB349, BD335, and WO22) mutation compared to strains that 

are WT for gyrA (LU324 and 19606, not shown). This could mean that DNM-2 is capable of 

inhibiting both WT and S83L gyrA mutants in A. baumannii. Development of Gram-negative 

penetrant DNM derivatives is in progress and will aid in the examination of this. 
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Figure 3.7. Sensitization of A. baumannii to DNM-2 by co-treatment with colistin (COL). (A) 
Checkerboard assay of strain IF101 with DNM-2 and COL. Percentage dead bacteria are shown 
for each combination ± SEM. Each combination is also color-coded with blue being 100% dead 
and white being 100% alive. (B) Combination index values of DNM-2 and COL against IF101. 
Green indicates strong synergism and red indicates antagonism. (C) Percent cell death observed 
for IF101 with the indicated treatments of COL and DNM-2. The lines indicate the expected 
percent cell death if the compounds were additive calculated using the Bliss Independence 
Equation. (D) Table of the percent death for the indicated combination (% death comb), the 
calculated Bliss independence value (Bliss Ind), and the difference between these values (Diff). 
(E) Like C but for strain KB349. (F) Like D but for strain KB349. (G) Like C but for strain BD335. 
(H) Like D but for strain BD335. (I) Like C but for strain WO22. (J) Like D but for strain WO22. (K) 
Like C but for strain LU324. (L) Like D but for strain LU324. 
 
 

3.5.3.2 P. aeruginosa 

 After examining A. baumannii, the ability to sensitize P. aeruginosa to DNM-2 with COL 

was investigated. Initially, single agent sensitivity of a set of P. aeruginosa isolates (obtained from 

Cubist Pharmaceuticals) and gyrA and parC mutational status was determined (Table 3.11). All 
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strains were similarly sensitive to COL (MIC = 0.25 to 0.5 µg/mL). The strains with mutations in 

gyrA and parC showed the expected CIP resistance (MIC = 32 to >64 µg/mL). Unsurprisingly, 

none of the strains showed sensitivity to either VANC or DNM-2.  

 

Table 3.11. Sensitivity of clinical isolates of P. aeruginosa to colistin (COL), ciprofloxacin 
(CIP), vancomycin (VANC) and DNM-2 along with gyrA and parC mutations 
 

 

 Similar to the A. baumannii studies, a checkerboard assay was performed with the P. 

aeruginosa strains. Unlike A. baumannii, potent sensitization to DNM-2 upon co-treatment with 

sub-MIC COL was not observed. For the 1592 strain of P. aeruginosa, combination indices 

suggest no real synergism (Figure 3.8A-B). However, the values obtained were not in the usual 

range of numbers and may represent a failure of the software. For this reason, Bliss independence 

values were also examined. DNM-2 in combination with 0.09 ug/mL COL (~1/4 MIC COL) did not 

result in higher cell death for any of the P. aeruginosa strains than expected by the Bliss 

Independence calculations (data not shown). However, some synergy was observed at ½ MIC of 

COL with higher concentrations of DNM-2 for 1592 (Figure 3.8C-D) and the other strains 

examined (Figure 3.8E-L). While this initially was disappointing, previous reports show that COL 

does not significantly sensitize P. aeruginosa to Gram-positive bacteria antibiotics such as 

VANC.53 We confirmed this by also analyzing VANC in combination with COL (Figure 3.8M) and 

saw similar results to those observed for DNM-2, suggesting that P. aeruginosa strains seem to 

be resistant to permeabilization by COL even though they are not resistant to cell death induced 

by COL.  
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Figure 3.8. Sensitization of P. aeruginosa to DNM-2 and VANC by co-treatment with colistin 
(COL). (A) Checkerboard assay of strain PA1592 with DNM-2 and COL. Percentage dead 
bacteria are shown for each combination ± SEM. Each combination is also color-coded with blue 
being 100% dead and white being 100% alive. (B) Combination index values of DNM-2 and COL 
against PA1592. Green indicates strong synergism and red indicates antagonism. (C) Percent 
cell death observed for PA1592 with the indicated treatments of COL and DNM-2. The lines 
indicate the expected percent cell death if the compounds were additive calculated using the Bliss 
Independence Equation. (D) Table indicating the percent death for the indicated combination (% 
death comb), the calculated Bliss independence value (Bliss Ind), and the difference between 
these values (Diff). (E) Like C but for strain PA1586. (F) Like D but for strain PA1586. (G) Like C 
but for strain PA1591. (H) Like D but for strain PA1591. (I) Like C but for strain PA1000. (J) Like 
D but for strain PA1000. (K) Like C but for strain PAO1. (L) Like D but for strain PAO1. (M) Percent 
cell death observed for indicated P. aeruginosa strains with the indicated treatments of COL and 
VANC. The lines indicate the expected percent cell death if the compounds were additive 
calculated using the Bliss Independence Equation. 
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3.6 In vitro investigation of inhibition of mutant gyrA by DNM and its derivatives 

In order to further investigate the importance of the GyrA mutation for DNM activity, the 

ability of DNM, DNM-2, and CIP to inhibit DNA gyrase was determined utilizing an in vitro DNA 

cleavage assay. In this assay, DNA gyrase is coincubated with supercoiled DNA and the 

compound of interest. Inhibition at the cleavage complex of DNA gyrase leads to an increase in 

either doubly nicked linear (L) DNA (e.g. inhibition by CIP57) or singly nicked open circular (OC) 

DNA (e.g. inhibition by GSK29942358). GSK299423 is a recently discovered DNA gyrase inhibitor 

that is hypothesized to stabilize the DNA-enzyme complex either pre-cleavage or after the 

formation of a single strand break resulting in a buildup of OC DNA 58. 

3.6.1 E. coli DNA gyrase cleavage assay7 

For the first studies, we chose to examine the effect of CIP, DNM, and DNM-2 on E. coli 

DNA gyrase, the enzyme typically used in inhibition studies. Similar to previous studies, we found 

that CIP potently inhibits WT DNA gyrase with a greater than seven-fold increase in L DNA being 

observed at concentrations as low as 0.68 µM (Fig. 3.9A). Additionally, in a time course assay, 

inhibition of WT DNA gyrase by CIP resulted in a time dependent buildup of L DNA (Fig. 3.9B). 

Alternatively when either DNM or DNM-2 was incubated with WT DNA gyrase, neither showed 

similar increases in L or OC DNA, suggesting that these compounds are poor inhibitors of WT 

DNA gyrase (Fig. 3.6A). Additionally, during the time course study with these compounds, buildup 

of L DNA was only observed at later time points and to a smaller degree (Fig. 3.9B).  
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Figure 3.9. Inhibition of WT and mutant DNA gyrase. (A) DNA cleavage assay with WT, S83L, 
and S83R E. coli DNA gyrase in the presence of increasing concentrations of CIP, DNM, and 
DNM-2. Concentrations were 0.01, 0.04, 0.017, 0.68, 2.7, and 10.8 µM except for DNM which 
was 8.9 µM for the highest concentration. Experiments were performed at 30ºC for 25 min. S = 
supercoiled, L = linear, and OC = open circular or nicked DNA. (B) Timecourse of DNA cleavage 
with WT, S83L and S83R  E. coli DNA gyrase in the presence of 5 µM CIP, 1 µM DNM, and 1 µM 
DNM-2. Experiments were performed at 30ºC, and timepoints were 0, 1, 3, 5, 10, 15, 20, 30 ,60, 
and 90 min. All gels are representative data from at least three independent experiments.  
 

 

The ability of CIP, DNM, and DNM-2 to inhibit S83L or S83R DNA gyrase was then 

determined. CIP was much less effective at inhibiting either S83L or S83R DNA gyrase compared 

to WT with only small increases in L DNA being observed (Fig. 3.9A). Additionally, minimal change 

was observed with 5 µM CIP at up to 1.5 h (Fig. 3.9B). Time course studies performed with an 

increased concentration of CIP (200 µM) and S83L DNA gyrase revealed a similar pattern of 

inhibition to that of WT DNA gyrase suggesting that the residual inhibition goes through a similar 

mechanism (Fig. 3.10A). DNM and DNM-2 induce only small increases in L DNA with S83L DNA 

gyrase (Fig. 3.9A). Instead, DNM inhibition of S83L DNA gyrase led to a significant buildup of OC 

DNA at 0.17 µM (P < 0.05) with a similar increase observed for DNM-2 (Fig. 3.9A). This buildup 
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does not diminish over time (Fig. 3.9B) suggestive of a mode of inhibition more similar to GSK 

299423 than to CIP. Increasing concentrations of DNM-2 to 200 µM and increasing the time up 

to 2 h confirmed that this OC buildup is not a fleeting event as occurs with CIP (Fig. 3.10B). DNM 

or DNM-2 inhibition of S83R also led to a buildup of OC DNA similar to that seen with S83L DNA 

gyrase only at a slightly higher concentration or longer time points, consistent with the activity of 

these compounds against VRE with the S83R DNA gyrase. Overall, these results are consistent 

with clinical isolate data, supporting the critical importance of a mutant DNA gyrase for sensitizing 

bacteria to DNM. Further studies with S. aureus and Enterococcus DNA gyrase would be useful 

to confirm that they behave similarly to E. coli DNA gyrase in these assays. 

 

Figure 3.10. Cleavage assay time course with increased concentrations of CIP and DNM-2. (A) 
Time course of DNA cleavage of 200 µM CIP with S83L DNA gyrase. Time points were 0, 1, 3, 5, 
10, 15, 20, 30 ,60, and 90 min at 30ºC. (B) Time course of DNA cleavage of 200 µM DNM-2 with 
S83L DNA gyrase. Time points were 0, 1, 3, 5, 10, 15, 20, 30 ,60, and 90 min at 30ºC.  Longer 
time points (120 and 180 min) were also investigated with little change being observed (data not 
shown). One representative gel shown out of at least three independent experiments. 
 

 

We then chose to investigate the effect of S83 mutations other than L and R. Specifically, 

we evaluated the sensitivity of S83Y and S83F since those are common mutations which, at least 

in S. epidermidis (Table 3.4), S. pneumoniae (Table 3.6), and N. gonorhoeae (Table 3.8), do not 

appear to sensitize the bacteria to DNM. Evaluation E. coli DNA gyrase with S83Y and S83F 

showed that both of these enzymes were not as efficiently inhibited by DNM compared to either 

the S83L or S83R (Figure 3.11). Further studies with the enzymes from each species of bacteria 

would be valuable to confirm that there is not a difference between them and E. coli DNA gyrase 

in this assay. 
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Figure 3.11. Inhibition of mutant DNA gyrase. DNA cleavage assay with S83L, S83F, S83R and 
S83Y E. coli DNA gyrase in the presence of increasing concentrations of DNM. Concentrations 
were 0.01, 0.04, 0.017, and 0.68 µM. Experiments were performed at 37ºC for 30 min. S = 
supercoiled, L = linear, and OC = open circular or nicked DNA. One representative gel shown out 
of at least three independent experiments. 
 
 

3.6.2 Human topoisomerase II inhibition assay7 

Finally, in order to determine the selectivity of DNM and derivatives for bacterial DNA 

gyrase, a decatenation assay with human topoisomerase II was performed. While doxorubicin 

inhibited human topoisomerase II at concentrations as low as 3 µM, DNM-2 showed no significant 

inhibition at concentrations up to 30 µM (Figure 3.12). While others have found that DNM-2 is 

capable of inhibiting mammalian topoisomerase I,59 our toxicity studies (see Section 3.9) suggest 

that it likely does not occur at the concentrations where antibacterial activity is observed. 
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Figure 3.12. Inhibition of human topoisomerase II. A decatenation assay was performed with 
human topoisomerase II in the presence of either DMSO, doxorubicin (DOX) or DNM-2 at the 
indicated concentrations. One representative gel shown out of at least three independent 
experiments. 
 
 

3.7 Resistance development to DNM 

 One of the primary ways to fight antibiotic resistant bacteria is to develop new antibiotics 

that are capable of killing the resistant bacteria. However, this leads to a problem because 

eventually the bacteria will develop resistance to the new antibiotic as well leading to what has 

colloquially been termed a superbug. DNM is unique in that it targets the enzyme which leads to 

FQR opening up the possibility of resistance cycling where a bacteria which is sensitive to CIP 

will be resistant to DNM and vice versa (Figure 3.13A).2,7 Hiramatsu had previously shown that 

developing resistance to DNM in FQR bacteria results in re-sensitization to CIP.2 Here we explore 

a full resistance cycle.  

3.7.1 Resistance cycling with CIP and DNM7 

In order to explore the development of resistance to both CIP and DNM in S. aureus, 

resistant strains of ATCC 29213 were generated. Consistent with previous reports 60-61, high level 

resistance to CIP was generally not achieved in a single step. Instead, low level resistance (CIP 
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MIC = 4-8 µg mL-1) was usually achieved with the first step and corresponded to a mutation in 

ParC (e.g. E84K or S80F, Fig. 3.13A-B). Unsurprisingly, these low level resistant strains that do 

not have the S84L mutation in GyrA were not sensitive to DNM or DNM-2. Development of high 

level CIP resistance (CIP MIC = 16-64 µg mL-1) similar to what is often seen in clinical isolates 

2,62-63 was observed at the second step and corresponded to an S84L mutation in GyrA. These 

high level CIP resistant strains were extremely sensitive to DNM (MIC = 0.03-0.06 µg mL-1) and 

DNM-2 (MIC = 0.06-0.12 µg mL-1). These FQR bacteria were then exposed to DNM in an effort 

to create DNM resistant isolates. The development of DNM resistance in high level CIP resistant 

strains was a rare event with resistance frequencies ranging from 1 X 10-10 to 7 X 10-10 (Fig. 3.13A-

B). When these strains were found, they showed dramatically improved sensitivity to CIP (MIC = 

0.25 – 8.0 µg mL-1). All these strains had reverted to WT GyrA (Ser84), with the more CIP sensitive 

strains also having WT ParC, and the less CIP sensitive strains retaining ParC mutations (Fig. 

3.13A-B). This complete cycle of complementary resistance/sensitivity of CIP and DNM is shown 

in Figure 3.8A, and the complete list of resistant strains generated and the sequences of their 

QRDR is in Figure 3.13B.  
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Figure 3.13. Resistance cycling of CIP and DNM with S. aureus strain ATCC 29213.  
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Figure 3.13. (cont.) (A) Representative data of the resistance cycle observed when bacteria are 
sequentially treated with CIP then DNM. Each strain generated is listed with the MIC of CIP (red), 
DNM (blue), as well as mutation status of the QRDR of GyrA (green) and ParC (black) shown 
below. The selection pressure used in each step is shown over the arrow along with the mutation 
frequency. (B) Conditions for selection along with resistance frequency are indicated above the 
boxes to which they correspond.  In each box is the strain name, MIC for CIP, MIC for DNM-2, 
and the mutations in the QRDR of gyrA and parC. Blue = CIP sensitive (MIC < 4 µg mL-1), Yellow 
= low level CIP resistance (16 > MIC ≥ 4 µg mL-1), Red = high level CIP resistance (MIC ≥ 16 µg 
mL-1). 
 
 
3.7.2 Resistance to co-treatment with CIP and DNM7 

Resistance development upon co-treatment with CIP and DNM-2 was also explored 

(Figure 3.8C). A low level CIP resistant strain (29213-C1) was utilized in these studies. Upon 

treatment with either CIP or DNM-2 resistant colonies were observed. However, no colonies were 

observed upon co-treatment (resistance frequency < 1.0 X 10-10). While it is likely that resistance 

could eventually be generated, it appears to be a very rare event. 

 

Figure 3.14. Development of co-resistance to CIP and DNM-2 with S. aureus strain ATCC 29213. 
Initially, a low level CIP resistant mutant (C1) was generated. This strain was then treated with 
CIP alone, DNM-2 alone, or a combination. Along each arrow is indicated the conditions used to 
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Figure 3.14. (cont.) select for resistance. Below each strain (black) is listed the CIP MIC (red), 
DNM-2 MIC (blue), and the frequency of the mutation observed (green). 
 
 
3.8 Pharmacokinetics and solubility of DNM and its derivatives7 

As discussed earlier, there is a desperate need for orally available Gram-positive 

antibiotics. The ability of DNM or its derivatives to fill this need depends upon its ability to be well 

tolerated and bioavailable. Before this study, little to no data existed about the administration of 

DNM to animals. However, a related but less potent compound nybomycin (C = CH2OH) has been 

examined in mice. It was found to be well tolerated when dosed either subcutaneously, orally, or 

by IP injection64. However, it showed no activity in mice infected with various bacteria (K. 

pneuomoniae, S. aureus, or M. tuberculosis), leading Brock and Sokolski to suggest that this high 

tolerability and lack of efficacy is likely a result of the very poor solubility of nybomycin (similar to 

DNM it is only soluble in concentrated acid) and thus lack of absorption64.  

Dr. Hyang Yeon Lee treated mice with increasing concentrations of DNM, DNM-2, and 

DNM-3 and showed that all three compounds were well tolerated up to the highest dose evaluated 

(50 mg kg-1 by oral gavage).  Dr. Lee in collaboration with Prof. Levent Dirikolu performed 

pharmacokinetic studies on DNM, DNM-2, and DNM-3. While DNM itself showed very low serum 

exposure (Cmax < 0.20 µM or 0.060 µg mL-1) after a 50 mg kg-1 oral dose, DNM-2 showed good 

bioavailability with a peak serum concentration of 42.6 µM (12.8 µg mL-1) and an AUC of 44 h µg 

mL-1 (Figure 3.15A-B).  
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Figure 3.15. Pharmacokinetic analysis of DNM, DNM-2, DNM-3 and DNM-4. (A) C57/BL6 mice 
were treated with 50 mg kg-1 DNM, DNM-2, or DNM-3 via oral gavage. After the indicated time 
points (15, 30, 60, 120, 240, and 480 min), mice were sacrificed and the serum concentrations of 
DNM, DNM-2, and DNM-3 was determined by HPLC. (B) Pharmacokinetic parameters 
determined from curves presented in A. (C) Pharmacokinetic parameters determined from curves 
obtained by the Global TB Alliance. (D) Prediction for in vivo efficacy based on AUC/MIC.  

 

DNM-3 showed an intermediate level of bioavailability with a peak serum concentration of 

4.3 µM (1.26 µg mL-1) and an AUC of 4 h µg mL-1. The bioavailability of these compounds mirrors 

the aqueous solubility suggesting that at least for this limited set of compounds aqueous solubility 

could be a reasonable predictor of oral bioavailability.  

After these studies were performed, the Global TB Alliance did further MTD and PK studies 

on both DNM-2 and DNM-8. They found that 200 mg/kg (oral gavage) of either compound was 

well tolerated. Additionally, for DNM-2 this higher dose greatly extended the half-life (~3-4 fold) 

and allowed for an increase AUC (~6 fold, Figure 3.15C). This is particularly promising given the 

fact that AUC/MIC is very predictive of in vivo efficacy of antibiotics. For animal models with 

fluoroquinolones, an AUC/MIC ~30-35 is associated with clinically significant decreases in 
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mortality from Gram-positive infections while mortality is completely prevented with an AUC/MIC 

of ~100-125 in a variety of different mouse models including Gram-negative infections.65-66 

Assuming that DNM-2 and the fluoroquinolones act similarly, with the 50 mg/kg dose of DNM-2, 

we would expect to see good in vivo activity in FQR MRSA (Figure 3.15D and Table 3.2) and 

FQR VRE (Figure 3.15D and Table 3.3). Specifically, using the MIC50 for FQR MRSA strains with 

DNM-2 (0.125 µg/mL), the AUC/MIC is 264-352. This is well above the amount needed for a 

response in vivo. Using the MIC90 of FQR MRSA strain treated with DNM-2 (0.25 µg/mL), the 

AUC/MIC (132-176) is still well within the range expected to show potent in vivo activity. Similar 

results are seen for FQR VRE.  Using the MIC50 for FQR VRE (0.5 µg/mL), the AUC/MIC is 66-

88. This is still well above the ~30-35 associated with clinical response. Using the MIC90 for FQR 

VRE (4.0 µg/mL), the AUC/MIC is 8-11. This no longer is expected to have good in vivo activity. 

However, with the increased AUC associated with the 200 mg/kg dose, in vivo efficacy is expected 

for nearly all of the bacteria tested with DNM-2 thus far including FQR VRE, coagulase negative 

Staphylococcus, B. anthracis, S. pneumoniae, and M. tuberculosis. 

3.9 Mammalian toxicity of the deoxynybomycins 

As a prelude to exploring in vivo efficacy, the toxicity of DNM and key derivatives was evaluated.  

3.9.1 In vitro toxicity7 

Treatment of red blood cells with DNM and key derivatives indicated that none of these 

compounds induce hemolysis at the highest doses possible to test (Figure 3.16A). Additionally, 

DNM-2 demonstrated no significant DNA intercalation at concentrations up to 30 µM (9 µg mL-1, 

Figure 3.16B). No mutagenesis was observed at concentrations up to 120 µg/mL of DNM-2 as 

evidenced by the Ames test performed by the Global TB Alliance (Figure 3.16C). Data from the 

Global TB Alliance did indicate slight hERG inhibition at the highest dose tested (20% at 3 ug mL-

1, Figure 3.16D). They also found that DNM-2 was positive for the micronucleus test (Figure 

3.16E). Further in vitro and in vivo toxicity studies are needed to thoroughly explore these 

observations.  
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Figure 3.16. In vitro toxicity of DNM and select derivatives. (A) Hemolysis assay. Human red 
blood cells were co-incubated with compound. After incubation for 2 h at 37°C, the supernatant 
was analyzed for hemolysis. Each compound was tested either at 160 µg mL-1 or at the highest 
concentration which its solubility allowed. Concentrations (µg mL-1) are indicated in parenthesis. 
The negative control is DMSO and the positive control is water.  Data shown is from three 
independent replicates ± SEM. (B) Ethidium bromide (EtBr) intercalation assay. Compounds were 
incubated with Herring Sperm DNA, ethidium bromide, and compound of interest for 30 minutes. 
The solutions were then analyzed for ethidium bromide fluorescence. Any decrease in percentage 
fluorescence is indicative of compound intercalation. Doxorubicin (DOX) was used as a positive 
control. (C) In vitro Ames test for mutagenicity with or without S9 fraction of rat livers. 2-
nitrofluorene + 4-nitroquinoline N-oxide were used as the positive control without the S9 fraction.  
2-aminoanthracene was used as the positive control with the S9 fraction. S. typhimurium TA98: 
hisD3052, rfa, uvrB / pKM101; detects frame-shift mutations. S. typhimurium TA100: hisG45, rfa, 
uvrB / pKM101; detects base-pair substitutions. (D) In vitro hERG inhibition assay with 
amitriptyline as a positive control. (E) In vitro micronucleus test performed with and without S9 
fraction rat livers with cyclophosphamide as the S9+ positive control and etoposide as the  
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Figure 3.16. (cont.) S9-positive control. % MN = Percentage of targeted cells with observed 
micronuclei. Fold = Fold elevation above vehicle control. Yes (+) = Strong positive response at 
least 3-fold higher than controls. Yes (±) = Weak positive response at least 2-fold higher than 
controls. No (-) = Negative response (less than 2-fold higher than controls). 
 
 

3.9.2 Cell culture toxicity 

Next, the effect of DNM on mammalian cells in culture was evaluated. While DNM does 

eventually kill mammalian cells,67 it is at higher concentrations and longer time points compared 

to bacterial cells (Figure 3.17A-B). Specifically, when HEK293 cells (a human cell line derived 

from embryonic kidney cells) are treated with 0.5 µg/mL DNM for 24 h, only 32% of the cells are 

killed compared to when NRS3 bacterial cells are treated with 0.06 µg/mL DNM for 24h all of the 

cells were dead (Figure 3.2A). Additionally, treatment of HEK293 cells with 12 µg/mL DNM-2 

(~Cmax for 50 mg/kg treatment) for 4 h (~3X the t1/2 for the 50 mg/kg treatment) resulted in only 

26% cell death (data not shown). This is in stark contrast to treatment of NRS3 with 0.12 µg/mL 

DNM (~100 fold less compound) for 4h which results in a 2-log reduction in the number of colony 

forming units (cfu, Figure 3.17B).  These data combined with previously published data showing 

that deoxynybomycin is non-toxic to normal (i.e. non-cancerous) cell lines67 suggests that these 

compounds would likely be well-tolerated in vivo at concentrations expected to show antibacterial 

efficacy.  
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Figure 3.17. Comparison of mammalian and bacterial cell culture toxicity. (A) Killing kinetics for 
HEK293 cells treated with DNM. 10,000 cells/well were plated in a 96 well plate. Cells were then 
treated with DNM for the indicated times. Viability was assessed by Alamar blue. Data shown is 
from three independent replicates ± SEM. (B) Killing kinetics for NRS3 MRSA bacteria. ~1 X 107 
cfu/mL were incubated with either DMSO or DNM at the indicated concentrations for the indicated 
times. Aliquots were taken, diluted and plated on MH plates to determine number of viable 
bacteria. Data shown is from three independent replicates ± SEM.  
 
 

3.9.3 In vivo toxicity7 

While in vitro and cell culture toxicities are informative, the best test of mammalian toxicity 

is to examine the effect that a compound has on an animal. Dr. Hyang Yeon Lee treated mice 

with increasing concentrations of DNM, DNM-2, and DNM-3 and found that all three compounds 

were well tolerated up to the highest dose evaluated (50 mg kg-1 by oral gavage, single dose).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



226 
 

 
 
Table 3.12. Hematologic Toxicity of DNM-2 

 

Hematologic toxicity of DNM-2. No clinically significant evidence for myelosuppression, renal injury, or hepatic toxicity 

was identified in any of the treatment groups. *Platelet cell counts were low because many platelet clumps were 

observed. This was reflected in lower RBC counts. Total bilirubin increases were observed for both vehicle and DNM-

2-treated mice due to hemolysis during blood collection. Normal values were reported by Schnell and Wilson.68 

 

To explore the effect of sustained treatments in vivo, Prof. Gee Lau administered DNM-2 

to mice once-a-day for 10 days (via oral gavage at 50 mg kg-1). Prof. Stéphane Lezmi, a board 

certified pathologist, then examined the mice for markers of hematological and non-hematological 

toxicity.  No clinically significant evidence for myelosuppression, renal injury, or hepatic toxicity 

was identified (Table 3.12).  No long-term pathologic effects were noted in the kidney, brain, lung, 

liver, spleen, heart, or stomach.  In small intestine sections, mild intestinal dilation associated with 
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villi atrophy was noted (Figure 3.18). Also noted was increased vacuolation of white and brown 

adipocytes with a minimal increase in triglyceride levels. These changes were likely indirectly 

related to the drug, and possibly due to the antibiotic effects on the intestinal flora. As none of the 

mice showed any clinical symptoms, these changes were considered of minimal significance. 

 

Figure 3.18. In vivo toxicity studies. After euthanasia, mouse organs were collected for 
histopathological analyses. Tissue sections were stained with hematoxylin and eosin. All slides 
were systematically evaluated for evidence of acute or chronic inflammation and toxicity. No long-
term pathologic effects were noted in kidneys, brains, lungs, livers, spleens, hearts, and 
stomachs.  In small intestine sections, mild intestinal dilation associated with villi atrophy was 
noted. Also noted was increased vacuolation of white and brown adipocytes.  These changes 
were considered of minimal significance. 
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3.10 In vivo efficacy 

With the indication that DNM-2 offered good exposure upon oral dosing with no observable 

in vivo toxicity, Prof. Gee Lau conducted an in vivo model of mouse sepsis.  Mice were infected 

with FQR MRSA (NRS3) via tail vein injection. Mice were treated with CIP (50 mg kg-1, oral 

gavage), DNM-2 (50 mg kg-1, oral gavage), or vehicle control once-a-day for 10 days.  As shown 

by the Kaplan-Meier survival curve in Figure 3.11B, mice treated with DNM-2 showed a significant 

survival difference relative to both CIP and vehicle treated control (P < 0.005, Fig. 3.19). 

 

Figure 3.19. Kaplan-Meier curves showing the survival rates of mice infected with MRSA (NRS3, 
FQR). The mice received vehicle alone, 50 mg kg-1 CIP, or 50 mg kg-1 DNM-2 by oral gavage 
once-a-day for 10 days; n = 15 for each group.  ***P < 0.005 versus vehicle and CIP, Log Rank 
Survival Test. 
 
 

3.11 Conclusions and future directions 

In conclusion, we developed a facile chemical route to produce DNM and derivatives with 

better solubility and pharmacokinetic properties. These compounds possess excellent activity 

against FQR MRSA, VRE, and M. tuberculosis while showing more modest activity against other 

Gram-positive and atypical Gram-negative bacteria like B. anthracis, S. pneumoniae, and N. 

gonorrhoeae. Through in vitro assays and resistance development, we demonstrated that these 

compounds work by inhibiting mutant DNA gyrase. Interestingly, based on the pattern of DNA 

observed in the in vitro assay, it appears that DNM may inhibit DNA gyrase differently than the 
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FQs (and perhaps more similarly to GSK299423, see Chapter 1.2.1.3). Further investigation into 

the mode of inhibition (e.g. a crystal structure) is needed to definitely show this. In vitro data 

combined with cell culture activity assays suggests that DNM and its derivative DNM-2 are best 

at inhibiting bacteria where the S84 of gyrA is mutated to a hydrophobic residue such as L, I, A, 

or V. Bacteria that typically mutate S84 to a different residue (e.g. F/Y/R) tend to be less sensitive. 

Further exploration of the reason for this selectivity is needed. A crystal structure of DNM bound 

to DNA gyrase would be very informative. Additionally, further in vitro studies with DNA gyrase 

enzymes from the individual species may also aid in answering these questions. 

In addition to examining Gram-positive and atypical Gram-negative bacteria, we also 

examined typical Gram-negative bacteria. We found that DNM-2 shows little-to-no activity against 

typical Gram-negative bacteria such as P. aeruginosa and A. baumannii. Further examination 

revealed that this is most likely due to an inability to penetrate their cell membrane.  Co-treatment 

with COL sensitized the bacteria to DNM-2 but this is likely not a good long term solution given 

the toxicity of COL. Development of novel DNM derivatives capable of penetrating the Gram-

negative membrane while still retaining activity against DNA gyrase could greatly improve 

treatment options for these difficult to treat bacteria. Compounds with lower cLogD values have 

previously been shown to penetrate Gram-negative bacteria more effectively.69-70 For this reason, 

DNM derivatives with more polar functionality are currently being explored. 

One of the most intriguing aspects of DNM is its ability to resistance cycle. Bacteria that 

are resistant to fluoroquinolones are sensitive to DNM. When bacteria develop resistance to DNM, 

they are re-sensitized to fluoroquinolones suggesting that resistance that emerges to DNM would 

be treatable. This idea of developing molecules to specifically target the mutated target 

responsible for antibiotic resistance is an intriguing concept that could potentially be used to treat 

different types of antibiotic resistant bacteria (see Ch. 1.2.1.3). Below are a few potential areas in 

addition to FQR where it could be applied: 
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1) Targeting Sulfonamide Resistance. Clinically relevant Gram-negative bacteria 

primarily develop sulfonamide resistance via accumulation of plasmids which encode 

drug resistant versions of the target DHPS.71 Specifically, sul1 and sul2 together are 

responsible for nearly 100% of sulfonamide resistant Gram-negative bacteria.72 

Developing small molecule inhibitors that are specific for these sulfonamide-resistant 

DHPSs may be an excellent strategy for targeting these resistant bacteria and could 

put selective pressure to lose the plasmids which encode these resistant sulfonamide-

resistant DHPSs. The loss of these plasmids would result in re-sensitization to the 

sulfonamides.  

2) Targeting Macrolide Resistance. The primary mechanism of high level resistance to 

macrolides is via target site modification by an rRNA methyltransferase (Erm 

responsible for methylation of the 23S rRNA at A2058).73 Discovery of a small 

molecule which could inhibit translation by interacting with this modified rRNA site 

would likely pressure the bacteria to lose this resistance mechanism and potentially 

resensitize bacteria to the macrolides. One could search for such compounds by 

screening isogenic bacteria with and without Erm. Compounds which show selective 

activity for the bacteria containing the Erm would then need to be further analyzed to 

ensure one was not simply selecting for a methyltransferase inhibitor.  

3) Targeting Linezolid Resistance-Part 1. Similar to the macrolides, one of the major 

forms of resistance to linezolid is methylation of the rRNA. A majority of linezolid-

resistant bacteria express a methyltransferase (the chloramphenicol-florfenicol 

resistance (cfr) methyltransferase) which inhibits binding of these antibiotics via 

methylation of the target rRNA (A2503 of the 23S rRNA).74-75 Again, similar to with the 

macrolides, discovery of a small molecule capable of targeting the methylated rRNA 

may be able to pressure bacteria back to the WT linezolid-sensitive phenotype. 
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4) Targeting Linezolid Resistance-Part 2. Another common cause of linezolid-resistant 

bacteria is mutation in the target rRNA (most commonly C2534U) along with mutations 

in ribosomal proteins L3 and L4. It may be possible to target this mutant ribosome 

similarly to how DNM targets the mutated gyrA of DNA gyrase. Screening for such a 

compound could be performed with WT and mutant isogenic pairs of bacteria. 

5) Targeting Rifamycin Resistance. Resistance to rifamycin is primarily via point 

mutations in its target the β-subunit of the DNA-dependent RNA polymerase.76 

Specifically, 41% of rifamycin-resistant clinical isolates have a mutation at S455, 36% 

at H440, and 9% at D430.77 These three sites are known to hydrogen bond with 

rifamycin thus explaining the acquired resistance.76 Development of a small molecule 

capable of inhibiting these mutant DNA-dependent RNA polymerase may have similar 

activity against rifamycin-resistant bacteria as DNM has against bacteria with S83 gyrA 

mutantions. 

Finally, utilizing a DNM derivative, the first in vivo efficacy of the nybomycin class is 

demonstrated in a mouse infection model.  However, thus far the only in vivo model has been a 

sepsis model utilizing the NRS3 strain of MRSA. Another important future direction will be further 

evaluation of efficacy of DNM-2 in other in vivo models including other S. aureus models, 

Enterococcus models, and M. tuberculosis models. Additionally, in vivo models that evaluate the 

rate of resistance development and the ability to prevent resistance development through co-

treatment with DNM and CIP would be very interesting to perform.  Overall, the data presented 

suggest the promise of DNM derivatives for the treatment of FQR infections. 

3.12 Materials and methods 

General chemical reagents were purchased from Sigma Aldrich.  Metal catalysts and ligands were 

purchased from Strem Chemicals Inc. (Newburyport, MA). Alkynes were purchased from GFS 

Chemicals (Powell, OH) and bis-pinacolboronate was purchased from Frontier Scientific (Logan, 

UT).  All reagents were used without further purification unless otherwise noted.  
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1H-NMR and 13C-NMR spectra were recorded on Varian Unity spectrometers at 500 MHz and 125 

MHz, respectively. Spectra generated from a solution of CDCl3 were referenced to residual 

chloroform (1H: δ 7.26 ppm, 13C: δ 77.16 ppm). Spectra generated in mixtures of CDCl3 and 

CD3OD were referenced to CD3OD (1H: δ 3.31 ppm, 13C: δ 49.0 ppm).   

General protocol A: Synthesis of diazaanthracenols 

 

The synthesis of these diazaanthracenols has been previously described by Hergenrother and 

co-workers.3,11 The only alteration from these protocols was that the phenols were further purified 

by reversed phase chromatography (10:90 MeCN:H2O to 100:0 MeCN:H2O) using a CombiFlash 

Rf (Teledyne Isco). 

 

General protocol B: Synthesis of deoxynybomycins 

 

To a 20-mL vial was added diazaanthracenol (1 equiv.) and potassium carbonate (10 equiv.). The 

vial was evacuated and filled with argon three times. Degassed DMF (90 mL per mmol 

diazaanthracenol) was added followed by dibromomethane (10 equiv.). The only difference was 

with 5 in which 100 equiv of 1,1-dibromoethane were used in place of the dibromomethane. The 

vial was plunged into an oil bath preheated to 100 °C. The reaction was monitored by TLC (10% 

MeOH in CH2Cl2) with starting material appearing under UV as a green spot at the baseline and 

product appearing under UV as a bright blue spot at Rf = 0.5. When starting material was no 

longer visible by TLC (usually after 2-3 h), the solvent was evaporated and the residue was 
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purified by silica gel chromatography (0 to 5% MeOH in CH2Cl2). DNM and derivatives were 

collected as off-white solids. 

 

 

Tabulated spectra 

 

Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide,3 and (Z)-3-

iodo-N-methylbut-2-enamide,3 by General Protocols A and B. 73% yield for methylene bridge 

insertion. 16% yield over 4 steps. 11% overall yield from commercially available starting material. 

Product is an off-white solid. 

mp: >350 °C, 358-360 °C resulted in decomposition; 1H NMR (400 MHz, 2:1 CDCl3:CD3OD): δ 

7.55 (s, 1H), 6.49 (d, J = 1.0 Hz, 1H), 6.47 (d, J = 1.0 Hz, 1H), 6.39 (s, 2H), 3.92 (s, 3H), 2.54 (d,  

J = 1.0 Hz, 3H), 2.52 (d, J = 1.0 Hz, 3H); IR (neat, cm-1): 1651 (s), 1625 (s), 1593 (s), 1558 (s), 

1485 (m), 1445 (m), 1351 (s), 1327 (m), 1291 (w), 1154 (w); HRMS (m/z, ESI-TOF):  (M+H)+ calcd 

for C16H15N2O3, 283.1094; found,  283.1083.  

 

 

Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide,3 and (Z)-N-

ethyl-3-iodobut-2-enamide11, by General Protocols A and B. 64% yield for methylene bridge 

insertion. 11% yield over 4 steps. Product is an off-white solid. 
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mp: >250 °C, 253 – 255 °C resulted in decomposition; 1H NMR (500 MHz, CDCl3): δ 7.47 (s, 1H), 

6.52 (d, J = 1.0 Hz, 1H), 6.46 (d, J = 1.0 Hz, 1H), 6.40 (s, 2H), 4.54 (q, J = 7.0 Hz, 2H), 2.52 (d,  

J = 1.0 Hz, 3H), 2.50 (d, J = 1.0 Hz, 3H), 1.36 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 

161.63, 158.64, 147.63, 146.74, 135.05, 132.32, 125.06, 121.34, 121.05, 120.79, 113.62, 113.42, 

86.10, 40.27, 20.34, 18.00, 14.96; IR (neat, cm-1): 1668 (m), 1657 (s), 1625 (s), 1596 (s), 1561 

(m), 1485 (w), 1447 (2) 1419 (w), 1394 (m), 1380 (m), 1351 (s), 1322 (m), 1282 (w), 1243 (w), 

1148 (w); HRMS (m/z, ESI-TOF): (M+H)+ calcd for C17H17N2O3, 297.1239; found, 297.1246.  

 

 

Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)pent-2-enamide,11 and (Z)-

3-iodo-N-methylbut-2-enamide,3 by General Protocols A and B. 72% yield for methylene bridge 

insertion. 13% yield over 4 steps. Product is an off-white solid. 

mp: >250 °C, 274 – 275 °C resulted in decomposition; 1H NMR (500 MHz, CDCl3): δ 7.47 (s, 1H), 

6.50 (d, J = 1.0 Hz, 1H), 6.47 (d, J = 1.0 Hz, 1H), 6.37 (s, 2H), 3.91 (s, 3H), 2.90 (q, J = 7.5 Hz, 

2H), 2.47(s, 3H), 1.37 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 161.98, 158.86, 153.03, 

146.76, 135.79, 132.48, 125.65, 120.71, 120.50, 119.43, 113.05, 112.86, 86.03, 32.60, 24.46, 

20.27, 12.82; IR (neat, cm-1): 1675 (w), 1658 (s), 1631 (s), 1598 (m), 1559 (w), 1491 (w), 1440 

(w), 1414 (m), 1383 (w), 1342 (w), 1291 (2), 1147 (w); HRMS (m/z, ESI-TOF): (M+H)+ calcd for 

C17H17N2O3, 297.1239; found, 297.1247 
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Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide,3and (Z)-3-

iodo-N-methylpent-2-enamide,11 by General Protocols A and B. 2% yield over 4 steps. Product is 

an off-white solid. 

mp: >250 °C, 269 – 270 °C resulted in decomposition; 1H NMR (500 MHz, CDCl3): δ 7.51 (s, 1H), 

6.53 (d, J = 1.0 Hz, 1H) 6.46 (d, J = 1.0 Hz, 1H), 6.38 (s, 2H), 3.94 (s, 3H), 2.88 (q, J = 7.5 Hz, 

2H), 2.51 (d, J = 1.0 Hz, 3H), 1.36 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 162.38, 

158.69, 151.94, 147.66, 135.89, 132.29, 126.09, 121.53, 120.09, 118.50, 113.56, 112.87, 86.15, 

32.71, 25.95, 18.06, 12.93; IR (neat, cm-1): 1651 (s), 1621 (s), 1594 (s), 1557 (w), 1490 (w), 1421 

(m), 1354 (m), 1328 (m), 1292 (w), 1154 (w); HRMS (m/z, ESI-TOF): (M+H)+ calcd for C17H17N2O3, 

297.1239;  found: 297.1234 

 

 

Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide,3 and (Z)-3-

iodo-N-methylbut-2-enamide,3 by General Protocols A and B. General Protocol B was altered 

slightly.  Specifically, 1,2-dibromoethane was used in place of dibromomethane and 100 

equivalents were used instead of 10.  4% yield over 4 steps. Product is a yellow/off-white solid. 

1H NMR (500 MHz, CDCl3): δ 7.43 (s, 1H), 6.80 (q, J = 5.5 Hz, 1H), 6.51 (d, J = 1.0 Hz, 1H), 6.44 

(d, J = 1.0 Hz, 1H), 3.93 (s, 3H), 2.50 (d, J = 1.0 Hz, 3H), 2.49 (d, J = 1.0 Hz, 3H), 1.96 (d, J = 5.5 

Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 163.09, 159.71, 148.92, 148.49, 135.09, 132.19, 125.52, 
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121.65, 121.45, 119.96, 114.40, 113.74, 96.44, 32.99, 20.34, 20.22, 17.92; HRMS (m/z, ESI-

TOF): (M+H)+ calcd for C17H17N2O3, 297.1239; found, 297.1244. 

 

Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)hex-2-enamide,11 and (Z)-

3-iodo-N-methylbut-2-enamide,3 by General Protocols A and B. 2% yield over 4 steps. Product is 

an off-white solid. 

mp: >200 °C, 228 – 230 °C resulted in decomposition; 1H NMR (500 MHz, CDCl3) δ 7.48 (s, 1H), 

6.52 (1H), 6.46 (1H), 6.39 (s, 2H), 3.93 (s, 3H), 2.83 (t, J = 7.5 Hz, 2H), 2.49 (3H), 1.80 (m, 2H), 

1.06 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 162.01, 158.76, 151.62, 146.73, 135.84, 

132.60, 125.70, 120.74, 120.55, 120.40, 113.24, 113.01, 86.06, 33.39, 32.61, 21.96, 20.24, 14.05; 

IR (neat, cm-1): 1660 (s), 1636 (s), 1600 (s), 1558 (w), 1489 (w), 1442 (w), 1416 (w), 1382 (w), 

1344 (m), 1277 (w), 1148 (w); HRMS (m/z, ESI-TOF): (M+H)+ calcd for C18H19N2O3, 311.1396; 

found: 311.1405 

 

 

Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide,3and (Z)-3-

iodo-N-methylhex-2-enamide,11 by General Protocols A and B. 1% yield over 4 steps. Product is 

an off-white solid. 

1H NMR (500 MHz, CDCl3): δ 7.51 (s, 1H), 6.52 (d, J = 1.0 Hz, 1H), 6.46 (d, J = 1.0 Hz, 1H), 6.39 

(s, 2H), 3.95 (s, 3H), 2.81 (t, 2H, J = 7.5 Hz), 2.52 (d, 3H, J = 1.0 Hz, allylic CH3), 1.78 (m, 2H), 
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1.07 (t, 3H, J = 7.5 Hz); 13C NMR (125 MHz, CDCl3):  δ 162.16, 158.61, 150.46, 147.57, 135.82, 

132.19, 126.09, 121.43, 120.03, 119.38, 113.46, 113.01, 86.07, 34.98, 32.64, 21.83, 17.97, 14.19; 

HRMS (m/z, ESI-TOF): (M+H)+ calcd for C18H19N2O3, 311.1396; found, 311.1393. 

 

 

Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide,3  and (Z)-3-

iodo-N-propylbut-2-enamide,11 by General Protocols A and B. 2% yield over 4 steps. Product is 

an off-white solid. 

mp: >250 °C, 248 – 250 °C resulted in decomposition; 1H NMR (500 MHz, CDCl3): δ 7.46 (s, 1H), 

6.51(1H), 6.46 (1H), 6.39 (s, 2H), 4.42 (m, 2H), 2.52 (3H), 2.49 (3H), 1.78 (m, 2H), 1.00 (t, J = 7.5 

Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 161.82, 158.67, 147.68, 146.74, 135.16, 132.35, 125.33, 

121.37, 121.03, 120.80, 113.68, 113.43, 86.10, 46.43, 23.07, 20.42, 18.07, 11.36; IR (neat, cm-

1): 1655 (s), 1623 (s), 1594 (m), 1556 (w), 1485 (w), 1439 (w), 1399 (w), 1352 (m), 1229 (w), 1154 

(w); HRMS (m/z, ESI-TOF): (M+H)+ calcd for C18H19N2O3, 311.1396; found, 311.1398 

 

 

Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide,3and (Z)-3-

iodo-N-pentylbut-2-enamide,11  by General Protocols A and B. 6% yield over 4 steps. Product is 

an off-white solid. 

1H NMR (500 MHz, CDCl3): δ 7.47 (s, 1H6.54 (d, J = 1.0 Hz, , 1H), 6.47 (d, J = 1.0 Hz, 1H), 6.40 

(s, 2H), 4.46 (m, 2H), 2.52 (d, J = 1.0 Hz, 3H), 2.50 (d, J = 1.0 Hz, 3H), 1.74 (pent, J = 7.5 Hz, 
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2H) , 1.38 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 161.78, 158.67, 147.64, 

146.64, 135.17, 132.37, 125.34, 121.38, 121.07, 120.83, 113.68, 113.43, 86.06, 45.06, 29.44, 

29.11, 22.62, 20.35, 18.00, 14.22; HRMS (m/z, ESI-TOF): (M+H)+ calcd for C20H23N2O3, 339.1709; 

found, 339.1704. 

 

 

Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide,3 and (Z)-N-

hexyl-3-iodobut-2-enamide,11 by General Protocols A and B. 20% yield over 4 steps. Product is 

an off-white solid. 

1H NMR (500 MHz, CDCl3): δ 7.47 (s, 1H), 6.52 (d, J = 1.0 Hz, 1H), 6.46 (d, J = 1.0 Hz, 1H), 6.39 

(s, 2H), 4.46 (m, 2H), 2.52 (d, J = 1.0 Hz, 3H), 2.49 (d, J = 1.0 Hz, 3H), 1.73 (pent, J = 7.5 Hz, 

2H), 1.42 (pent, J = 7.5 Hz, 2H), 1.33 (m, 4H), 0.89 (t, J = 7.0 Hz, 3H); HRMS (m/z, ESI-TOF): 

(M+H)+ calcd for C21H25N2O3, 353.1865; found: 353.1870 

 

 

Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide,3and (Z)-3-

iodo-N-isobutylbut-2-enamide,11  by General Protocols A and B. 62% yield for methylene bridge 

insertion. 6% yield over 4 steps. Product is an off-white solid. 

1H NMR (400 MHz, CDCl3): δ 7.47 (s, 1H), 6.52 (d, J = 1.0 Hz, 1H 6.46 (d, J = 1.0 Hz, 1H), 6.39 

(s, 2H), 4.38 (d, J = 7.2 Hz, 2H), 2.52 (d, J = 1.0 Hz, 3H), 2.50 (d, J = 1.0 Hz, 3H), 2.17 (sept, J = 

7.2 Hz, 1H), 0.95 (d, J = 6.8 Hz, 1H); 13C NMR (125 MHz, CDCl3): δ 162.13, 158.65, 147.58, 
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146.51, 135.23, 132.38, 125.61, 121.34, 121.02, 120.81, 113.68, 113.40, 85.91, 50.88, 29.08, 

20.33, 19.87, 17.96; HRMS (m/z, ESI-TOF): (M+H)+ calcd for C19H21N2O3, 325.1552; found, 

325.1553.  

 

 

Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)but-2-enamide,3 and (Z)-3-

iodo-N-neopentylbut-2-enamide,11 by General Protocols A and B. 30% yield over 4 steps. Product 

is an off-white solid. 

mp: >200 °C, 210 – 213 °C resulted in decomposition; 1H NMR (500 MHz, CDCl3): δ 7.46 (s, 1H), 

6.53 (d, J = 1.0 Hz, 1H), 6.45 (d, J = 1.0 Hz, 1H), 6.38 (s, 2H), 4.56 (bs, 1H), 2.52 (d, J = 1.0 Hz, 

3H), 2.50 (d, J = 1.0 Hz, 3H), 0.95 (s, 9H); 13C NMR (125 MHz, CDCl3): δ 162.91, 158.73, 147.68, 

146.69, 135.45, 132.34, 126.92, 121.34, 121.08, 121.03, 113.69, 113.38, 85.69, 53.00, 35.34, 

28.36, 20.42, 18.06; IR (neat, cm-1): 1698 (w), 1658 (s), 1631 (s), 1606 (s), 1560 (w), 1474 (w), 

1447 (w), 1353 (m), 1313 (w), 1258 (w), 1137 (m); HRMS (m/z, ESI-TOF): (M+H)+ calcd for 

C20H23N2O3, 339.1709; found, 339.1715. 
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Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)pent-2-enamide,11 and ((Z)-

3-iodo-N-methylpent-2-enamide,11  by General Protocols A and B. 7% yield over 4 steps. Product 

is an off-white solid. 

mp: >200 °C, 214 – 215 °C resulted in decomposition; 1H NMR (500 MHz, CDCl3): δ 7.54 (s, 1H), 

6.52 (1H), 6.46 (1H), 6.37 (s, 2H), 3.92 (s, 3H), 2.88 (dq, J = 1.0 Hz, 7.5 Hz, 2H), 2.87 (dq, J = 

1.0 Hz, 7.5 Hz, 2H), 1.36 (t, J = 7.5 Hz, 3H), 1.34 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3): 

δ 162.28, 158.87, 153.03, 151.86, 135.92, 132.32, 125.84, 119.93, 119.44, 118.39, 112.81, 

112.49, 86.00, 32.60, 25.91, 24.52, 12.88; IR (neat, cm-1): 1682 (w), 1657 (s), 1631 (s), 1595 (s), 

1558 (w), 1455 (w), 1416 (m), 1370 (w), 1339 (m), 1261 (w), 1145 (w); HRMS (m/z, ESI-TOF): 

(M+H)+ calcd for C18H19N2O3, 311.1396; found, 311.1393 

 

 

Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)hex-2-enamide,11 and (Z)-

3-iodo-N-methylhex-2-enamide,11 by General Protocols A and B. 5% yield over 4 steps. Product 

is an off-white solid. 

mp: 171-173 °C; 1H NMR (500 MHz, CDCl3): δ 7.53 (s, 1H), 6.51 (1H), 6.45 (1H), 6.38 (s, 2H), 

3.94 (s, 3H), 2.82 (t, J = 7.5 Hz, 2H), 2.80 (t, J = 7.5 Hz, 2H), 1.78 (m, 4H), 1.06 (t, J = 7.5 Hz, 

6H); 13C NMR (125 MHz, CDCl3): δ  161.96, 158.57, 151.44, 150.30, 135.78, 132.25, 125.76, 

120.25, 119.75, 119.23, 112.79, 112.75, 85.92, 34.90, 33.29, 32.48, 21.91, 21.78, 14.07, 13.95; 

IR (neat, cm-1): 1652 (s), 1627 (s), 1596 (s), 1556 (w), 1487 (w), 1458 (w), 1427 (m), 1378 (w), 

1340 (m), 1326 (m), 1282 (w), 1143 (w); HRMS (m/z, ESI-TOF): (M+H)+ calcd for C20H23N2O3, 

339.1709; found, 339.1717 
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Synthesized from bispinacolborane,3 (Z)-3-iodo-N-(4-methoxybenzyl)hex-2-enamide,11 and (Z)-

N-butyl-3-iodohex-2-enamide11 by General Protocols A and B. 6% yield over 4 steps. Product is 

an off-white solid. 

mp: 156-158 °C; 1H NMR (500 MHz, CDCl3) δ 7.56 (s, 1H), 6.53(1H), 6.46(1H), 6.40(s, 2H), 4.48 

(m, 2H), 2.83 (t, J = 7.5 Hz, 2H), 2.81 (t, J = 7.5 Hz, 2H), 1.70-1.83 (m, 6H), 1.45 (sext, J = 7.5 

Hz, 2H), 1.07 (t, J = 7.5 Hz, 3H), 1.06 (t, J = 7.5 Hz, 3H), 0.97 (t, J = 7.5 Hz, 3H); 13C NMR (125 

MHz, CDCl3): δ 161.92, 158.77, 151.57, 150.33, 135.42, 132.38, 125.38, 120.36, 120.18, 119.60, 

113.19, 112.81, 85.94, 44.88, 35.14, 33.46, 31.84, 22.10, 21.97, 20.21, 14.23, 14.08; IR (neat, 

cm-1): 1658 (s), 1629 (s), 1596 (m), 1557 (w), 1485 (w), 1445 (w), 1422 (w), 1397 (w), 1336 (w), 

1315 (w), 1271 (w), 1219 (w); HRMS (m/z, ESI-TOF): (M+H)+ calcd for C23H29N2O3, 381.2178; 

found, 381.2167 

 

Bacterial strains 

MRSA and P. aeruginosa isolates were from Cubist Pharmaceuticals. VRE isolates were from a 

previously published collection.78. B. anthracis strains and the N. gonorrheae strain (MS11) were 

obtained from Prof. Douglass Mitchell (UIUC). Prof. Mitchell originally obtained the B. anthracis 

strains from (Lawrence Livermore National Labs). E. coli strains were obtained either from ATCC 

or Prof. Cari Vanderpool (UIUC). A. baumannii isolates were obtained from Dr. John Quale.55 

 

Antibiotic susceptibility tests 

Susceptibility testing for all bacteria except for N. gonorrhoeae was performed in triplicate 

using the microdilution broth method as outlined by the Clinical and Laboratory Standards Institute 
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CLSI.15 MH broth was used. Briefly, 2 µL of a 50X compound stock (usually in DMSO or water) 

was added to the wells of a 96-well round well plate. Live and dead controls received 2 µL of 

vehicle. 88 µL of MH broth were added to all wells except the dead control wells which received 

98 µL of MH broth. 100 uL of an overnight culture of bacteria was then added to 10 mL of MH 

broth and grown until the culture reached a turbidity equal to 1 X 107 – 2 X 108 cfu/mL (based on 

a previously determined calibration curve). The culture was then diluted to 5 X 106 cfu/mL and 10 

µL of this solution was added to each well except the dead controls for a final of 5 X 105 cfu/mL. 

Plates were incubated at 37 ºC for 16-20 h. Absorbance was then read on a Molecular Devices 

SpectraMax Plus 384 Microplate reader at λ = 600 nm. MIC values were defined as the lowest 

concentration of compound that resulted in ≥ 90% growth inhibition.  

N. gonorrhoeae was assessed by agar dilution method as outlined by the CLSI and the 

CDC.15,79 GC agar with 1% IsoVitaleX growth supplement was used. The agar was prepared, 

autoclaved, and cooled to 50 ºC in a waterbath. 20 µL of a 100X DMSO stock and 20 µL of freshly 

made IsoVitaleX supplement was added to each well of a 12 well plate. To this was added 1960 

µL of GC agar and the agar was gently rocked to mix. A colony of N. gonorrhoeae from a freshly 

streaked chocolate agar (GC agar with 1% bovine hemoglobin and 1% IsoVitaleX grown in 5% 

CO2 at 35-36 ºC) was resuspended in MH broth and adjusted to OD450 ~ 0.15 which is equivalent 

to 108 cfu/mL according to the CDC.79 The culture was then diluted 1:10 to give 107 cfu/mL and 5 

uL of this solution was plated 3X on each concentration of agar to give 5 X 104 cfu per spot. The 

plates were allowed to air dry in a sterile biosafety cabinet for ~15 minutes before inverting and 

placing in an incubator with 5% CO2 at 35-36 ºC for 24 h. Plates were examined for growth and 

recorded as good (+, 3/3 spots grew), poor (±, 1 or 2/3 spots grew), or no growth (-, no spots 

grew).  

Testing for clinical isolates of MRSA (other than NRS3), Coagulase-negative 

Staphylococcus, and a portion of the Streptococcus species was performed by Cubist 

Pharmaceuticals. The other Streptococcus species were tested by the UT Health Science Center 
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(San Antonio, TX). Mycobacteria species were tested by the Global TB Alliance. The N. 

gonorrhoeae clinical isolates were examined by NIH/NIAID in collaboration with the Southern 

Research Institute.  

 

DMSO Solubility Determination   

A small amount of solid compound (generally ~2 mg) was measured into a 7 mL glass vial. The 

vial was then tared. DMSO was added dropwise, sonicated, vortexed, and examined visually for 

undissolved compound. When compound had completely gone into solution, the vial was weighed 

to obtain a weight for the DMSO. The density of DMSO was then used to calculate the volume of 

DMSO added and subsequently the solubility of the compound in DMSO. 

 

Aqueous Solubility Determination   

Initially a small amount of solid compound (generally 0.5 to 1.5 mg) was measured into a 1.7 mL 

Eppendorf tube. Phosphate buffered saline (pH 7.4) was added to give a maximum final 

concentration of 1 mg/mL of compound. The compound was vortexed for ~30 seconds before 

being placed into a bath sonicator (Cole Parmer, ultrasonic cleaner) for 1 h. Longer incubation 

times (up to 24 h) were performed with select compounds and no difference in solubility was 

observed so 1 h was used for all subsequent testing. The tubes were vortexed again for 30 s 

before being centrifuged at maximum speed (13,000 ˣ g) for 10 minutes. The supernatant was 

then filtered through a 0.22 µm syringe filter (Millipore Millex MP). The filtrate was then analyzed 

by LC-MS (λ = 254 nm, ESI-TOF in positive mode, Agilent Technologies 6230 TOF LC/MS). The 

filtrate was diluted 1:2 and 1:4 and all three samples (1X, 0.5X and 0.25X) were analyzed in 

triplicate. Three independent replicates of each compound were performed. A calibration curve 

for each compound was generated from 1 – 40 µM by dissolving the compound in DMSO and 

making dilutions of the stock in DMSO. The calibration curve (measured by UV absorbance) was 
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linear over this range. The concentration of the samples was calculated based on the calibration 

curves. 

 

 

Compound Accumulation Assay 

These studies were performed by Michelle Richter. Briefly, accumulation was studied for E. coli 

strain MG1655. Bacteria were treated for 10 minutes with either 40 µM DNM-2 alone or 40 µM 

DNM-2 with 2X MIC of COL. After treatment, cells were washed and lysed. Lysates were analyzed 

by LC-MS/MS for presence of compound and compared to a calibration curve to determine the 

concentration of the compound.  

 

Checkerboard Assay 

Checkerboard assays were performed by first adding 2 µL of a 50X COL stock (dissolved in sterile 

filtered MilliQ water) to the appropriate wells. 2 µL of a 50X DNM-2 stock (dissolved in DMSO) or 

2 µL of a VANC stock (dissolved in sterile filtered MilliQ water) were added to the appropriate 

wells. 2 µL of MilliQ water and 2 µL of DMSO were added for the live and dead controls. 86 µL of 

MH broth were added to all wells except the dead control wells which received 96 µL of MH broth. 

10 µL of a 5 X 106 cfu/mL was added to each well except the dead controls for a final of 5 X 105 

cfu/mL as outlined in the CLSI guidelines.15  

 

DNA amplification and sequencing analysis 

A single colony of S. aureus grown on MH agar or isolated DNA provided by Cubist,  a single 

colony of Enterococcus grown on BHI agar, a single colony of P. aeruginosa grown on Tryptic 

Soy agar, or a single colony of B. anthracis grown on MH agar was suspended in 50 µL of the 

PCR mixture containing the primers (Table 3.13) and PCR master mix (Platinum TaqDNA 

Polymerase, invitrogen). PCR amplification was performed using the following protocol: 
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1) An initial denaturation step of 94°C for 2 minutes  

2) 94°C for 30 s 

3) 51°C (E. coli), 52°C (S. aureus, Enterococcus faecalis, B. anthracis, and N. gonorhoeae), 

58°C (Enteroccocus faecium) or 59°C (P. aeruginosa) for 30 s 

4) 72 °C for 60 s.  

5) Repeat 2-4 34 more times for a total of 35 cycles 

6) For P. aeruginosa, there was an addition 72 °C extension after the 35 cycles for 7 min. 

7) Hold at 4 °C until purification 

PCR products were purified further on a 1% agarose gel and DNA was extracted 

(QIAquick Gel Extraction Kit, Qiagen). DNA sequencing was performed by the W. M. Keck Center 

for Comparative and Functional Genomics (UIUC). The NCBI standard nucleotide BLAST 

database was used to verify the identity of the PCR products and determine mutations within the 

sequences. 
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Table 3.13. Primers used for sequencing and for site directed mutagenesis 
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Sequence alignments 

Protein sequences for sequence alignments were found on the Uniprot website. Sequence 

alignments were performed using the Uniprot align tool. 

 

Site directed mutagenesis 

pTRCHisA-GyrA plasmid containing the gene for E. coli gyrase A was kindly provided by Prof. 

David Hooper 80. Primers for mutagenesis were designed using either QuikChange Primer Design 

(Agilent) or NEB base changer and their sequences can be found in Table 3.13. Site directed 

mutagenesis was carried out with the QuikChange Lightning Site-Directed Mutagenesis Kit 

(Agilent) or NEB Q5 Site-Directed Mutagenesis Kit according to the manufacturer’s instructions 

with the modification that NEB Turbo Competent E. coli were used as the host strain. All clones 

were confirmed by sequencing. 

 

E. coli DNA gyrase expression  

Expression of WT E. coli gyrase A and gyrase B was performed as previously described 80. Briefly, 

pTRCHisA-GyrA, pTRCHisA-GyrAS83L, pTRCHisA-GyrAS83R, pTRCHisA-GyrAS83F, 

pTRCHisA-GyrAS83Y, or pTRCHisA-GyrB were introduced into One Shot BL21 Star (DE3) (NEB) 

by chemical transformation. Transformed cells were selected for on an LB ampicillin plate. Single 

colonies from a fresh plate were inoculated into 50 mL of LB with 50 µg/mL ampicillin and 

incubated aerobically at 37°C with shaking at 250 rpm overnight (14-16 h). The overnight culture 

was then used to inoculate 1L LB with 50 µg/mL ampicillin. The culture was grown aerobically 

with shaking at 250 rpm until A600 reached 0.4-0.6. Protein expression was induced with a final 

concentration of 0.5 mM of IPTG at 37°C with shaking at 250 rpm for 4h.  The culture was 

harvested by centrifugation at 5000 ˣ g for 5 min at 4 °C. Cell pellets were frozen at –20 °C, 

thawed on ice for 30 min, and resuspended in TGN150 (20 mM Tris-HCl [pH 7.5], 10% glycerol, 
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150 mM NaCl) with  0.5 mg/mL lysozyme with 2 µg/mL aprotinin, 1 µg/mL leupeptin, 1 µg/mL 

pepstatin A, and 100 µM phenylmethanesulfonylfluoride. Cells were lysed by sonication at 35% 

amplitude (10 s pulse with 30 s rest, 6 times).  The lysate was cleared by centrifugation at 35,000 

ˣ g for 30 min at 4 °C. The supernatant was batch-loaded onto 1 mL of 1:1 Ni-NTA agarose 

(Qiagen) at 4 °C for 30 min with inversion. The resin was washed with 20 mL TGN150 with 10 mM 

imidazole followed by 10 mL of wash buffer (20 mM Tris-HCl (pH 7.5), 10% glycerol, 300 mM 

NaCl, 10 mM imidazole) and eluted with TGN150 containing imidazole concentrations of 25, 50, 

100, 200, 300, and 500 mM.  Eluted fractions were assessed by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) using 4-20% TGX Mini-PROTEAN gels (Bio-

Rad). Fractions containing pure protein were pooled and dialyzed against TDEN buffer (50 mM 

Tris-HCl [pH 7.5], 5 mM dithiothreitol, 1 mM EDTA, 150 mM NaCl) overnight at 4°C utilizing a 

Slide-A-Lyzer Dialysis Cassette, 10 000 MWCO (Thermo Scientific) and concentrated to ~0.5-1 

mL using an Amicon Ultra-15 50K Centrifugal Filter Device. The concentration was determined 

by Bradford assay (Sigma) using bovine serum albumin (BSA, Thermo Scientific) as the 

control.Expression of S83L and S83R GyrA was performed identically to expression of the WT 

GyrA.  

 

DNA gyrase cleavage assay 

DNA gyrase cleavage assays were performed as previously described with minor changes 57,81-

82. 10 µg/mL supercoiled DNA (pBR322, Inspiralis) was added to buffer (35 mM TrisHCl pH 7.5, 

24 mM KCl, 4 mM MgCl2, 2 mM DTT, 1.8 mM spermidine, 6.5% glycerol, 0.1 mg/mL albumin) 

with compound or vehicle. Compound concentrations were 0.01, 0.04, 0.17, 0.68, 2.7, and 10.8 

µM except for DNM which was 8.9 µM for its highest concentration.  DNA gyrase was added to a 

final concentration of 16 nM gyrA and 32 nM gyrA (giving a final concentration of A2B2 of 8 nM) 

for 25 min at 30 °C. Linear product was revealed by addition of 0.2% SDS and 0.1 µg/mL 

proteinase K for 30 min at 37 °C.  DNA loading dye (Thermo Scientific) was added to the samples 
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and they were run on 1% agarose gels containing 0.5 µg/mL ethidium bromide. Gels were imaged 

on a Molecular Imager Gel Doc XR+ (Biorad) and bands were quantified using ImageJ83.  Percent 

of type of DNA was calculated with total DNA in each lane being 100%. For time-course cleavage 

assays, the same protocol was followed except that the initial incubation was for varying times (0, 

1, 3, 5, 10, 15, 20, 30, 60, 90, 120, and 180 min) instead of 25 min.  

 

Human topoisomerase decatenation assay  

The decatenation assay was performed with the Human Topo II Decatenation Assay Kit 

(Inspiralis) according to the manufacturer’s instructions with minor modifications. First, a master 

mix was made containing 2 µL 10X assay buffer (500 mM Tris.HCl, pH 7.5, 1250 mM NaCl, 100 

mM MgCl2, 50 mM DTT, 1000 µg/mL albumin), 0.67 µL 30 mM ATP, 1.34 µL 0.1 ng/µL  kDNA, 

and 14.3 µL of nuclease free water per sample is made. DMSO or 30X compound is added to a 

0.5 mL eppendorf tube (0.67 µL per tube). The master mix is then added to each tube (18.3 µL 

per tube). Finally, 1 U of human topoisomerase (1 µL of 1 U/µL stock) is added to each tube for 

a final volume of 20 µL.  The tubes are then incubated at 37°C for 30 min. Reactions are stopped 

by the addition of 20 µL of 24:1 chloroform: isoamyl alcohol and 20 µL of stop dye (40% sucrose, 

1 mM EDTA, 100 mM TrisHCl pH 7.5, 0.5 µg/mL bromophenol blue). Samples were run on 1% 

agarose gels containing 0.5 µg/mL ethidium bromide for 1 h at 110V or until the dye front was 

approximately halfway down the gel. Gels were imaged on a Molecular Imager Gel Doc XR+ 

(Biorad). 

 

Resistant mutant generation 

Agar plates (15 cm) were prepared containing MH broth and antibacterial compounds at 

concentrations detailed in the Figure 3.8B-C. 40 mL of an overnight bacterial culture was 

centrifuged at 3000 ˣ g for 10 min and resuspended in 0.4 mL of sterile PBS. Plates were 

inoculated with 100 µL of bacteria in PBS by spreading with beads. Inoculated plates were then 
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incubated at 37 °C for 72 h and the number of resistant colonies was counted. To determine the 

number of viable colonies spread onto each plate, dilutions of the overnight culture in sterile PBS 

were spread onto nonselective MH agar plates and plates were incubated overnight at 37 °C 

before counting colonies. 

 

Pharmacokinetic assessment  

The animal studies (PK, in vivo toxicity and in vivo efficacy) were carried out in strict accordance 

with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health. The protocol was approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of Illinois at Urbana-Champaign (Protocol Number: 13406). 

In these studies, 10-12 week old female C57BL/6 mice purchased from Charles River were used.  

DNM, DNM-2, and DNM-3 were formulated as slurries at 8.3 mg mL-1 in 25% Cremophor 

RH40/water (v/v). Before beginning the pharmacokinetic assessment, mice were first tested for 

their ability to tolerate the DNM, DNM-2, and DNM-3 at 50 mg kg-1 (p.o.). After establishing that 

this dose was well tolerated, mice were treated with DNM, DNM-2, or DNM-3 (all 50 mg kg-1) via 

oral gavage with 3 mice per time point (15, 30, 60, 120, 240, and 480 min). At specified time 

points, mice were sacrificed and blood was collected, centrifuged, and the serum was frozen at -

80 ℃ until analysis. The proteins in a 50 μL aliquot of serum were precipitated by the addition of 

50 μL of acetonitrile and the sample was centrifuged to remove the proteins. Serum 

concentrations of DNM, DNM-2, and DNM-3 were determined by HPLC. PK parameters were 

determined using GraphPad Prism Version 5.00 for Windows. Other PK studies investigating 

DNM-2 and DNM-8 at 50 and 200 mg kg-1 (p.o.) were performed by the Global TB Alliance.  

 

In vitro hemolysis assay  

Hemolysis assays were performed as previously described 84. Briefly, assays were performed 

using human erythrocytes within three days of receipt.  One milliliter of human blood purchased 
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from Bioreclamation, Inc. (Hicksville, NY) was centrifuged (10 000 ˣ g, 2 min). The pellet was 

washed three times with sterile saline (0.9% NaCl in water) by repeated gentle suspension and 

centrifugation.  The pellet was resuspended in red blood cell (RBC) buffer (10 mM Na2HPO4, 150 

mM NaCl, 1 mM MgCl2, pH 7.4). To evaluate hemolytic activity of DNM and derivatives, 1 µL 

either 3.2 mg/mL DMSO stock (or the most concentrated stock of the compound available if not 

soluble at 3.2 mg/mL in DMSO) was transferred to 0.5 mL Eppendorf tubes containing 19 µL RBC 

buffer. Negative control tubes contained 1 µL DMSO and 19 µL RBC buffer and positive control 

tubes contained 1 µL DMSO and 19 µL sterile deionized water.  A suspension of washed 

erythrocytes (10 µL) was added to each tubes and samples were incubated at 37 °C for 2h. 

Samples were centrifuged at 10,000 ˣ g for 2 min and the supernatants from each sample (25 µL) 

were transferred to a clear, sterile 384-well plate.  The absorbance of these supernatants was 

measured at 540 nm using a SpectraMaxPlus384 absorbance plate reader (Molecular Devices). 

Percent hemolysis of each sample was calculated relative to the average absorbance values 

measured for positive controls. 

 

Intercalation Assay 

Intercalation assays were performed as previously described 3. The ability of DNM-2 to intercalate 

into DNA was measured by an ethidium bromide displacement assay. Herring Sperm DNA (34 

µg/mL final) was premixed with buffer containing ethidium bromide (50 mM Tris base, 100 mM 

NaCl, 1 mM EDTA,  5 µM EtBr, pH =7.5). 95 µL of this solution was added to a 96 well plate 

containing 5 µL of DMSO solutions of compounds. In addition to vehicle controls, wells lacking 

either DNA or EtBr were also used to ensure that these did not have an effect on fluorescence. 

Doxorubicin was used as a positive control. The reactions were allowed to incubate for 30 

minutes. Fluorescence was then read on a Gemini microplate reader (Molecular Devices, 

excitation = 545 nm, emission = 595 nm). 
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Ames Test  

These tests were performed by Cytoprex (Watertown, MA) and the Global TB Alliance. Ten million 

bacteria (either S. typhimurium TA98: hisD3052, rfa, uvrB / pKM101 to detect frame-shift 

mutations or S. typhimurium TA100: hisG45, rfa, uvrB / pKM101 to detects base-pair 

substitutions) are exposed in triplicate to test agent (six concentrations), anegative control 

(vehicle) and a positive control (2-aminoanthracene or 2-nitrofluorene and 4-nitroquinoline N-

oxide) for 90 minutes in medium containing a low concentration of histidine (sufficient for about 2 

doublings.) The cultures are then diluted into indicator medium lacking histidine, and dispensed 

into 48 wells of a 384 well plate (micro-plate format, MPF). The plate is incubated for 48 hr at 

37°C, and cells that have undergone a reversion will grow in a well, resulting in a color change in 

wells with growth. The number of wells showing growth are counted and compared to the vehicle 

control. An increase in the number of colonies of at least two-fold over baseline (mean + SD of 

the vehicle control) and a dose response indicates a positive response. An unpaired, one-sided 

Student’s T-test is used to identify conditions that are significantly different from the vehicle 

control. Where indicated, S9 fraction from the livers of Aroclor 1254-treated rats is included in the 

incubation at a final concentration of 4.5%. An NADPH-regenerating system is also included to 

ensure a steady supply of reducing equivalents.  

 

hERG inhibition 

These tests were performed by WuXi AppTec (Shanghai) Co., Ltd. and the Global TB Alliance. 

Amitriptyline was used as a positive control. No further information about these tests was 

provided. 
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Micronucleus Test 

These tests were performed by Cytoprex (Watertown, MA) and the Global TB Alliance. CHO-K1 

cells are incubated with test compound over a 10 point concentration range in duplicate. The in 

vitro micronucleus test (MNT) method uses automated fluorescent cellular imaging (Thermo 

Scientific Cellomics ArrayScanr VTI HCS Reader) to assess cytotoxicity and quantification of 

micronuclei (genotoxicity). For the tests without S9 fraction, cells were incubated with compound 

for 24h. For tests with S9 fractions, cells were incubated with compound and S9 for 3h followed 

by a 21h recovery. 

 

Mammalian Cell Killing Kinetics 

HEK293 cells were plated at 10,000 cells/well in 50 µL of EMEM and allowed to attached for ~2h. 

To each well was added 50 µL of a 2X compound EMEM solution (final 1% DMSO) with 3 wells 

per compound concentration. Approximately one hour before the indicated time, 10 uL of alamar 

blue (i.e. 440 µM resazurin in sterile PBS) was added. The cells were then read 1 h after the 

indicated times. Fluorescence was read on an Analyst HT and normalized to the average 

untreated wells (i.e. 1% DMSO control, 0% cell death) and wells without cells (100% cell death). 

The data were plotted as compound concentration versus percent dead cells and fitted to a 

logistic-dose response curve using OriginPro. The data were generated in triplicate.  

 

Bacterial Cell Killing Kinetics 

10 mL of MH was inoculated with 100 µL of an overnight culture of NRS3. When it reached an 

OD = 0.16, 5 mL of this culture was added to 45 mL of MH broth. 10 mL of this culture was then 

added to a 50 mL vial with either DMSO or compound stock in DMSO so that the final 

concentrations were 0.03 µg/mL, 0.06 µg/mL, 0.12 µg/mL or 0.24 µg/mL DNM (final 0.5% DMSO). 

These vials were incubated at 37ºC with shaking (250 rpm). 100 µL aliquots were taken at the 
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indicated times, diluted, plated on non-selective MH agar, and incubated at 37ºC overnight. The 

next morning, the number of colonies was counted.   

 

In vivo toxicity assessment  

The protocol was approved by the Institutional Animal Care and Use Committee (IACUC) at the 

University of Illinois at Urbana-Champaign (Protocol Number: 14032). Six-week old male 

pathogen-free BALB/c mice were purchased from Taconics Biosciences (Albany, NY). All animals 

were housed in a pathogen free environment and received sterile food and water.  Mice (n=5) 

were treated once daily for 10 days with 50 mg kg-1 DNM-2 or vehicle (25 % Cremophor RH 40 / 

PBS (v/v)) by oral gavage. Toxicity was assessed as previously described85. Specifically, 

heparinized whole blood was collected for assessment of total white blood cells, neutrophils, 

lymphocytes, hematocrit, platelets, creatinine, blood urea, nitrogen, albumin, alanine 

aminotransferase, alkaline phosphatase, and total bilirubin. Mice were euthanized by overdosing 

with Ketamine/Xylazine, and heart, lung, kidney, liver, spleen, gastrointestinal tract and brain were 

collected for histopathology. Tissue samples were fixed 24 hours in 10% neutral buffered formalin, 

processed, and paraffin embedded, sectioned (5 μm thickness) and stained with hematoxylin and 

eosin. All slides were systematically evaluated by a single board certified veterinary anatomic 

pathologist (SL) for evidence of acute or chronic inflammation and toxicity. All lesions were 

characterized, recorded, and scored for severity (minimal = 1, mild = 2, moderate = 3, and severe 

= 4). 

 

In vivo efficacy 

The protocol was approved by the Institutional Animal Care and Use Committee (IACUC) at the 

University of Illinois at Urbana-Champaign (Protocol Number: 14032). Six-week old male 

pathogen-free BALB/c mice were purchased from Harlan Sprague-Dawley (Indianapolis, IN). All 

animals were housed in a pathogen free environment and received sterile food and water. For 
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the inoculation, overnight cultures of S. aureus clinical isolate NRS3 were diluted 1:100 into fresh 

tryptic soy broth (TSB) and grown for 2 h at 37° C. Bacteria were washed and resuspended in 

sterile PBS. The mice were anesthetized with ketamine and xylazine.  The mouse tails were pre-

warmed in 45°C for 5 minutes before 1.2 x 108 CFU of S. aureus in 50 µL of PBS were injected 

into a tail vein using a 29-gauge needle. This number of bacteria was determined from a series 

of preliminary studies in which groups of mice were infected with a range of 106 to 109 CFU of S. 

aureus.  Infected mice (15 mice per group) were then treated once daily for 10 days with 50 mg 

kg-1 DNM-2, 50 mg kg-1 CIP, or vehicle (25 % Cremophor RH 40 / PBS (v/v)) by oral gavage. For 

survival analyses a Kaplan-Meier Log Rank Survival Test was performed using OriginPro 9 

(Northampton, MA).  
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Chapter 4. Phenotype-based screening for discovery of novel anticancer agents and 

determination of the mode of action of an actinophyllic acid analogue ersindole 

Portions of this Chapter are reprinted with permission from Granger, B. A.; Jewett, I, T.; Butler, J. 

D.; Hua, B.; Knezevic, C. E.; Parkinson, E. I.; Hergenrother, P. J.; Martin, S. F. “Synthesis of (±)-

Actinophyllic Acid and Analogs:  Applications of Cascade Reactions and Diverted Total 

Synthesis” J. Am. Chem. Soc. 2013, 135, 12984-12986.1 and Knezevic, C. E.; Parkinson, E. I.; 

Lee, H. Y.; Granger, B. A.; Hua, B.; Sahn, J. J.; Martin, S. F.; Hergenrother, P. J. “Examination of 

High Hill Slope and Emax Values as Anticancer Parameters Utilizing Diverted Intermediates of 

Actinophyllic Acid” Angew. Chem. Submitted 2015. 

4.1 High-throughput phenotypic screening 

Screening of natural products and natural product-like compounds for cytotoxicity toward 

cancer cells has consistently led to the discovery of promising antitumor agents.2-3 Cell viability is 

one of the most commonly used phenotypic screens and has been used to discover many 

potential anticancer compounds.3 

4.1.1 Screening of the ent-kauranoids from the Reisman laboratory 

 The ent-kauranoids are a class of diterpenoids isolated from plants of the Isodon genus.4 

Many of the ent-kauranoids have bioactivity, including antibacterial, anti-inflammatory, and 

anticancer properties.4-5  Recently, Prof. Reisman and coworkers  developed novel syntheses of 

many of these ent-kauranoids, including (-)-maoecrystal Z,5 (-)-trichorabdal A,4 and (-)-longikaurin 

E4 (See Figure 4.1A). After these syntheses were completed, the compounds and several 

synthetic intermediates (Figure 4.1B) were evaluated in biological assays at UIUC.  
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Figure 4.1. (A) Structures of ent-kauranoids synthesized by the Reisman laboratory. (B) 

Structures of synthetic intermediates to ent-kauranoids. 

 Initial screening of the natural products along with intermediates to these natural products 

was performed in U937 (human lymphoma), A549 (human lung cancer), and HeLa (human 

cervical cancer) cell lines. Initial screening was performed at 10 µM for 72 h in 384 well plates, 

and cell viability was determined by the Alamar Blue assay. Of the compounds, longikaurin E, 

diol, maoecrystal Z, iso M-Z, trichorabdal A, and ozone all were active (≥ 70% cell death at 10 

µM) in at least one cell line. These compounds were further examined for their ability to induce 

dose-dependent cell death over 72 h. Longikaurin E was the most potent compound across the 
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three cell lines tested (IC50 < 4 µM, Table 4.1) with diol, maoecrystal Z, and iso M-Z also showing 

promising activity (Average IC50 for 3 cell lines ≤ 10 µM).  

Table 4.1. Anticancer and hemolytic activity of ent-kauranoids and their intermediates 

 

Screening was performed with compounds at 10 µM for 72 h. U937 cells were plated at 5000 cells/well in 384 well plates. A549 and 
HeLa cells were plated at 1000 cells/well in 384 well plates. Cell viability determined by the Alamar Blue assay with 100 µM doxorubicin 
as the 100% Dead and 1% DMSO as the 100% Alive. % Hemolysis was determined by adding 1 µL of a 10 mM DMSO stock to a 0.5 
mL tube. To each tube was added 19 µL of red blood cell buffer and 10 µL of resuspended erythrocytes, which had previously been 
washed and resuspended in red blood cell buffer. They were incubated for 2h at 37°C. Samples were centrifuged and the absorbance 
of the supernatant at 540 nm was determined. DMSO alone with red blood cell buffer was the negative (0% Hemolysis) control and 
DMSO in water was the positive (100% hemolysis) control. 

Trichorabdal A and ozone were less active (Average IC50 for 3 cell lines ≥ 20 µM), while 

the other compounds induced minimal cell death at concentrations up to 100 µM. The fact that 

longikaurin E shows potent activity but VWM-hydroxylactol does not strongly suggests that the 

α,β-unsaturated ketone is necessary for activity. A similar α,β-unsaturated ketone is also found in 

the highly active ent-kauranoids (diol, maoecrystal Z, iso M-Z) but not in the inactive compounds 
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(IC50 > 100 µM). This further supports the necessity of the α,β-unsaturated ketone for biological 

activity. However, the difference in potency observed between longikaurin E and trichorabdal A 

suggests that the anticancer activity of these compounds is not simply dependent upon having an 

α,β-unsaturated ketone. Instead, it is likely that the surrounding structure has an effect on activity 

as well. 

The α,β-unsaturated ketone (i.e. the Michael acceptor) is typically avoided in drug 

discovery due to its high reactivity; it has even been marked as a subset of the PAINS (Pan Assay 

Interference Compounds), which are active in a variety of high-throughput screens.6 However, 

others have demonstrated that the reactivity of this functional group can be modulated by the 

identity of the rest of the molecule.7 Thus, it is possible for compounds containing the α,β-

unsaturated ketone motif to advance to the clinic.7 In fact, there are already many FDA-approved 

drugs that have an α,β-unsaturated ketone as their active moiety, including ethacrynic acid7-8 and 

bardoxolone-methyl/RTA4029-11(Figure 4.2).  Therefore, this functional group alone does not 

preclude further investigations into these compounds.  

 

Figure 4.2. Structures of FDA approved drugs which have mechanisms of action dependent on 
their α,β-unsaturated ketones. Red indicates the α,β-unsaturated ketone which reacts to give the 
compound its activity. 

In order to advance these anticancer compounds, they must not show high toxicity to 

normal cells. For this reason, we next investigated the effect of these compounds on red blood 

cells (RBCs). None of the compounds induced hemolysis of RBCs, suggesting that they may have 

a tolerable toxicity profile (Table 4.1). Future directions for these compounds include further 
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investigations into the toxicity to normal cells in culture, tolerability in mice, and mechanism of 

action. 

4.1.2 Screening of the epipolythiodiketopiperazine compounds from the Movassaghi 

laboratory 

The epipolythidiketopiperzines (ETPs) are a class of alkaloids produced by variety of 

filamentous fungi including Chaetomium, Leptosphaeria, Aspergillus, Verticillium, Penicillium, and 

Pithomyces genera.12 Many of the ETPs have been found to have biological activity, including 

antibacterial, anticancer, antiviral, antiparasitic, antifungal, antimalarial, immunosuppressive, 

immunomodulatory, phytotoxic, nematicidal, antiplatelet, and anti-inflammatory effects.12  

 

Figure 4.3 (A) Structure of natural product ETPs. (B) ETPs that were found to have excellent 
activity against cancer cells in culture.12 

Recently, Prof. Movassaghi and his laboratory developed syntheses for many of the ETPs 

including chaetocin A and verticillin A (Figure 4.3A).12 Additionally, they synthesized a collection 

of structurally-related ETPs that were evaluated in cell culture by Dr. Karen Morrison. Two 

compounds (compound 33 and 14, Figure 4.3B) showed high potency against cell lines derived 

from a variety of tumor types, including lymphoma, breast cancer, and lung cancer.12 Further 
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analysis revealed that these compounds induce apoptotic cell death and do not result in 

hemolysis.12 With these promising results, the Movassaghi laboratory synthesized more 

compounds (Figure 4.4) which were analyzed for bioactivity.  



269 
 

 

Figure 4.4. New ETPs for testing 
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The new compounds were tested for anticancer activity against H460 (human lung 

cancer), MCF7 (human breast cancer), and U937 (human lymphoma) cells. Testing was 

performed as previously reported.12 All of the monomeric compounds were active, but not as 

active as compound 33 (Table 4.2), and none of the monomeric compounds induced hemolysis. 

Compound 33 is most likely the best lead compound in the monomeric series. However, some of 

these derivatives (e.g. 1611, 1613, and 1615) may be useful in target identification studies, given 

their activity and the presence of the azide, which could be used in bioorthogonal reactions for 

pull down or visualization purposes. 

Table 4.2. Anticancer and hemolytic activity of the ETPs 

 

Cells were plated at 2000 cells/well (H460 and MCF7) or 5000 cells/well (U937) in 96 well plate for 72 h. Viability was assessed by 

SRB as previously described.12 *Only 2 replicates. % Hemolysis was determined by adding 1 µL of a 3 mM DMSO stock to an 0.5 mL 

tube. To each tube was added 19 µL of red blood cell buffer and 10 µL of resuspended erythrocytes which had previously been 

washed and resuspended in red blood cell buffer. They were incubated for 2h at 37°C. Samples were centrifuged and the absorbance 

of the supernatant at 540 nm was determined. DMSO alone with red blood cell buffer was the negative (0% Hemolysis) control and 

DMSO in water was the positive (100% hemolysis) control. 

   

Similar to the monomers, many of the new dimers also show potent activity. Compounds 

1622 and 1623, both of which have long PEG linkers, were significantly less active. Compound 
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1621 is nearly as potent as compound 14; however, compound 14 remains the most potent of the 

compounds tested and remains the best candidate for in vivo evaluation.  

4.1.3 Screening for compounds with potent activity against breast cancer cell lines 

 As described in Chapter 2.3.1, breast cancer is the most commonly diagnosed cancer in 

women, with 231,840 estimated new cases (29% of cancer diagnoses in women) and 40,290 

predicted deaths (15% of cancer deaths in women) in the United States in 2015.13 Therefore, the 

discovery of novel anticancer agents with activity against breast cancer is an important goal. 

Breast cancers have traditionally been classified based on the expression of three important 

receptors (Estrogen Receptor (ER) +/-, Progesterone Receptor (PR) +/-, HER2+/-); cancers 

expressing none of these receptors are referred to as triple negative breast cancer (TNBC). More 

recent studies based on gene expression signatures subdivide breast cancers even further into 

six subtypes (Basal, Erbb2, LumA, LumA/B, LumB, and mixed).14 In collaboration with Claire 

Knežević breast cancer cell lines from different subtypes (HS578t, BT20, and BT549Subtype 

5, basal; HCC1954Subtype 8, basal; MCF-7 and T47DSubtype 4, luminal B) were screened. 

We focused most on the basal subtype because cancers of the basal subtype are often TNBC 

and are typically aggressive and difficult to treat.14 Compounds from two sources were evaluated 

in these cell lines: 1) a plant extract library from Prof. Ikhlas Khan and Dr. Troy Smilie (University 

of Mississippi) and 2) the compound collection at the UIUC high-throughput screening facility 

(HTSF). 

Natural products from plants have been a rich source of anticancer agents (e.g. paclitaxel 

from the bark of the Pacific yew Taxus brevifolia, vinca alkaloids from the periwinkle plant Vinca 

rosea, the camptothecins from the bark of the Camptotheca acuminata tree, and the 

epipodophyllotoxins from the root of the mayapple Podophyllum peltatum).8,15 For this reason, we 

chose to test a library of plant extracts derived from Dioscorea villosa (Wild Yam), Alangium 

salvifollium, and other plants.  



272 
 

Table 4.3. Anticancer activity of the plant extracts 

 

Screening was performed with compounds at 40 µg/mL for 48 h. Extracts that induced >70% cell death were then analyzed for their 
IC50s. Cells were plated at 2000 cells/well in 384 well plates. Percent viability determined by Alamar Blue with 100 µM DOX as the 
100% Dead and 1% DMSO as the 100% Alive.  

Some of the extracts showed moderate to potent activity against the breast cancer cell 

lines tested (Table 4.3). The root and bark extracts from Alangium salvifollium (1215c:ALSAA and 

1215b:ALSAA, respectively) showed the best activity against the breast cancer cell lines tested 

with average IC50 < 10 µg/mL. The identification of the active components from these mixtures 

remains a challenge for further pursuit of these samples.  

The second library that was tested was the UIUC High Throughput Screening Facility 

(HTSF) and Marvel compound libraries. Many promising anticancer agents have been discovered 

from these libraries, including the triphenylmethylamides16 and the deoxynyboquinones.17-19 

Because synthetic laboratories from across the United States are continuing to contribute to the 

HTSF library, further screening efforts were conducted. For these studies, compounds from HTSF 

plates 1-17 were evaluated in Hs578t cells (subtype 5, basal). From these efforts, 19 hits were 
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found, and 9 of these compounds induced dose-dependent cell death. One of these nine 

compounds was the previously identified compound deoxynyboquinone. Of the other eight 

compounds, only four had potent activity (IC50 < 10 µM, Figure 4.5). 

 

Figure 4.5. Structures of potent hits from the HTSF library against the Hs578t breast cancer cell 
line. Below each compound is the location in the library (plate number followed by the location in 
the plate), the origin of the compound, and the 48 h IC50 against Hs578t cells. 

Two of the compounds were mitomycin C derivatives synthesized by the Coates 

laboratory (UIUC). One of the compounds (6B13) was previously published as a “barely active” 

derivative of mitomycin C which showed modest in vivo efficacy in a P388 murine model of 

leukemia (minimum effective dose = 51 mg/kg).20 The other mitomycin C derivative (6C13) has 

never been reported in the literature, and no further information on the compound is known. The 

goal of this investigation was the discovery of structurally novel compounds, rather than the 

development of derivatives of known anticancer agents, so these compounds were not pursued 

further. The other two hits were compounds synthesized from isosorbide by Dr. Karen Morrison; 

evaluation of these compounds has been reported.21  

Several additional hits from the screening efforts have been described elsewhere.22 One 

of these compounds was compound 1227 (Figure 4.6), a diverted intermediate toward 

actinophyllic acid synthesized by the laboratory of Prof. Stephen Martin.1 While the natural product 

actinophyllic acid showed no anticancer activity, 1227 has potent activity against a variety of 

breast cancer cell lines (48 h IC50 ranging from 13 to 63 µM, Figure 4.6).22 Upon screening of 
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1227 derivatives, we found that a different derivative (1257 or Ersindole, Figure 4.6) was more 

potent and was chosen for further analysis.  

 

Figure 4.6. Structure of actinophyllic acid, 1227, and 1257 along with IC50 against the indicated 
cell lines at 48 h. Where error is indicated n=3, ± SEM, where error is not indicated n=1. Performed 
with Dr. Claire Knežević.  

 

4.2 Characterization of ersindole 

 After it was determined that ersindole (ERS) would be the lead compound, further 

characterization of its mode of cell death was performed. Dr. Claire Knežević determined that 

ERS kills cancer cells rapidly with steep Hill slope and Emax.22  Additionally, she found that it 

appears to kill via endoplasmic reticulum (ER) stress.22 The rest of this chapter describes the 

experiments performed to support these findings.   

4.2.1 Dose-response curves of ERS-treated cancer cells have steep Hill slopes and high 

Emax values 

 As described in Chapter 1.3, Hill slope and Emax values have recently been recognized as 

potentially important features for novel anticancer agents.23 Upon treatment with ERS for 48 h, 

the breast cancer cell line MDA-MB-231 exhibits a steep dose response curve (HS = 15) and few 
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cells are able to survive concentrations above the IC50 value (Emax = 100, Figure 4.7A). This differs 

significantly from many commonly-used anticancer drugs23 such as doxorubicin (DOX), cisplatin 

(CIS) and 5-fluorouracil (5-FU), which have shallower HS (~1) and lower Emax values (81, 90, 

and 59, respectively) than ERS (Figure 4.7A). Although the dose-response curves of cells treated 

with some anticancer drug classes show steep HS (e.g. Hsp90 inhibitors) or high Emax values (e.g. 

DNA crosslinking drugs), few exhibit both traits.23 Additionally, for almost all compounds, these 

values vary across cell lines. Evaluation of a panel of cancer cell lines from different tumor types 

reveals that ERS is unique, in that both the steep HS (average = 8.4 ± 1.3) and high Emax (100) 

are consistent across all cell lines evaluated (Figures 4.7B-C) Average IC50 values show that ERS 

is less potent than DOX, similar in potency to CIS, and more potent than 5-FU (Figure 4.7D).  

Data from the individual cells lines can be seen in Figure 4.7E.   
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Figure 4.7. (A) Dose-response curves, HS, and Emax values of doxorubicin (DOX), ERS, cisplatin 
(CIS), and 5-fluorouracil (5FU) against human breast cancer MDA-MB-231 cells, n = 3, error bars 
= standard error of the mean (SEM). (B) Average HS for 8 cell lines (A549, Hs578t, MCF-7,  
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Figure 4.7. (cont.) MDA-MB-231, MIA PaCa-2, T47D, U937, and 4T1) treated with DOX, ERS, 
CIS, or 5FU for 48 h, n = 3, error bars = SEM. *P≤0.05, **P≤0.01, ***P ≤0.001, Student’s t-test.(C) 
Average Emax values from data in part B. (D) Average IC50 values from data in part B. (E) Tabulated 
data from B-D. n = 3, mean ± SEM. 
 

Previously ERS was found to rapidly induce cell death.22 High HS and Emax values were 

also observed for ERS even after short incubations (1, 3, or 6h) for both MCF-7 (Figure 4.8A) and 

MIA PaCa-2 (Figure 4.8B-C). 

Figure 4.8. Dose-response curves of doxorubicin (DOX) and ersindole (ERS), against (A) MCF-
7 and (B) MIA PaCa-2 after the indicated treatment times. Cells were plated at 2,000 cells per 
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Figure 4.8. (cont.) well in a 96-well plate and allowed to attach overnight. Cells were then treated 
with compound for the indicated times. After treatment, fresh media was added and the cells were 
allowed to recover for a total of 48 h. Cell death was assessed by the sulforhodamine B assay. 
Data were fit to a logistical dose response curve with OriginPro 9 and values for Emax, Hill slope, 
and IC50 were obtained from these curves, n = 3, mean ± SEM. (C) Tabulated data from A and B. 

 

4.2.2. ERS causes ER stress-dependent cancer cell death 

 As described in Chapter 1.3, cancer cells experience a higher basal level of ER stress than 

normal cells. Aggravation of this chronic ER stress and subsequent activation of pro-death 

signaling has been proposed as an anticancer strategy.24-25  To further probe the mechanism of 

action of ERS, Dr. Claire Knezevic analyzed the cell death induced by this compound and the 

effect that small molecule inhibitors of various biological pathways had on its potency. Inhibition 

of ER stress with the PP1/GADD34 inhibitor salubrinal26 drastically reduced sensitivity to ERS in 

both U937 and MIA PaCa-2 cells.22 Additionally, U937 cells treated with ERS were studied via 

transmission electron microscopy. A large increase in ER size was observed, similar to the ER 

stress-inducing agent thapsigargin, and the increase in size was prevented by co-treatment with 

salubrinal.22 

4.2.2.1 ERS causes increased phosphorylation of eIF2α  

 Due to the observed protection from ERS provided by co-treatment with the ER stress 

inhibitor salubrinal and the increase in size of the ER upon treatment with ERS, the ability of ERS 

to induce ER stress was explored further. As described in Chapter 1.3, both phosphorylation of 

IRE1α and eIF2α are signs of ER stress.27 For this reason, we chose to examine the 

phosphorylation states of these proteins after treatment with ERS.  
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Figure 4.9. (A) Western blot analysis of U937 cells treated with vehicle (DMSO), 9 µM ersindole 
(ERS), or 75 µM Salubrinal and 9 µM ersindole (ERS + SAL). Cells were treated in 6-well plates 
at 300,000 cells/mL and harvested at the indicated times. Blot is representative of three 
independent experiments. (B) Quantification of triplicate blots was performed using ImageJ, ratio 
of phosphorylated protein to total protein, n = 3, mean ± SEM. *P ≤ 0.05, Student’s t-test.  

 Western blots of U937 cells treated with ERS reveal an increase in p-eIF2α after only 15 

min, with continuing increases after 30 and 60 min of treatment, consistent with induction of ER 

stress (Figure 4.9). Co-treatment with salubrinal prevented this increase in p-eIF2α throughout 

the 60 min period of treatment (Figure 4.9). This is unusual because salubrinal inhibits the 

phosphatase that dephosphorylates eIF2α, which usually causes an increase in p-eIF2α. 

Treatment with salubrinal for 3 h in the absence of ERS results in the expected small but 

significant increase in p-eIF2α that is due to prolonged inhibition of eIF2α dephosphorylation by 

PP1/GADD34. One possible explanation for this is that ERS may inhibit PP1/GADD34 at a site 

near the site of inhibition for salubrinal, but with higher efficiency. It is known that complete 

inhibition of this phosphatase is lethal to the cell. Specifically, genetic modulation of the site of 

phosphorylation of eIF2α revealed that mutation of the residue to a phospho-mimic (Asp) 

increased cell death, suggesting that while moderate levels of inhibition with agents such as 

salubrinal may be protective, high levels of inhibition are lethal.28 Cells that were co-treated with 

salubrinal and ERS were first pre-treated with salubrinal at >8X the concentration used for ERS 
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for 2 h before the addition of ERS. Thus, it is possible that salubrinal outcompetes ERS for binding 

to PP1/GADD34 in the co-treatments. Studies utilizing siRNA against PP1 further support this 

(see section 4.2.2.2).  Further studies using other PP1/GADD34 inhibitors such as guanabenz or 

sephin 129 should be performed in order to better understand this phenomenon. Also, studies to 

determine the ability of ERS to inhibit PP1/GADD34, similar to those previously performed with 

salubrinal,26 would directly determine if this is in fact the mechanism of ERS. 

 In addition, no significant change in the level of IRE1α phosphorylation was observed over 

60 minutes of treatment with ERS (Figure 4.9), which is unusual among ER stress-inducing 

agents. IRE1α phosphorylation is a common indicator of ER stress, but some suggest that it is 

difficult to observe.30 Our results suggest that either ERS induces ER stress in a PERK dependent 

(and IRE1α independent) manner (consistent with inhibiting PP1/GADD34) or our technique for 

visualizing IRE1α phosphorylation was not sufficient. Future studies should examine the effects 

downstream of IRE1α phosphorylation, including XPB1 splicing. 

4.2.2.2 shRNA screening and siRNA validation support that ERS induces ER stress  

 In order to understand the mechanism by which ERS induces ER stress, Dr. Claire Knezevic 

performed an shRNA screen for constructs that protect against ERS.22 Many of the top constructs 

are related to ER stress, including ITPR3 (codes for the inositol 1,4,5-triphosphate receptor 3, a 

ligand gated calcium channel important in signaling for ER stress),31 SGMS2 (codes for 

sphingomyelin synthase 2, an enzyme the production of sphingomyelin, a major component of 

cell and Golgi membranes),32 and ESR1 (encodes ERα, an estrogen receptor recently shown to 

be involved in ER stress).33 

 To validate these results and confirm the role of these gene products in ERS-induced cell 

death, one or two siRNAs were obtained for 66 of the enriched genes. The toxicity of ERS at 6.5 

µM in MIA PaCa-2 cells transfected with each of these siRNAs was determined (Figure 4.10). 
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Consistent with the protective action of the PP1/GADD34 inhibitor salubrinal, siRNA targeting 

PPP1R15A, the gene for PP1/GADD34, provided the most protection from ERS-induced cell 

death. Additionally, ITPR3 and ESR1, which both were ER-stress related genes found to be 

protective in the shRNA screen, were also identified as providing strong protection in the siRNA 

validation. Other genes whose silencing provided protection from ERS cytotoxicity are involved in 

membrane trafficking, such as the regulator of vesicle fusion RAB26, or protein degradation, such 

as the probable E3 ubiquitin ligase MKRN2.  

 

Figure 4.10. Cell death of MIA PaCa-2 cells transfected with various siRNA constructs followed 
by treatment with 6.5 µM ERS for 3 h. AllStars Death (Qiagen) is a collection of siRNAs that target 
genes essential to survival. It was used alone (no ERS added) and was used to estimate 
transfection efficiency. Ave ERS death is the average death induced by 6.5 µM ERS under the 
assay conditions.  

4.2.2.3 Comparison of ERS to tunicamycin and thapsigargin  

 The two most commonly-used chemical tools for the study of ER stress and its downstream 

effects are thapsigargin, a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor,34 and 

tunicamycin, a heterogeneous natural product mixture that inhibits N-glycosylation.35 After 

determining that ERS most likely causes cell death via induction of ER stress, we chose to 

compare ERS to these commonly used ER stress inducing agents. 
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Figure 4.11. (A) Dose-response curves of doxorubicin (DOX), ersindole (ERS) tunicamycin 
(TUNIC) and thapsigargin (THAPS), against (A) MCF-7 and (B) MIA PaCa-2 after the indicated 
treatment times. Cells were plated at 2,000 cells per well in a 96-well plate and allowed to attach 
overnight. Cells were then treated with compound for the indicated times. After treatment, fresh 
media was added and the cells were allowed to recover for a total of 48 h. Cell death was 
assessed by the sulforhodamine B assay. Data were fit to a logistical dose response curve with 
OriginPro 9 and values for Emax, Hill slope, and IC50 were obtained from these curves, n = 3, 
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Figure 4.11. (cont.) mean ± SEM. (C) Tabulated data from A and B. 

 The high Hill slope and Emax are two defining features of ERS. For that reason, we chose to 

characterize the dose response curves for tunicamycin and thapsigargin and compare them to 

those of ERS and doxorubicin. As shown in Figure 4.11, ERS has a higher Emax than tunicamycin 

and a greater Hill slope than both tunicamycin and thapsigargin.  

 

Figure 4.12. (A) U937 cells were pretreated with 75 µM salubrinal (SAL) or DMSO for 2h followed 
by 9 µM ER stress inducer tunicamycin (Tm), thapsigargin (Tg), or ersindole (ERS) for 30 min, 
then harvested for lysis and western blot analysis. (B) Quantification of triplicate blots using 
ImageJ, ratio of phosphorylated protein to total protein, n = 3, mean ± SEM. 

 Another important feature of ERS is its ability to rapidly induce phosphorylation of eIF2α. 

Both tunicamycin and thapsigargin also cause an increase in p-eIF2α after a 30 min treatment, 

demonstrating that all three compounds can rapidly induce ER stress (Figure 4.12). However, 

salubrinal is capable of preventing the increase in p-eIF2α induced by ERS, and not by 

tunicamycin or thapsigargin (Figure 4.12). This observation provides further evidence for a 

different mechanism of ER stress induction by ERS compared to either of these commonly-used 

agents.  

 We then compared the shRNA screening results for ERS to those for tunicamycin and 

thapsigargin. Of the enriched transcripts, only two were identified in common with tunicamycin 

and ERS samples (DEK and SGMS2), whereas 14 different enriched constructs were shared by 
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both thapsigargin and ERS, suggesting that the mode of ER stress induction by ERS may be 

more similar to thapsigargin than tunicamycin. 

 

Figure 4.13. Venn diagram of enriched shRNA constructs identified from cells surviving 
treatment with thapsigargin, tunicamycin, and ERS. 

4.3 In vivo analysis of ERS 

ER stress-inducing agents are hypothesized to be excellent anticancer candidates due to 

their ability to overwhelm an already overloaded ER.24-25 For this reason, the in vivo activity of this 

novel class of ER stress-inducing compounds was investigated. Before beginning in vivo work, 

Dr. Claire Knezevic investigated the effect of ERS on human red blood cells and found that it 

induced significant hemolysis at concentrations near the IC50 value. Additional derivatives of ERS 

were then synthesized by the Martin laboratory. We evaluated these derivatives against cancer 

cells and red blood cells in culture, with the objective of finding an active ERS derivative that does 

not induce hemolysis. One derivative (ERS-9, Figure 4.14) retained its potency against Hs578t 

cells in culture while inducing minimal hemolysis at concentrations up to 100 µM. Additionally, cell 

death induced by ERS-9 was still protected by treatment with salubrinal.22 The rest of this section 

describes further evaluation of this compound both in cell culture and in vivo.  
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Figure 4.14. Structures, anticancer activity, and hemolysis induction of ERS and ERS-9.  

4.3.1 Dose-response curves of ERS-9-treated cancer cells have steep Hill slopes and high 

Emax values 

Similar to ERS, ERS-9 displays high Hill slope and Emax values in multiple cancer cell lines 

(Figure 4.15). However, ERS-9 is slightly less potent than ERS.  
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Figure 4.15. (A) Dose-response curves of ERS and ersindole-9 (ERS-9) against A549, Hs578t, 
MCF-7, MDA-MB-231, MIA PaCa-2, T47D, U937, and 4T1 cells after 48 h of treatment, n = 3, 
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Figure 4.15. (cont.) error bars = standard error of the mean (SEM). (B) Average HS from data in 
part A, n = 3, error bars = SEM. *P≤0.05, **P≤0.01, ***P ≤0.001, Student’s t-test.(C) Average Emax 
values from data in part A. (D) Average IC50 values from data in part A. (E) Tabulated data from 
A. n = 3, mean ± SEM. 
 
4.3.2 In vivo activity of ERS-9 

 Due to the favorable activity profile and minimal hemolytic activity of ERS-9 (Figure 4.13-

14), the anticancer efficacy of ERS-9 was investigated in vivo. Dr. Hyang Yeon Lee performed all 

of the animal studies described in this section. The maximum tolerated dose of ERS-9 in C57BL/6 

mice was 60 mg kg-1 for a single intraperitoneal (IP) injection, with no lasting adverse effects. 

Therefore, ERS-9 was assessed in an aggressive36 4T1 syngeneic model of breast cancer at this 

dose, with tumor-bearing mice receiving three treatments of ERS-9.  

 

Figure 4.16. 8-week-old female Balb/c mice were subcutaneously inoculated with 1x106 4T1 
murine breast cancer cells in the right flank. At 7, 9, and 11 days post-inoculation, mice were 
injected intraperitoneally with 60 mg/kg ERS-9 in PEG-400 or an equal volume of PEG-400 alone 
(vehicle). 5 mice per group. (A) Tumor growth curves of 4T1 syngeneic murine breast cancer 
model. Arrows indicate IP injections of 60 mg kg-1 ERS-9 in PEG-400 or an equal volume of PEG-
400 alone (vehicle). Average ± SEM. (B) Tumor mass from day 19. Average ± SEM, **P≤0.01, 
***P ≤0.001, Student’s t-test. (C) Mice were weighed every 2-3 days and the average weight of 
each treatment group is shown. Values shown are mean ± SEM. 

 Tumor volumes in ERS-9-treated mice were significantly lower than those in vehicle-treated 

mice (P < 0.01, Figure 4.16A) and tumor mass measured after sacrifice was also lower (P < 0.01, 

Figure 4.16B). While treatment with ERS-9 initially resulted in weight loss, the weight of ERS-9 

treated mice was similar to that of vehicle-treated mice by day 19 (Figure 4.16C), indicating no 

overt toxicity from treatment with ERS-9. 
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4.4 Analysis of third set of derivatives from the Martin laboratory 

 While ERS-9 showed significant activity against the aggressive 4T1 model, there was 

interest in finding ERS derivatives with better potency that retained the non-hemolytic phenotype 

of ERS-9. For this reason, the Martin laboratory synthesized additional derivatives (Figure 4.17). 

 
Figure 4.17. New ERS derivatives. Difference from ERS is highlighted in red. 
Previously, a partial structure activity relationship (SAR) had been determined including:  
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1. Benzylation of the two primary alcohols is beneficial, as a compound with free alcohols 

showed minimal activity.  

2. A carbamate moiety on the indole nitrogen atom is beneficial, but not essential, for 

anticancer activity.  

3. Electron-withdrawing substituents on the secondary hydroxyl group are detrimental to 

activity.  

4. N-propyl and N-allyl groups are generally tolerated, as is the formation of a fused 

pyrrolidine ring. The presence of an electron-withdrawing N-allyl carbamate group or 

an N-benzyl group on the nitrogen atom of the basic amino group yields inactive 

analogs.  

These new derivatives have allowed us to further evaluate the SAR. Additionally, a few 

derivatives could be useful in target ID (e.g. the biotin-linked compound 1288 and the alkyne 

derivatives 1307 and 1308). First, the ability of new derivatives to kill the U937 lymphoma cell line 

and their ability to induce hemolysis were assessed (Table 4.4). Consistent with previous SAR 

studies, benzylation of the two primary alcohols appears to be essential for anticancer activity. 

Compounds with either methyl ethers (e.g. 1271, 1272, 1273, and 1274) or removed hydroxyl 

groups (e.g. 1275, 1310, and 1311) have minimal activity against U937 cells (IC50 ≥ 100 µM). 

Interestingly, all of these compounds induced no hemolysis at up to the highest concentration 

tested (333 µM). Previously it was found that derivatives with a carbamate moiety on the indole 

nitrogen have anticancer activity, but replacement of the carbamate moiety with a hydrogen or a 

methyl group was tolerated. This set of derivatives shows a similar trend, as compounds with a 

carbamate on the indole nitrogen (e.g. 1276, 1278, and 1280) showed potent activity (IC50 < 10 

µM against U937 cells). Additionally, compounds with a hydrogen (1283, 1312), an alkyl chain 

(1285, 1287) or an alkyne (1308) at this position also retain activity (IC50 < 10 µM against U937 

cells). A long chain with a biotin attached, however, is not well tolerated (1288).  
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Table 4.4. Anticancer and hemolytic activity of new ERS derivatives 

  

For anticancer studies: U937 cells were plated at 5000 cells/well in 384 well plates. Percent viability determined by Alamar Blue with 
no cells as the 100% Dead and 1% DMSO as the 100% Alive. For hemolysis studies: % Hemolysis was determined by adding 1 µL 
of a DMSO stock to a well of a PCR plate. To each well was added 19 µL of red blood cell buffer and 10 µL of resuspended erythrocytes 
which had previously been washed and resuspended in red blood cell buffer. They were incubated for 2h at 37°C. Samples were 
centrifuged and the absorbance of the supernatant at 540 nm was determined.  

Electron-withdrawing substituents on the secondary hydroxyl group were previously found 

to be detrimental to activity, but a methyl group was tolerated. Similarly, with these derivatives, 
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compounds with a free hydroxyl (1276, 1280, 1283, 1285, 1308, and1312) or those with a methyl 

group (1278, 1287) retained activity (IC50 < 10 µM). Compounds containing a methoxymethyl 

ether (1281) or with a ketone replacing the secondary alcohol (1282) have moderate activity (IC50 

~ 12 µM). Previous results indicated that N-propyl and N-allyl groups are generally well tolerated, 

as is the formation of a fused pyrrolidine ring. This study confirmed previous results, as 

compounds with no nitrogen substitution (1278, 1283), N-methyl (1276, 1287, 1312), N-propyl 

(1285), N-allyl (1308), and a fused pyrrolidine ring (1280) all showed potent activity against U937 

cells (IC50 < 10 µM). Additionally, for the first time, we found that compounds with substitution on 

the phenyl ring (1283 and 1312) retain activity. A summary of the SAR for this compound is shown 

in Figure 4.18. 

 

Figure 4.18. SAR for ERS. 

After testing the compounds for their anticancer activity, their ability to induce hemolysis 

was assessed. In order to compare compounds, the ratio of hemolysis IC50 to U937 IC50 was 

used.  For ERS, this ratio is 8, while for ERS-9 it is >18. Most compounds had ratios greater than 

8, suggesting that they may have a greater therapeutic window than ERS. Ideally, a new lead  

would be more potent than ERS-9 (i.e. U937 IC50 < 5.6 µM), have a steep Hill slope and high Emax, 

and have similar or better selectivity (hemolysis/U937 IC50 ≥ 18). Only two compounds fulfill this 

requirement: 1276 and 1312. However, before advancing a lead compound, all of the derivatives 
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with promising hemolysis profiles (hemolysis IC50 > 100 µM), moderate potency against U937 

(IC50 ≤ 25 µM), and high Hill slope and Emax should be tested in other cell lines (i.e. 1276, 1279, 

1281, 1282, 1283, 1284, 1286, 1287, 1307, 1308, 1312). Additionally, the ability of salubrinal to 

protect against cell death should be evaluated, in order to ensure that they have the same 

mechanism of action as ERS and ERS-9. 

4.5 Conclusions and future directions 

 Utilizing cell based phenotypic screening, we have identified several promising anticancer 

leads. Several of the ent-kauranoids synthesized in the laboratory of Prof. Sarah Reisman show 

promise as anticancer agents, including the natural products Longikaurin E and Maocrystal Z, as 

well as the synthetic compounds diol and Iso-M-Z. Because all of these compounds are Michael 

acceptors, further analysis of their effect on normal cells other than red blood cells is needed 

before other studies are performed. If the compounds show minimal toxicity in non-cancerous 

cells, studies should be performed to determine the mechanism of action. Studies evaluating 

novel ETPs from the laboratory of Prof. Mohammad Movassaghi show that they are not as potent 

as previous derivatives. However, some of these compounds (especially the ones with the azide 

handle) will likely be useful tools for determining the mechanism of action of these compounds. 

Screens of breast cancer cell lines with natural product extracts suggest that some of the extracts 

contain compounds with anticancer activity. Identification of the active components in these 

mixtures remains an area for future study. 

 The most promising lead anticancer compounds were identified in the screen of breast 

cancer cell lines against the HTSF library at UIUC. Dr. Claire Knezevic discovered that one of 

these compounds (1227) was a particularly promising lead. 1227 is a synthetic intermediate en 

route to actinophyllic acid from the laboratory of Prof. Stephen Martin. Testing of other 

intermediates allowed for the discovery of the more potent compound ERS. Studies that we 

performed revealed that this compound consistently and efficiently kills a variety of cancer cell 

types in culture, as evidenced by its uniformly steep Hill slope and high Emax. Additionally, we 
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found that ERS likely kills cancer cells via induction of ER stress. While ERS was not evaluated 

in vivo due to its induction of hemolysis in vitro, the derivative ERS-9 showed potent activity in an 

aggressive murine model of breast cancer. Screening of new derivatives has revealed several 

compounds with potent activity and low hemolysis. Further examination of the scope of activity 

and mechanism of these compounds is needed.  

4.6 Materials and methods 

General Biology Materials 

 Compounds were purchased from the following sources: staurosporine (Sigma Aldrich or 

Selleck Chemicals), doxorubicin (Sigma Aldrich), tunicamycin (Sigma Aldrich or Santa Cruz 

Biotechnology), thapsigargin (Santa Cruz Biotechnology), salubrinal (Selleck Chemicals),  

protease inhibitor cocktail (Calbiochem, 539134), phosphatase inhibitor cocktail (Calbiochem, 

524625), PMSF (Sigma Aldrich), ß-mercaptoethanol (BME, Sigma Aldrich). Tetracyclic indole 

compounds, including ersindole, ersindole-9, and related analogs, were prepared by the Martin 

laboratory. 10 mM stocks in DMSO were prepared, aliquoted, and stored at -20 ˚C. 

 Antibodies were purchased from Cell Signaling Technology: actin (4970L), eIF2α (9722S), 

phospho-eIF2α (2298S), and secondary anti-rabbit IgG HRP conjugate (7074S). Antibodies were 

stored at either -20 or 4 ˚C according to manufacturer’s instructions. 

 Hs578t, MCF-7, T47D, and U937 cells were obtained from ATCC. A549, MDA-MB-231, and 

MIA PaCa-2 cells were obtained from Professor David Boothman (UTSW). 4T1 cells were 

obtained from Prof. Jianjun Cheng (UIUC). MIA PaCa-2 (pancreatic cancer cells), Hs578t (human 

breast cancer), and HEK293TN (viral producer, embryonic kidney) cells were cultured in 

Dulbecco’s modified Eagle medium (DMEM) containing 4.5 g/L glucose and supplemented with 

10% (v/v) fetal bovine serum (Gemini Bio-Products, West Sacramento, CA), 1 mM sodium 

pyruvate, 100 U/ml penicillin (Cellgro, Manassas, VA), and 100 µg/mL streptomycin (Cellgro, 

Manassas, VA). MCF-7 (human breast cancer), Jurkat (human leukemia), T47D (human breast 
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cancer), U937 (human lymphoma), and A549 (human lung cancer) were grown in RPMI 1640 

supplemented with 10% (v/v) fetal bovine serum, 100 µg/ml penicillin, and 100 µg/mL 

streptomycin. All cells were maintained in a humidified atmosphere with 95% air and 5% CO2. All 

adherent cell lines were detached using 0.05% trypsin/EDTA, except for MIA PaCa-2 cells where 

0.25% trypsin/EDTA was used. 

 Absorbance measurements were made on a Spectramax Plus or a Spectramax M3 

(Molecular Devices, Sunnyvale, CA). Fluorescence measurements were made on an Analyst HT 

(LJL Biosciences) or a Spectramax M3 (Molecular Devices, Sunnyvale, CA). 

High-throughput Screen for Cancer Cell Death. This protocol was used for the screening of 

the botanical extracts and the HTSF library. Screening of the Reisman compounds was performed 

as described for the Dose Response—384 well plates. Screening of the Movassaghi compounds 

was performed as described for the Dose Response—96 well plates. The protocol is the same as 

was previously used.22 Briefly, 40 µL of media was added to all wells of a 384-well tissue culture-

treated plate using an electronic multichannel pipette. 100 nL of compound in DMSO was then 

pin-transferred from compound storage plates into media-containing wells using the Platemate 

Plus at the UIUC HTSF. A 200,000 cells/mL suspension of breast cancer cells was prepared, and 

10 µL was added to each well using an electronic multichannel pipette for a final concentration of 

2000 cells/well. Doxorubicin and etoposide (100 µM final) were used as positive controls. Plates 

were sealed with gas-permeable seals and incubated at 37 °C for 48 h. After incubation, 5 µL of 

Alamar blue (440 µM resazurin in sterile PBS) was added and allowed to incubate for 2-5 h, until 

visible color change occurred.  

Dose Response (IC50) curves—384 well plates. This protocol was used for determining IC50s 

for botanical extracts, HTSF compounds, 1227 and ersindole derivatives, and the Reisman 

compounds. To a 384-well plate, 40 µL of 1.25X compound dilution or 1.25% DMSO-containing 

media was added (final volume of 1% DMSO in all wells). The one exception to this was cisplatin, 
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which was dissolved in sterile saline. No DMSO was used in any wells containing cisplatin due to 

the ligand exchange that can occur. Concentrations of compounds tested were 1000 µM to 30 

nM for 5-fluorouracil, 100 µM to 3 nM for cisplatin, ersindole, and all ersindole derivatives, and 10 

µM to 0.3 nM for doxorubicin. On each plate at least 3 technical replicates were performed. Next, 

for HTSF compounds, 10 µL of either a 200,000 cells/mL (A549, Hs578t, MCF-7, MDA-MB-231, 

MIA PaCa-2, T47D, or 4T1) or 300,000 cells/mL (U937) suspension was added to each well, 

yielding a final concentration of 2,000 or 3,000 cells/well. For Reisman compounds, 10 uL of 

100,000 cells/mL (A549 or HeLa) or 500,000 cells/mL (U937) was added to each well, yielding a 

final concentration of 1,000 or 5,000 cells/well. The final row of the plate received no cells and 

was used as the 100% dead control. To multiple wells in column 2 was added 0.5 µL of 10 mM 

doxorubicin (final concentration of 100 µM) and 0.5 µL of 1 mM bortezomib as positive controls 

that should result in cell death. Plates were sealed with gas-permeable seals and incubated at 37 

˚C for 48 h. At that time, 5 µL of Alamar blue (440 µM resazurin in sterile PBS) was added, the 

plates were re-sealed and incubated for 4-8 hours. Fluorescence was read on an Analyst HT or 

a Molecular Devices SpectraMax 3 (excitation = 555 nm, emission = 585 nm, emission cutoff = 

570 nm). Wells were normalized to the average of non-edge untreated wells (0% cell death) and 

the average of no cells in wells (100% cell death). The data were plotted as compound 

concentration versus percent dead cells, and fitted to a logistic-dose response curve using either 

Table Curve (SYSTAT Software, Richmond, CA) or OriginPro (OriginLab, Northampton, MA). Hill 

Slope and Emax values were obtained from curves fitted by OriginPro. The data were generated 

in triplicate, and IC50 values, Hill slopes, and Emax values are reported as the average of three 

separate experiments along with standard error of the mean. 

Dose Response (IC50) curves—96 well plates. This protocol was used for determining IC50s for 

the Movassaghi compounds. These experiments were performed as previously described.12,21  

 Briefly, adherent cell lines (H460 and MCF-7) were evaluated as follows: Cells (2000 
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cells/well) were added to 96 well plates in 99 µL of media and allowed to adhere for 2-3 hours. 

Compounds were solubilized in DMSO as 100X stocks and 1 µL of the stock was added directly 

to the cells (100 µL final volume). Concentrations tested ranged from 1 pM to 10 µM. DMSO and 

cell-free wells served as the live and dead controls, respectively. After 72 hours of continuous 

exposure, viability was assessed via the SRB colorimetric assay.37 Cells were fixed by the addition 

of 50 µL of 10% trichloroacetic acid in water. After incubating at 4 °C for an hour, the plates were 

washed in water and allowed to dry. Sulforhodamine B was added as a 0.057% solution in 1% 

acetic acid (100 µL) and the plates were incubated for 30 minutes at room temperature. The plates 

were then washed in 1% acetic acid and allowed to dry. The dye was solubilized by adding 10 

mM Tris base solution (pH 10.5, 200 µL) and incubating at room temperature for 30 minutes. 

Absorbance of the plate at 510 nm was then read. IC50 values were determined from three 

independent experiments using Origin (OriginLab, Northampton, MA). 

 Suspension cells (U937) were evaluated as follows: 1 µL of DMSO stock (100X 

concentration) was added to the wells of a 96 well plates for a final DMSO concentration of 1%. 

DMSO and cell-free wells served as the live and dead controls, respectively. U937 (5,000 

cells/well) cells were distributed in 99 µL of media to the compound containing plate. After 72 

hours, cell viability was assessed by Alamar blue. 10 µL of alamar blue (440 µM resazurin in 

sterile PBS) was added, and the plates were incubated for 4-8 hours. Fluorescence was read on 

a Molecular Devices SpectraMax 3 (excitation = 555 nm, emission = 585 nm, emission cutoff = 

570 nm). The data were plotted as compound concentration versus percent dead cells, and fitted 

to a logistic-dose response curve using OriginPro (OriginLab, Northampton, MA).  

Hemolysis Assay. Whole human blood in citrate phosphate dextrose was obtained from 

Bioreclamation LLC, stored at 4 ˚C and used before expiration date. Combined 100 µL of whole 

blood with 500 µL saline (0.9% NaCl), centrifuged for 5 min at 300xg. Carefully removed 

supernatant from erythrocyte pellet, discarded liquid. Washed pellet 3x in 500 µL saline. The 
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erythrocyte pellet was resuspended in 800 µL of Red Blood Cell Buffer (10 mM Na2HPO4, 150 

mM NaCl, 1 mM MgCl2, pH 7.4). To a 0.5 mL eppendorf tube or a PCR plate was added 1.0 µL 

of 30X compound in DMSO and 19 µL RBC Buffer.  For negative controls, 1.0 µL DMSO was 

combined with 19 µL RBC buffer. For positive controls, either 20 µL MilliQ H2O or 1.0 µL 30% 

Triton X-100 were combined with 19 µL RBC Buffer. Tubes or plates were briefly centrifuged. 

Next, 10 µL of washed erythrocyte suspension was added to each tube, then capped or sealed. 

After incubation at 37 ˚C for 2 h, samples were centrifuged for 5 min at 300xg, and 20 µL of 

supernatant was carefully removed and transferred to wells of a clear flat-bottomed 384-well plate. 

Absorbance was measured at 540 nm. Water and detergent controls were used for 100% 

hemolysis and DMSO vehicle controls were used for 0% hemolysis. The data were plotted as 

compound concentration versus percent hemolysis, and fitted to a logistic-dose response curve 

using either Table Curve (SYSTAT Software, Richmond, CA) or OriginPro (OriginLab, 

Northampton, MA). 

Dose Response Timecourse. To a 96-well plate, 50 µL of media containing 40,000 cells/mL 

(MCF-7 or MIA PaCa-2) were added for a final seeding density of 2,000 cells/well. These cells 

were then allowed to attach overnight (typically ~12h). After adhering, 50 µL of media containing 

2X compound dilution or 2% DMSO containing media was added to the cells. On each plate at 

least 3 wells per compound concentration were prepared. Compound concentrations tested were 

100 µM to 3 nM for ersindole, tunicamycin, and thapsigargin and 10 µM to 0.3 nM for doxorubicin. 

Wells with just DMSO were used as 0% dead controls and wells without cells were used as the 

100% dead controls. Plates were incubated at 37 ˚C for either 1, 3, or 6 h. At that time, media 

was removed from the wells, the wells were washed with 100 µL of fresh media, and then 200 µL 

of new media was added to the wells. Plates were then incubated at 37 ˚C until the live control 

wells were confluent (generally 48 h). The sulforhodamine B assay was then used to assess cell 

viability. Briefly, 100 µL of cold 10% trichloroacetic acid was added for a final concentration of 
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3.3% TCA and the plates were incubated at 4 °C for a minimum of 1 h. The plates were then 

washed with water and allowed to air dry. 100 µL of a 0.057% (w/v) sulforhodamine B and 1% 

(v/v) acetic acid solution were added and allowed to incubate at room temperature for 30 minutes. 

The plates were then rinsed 4 times with 1% (v/v) acetic acid and allowed to air dry. 200 µL of a 

10 mM Tris base solution (pH ≥ 10.5) was added to each well and allowed to incubate for 30 

minutes at room temperature. Absorbance at 510 nm was read on a Molecular Devices 

SpectraMax 3 and normalized to the average of non-edge untreated wells (0% cell death) and 

the average of no cells in wells (100% cell death). The data were plotted as compound 

concentration versus percent dead cells, and fitted to a logistic-dose response curve using 

OriginPro. IC50, Hill Slope and Emax values were obtained from curves fitted by OriginPro. The 

data were generated in triplicate, and IC50 values, Hill slopes, and Emax values are reported as the 

average of three separate experiments along with standard error of the mean. 

Western blotting. U937 cells at a density of 300,000 cells/mL were treated with indicated 

amounts of compound for indicated times in 6-well plates. Cells were then transferred to 15-mL 

conical tubes, centrifuged (3 min, 500xg), and the media was discarded. The cell pellet was 

resuspended in 1.0 mL sterile PBS and transferred to a 1.7-mL tube, centrifuged (3 min, 500xg) 

and PBS was discarded. The cell pellet was resuspended in RIPA lysis buffer (50 mM Tris, 150 

mM NaCl, 1% Triton X-100, 0.5% Na-deoxycholate, 0.1% SDS, pH = 7.4) containing 1X protease 

inhibitor cocktail, 1X phosphatase inhibitor cocktail, and 1 mM PMSF. The suspension was 

vortexed for 3 seconds 3-5x over a 10 min incubation on ice. The lysate was clarified (15,000xg, 

10 min) and the pellets were discarded. Protein concentration was determined by BCA assay and 

lysates were diluted with MilliQ H2O to achieve a uniform protein concentration. Lysates were 

stored at -20 ˚C until use. 

 Gel samples were prepared by combining 13.5 µL of lysate with 2.5 µL 6X Laemmli dye 

containing 5% ß-mercaptoethanol (BME) in 0.5-mL tubes and heated to 95 ˚C for 5 min to 
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denature proteins. Once cooled, the samples were loaded onto a 4-20% Tris-HCl 15-well gel 

(Mini-Protean, TGX, Bio-Rad) and run at 120 V for 1 h. The gel was transferred to an activated 

PVDF membrane in Towbin transfer buffer (192 mM glycine, 25 mM Tris-HCl, 20% methanol, pH 

= 8.3) for 2 h at 45 V.  

 Membranes were blocked overnight at 4 ˚C in 5% milk or bovine serum albumin in TBST. 

Membranes were then washed quickly 2x with TBST (25 mM Tris, 150 mM NaCl, 0.1% Tween-

20, pH = 7.6), then washed twice for 10 min in TBST, followed by an overnight incubation at 4 ˚C 

with 1:500-1:1000 dilution of primary antibody in 2% milk or bovine serum albumin in TBST. Next, 

membranes were washed 2x quickly and 2x 10 min with TBST, then incubated at room 

temperature for 2 h in a 1:10,000 dilution of secondary antibody (rabbit or mouse IgG horseradish 

peroxidase conjugate). Then membranes were washed 2x quickly and 2x 10 min with TBST, 

followed by 3-4 quick washes with PBS, then incubated for 3 min in SuperSignal West Pico 

Chemiluminescent Substrate (Thermo Scientific) mixture before visualization. 

siRNA validation 

 siRNA were ordered from Qiagen in the FlexiPlate siRNA 384 well plate format with 0.1 

nmol siRNA per well. When validated siRNAs were available, they were used. For transcripts that 

did not have validated siRNAs, two different siRNAs were ordered. See below for a table of the 

siRNAs that were used in this study. After thawing and centrifuging the plate of siRNAs, 50 µL of 

sterile RNAse free water was added to obtain a stock plate with 2 µM siRNA. The siRNA were 

allowed to dissolve for 30 minutes at 4 °C with occasional shaking. The plates were then 

centrifuged again and working plates were made. Then, 3.5 µL of siRNA was transferred to a 

sterile 96 well plate and 36.5 µL of sterile RNAse free water was added for a 175 nM stock.  

 Polyplus INTERFERin reverse transfection protocol was followed for the siRNA validation. 

Briefly, 2 µL of siRNA was added to a sterile RNAse free 96 well plate. AllStars Negative Control 



300 
 

siRNA was used for the live control and AllStars Hs Cell Death siRNA was used for the dead 

control. To the siRNA was added 96 µL of room temperature Optimem and 2 µL of INTERFERin. 

The solution was mixed by pipetting up and down and 50 µL was transferred to a new 96 well 

plate. Both plates were incubated at room temperature for 15-30 minutes. 

 While the plates were incubating, MIA PaCa-2 cells were trypsinized and then resuspended 

at 16,000 cells/mL in normal media. 125 µL of the cell suspension was then added to the plates 

for a final seeding density of 2000 cells/well. The plates were then incubated at 37 °C for 60 h. 

The plates were then treated with either DMSO or 6.5 µM ersindole for 3 h. After 3 h, media was 

removed, the plates were washed with 100 µL of fresh media and then 200 µL of media was 

added. Cells were allowed to recover until the live control was confluent (usually ~48 hours). Cell 

viability was then assessed using the sulforhodamine B assay. Briefly, 100 µL of cold 10% 

trichloroacetic acid was added for a final concentration of 3.3% TCA and the plates were 

incubated at 4 °C for a minimum of 1 h. The plates were then washed with water and allowed to 

air dry. 100 µL of a 0.057% (w/v) sulforhodamine B and 1% (v/v) acetic acid solution were added 

and allowed to incubate at room temperature for 30 minutes. The plates were then rinsed 4 times 

with 1% (v/v) acetic acid and allowed to air dry. 200 µL of a 10 mM Tris base solution (pH ≥ 10.5) 

was added to each well and allowed to incubate for 30 minutes at room temperature. Absorbance 

at 510 nm was read on a Molecular Devices SpectraMax 3 and normalized to the average of 

AllStars Negative Control siRNA (0% cell death) and the average of AllStars Hs Cell Death siRNA 

wells (100% cell death). Two independent replicates were performed.  

 

Gene 
Symbol siRNA ID 

APAF1 Hs_APAF1_14 

PPP1R15A Hs_PPP1R15A_5 
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ESR1 Hs_ESR1_8 

MGC26963 Hs_MGC26963_8 

PERP Hs_PERP_7 

RAB26 Hs_RAB26_5 

ITPR3 Hs_ITPR3_2 

NCF4 Hs_NCF4_3 

HMMR Hs_HMMR_5 

IDH3A Hs_IDH3A_1 

PEBP1 Hs_PEBP1_2 

FLJ10858 Hs_FLJ10858_5 

PPM1H Hs_PPM1H_1 

SLC7A6 Hs_SLC7A6_1 

RTN3 Hs_RTN3_2 

ARHGAP1 Hs_ARHGAP1_5 

ITPR3 Hs_ITPR3_1 

NCF4 Hs_NCF4_1 

PPM1H Hs_PPM1H_2 

SLC7A6 Hs_SLC7A6_2 

RTN3 Hs_RTN3_6 

ARHGAP1 Hs_ARHGAP1_6 

RNMT Hs_RNMT_6 

HNRPH3 Hs_HNRPH3_7 

RASA1 Hs_RASA1_2 

CACYBP Hs_CACYBP_5 

SLC22A4 Hs_SLC22A4_6 

C1orf149 Hs_C1orf149_3 

NCOA3 Hs_NCOA3_2 

RBM35A Hs_RBM35A_1 

MKRN2 Hs_MKRN2_4 

MAN1A2 Hs_MAN1A2_6 
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POU5F1 Hs_POU5F1_2 

CDH18 Hs_CDH18_5 

POLR2J2 Hs_POLR2J2_3 

ZNF148 Hs_ZNF148_5 

HYPE Hs_HYPE_2 

MTMR9 Hs_MTMR9_5 

UAP1 Hs_UAP1_5 

NIT2 Hs_NIT2_3 

GANAB Hs_GANAB_1 

IL17RB Hs_IL17RB_2 

RNMT Hs_RNMT_5 

HNRPH3 Hs_HNRPH3_5 

RASA1 Hs_RASA1_1 

CACYBP Hs_CACYBP_4 

SLC22A4 Hs_SLC22A4_5 

C1orf149 Hs_C1orf149_2 

NCOA3 Hs_NCOA3_1 

FLJ20171 Hs_FLJ20171_4 

MKRN2 Hs_MKRN2_2 

MAN1A2 Hs_MAN1A2_2 

POU5F1 Hs_POU5F1_10 

CDH18 Hs_CDH18_6 

POLR2J2 Hs_POLR2J2_6 

ZNF148 Hs_ZNF148_8 

HYPE Hs_HYPE_5 

MTMR9 Hs_MTMR9_6 

UAP1 Hs_UAP1_6 

NIT2 Hs_NIT2_5 

GANAB Hs_GANAB_2 

IL17RB Hs_IL17RB_3 
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OSBPL7 Hs_OSBPL7_6 

FLVCR Hs_FLVCR_8 

SATL1 Hs_SATL1_12 

POL3S Hs_POL3S_1 

CCPG1 Hs_CCPG1_6 

CYP2C19 Hs_CYP2C19_3 

ELF1 Hs_ELF1_8 

TAF6L Hs_TAF6L_4 

HS2ST1 Hs_HS2ST1_7 

LAMP1 Hs_LAMP1_6 

RNF4 Hs_RNF4_5 

DEK Hs_DEK_4 

RPN2 Hs_RPN2_2 

COL5A1 Hs_COL5A1_1 

MCF2 Hs_MCF2_1 

STX16 Hs_STX16_1 

ELOVL6 Hs_ELOVL6_4 

NFAT5 Hs_NFAT5_2 

VN1R1 Hs_VN1R1_1 

TSC2 Hs_TSC2_1 

OSBPL7 Hs_OSBPL7_5 

FLVCR Hs_FLVCR_6 

SATL1 Hs_SATL1_13 

POL3S Hs_POL3S_2 

CCPG1 Hs_CCPG1_1 

CYP2C19 Hs_CYP2C19_1 

ELF1 Hs_ELF1_7 

TAF6L Hs_TAF6L_2 

HS2ST1 Hs_HS2ST1_5 

LAMP1 Hs_LAMP1_2 
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RNF4 Hs_RNF4_7 

DEK Hs_DEK_5 

RPN2 Hs_RPN2_5 

COL5A1 Hs_COL5A1_2 

MCF2 Hs_MCF2_3 

STX16 Hs_STX16_6 

ELOVL6 Hs_ELOVL6_5 

NFAT5 Hs_NFAT5_3 

VN1R1 Hs_VN1R1_2 

TSC2 Hs_TSC2_3 

CLK3 Hs_CLK3_5 

CLK3 Hs_CLK3_6 

SLC25A20 Hs_SLC25A20_1 

SUPT7L Hs_SUPT7L_1 

CFH Hs_CFH_2 

RRBP1 Hs_RRBP1_2 

PPIE Hs_PPIE_1 

PIGC Hs_PIGC_7 

SLC25A20 Hs_SLC25A20_2 

SUPT7L Hs_SUPT7L_2 

CFH Hs_CFH_3 

RRBP1 Hs_RRBP1_4 

PPIE Hs_PPIE_9 

PIGC Hs_PIGC_8 

UBE1 Hs_UBE1_5 

PRC1 Hs_PRC1_3 

UBE1 Hs_UBE1_2 

PRC1 Hs_PRC1_5 
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Murine Maximum Tolerated Dose Determination 

Ersindole-9 was dissolved in PEG400 and administered to C57BL/6 female mice (10-12 week 

old, Charles River) intraperitoneally using a 1 mL syringe fitted with a 25 ga needle. The maximum 

tolerated dose of ersindole-9 was determined to be 60 mg/kg for a single dose.  

Murine 4T1 Cancer Model 

8 week old, female Balb/C mice (Charles River) were lightly sedated with i.p. 

xylazine/ketamine/saline solution and the right flank was shaved. Following sedation, 4T1 murine 

breast cancer cells suspended in chilled HBSS (1 x 106 cells in 100 µL) were injected 

subcutaneously into the right flank using an insulin syringe. On day 7 after inoculation, the mice 

were randomized with 8 mice per group for vehicle or 5 mice per group for ersindole-9 treatment. 

Vehicle (PEG400) or compound was administered intraperitoneally as a PEG400 solution (12 

mg/mL in PEG400, 100 µL was injected per 20 g weight mouse for 60 mg/kg dosage) on days 7, 

9, and 11. Tumor measurements were performed every 2 or 3 days using a caliper and tumor 

volume was calculated using the equation (0.5 × l × w2). On day 19 after the 4T1 cells inoculation, 

the average tumor volume in the control group reached approximately 1000 mm3 so all mice in 

both groups were sacrificed. The tumors were then surgically removed and their mass was 

measured.   
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