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ABSTRACT 

Peptides are an attractive class of therapeutics, occupying a niche between small 

molecules and biologics. Research in the van der Donk lab focuses on lanthipeptides, a class of 

ribosomally synthesized and post-translationally modified peptides (RiPPs) that commonly 

feature antibacterial activity and contain the characteristic thioether residues lanthionine (Lan) 

and methyllanthionine (MeLan). Installation of thioether crosslinks in lanthipeptide biosynthesis 

is carried out by designated synthetases and involves dehydration of Ser/Thr residues and 

cyclization via Michael-type addition.  

The remarkably broad substrate scope of the synthetase ProcM inspired us to explore its 

mechanism in detail (chapter 2). My studies on ProcM revealed the directionality of dehydration, 

the order of cyclization, and that, despite the impressive substrate scope, none of the cyclizations 

are non-enzymatic. In collaboration, we established the irreversibility of the Michael-type 

addition and proposed that the topology of the thioether rings is under kinetic control. Solid 

phase peptide synthesis (SPPS) was used to generate the substrates to study ProcM, and is also a 

flexibile tool to access non-native lanthipeptide analogues. Interestingly, a lanthipeptide, 

cytolysin S (CylLS”), exhibited cytolytic activity in synergy with cytolysin L (CylLL”). Given 

that a thioether crosslink in CylLS” has an unusual LL-stereochemistry, the synthesis of a 

diastereomer of CylLS” with the more common DL-stereochemistry was achieved by SPPS 

(chapter 3). We probed whether the cytolytic activity depended on the LL-stereochemistry 

observed in CylLS”. Surprisingly, the unusual LL-stereochemistry was found to be important for 

the antibacterial activity, but not necessary for the hemolytic activity of CylLS”. I have also 

synthesized another hydrophobic lanthipeptide analogue, the portion of microbisporicin that 

contains the A and B ring (chapter 4). We established that this motif is not recognized by the 
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halogenase MibH, and that the C terminus of microbisporicin is necessary for the chlorination by 

MibH. 

During my graduate studies, I had the opportunity to collaborate in a different area of 

research in our laboratory, the phosphonates. My efforts in the syntheses of various substrates 

and intermediates were instrumental in elucidating the biosynthetic pathways of dehydrophos, 

fosfazinomycin, and rhizocticin (chapter 5).  
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CHAPTER 1: PEPTIDE THERAPEUTICS AND LANTHIPEPTIDES 

1.1.   PEPTIDES AS THERAPEUTICS 

The pharmaceutical industry’s focus has been traditionally dominated by small 

molecules. A higher attrition of compounds in clinical trials, resulting in diminishing returns on 

investment in new compounds in recent times, has spurred interest in other modalities for 

treating diseases. Based on size and complexity of the molecule, biologics (including proteins 

such as antibodies and enzymes) occupy the other end of the size spectrum of chemical space 

compared to small molecules. Peptides fall in between, exhibiting properties of both small 

molecules and biologics (1). Currently, there are about 60 U.S. FDA-approved peptide 

therapeutics, 140 peptide-drugs in clinical trial, and 500 peptide-drugs in preclinical trials (2). 

The major therapeutic areas treated with peptide-drugs are oncology, infectious diseases, 

cardiovascular, and metabolic diseases (3).  

1.1.1. Advantages of Peptide-Therapeutics 

Traditionally, therapeutics span two major classes: small molecules (<500 Da) and 

biologics (>5000 Da) (4). Small molecules are designed to comply with Lipinski’s “rule-of-five” 

(5, 6). Accordingly, to ensure oral bioavailability of the drug candidate, the molecular weight is 

kept lower than 500 Da, the compound should have less than 5 H-bond donors, 10 H-bond 

acceptors, and the calculated LogP (cLogP, measure of lipophilicity suggested by the ratio of 

compound’s distribution between octanol and water) should be less than 5. Thus, Lipinsky’s 

rules disfavor the use of peptides as drug candidates and they are less likely than small molecules 

to be absorbed in the gastrointestinal tract. However, small molecules often do not have high 

target specificity, which is associated with undesired off-target effects. Biologics, on the other 

hand, can have extremely high selectivity for their biological target along with high potency. 
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These molecules include proteins, antibodies, enzymes, and other macromolecules and account 

for a significant portion of FDA approved drugs (Figure 1.1). Biologics can be expensive to 

manufacture and can require special handling, storage, and analytical tools. Peptides bridge the 

gap between small molecule drugs and biologics (1, 4). Though peptides are less expensive to 

produce than biologics, they often share certain strengths with biologics that are absent in small 

molecules. Like biologics, peptides are associated with high selectivity towards targets and high 

potency. Peptides suffer less from instances of adverse immunogenic response, a problem often 

faced by biologics (7). Compared to biologics, peptides have greater stability, ease of handling 

and synthetic tractability. Compared to small molecules, peptides have better efficacy and high 

specificity towards their target (4). In targeting protein–protein interactions, which involve large 

surface areas, peptides are also better candidates than small molecules (8). Unlike many small 

molecules, the target-selectivity of peptides translates into better safety and tolerability (2), and 

peptides degrade to amino acids, and are therefore less toxic than small molecules (9). 

Furthermore, peptides have short half-lives and hence do not accumulate in the tissue.  

 

Figure 1.1. Distribution of FDA approved drugs of various therapeutic modalities. Adapted from 

Fernando et al. (10). 
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1.1.2. Overcoming Challenges of Peptide Therapeutics 

Peptides have many advantageous properties, but they face several challenges as 

therapeutics, and such challenges have discouraged the pharmaceutical industry from investing 

in peptide research (11). Peptides tend to have short half-lives in the body and are rapidly 

degraded by proteases present in the digestive system and blood plasma. Generally, peptides 

suffer from poor oral bioavailability because of this proteolytic degradation. Furthermore, the 

liver and kidneys rapidly eliminate peptides from the blood stream, resulting in poor 

pharmacokinetics profiles. The hydrophilicity of the peptide chain can also make them unable to 

cross physiological barriers, including the plasma membrane. The production cost of peptides is 

less than that of biologics, but still higher than that of small molecules (11).  

Several chemical modifications on peptide molecules allow their use as effective 

therapeutic agents (11). Substitution of proteinogenic amino acids with D-amino acids or 

unnatural amino acids to block potential protease cleavage sites improves plasma stability. 

Constraining the peptide with various macrocyclizations including head to tail, side chain to side 

chain, and side chain to backbone, lactam and lactone formation, disulfide formation, lanthionine 

formation, and many other less common forms of cyclization can also block protease degradation 

(12-14). Such macrocyclization also reduces the flexibility of peptides and improves target-

binding. Isosteric or other replacement of amide bonds also improves the stability of peptides to 

endopeptidases. Often the N- and C-termini of peptide chains are blocked by N-acylation, N-

pyroglutamylation, C-amidation, etc. (Figure 1.2 shows some examples) to provide resistance 

towards exopeptidases. Peptides are sometimes bound to serum albumin protein or are PEG-

ylated to improve pharmacokinetics by lowering the renal clearance.  
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1.1.3. Notable Peptide Therapeutics 

Several ‘block-buster’ drugs treating a variety of diseases (see Figure 1.2 for examples), 

with sales in excess of a billion dollars are peptides. The majority of approved therapeutic 

peptides are short (less than 20 aa), representing around 70% of marketed peptide drugs (Figure 

1.3) (4). It is to be noted that the mentioned therapeutic peptides (Figure 1.2) all bear structural 

modifications to improve their properties, as mentioned earlier. Leuprolide is a gonadotropin 

receptor agonist; octreotide inhibits secretion of growth hormone and treats acromegaly and 

cancer; goserelin treats breast and prostate cancer, endometriosis and fibroids; oxytocin is used 

to induce labor; and fuzeon is an anti-retroviral drug.   
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Figure 1.2. Structures of a few selected successful peptide drugs. D-amino acids are colored 

blue, non-native moieties are colored red.  
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Figure 1.3. Size distribution of approved peptide therapeutics. The number of candidates is in 

parenthesis. The lengths were compiled from data on 67 reported peptide drugs (4, 11).  

 

1.2.  ANTIMICROBIAL DRUGS: NEED OF THE HOUR 

Antimicrobial resistance is a growing problem in our society and is causing a great loss 

of life and resources (15). The U.S. centers for disease control and prevention (CDC) estimated 

in 2013 that over 2 million infections resistant to some classes of antibiotics result in 23,000 

deaths in the U.S. each year, and require over 8 million days of hospital-stay. The illnesses and 

deaths cost over $20 billion in healthcare costs, and an additional $35 billion in lost productivity 

(16).  

1.2.1. Mechanism of Antimicrobial Resistance 

Bactericidal agents kill bacteria, while bacteriostatic agents result in cessation of bacterial 

growth. Antibiotics primarily target bacteria by inhibiting their cell wall biosynthesis (17), 

protein synthesis (18), or DNA replication and repair (19). The action of antibiotics pose survival 

stress on the bacteria and a combination of spontaneous mutations and horizontal gene transfer 

cause bacteria to acquire various mechanisms of resistance (Table 1.1). Three primary 

mechanisms of resistance are noted. First, the drug is effluxed out of the cytoplasm, lowering the 
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intracellular concentration of the drug below the therapeutic threshold, as is observed in the case 

of tetracycline resistance (20). Second, the drug may lose activity due to structural modifications, 

often catalyzed by enzymes produced by the resistant organism. A well-known example is the -

lactamase-catalyzed ring-opening of -lactam antibiotics (21). Third, the target may be modified 

such that the drug can no longer bind to it, as is the case in vancomycin resistance (22).  

Antibiotics 

(Target) 

Specific Target Mechanism  Resistance  

-lactams 

(Cell wall) 

Transpeptidases/ 

transglycosylases 

(PBPs) 

Inhibits enzymes that 

generate crosslinks in 

peptidoglycan  

-lactamases, PBP 

mutants 

Vancomycin 

(Cell wall) 

D-Ala-D-Ala of 

peptidoglycan and lipid 

II 

Blocks substrate  

to inhibit transpeptidation  

Mutant D-Ala-D-

Lac or D-Ala-D-Ser 

no longer blocked 

Erythromycin class 

(Protein synthesis) 

Peptidyl transferase, 

center of the ribosome 

Blocks protein synthesis rRNA methylation, 

drug efflux 

Tetracyclines 

(Protein synthesis) 

Peptidyl transferase Blocks protein synthesis Drug efflux 

Aminoglycosides 

(Protein synthesis) 

Peptidyl transferase Blocks protein synthesis Drug modified by 

enzymes 

Oxazolidinones 

(Protein synthesis) 

Peptidyl transferase Blocks protein synthesis Unknown 

Fluoroquinolones 

(DNA replication) 

DNA gyrase Blocks DNA replication Mutations of DNA 

gyrase 

Table 1.1. The molecular targets, modes of action, and mechanism of resistance of major 

antibacterial drug classes are presented. Table adapted from Walsh (19).  

 

1.2.2. ESKAPE Pathogens: Current Threats by Resistant Microbes 

A group of antibiotic-resistant bacteria comprised of Enterococcus faecium, 

Staphyococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas 

aeruginosa, and Enterobacter spp. is referred to as ‘the ESKAPE pathogens’ (23). These 

pathogens are often resistant to most antibiotics (24). E. faecium is a Gram-positive, facultative 

anaerobic pathogen, which is usually resistant to -lactam antibiotics. Vancomycin-resistant 
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enterococci (VRE) show high resistance to all glycopeptide antibiotics, and VRE also aids in 

biofilm formation. S. aureus is a Gram-positive bacterium commonly involved in biofilm 

formation. Methicillin resistant S. aureus (MRSA) shows resistance against all -lactam 

antibiotics such as penicillin, cephalosporin, and carbapenem. MRSA is often treated with 

glycopeptide antibiotics like vancomycin, a treatment that is threatened by the occurrence of 

vancomycin-intermediate and vancomycin-resistant S. aureus (VISA and VRSA). K. pneumonia 

is a member of Gram-negative enterobacteriaceae, which readily accumulates and transfers genes 

responsible for multi-drug resistant infections. K. pneumonia is responsible for widespread 

resistance against -lactam antibiotics including carbapenem, often used as a drug of last resort 

in Gram-negative infections. A recent report of emergence of New Delhi metallo--lactamase-1 

among K. pneumonia causes great concern as it carries plasmid-encoded broad resistance genes 

against several antibiotics (25). A. baumannii is another Gram-negative pathogen, known for its 

persistence in the environment. Often found in intensive care units and surgical wards, some A. 

baumannii have acquired resistance against all known antibiotics. P. aeruginosa is a Gram-

negative, facultatively anaerobic organism, often found in the mucous of cystic fibrosis patients. 

Resistant P. aeruginosa have efficient drug-efflux pumps that confer resistance towards 

fluoroquinolones and -lactams, and can only be treated by colistin, a cyclic peptide antibiotic. 

Enterobacter spp. commonly cause urinary tract and bloodstream infections, and the resistant 

strains respond only to colistin and tigecyclin. Thus, ESKAPE pathogens represent a select group 

of pathogens which often exist as resistant strains immune to almost all known antibiotics (24). 

1.2.3. Peptides as Antimicrobial Agents 

Antibiotic resistance and the dwindling of novel antibiotics in the pharmaceutical 

industry pipeline urgently necessitate exploration of novel antibiotics. Antibiotics derived from 
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peptide scaffolds are proving to be potent agents for treating bacterial infections (26). Such 

peptide antibiotics often bear net positive charge and electrostatically bind to the negatively 

charged bacterial membranes (27). Besides membrane disruption by electrostatic interaction and 

other mechanisms such as binding to lipid II (28), peptides can also modulate the immunity of 

the host to kill pathogens (29).  Interestingly, certain peptide-derived antibiotics have proven 

effective in penetrating biofilms and treating recalcitrant infections (30). The most recently 

reported novel antibiotic is teixobactin (reported in 2015), a depsipeptide that binds to lipid II 

and interferes with cell wall biosynthesis, and importantly is found to kill cells without 

detectable resistance (31). The last new class of antibiotic approved by FDA is daptomycin 

(reported in 1987 as LY146032 (32), approved in 2003), a cyclic lipopeptide that disrupts the 

bacterial cell membrane resulting in cell death (33, 34). It has been over 40 years since the 

discovery of fluoroquinolones, the last novel drugs for treating Gram-negative bacteria. Colistin 

is a cyclic peptide that is active against Gram negative bacilli and is used as a drug of last resort 

to treat infections caused by resistant pathogens (see Figure  1.4 for structures of some peptide-

based antibiotics) (35). Colistin was previously rejected due to nephrotoxicity, but was revived to 

treat otherwise resistant microbes like carbapenem resistant enterococci (36). Given that it is 

difficult for bacteria to develop resistance against certain peptide-based antibiotics, such 

therapeutics are immensely promising in the fight against resistant infections.  
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Figure 1.4. Structures of selected potent antibacterial peptides. D-amino acids are colored blue, 

non-proteinogenic moieties are colored red. 

1.3.  RIBOSOMALLY SYNTHESIZED AND POST-TRANSLATIONALLY 

MODIFIED   NATURAL PRODUCTS 

A major class of peptide natural products are generated by the ribosome and further 

modified post-translationally. Referred to by the acronym RiPPs (Ribosomally Synthesized and 

Post-Translationally Modified Peptides), they exhibit a tremendous structural diversity. 

Typically, only peptides below 10 kDa are considered part of RiPPs to distinguish them from 

post-translationally modified proteins. The biosynthesis of these compounds is termed as Post-

Ribosomal Peptide Synthesis (PRPS) (37).  

There are some common features of RiPPs biosynthesis. They are genetically encoded as 

a long precursor peptide, around 20-110 residues in length. The portion of the precursor peptide 
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that binds to enzymes responsible for installing the post-translational modifications is called the 

leader peptide (38). Leader peptides often span the N-terminal portion of the precursor peptides 

and are not post-translationally modified. In a few cases, such as in bottromycins, where such 

recognition peptides occupy the C-terminal portion, they are termed ‘follower’ peptides. The 

portion of precursor peptide that undergoes post-translational modification and gives rise to the 

final natural product is termed the core peptide. The precursor peptide is referred to as XaaA (eg. 

LanA for a lanthipeptide precursor), and the modified precursor peptide is designated mXaaA 

(Figure 1.5). The fact that the precursor peptides are genetically encoded allows genome-mining 

to identify novel members of the RiPPs family (39, 40).   

 Often the leader-peptide guided recognition of the precursor peptides by the modifying 

enzymes allows tolerance towards changes in the core region, leading to high structural diversity 

in the generated RiPPs (41). A winged helix-turn-helix (wHTH) motif within these enzymes has 

been found in various members of the RiPPs biosynthetic enzymes and is responsible for binding 

the precursor peptides (42, 43). This motif is described as the RiPP precursor peptide recognition 

element (RRE) (44). The observed substrate tolerance in the RiPPs system allows bio-

engineering efforts to generate analogues of natural products (45). In many cases, the post-

translational modifications ensure macrocyclization, which decreases the conformational 

flexibility and makes the mature peptides resistant to proteolysis. RiPPs exhibit a plethora of 

structural modifications giving rise to moieties such as lysinoalanine, hydroxyaspartate, 

lanthionine, and methyllanthionine in duramycin (46); pyroglutamate, 4-hydroxyproline, and 

disulfide linkages in conopeptide (XEN-2174) (47); thiazoles and oxazoles in plantazolicin (48, 

49) and patellamides (50); dehydropiperidine, and a quinaldic acid core in thiostrepton A (51); 
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depsipeptide linkages in microviridin (52); and an amidine and methylations in bottromycins 

(53) (Figure 1.6). 

 

Figure 1.5. Post Ribosomal Peptide Synthesis pathway. The leader peptide is recognized by the 

post-translational modification machinery and the core peptide is post-translationally modified, 

followed by cleavage of the leader region to generate the mature product. In certain cases, an N-

terminal signal sequence helps with the secretion of mature product. There are examples of the 

presence of a C-terminal recognition sequence that aids in peptide cyclization. 

Adapted from Arnison et al. (37).  
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Figure 1.6. Structures of various RiPPs showing diverse modifications. Non-proteinogenic 

residues are in purple; thiazole, thiazoline, and Cys-derived portion of 

lanthionine/methyllanthionine in red; oxazole/oxazoline, depsipeptide linkage, and Ser/Thr-

derived portion of lanthionine/ methyllanthionine in blue; dehydrated residues in green. Adapted 

from Arnison et al. (37). 
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1.4.  LANTHIPEPTIDES*  

Lanthipeptides are a class of RiPPs that contain the characteristic thioether residues 

lanthionine (Lan) and methyllanthionine (MeLan) (37, 45). A subclass of lanthipeptides with 

antibacterial activity are known as lantibiotics (55), which are effective against many Gram-

positive bacteria including some drug-resistant species (56). For instance, nisin has been used for 

over 50 years as a preservative in the food industry to combat food-borne pathogens without 

significant bacterial resistance (57). Lanthipeptides that do not display antibacterial activity can 

exert antiviral (58), antiallodynic (59), antinociceptive (60), and morphogenetic (61) activities. 

Cyclic peptides such as lanthipeptides are also increasingly recognized as promising compounds 

for disrupting protein−protein interactions (62-67). Investigation of the synthetases that post-

translationally generate lanthipeptides would aid in engineering efforts to produce molecules 

with desirable properties (68-70). 

1.4.1. Lanthipeptide Biosynthesis 

During lanthipeptide biosynthesis, the ribosomal machinery first synthesizes linear 

precursor peptides called LanAs (45). The LanA peptides are comprised of an N-terminal leader 

peptide that is believed to serve several possible roles, including recognition by the synthetase 

(38, 71), and a C-terminal core peptide that is post-translationally modified. Proteolytic cleavage 

then removes the leader peptide to produce the mature lanthipeptide. Lan and MeLan formation 

involves first the dehydration of Ser and Thr residues to generate dehydroalanine (Dha) and 

dehydrobutyrine (Dhb), respectively. The dehydrated residues then undergo stereoselective 

Michael-type addition by the side-chain thiol of cysteines to generate the thioethers Lan and 

                                                 
Introduction to Section 1.4. adapted in part from: 

54. Mukherjee, S., and van der Donk, W. A. (2014) Mechanistic Studies on the Substrate-Tolerant 

Lanthipeptide Synthetase ProcM, J. Am. Chem. Soc. 136, 10450-10459. 



15 

 

MeLan, respectively (Figure 1.7) (72, 73). The Lan and MeLan crosslinks are mostly found to 

have the DL-configuration except in the case of cytolysins and haloduracin and putatively 

others bearing a certain pentapeptide motif), which also contain thioether crosslinks of LL-

configuration (74).  Certain lanthipeptides are characterized by additional post-translational 

modifications besides dehydration and cyclization. Such post-translational modifications include 

the introduction of labionin crosslinks (75), lysinoalanine (76), -hydroxy-aspartate (76), 2-

oxobutyrate (77, 78), pyruvate (79), lactate (80), S-aminovinyl-D-cysteine (81), and S-

aminovinyl-D-methylcysteine (82) (see Figure 1.8 for structures of lanthipeptides exhibiting 

various post-translational modifications).  

 

Figure 1.7. Lanthipeptide biosynthesis and common post-translational modifications. (A) 

Generic scheme for lanthipeptide biosynthesis. (B) Common post-translational modifications in 

lanthipeptides. The corresponding bubble-diagram is drawn in the box for Ser to Dha to Lan 

transformations.  
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Figure 1.8. Bubble-diagrams of various lanthipeptides. Structures of some of the post-

translational modifications are drawn inside the box. In Lan/MeLan crosslinks, residues arising 

from Cys are colored red, while those arising from Ser/Thr are in blue.  

 

There are four classes of lanthipeptides based on their biosynthetic machinery (Figure 

1.9). In class I lanthipeptides, two separate enzymes perform the dehydration and cyclization 

reactions. Members of this class include nisin and microbisporicin, among others. The 
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dehydratase is generically termed as LanB, which in the case of nisin (NisB), has been shown to 

glutamylate Ser/Thr residues followed by elimination (83). NisB has been crystallized bound to 

the precursor peptide NisA, and the hydrophobic -sheet rich leader peptide binding site has 

been identified (42). The cyclization reaction leading to nisin is catalyzed by NisC (generically 

called LanC), the in vitro reconstitution and the crystal structure of which offered insights into its 

catalysis (84). NisC has a tetrahedral Zn(II) in the active site that has two Cys and one His 

residues in three of its vertices, with H2O in the fourth vertex. Upon substrate binding to NisC, 

the reacting Cys-thiol is believed to displace the H2O and bind to Zn(II), thus lowering the pKa 

of the thiol. In a structurally similar protein, farnesyl transferase, the pKa of Zn(II) coordinated 

Cys is lowered to around 6.4 (85). This results in generation of thiolate at physiological pH, 

which attacks the -carbon of a dehydrated residue. The subsequent enolate is protonated to 

generate the cyclized product. In nisin, the modified peptide is exported from the cytoplasm by a 

transmembrane ATP-binding cassette (ABC) transporter, NisT (86). Often in class I systems, a 

dedicated subtilisin-like serine protease, LanP, removes the leader peptide.  

In class II lanthipeptides, both the dehydration of Ser/Thr residues and the Michael-type 

cyclization reaction are catalyzed by a single bifunctional enzyme called LanM. LanMs contain 

an N-terminal dehydratase domain, which has no homology to the dehydratase LanB of class I 

systems. Unlike LanBs which glutamylate Ser/Thr residues, LanMs activate Ser/Thr residues via 

phosphorylation, followed by elimination to generate dehydrated residues (87) (Figure 1.10). The 

cyclase domain of LctM, the synthetase generating lacticin 481, shares homology with NisC and 

requires the Zn-ligand based active site to catalyze Michael-type addition (88). The mature 

precursor peptide (mLanA) is proteolyzed and transported outside the cytoplasm by a LanT, 
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which has a papain-like cysteine protease domain in the N-terminus, and an ABC transporter 

domain (73).  

 

Figure 1.9. Different classes of lanthipeptide biosynthetic machinery. Conserved regions of the 

enzymes are denoted by the dark lines in the figure. The class III cyclase domain lacks the Zn 

ligands. Adapted from Knerr et al. (45) 

 

 

Figure 1.10. Different activation steps of Ser/Thr catalyzed by class I and II lanthipeptide 

synthetases. Class I synthetase, as established for nisin (42), glutamylates Ser/Thr in a glutamyl-

tRNAGlu dependent fashion. In class II synthetase, as established for many members including 

lacticin 481 (87), phosphorylation occurs in presence of ATP and Mg2+ ions.  

Class III synthetases have separate kinase and lyase domains that generate dehydrated 

residues from Ser/Thr via phosphorylation (89). In LabKC, the synthetase generating 

labyrinthopeptin, the kinase activity requires GTP instead of ATP (75). In case of 
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labyrinthopeptin, the cyclase domain lacks the Zn(II) ligands and catalyzes a unique double 

Michael-type addition to form a carbacyclic labionin residue (Scheme 1.1) (59).  Class IV 

synthetase, like VenL that catalyzes generation of venezuelin, have similar kinase and lyase 

domains as its class III counterpart, but the cyclase contains the Zn(II) active site similar to ones 

found in class I and II synthetases (90).  

Scheme 1.1. Labionin formation via double-Michael-type addition. 

1.4.2. Modes of Action of Lanthipeptides 

Lantibiotics are a subset of lanthipeptides possessing antibiotic activity. Detailed modes 

of action are understood only for few lanthipeptides (91, 92). Nisin kills bacteria by inhibiting 

cell wall biosynthesis and forming pores in the membrane. Nisin is comprised  of five thioether 

rings, with three N-terminal rings (known as A, B, and C) and two C-terminal rings (D and E) 

joined by a flexible hinge region (93). The amide backbone of the N-terminal A and B rings in 

nisin form a pyrophosphate-cage for binding lipid II (94, 95). The C-terminal rings of nisin 

penetrate the phospholipid bilayer in orientation that is perpendicular to the bilayer, and 

eventually form stable pores (2-2.5 nm diameter) (96, 97). The sequestering of the cell wall 

biosynthesis precursor lipid II by nisin and the pore formation activity is responsible for its 

potent antibacterial activity.  

Amongst the class II lanthipeptides, mersacidin is active against MRSA in a murine-

infection model (98). Mersacidin inhibits the transglycosylation step of peptidoglycan 

biosynthesis, however it does not form pores in the plasma membrane (99, 100). Like 
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mersacidin, lacticin 481 inhibits transglycosylation, and does not form pores in the membrane 

(101). The A-ring in lacticin 481 is similar to the C-ring in mersacidin, and is important for 

activity in both cases (See Figure 1.8) (101, 102). Among other members of class II lantibiotics 

are cinnamycin and duramycin, which bind to phosphatidylethanolamine (PE) with a 1:1 

stoichiometry (103). The toxicity of cinnamycin is primarily caused by a transbilayer 

phospholipid movement that exposes PE present in the inner-leaflet of the eukaryotic membrane 

and causes morphological changes in the membrane (104).  

Two component lanthipeptides either lack or exhibit poor individual bioactivity, but show 

synergistic bioactivity in combination (105).  A model for lipid II binding by the two 

components of lacticin 3147 bears similarity to the nisin-lipid II binding (106). LtnA1, a 

component of lacticin 3147, is thought to interact with lipid II on the outer-leaflet of the bacterial 

cell membrane. LtnA2, the other component, then binds to the lipid II complexed with LtnA1 to 

form pores and inhibit cell wall biosynthesis. The residues in both components essential for 

inhibiting cell-wall biosynthesis  were identified by complete Ala-scanning (107). Besides 

displaying antibacterial activity, cytolysin S and L make up a two component lanthipeptide that 

also exhibits cytolytic activity against erythrocytes and other eukaryotic cells (108), though the 

molecular level understanding of this phenomenon is yet to be reported. 

Among class III lanthipeptides are SapB and SapT, which are morphogenetic peptides, 

and are involved in aerial hyphae formation in streptomyces (109). The peptides are amphiphilic, 

with the polar peptide backbone participating in hydrogen bonding with solvent water molecules, 

and the hydrophobic side chains sticking out of the water layer. This amphiphilicity allows the 

peptide to reside at the air-water interface, acting as a surfactant and facilitating the emergence of 

streptomycete aerial filaments (110). 
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1.5.  CONCLUSION AND OUTLOOK 

Peptides offer a promising prospect in the therapeutic landscape where traditionally small 

molecules have been the dominant player. Offering many of the advantages of biologics, 

combined with the synthetic tractability and better stability of small molecules, peptides occupy 

an attractive niche between the small molecules and biologics. Antimicrobial treatment is primed 

for peptide therapeutics as small molecules suffer from various forms of antimicrobial resistance. 

RiPPs have proven to be an important family of peptide natural products with various post-

translational modifications improving the stability and efficacy of the peptide molecules. Our 

research focuses on lanthipeptides, characterized by the presence of lanthionine and 

methyllanthionine thioether crosslinks, and often with other post-translational modifications. 

Several lanthipeptides have shown potent biological activity, and the significant clinical potential 

of the members of this class elicits a strong interest in this area. Understanding of the 

biosynthetic enzymes that install the post-translational modifications may eventually allow 

engineering of novel therapeutics. Chemical synthesis has also proven to be an important 

technology to generate non-native analogues of lanthipeptides in the hope of obtaining products 

with improved bioactivity, and answering fundamental biological questions.  

This thesis describes my research on the mechanistic investigation of lanthipeptide 

biosynthesis and structure activity relationships using synthetic substrate analogues. The 

information offers fundamental insights into the biosynthetic machinery and bioactivity of 

selected lanthipeptides. In chapter 2, I focus on gaining a mechanistic understanding of the 

generation of a family of 30 lanthipeptides called prochlorosins by a single substrate-tolerant 

synthetase, ProcM. To investigate the substrate-tolerance of catalysis by ProcM, I adopted a 

hybrid ligation chemistry to generate a series of substrate analogues designed to address a 
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number of mechanistic questions. The dehydration by ProcM was established to occur from C-

to-N-terminus. Cyclization also occurred with a specific order, which depended on the sequence 

of the substrate peptide. Furthermore, using photo-labile cysteine side-chain protection, I was 

able to rule out spontaneous non-enzymatic cyclization events to explain the very high substrate 

tolerance of ProcM. I also developed a deuterium-exchange assay to probe the reversibility of the 

Michael-type addition. The cyclization reaction by ProcM was established to be governed by 

kinetic control. Chapter 3 describes a strategy to obtain cytolysin S, a highly hydrophobic 

lanthipeptide, by total synthesis. An analogue of cytolysin S was generated to explore the 

importance of the thioether stereochemistry with respect to the bioactivity. I established that 

while the antibacterial activity was sensitive to the stereochemistry of the thioether crosslinks, 

the hemolytic activity was not. In chapter 4, I describe synthesis of another hydrophobic 

lanthipeptide analogue, the portion of microbisporicin containing the A and B rings, to address 

the minimum motif required for halogenation of a Trp within the A-ring by a flavin-dependent 

halogenase MibH. However, the C-terminus was found to be necessary for MibH activity, as the 

fragment containing the A and B rings was not modified by the enzyme. In chapter 5, I present 

my research on a different area of focus in our laboratory, the study of phosphonate natural 

products. I primarily synthesized the putative substrates and intermediates to elucidate the 

biosynthetic pathway of dehydrophos, fosfazinomycin, and rhizocticin. Further background and 

significance of the phosphonate project is described in chapter 5. 
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CHAPTER 2:  MECHANISTIC INVESTIGATION OF THE SUBSTRATE-TOLERANT 

LANTHIPEPTIDE SYNTHETASE PROCM† 

2.1. INTRODUCTION 

Prochlorosins are a large group of lanthipeptides produced by marine cyanobacteria of 

the genus Prochlorococcus. In Prochlorococcus MIT9313, a single enzyme, ProcM, catalyzes 

the post-translational modification of 30 different substrates (ProcAs), thereby generating many 

distinct thioether ring topologies within the 30 prochlorosin products (Pcns, Figure 2.1) (2). As 

such, the Pcn biosynthetic system is intriguing with respect to the details of thioether ring 

formation that may explain the remarkable diversity of the products formed by ProcM. A 

previous study suggested that the enzyme might generate a subset of the thioether rings, which 

would then preorganize the substrate to facilitate non-enzymatic cyclization of the other rings 

(3), as illustrated schematically for a substrate with two thioether rings (Scheme 2.1). 

Investigation of the stereochemistry of the thioether rings in a subset of Pcns showed that they all 

had the DL stereochemistry (2S,6R-Lan and 2S,3S,6R-MeLan) (4), identical to what has been 

observed for the majority of lanthipeptides analyzed to date (5). Though this conserved 

stereochemistry of Michael-type addition suggested enzymatic cyclization, non-enzymatic 

cyclization of preorganized intermediates with high stereoselectivity could not be ruled out 

because in previous biomimetic studies of lanthipeptide biosynthesis, non-enzymatic cyclization 

also took place with high selectivity for the DL stereoisomers (6-8). In this study, I 

experimentally probed a potential role of non-enzymatic cyclization in prochlorosin maturation. 

                                                 
† Reproduced in part with permission from: 

1. Mukherjee, S., and van der Donk, W. A. (2014) Mechanistic Studies on the Substrate-Tolerant 

Lanthipeptide Synthetase ProcM, J. Am. Chem. Soc. 136, 10450-10459. Copyright 2014 American Chemical 

Society. 

2. Yu, Y., Mukherjee, S., and van der Donk, W. A. (2015) Product Formation by the Promiscuous 

Lanthipeptide Synthetase ProcM is under Kinetic Control, ibid. 137, 5140-5148. Copyright 2015 American 

Chemical Society. 
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The substrate-tolerant synthetase ProcM dehydrates core peptides containing a variety of 

sequences with different residues flanking Ser and Thr and also with different numbers of 

intervening residues (Figure 2.1). At the start of these studies, it was not known whether ProcM 

dehydrates its substrates in a directional fashion and whether any observed directionality is 

general for different substrates. In this work, I expanded upon a previously reported strategy (9) 

to assign the directionality of dehydration of substrates by ProcM. Additional experiments also 

revealed the order of ProcM-catalyzed cyclization of these substrates. 

 

Figure 2.1. Sequences of 30 precursor peptides encoded by the genome of Prochlorococcus MIT 

9313. Highly conserved leader peptide and diverse core peptides are presented. Of the 30 

precursor peptides, the 18 investigated are all substrates of ProcM (3, 4, 10). 

In the 30 prochlorosins with diverse ring topologies produced by ProcM, often a single 

ring structure out of several possible topologies is observed (Figure 2.2) (3, 4). The observed 

high site-selectivity in prochlorosin cyclization could be the result of either thermodynamic or 

kinetic control. Thermodynamic control would require the reversible installation of thioether 

rings, which ultimately results in the ring topology with the lowest free energy. On the other 
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hand, kinetic control would lead to thioether ring formation involving the lowest activation 

energy barrier. A previous study on the biomimetic cyclization of nisin’s B-ring suggested that 

non-enzymatic thioether ring formation is governed by kinetic control and that the Michael-type 

addition is irreversible (11). We investigated the reversibility of cyclization in the presence of 

ProcM in the two studies that are summarized in this chapter (1, 2). 

 

Scheme 2.1. Scheme showing enzymatic vs. non-enzymatic cyclization during prochlorosin 

maturation. Either all the thioether rings are installed by active participation of ProcM (1) or 

ProcM installs a subset of rings (2a) and pre-organizes the substrate for non-enzymatic 

cyclization (2b). 

 

Figure 2.2. Structures of several representative prochlorosins after maturation show the diverse 

ring topologies. Portions of Lan/MeLan residues arising from Ser/Thr are shown in blue, and that 

derived from Cys is shown in red; dehydrated residues and residue after hydrolysis of N-terminal 

dehydrobutyrine in purple. 
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ProcM is highly selective for the formation of one product from each substrate peptide, 

despite their highly diverse sequences. The juxtaposition of high-substrate tolerance and product 

selectively was investigated in a collaborative work with Dr. Yi Yu, a doctoral graduate student 

in biochemistry at UIUC (2). The cyclase domain of LanM shows homology to LanC of class I 

systems with an active site Zn(II) ligated by one His and two Cys. However, ProcM has three 

Cys as predicted ligands for Zn(II), and ProcM forms a distinct clade in the phylogenetic tree of 

class II LanM synthetases along with other ProcM homologues containing three Zn(II) binding 

Cys (12). Previous studies with other enzymes and model organometallic complexes have 

indicated that additional sulfur-based ligands increase the reactivity of Zn(II)-bound thiolates 

(13-17). The importance of the three Zn(II) bound Cys ligands towards the substrate-tolerance 

and the selectivity of product-formation of ProcM was explored in the current work.  

2.2. RESULTS AND DISCUSSION 

2.2.1. Choice of Substrates to Study ProcM 

Two core peptides were chosen for investigation out of the repertoire of 30 possible 

substrates. The first choice was ProcA2.8, which is transformed into prochlorosin (Pcn) 2.8, a 

product with two non-overlapping lanthionine rings (Figure 2.3). In the majority of the 

lanthipeptides discovered to date, the thioether rings are installed by nucleophilic attack of 

cysteines onto dehydrated residues that are located toward the N-terminus. However, in 

prochlorosins, the thioether rings are formed by Cys residues located on either side of the 

dehydrated residues, as illustrated for Pcn2.8 generated from ProcA2.8. Thus, studies with 

Pcn2.8 could reveal whether perhaps enzymatic cyclization forms rings in one direction and 

nonenzymatic cyclization forms thioether rings in the opposite direction. In addition, we selected 
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Pcn3.3, a compound containing overlapping thioether rings, to probe the effect of substrate 

preorganization on non-enzymatic ring formation (Figure 2.3). As described below, for both 

substrates, we determined the order of dehydration and cyclization and investigated the 

possibility of non-enzymatic cyclization and reversibility as determinants of the ring topology. 

 

Figure 2.3. Structures of prochlorosins 2.8 and 3.3. The portion of the Lan/MeLan residues 

originating from Cys are in red, and those originating from Ser/Thr residues are in blue. 

2.2.2. ProcM Dehydrates the ProcA2.8 Precursor Peptide in C-to-N-Terminal Fashion 

Previous studies on LanM lanthipeptide synthetases showed that dehydration is 

directional, moving from the N-terminus to the C-terminus of the substrate (18). To investigate 

whether this would also be the case for the substrate-tolerant ProcM, we used the method 

developed by Süssmuth and co-workers (9), in which specific Ser residues are replaced by 2,3,3-

deuterium-labeled serine. In such substrates, dehydration of unlabeled Ser involves loss of 18 Da 

(−H2O) while dehydration of the labeled serine results in loss of 19 Da (−HDO; Figure 2.4).  

 

Figure 2.4. Strategy for determination of directionality of dehydration using [2,3,3-2H]-Ser 

residues. Dehydration of Ser incurs a loss of 18 Da, while dehydration of labeled Ser results in a 

loss of 19 Da (9). 

 

The lanthipeptide synthetase ProcM requires an N-terminal leader peptide for maturation 

of the precursor peptide (3). The highly conserved leader peptide is ca. 65 amino acid residues 
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long, and the highly variable core peptides comprise between 13 and 32 amino acid residues 

(Figure 2.1), resulting in a precursor peptide that is too long to prepare conveniently by linear 

solid phase peptide synthesis (SPPS). Instead, we used expressed protein ligation (EPL) (19) to 

generate full-length precursor peptides containing deuterium labeled serine. The ProcA2.8 core 

peptide has a cysteine at position 3 that can be used for EPL. Peptide 2.1 corresponding to the 

ProcA2.8 leader peptide with two additional Ala residues from the N-terminus of the ProcA2.8 

core peptide was generated with a peptide thioester at the C-terminus using intein chemistry‡. 

Two ProcA2.8 core peptides 2.2 and 2.3 spanning residues 3−19 were synthesized by SPPS with 

Ser13 or Ser9 replaced with 2,3,3-deuterium-labeled Ser. Native chemical ligation (NCL) of 2.2 

and 2.3 with 2.1 afforded the substrates 2.4 and 2.5, respectively (Scheme 2.2).  

 

Scheme 2.2. Scheme showing the generation of ProcA2.8 analogues by NCL, used to determine 

the directionality of dehydration. Drawn are ProcA2.8 leader-AA-MESNa thioester (2.1), 

ProcA2.8 core peptide 1-2 with Ser13 replaced with [2,3,3-2H]-Ser (2.2), and ProcA2.8 core 

peptide 1-2 with Ser9 replaced with [2,3,3-2H]-Ser (2.2). Separate NCLs of peptide 2.1 with 

peptides 2.2 and 2.3 generated peptides 2.4 and 2.5, respectively. 

 

                                                 
‡ The plasmid pTXB1 encoding the ProcA2.8 leader-AlaAla fused to intein-CBD was provided by Dr. Christopher 

Thibodeaux, Institute of Genomic Biology, UIUC. 
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These substrates were treated with ProcM, and after various time points, ProcM was 

removed from a portion of the assay by ultrafiltration. The filtrate was incubated with 

endoproteinase GluC to remove most of the leader peptide, and the digest was analyzed by 

matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray 

ionization (ESI) mass spectrometry. With both substrates, the ESI and MALDI-TOF mass 

spectrometric analyses showed that Ser13 was dehydrated prior to Ser9 (Figure 2.5, MALDI-

TOF MS data shown).  

 

Figure 2.5. MALDI-TOF MS of peptides 2.4 and 2.5 obtained after partial dehydration by 

ProcM, followed by digestion with endoprotease, GluC. 

 

Although EPL worked well to determine the directionality of dehydration of ProcA2.8, 

other substrates do not always have a conveniently located Cys. Hence, we evaluated another 

hybrid ligation strategy based on both EPL and copper-catalyzed alkyne−azide cycloaddition 

(CuAAC) (20, 21). In previous studies on lacticin 481 synthetase, an alkyne-containing leader 

peptide was generated by chemical synthesis (22, 23), but in this work, we elected to generate 

the much longer ProcA leader peptide by heterologous expression in Escherichia coli as a fusion 

protein to an intein and chitin-binding domain (24). Given the high-sequence similarity of the 

leader peptides of prochlorosin precursors (Figure 2.1), the ProcA3.2 leader peptide was 

arbitrarily chosen for the designed precursor peptides. The C-terminal Gly of the ProcA3.2 

leader peptide was mutated to Lys to allow efficient cleavage of the peptide thioester linkage to 
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the chitin resin by 2-mercaptoethanesulfonate sodium salt (MESNa) (25), and to introduce a 

LysC endoproteinase cleavage site C-terminal to the leader peptide. EPL of the MES-thioester 

with (R)-2-amino-N-(but-3-yn-1-yl)-3-mercaptopropionamide (compound 2.6, Scheme 2.3) 

generated the leader peptide with a C-terminal alkyne modification. The cysteine residue 

incorporated during EPL was protected with iodoacetamide to prevent any potential interference 

in the enzymatic cyclization reaction (peptide 2.7, Scheme 2.3). 

 

 

Scheme 2.3. Scheme for generation of ProcA leader peptide with a C-terminal alkyne. The 

leader peptide was expressed as a fusion protein with an intein and chitin binding domain at its 

C-terminus. Chitin resin was used to affinity purify the fusion protein, which was cleaved from 

the resin by transthioesterification with MESNa. The C-terminal MESNa thioester of the leader 

peptide formed in-situ reacted with compound 2.6 (expressed protein ligation) to generate the 

leader peptide with a C-terminal alkyne. The introduced cysteine was capped with iodoacetamide 

to generate peptide 2.7. 

The core peptides of ProcA2.8 were then synthesized by SPPS, again incorporating 

deuterium-labeled Ser at positions 9 and 13. In the last step prior to cleaving the peptides from 

the resin, the CuAAC ligation handles 2.8 or 2.9 (Figure 2.6) were coupled to their N-termini. 
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The building block 2.8 was expected to improve the efficiency of the ligation owing to the 

copper ligating ability of the pyridine ligand (26), whereas building block 2.9 would enable 

convenient removal of the leader peptide by photolysis (27). Two ProcA2.8 precursor peptides 

2.10 and 2.11 were thus synthesized by CuAAC to probe directionality of dehydration (Figure 

2.6). The substrates were treated with ProcM, and at several time points, ProcM was removed 

from a portion of the assay by ultrafiltration; the filtrate was incubated with protease LysC and 

the digest analyzed by MALDI-TOF MS. With both substrates 2.10 and 2.11, the analysis 

showed that Ser13 was dehydrated prior to Ser9, indicating C-to-N-terminal dehydration (Figure 

2.7). This observation demonstrated that the presence of a triazole linker in the designed 

substrate did not affect the directionality of dehydration. Furthermore, GC−MS analysis of the 

product revealed the presence of Lan rings of the same DL stereochemistry as in the wild-type 

(WT) product (Figure 2.8), thus suggesting that ProcM correctly recognizes the substrate with a 

triazole linker between leader and core peptides. The observation that the substrate analogue 

generated by CuAAC furnished the same product and with the same directionality as with native 

substrate enabled us to extend our investigation of directionality of dehydration to other 

substrates where the sequence of the core peptide does not allow EPL to assemble the native 

precursor peptide. 
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Figure 2.6. CuAAC-generic reaction, and synthesis of peptides 2.10 and 2.11. Copper catalyzed 

azide–alkyne cycloaddition is generically drawn in the box. Building block 2.8 was used to 

facilitate the click reaction via a copper-chelating group, and compound 2.9 was used for 

installation of a photocleavable triazole linker between the leader and the core peptides. Also 

shown are the structures of ProcA2.8 precursor peptides obtained by CuAAC, 2.10 and 2.11, 

with Ser13 or Ser9 replaced with [2,3,3-2H]-Ser, respectively. 

 

 
Figure 2.7. MALDI-TOF MS of peptides 2.10 and 2.11 obtained after partial dehydration by 

ProcM, followed by digestion with endoprotease, LysC. 
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Figure 2.8. GC-MS analysis of a triazole linked peptide. (A) Peptide 2.12 was modified by 

ProcM, photocleaved, hydrolyzed in acid and the resulting amino acids were derivatized as 

reported previously (also as previously reported, this procedure leads to partial epimerization of 

Lan) (4). The derivatized material was analyzed by GC-MS using a chiral stationary phase as 

previously reported (4). Selected ion mode (SIM) trace for Lan (m = 365) of (B) ProcM-

modified ProcA2.8 core (C) modified ProcA2.8 core spiked with synthetic DL-Lan standard, and  

(D) modified ProcA2.8 core spiked with synthetic DL-Lan and LL-Lan standards. 

 

2.2.3. ProcM Dehydrates ProcA3.3 Precursor Peptide in C-to-N-Terminal Fashion 

To probe directionality of dehydration in prochlorosins containing threonine residues and 

overlapping rings, we prepared the ProcA3.3 derivatives 2.13 and 2.14 with either Thr18 or 

Thr11 replaced with [2,3-2H]-Thr, respectively (Figure 2.9A). The peptides were treated with 

ProcM and after various time points, the enzyme was removed by ultrafiltration. The filtrate was 

incubated with endoproteinase GluC to remove most of the leader peptide, and the digest was 
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analyzed by MALDI-TOF MS. The data demonstrated that Thr18 was dehydrated first followed 

by Thr11 and Thr3 (Figure 2.9B), in agreement with the overall C-to-N-terminal dehydration 

observed with ProcA2.8. To confirm that the observed directionality of dehydration of WT- 

ProcA3.3 was the same as that of the analogues 2.13 and 2.14, tandem MS was used to analyze 

partially dehydrated WT-ProcA3.3. The order of dehydration of Thr11 and Thr18 cannot be 

distinguished by this method because of the overlapping rings of Pcn3.3, but the timing of 

dehydration of Thr3 can be determined. Using ultraperformance liquid chromatography (UPLC) 

coupled with ESI-MS, peptide ions with predominantly two-fold dehydration were analyzed 

(Figure 2.10A). The ion was fragmented, and the observed fragment ions demonstrated that Thr3 

escaped dehydration in the two-fold dehydrated ProcA3.3 (Figure 2.10B), in agreement with the 

conclusion that we reached from studies on the triazole-containing ProcA3.3 precursor peptide 

(i.e., Thr3 is dehydrated last). 
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Figure 2.9. Directionality of dehydration of ProcA3.3 analogues containing a triazole linker. (A) 

Structures of ProcA3.3 analogues 2.13 and 2.14, with either Thr18 or Thr11 replaced with [2,3-
2H]-Thr, respectively. (B) MALDI-TOF MS spectra of peptides 2.13 and 2.14 partially 

dehydrated by ProcM and digested by GluC. 
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Figure 2.10. Tandem MS of partially dehydrated WT-ProcA3.3 peptide to confirm C-to-N-

terminal directionality. (A) ESI-MS on WT-ProcA3.3 to trap partially dehydrated species 

generated by treating WT-ProcA3.3 precursor (100 M), and ProcM (2 M) using the standard 

ProcM assay conditions for 5 min at room temperature, after which ProcM was removed by 

ultrafiltration (14,000 x g, 10 min) through Amicon Ultra 50 kDa MWCO filters. The assay 

contents were digested with GluC prior to MS analysis. The 3+ charged species are presented. 

(B) Tandem MS analysis on two-fold dehydrated species of m/z 873 (3+ charged). Thr3 that 

escapes dehydration is labeled in blue. 
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2.2.4. Directionality of Cyclization by ProcM 

ProcM was incubated with expressed and purified His6-ProcA2.8 obtained as reported 

previously (3), and the assay was quenched by removing ProcM at various time points. After 

incubation with endoproteinase LysC to remove most of the leader peptide, the digest was 

treated with iodoacetamide (IAA). Any noncyclized thiol would react with IAA, and the 

enzymatic assay conditions were optimized to allow buildup of an incompletely cyclized 

intermediate that resulted in one IAA adduct (Figure 2.11A). ESI-MS/MS was performed on this 

peptide, and Cys3 was found to be alkylated (Figure 2.11B). The fragmentation pattern 

suggested that the B-ring had formed in this intermediate. Hence, cyclization of Cys19 occurred 

prior to Cys3, suggesting C-to-N-terminal directionality of cyclization.  

ProcM was also incubated with His6-ProcA3.3, and the assay was quenched by removing 

ProcM at various time points. After endoproteinase LysC digestion, the peptides were treated 

with IAA. The ProcM assay conditions were again optimized to trap an intermediate that resulted 

in one IAA adduct (Figure 2.12A). The observed fragmentation pattern of this peptide by ESI-

MS/MS showed that Cys21 was alkylated, suggesting that Cys14 had formed a thioether ring 

with Dhb18 (Figure 2.12B). The data suggest that cyclization of ProcA3.3 may not take place 

with C-to-N-terminal directionality, but that instead the MeLan ring between Cys14 and Dhb18 

is formed in the monocyclic intermediate (see Figure 2.3 for the Pcn3.3 ring topology). 
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Figure 2.11. Directionality of cyclization of ProcA2.8 precursor peptide by ProcM. (A) Assay 

was performed for 15 min with His6-tagged ProcA2.8 precursor peptide (100 M), and ProcM (5 

M). Then ProcM was removed, the filtrate was digested with LysC, and the assay solution was 

treated with IAA prior to MALDI-TOF MS analysis. The two-fold dehydrated species with full 

cyclization has an m/z of 5035.3 (M+H+) and the two-fold dehydrated species with one IAA 

adduct has an m/z of 5092.3 (M+H+). (B) ESI-MS/MS was performed on fully dehydrated, one-

fold cyclized species with one IAA adduct (m/z of 1019.2; 5+ charge state) present at the 15 min 

time point. 
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Figure 2.12. Directionality of cyclization of ProcA3.3 precursor peptide by ProcM. (A) Assay 

was performed with His-tagged ProcA3.3 precursor peptide (100 M), and ProcM (5 M). 

ProcM was removed after fixed time points by centrifugation through a 50 kDa cut-off filter. The 

filtrate was digested with LysC, and then the assay solution was treated with IAA. The three-fold 

dehydrated species with full cyclization has a m/z of 4442.4 (M+H+) and the three-fold 

dehydrated species with one IAA adduct has a m/z of 4499.5 (M+H+). Species were analyzed by 

MALDI-TOF MS. (B) ESI-MS/MS was performed on 3-fold dehydrated, one-fold cyclized 

species with one IAA adduct (m/z of 1125.5; 4+ charge state) generated from the 15 min time 

point. 
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2.2.5. Substrate Design to Probe Non-Enzymatic Cyclization in Prochlorosin Maturation 

To address whether non-enzymatic cyclization assists ProcM in the maturation of 

substrates with variable ring topologies, substrates were designed that restrict ProcM installation 

to selected thioether rings by orthogonal protection of a subset of cysteine thiols in the core 

peptide. Release of the protecting group would generate an intermediate that would allow 

investigation of non-enzymatic cyclization in the presence of other preinstalled thioether rings. A 

variety of orthogonal protecting groups for the cysteine thiols were tested. tert-Butyl disulfide 

protection proved not suitable because removal by reducing agents like tris(2- 

carboxyethyl)phosphine (TCEP) and tributylphosphine formed adducts with dehydrated residues. 

Conversely, acetamidomethyl protection was unsuccessful because its removal required 

oxidizing agents like iodine, which partially oxidized the thioether rings. However, the o-

nitrobenzyl and 4,5-dimethoxy-o-nitrobenzyl groups were readily introduced into the peptide 

during SPPS (28) and were cleanly released by UV irradiation (365 nm). Hence, four precursor 

peptides were prepared using the previously described hybrid EPL/CuAAC ligation strategy 

(2.15 and 2.16 in Figure 2.13 and 2.17 and 2.18 in Figure 2.14), which were treated with ProcM 

to produce the intermediates 2.19-2.22 and 2.26. Photorelease of o-nitrobenzyl protecting groups 

then generated substrates to probe non-enzymatic cyclizations of each of the rings in ProcA2.8 

and ProcA3.3 in the presence of other enzymatically installed rings. 
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Figure 2.13. Probing non-enzymatic cyclization in ProcA2.8. (A) Non-enzymatic cyclization of 

the A-ring in the presence of the enzymatically preinstalled B-ring. Reagents and conditions: (i) 

HEPES, ATP, TCEP, MgCl2, substrate 2.15 (50 μM), ProcM (30 μM); (ii) ProcM was removed, 

the intermediate 2.19 was desalted and lyophilized, dissolved in 0.1% TFA, and irradiated; (iii) 

the peptide was dissolved in HEPES buffer (pH 8.0) to allow non-enzymatic cyclization 

followed by treatment with IAA. (B) MALDI-TOF MS analysis showed that non-enzymatic 

cyclization was slow and incomplete, as indicated by the presence of IAA adduct 2.23. (C) Non-

enzymatic cyclization of the B-ring in ProcA2.8 in the presence of enzymatically preinstalled A-

ring. Reagents and conditions: (i) HEPES, ATP, TCEP, MgCl2, ProcM (30 μM), substrate 2.16 

(50 μM); (ii) ProcM was removed, intermediate 2.20 was irradiated with UV light and 

lyophilized; (iii) the lyophilized peptide was dissolved in solution containing all components in 

(i) except ProcM, digested with LysC and treated with excess IAA. (D) MALDI-TOF MS 

analysis showed that nonenzymatic cyclization was incomplete, as indicated by the presence of 

IAA adduct 2.24. 

 

 



49 

 

 
 

Figure 2.14. Probing non-enzymatic cyclization in ProcA3.3. (A) Non-enzymatic cyclization of 

the A-ring in the presence of enzymatically preinstalled B-ring. Reagents and conditions: (i) 

HEPES, ATP, TCEP, MgCl2, substrate 2.17 (50 μM), ProcM (20 μM); (ii) ProcM was removed 

and the intermediate 2.21 was irradiated with UV light and lyophilized; (iii) the lyophilized 

peptide was dissolved in assay solution containing all components in (i) with or without ProcM, 

digested by LysC, and treated with IAA. (B) MALDI-TOF MS of solution obtained after 

treatment in (iii). (C) ProcM assay of substrate 2.18 generated a mixture of intermediates 2.22 

and 2.26. (D) ProcM was removed from the mixture of 2.22 and 2.26, and the product mixture 

was irradiated with UV light and lyophilized. The peptide mixture was dissolved in solution 

containing all ProcM assay components with or without ProcM. The products were then treated 

with LysC and IAA. The MALDI-TOF MS spectra of the two assays are presented. 
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2.2.6. Efficient Cyclization of ProcA2.8 Requires ProcM 

ProcM correctly processed the ProcA2.8 precursor peptide analogue 2.15 to generate the 

B-ring and a dehydroalanine at the ninth position of the core peptide (intermediate 2.19) (Figure 

2.13A) as demonstrated by tandem MS (Figure 2.15). The peptide 2.19 was irradiated at 365 nm 

to release the o-nitrobenzyl group on Cys3 along with the leader peptide that was attached via 

linker 2.9. The resulting peptide was incubated in buffered solution at pH 8.0 to probe non-

enzymatic cyclization under conditions where enzymatic cyclization is complete. The peptide 

was then treated with IAA to report on noncyclized Cys residues. MALDI-TOF MS analysis 

revealed the predominant presence of IAA adduct 2.23, which indicated incomplete non-

enzymatic cyclization of the A-ring of Pcn2.8 (Figure 2.13B). Thus, non-enzymatic cyclization 

of the A-ring in the presence of the B-ring is much slower than enzymatic cyclization. Non-

enzymatic cyclization was also conducted at higher pH (pH 8.5) and for a longer time period (12 

h), but non-enzymatic cyclization of the A-ring still did not proceed to completion. ProcM 

converted the ProcA2.8 analogue 2.16 (Figure 2.13C) to an intermediate 2.20 that contained the 

A-ring of prochlorosin 2.8 and a dehydroalanine at the 13th position as evidenced by tandem MS 

(Figure 2.16). The peptide 2.20 was irradiated to remove the o-nitrobenzyl group from Cys19 

and was incubated with ProcM. The peptide was then treated with LysC to remove the leader 

peptide and with IAA to probe cyclization. Analysis by MALDI-TOF MS showed that, whereas 

the enzymatic cyclization under these conditions is complete in 1 h, the non-enzymatic 

cyclization still resulted in a mixture of cyclized product and IAA adduct 2.24 after 16 h (Figure 

2.13D). Because the observed non-enzymatic cyclization of the B-ring was very slow compared 

to enzymatic cyclization, these experiments do not provide support for efficient non-enzymatic 

ring formation facilitated by preorganization upon formation of one of the rings.
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Li1 Ala Ala MbC His Asn His Ala Pro Dha Met Pro Pro Dha Tyr Trp Glu Gly Glu Cys 

 

 

Figure 2.15. ESI-MS/MS analysis of intermediate 2.19 (Figure 2.13A) after LysC cleavage, 

which established that ring-B is formed between Cys19 and Dha13. 

 

 

Li2 Ala Ala Cys His Asn His Ala Pro Dha Met Pro Pro Dha Tyr Trp Glu Gly Glu NbC 

 

 

 

 

 

Figure 2.16. Tandem MS analysis on intermediate 2.20 (Figure 2.13C) after LysC cleavage, 

which established that ring-A is formed between Cys3 and Dha9. 
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2.2.7. Ring Formation in ProcA3.3 Requires ProcM 

Treatment of the ProcA3.3 precursor analogue 2.17 with ProcM resulted in the formation 

of a product containing a dehydrobutyrine (Dhb) at positions 3 and 11 and a MeLan formed 

between Cys14 and Dhb18 (Figure 2.14A), as confirmed by tandem MS after LysC cleavage of 

2.21 (Figure 2.17). The o-nitrobenzyl group was removed from Cys21 by UV irradiation, and the 

peptide was subjected to both enzymatic and nonenzymatic assay conditions. Following the 

cyclization assays, the peptides were digested with endoproteinase LysC and treated with IAA. 

The enzymatic assay did not show IAA adduct formation, whereas the non-enzymatic assay 

showed predominant formation of the IAA adduct 2.25 (Figure 2.14A) as demonstrated by 

MALDI-TOF MS (Figure 2.14B). Hence, non-enzymatic cyclization of the A-ring of Pcn3.3 in a 

peptide that already contained the B-ring is much slower than when this process is catalyzed by 

ProcM. Thus, the experiments with peptides 2.19-2.21 show that non-enzymatic cyclization is 

too slow to be kinetically competent to be a part of the overall process. 

The product obtained after ProcM treatment of the ProcA3.3 precursor analogue 2.18 was 

not a single peptide but a mixture of peptides 2.22 and 2.26 with two different ring topologies 

(Figure 2.14C). The major product 2.22 had a MeLan formed between Cys21 and Dhb18 and the 

minor product 2.26 contained a MeLan formed between Cys21 and Dhb11 (as seen in native 

Pcn3.3, Figure 2.3), as evidenced by tandem ESI-MS on the individual products that were 

separated on analytical scale by UPLC (Figure 2.18). These findings can be explained based on 

the order of cyclization of ProcA3.3 discussed above. In WT-ProcA3.3, Cys14 forms a ring with 

Dhb18 in the observed monocyclic intermediate, and hence only Dhb11 is available to Cys21 for 

cyclization. However, in peptide 2.18, Cys14 is protected, and therefore, both Dhb11 and Dhb18 

are available for reaction with Cys21; apparently, the enzyme then prefers formation of the 
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smaller ring between Cys21 and Dhb18. Compounds 2.22 and 2.26 could not be separated on 

preparative scale, and therefore, the mixture was subjected to UV irradiation to release the o-

nitrobenzyl group from Cys14. The mixture of deprotected peptides was subsequently subjected 

to both enzymatic and non-enzymatic cyclization assay conditions. The peptides were then 

digested with endoproteinase LysC followed by treatment with IAA. The non-enzymatic assay 

resulted in the formation of IAA adduct, thus indicating the absence of significant spontaneous 

non-enzymatic cyclization in the mixture of two peptides, whereas the enzymatic assay resulted 

in complete cyclization as evidenced by the lack of IAA adduct (Figure 2.14D). The cyclized 

product mixture was separated on analytical scale by UPLC and tandem MS analysis revealed 

the identity of the two products obtained from 2.22 and 2.26. In addition to the overlapping ring 

topology as observed in Pcn3.3 (Figure 2.19A), an alternate non-overlapping ring topology was 

formed (Figure 2.19B). Hence, manipulation of the order of cyclization by using Cys protecting 

groups allows access to a ring topology not seen with the native substrate. 

Li2 Gly Asp Dhb Gly Ile Gln Ala Val Leu His Dhb Ala Gly Cys Tyr Gly Gly Dhb Lys Met NbC   

Arg Ala 

 

Figure 2.17. Tandem MS on intermediate 2.21 (Figure 2.14A) after LysC cleavage (parent ion 

m/z of 696, 4+ charged state), showing the formation of a MeLan between Cys14 and Dhb18. For 

the structures of NbC and Li2, see Figure 2.16. 
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Li2 Gly Asp Dhb Gly Ile Gln Ala Val Leu His Dhb Ala Gly NbC Tyr Gly Gly Dhb Lys Met Cys  

Arg Ala 

 
 

 

Li2 Gly Asp Dhb Gly Ile Gln Ala Val Leu His Dhb Ala Gly NbC Tyr Gly Gly Dhb Lys Met Cys   

Arg Ala 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18. (A) Tandem-MS analysis of intermediate 2.26, after LysC cleavage, and (B) 

tandem analysis of intermediate 2.22 after LysC cleavage. For the structures of NbC and Li2, see 

Fig. 2.16. 
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Li2 Gly Asp Dhb Gly Ile Gln Ala Val Leu His Dhb Ala Gly Cys Tyr Gly Gly Dhb Lys Met Cys   

Arg Ala 

 

 

 

 

 

 

 

 

 

 

Li2 Gly Asp Dhb Gly Ile Gln Ala Val Leu His Dhb Ala Gly Cys Tyr Gly Gly Dhb Lys Met Cys  

Arg Ala 

 

 

 

 

 

 

 

 

 

Figure 2.19. Tandem MS analysis of a mixture of cyclized material derived from enzymatic 

cyclization of a mixtures of 2.26 and 2.22 after photolysis. The cyclized mixture was separated 

on an analytical scale which confirmed (A) the native Pcn3.3 like overlapping ring-topology, and 

(B) the alternate nonoverlapping ring topology. For the structure of Li2, see Figure 2.16. 
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2.2.8. Reversibility of Thioether Ring Formation: Studies on D–H Exchange 

To test whether thioether ring installation in prochlorosins is reversible, ProcA substrates 

were modified by ProcM in D2O, resulting in incorporation of one deuterium at each newly 

formed α-stereocenter of Lan/MeLan. The modified precursor peptides were then purified and 

subjected to standard ProcM assay conditions in unlabeled aqueous buffer. If the Michael-type 

addition is reversible, then the incorporated deuterium would be expected to exchange with a 

protium in the assay in unlabeled buffer (Scheme 2.4). His-tagged ProcA2.8 was heterologously 

expressed in E. coli and purified and subjected to ProcM with all assay components dissolved in 

D2O. ProcM was removed by ultrafiltration, and the peptide was desalted and lyophilized. A 

portion of the lyophilized peptide was digested with endoproteinase GluC to generate the 

modified core peptide with a five amino acid overhang at its N-terminus originating from the 

leader peptide (Figure 2.20A). As anticipated, both ESI and MALDI-TOF MS analysis 

demonstrated the incorporation of two deuterium atoms. The full-length peptide was then 

incubated in unlabeled buffer in the presence or absence of ProcM for 17 h. Exchange of 

deuterium with protium was not observed (Figure 2.20B, red). Hence, D−H exchange did not 

occur in ProcA2.8 containing two non-overlapping lanthionine rings, suggesting that such rings 

are not installed reversibly for this peptide.  
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Scheme 2.4. Scheme for the D–H exchange assay. Substrate is modified by ProcM in deuterium-

labeled buffer to generate product with one deuterium per Lan/MeLan. Exchange of the installed 

deuterium was then investigated by treating the modified precursor peptide with ProcM in 

unlabeled buffer. Exchange can occur by abstraction of deuterium followed by protonation (solid 

blue arrows) or by retro-Michael-type addition (dashed blue arrow) and recyclization. 

 

 
Figure 2.20. Deuterium incorporation and exchange in ProcA2.8. (A) Structure of GluC cleaved 

ProcA2.8 core peptide fragment incorporating two deuteriums. Residues in purple originate from 

the leader peptide. (B) MALDI-TOF MS of GluC cleaved fragment of deuterium-labeled 

ProcA2.8 (50 μM) after assay without (blue trace) and with ProcM (20 μM) treatment in aqueous 

buffer (red trace). 

2.2.9. ProcM-Cyclized ProcA3.3 Undergoes Enzymatic D−H Exchange 

To also explore a substrate containing overlapping rings, ProcA3.3 was heterologously 

expressed and purified. The peptide was modified by ProcM in D2O, the enzyme was removed 

from the modified peptide by ultrafiltration, and the product peptide was desalted and 

lyophilized. Analysis by MALDI-TOF MS after endoproteinase GluC digestion demonstrated 

incorporation of two deuterium atoms as expected (Figure 2.21A). The full-length peptide was 

then incubated in unlabeled buffer with or without ProcM and digested with GluC before mass 
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spectrometric analysis. The modified ProcA3.3 treated in aqueous buffer without ProcM did not 

result in any exchange (Figure 2.21B, blue), but the modified substrate treated in aqueous buffer 

with ProcM showed exchange of both deuterium atoms with protium (Figure 2.21B, red). 

Analysis of the exchange over time at two different concentrations of ProcM revealed that the 

exchange was time-dependent and dependent on the concentration of ProcM (Figure 2.22). Also, 

exchange of one deuterium was significantly faster, with the second deuterium exchange 

requiring higher enzyme concentration and longer incubation time. Under the conditions of the 

assay (100 μM modified ProcA3.3 and 5 μM ProcM), the exchange of the first deuterium was 

already detected after short incubation times (15 min; Figure 2.22). The dehydration of ProcA3.3 

catalyzed by ProcM under the same conditions is complete at this time point, but cyclization is 

still incomplete. Hence, the observed deuterium exchange could be kinetically competent with 

the cyclization process. 

 

Figure 2.21. Deuterium incorporation and exchange in ProcA3.3. (A) GluC digested ProcA3.3 

core peptide incorporating two deuteriums. Residues in purple originate from the leader peptide. 

(B) MALDI-TOF MS of GluC digested fragment of modified deuterium-labeled ProcA3.3 (100 

μM) without aqueous ProcM treatment (blue trace) and with aqueous ProcM (40 μM) treatment 

(red trace). 
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Figure 2.22. D–H exchange in ProcA3.3 with duration and concentration of ProcM treatment. 

Two sets of assays were performed: (A) with 5 M ProcM, and (B) with 10 M ProcM. In both 

cases, the assay solution contained HEPES (50 mM, pH 8.0), TCEP (0.5 mM), ATP (10 mM), 

MgCl2 (10 mM), and ProcM-modified ProcA3.3 containing two deuterium atoms (100 M). 

Time points were taken at 15, 30, 60, 120, 180 min. The 0 min time point is taken as the 

substrate without ProcM. For each sample, ProcM was removed by filtration, and the filtrate was 

digested by LysC and analyzed by ESI-MS. The 3+ charged fragment ion is shown to show the 

extent of D-H exchange with time. The red box shows the appearance of the new peak in the 

isotopic pattern as the first D is exchanged by H. The spectra in red are the simulated 3+ charged 

spectra for species with one D exchanged with H (m/z: 1481.67). 

 

2.2.10. D−H Exchange Is Not Observed in ProcA2.8 Substrates with Ser Mutated to Thr 

Given the observation of D−H exchange in modified ProcA3.3 but not ProcA2.8, it is 

interesting to note the differences between the two substrates. Pcn3.3 contains overlapping rings 

whereas Pcn2.8 does not, and the rings in Pcn3.3 are formed by MeLan residues whereas both 

rings in Pcn2.8 are formed by Lan residues. To investigate if the lack of exchange in cyclized 

ProcA2.8 was because it contains Lan and not MeLan, two mutants of ProcA2.8 were generated 

by site-directed mutagenesis—one with Ser9 replaced with Thr (ProcA2.8-S9T) and another with 

Ser13 replaced with Thr (ProcA2.8-S13T). Both substrates were modified by ProcM in D2O, 

incorporating two deuterium atoms in the process. The purified products were subjected to the 

D−H exchange assay conditions and were digested with GluC. Subsequent analysis by MALDI-

TOF MS revealed that D−H exchange had not occurred (Figure 2.23A−D). Hence, in ProcA2.8 

with two non-overlapping rings, even changing a Lan to a MeLan does not lead to D−H 
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exchange, suggesting that ring topology may instead dictate whether ProcM can exchange the α-

proton of the cross-linked amino acids. 

 

Figure 2.23. Investigation of D-H exchange in ProcA2.8-S9T and ProcA2.8-S13T mutants. (A) 

Structure of ProcM-modified ProcA2.8-S9T incorporating two deuteriums and after GluC 

digestion. (B) MALDI-TOF MS analysis on D-H exchange assay when modified precursor 

peptide ProcA2.8-S9T incorporating two D was treated with ProcM in standard assay conditions 

in aqueous buffer (red trace) and without ProcM in standard conditions in aqueous buffer (blue 

trace). (C) Structure of ProcM-modified ProcA2.8-S13T incorporating two deuteriums and after 

GluC digestion. (D) MALDI-TOF MS analysis of the D-H exchange assay when modified 

precursor peptide ProcA2.8-S13T incorporating two D was treated with ProcM in standard assay 

conditions in aqueous buffer (red trace) and without ProcM in standard conditions in aqueous 

buffer (blue trace). 

 

2.2.11. Exchange in ProcA3.3 Involves the B-Ring 

As noted above, the exchange process for cyclized ProcA3.3 involves one deuterium that 

was exchanged relatively rapidly with a proton from solvent, whereas the second deuterium 

exchange was much slower. Because cyclization of ProcA3.3 results in a ring within a ring, 
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tandem MS could not be used to determine which of the two MeLan residues is associated with 

the faster exchange. We therefore mutated Thr11 to Ser such that cyclization would result in one 

Lan and one MeLan, which in principle can be distinguished by GC−MS after acidic hydrolysis 

of the product. Thus, ProcA3.3-T11S was first incubated with ProcM under the standard 

conditions in D2O. The resulting product was purified and shown to contain two deuterium 

atoms by mass spectrometry (Figure 2.24). The labeled peptide was then treated with ProcM in 

unlabeled buffer, resulting in relatively rapid exchange of one deuterium (Figure 2.24), similar to 

the observations with wild-type ProcA3.3. The resulting peptide containing one deuterium was 

then hydrolyzed, and the Lan and MeLan residues were derivatized as previously described (29, 

30). Analysis by GC−MS resulted in detection of unlabeled derivatized MeLan and deuterium-

labeled derivatized Lan (Figure 2.25). Hence, the relatively fast exchange occurs in the MeLan in 

ring B. Both Lan and MeLan residues had the correct DL stereochemistry as confirmed by co-

injection with synthetic standards (Figure 2.26). 
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Figure 2.24. Investigation of D-H exchange in ProcA3.3-T11S. (A) Structure of the core region 

of ProcA3.3-T11S incorporating two deuterium atoms after GluC digestion. The amino acids 

remaining from the leader peptide are shown in magenta. (B) MALDI-TOF MS analysis after 

treatment of the modified ProcA3.3-T11S incorporating two deuterium atoms (100 M) with 

ProcM (10 M) in standard conditions in aqueous buffer (red trace), and in the absence of ProcM 

in standard ProcM assay conditions (blue trace). For comparison, also shown is the MALDI-TOF 

mass spectrum of unlabeled ProcA3.3-T11S modified by ProcM in aqueous buffer and then 

digested with GluC (gray trace). The corresponding simulated spectra are drawn to the right of 

the corresponding panels. 
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Figure 2.25. GC/MS analysis to identify the thioether residue in ProcA3.3-T11S mutant 

participating in DH exchange. (A) GC/MS traces for the hydrolyzed/derivatized Lan/MeLan 

residues obtained from ProcA3.3-T11S mutant with one -deuterium exchanged with protium. 

(B) Mass spectrum of derivatized Lan showing fragments consistent with the Lan residue 

retaining the -deuterium (m/z: 366, 203). (C) Mass spectrum of the derivatized MeLan showing 

fragments consistent with the MeLan residue not containing a deuterium atom (m/z: 379, 216) 

(29). 

 

 

 

 

 

 

 

 

Figure 2.26. GC/MS traces for the co-injection of hydrolyzed/derivatized Lan/MeLan residues 

from Figure 2.25 with (A) synthetic, derivatized (2S,6R)-Lan standard, and (B) synthetic, 

derivatized (2S,3S,6R)-MeLan standard.  

A B C 
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2.2.12. Mutations of Three Zn(II) Binding Cys Ligands in ProcM§ 

Most lanthipeptide cyclases (LanCs and the cyclase domains in LanMs) utilize two Cys 

and one His as the ligands binding the Zn(II) at the active site, whereas ProcM uses three Cys 

residues (Cys924, Cys970, and Cys971) (12). Cys971 is the unique residue present in ProcM, in 

place of His that is typically present in other LanMs and LanCs (Figure 2.27). To evaluate the 

importance of the Zn binding Cys residues, including Cys971, a series of mutants of ProcM 

(C924A, C970A, C971A, and C971H) were generated by site-directed mutagenesis. The Zn 

contents were very similar in WT-ProcM and ProcM-C971H, and this mutant was studied further 

to evaluate the importance of the Zn-binding Cys ligand.   

 

Figure 2.27. Sequence alignment of selected LanMs (cyclase domain) and LanCs. The 

conserved active-site residues are boldface underlined type. The unique Cys971 in ProcM is 

colored red. Figure courtesy, Dr. Yi Yu, biochemistry, UIUC (2). 

                                                 
§ This experiment was performed by Dr. Yi Yu, biochemistry, UIUC. Adapted from: 

2. Yu, Y., Mukherjee, S., and van der Donk, W. A. (2015) Product Formation by the Promiscuous 

Lanthipeptide Synthetase ProcM is under Kinetic Control, J. Am. Chem. Soc. 137, 5140-5148. 
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2.2.13. Differences in Enzymatic Activity between WT-ProcM and ProcM-C971H 

ProcA2.8 was modified by either WT-ProcM or ProcM-C971H, and the rate of 

dehydration, cyclization, and the product distribution were studied. As the mutation of ProcM 

was in its cyclase domain, similar rate of dehydration was observed as expected, but the 

cyclization rate was found to be different. In case of WT-ProcM treated ProcA2.8, the first 

cyclization of Cys19 to Dha13 was completed in <15 min, and the second cyclization of Cys3 to 

Dha9 took about 1 h, under the employed conditions of the assay (Figure 2.28). In ProcM-

C971H modified ProcA2.8, the same order of cyclization as in the case of cyclization by WT-

ProcM was observed and the rate of the first cyclization was also found to be very similar in the 

two assays. The second cyclization rate decreased significantly for the mutant enzyme, with 

<30% fully cyclized ProcA2.8 observed after 90 min (Figure 2.28). ProcA2.8 was subjected to 

increasing concentrations of ProcM-C971H for 60 min, and the extent of fully cyclized material 

was found to increase with the increasing enzyme concentration, suggesting that the second 

cyclization is catalyzed by ProcM-C971H, albeit at a slower rate (Figure 2.29).  
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Figure 2.28. Comparison of the rate of dehydration and cyclization of ProcA2.8 by WT-ProcM 

and ProcM-C971H. MALDI-TOF mass spectra are displayed of 100 M ProcA2.8 modified by 2 

M (5 min*) or by 10 M WT ProcM (red) and ProcM-C971H (blue) for 15, 60, and 90 min, 

and subsequently digested by LysC and treated with IAA. 
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Figure 2.29. The second cyclization in ProcA2.8 is catalyzed by ProcM-C971H. MALDI-TOF 

mass spectra are depicted of 50 M of ProcA2.8 modified by (A) 5 M, (B) 10 M, (C) 20 M, 

and (D) 30 M of ProcM-C971H for 60 min prior to digestion by endoproteinase LysC and 

alkylation by IAA. The peak not assigned in the figure arises from a digested fragment of the 

ProcM enzyme. 

 

Similar comparison of rates of dehydration and cyclization was carried out for ProcA3.3. 

WT-ProcM led to the formation of the first ring in ProcA3.3 in 15 min, while the second 

cyclization took ca. 90 min to complete (Figure 2.30). In comparison, when ProcA3.3 was 

treated by ProcM-C971H, the first cyclization was nearly completed in 90 min, but <10% of the 

second cyclization was observed in ca. 90 min (Figure 2.30).  
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Figure 2.30. Comparison of the rate of dehydration and cyclization of ProcA3.3 by WT-ProcM 

and ProcM-C971H. MALDI-TOF mass spectra are shown of ProcA3.3 (100 M) peptide 

modified by either 5 M WT ProcM (red) or ProcM-C971H (blue) for 15, 30, 45, 60, and 90 

min, and subsequently digested by LysC and treated with IAA. 
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2.2.14. Product Distribution in ProcA3.3 Modified by WT-ProcM or ProcM-C971H** 

When ProcA3.3 was treated with ProcM-C971H, two products were observed, while 

WT-ProcM modified ProcA3.3 to generate one product. The products obtained from the separate 

treatments of ProcA3.3 with the two enzymes were digested with endoproteinase AspN and then 

subjected to tandem-MS analyses. As known previously, WT-ProcM treated ProcA3.3 generated 

a product with an overlapping ring-topology (see Figure 2.3 for structure of mature Pcn3.3), 

which upon AspN digestion, generated the modified 1-ProcA3.3 core (peptide 2.27, Figure 

2.31). The major product obtained from the treatment of ProcA3.3 with ProcM-C971H contained 

a non-overlapping ring topology (peptide 2.28, Figure 2.31).  

 

 
 

 

Figure 2.31. Product distribution of ProcA3.3 treated with either WT-ProcM or ProcM-C971H. 

(A) ESI-LC-MS experiment showing the chromatogram obtained by selected ion monitoring for 

fully dehydrated and fully cyclized 1 ProcA3.3 core (obtained after AspN treatment). (B) 

Tandem ESI-MS indicates the topology of thioether crosslinks in peptides 2.27 and 2.28. Figure 

courtesy of Dr. Yi Yu, biochemistry, UIUC.  

 

ProcA3.3 was incubated with WT-ProcM and its various mutants and the reactions were 

quenched before complete cyclizations could occur. The ring patterns of each intermediate were 

                                                 
** I have generated the semi-synthetic peptide intermediates (peptides 2.29, 2.30, and 2.31). All other experiments in 

this section were performed by Dr. Yi Yu, biochemistry, UIUC.  
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determined by tandem-MS and by comparison with semi-synthetic standards (Figure 2.32). For 

modifications by all the mutant enzymes, peptide 2.31 was the major intermediate forming the 

peptide 2.28 as the major product. The inherent regioselectivity of ring formation was 

determined by effecting non-enzymatic cyclization on the dehydrated substrate. The two Cys in 

ProcA3.3 were protected by a disulfide bridge using oxidized glutathione, and the oxidized 

ProcA3.3 was successfully dehydrated by WT-ProcM. Upon disulfide reduction, and incubation 

of the dehydrated peptide in buffer of pH 8.0, very little cyclization occurred at 3 h, suggesting 

that the mutant enzymes indeed catalyzed the cyclization process. However, non-enzymatic 

cyclization was enforced upon extended incubation of the dehydrated peptide at pH 8.0 for 72 h, 

upon which similar product distribution was observed as that obtained from the reaction with the 

mutant enzyme, with peptide 2.28 as the major product (Figure 2.32). The different 

regiochemistry of cyclized product obtained from the reaction of ProcA3.3 with WT-ProcM 

from that observed during non-enzymatic cyclization suggests that the enzyme plays a role in the 

site-selectivity of the Michael-type addition, besides accelerating it.   
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Figure 2.32. ESI-LC-MS (selected ion monitoring) showing 3-fold dehydrated 1 ProcA3.3 core 

peptides obtained by treating ProcA3.3 precursor peptide (25 M) with 2 M of WT-ProcM, 

ProcM-C971A, and ProcM-C971H for 3 h. Standard peptides: 2.27 (blue), ProcA3.3 co-

expressed with WT-ProcM; 2.27 and 2.28 (red), ProcA3.3 co-expressed with ProcM-C971H; 

2.29 (purple), semisynthetic ProcA3.3 containing a ring between Cys14 and Dhb18 (described in 

section 2.4.27); 2.30 and 2.31 (orange), semisynthetic ProcA3.3 with Cys14 protected that was 

modified by WT-ProcM and subsequently deprotected (described in section 2.4.27); and 2.32 

(gray), 3-fold dehydrated and non-cyclized ProcA3.3. Non-cyclization was performed by 

incubation in buffer of pH 8.0. All peptides except the semisynthetic ones were digested by 

AspN to remove the leader peptides. Figure courtesy, Dr. Yi Yu, biochemistry, UIUC. 
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2.2.15. Thioether Formation in ProcA3.3 Is Not Reversible 

One possible explanation of the catalytic selectivity of ProcM is that the thioether 

formation is reversible with product formation guided by thermodynamic control. D–H exchange 

assays performed on ProcA3.3 showed that the protonation of enolate obtained from Michael-

type addition is reversible for ProcA3.3 (Scheme 2.4 and Figure 2.21). However, the -

deuterium exchange does not indicate the occurrence of a retro-Michael-type addition. Such 

reversibility has been observed for haloduracin synthetase HalM2 and the nisin cyclase NisC 

(31). Thermodynamic control would involve the ring-opening of both the final product and that 

of the intermediates with incorrectly formed rings. A ProcA3.3 derived intermediate 2.33 with a 

thioether ring between Cys21 and Dhb18 was generated by treating peptide 2.18 with ProcM-

C971H. The o-nitrobenzyl group was removed from Cys14 of intermediate 2.33, to yield an 

intermediate peptide with an “incorrect” thioether ring. This intermediate peptide was incubated 

with WT-ProcM (Figure 2.33) and the product was analyzed by ESI-LC-MS/MS (Figure 2.34). 

Once the “incorrect” intermediate with Cys21-Dhb18 ring was present, the only product 

observed was that containing the non-overlapping topology (peptide 2.34). Thus, no retro-

Michael-type ring-opening followed by WT-ProcM catalyzed formation of the overlapping ring 

topology, as found in the native Pcn3.3, was observed. This result suggests that the thioether 

formation is kinetically driven and the final ring topology is guided by the topology of the 

initially installed ring.  
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Figure 2.33. Approach used to determine whether WT-ProcM can correct the non-native ring 

topology in an intermediate. A ProcA3.3 semisynthetic analog with Cys14 protected with a 

photolabile protecting group was modified by ProcM-C971H to generate the non-native MeLan 

cross-link between Cys21 and Dhb18. After UV-mediated deprotection of Cys14, treatment with 

WT-ProcM generated a thioether cross-link between Cys14 and Dhb11, thus showing no 

evidence of correction of the initially formed ring to generate the native overlapping ring 

topology. 
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Figure 2.34. Tandem ESI-MS evidence to establish that WT ProcM does not correct non-native 

ring topology. (A) Tandem ESI-MS of peptide 2.33 after treatment with endoproteinase LysC to 

remove the leader peptide. (B) EIC for peptide 2.33 after LysC treatment; a C18-Phenomenex 

column was used at 0.2 mL/min. (C) Structures of CCu and NBC, two acronyms used in the 

sequence shown above panel A. (D) ESI-MS/MS analysis of peptide 2.34 after removal of the 

leader peptide by endoproteinase LysC. 
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2.2.16. Oligomerization State of ProcM 

ProcM was found to exist primary as a monomer, as deduced from a calibration curve 

(Figure 2.35A). When ProcM was analyzed by size exclusion chromatography (SEC), besides 

observing the monomer, we found trimer, hexamer, and other higher oligomeric species (Figure 

2.35B and C). We were intrigued by the possibility that the C-to-N-terminal directionality of the 

dehydration could be explained by invoking the interaction of a trimer species of ProcM with its 

substrate. Upon increasing the pH of the mobile phase from 7.2 to 7.5, the ratio of the monomer 

increased over that of the other higher oligomers, suggesting that ProcM is more prone to 

aggregation at lower pH. ProcM readily aggregated upon concentration. When the concentrated 

monomer was reinjected, only a small amount of monomer, and primarily aggregates were 

formed (Figure 2.35D). Similarly, upon reinjecting the concentrated trimer, mainly aggregates 

and a smaller portion of trimer were obtained (Figure 2.35E). When, ProcM was injected along 

with ATP and Mg2+, as present during typical assay conditions, primarily monomer and 

aggregates, with little trimer species were formed (Figure 2.35F). This last observation indirectly 

indicated that the monomers are the active species involved in catalysis.  

To evaluate if the trimer is also an active form of ProcM besides the monomer, equimolar 

amounts of the monomer and trimer species were separately reacted with ProcA2.8. 

Interestingly, the trimer was found to be able to catalyze the dehydration of ProcA2.8. However, 

in presence of the substrate, slow dissociation of the trimer to monomer was observed, and the 

proportion of monomer increased with time, as seen in the trace obtained after injecting the 

trimer species after incubating it with the substrate for 3 h vs 1 h (Figure 2.36). This observation 

suggested that the monomer could be the sole active species. However, it is difficult to 

completely rule out the activity of the trimer species of ProcM. Nonetheless, as the monomer is 
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definitely an active form of ProcM, the directionality has to be a result of the binding-mode of 

substrate to ProcM. 

 

Figure 2.35. Evaluation of oligomerization states of ProcM under various conditions.  



77 

 

Monomer assay           Trimer assay                            SEC analytical chromatograms 

                                                                                                                                                            

                                                                                          

                                                                                         

 

                                                                                              

                                                                         

                                                                                                                                              

                                                                                       

                                       

                                                                                                                                                                              

 

                                                                                        

                                                                                   

                                                                                        

                                                                                           

 

 

                                                                                       

 

 

 

 

Figure 2.36. Comparison of activity of monomer vs trimer of ProcM, as evaluated for the 

dehydration reaction of ProcA2.8 (100 M) by equimolar enzyme (0.52 M, mass of trimer 3 

times over monomer species). From left to right panels: MALDI-TOF MS of dehydration assay 

of ProcA2.8 by ProcM-monomers with time, MALDI-TOF MS of dehydration assay of 

ProcA2.8 by ProcM-trimer with time, and SEC showing that when trimer along with its substrate 

is injected, evidence of monomer formation is found.  
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2.3. CONCLUSIONS AND OUTLOOK 

In an effort to understand the remarkable substrate tolerance of ProcM, several aspects of 

the lanthionine synthetase were investigated. Aided by a hybrid ligation protocol that allowed us 

to install synthetic core peptides onto a heterologously expressed leader peptide, we investigated 

the directionality of both dehydration and cyclization, the possibility that a nonenzymatic 

cyclization step might account for the high diversity of ring topologies of the products, and the 

possibility of reversibility of ring formation. Use of labeled ProcA substrate unequivocally 

demonstrated that ProcM dehydrates two very different substrate peptides in a C-to-N-terminal 

fashion. Although we cannot completely rule out that the directionality of dehydration by ProcM 

is simply reflecting the reactivity of each individual site as a result of different flanking residues 

or secondary structure, the lack of any sequence similarity in the two peptides that are both 

shown to be dehydrated in C-to-N-terminal direction in this study leads us to favor an 

explanation that involves a specific juxtaposition of the leader and core peptide binding sites that 

favors dehydration of C-terminal residues. Structural studies will be required to provide further 

information. 

Interestingly, the cyclization of the two peptides also occurred with a specific order, but 

this order was not necessarily directional. Whereas for ProcA2.8 the Cys that is located closer to 

the C-terminus reacted first, in ProcA3.3, it was the Cys that was closer to the N-terminus that 

appeared to react first. In the latter substrate, this results in the smaller B ring being formed in the 

observed intermediate.  

The remarkable substrate tolerance of ProcM suggested the possibility that perhaps only a 

subset of the rings are generated enzymatically and that these enzymatically formed macrocycles 



79 

 

preorganize the peptide for subsequent non-enzymatic cyclization. However, my current data 

show that, for two different substrates, non-enzymatic cyclization of intermediates that contain 

one ring is too slow to be kinetically competent for the enzymatic process. Another question that 

had not been previously addressed in lanthipeptide biosynthesis is whether thioether ring 

formation is reversible or not. The experiments presented here suggest that enzymatic 

deprotonation at the -position of MeLan residues does occur in some rings. It is important to 

note that the D−H exchange assay reports on the reversibility of the protonation of the enolate 

during MeLan formation; it does not necessarily indicate that the cyclization is reversible (i.e., a 

reversible Michael-type reaction).  

Indeed, in a collaborative work with Dr. Yi Yu, we ruled out reversible Michael-type 

reaction. All attempts to trap free Cys or dehydrated residues that would arise in case of a retro-

Michael-type reaction (31) were unsuccessful. We also established that the unique three Cys-

ligated Zn(II) in the active site of ProcM, as opposed to two Cys and one His in other LanMs and 

LanCs, is important for the high reactivity of ProcM towards its substrates. We demonstrated that 

the kinetic control over the site-selectivity of formation of the first ring determines the final ring 

topology in the products formed by ProcM. How the enzyme ensures site-selectivity for the 

kinetically driven formation of the first ring in the diverse set of 30 substrates is currently not 

understood. Structural information on ProcM will likely provide molecular details of the 

interaction of ProcM with its substrates.  
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2.4. EXPERIMENTAL  

2.4.1. Characterization of Small Molecules and Peptides 

Nuclear magnetic resonance (NMR) spectra were recorded on Varian Unity 400, Unity 

Inova 500, or Varian VXR 500 spectrometers. Small molecules (MW < 1000 Da) were analyzed 

by electrospray ionization/time-of-flight (ESI-TOF) mass spectrometry on a Waters Quattro II 

quadrupole spectrometer. Peptides (MW > 800 Da) were analyzed by matrix-assisted laser 

desorption ionization/time-of-flight (MALDI-TOF) mass spectrometry on a Bruker 

UltrafleXtreme spectrometer using a matrix solution consisting of saturated α-cyano-4-

hydroxycinnamic acid in 1:1 H2O/MeCN with 0.1% TFA. For larger peptides (MW>5000, or for 

endoproteinase digested mixtures), 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid 

(sinapic acid) dissolved in 1:1 H2O/MeCN with 0.1% TFA was used as matrix. For smaller 

peptide fragments (500-1000 Da), MALDI-TOF analysis was performed with 2,5-

dihydroxybenzoic acid (DHB) dissolved in 1:1 H2O/MeCN with 0.1% TFA. ESI-MS on peptides 

and their tandem MS analysis was carried out with a Synapt Waters G1 system. Samples were 

separated by liquid chromatography using a Phenomenex Jupitar C18 300a column using an 

elution gradient of 3% solvent A, 97% solvent B to 40% solvent A, 60% solvent B over 20 min 

at a flow-rate of 0.2 mL/min (solvent A: 99.9% acetonitrile, 0.1% formic acid, solvent B: 0.1% 

formic acid in 99.9% water). For analysis of larger framents (MW>4000), an elution gradient of 

3% solvent A, 97% solvent B to 70% solvent A, 30% solvent B over 20 min was used. The LC-

system was directly connected to the MS chamber, where ESI was used to analyze samples, 

using Glu-1-Fibrinopeptide B (Glu-Fib) as external calibrant. 
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2.4.2. Small Molecule Synthesis: Materials and Methods 

Standard Fmoc-amino acids and resins, Boc-protected Cys and peptide coupling 

reagents-  1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (HATU), 2-(6-chloro-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate (HCTU), (7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium 

hexafluorophosphate (PyAOP),  N,N’-diisopropylcarbodiimide (DIC), 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC), 1-hydroxy-7-azabenzotriazole (HOAt) 

and 1-hydroxybenzotriazole (HOBt) were purchased from Chem-Impex. [2,3,3-2H]-L-Ser was 

purchased from Cambridge Isotope Laboratories, and [2,3-2H]-L-Thr was purchased from CDN-

isotopes. Chitin resin was purchased from New England Biolabs. Dimethylformamide (DMF), 

dichloromethane (DCM), tetrahydrofuran (THF), methanol, and 1,4-dioxane were purchased at 

reaction grade from Fisher Scientific and dried via a solvent dispensing system prior to use. 

Other chemical reagents and reaction-grade solvents were purchased from Sigma Aldrich or Alfa 

Aesar and used without further purification. All reactions and chromatography fractions were 

monitored by thin layer chromatography (TLC) on silica-gel-coated glass plates with a F254 

fluorescent indicator. Visualization was achieved by UV absorption by fluorescence quenching 

or permanganate stain (1.5 g KMnO4, 10 g K2CO3, 1.25 mL 10% NaOH in 200 mL of H2O), or 

ninhydrin stain (0.2% ninhydrin in EtOH) for visualizing compounds with free amines. For 

visualizing compounds with free carboxylic acids, bromocresol green (0.04% in EtOH) was 

used. Flash chromatography was performed using Silicycle SiliaFlash® P60, 230-400 mesh 

silica gel.   
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2.4.3. Synthesis of Compound 2.6 to Introduce C-Terminal Alkyne 

 

Compound 2.35. In a round bottom flask, 3-butyn-1-amine hydrochloride 

(0.21g, 1.99 mmol) was dissolved in 30 mL of DCM and neutralized with 

DIPEA (0.38 mL, 2.2 mmol). To the reaction mixture, Boc-L-cystine was 

added (0.44 g, 1 mmol), followed by EDC-HCl (0.39 g, 2.01 mmol) and HOAt (0.27 g, 2.02 

mmol) and the reaction mixture was stirred at room temperature for 30 h. The reaction mixture 

was washed with sodium bicarbonate (1 x 15 mL), 10% citric acid (1 x 15 mL), and brine (1 x 15 

mL), respectively. All aqueous layers were back-extracted with DCM (1 x 10 mL). The organic 

layers were collected, dried over sodium sulfate and concentrated to yield 2.35 (0.42 g, 77%). 1H 

NMR (500 MHz, CDCl3)  7.93 (t, J = 6.2 Hz, 2H), 5.57 (d, J = 9.4 Hz, 2H), 4.82 (ddd, J = 14.1, 

7.2, 4.0 Hz, 2H), 3.46 (app dq, J = 13.3, 6.7 Hz, 2H), 3.34 (app dq, J = 13.3, 6.7 Hz, 2H), 3.01-

2.97 (m, 2H), 2.92-2.87 (m, 2H), 2.48 (dtd, J = 16.5, 6.9, 2.7 Hz, 2H), 2.39 (dtd, J = 16.5, 6.9, 

2.7 Hz, 2H), 1.96 (t, J = 2.5 Hz, 2H), 1.47 (s, 18 H). 13C NMR (125 MHz, CDCl3) /ppm = 

170.6, 156, 81.4, 80.4, 70, 54.8, 47.4, 38.6, 28.6, 19.5. HRMS (ESI) m/z calc. for C24H39N4O6S2 

(M+H+) 543.2311, found 543.2310. (Notebook II, page 88) 

Compound 2.36. Compound 2.35 (0.42 g, 0.79 mmol) was suspended in 6 mL 

of dry DCM to form a milky suspension. To this suspension, 6 mL of 

trifluoroacetic acid (TFA) was added when a clear yellowish solution formed, 

2.6 
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which was stirred at room temperature for 1 h. TFA was then evaporated using a stream of N2. 

The residue was dissolved in water and lyophilized to yield 2.36 as white fluffy solid (0.34 g, 

95%). 1H NMR (500 MHz, D2O) 4.31 (t, J = z, 2H), 3.49-3.43 (m, 2H), 3.37-3.33 (m, 

2H), 3.33-3.28 (m, 2H), 3.23-3.18 (m, 2H), 2.47-2.42 (m, 2H), 2.36-2.35 (t, J = 2.5 Hz, 2H). 13C 

NMR (125 MHz, CDCl3) /ppm = 168, 82.4, 70.8, 52.1, 38.5, 37.7, 18.4. HRMS (ESI) m/z calc. 

for C14H23N4O2S2 343.1262, found 343.1256. During EPL, compound 2.36 was reduced in situ 

to 2.6. (Notebook II, page 90) 

2.4.4. Scheme for the Synthesis of Azide Building Block 2.8 (26) (Notebook V, pages 22-24) 

 

2.4.5. Scheme for the Synthesis of Azide Building Block 2.9 (27) (Notebook V, pages 50, 51, 

53, 54) 

 

2.4.6. Synthesis of Benzothiazolyl-Ethyl Disulfide 2.37 (22, 32) (Notebook III, pages 27, 87) 

 

 

 

2.8 

2.9 

2.37 
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2.4.7. Scheme for Synthesis of Cys(o-NO2Bn) Building Blocks 2.38 (33),(28) and 2.39 (34) 

for SPPS (Compound 2.38 - Notebook VI, pages 5, 9; compound 2.39 - Notebook V, pages 31-

32) 

 

2.4.8. Scheme for Synthesis of [2,3,3-2H]-Ser Building Block 2.40 for SPPS (9) (Notebook VI, 

pages 47, 50, 51, 60) 

 

2.4.9. Scheme for Synthesis of Protected [2,3-2H]-Thr Building Block 2.41 for SPPS 

 

 

Compound 2.42. L-[2,3-2H]-Thr-OH (0.25 g, 2.06 mmol) and Na2CO3 (0.25 g, 2.36 

mmol) was dissolved in 3 mL of H2O. Fmoc-OSu (0.75 g, 2.22 mmol) dissolved in 

4 mL of dry dioxane was stirred in an ice-bath, and the amino acid solution was added slowly to 

the dioxane solution. The ice-bath was removed and the reaction was stirred for 20 h to form a 

2.38 

2.39 

2.40 

2.41 
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milky suspension. The solvent was then removed on a rotary evaporator, and the residue was 

dissolved in H2O (20 mL) to generate a colorless solution. 10% citric acid was used to acidify the 

solution to pH 4.0, when a thick white solution formed. The aqueous layer was extracted with 

EtOAc (10 x 25 mL) and the organic layer was washed with brine (1 x 50 mL) and concentrated 

on a rotary evaporator followed by drying using a vacuum pump to generate a white solid, which 

was carried over to the next step without purification. Yield (crude): 0.97 g (calculated 0.71 g) 

(Notebook VII, page 42) 

Compound 2.43. Compound 2.42 (0.97 g) was suspended in a solution of 

NaHCO3 (0.18 g, 2.1 mmol) in 6 mL of H2O. The suspension was stirred under 

N2 and to it, 13 mL of dry DCM was added, while stirring vigorously. Aliquat-336 (0.96 mL, 2.1 

mmol) was added followed by allyl bromide (1.3 mL, 15 mmol) and then the reaction was 

continued to be stirred vigorously for 22 h. The reaction mixture was then diluted with 15 mL of 

H2O and extracted with DCM (4 x 20 mL). The organic layers were collected, washed with brine 

(1 x 20 mL), dried over Na2SO4 and concentrated on a rotary evaporator to generate a pale-

yellow oil. The crude mass was purified by flash chromatography (SiO2, 30% EtOAc in hexanes) 

to generate 2.43 as a white solid upon concentrating on a rotary evaporator. Rf 0.21 (30% EtOAc 

in hexanes). Yield: 0.59 g (75%). 1H NMR (500 MHz, CDCl3)  7.7 (d, J = 7.5 Hz, 2H), 7.61 (t, 

J = 7.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 6.10-5.89 (m, 1H), 5.60 (s, 

1H), 5.39-5.33 (m, 1H), 5.26 (d, J = 10.5 Hz, 1H),  4.68 (d, J = 5.5 Hz, 2H), 4.46-4.39 (m, 2H), 

4.25 (t, J = 7.0 Hz, 1H), 2.70 (s, 1H), 1.26 (s, 3H). 13C NMR (125 MHz, CDCl3)  171.5, 156.9, 

143.9, 143.7, 141.3, 131.5, 131, 127.8, 127.1, 125.2, 122.7, 120, 119, 67.3, 66.3, 47.2, 25.5, 19.9. 

HRMS (ESI) calculated for C22H22D2NO5 (M+H+) 384.1777, observed 384.1780. (Notebook VII, 

page 43) 



86 

 

Compound 2.44. Compound 2.43 (0.59 g, 1.54 mmol) was dissolved in 13 

mL of dry DCM and DIPEA (0.83 mL, 4.8 mmol) was added to the 

solution. Trityl chloride (1.09 g, 3.9 mmol) dissolved in 5 mL of dry DCM 

was added dropwise and the reaction was stirred for 21 h. The reaction turned from colorless to 

light pink to dark pink over time. The reaction was concentrated on a rotary evaporator and the 

product purified twice by SiO2 gel flash chromatography. Elution was performed by a stepwise 

gradient from 10% EtOAc in Hex to 20% to 30% EtOAc in Hex. Product 2.44 eluted with an Rf 

of 0.57 (3:1 Hex:EtOAc). Yield: 0.38 g (39%). Unreacted starting material 2.43 (0.27 g, 45%) 

was also recovered (Rf  0.15, 3:1 Hex:EtOAc). 1H NMR (500 MHz, CDCl3)  7.82 (dd, J = 7.6, 

2.9 Hz, 2H), 7.70 (dd, J = 19.5, 7.5 Hz, 2H), 7.43-7.41 (m, 4H), 7.32-7.27 (m, 15H), 5.77-5.69 

(m, 1H), 5.23-5.17 (m, 2H), 4.54-4.53 (dd, J = 13.0, 6.1 Hz, 1H), 4.32-4.27 (m, 2H), 0.91 (s, 

3H). 13C NMR (125 MHz, CDCl3) 156.8, 147.0, 144.6, 144.2, 144.0, 141.5, 131.7, 129.0, 

128.0, 127.9, 127.8, 127.4, 127.2, 125.3, 120.1, 119.0, 82.2, 67.4, 66.4, 47.4, 18.8. HRMS (ESI) 

calculated for C41H35D2NO5Na (M+Na+) 648.2695, observed 648.2695. (Notebook VII, pages 44-

45) 

Compound 2.41. Compound 2.44 (0.38 g, 0.61 mmol) was dissolved in 4 mL of 

dry THF and the round bottom flask was covered in Al-foil. Pd[PPh3]S4 (0.05 g, 

0.04 mmol) was added followed by N-methyl aniline (0.07 mL, 0.65 mmol) as a solution in 3 mL 

of dry THF and the reaction was stirred for 2.5 h. The reaction mixture was diluted with 100 mL 

of EtOAc and washed with brine (2 x 30 mL). The aqueous layer was extracted with EtOAc (5 x 

25 mL) and concentrated on a rotary evaporator and dried using a vacuum pump. The product 

was used without further purification. HRMS (ESI) calculated for C38H31D2NO5Na (M+Na+) 

608.2380, observed 608.2378. (Notebook VII, page 46) 
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2.4.10. Solid Phase Peptide Synthesis (SPPS) 

The automated peptide coupling was performed on a CEM Liberty microwave peptide 

synthesizer using standard Fmoc protected amino acids, 2-(6-chloro-1H-benzotriazole-1-yl)-

1,1,3,3-tetramethyluronium hexafluorophosphate (HCTU) as activator, 2 M N,N-

diisopropylethylamine (DIPEA) in N-methyl-2-pyrrolidone (NMP) as the activator base, 20% 

piperidine in dimethylformamide (DMF) as the deprotection agent and 90/8/2 DMF/acetic 

anhydride/DIPEA as the capping agent. Coupling of each amino acid in the microwave 

synthesizer occurred at 75 °C except for Cys and His residues for which coupling was performed 

at 50 °C  to prevent racemization. Typically each residue was double coupled followed by a 

capping step, unless otherwise noted. Coupling of any synthesized non-proteinogenic amino acid 

residues and the azide linker at the N-terminus was performed manually using either diisopropyl 

carbodiimide (DIC) as the coupling agent with 1-hydroxy-7-azabenzotriazole (HOAt) as the 

racemization suppressant, or HCTU as activator. Unless otherwise stated, manual couplings were 

performed as follows. Fmoc deprotection was performed using 20% piperidine in DMF while 

sparging the resin with N2 for agitation (2 x 5 min). After draining the reaction vessel, the resin 

was washed with DMF (6 x 30 s). The appropriate moiety to be coupled (4 equiv.) was dissolved 

in DMF (5-10 mL) and pre-activated with DIC/HOAt (4 equiv.) for 5 min, then added to the 

resin and the reaction was agitated by sparging with N2 for 1 h. After draining the reaction 

vessel, the resin was washed as before. Kaiser test was performed to monitor the completion of 

coupling and double coupling was performed as needed. The coupling of [2,3,3-2H]-L-Ser and 

[2,3-2H]-L-Thr building blocks were performed under optimized conditions using (7-

azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyAOP) as activator 

and HOAt as racemization suppressant using 2,4,6-collidine as base to prevent partial loss of the 
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-deuterium during coupling. After the completion of SPPS, the resin was washed with ca. 5 mL 

of DMF (3 x 30 s) and then ca. 5 mL of DCM (3 x 30 s) and drained under vacuum to dry the 

resin. The cleavage of the synthesized peptide from the resin was performed in a cleavage 

cocktail of 95/2.5/2.5 TFA/triisopropyl silane/H2O for 1 h and then the solution was filtered 

though a fritted funnel and the filtrate was evaporated under a stream of N2 to remove most of 

the TFA. Peptide was precipitated by adding 10-15 mL of cold diethyl ether to the solution. The 

mixture was centrifuged and the supernatant was discarded. The precipitate was dissolved in 

50% MeCN, 0.05% TFA in H2O, flash frozen in liquid N2 and lyophilized to generate white to 

pale yellow amorphous powder, which was stored at  20 °C.  

Often, the free thiols were protected as ethylthio disulfide to increase the yield of 

CuAAC. Such protection was carried out in solution phase. HPLC purified peptide was dissolved 

in H2O and about 10 equiv. of compound 2.37 (2-(ethyldisulfanyl)benzo[d]thiazole) dissolved in 

20-50 L of EtOH was added and the reaction was stirred at room temperature for 7 h. The 

reaction mixture was centrifuged and the supernatant was further purified by HPLC using 

methods described later. 

Analytical reversed-phase high-performance liquid chromatography (RP-HPLC) was 

performed on an Agilent 1260 Infinity system with a Phenomenex Luna C18, a Waters Vydac 

C18, or a Waters Vydac C4 column with a flow rate of 1 mL/min and a solvent gradient of 2-

100% solvent A over 45 min. Preparatory RP-HPLC was performed on a Waters 600 system 

with a Phenomenex Luna C18 or C5 semi-preparative column using a gradient of 2% solvent A to 

67% solvent A in 30 min. Any change from these standard HPLC conditions is noted in the 

procedures. All HPLC solvents were filtered with a Millipore filtration system equipped with a 
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0.22 μm nylon membrane filter prior to use. HPLC solvent compositions: solvent A was 80% 

acetonitrile in water with 0.086% trifluoroacetic acid (TFA), solvent B was 0.1% TFA in water.  

Peptide 2.2. H-Cys(Trt)-2-chlorotrityl  resin (0.05 

mmol) was used. All amino acids (0.25 mmol) were 

manually coupled using HCTU (0.25 mmol) as 

activator and DIPEA (0.5 mmol) as base, except for 

the deuterated Ser residues. All residues were double coupled (2 x 1 h coupling time) followed 

by capping procedure. Coupling of [2,3,3-2H]-L-Ser was performed using PyBOP (0.25 mmol) as 

activator, HOAt (0.25 mmol) as racemization suppressant, and 2,4,6-collidine as base, with a 3 h 

coupling time. Post cleavage from the resin, 54 mg of crude peptide was obtained. Of the crude 

peptide, 25 mg was purified in 7 injections by preparative RP-HPLC using the standard gradient 

to elute 2.2 with a retention time (Rt) of 15.0 – 15.7 min (34% to 36% solvent A). Yield: 7.5 mg. 

MALDI-TOF (LR-MS) m/z calculated for C83H111D3N23O26S3 1947.76 (M+H+), observed 

1947.69. (Notebook VII, page 28) 

Peptide 2.3. Using similar chemistry as for peptide 

2.2, 53 mg of crude peptide was synthesized on a 0.05 

mmol scale. Of the crude peptide, 22 mg was purified 

in 8 injections by RP-HPLC using the standard gradient to elute 2.3 with an Rt of 15.2 – 16.1 

min (35% to 37% solvent A). Yield: 8 mg. MALDI-TOF (LR-MS) m/z calculated for 

C83H111D3N23O26S3 1947.76 (M+H+), observed 1947.69. (Notebook VII, pages 26-27) 
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Peptide 2.45. H-Cys(Trt)-2-

chlorotrityl  resin (0.05 mmol) 

was used. Each residue was 

double coupled followed by 

capping on a CEM microwave synthesizer except for the following. Compound 2.40 (0.2 mmol) 

was coupled with PyAOP (0.2 mmol) as activator, HOAt (0.2 mmol) as racemization 

suppressant, and 2,4,6-collidine (0.4 mmol) as base in 5  mL of DMF with 3 h coupling time. 

Final coupling of 2.8 (0.15 mmol) was performed manually using HCTU (0.15 mmol) and 

DIPEA (0.3 mmol) for 3 h. Post cleavage from the resin, 3.2 mg of crude peptide was obtained. 

RP-HPLC using the standard gradient was used to purify the crude peptide, with the precursor to 

2.45 with free thiols eluting with a Rt of 17.4 min (40% solvent A). Yield: 0.7 mg. This peptide 

(0.7 mg, 0.31 mol) was dissolved in 0.4 mL of H2O and stirred. Compound 2.37 (0.92 mg, 4.05 

mol) dissolved in 20 L of EtOH was added to the peptide solution and the reaction mixture 

was stirred for 4 h. The reaction mixture was diluted with 3 mL of starting eluent for RP-HPLC 

(2% solvent A, 98% D) and then centrifuged (15000 x g, 5 min) and the supernatant was purified 

by HPLC in two injections using the standard conditions to elute 2.45 with a Rt of 21.1 min. 

Yield: 0.18 mg. MALDI-TOF MS calculated for C100H133D3N29O29S5 (M+H)+ 2369.9, observed 

2370.1. (Notebook VI, pages 87, 92) 

Peptide 2.46. Using similar 

chemistry as described for 

peptide 2.45, this peptide was 

synthesized from 0.05 mmol 

resin to yield 9.8 mg of crude peptide, which was purified using the standard conditions to yield 

3 19 

3 19 
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1.4 mg of pure peptide with unprotected Cys3 and Cys19 (Rt 17.5 min, 40% solvent A). 

Compound 2.37 (2.22 mg, 9.8 mol) dissolved in 40 L of EtOH was added to the 5 mL of 

peptide solution (1.37 mg) and the reaction mixture was stirred for 12 h at room temperature. 

The reaction mixture was diluted with 3 mL of starting eluent for RP-HPLC (2% solvent A, 98% 

solvent D) and then centrifuged (15000 x g, 5 min) and the supernatant was purified by HPLC in 

two injections using the standard conditions to elute 2.46 with a Rt of 21.1 min. Yield: 0.17 mg. 

MALDI-TOF MS calculated for C100H133D3N29O29S5 (M+H)+ 2369.9, observed 2370.2. 

(Notebook VI, pages 88, 93) 

Peptide 2.47. Each residue was 

triple coupled followed by capping 

on a microwave synthesizer except 

for coupling [2,3-2H]-L-Thr. 

Coupling of 2.41 was performed manually using PyBOP as activator, HOAt as racemization 

suppressant and 2,4,6-collidine as base. Final coupling of 2.8 was performed using 

HCTU/DIPEA chemistry. Post cleavage from the resin, 41 mg of crude peptide was obtained, 

which was purified using a C18 Phenomenex column using the standard conditions to elute target 

peptide with a Rt of 19.4 min (44% solvent A). Yield: 1.7 mg. MALDI-TOF (LR-MS), m/z 

calculated for C102H159D2N34O32S3 2472.12, observed 2471.97. (Notebook VII, pages 70, 71) 

Peptide 2.58. Using similar 

chemistry as for the synthesis of 

peptide 2.47, peptide 2.48 was 

prepared. Post cleavage from the 
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resin, 37.7 mg of crude peptide was obtained, which was purified using a C18 Phenomenex 

column using the standard conditions in four injections, with 2.48 eluting at a Rt of 19.4 min 

(44% solvent A). Yield: 0.61 mg. MALDI-TOF (LR-MS), m/z calculated for 

C102H159D2N34O32S3 (M+H+) 2472.12, observed 2472.06. (Notebook VII, page 80) 

 

Peptide 2.49. The first residue Glu 

was coupled manually to H-Cys(Trt)-

2-chlorotrityl resin using DIC/HOAt 

chemistry in the absence of base. 

Compound 2.39 was used to manually 

install Cys3 with 4,5-dimethoxy-2-nitrobenzyl protection using DIC/HOAt chemistry. All other 

residues were coupled using a CEM microwave synthesizer.  The final coupling of the N-

terminal azide-containing moiety was performed as follows. The peptide-bearing 2-chlorotrityl 

resin (0.05 mmol) was placed in a 5 mL round bottom flask. To the resin, a solution of 

compound 2.9 (45 mg, 0.13 mmol, 2.6 equiv.) in 2 mL of dry DMF was added, followed by 50 

µL of DIPEA (0.22 mmol, 4.5 equiv) and the reaction was stirred overnight for 15 h. The 

solution was drained over a fritted funnel and the resin was washed with DMF (3 x 30 s) and 

DCM (3 x 30 s). Standard cleavage conditions yielded 5.5 mg of crude product, which was 

purified using a Phenomenex Luna C18 column using the standard gradient and flow-rate 

conditions as previously described to yield pure precursor peptide to 2.49 (1.1 mg) with a free 

Cys19. Rt 22.7 min, eluting at 52% of solvent A. The peptide was reacted with 2.37 and further 

purified by RP-HPLC using the standard conditions to generate 2.49 eluting with a Rt of 23.5 

3 19 
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min to 25 min (53% solvent A). Yield: 0.25 mg. LR-MS (MALDI-TOF) calculated for 

C109H143N30O36S4 2575.9 (M+H+), observed 2576.3. (Notebook V, pages 57, 58) 

Peptide 2.50. Compound  2.38 

(0.16 g, 0.33 mmol) was 

dissolved in 5 mL of dry DCM 

and 1 mL of dry DMF and this 

solution was added  to 500 mg 

of 2-chlorotrityl choride resin (0.65 meq g−1) pre-swelled in DMF. To this mixture, DIPEA (0.23 

mL, 1.3 mmol) was added and the reaction was stirred for 14 h under N2. The solution was 

drained through a fritted funnel and the resin was washed successively with 5 mL of DCM, 

MeOH and again DCM. Subsequent iterative Fmoc deprotection and amino acid coupling 

(DIC/HOBt chemistry) was carried out on 0.1 mmol of resin. Standard cleavage generated the 

precursor to 2.50 with a free thiol at Cys3. About 11 mg of crude peptide was purified by RP-

HPLC using the standard conditions to generate pure precursor to 2.50 (3.6 mg), Rt: 20.2 min, 

eluted at 46% solvent A. The free thiol at the Cys3 was protected by reaction with 2.37 and the 

obtained peptide was purified by HPLC using a Phenomenex Luna C18 column using the 

standard conditions to obtain pure 2.50 (1.9 mg), Rt: 20.6 min, eluting at 47% solvent A. LR-MS 

(MALDI-TOF) calculated for C105H137N30O31S4 2441.88, (M+H+), observed 2441.94. (Notebook 

VI, pages 13, 14, 16) 

Peptide 2.51. H-Cys(Trt)-2-

chlorotrityl resin was used. The first 

residue Glu was coupled manually to 

H-Cys(Trt)-2-chlorotrityl resin using 

3 

3 19 
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DIC/HOAt chemistry in the absence of base. All residues except Cys3 were coupled on the 

microwave synthesizer using the standard conditions. Cys3 was coupled manually using 

diisopropylcarbodiimide (DIC) as activator and HOAt as racemization suppressant. Standard 

cleavage generated the precursor to 2.51 with a free thiol at Cys3 and Cys19. Crude peptide 

(30.6 mg) was purified by RP-HPLC using the standard conditions to elute precursor to 2.51 (7.4 

mg, Rt 20.2 min, 46% solvent A). The precursor to 2.51 (4.2 mg) was reacted with 2.37 and the 

product was purified by RP-HPLC using the standard conditions to yield pure 2.51 (2.2 mg), Rt 

23.8 min (54% solvent A). LR-MS (MALDI-TOF) calculated for C102H138N29O32S5 2440.88, 

(M+H+), observed 2441.11. (Notebook V, pages 82, 85, 87) 

Peptide 2.52. Fmoc-Ala-Wang 

resin (0.1 mmol) was used. 

Each residue was triple coupled 

followed by capping on a 

microwave synthesizer except 

for the following. Cys21 with an o-nitrobenzyl protected thiol was installed by coupling 2.38 

manually using HCTU as activator and DIPEA as base. Final coupling of 6-azidomethyl 

nicotinic acid (compound 2.8) was performed manually using the same chemistry. After cleavage 

of the peptide from the resin, the yield of crude peptide was 103 mg. Of the crude peptide, 59 mg 

was loaded onto a Phenomenex C18 column in 5 injections and purified using the standard 

gradient to elude 2.52 with a Rt of 21.1 min (48% solvent A). Yield: 2.2 mg. MALDI-TOF (LR-

MS) for C109H166N35O34S3 calculated 2605.1 (M+H+), observed 2605.1. (Notebook VII, page 79) 

21 
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Peptide 2.53. Fmoc-Ala-Wang 

resin (0.05 mmol) was used. 

Each residue was triple coupled 

followed by capping on a 

microwave synthesizer except 

for the following. Coupling of 2.38 (0.2 mmol) was performed manually on 0.05 mmol of resin 

using 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (HATU, 0.2 mmol) as activator and DIPEA (0.4 mmol) as base, with 5 h 

coupling time. Final coupling of 2.8 (0.15 mmol) was performed manually using HATU (0.15 

mmol) and DIPEA (0.3 mmol) for 4 h. After cleavage from the resin, 43 mg of crude peptide 

was obtained. The standard gradient was used to purify the crude peptide, with 2.53 eluting with 

a Rt of 21.5 min. Yield: 0.9 mg. MALDI-TOF MS for C109H166N35O34S3 calculated 2605.1 

(M+H+), observed 2604.7. (Notebook VIII, page 9) 

Peptide 2.54. All residues other than 2-

nitrobenzyl cysteine and the N-terminal azide 

moiety were coupled on the automated 

microwave peptide synthesizer. The two 

residues mentioned were coupled manually using HCTU/DIPEA chemistry. After cleavage of 

the peptide from the resin, 47 mg of crude peptide was obtained from a 0.1 mmol reaction which 

was purified by RP-HPLC purification to generate 1.1 mg of purified peptide (Rt 24 min). 

(Notebook VIII, page 68) 

 

14 
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Peptide 2.55. In a similar fashion as peptide 

2.54, 58 mg of crude peptide was obtained 

which was purified by RP-HPLC to generate 

1.4 mg of pure peptide. (Notebook VIII, page 

67) 

2.4.11. Generation of the Alkyne Modified ProcA3.2 Leader Peptide 

Peptide 2.56. An aliquot of BL21 (DE3) E. coli cells was 

transformed with pET15b plasmid encoding His6-ProcA3.2-leader-

intein-CBD (CBD: chitin binding domain) and then the transformed cells were spread on a LB + 

ampicillin (100 g/mL) agar plate and incubated overnight at 37 °C. Cells from a single colony 

were used to innoculate two 25 mL LB + Amp (100 g/mL) cultures, which were incubated 

overnight. The starter cultures were used to innoculate 2 x 1.5 L cultures in LB + Amp (100 

g/mL) and the cells were grown until the OD600 nm for each set was ca. 0.6 when IPTG (final 

concentration 0.5 mM) was added and the cultures were incubated in a 18 °C shaker overnight 

(final OD600 nm 2.5-3.0). The cells were harvested by centrifugation (10,500 x g, 30 min). The cell 

pellets were suspended in 40 mL of lysis buffer (50 mM HEPES, 500 mM NaCl, 1 mM EDTA, 

0.1 % Triton-X, PMSF (dissolved in 20 mL of isopropanol, final concentration ca. 1 mM), 

TCEP-HCl (1 mM, pH- 7.5) and the cells were lysed by sonication (4.4 s pulse, 9.9 s interval, 

35% amplitude). The cell lysate was centrifuged (22800 x g, 30 min) and the supernatant was 

filtered through 0.45 m amicon filters.  The chitin resin (NEB) was loaded into a column and 

equilibrated with column buffer (50 mM HEPES, 500 mM NaCl, 1 mM EDTA). To the resin, the 

cell lysate was applied and the column was shaken in the cold room (4 °C) on a rocker for 4 h to 

allow proper mixing. The cell lysate was allowed to drain from the resin at 2 mL/min. The resin 
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was washed further with column buffer (ca. 400 mL at 2 mL/min). Cleavage buffer (40 mL) 

consisted of column buffer containing MESNa (50 mM), TCEP-HCl (5 mM), compound  2.36 

(60 mg, ca. 2 mM), and the pH was adjusted to 7.5. The cleavage buffer was added to the resin 

and the column was rocked for 16 h, after which the buffer was eluted. The resin was washed 

with 20 mL of column buffer and the washing along with the eluted cleavage buffer was 

concentrated on 3000 Da MWCO Amicon filter (4000 x g, 45 min) and the concentrated peptide 

was desalted on a C4 SPE column and lyophilized. Yield: 45 mg. LR-MS (MALDI-TOF) 

calculated for C384H610N121O128S2 9028.4 (M+H+), observed 9031. His-tag-ProcA3.2 G1K 

sequence: 

GSSHHHHHHSSGLVPRGSHMSEEQLKAFIAKVQADASLQEQLRTEGADVVAIAKAAGF

SITTEDLNSHRQNLSDDELEGVAGK (Notebook VI, pages 32, 48) 

2.4.12. Iodoacetamide Capping of the Free Cys Generated During EPL  

Peptide 2.7. Peptide 2.56 (41.8 mg, 4.6 mol) was dissolved in 2 

mL of 100 mM NH4HCO3 buffer, pH 8.1. TCEP-HCl (7.2 mg, 25.3 

mol, 5.4 equiv.) was dissolved in 1 mL of 100 mM NH4HCO3 

buffer and was added to the peptide solution. Iodoacetamide (7.5 mg, 40.5 mol, 8.7 equiv.) 

dissolved in 1 mL of H2O was added to the reaction mixture and the solution was stirred at room 

temperature for 16 h. The 4 mL of reaction mixture was diluted in 14 mL of 2% solvent A (80% 

MeCN in 0.086% TFA) and 98% solvent D (0.1% aqueous TFA) and purified using a 

Phenomenex Luna C5 column in Waters Delta 600 HPLC purification system using a flow rate 

of 7 mL/min. A gradient of 2% A to 67% solvent A in 30 min was employed and 2.7 eluted with 

a Rt between 21.4 min – 23.6 min. Yield: 28 mg. LR-MS (MALDI-TOF) calculated for 

C386H613N122O129S2 9085.45 (M+H+), observed 9089. (Notebook VI, page 49) 
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2.4.13. Generation of ProcA2.8 Leader-AlaAla-MESNa Thioester 

Peptide 2.1. E.coli BL21(DE3) cells were 

transformed with pTXB1 plasmid encoding His6-

tag-ProcA2.8 leader-AlaAla-intein-chitin binding domain††, and the cells were spread on a LB + 

Ampicillin (100 g/mL) agar plate and incubated overnight at 37 °C. Cells from a single colony 

were used to innoculate two 25 mL LB + Amp (100 g/mL) starter cultures, which were 

incubated overnight. The starter culture was used to inoculate 5 L (2 x 1.5 L, and 2 x 1 L) LB + 

Amp (100 g/mL) medium. The cultures were shaken at 37 °C to an OD600nm of ca. 0.6. After 

cooling the cultures to room temperature, IPTG (final concentration: 0.5 mM) was added to 

induce the cells and the cells were shaken at 18 °C for 17 h. The cells were harvested by 

centrifugation (10,500 x g, 20 min) and frozen at 80 °C until further use. The cell pellet (from 

2.5 L culture) was thawed on ice and 30 mL of lysis buffer [NaPi (50 mM, pH 7.0), NaCl (500 

mM), and TCEP (1 mM)] was added and the cells were homogenized. Cells were then lysed by 

sonication (4.4 sec pulse, 9.9 sec interval, 35% amplitude) on ice. The cells were centrifuged 

(22,800 x g, 30 min) and the supernatant was filtered through a 0.45 mfilter. The filtered 

supernatant was loaded onto a column packed with chitin resin (25 mL) equilibrated with column 

buffer [NaPi (50 mM, pH 7.0), NaCl (500 mM)]. The column was shaken on a rocker in a cold 

room (4 °C) for 2 h. The slurry was drained (1 mL/min) and the column was then washed with 

250 mL (~10 CV) of column buffer. To the resin, 30 mL of cleavage buffer (column buffer + 50 

mM MESNa) was applied and the column was shaken overnight on a rocker at 4 °C. The eluent 

was collected (~35 mL) and acidified to 0.1 % TFA to lower the pH (~4), desalted on a C4 SPE 

column and eluted with 80% MeCN, 0.1% TFA in H2O and lyophilized. The lyophilized peptide 

                                                 
†† Provided by Dr. Christopher Thibodeaux, Institute of Genomic Biology, UIUC. 
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was dissolved in 15 mL of starting eluent: 2% solvent A (80% MeCN, 0.086% TFA in H2O), 

98% solvent D (0.1% TFA in H2O) and then purified in 5 injections using a C5-Phenomenex 

semi-prep column using a flow-rate of 7 mL/min. Elution gradient: 2% A to 67% solvent A over 

30 min. Product eluted with a Rt of 21.9 min - 22.9 min (50% - 52% solvent A). Yield: 9 mg 

(from 2.5 L culture). MALDI-TOF MS calculated 9117 (M+H+), observed 9119. 

Peptide sequence of His-tag-ProcA2.8-AlaAla: 

GSSHHHHHHSSGLVPRGSHMSEEQLKAFLTKVQADTSLQEQLKIEGADVVAIAKAAGFS

ITTEDLNSHRQNLSDDELEGVAGGAA (Notebook VII, pages 23, 24) 

2.4.14. Copper Catalyzed Azide–Alkyne Cycloaddition (CuAAC) - ‘Click Chemistry’ 

Equivalent amounts of the two reacting peptide partners were dissolved in H2O or 50% 

aqueous MeCN (if not completely soluble in H2O), frozen with liquid N2 and lyophilized. The 

lyophilized mixture of two peptides was dissolved in 30 mM aqueous degassed phosphate buffer, 

pH 7.8 to a concentration of about 1 to 2 mM for each peptide. Activated catalyst solution was 

prepared by mixing 5 L of 100 mM CuSO4 in degassed H2O, 25 L of 20 mM TBTA in 

MeOH, 10 L of 200 mM sodium ascorbate in degassed H2O and stirred under N2 for 5 min. The 

activated catalyst solution (40 L) was added to the peptide solution (60 L) and the reaction 

was stirred for 1 h. The final concentrations in the reaction mixture were 5 mM CuSO4, 5 mM 

TBTA, and 20 mM sodium ascorbate. Generally completion of the reaction was achieved in 1 h, 

as observed by MS (MALDI-TOF). If after 1 h, a significant fraction of starting peptide 

remained, further addition of activated catalyst followed by stirring at room temperature under 

N2 was performed. The crude reaction mixture was desalted using a C4 solid phase extraction 

(SPE) column and lyophilized. 
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The thioethyl protection group was removed from Cys by dissolving the semi-synthetic 

precursor in 3 mM TCEP-HCl in 2 mM Tris buffer, pH 7.5, and stirring at room temperature for 

3 to 5 h, unless otherwise noted. The reaction mixture was purified using a Phenomenex Luna C5 

column using a gradient of 2% to 67% solvent A in 30 min with a flow rate of 7 mL/min using a 

Waters HPLC instrument to generate the precursor peptide with one free Cys. 

Peptide 2.10. 

Peptide 2.7 (0.63 mg, 0.07 

mol) and peptide 2.46 

(0.17 mg, 0.07 mol) were 

mixed and to the reaction was added four batches of 40 L of freshly prepared catalyst solution 

with an interval of one hour between each addition. The crude reaction mixture was desalted 

using a C4 SPE column to yield peptide precursor to 2.10 with thioethyl protected Cys residues. 

The peptide was reduced with TCEP and purified by RP-HPLC using the standard conditions to 

generate peptide 2.10 (0.2 mg, 26%). MALDI-TOF MS calculated 11336 (M+H+), observed 

11339. (Notebook VI, page 99; Notebook VII, page 6) 

Peptide 2.11.  

Peptide 2.7 (0.46 mg, 0.05 

mol) and peptide 2.45 

(0.13 mg, 0.05 mol) were 

mixed and to the reaction was added three batches of 40 L of freshly prepared catalyst solution 

with an interval of 1 h between additions. The product was reduced with TCEP as described in 

the section on General Methodology and further purified by RP-HPLC using a C5 Phenomenex 
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column. The gradient was 2% to 100% solvent A over 45 min with a flow rate of 8 mL/min. 

Yield: 0.15 mg (27%). MALDI-TOF MS calculated 11336 (M+H+), observed 11338. (Notebook 

VI, pages 94, 95) 

Peptide 2.12. Peptide 2.7 (0.95 

mg, 0.1 mol) and peptide 2.51 

(0.37 mg, 0.15 mol) were 

mixed and to the reaction was 

added two batches of 40 L of freshly prepared catalyst solution with an interval of one hour. 

The reaction was stirred for 2 h after the second addition of catalyst solution. The reaction 

mixture was desalted using a C4 SPE column to yield peptide precursor with thioethyl protected 

Cys residues, which was reduced with TCEP and purified by RP-HPLC using a C5 Phenomenex 

column, the standard gradient, and an 8 mL/min flow rate. The product 2.12 eluted with an Rt of 

21.4 min. MALDI-TOF MS calculated 11410, observed 11396. Yield: 0.6 mg (50 %). (Notebook 

V, pages 90, 92) 

Peptide 2.13. Peptide 2.7 

(0.73 mg, 0.08 mol) and 

peptide 2.47 (0.24 mg, 0.1 

mol) were mixed and to 

the reaction was added three batches of 40 L of freshly prepared catalyst solution with an 

interval of 1 h after each addition. The reaction mixture was desalted, reduced with TCEP and 

purified by RP-HPLC using a C5 Phenomenex column using a gradient of 2% to 100% solvent A 

over 45 min with a flow rate of 8 mL/min. The product eluted with an Rt of 21 min, 48% solvent 

A. Yield: 0.42 mg (45%) (Notebook VII, page 75) 
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Peptide 2.14. Peptide 2.7 

(0.81 mg, 0.09 mol) and 

peptide 2.48 (0.25 mg, 0.1 

mol) were mixed and to 

the reaction was added three batches of 40 L of freshly prepared catalyst solution with an 

interval of one hour between additions. The reaction was stirred for another 2 h after the third 

addition of catalyst solution.  The reaction mixture was desalted, reduced with TCEP and 

purified by RP-HPLC using a C5 Phenomenex column using a gradient of 2% to 100% solvent A 

over 45 min with a flow rate of 8 mL/min. The product 2.14 eluted with a Rt of 21.1 min (48% 

solvent A). Yield: 0.56 mg (54%). (Notebook VII, page 83) 

Peptide 2.15. Peptides 2.7 (440 

µg, 0.05 µmol) and 2.49 (130 

µg, 0.05 µmol) were mixed 

together and two batches of 40 

L of catalyst solution were added. The reaction mixture was desalted using a C4 SPE column 

and lyophilized to generate precursor to 2.15 with thioethyl protected Cys19 (550 µg). The 

product was reduced with TCEP as described in General Methodology and further purified by 

RP-HPLC using the standard gradient to yield pure 2.15 (430 µg, 76%). (Notebook V, page 59) 

Peptide 2.16. Peptide 2.7 

(925 µg, 0.1 µmol) was 

mixed with 2.50 (320 µg, 

0.13 µmol) and the two 
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batches of 40 L of catalyst solution were added. The reaction mixture was desalted using a C4 

SPE column and lyophilized to yield crude precursor to 2.16 with thioethyl protected Cys3 (1.1 

mg). MS (MALDI-TOF) indicated complete conversion to product. The crude precursor to 2.16 

was reduced with TCEP followed by RP-HPLC purification with a C5 Phenomenex Luna column 

using the standard conditions to yield pure 2.16 (0.64 mg, 55%). Rt 20.8 min, eluting at 47% 

solvent A. LR-MS (MALDI-TOF) calculated 11466 (M+H+), observed 11472. (Notebook VI, 

pages 17, 18) 

Peptide 2.17. Peptide 2.7 

(0.79 mg, 0.09 mol) and 

peptide 2.52 (0.3 mg, 0.11 

mol) were mixed and three 

batches of 40 L of freshly prepared catalyst solution were added with an interval of one hour 

between additions. The reaction mixture was desalted using a C4 SPE column and lyophilized, 

reduced with TCEP and purified by RP-HPLC. The gradient was 2% to 100% solvent A over 45 

min with a flow rate of 8 mL/min. The product 2.17 eluted with an Rt of 21.5 min. MALDI-TOF 

MS calculated 11694, observed 11693. Yield: 0.33 mg (33%). (Notebook VII, page 82) 

Peptide 2.18. Peptide 2.7 

(0.84 mg, 0.09 mol) and 

peptide 2.53 (0.36 mg, 0.14 

mol) were mixed and three 

batches of 40 L of freshly 

prepared catalyst solution were added with an interval of one hour between additions. The 
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reaction was stirred for 2.5 h after the third addition of catalyst solution. The reaction mixture 

was desalted using a C4 SPE column to yield peptide precursor with thioethyl protected Cys, 

which was reduced with TCEP and purified by RP-HPLC using a C5 Phenomenex column using 

the standard gradient and a 8 mL/min flow rate. The product 2.18 eluted with an Rt of 21.4 min. 

MALDI-TOF MS calculated 11694, observed 11694. Yield: 0.52 mg (49%). (Notebook VIII, 

page 11) 

Peptide 2.57. Peptide 2.7  (0.73 

mg, 0.08 mol) and peptide 2.54 

(0.28 mg, 0.11 mol) were 

reacted under conditions of 

Copper Catalyzed Azide-Alkyne 

Cycloaddition (CuAAC) to generate product, which after RP-HPLC purification yielded 390 g 

of material. (Notebook VIII, page 76) 

 

Peptide 2.58. Peptide 2.7 (0.78 

mg, 0.086 mol) and peptide 

2.55 (0.28 mg, 0.11 mol) were 

reacted under conditions of 

CuAAC to generate product, which after RP-HPLC purification yielded 510 g of material. 

(Notebook VIII, page 75) 
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2.4.15. Peptides Generated by Native Chemical Ligation 

Peptide 2.4. Native chemical reaction was 

performed in a reaction volume of 500 L. 

The final concentration of components are 

given in parenthesis. In an eppendorf tube, 250 L of a 1 mM solution of peptide 2.2 (0.5 mM) 

was mixed with 25 L of 20 mM TCEP (1 mM), 125 L of 1 M NaPi, pH 7.2 (250 mM), 50 L 

of 1 M MESNa (100 mM), 25 L of 10 mM EDTA (0.5 mM), and finally 25 L of a 1 mM 

solution of peptide 2.1 (0.05 mM). The reaction was stirred at room temperature for 20 h when 

MALDI-TOF MS of crude product indicated the consumption of peptide 2.1. The reaction 

mixture was acidified with TFA to pH ~ 6.8 and purified using an analytical HPLC column (C4 

Vydac) using a gradient of 2% solvent A (80% MeCN, 0.086% TFA in H2O), 98% solvent D 

(0.1% TFA in H2O) to 80% solvent A over 45 min using a flow rate of 1 mL/min. The product 

2.4 eluted with a Rt of 28.2 min (50% solvent A), while starting synthetic peptide 2.2 eluted 

earlier (Rt of 18 min, 32% solvent A). Yield: 0.13 mg (48%). MALDI-TOF MS calculated 10918 

(M+H+), observed 10921 (M+H+), 11099 (phosphogluconylation of His-tag). (Notebook VII, 

page 31) 

Peptide 2.5. Native chemical reaction was 

performed in a total reaction volume of 

500 L. The final concentrations of 

components are given in parenthesis. In an eppendorf tube, 250 L of 1 mM solution of peptide 

2.3 (0.5 mM) was mixed with 25 L of 20 mM TCEP (1 mM), 125 L of 1 M NaPi, pH 7.2 (250 

mM), 50 L of 1 M MESNa (100 mM), 25 L of 10 mM EDTA (0.5 mM), and finally 25 L of 
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1 mM solution of peptide 2.1 (0.05 mM). The reaction was stirred at room temperature for 20 h 

when MALDI-TOF MS analysis indicated consumption of peptide 2.1. The reaction mixture was 

acidified with TFA to pH ~ 6.8 and purified using an analytical HPLC column (C4 Vydac) using 

a gradient of 2% solvent A (80% MeCN, 0.086% TFA in H2O), 98% solvent D (0.1% TFA in 

H2O) to 80% solvent A in 45 min using a flow-rate of 1 mL/min. The product 2.5 eluted with a 

Rt of 28.2 min (50% solvent A), while starting synthetic peptide 2.3 eluted earlier (Rt of 18 min, 

32% solvent A). Yield: 0.1 mg (37%). MALDI-TOF MS calculated 10918 (M+H+), observed 

10925 (M+H+), 11104 (phosphogluconylation of His-tag). (Notebook VII, page 30) 

2.4.16. Purification of ProcM 

The enzyme was overexpressed as reported earlier, with the exception that ProcM gene 

was cloned in a pRSFDuet vector instead of pET28b vector as originally reported (3). After 

IMAC purification, ProcM was further purified by size-exclusion chromatography (Superdex 

200 resin, 120 mL column volume) using an FPLC (Akta P-920) and was obtained as a mixture 

of monomer and dimer/trimer; when separated, both were active. A brief procedure for ProcM 

purification is as follows. All steps were carried out in the cold room (4 °C) or on an ice-bath. 

Crude cell lysate (from 3 L culture) was suspended in 50 mL of ProcM start buffer (1 M NaCl, 

20 mM Tris, pH 8.0), along with protease inhibitor (Roche cOmplete), and lysed by passing 

through a French-press and centrifuged (14,000 x g, 30 min). The supernatant was filtered 

through 0.45 m syringe filters and loaded onto a Ni-HiTrap column equilibrated with 4 column 

volumes (CV) of ProcM start buffer. The column was washed by 6 CV of ProcM wash buffer (1 

M NaCl, 20 mM Tris, pH 8.0, 30 mM imidazole) and then the column was attached to the FPLC 

and the protein was eluted using wash buffer and elute buffer (EB: 1 M NaCl, 20 mM Tris, pH-

8.0, 200 mM imidazole). The following gradient was applied: 6 CV of 5% EB, then 6 to 10 CV 



107 

 

of 5% to 40% EB, 10 to 12 CV: 40% to 100% EB, 12 to 18 CV: 100% EB. The fractions 

containing the protein were 8 CV to 14 CV, as monitored by absorbance at 280 nm. The purified 

protein was concentrated using an Amicon ultrafilter (50 kDa cut-off) and desalted/purified by 

gel-filtration on FPLC (using ProcM start buffer (1 M NaCl, 20 mM Tris, pH-8.0) at a flow rate 

of 1 mL/min. The aggregated protein (40 mL to 55 mL elution volume) was discarded and the 

monomer and oligomer fractions (60 mL to 85 mL elution volume) were collected and 

concentrated using 30 kDa cut-off Amicon centrifugation filters to a concentration of ca. 60 M 

to 250 M, depending on the batch. (Notebook IV, pages 61, 63) 

2.4.17. Purification of ProcM in D2O Containing Buffer 

The monomer-oligomer mixture obtained from size-exclusion chromatography (15 mL), 

as mentioned in the previous section, was concentrated to 1 mL by ultrafiltration (2,300 x g), and 

then 10 mL of 1 M NaCl, 50 mM HEPES, pH 8.0 in D2O was added and the protein was again 

concentrated to 1 mL by centrifugation. Further addition of 10 mL of 1 M NaCl, 50 mM HEPES, 

pH 8.0 in D2O to the concentrated protein solution followed by ultrafiltration to generated a 

stock of 84 M ProcM (10 mg/mL, D2O:H2O over 99:1). The solution was aliquoted in fractions 

of 25 L. (Notebook VI, pages 82, 83) 

2.4.18. General Procedure for Heterologous Expression of Precursor Peptides 

ProcA2.8, ProcA3.3, ProcA2.8-S9T, ProcA2.8-S13T, and ProcA3.3-T11S were 

generated by the following general methodology.  

E. coli BL21 cells were transformed with pET-15b plasmid encoding the desired gene and the 

transformed cells were spread on an LB + Amp (100 g/ mL) agar plate and the plate was 

incubated overnight at 37 °C. Cells from single colonies were used to inoculate starter cultures (2 
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x 25 mL) in LB + Amp (100 g/mL) and incubated at 37 °C in a shaker for 16 h. The starter 

cultures were centrifuged (4,300 x g, 10 min) and the LB media was replaced with fresh LB and 

was used to inoculate a large scale culture (2 x 1.5 L) of LB + Amp (100 g/mL). The flasks 

were incubated at 37 °C with shaking until an OD600 nm of 0.6 was reached (typically 3-4 h). The 

culture was induced with IPTG (0.5 mM final concentration) and further incubated at 37 °C in a 

shaker for 3 h when a final OD600 nm in the range of 1.0 - 2.5 was reached. The cells were 

harvested by centrifugation (10,500 x g, 15 min), flash frozen and stored at 80 °C for future 

use. The cells were thawed on ice and suspended in 30 mL of LanA start buffer (20 mM 

NaH2PO4, pH 7.5 at 25 °C, 500 mM NaCl, 0.5 mM imidazole, 20% glycerol) and lysed by 

sonication (4.4 s pulse, 9.9 s off, 35% amplitude, pulse time 6 min). The cell lysate was 

centrifuged (22,800 x g, 30 min) and the supernatant, referred as ‘soluble fraction’ was filtered 

through a 0.45 mfilter. The cell residue was resuspended in 25 mL of Lan  buffer 1 (6 M 

guanidine hydrochloride, 20 mM NaH2PO4, pH 7.5 at 25 °C, 500 mM NaCl, 0.5 mM imidazole), 

sonicated, and centrifuged as described above. The supernatant referred to as ‘insoluble fraction’ 

was filtered through a 0.45 mfilter. A 5 mL Ni-His trap column charged with NiSO4 was 

equilibrated with two column volumes (CV) of LanA start buffer after which the ‘soluble 

fraction’ was loaded at flow rate of 2 mL/min. The column was then equilibrated with two CV of 

Lan buffer 1 and loaded with the ‘insoluble fraction’ at 2 mL/min. The column was washed with 

two CV of Lan buffer 1 and two CV of Lan buffer 2 (4 M guanidine hydrochloride, 20 mM 

NaH2PO4, pH 7.5 at 25 °C, 300 mM NaCl, 30 mM imidazole) and eluted with LanA elution 

buffer (4 M guanidine hydrochloride, 20 mM Tris, pH 7.5 at 25 °C, 100 mM NaCl, 1 M 

imidazole) where 10 mL of the elution fraction was collected as fraction 1 and 5 mL was 

collected as fraction 2. Both fractions were desalted using C4 SPE columns and lyophilized.  
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ProcA2.8 precursor peptide: The desalted peptide was injected onto a Phenomenex Luna C5 

column and eluted with a gradient of 2% to 67% solvent A in 30 min, and a flow rate of 7 

mL/min. Rt 22 - 24.5 min. 13.3 mg of crude peptide yielded 10.8 mg of purified peptide.  

MALDI-TOF MS calculated 10,915 (M+H+), observed 10,917. Peptide sequence: 

GSSHHHHHHSSGLVPRGSHMSEEQLKAFLTKVQADTSLQEQLKIEGADVVAIAKAAGFS

ITTEDLNSHRQNLSDDELEGVAGGAACHNHAPSMPPSYWEGEC (Notebook VI, pages 33, 

35, 69) 

ProcA3.3 precursor peptide: The desalted peptide was purified using a Phenomenex Luna C5 

column with a gradient of 2% to 65% solvent A over 65 min with a flow rate of 7 mL/min.  The 

fraction eluting with a Rt of 44.8 min (46% solvent A) was pure product. MALDI-TOF MS 

calculated 10,934 (M+H+), observed 10,927. 

Peptide sequence: 

GSSHHHHHHSSGLVPRGSHMSEEQLKAFIAKVQGDSSLQEQLKAEGADVVAIAKAAGF

TIKQQDLNAAASELSDEELEAASGGGDTGIQAVLHTAGCYGGTKMCRA (Notebook VI, 

pages 33, 52) 

ProcA2.8-S13T precursor peptide: Desalted peptide was used without further purification. 

MALDI-TOF MS calculated 10,936 (M+H+), observed 10,934. Yield: 50 mg from 2 L of 

culture. 

Peptide sequence (mutation underlined): 

GSSHHHHHHSSGLVPRGSHMSEEQLKAFLTKVQADTSLQEQLKIEGADVVAIAKAAGFS

ITTEDLNSHRQNLSDDELEGVAGGAACHNHAPSMPPTYWEGEC (Notebook VII, pages 51, 

54) 
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ProcA2.8-S9T precursor peptide: Desalted peptide was used without further purification. 

MALDI-TOF MS calculated 10,936 (M+H+), observed 10,932. Yield: 49 mg from 1.5 L of 

culture. 

Peptide sequence (mutation underlined): 

GSSHHHHHHSSGLVPRGSHMSEEQLKAFLTKVQADTSLQEQLKIEGADVVAIAKAAGFS

ITTEDLNSHRQNLSDDELEGVAGGAACHNHAPTMPPSYWEGEC (Notebook VII, pages 52, 

54) 

ProcA3.3-T11S precursor peptide: Desalted peptide was used without further purification. 

MALDI-TOF MS calculated 10,920 (M+H+), observed 10,920. Yield: 57 mg from 1.5 L of 

culture. 

Peptide sequence (mutation underlined): 

GSSHHHHHHSSGLVPRGSHMSEEQLKAFIAKVQGDSSLQEQLKAEGADVVAIAKAAGF

TIKQQDLNAAASELSDEELEAASGGGDTGIQAVLHSAGCYGGTKMCRA (Notebook VII, 

pages 51, 55) 
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2.4.19. General Procedure for Selective Thioether Formation by ProcM 

Substrates with one Cys protected with an o-nitrobenzyl group was treated with ProcM 

under the following typical conditions (any changes from these standard conditions are noted in 

the individual procedures). The assays were carried out in 200 L scale containing HEPES (50 

mM, pH 8.0), TCEP (0.2 mM), ATP (10 mM), MgCl2 (10 mM), ProcM (20 M), substrate (50 

M), and allowed to react at room temperature for 16-20 h. ProcM was removed from the assay 

mixtures by ultrafiltration through 50 kDa molecular weight cut-off filters (Amicon) by 

centrifugation (14,000 x g, 10 min). To improve recovery of processed peptide, water (50 L) 

was added to the retentate, and the solution was filtered by centrifugation (14,000 x g, 10 min). 

This process was repeated twice. The combined filtrates were collected and desalted on a C4 

solid phase extraction column (Vydac BioSelect). The SPE column was first wetted with 2 

column volumes (CV) of 80% MeCN in H2O. The column was washed with 0.1% trifluoroacetic 

acid (TFA) in H2O (3 CV) and then the assay product was diluted with 0.1 % TFA in H2O (1:1) 

and passed through the column. The column was further washed with 0.1 % TFA in H2O (3 CV) 

and finally the product was eluted with 80% MeCN in H2O (2 x 1 mL). The eluents were 

lyophilized to yield the processed peptide with selectively formed thioether rings and one o-

nitrobenzyl protected cysteine. 

The lyophilized peptide obtained from the previous step was dissolved in 0.1% formic acid in 

H2O and subjected to UV (365 nm) irradiation for 4 h, using a portable UV lamp source 

(Spectroline ENF-240C). After irradiation, the solution was lyophilized. 



112 

 

2.4.20. General Procedure for Probing Enzymatic vs. Non-Enzymatic Cyclization 

Non-enzymatic cyclization: The peptide obtained from the previous step was incubated at room 

temperature in solution containing all components used in standard ProcM assay except the 

enzyme. A typical non-enzymatic assay solution comprised HEPES (50 mM), ATP (10 mM), 

TCEP (0.2 mM), MgCl2 (10 mM), and substrate (ca. 50 M) with a final pH of 8.0. A second 

assay was conducted at higher pH 8.5, and assays were kept at room temperature for 16 h. 

Enzymatic cyclization: Control assays of the substrate generated in the previous step in the 

presence of ProcM (20 M) were also set up under identical conditions and incubated at room 

temperature for 16 h. The enzymatic and the non-enzymatic cyclization assays were carried out 

and analyzed in parallel.  

To probe the extent of cyclization of the second thioether ring, iodoacetamide (IAA) 

assays were performed on the products of the non-enzymatic and the enzymatic assays. The pH 

of the assay solution was raised to 8.5 by the addition of NH4HCO3 buffer (100 mM), TCEP (0.5 

mM) and excess IAA (ca. 20 mM) was added, and the assay was incubated at room temperature 

for 3 h, before analysis by MALDI-TOF MS. 

2.4.21. General Procedure for the Incorporation of Deuterium in the ProcM Product 

ProcM assays were conducted at room temperature for 20 h with the following 

compositions in D2O: HEPES (50 mM, pH 8.0), TCEP (0.5 mM), ATP (10 mM), MgCl2 (10 

mM), ProcM (10 M), and  (50 M) substrate. ProcM was removed by centrifugation through 

Amicon 50 kDa MWCO filters (14,000 x g, 20 min), and the flow through was desalted using C4 

SPE column and lyophilized. MALDI-TOF analysis demonstrated the incorporation of one 

deuterium per Lan/MeLan. 
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2.4.22. General Procedure for D–H Exchange Assays 

Each lyophilized deuterium labeled peptide was dissolved in H2O and ProcM assays were 

conducted  at room temperature for 20 h in aqueous solution with the following composition: 

HEPES (50 mM, pH 8.0), TCEP (0.5 mM), ATP (10 mM), MgCl2 (10 mM), ProcM (10 M), 

and substrate (50 M). Control assays in which the substrates were treated with all components 

except ProcM were also performed. MALDI-TOF MS analysis was carried out after digesting 

the peptide with GluC by adding 1 L of GluC (20 g/L) or 1 L of LysC (30 U/mL) to 20 L 

of assay mixture. Simulation of extent of exchange was carried out using mmass software (35).  

2.4.23. General Procedure for Trapping Partially Dehydrated Peptides Containing 

Deuterium Labeled Ser/Thr to Probe Directionality of Dehydration 

 

Substrates assembled by CuAAC with deuterium labeled Ser/Thr were treated with 

ProcM under the following conditions unless otherwise noted. A typical assay volume of 20 L 

contained HEPES (50 mM, pH 8.0), ATP (10 mM), TCEP (0.5 mM), MgCl2 (10 mM), ProcM (2 

M), and substrate (50 M). The assays were kept at room temperature and after each time-

point, one assay sample was filtered through 50 kDa cut-off filters by centrifugation to remove 

ProcM (14,000 x g, 10 min). The chosen time-points were 10 min, 30 min, and 1 h. An assay 

with higher ProcM concentration (10 M), and longer incubation (9 h) was also performed.  

Substrates assembled by expressed protein ligation (EPL) with deuterium labeled Ser/Thr were 

treated with ProcM under the following conditions unless otherwise noted. A typical assay 

volume of 20 L contained HEPES (50 mM, pH 8.0), ATP (10 mM), TCEP (0.5 mM), MgCl2 

(10 mM), ProcM (2 M), and substrate (100 M). The assays were kept at room temperature and 
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after each time-point, one assay sample was filtered through a 50 kDa cut-off filter by 

centrifugation (14,000 x g, 10 min). The chosen time-points were 5 min, 10 min, and 30 min.  

The filtered peptides were digested with endo-proteinase GluC (1 g/L) or LysC (0.3 U/L), as 

noted, and then analyzed by MALDI-TOF MS and ESI-MS.  

2.4.24. General Procedure for Trapping Partially Cyclized Species to Probe Directionality 

of Cyclization 

ProcA precursor peptides were modified by ProcM at room temperature in solutions 

containing HEPES (50 mM, pH 8.0), ATP (10 mM), TCEP (1.0 mM), MgCl2 (10 mM), ProcM 

(5 M), and substrate (100 M). After each time point (15 min, 30 min, 1 h), 100 L aliquots 

were taken and filtered through 50 kDa cut-off filters by centrifugation (14,000 x g, 10 min). The 

filtrates were digested with GluC (1g/L) for 1 h. The endoproteinase digested filtrate (16 L) 

was then diluted with 24 L of 200 mM NH4HCO3 (pH 8.8), 1 L of TCEP (10 mM), and 10 L 

of iodoacetamide (10 mg/mL) was added. The solution was incubated at room temperature for 2 

h. The samples were frozen and stored at 80 °C, until analyzed by ESI LC-MS and tandem 

MS. Prior to loading the samples onto the LC system, 0.1% formic acid was added (1:1) to lower 

the pH to ca. 6.5.  

2.4.25. Enzymatic Modification of Peptide 2.18 by ProcM-C971H 

Peptide 2.18 (64 M) was treated with ProcM-C971H (20 M) in HEPES (50 mM, pH 

8.0) containing TCEP (1 mM), ATP (10 mM), and MgCl2 (10 mM). The assay was incubated at 

room temperature for 16 h. Following enzymatic reaction, the assay mixture was filtered by an 

amicon filter (50 kDa MWCO) by centrifugation (14000 x g) to remove ProcM-C971H. The 

filtrate was free from the enzyme. The retentate was diluted with 100 L of H2O and filtered, and 

this process was repeated once. The filtrates were collected and desalted using C4 SPE column 
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and lyophilized. A portion of the peptide was digested with endoproteinase LysC and analyzed 

by tandem ESI-MS (Figure 2.33) which indicated the formation of a MeLan between Cys21 and 

Dhb18. (Notebook IX, page 4) 

2.4.26. UV Mediated Deprotection of Cys14 in Peptide 2.33 and Enzymatic Cyclization by 

WT ProcM 

Solution of peptide 2.33 (200 L, ca. 50 M) was irradiated with a Blak-Ray UV lamp ( 

= 365 nm) for 45 min. To evaluate the extent of photodeprotection, a 5 L aliquot of the solution 

was diluted with 14 L of HEPES (50 mM, pH 7.5) and digested with endoproteinase LysC (1.5 

U/mL) for 30 min before analysis by MALDI-TOF MS, which suggested completion of 

photodeprotection. The remaining deprotected peptide was lyophilized and subsequently 

subjected to WT ProcM assay with following compositions in a 50 L reaction volume: HEPES 

(50 mM, pH 8.0), TCEP (1 mM), ATP (10 mM), MgCl2 (10 mM), WT ProcM (20 M). The 

assay was incubated at room temperature for 14 h. The assay mixture (25 L) was digested with 

LysC (1.5 U/mL) for 1 h before analysis by tandem ESI-MS. (Notebook IX, page 6) 

2.4.27. Semi-Synthetically Generated Intermediates of ProcA3.3 with one Thioether 

Crosslink 

Peptide 2.57 (0.39 mg) was modified by WT ProcM under following conditions: HEPES 

(50 mM, pH 8.0), TCEP (0.5 mM), ATP (10 mM), MgCl2 (10 mM), substrate (100 M), WT 

ProcM (30 M) and incubated at room temperature for 22 h. The assay mixture was filtered to 

remove enzyme, and desalted using a C4 SPE column, and lyophilized. The peptide content was 

dissolved in 0.1% formic acid solution (ca. 50 M) and irradiated with UV light (365 nm) to 

render a mixture of two peptides 2.30 and 2.31 (Figure 2.32). The peptide 2.58 (0.51 mg) was 
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treated as above and led to the intermediate 2.29 (Figure 2.32). (For 2.30 and 2.31, see Notebook 

VIII, pages 79, 81; for 2.29, see Notebook VIII, pages 78, 80) 

2.4.28. Molecular Cloning of His6-ProcA3.2 Leader-Intein-CBD 

The DNA sequence encoding the ProcA3.2 leader peptide was cloned between NdeI and 

SapI restriction sites of a pTXB1 vector to position the ProcA3.2 leader gene before the gene 

encoding intein and chitin binding domain (CBD). pET28b encoding the ProcA3.2 precursor 

peptide gene was used as template (3). The primers were 5’-GGT GGT CAT ATG ATG TCA 

GAA GAA CAA CTC AAG GCA TTT ATT G-3’ (ProcA3.2-leader_NdeI_FP), and 5’-GGT 

GGT  TGC TCT TCC GCA  TCC CCC AGC CAC ACC TTC 3’ (ProcA3.2-leader_SapI_RP). 

The generated pTXB1 plasmid encoding ‘ProcA3.2-leader_intein_CBD’ was used as template to 

insert ‘ProcA3.2-leader_intein_CBD’ between the NdeI and BamHI restriction sites of a pET15b 

plasmid after the DNA sequence encoding the His-tag. The primers used were 5’-GGT GGT 

CAT ATG TCA GAA GAA CAA CTC AAG GCA TTT ATT G-3’ (His-tag_ProcA3.2-

leader_intein_CBD_NdeI_FP) and 5’-GGT GGT GGA TCC TCA TTG AAG CTG CCA CAA 

GG-3’ (His-tag_ProcA3.2-leader_intein_CBD_BamHI_RP) to generate the final pET15b 

construct of ‘His-tag_ProcA3.2-leader_intein_CBD’. (Notebook I, pages 10, 12, 13, 41; 

Notebook II, pages 22, 25, 26, 28, 63) 

2.4.29. Mutagenesis of ProcA Genes 

The first residue of the core peptide is designated as 1 and the last residue of the leader peptide is 

designated as 1. Mutation of the C-terminal Gly of ProcA3.2 leader to Lys in ‘His-

tag_ProcA3.2-leader_intein_CBD’ was performed by QuikChange site directed mutagenesis. 

The primers were 5’-GAA GGT GTG GCT GGG AAA TGC ATC ACG GGA GAT G-3’ (His-
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tag_ProcA3.2-leader-G–1K_intein_CBD_FP) and 5’-CCC AGC CAC ACC TTC CAG CTC 

ATC ATC-3’ (His-tag_ProcA3.2-leader-G–1K_intein_CBD_RP), which were used to generate 

pET15b construct encoding ‘His-tag_ProcA3.2-leader-G1K_intein_CBD’. 

The ProcA2.8 and ProcA3.3 Ser/Thr mutants were generated using the following primers by 

QuikChange site directed mutagenesis based on a modified protocol (36). (Notebook VII, pages 

47-49) 

Primer Name Primer Sequences (5’-3’) 

ProcA2.8_S9T_FP GTC ATA ACC ATG CTC CAA CCA TGC CTC CAT CCT ATT G 

ProcA2.8_S9T_RP CAA TAG GAT GGA GGC ATG GTT GGA GCA TGG TTA TGA C 

ProcA2.8_S13T_FP CCA TCT ATG CCT CCA ACC TAT TGG GAG GGT G 

ProcA2.8_S13T_RP CAC CCT CCC AAT AGG TTG GAG GCA TAG ATG G 

ProcA3.3_T11S_FP GGT GCT GCA CAG CGC TGG ATG TTA C 

ProcA3.3_T11S_RP GTA ACA TCC AGC GCT GTG CAG CAC C 
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CHAPTER 3: TOTAL SYNTHESIS OF LANTHIPEPTIDES - STUDIES WITH 

CYTOLYSIN  

3.1. INTRODUCTION 

Enterococci are responsible for the majority of nosocomial surgical site, bloodstream, and 

urinary tract infections (1, 2). Certain Enterococcus faecalis and Enterococcus faecium strains 

have lytic activity against erythrocytes (i.e. red blood cells), as first reported in 1934 (3). 

Enterococci isolated from the site of infection more commonly exhibited hemolytic activity than 

those isolated from healthy volunteers. These E. faecalis strain show acute hemolytic toxicity 

and this activity is thought to contribute to bacterial virulence (4). The virulence factor was 

attributed to a cytolysin produced by enterococci. In addition to the hemolytic activity, the E. 

faecalis cytolysin uniquely exhibits antibacterial activity versus a broad range of gram-positive 

bacteria (5).  It was later found that such hemolytic activity was restricted to erythrocytes from 

certain animals such as rabbit, cow, horse, and human, but was not observed in sheep and goat 

(6). A higher amount of phosphatidylcholine on the outer leaflet of the erythrocytes of human, 

horse, rabbit and mouse was found to correlate with the higher susceptibility of these 

erythrocytes to cell-lysis (1, 7).  

E. faecalis cytolysin is encoded by operons analogous to those responsible for producing 

antibiotics in other gram-positive bacteria. Cytolysin is the first member of this class of 

antimicrobial agents with hemolytic activity (8). Nucleotide sequence determination, 

mutagenesis, and complementation analysis enabled identification of genes responsible for 

producing cytolysin, and demonstrated that the gene cluster encodes two putative lanthipeptide 

natural products. These lanthipeptides, known as CylLL
” and CylLS

”, are both required for the 

cytolytic activity (8).  The genes encoding the precursor peptides, CylLL and CylLS, as well as 
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the gene products of cylM, cylB, and cylA, are critical to the cytolytic activity. CylA is a 

subtilisin-like serine protease and can generate  the mature cytolysins extracellularly via 

proteolysis (9). CylB is structurally similar to the members of the Eschericia coli -hemolysin 

determinant which includes HlyB, and is believed to be involved with cytolysin externalization 

(10).  An immunity protein encoded by the gene cylI renders the producing organism immune to 

cytolysin (11). The products of two genes cylR1 and cylR2 regulate cytolysin production (12). 

The genes cylLL, cylLS, cylM, cylB, cylA, and cylI are collinear while cylR1 and cylR2 are 

immediately upstream of the cytolysin promoter and oriented in the opposite direction of the 

cytolysin operon (Figure 3.1). Both the proteins CylR1 and CylR2 are required for the repression 

of the promoter responsible for cytolysin production. CylLS” was found to induce transcription 

of cytolysin by derepression of the promoter. The control of cytolysin production by the presence 

of a threshold amount of CylLS” is part of a quorum sensing mechanism (12). When E. faecalis 

senses target cells, it produces cytolysin in response (13).  

 

Figure 3.1. Cytolysin biosynthetic gene cluster. Adapted from Gilmore and co-workers (1). 

Preliminary structures of the cytolysin components were proposed based on Edman 

degradation and amino acid analysis of hydrolyzed and o-phthaldialdehyde (OPA) derivatized 

peptides (14).  The detailed structural elucidation of the two cytolysin peptides was achieved 

upon their successful heterologous production in E. coli (15). The number of dehydrations in 

cytolysin observed with heterologous expression matched with that in cytolysin obtained from 
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the producing organism. Tandem mass spectrometry (MS/MS) revealed the thioether-ring 

topology of the seven-fold dehydrated CylLL and four-fold dehydrated CylLS (Figure 3.2).  

  

Figure 3.2. Structures of Cytolysin L and S peptides. 

Previously characterized lanthipeptides possess Lan and MeLan thioether crosslinks with 

DL-configuration (16), which denotes an L-configuration of the Cys residue and a D-

configuration of the residue that was formerly Ser/Thr, resulting in (2S,6R)-Lan and (2S,3S,6R)-

MeLan. Intriguingly, GC/MS of the hydrolyzed and derivatized peptides suggested that certain 

thioether crosslinks in the cytolysin peptides bear an LL-configuration ((2R,6R)-Lan and 

(2R,3R,6R)-MeLan) (15). This unusual stereochemistry results from a Michael-type addition of a 

Cys thiol to the dehydrated residue from the opposite face compared to that resulting in DL-

stereochemistry (Figure 3.3). In both cases, the overall addition is anti-selective. Notably, the 

unusual LL-configuration has only been observed for a “Dhx-Dhx-Xaa-Xaa-Cys” pentapeptide-

motif, where Dhx stands for either Dha or Dhb and Xaa stands for any residue other than Ser, 

Thr, or Cys. Computational evidence from quantum mechanical (QM) simulations of dehydrated 
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peptides substantiated substrate-control by this pentapeptide-motif in formation of the LL-

configuration. Molecular dynamics (MD) simulations of cyclization within the pentapeptide 

motif suggested that the experimentally observed re-face attack of Cys thiol onto Dhb is 

stabilized by favorable hydrogen bonding that is not accessible in the si-face attack (17). 

 

Figure 3.3. Michael-type addition of Cys thiol to a dehydrated residue to generate either DL or 

LL-configuration of thioether crosslinks. 

Additional support for substrate-controlled stereoselectivity in cytolysin was obtained 

from the study of chimeric peptides (17). The N-terminus of the cytolysin S core peptide was 

tethered to the C-terminus of leader peptides of other lanthipeptides including HalA2, LtnA2, 

and ProcA3.2. For each chimeric peptide, modification was carried out by the synthetases 

corresponding to the leader peptide used (HalM2 for HalA2-CylLS, LtnM2 for LtnA2-CylLS, and 

ProcM for ProcA3.2-CylLS). In all cases, an LL-configuration of the MeLan A-ring was 

observed. Hence, the LL-configuration is independent of the employed synthetase, thus providing 

strong evidence that the observed stereochemistry is guided by the substrate. Furthermore, when 
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the second Dhb of the “DhxDhxXaaXaaCys” motif was mutated to Ala by using HalA2-T2A as 

the substrate, HalM2 modification resulted in a DL-configuration of the thioether crosslink. In the 

WT-version of HalA2, the crosslink obtained from the “DhxDhxXaaXaaCys” motif resulted in 

the LL-configuration. Upon testing cyclization of the dehydrated CylLS peptide, it was also found 

that the A-ring in CylLS was installed non-enzymatically (Dr. Weixin Tang, manuscript in 

preparation). However, in the mutant CylLS-T2A, non-enzymatic cyclization of the A-ring was 

no longer viable. Surprisingly, cyclization of CylLS-T2A catalyzed by CylM afforded the LL-

stereochemistry of the A-ring, despite the absence of the pentapeptide motif with two 

consecutive dehydrated residues. This observation suggests that unlike other synthetases, CylM 

has evolved to enforce the LL-stereochemistry at the A-ring of CylLS (Dr. Weixin Tang, 

manuscript in preparation).  

The biological importance of the unusual LL-stereochemistry in the cytolysin peptides is 

investigated herein. We aimed to understand if the observed antimicrobial and hemolytic 

activities of cytolysin require the LL-configuration of the thioether crosslink. I embarked on the 

synthesis of cytolysin analogues with the stereochemistry of the thioether crosslink switched to 

the DL-configuration. Our ultimate goal is to compare the bioactivities of the synthetic analogues 

with the WT-cytolysin peptides.  

3.2. RESULTS AND DISCUSSION 

3.2.1. Choice of Cytolysin Variant to Study the Effect of the Unusual LL-Stereochemistry on 

Bioactivity 

Cytolysin peptides belong to the class of two-component lanthipeptides, with the longer 

peptide named CylLL” and the shorter one named CylLS” (Figure 3.2). In order to evaluate the 

effects of the thioethers with uncommon LL-stereochemistry on the bioactivity of cytolysin, we 
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initiated studies toward the generation of variants with the more prevalent DL-thioether 

crosslinks. Though both peptides are characterized by highly hydrophobic sequences, CylLS” is 

relatively short and less hydrophobic than CylLL”; thus, CylLS” is more amenable to synthetic 

and biochemical manipulations. CylLS” comprises two non-overlapping thioether crosslinks, an 

N-terminal LL-MeLan (A-ring) and a C-terminal DL-Lan (B-ring).  

A variant of CylLS” with the MeLan A-ring bearing DL-stereochemistry was desired to 

enable comparison of its bioactivity with WT-CylLS”. In both cases, synergistic bioactivity 

would be analyzed in the presence of WT-CylLL”. Total chemical synthesis could generate such 

a diastereomer of CylLS”. This synthesis has to overcome two major hurdles. First, the synthesis 

and down-stream purification strategy must be compatible with the high hydrophobicity of the 

target peptide. Hydrophobic peptides are prone to forming -sheet structures and this 

conformational transition from a random coil results in incomplete coupling during solid phase 

peptide synthesis due to inaccessibility of the reagents to the N-terminus of the elongating 

peptide chain (18, 19).  Second, the presence of a dehydrobutyrine as the second residue from the 

N-terminus of the cytolysin core peptide poses a challenge to the traditional route to generating 

such macrocycles. The enamine liberated upon Fmoc deprotection would tautomerize to the 

imine followed by hydrolysis to the ketone, which is unreactive to further peptide coupling 

conditions (Figure 3.4).  
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Figure 3.4. Strategy to introduce thioether ring on solid phase. Orthogonal protecting groups on 

the (methyl)lanthionine building block (DL-MeLan drawn here) allow elongation of a peptide. 

(A) Sequential deprotection of the allyl/alloc and the Fmoc groups followed by coupling to effect 

cyclization. (B) If the amine coupling partner is a dehydrated residue (dehydroalanine shown 

here), Fmoc deprotection affords an enamine that tautomerizes to an imine, followed by 

hydrolysis to a ketone with adventitious H2O. The low reactivity of the amine group in an 

enamine for coupling further promotes this hydrolysis. Conversion to the ketone terminates 

further coupling. 

 

A route involving access to the dehydrated residue at a late-stage after incorporating the 

macrocycle would avoid undesired hydrolysis. A facile approach to obtain dehydroalanine from 

cysteine has been reported by Davis and co-workers (20). Specifically, conversion of a Cys thiol 

to a cyclic sulfonium cation in-situ followed by base-mediated elimination yields 

dehydroalanine. With this in mind, we planned to generate a CylLS” variant with dehydroalanine 

as the second residue from the N-terminus in place of dehydrobutyrine, henceforth named 

CylLS”-Dhb2Dha.  
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3.2.2. Bioactivity of CylLS”-Dhb2Dha and WT-CylLS” is Similar when Both have the Same 

Thioether Stereochemistry 

To rule out any effect on bioactivity because of the switch from dehydrobutyrine to 

dehydroalanine, we compared the bioactivites of CylLS”-Dhb2Dha and WT-CylLS”, with both 

peptides bearing the native LL-MeLan A-ring and DL-Lan B-ring. WT-CylLS” was obtained by 

heterologous expression in E. coli followed by removal of the leader peptide as previously 

reported (15). To obtain CylLS”-Dhb2Dha, site-directed mutagenesis was employed to mutate 

the Thr at position 2 of CylLS to Ser. Gratifyingly, co-expression of the mutant precursor peptide 

with CylM in E. coli followed by leader peptide removal afforded CylLS”-Dhb2Dha with an LL-

MeLan A-ring and a DL-Lan B-ring, as evidenced by gas chromatography coupled with 

electrospray ionization mass spectrometry (GC/MS) analysis (Figure 3.5). Synergistic 

antimicrobial as well as hemolytic activity was tested for both expressed CylLS”-Dhb2Dha and 

WT-CylLS” in the presence of WT-CylLL”. Antimicrobial activity against Lactococcus lactis HP 

strain was identical for WT-CylLS” and CylLS”-Dhb2Dha (Figure 3.6). Similar hemolytic 

activity was also evidenced for the two molecules (Figure 3.7). Based on the similar bioactivity 

profiles of the two molecules when the stereochemistry of the thioether crosslinks was held 

constant, we chose to pursue the synthetically tractable CylLS”-Dhb2Dha as the target in lieu of 

WT-CylLS”. It should be noted that a double mutant of CylLS”-Dhb1Dha/Dhb2Dha exhibits LL-

Lan instead of LL-MeLan as the A-ring (Figure 3.8). This variant was initially considered owing 

to the synthetic ease in accessing a Lan over a MeLan building block. Synergistically with 

CylLL”-WT, this molecule exhibits similar antimicrobial activity but lower hemolytic activity as 

compared to CylLS”-WT (Figures 3.6 and 3.7). Hence, this molecule was not considered for 

synthesis. 
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Figure 3.5. Chiral GC/MS analysis of hydrolyzed and derivatized CylLS-Dhb2Dha, obtained by 

in-vivo expression in E.coli, confirms the LL-configuration of the MeLan A-ring and DL-

configuration of the Lan B-ring. Sample was either injected alone or co-injected with synthetic 

MeLan and Lan standards. Selected ion monitoring (SIM) was set at 365 Da for Lan and 379 Da 

for MeLan. Data were recorded at the Metabolomics Center (UIUC). 
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Figure 3.6. Cytolysin S and its two mutants share similar antimicrobial activity against L. lactis 

HP, in synergy with cytolysin L. None of the peptides show independent antimicrobial activity. 

In all cases, 100 pmol of each peptide was added. 

 

 

 

Figure 3.7. Cytolysin S and its single mutant share similar hemolytic activity, in synergy with 

cytolysin L. However, for the double mutant where the A-ring is Lan instead of MeLan, 

hemolytic activity was reduced.  
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Figure 3.8. Chiral GC/MS analysis of hydrolyzed and derivatized CylLS-Dhb1Dha/Dhb2Dha 

confirms the presence of both LL and DL-configurations of Lan. Sample was either injected alone 

or co-injected with synthetic LL-Lan standard. Selected ion monitoring (SIM) was set at 365 Da 

for Lan and 379 Da for MeLan. Data were recorded at the Metabolomics Center (UIUC). 

 

3.2.3. Heterologous Expression of Cytolysin S with Cys at Position 2 to Assess the 

Elimination Chemistry 

Our strategy for synthesizing CylLS-Dhb2Dha involves solution-phase elimination of Cys 

to Dha after solid phase peptide synthesis. To ensure compatibility of the elimination chemistry 

with the thioether crosslinks, we wanted to first heterologously express a CylLS” variant with 

Cys at position 2, henceforth referred to as CylLS”-Dhb2Cys. However, in vivo maturation of the 

precursor peptide with Cys at position 2 instead of Thr generated the disulfide containing species 

3.1 and lacked the A-ring (Scheme 3.1). We were pleased to find that after reduction, non-

enzymatic cyclization at pH 9.0 afforded the desired peptide with a Cys in position 2 within the 

A-ring. To prevent any undesired non-enzymatic cyclization with Dhb7, we accessed another 

disulfide containing species 3.2 from the heterologous co-expression of precursor peptide CylLS-

T2C/T7A. The disulfide in 3.2 was reduced and the peptide was subjected to non-enzymatic 

cyclization, which rendered 3.3 with correct ring topologies. The Cys at position 2 was then 

capped with iodoacetamide to generate 3.4 (Scheme 3.1). Analysis of the stereochemistry of the 

thioether crosslinks in 3.4 indicated a mixture of LL and DL-MeLan A-ring, and DL-Lan B-ring 

(Figure 3.9). The LL-stereochemistry of the A-ring is thought to be dependent on the 
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“DhxDhxXaaXaaCys” pentapeptide motif of the substrate (17), and hence, predominant 

formation of the LL-MeLan when Dhb at the position 2 is replaced with Cys is surprising. This 

suggested that cytolysin S peptide has other factors favoring the formation of LL-stereochemistry 

of ring A. Peptide 3.3 was subjected to elimination chemistry and gratifyingly generated the 

desired product (Scheme 3.2). This result illustrated the compatibility of the elimination reaction 

with the presence of the thioether crosslinks. 

 

Scheme 3.1. Heterologous expression of CylLS-T2C and CylLS-T2C/T7A precursor peptides 

with CylM led to the formation of disulfide-linked peptides 3.1 and 3.2. Reduction of peptide 

3.2, followed by non-enzymatic cyclization led to thioether formation between Cys5 and Dhb1 

resulting in peptide 3.3. Iodoacetamide treatment of peptide 3.3 yielded Cys-capped peptide 3.4. 
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Figure 3.9. Chiral GC/MS analysis of hydrolyzed and derivatized peptide 3.4 confirms the 

presence of a mixture of LL and DL-configurations of MeLan, while only DL-Lan was observed. 

Sample was either injected alone or co-injected with synthetic standards. SIM was set at 365 Da 

for Lan and 379 Da for MeLan. Data were recorded at the Metabolomics Center (UIUC). 

 

 

Scheme 3.2. Scheme showing Cys2 to Dha conversion in peptide 3.3. Cys2 of peptide 3.3 was 

converted to Dha by reaction with 2,5-dibromohexanediamide followed by elimination (20). In 

the box, the cyclic sulfonium intermediate obtained from reaction of cysteine thiol with 2,5-

dibromohexanediamide is drawn. Under alkaline condition, elimination occurs to generate 

dehydroalanine. 
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3.2.4. Total Synthesis of CylLS”-Dhb2Dha with Non-Native DL-MeLan A-Ring and DL-Lan 

B-Ring 

The high hydrophobicity of our target peptide demands the usage of modern innovations 

in SPPS. Aggregation of growing hydrophobic peptide chains is a common issue with 

polystyrene based resin (18). Polyethylene glycol-polystyrene based resins are better for 

hydrophobic peptides but those resins suffer from low resin loading, and in some cases poor 

chemical stability  (21-25). ChemMatrix resins have recently been introduced that combine 

improved chemical stability with the beneficial properties of the traditional polyethylene glycol 

resins (26); owing to its polar nature, this resin does not interact with the side-chain protected 

peptides (27). This resin also shows excellent mechanical stability due to its extensive cross-

linked structure. Additionally, ChemMatrix resin has enhanced swelling properties in a wide 

range of solvents, which physically minimizes the peptide self-association on the resin (26).  

Cytolysin S has a C-terminal Lan residue. Prior experience with incorporating C-terminal 

protected Cys residues in the prochlorosin system (Section 2.4.10) suggested a bulky trityl-group 

as linker connecting the peptide with the ChemMatrix resin would be appropriate. This is 

because the protected C-terminal Cys thiol is prone to base catalyzed elimination resulting in 

dehydroalanine formation, followed by nucleophilic addition of subsequently added piperidine to 

result in -piperidyl-alanine (28, 29). I successfully synthesized the CylLS”-Dhb2Cys by manual 

SPPS using uronium and phosphonium based reagents depending on which residues were 

coupled (Scheme 3.3). Employing appropriately protected DL-MeLan and DL-Lan building 

blocks ensured the DL-configuration of the A and B-rings (30). The elimination reaction cleanly 

converted Cys at position 2 to Dha, to yield the desired CylLS”-Dhb2Dha after HPLC 

purification (Figure 3.10). 
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Scheme 3.3. Synthesis of cytolysin S-Dhb2Dha. Reagents and conditions: (a) SOCl2; (b) DL-Lan 

building block coupling; (c) piperidine, DMF; (d) SPPS; (e) Pd(PPh3)4, PhSiH3, DMF, CH2Cl2; 

(f) PyAOP, HOAt, 2,4,6-collidine, DMF; (g) DL-MeLan building block coupling; (h) cleavage 

from resin using 95:2.5:2.5 of TFA:H2O:triisopropylsilane; (i) 2,5-dibromohexanediamide, 

elimination carried at pH 8.4. Prior to cleavage from resin, all residues contained appropriate 

side-chain protecting groups for Fmoc SPPS.  
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Figure 3.10. Analysis of pure synthetic CylLS”-Dhb2Dha. (A) HPLC trace of sample (blue 

trace) overlaid on the blank (red trace). (B) MALDI-TOF MS of the sample. (C) ESI-MS/MS of 

the sample. 
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3.2.5. Total Synthesis of CylLS”-Dhb2Dha with LL-MeLan A-Ring and DL-Lan B-Ring as a 

Control for Synthetic Fidelity 

To ensure that the chemical synthesis does not introduce any significant artifacts to the 

bioactivity assays, CylLS”-Dhb2Dha with LL-MeLan A-ring and DL-Lan B-ring was also 

synthesized. This is the same stereochemistry of the A and B rings in WT-CylLS” and the 

heterologously expressed CylLS”-Dhb2Dha. Similar synthetic steps were employed using a 

synthetic LL-MeLan building block to obtain the LL-MeLan A-ring. The synthesized and the 

expressed CylLS”-Dhb2Dha exhibited identical bioactivities, establishing the fidelity of the 

synthetic steps (see lanes 1 and 2 of Figure 3.11).   

 

Figure 3.11. Comparison of antimicrobial activity of expressed and synthetic cytolysin S. The 

synthesized CylLS”-Dhb2Dha, with a LL-ring A, showed similar antimicrobial activity against L. 

lactis HP, in synergy with cytolysin L, compared to heterologously expressed CylLS”-Dhb2Dha. 

In each lane, 75 pmol of each peptide component was added.  

3.2.6. Evaluation of Antimicrobial Activities of Variants of Cytolysin S 

Antimicrobial activity was tested against L. lactis HP. Various cytolysin S peptides were 

tested for synergism with WT-CylLL”. Both the WT-CylLS” and expressed CylLS”-Dhb2Dha 

(both with an LL-MeLan A-ring and DL-Lan B-ring) exhibited similar antimicrobial activity. The 

synthesized CylLS”-Dhb2Dha with the stereochemistry of the A-ring switched to DL-MeLan 
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exhibited significantly weaker synergistic bioactivity with WT-CylLL” (lane 3 of Figure 3.11 and 

lane 6 of Figure 3.12). 

 

Figure 3.12. Comparison of antimicrobial activity of diastereomers of cytolysin S. The 

synthesized CylLS”-Dhb2Dha, with a DL-ring A, showed attenuated antimicrobial activity 

against L. lactis HP, in synergy with cytolysin L. In each lane, 100 pmol of each peptide 

component was added. 

 

3.2.7. Evaluation of Hemolytic Activities of Variants of Cytolysin S 

Various cytolysin S peptides were tested with WT-CylLL” for synergistic hemolytic 

activity against rabbit blood cells. Both the WT-CylLS” and expressed CylLS”-Dhb2Dha, 

containing an LL-MeLan A-ring and DL-Lan B-ring, exhibited very similar hemolytic activity. 

Surprisingly, the synthesized CylLS”-Dhb2Dha with a DL-MeLan A-ring and DL-Lan B-ring, 

exhibited no loss of hemolytic activity (Figure 3.13). 
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Figure 3.13. Comparison of hemolytic activity of diastereomers of cytolysin S. The synthesized 

CylLS”-Dhb2Dha, with DL- ring A, showed modest increase in hemolytic acitivity compared to 

WT- CylLS”, in synergy with cytolysin L. 

 

3.3. CONCLUSION AND OUTLOOK 

Total syntheses of lanthipeptides offer a flexible platform to study structure-activity 

relationships (SAR) by allowing introduction of unnatural amino acid residues and non-native 

stereochemistry of thioether crosslinks (31, 32). Synthesis of only five lanthipeptides – nisin 

(33), lactosin S (30), both components of lacticin 3147 (34), epilancin 15x (35), and lacticin 481 

(32) have been reported so far. The synthesis of one of the two cytolysin components, CylLS” is 

described here. We wanted to investigate the importance of the unusual LL-stereochemistry of 

the A-ring formed from the “DhxDhxXaaXaaCys” motif to cytolysin’s hemolytic and 

antibacterial activity. SPPS was chosen as a robust platform to generate a CylLS” mutant bearing 

a DL-A-ring. We selected polyethylene glycol based ChemMatrix resin to efficiently synthesize 

the hydrophobic sequence of CylLS”. A bulky trityl-linker was adopted to connect the peptide 

chain to the resin to prevent side-reactions of the C-terminal Lan residue. Realizing the problems 

associated with synthesizing the A-ring with a dehydrobutyrine as the second residue within the 

MeLan crosslink, the peptide was synthesized with a Cys mutation at this position. A late-stage 
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elimination generated CylLS” with Dhb at position 2 substituted with Dha. Hence, we 

successfully synthesized CylLS”-Dhb2Dha (DL-ring A), and compared its bioactivity with WT-

CylLS”. Essentially identical bioactivities were observed for WT-CylLS” and CylLS”-Dhb2Dha 

(LL-ring A), both bearing only native stereochemistry. However, the diastereomer with a DL-

crosslink of the “DhxDhxXaaXaaCys” motif exhibited reduced antimicrobial activity while 

maintaining similar hemolytic activity. The results lead us to hypothesize that CylLS” with the 

LL-stereochemistry of the A-ring has evolved to be complementary with native CylLL” in which 

two of the three thioether crosslinks exhibit the unusual LL-stereochemistry. This 

complementarity results in strong antimicrobial activity while in CylLS” with DL-stereochemistry 

of the A-ring, the synergy with native CylLL” is attenuated. Regarding the hemolytic activity, it 

is possible that the thioether stereochemistry of the A-ring of CylLS” is not important and that a 

non-specific interaction between the two hydrophobic peptides CylLS” and CylLL” leads to lysis 

of red blood cells. Another possibility is that the stereochemistry of the crosslinks in CylLL” is 

more critical than in CylLS”. Further insight would require synthesis of diastereomers of CylLL”. 

Such an endeavor would have to overcome the challenges of synthesizing a fairly long (with 38 

amino acids, CylLL” is the longest lanthipeptide reported so far) peptide with a very hydrophobic 

sequence. Future efforts will involve synthesizing diastereomers of CylLL” or that of a 

synthetically tractable mutant. As another route to accessing diastereomers of CylLL”, mutation 

of “DhxDhxXaaXaaCys” motif to “DhxCysXaaXaaCys” can be attempted on rings A and B of 

CylLL” (similar to studies with CylLS”). If these mutants non-enzymatically cyclize to generate 

rings with DL-stereochemistry, then we can potentially study the effect of stereochemistry of 

thioether crosslinks in CylLL” on the synergistic bioactivity.  
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3.4. EXPERIMENTAL 

3.4.1. Materials and General Methods 

General characterization remains same as in sections 2.4.1 and 2.4.2. Additional 

purifications and analyses of cytolysin peptides are mentioned in this section. Cytolysin peptides 

required special method to ensure dissolution. Neat acetonitrile was added to the peptide, and 

vortexed to generate a milky suspension. To the suspension, equal volume of 0.1% aqueous TFA 

was added to generate a clear solution, which was diluted with 0.1% TFA to obtain peptide 

solution with a final acetonitrile concentration of 4%. Analytical reversed-phase high-

performance liquid chromatography (RP-HPLC) was performed on an Agilent 1260 Infinity 

system with a Hypersil-Gold C4 column with a flow rate of 1 mL/min and a solvent gradient of 

2-100% solvent A over 45 min. Preparatory RP-HPLC was performed on a Waters 600 system 

with a Phenomenex Jupiter C12, 4 µm Proteo 90 Å column with a flow rate of 4 mL/min and a 

solvent gradient of 2% solvent A, 98% solvent B to 100% solvent A in 45 min. All HPLC 

solvents were filtered with a Millipore filtration system equipped with a 0.22 μm nylon 

membrane filter prior to use. HPLC solvent compositions: solvent A was 80% acetonitrile in 

water with 0.086% trifluoroacetic acid (TFA), solvent B was 0.1% TFA in water. 
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3.4.2. Synthesis of Fmoc-PheDhb-OH Building Block 

Compound 3.12. Boc-PheThr-OtBu* (*prepared by Dr. Patrick Knerr) 

(0.8 g, 1.89 mmol) was dissolved in DCM (21 mL). The solution was 

cooled in an ice-bath following which trimethylamine (0.66 mL, 4.74 mmol) was added. 

Methanesulfonyl chloride (0.3 mL, 3.8 mmol) was added dropwise and the reaction was stirred 

for 1 h, gradually warming to room temperature. The reaction was concentrated under reduced 

pressure, re-dissolved in 1,2-DCE (21 mL) and DBU (1.14 mL, 7.6 mmol), and then heated to 

reflux in an oil-bath for 4 h, and concentrated under reduced pressure. The residue was dissolved 

in EtOAc, washed with 10% citric acid, saturated aqueous NaHCO3, and brine, dried over 

Na2SO4, filtered, and concentrated. The residue was purified by flash chromatography (SiO2, 7:1 

hexanes/EtOAc, and then 4:1 hexanes/EtOAc). Yield: 0.61 g (80%). Spectral data matched those 

previously reported (35). (Notebook IX, Page 77) 

 

Compound 3.13. Compound 3.12 (0.6 g, 1.48 mmol) was dissolved in 5 

mL of DCM, 5 mL of TFA, and the reaction was stirred for 1.5 h. The 

reaction was concentrated under reduced pressure, repeatedly dissolved in DCM, and re-

concentrated to finally generate a white residue. To the residue was added Na2CO3 (0.32 g, 2.97 

mmol), water (14 mL), 1,4-dioxane (14 mL) and the mixture was chilled in an ice-bath. Fmoc-

OSu (0.5 g, 1.48 mmol) was added as a solid. The reaction was stirred for 20 h, and gradually 

warmed to room temperature. The volatile components were removed under reduced pressure, 

and the residue diluted with water and acidified to pH 2 with 2 M HCl. The aqueous suspension 

was extracted with EtOAc (3x), the combined organic layer was dried over Na2SO4, filtered, and 

concentrated to 10 mL. To the residue, hexanes was added (100 mL) to generate a white 
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precipitate which was filtered over Buchner funnel to generate white powder. Yield: 0.7 g 

(quantitative). Spectral data matched those previously reported (35). (Notebook IX, Page 78) 

3.4.3. Synthesis of LL-MeLan(Allyl/Alloc) Building Block 

Compound 3.14. Fmoc-L-Ser-OH (8.22 g, 25.1 mmol) was suspended 

in EtOAc (125 mL). To the suspension, tert-butyl 2,2,2-

trichloroacetimidate (11.03 g, 50.48 mmol) dissolved in 50 mL of 

cyclohexane was added by addition funnel over 15 min. The reaction was stirred at room 

temperature for 20 h. The reaction was washed with saturated aqueous NaHCO3 (1 x 100 mL), 

H2O (1 x 100 mL), and brine (1 x 70 mL). The yellow clear solution was dried over Na2SO4, and 

evaporated on a rotary evaporator. The crude material was purified by flash chromatography 

(SiO2, 3:1 hexanes/EtOAc) to yield the product as a white solid. Rf 0.5 (1:1 hexanes/EtOAc). 

Yield: 5.83 g (60%). Spectral data matched those previously reported (35). (Notebook IX, Page 

61) 

Compound 3.15. Compound 3.14 (2.0 g, 5.22 mmol) and carbon 

tetrabromide (2.08 g, 6.26 mmol) were dissolved in DCM (10 mL) 

and the solution was chilled in an ice-bath. To the chilled solution, 

triphenylphosphine (1.64 g, 6.26 mmol) dissolved in DCM (10 mL) was added dropwise, and the 

reaction was stirred for 3.5 h while allowing to come to room temperature. The reaction mixture 

was washed with H2O and brine, dried over Na2SO4, filtered, and concentrated under reduced 

pressure to generate yellow oil. Excess 5:1 hexanes/EtOAc was added to precipitate phosphine 

oxide and the washings were filtered over celite. The filtrate was concentrated, purified by flash 

chromatography (SiO2, 15% EtOAc in hexanes) to yield product. Rf in 3:1 hexanes/EtOAc 0.58. 
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Yield: 1.43 g (62%). Spectral data matched those previously reported (35). (Notebook IX, Page 

81) 

 

Compound 3.16. L-Threonine (4.17 g, 35 mmol) and p-

toluenesulfonic acid monohydrate (8 g, 42 mmol) were mixed in 

toluene (90 mL). To the suspension, allyl alcohol (24 mL) was added and the reaction was 

refluxed on an oil bath (110 °C) connected to a Dean-Stark apparatus for 18 h. The pale yellow 

solution was evaporated on a rotary evaporator azeotropically with benzene (4 x 50 mL). The 

brown oil was diluted in DCM (175 mL) and chilled in an ice bath. Triethylamine (14.6 mL, 105 

mmol) was added and the reaction was stirred for 10 min. To the reaction, 4-

nitrobenzenesulfonyl chloride (8.53 g, 38.5 mmol) was added portion wise and the reaction was 

stirred for 4 h at 0 °C. The reaction mixture was washed with 1 M NaH2PO4 (1 x 100 mL), 

saturated aqueous NaHCO3 (1 x 100 mL), and brine (1 x 100 mL), dried over Na2SO4, filtered 

and concentrated on a rotary evaporator to yield a brown solid. The solid residue was dissolved 

in DCM (80 mL) and SiO2 was added and the solvent evaporated on the rotary evaporator. The 

solid was transferred to a column and purified by flash chromatography (SiO2, 7:3 hexanes: 

EtOAc to 3:2 hexanes: EtOAc). The fractions containing product (Rf 0.45 in 1:1 hexanes: 

EtOAc) was concentrated on a rotary evaporator to generate brown oil which was immediately 

transferred to two 20 mL scintillation vials, when solid crashed out and the residue was dried 

overnight in a vacuum pump to generate yellow solid. Yield: 9.8 g (81% over two steps). 

Spectral data matched that of the reported enantiomer (35). (Notebook IX, Page 62) 
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Compound 3.17. Compound 3.16 (3 g, 8.71 mmol) and 

triphenylphosphine (2.97 g, 11.3 mmol) were dissolved in THF (33 

mL) and the reaction was chilled in an ice-bath. To the chilled 

solution, diisopropyl azodicarboxylate (1.9 mL, 9.6 mmol) was added and the reaction was 

stirred for 2.5 h at 0 °C. The solution was concentrated under reduced pressure, the residue 

dissolved in EtOAc, washed with saturated aqueous NaHCO3, and brine, dried over Na2SO4, and 

concentrated under reduced pressure. The residue was purified by flash chromatography (SiO2, 

5:1 hexanes/EtOAc) to yield product (Rf 0.55 in 2:1 hexanes/EtOAc). Yield: 1.76 g (62%). 

Spectral data matched that of the reported enantiomer (35). (Notebook IX, Page 69) 

Compound 3.18. Compound 3.17 (1.75 g, 5.4 mmol) was dissolved 

in DCM (54 mL), and to the solution was added 4-methoxybenzyl 

mercaptan (3.1 mL, 22 mmol). The solution was chilled in an ice-

bath, following which boron trifluoride diethyl ether (2.4 mL, 16.2 mmol) was added dropwise to 

the stirring solution. The reaction was stirred at 4 °C for 26 h. The reaction was diluted with 

DCM and washed with saturated aqueous NaHCO3, and brine, dried over Na2SO4, filtered, and 

concentrated under reduced pressure. The residue was purified by flash chromatography (SiO2, 

4:1 hexanes/ EtOAc) to yield product as yellow solid. Yield: 2.06 g, 80%. Spectral data matched 

that of the reported enantiomer (35). (Notebook IX, Page 70) 

Compound 3.19. Compound 3.18 (1.64 g, 3.41 mmol) was dissolved in 25 

mL of 49:1 MeCN/DMSO and stirred. To the stirring solution, 4-

methoxybenzyl mercaptan (1.26 mL, 10.3 mmol) and potassium carbonate 

(1.89 g, 13.7 mmol) were added. The heterogeneous reaction mixture was stirred for 3 h and 

concentrated under reduced pressure. The concentrated residue was taken up in EtOAc, washed 
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with H2O, and brine, dried over Na2SO4, filtered, and concentrated. The crude product was 

purified by flash chromatography (SiO2, 3:2 then 2:3 hexanes/EtOAc) to yield product as pale 

yellow oil. Rf = 0.25 (1:1 hexanes/EtOAc). Yield: 0.93 g (93%). Spectral data matched that of 

the reported enantiomer (35). (Notebook IX, Page 71) 

Compound 3.20. Compound 3.19 (0.93 g, 3.14 mmol) was dissolved 

in DCM (18 mL). Diisopropylethylamine (0.66 mL, 3.8 mmol) and 

allyloxycarbonyloxysuccinimide (AlocOSu, 0.68 g, 3.36 mmol) were 

added to the stirring solution, and the reaction was stirred for 12 h. The reaction was diluted with 

DCM, washed with H2O, 10% citric acid, and brine, dried over Na2SO4, filtered, and 

concentrated under reduced pressure. The crude material was purified by flash chromatography 

(SiO2, 4:1 hexanes/EtOAc) to yield product as colorless oil. Rf = 0.58 in 2:1 hexanes/EtOAc. 

Yield: 1.06 g (89%). Spectral data matched that of the reported enantiomer (35). (Notebook IX, 

Page 72) 

Compound 3.21. Compound 3.20 (0.36 g, 0.95 mmol) was dissolved in 

TFA (5.3 mL) and anisole (413 L, 3.81 mmol). Hg(OAc)2 (0.61 g, 

1.9 mmol) was added as solid and then the yellow solution turned 

brown, and then purple. The solution was stirred for 4 h. Dithiothreitol (DTT, 0.3 g, 1.93 mmol) 

was added, forming a grey precipitate, and the suspension was stirred for 18 h. The suspension 

was diluted with DCM, and centrifuged (4600 x g, 10 min) to remove the residue, while the 

supernatant was retained. The residue was re-suspended in DCM and further centrifuged. The 

combined supernatants were concentrated on a rotary evaporator. The crude residue was 

dissolved in DCM (50 mL), to which water (10 mL) was added and the pH adjusted to 5.0 by 

addition of solid NaHCO3. The organic layer was collected, concentrated on a rotary evaporator 
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and then the crude residue was purified on a flash chromatography (SiO2, 15% EtOAc in 

hexanes) to yield compound 3.20 without the thiol protecting group (Rf 0.52 in 3:1 

hexanes/EtOAc, as visualized by KMnO4 stain). The product was immediately moved to the next 

reaction without prolonged drying on vacuum pump and spectroscopic characterization. 

To the concentrated product from the above reaction was added compound 3.15 (0.25 g, 

0.56 mmol), and N2-sparged EtOAc (3.5 mL). Tetrabutylammonium bromide (1.02 g, 3.17 

mmol) dissolved in 3.5 mL degassed aqueous NaHCO3, pH 8.5, was added and the biphasic 

solution was stirred for 5 h. Tributylphosphine (80 L, 0.32 mmol) was added and the reaction 

was stirred overnight. The  organic layer was separated and washed with water and brine, dried 

over Na2SO4, filtered, and concentrated and the crude was purified over flash chromatography 

(4:1 hexanes/EtOAc) to obtain product (Rf 0.25 in 3:1 hexanes/EtOAc). Yield: 0.25 g (71%, 

considering Fmoc-bromoalanine as the limiting reagent). 1H NMR (500 MHz, CDCl3)  7.77 (d, 

J = 7.5 Hz, 2H), 7.62 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 5.96-

5.84 (m, 2H), 5.72-5.66 (d, J = 7.5 Hz, 2H), 5.69 (d, J = 7.5 Hz, 2H), 5.59 (d, J = 7.5 Hz, 2H), 

5.39-5.17 (m, 4H), 4.66 (d, J = 6.0 Hz, 2H), 4.62-4.48 (m, 4H), 4.42-4.37 (d, J = 7.5 Hz, 2H), 

4.26-4.22 (t, J = 7.0 Hz, 1H), 3.52-3.45 (m, 1H), 3.04-2.94 (m, 2H), 1.49 (s, 9H), 1.34 (d, J = 7.0 

Hz, 1H). 13C NMR (125 MHz, CDCl3)  170.3, 169.4, 156.4. 155.9, 144, 143.9, 141.4, 132.6, 

131.4, 127.8, 127.2, 125.26, 125.23, 120.1, 119.6, 118, 83.1, 67.3, 66.6, 66.2, 58.7, 54.7, 47.2, 

43.8, 33.9, 28.1, 19.5. HRMS (ESI) calculated for C33H41N2O8S 625.2584 (M+H+), observed 

625.2573. (Notebook IX, Page 80) 

Compound 3.22. Compound 3.21 (0.2 g) was dissolved in 2.5 mL of dry 

DCM, and to the solution was added phenylsilane (80 L), followed by 
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TFA (2.5 mL). The reaction was stirred for 2 h, the solution was concentrated, and the residue 

was dissolved in DCM and concentrated further. This step was repeated twice more to remove 

the residual TFA. The concentrated residue was purified by flash chromatography (SiO2, 1-2 % 

MeOH in DCM) to generate product. The product was concentrated, dissolved in 1:1 

(MeCN/benzene), and lyophilized. Yield: 0.14 g (77%). 1H NMR (400 MHz, CD3OD)  7.78 (d, 

J = 7.5 Hz, 2H), 7.67 (t, J = 7.5 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.30 (t, J = 7.5 Hz, 2H), 5.98-

5.83 (m, 2H), 5.38-5.28 (m, 2H), 5.26-5.11 (m, 2H), 4.62 (m, 2H), 4.57-4.49 (m, 2H), 4.44 (d, J 

= 5.2 Hz, 1H), 4.41-4.32 (m, 3H), 4.22 (t, J = 7.0 Hz, 1H), 3.46-3.37 (m, 1H), 3.07 (dd, J = 14 

Hz, 4.4 Hz, 1H), 2.93 (dd, J = 14 Hz, 8.8 Hz, 1H), 1.32 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, 

CDCl3) 173.7, 171.6, 158.5, 145.3, 145.1, 142.53, 142.51, 134.1, 133.1, 129.3, 128.8, 128.2, 

126.3, 126.26, 120.9, 119.25, 117.75, 68.2, 67.2, 66.8, 60.3, 55.5, 48.3, 44.3, 34.3, 19.7. HRMS 

(ESI) calculated for C29H33N2O8S 569.1958, observed 569.1965. (Notebook IX, Page 74) 

3.4.4. Synthesis of DL-MeLan(Allyl/Alloc) Building Block 

Compound 3.23. Diastereomer of compound 3.20 with 2S,3S 

stereochemistry* (*prepared by Dr. Patrick Knerr) (0.6 g, 1.64 mmol) 

was dissolved in TFA (9 mL) and anisole (710 L, 3.81 mmol). 

Hg(OAc)2 (1.04 g, 3.23 mmol) was added as solid and then the yellow solution turned brown, 

and then purple. The solution was stirred for 4 h. Dithiothreitol (DTT, 0.48 g, 3.1 mmol) was 

added, forming a grey precipitate, and the suspension was stirred for 16 h. The suspension was 

diluted with DCM, and centrifuged (4600 x g, 10 min) to remove the solid, while retaining the 

supernatant. The solid was re-suspended in DCM and further centrifuged. The  combined  

supernatants were concentrated on a rotary evaporator. The crude residue was dissolved in DCM 

(50 mL), water (10 mL) was added, and the solution adjusted to pH 5.0 by addition of solid 
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NaHCO3. The organic layer was collected, concentrated on a rotary evaporator and then the 

crude residue was purified by flash chromatography (SiO2, 15% EtOAc in hexanes) to yield 

product (Rf 0.52 in 3:1 hexanes/EtOAc, as visualized by KMnO4 stain), which was immediately 

moved to the next reaction without prolonged drying on vacuum pump and spectroscopic 

characterization. To the concentrated product from the above reaction was added compound 3.15 

(0.43 g, 0.94 mmol), and N2-sparged EtOAc (5.3 mL). Tetrabutylammonium bromide (1.2 g, 

3.73 mmol) dissolved in 5.3 mL aqueous NaHCO3, pH 8.5, and the biphasic solution was stirred 

for 5 h. Then, tributylphosphine (133 L, 0.53 mmol) was added and the reaction was stirred 

overnight. The  organic layer was separated and washed with water and brine, dried over 

Na2SO4, filtered, concentrated and the crude was purified over flash chromatography (4:1 

hexanes/EtOAc) to obtain product (Rf 0.28 in 3:1 hexanes/EtOAc). Yield: 0.22 g (37%, 

considering Fmoc-bromoalanine as the limiting reagent). Spectral data matched those previously 

reported (35). (Notebook IX, Page 82) 

Compound 3.24. Compound 3.23 (0.22 g) was dissolved in 2.6 mL of 

dry DCM, and to the solution was added phenylsilane (85 L), followed 

by TFA (2.6 mL). The reaction was stirred for 2 h, concentrated, 

dissolved in DCM and concentrated further. This step was repeated twice more to remove the 

residual TFA. The concentrated residue was purified by flash chromatography (SiO2, 1-2 % 

MeOH in DCM) to generate product. The product was concentrated, dissolved in 1:1 

(MeCN/benzene), and lyophilized. Yield: 0.17 g (86%). Spectral data matched those previously 

reported (35). (Notebook IX, Page 83) 
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Compound 3.25. Prepared by Dr. Patrick Knerr and Mr. Evert Peterse 

using a previously reported procedure (35). 

 

3.4.5. General Procedure for Solid Phase Peptide Synthesis (SPPS) 

Unless otherwise noted, the general synthetic strategy involved the use of N-

[(dimethylamino)-1H-1,2,3-triazolo-[4,5-b]pyridin-1-ylmethylene]-N-methylmethanaminium 

hexafluorophosphate N-oxide (HATU) as coupling agent. Additionally, 1-hydroxy-7-

azabenzotriazole (HOAt) was used as a racemization suppressant. Diisopropylethylamine 

(DIPEA) was used as a base. Trityl-OH ChemMatrix resin was used as the solid support. The 

resin was swelled and loaded with the first amino acid residue as follows. The resin (1 g) was 

swelled in 15 mL of DCM, and to the suspention, 0.4 mL of thionyl chloride was added and the 

resin was agitated under N2 for 4 h. Then, the resin was washed with DCM (5x) and 2% DIPEA 

in DCM (3x). Next, protected amino acid building block was loaded to the resin to result in 

amino acid loaded resin with lower resin substitution. Protected amino acid building block (0.15 

mmol), and DIPEA (0.75 mmol, 0.13 mL) in DCM was reacted for 3 h. The resin was washed 

with DCM and the remaining chloride substitutions on the resin were capped by treating with 

acetic acid (0.5 mmol, 0.03 mL), and DIPEA (2 mmol, 0.35 mL) in DCM for 2 h. The resin was 

washed with DCM and dried overnight.  

The amino acid substitution of the resin was calculated as follows. Fmoc protected resin 

(~ 10 mg) was suspended in 1 mL of 20% piperidine in DMF for 15 min. From the solution, 20 

L of aliquot was diluted in 1980 L of DMF. The absorbance ( 301 nm) was measured with 
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DMF as blank. The substitution was calculated (substitution = 101*abs/7.8*resin weight) (36, 

37). The absorbance was measured in duplicate and averaged.   

The resin was swelled in 1:1 DMF/DCM for 30 min. Fmoc was removed by agitating the 

resin with 20% piperidine in DMF (2 x 10 min). The resin was subjected to a wash cycle by 

agitating with DMF (2 x 30 s), 1:1 DMF/DCM (1 x 30 s), DCM (2 x 30 s), and 1:1 DMF/DCM 

(1 x 30 s). The side-chain protected amino acid (5 equivalents), HCTU or HATU (5 equivalents), 

and HOAt (5 equivalents) was dissolved in 15 mL of DMF. To the solution, DIPEA (8 

equivalents) was added and after 1 min, the activated solution was applied to the resin and 

agitated for 1 h (unless otherwise noted). Coupling was repeated once, and the completion of 

coupling was monitored by Kaiser test. This procesure was followed by capping by agitating the 

resin with capping solution (90:8:2 of DMF/acetic anhydride/DIPEA) for 7 min. Subsequently, 

iterative deprotection, coupling, and capping steps followed. After Fmoc removal from the last 

coupled residue, the resin was washed and dried. Cleavage was performed by suspending the 

resin in cleavage cocktail (95:2.5:2.5 of trifluoroacetic acid/water/triisopropylsilane). Typically, 

for 1 g of resin, 25-30 mL of cleavage cocktail was used to accommodate the high swelling of 

the ChemMatrix resin in TFA. After 1.5 h of cleavage reaction, the resin was filtered. The resin 

was further washed with 2 mL of TFA, and then 10 mL of DCM. All the filtrates were 

evaporated by applying a stream of N2. To the concentrated solution, 10 mL of cold diethyl ether 

was added to allow precipitation of the peptide. Centrifugation (10800 x g, 10 min) was 

performed to precipitate the peptide and discard the ether supernatant. The peptide was 

suspended in 1 mL of acetonitrile. Then, 2 mL of 0.1% TFA in water was added and the 

suspension vortexed to dissolve the peptide. The solution was frozen and lyophilized to obtain 

the crude peptide.  
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3.4.6. SPPS of CylLS-Dhb2Cys with DL-MeLan (A-Ring) and DL-Lan (B-Ring) 

 

Intermediate 3.6. Subsequent to loading compound 3.25 to the resin, the 

resin-substitution was found to be 0.09 mmol/g. Phe, Lys, and Ala were 

coupled using 0.5 mmol of side-chain protected amino acid building 

blocks, 0.5 mmol of HCTU, 0.5 mmol of HOAt, and 0.8 mmol of DIPEA in DMF (1 h single 

coupling). The alloc/allyl group was removed by adding Pd(PPh3)4 (0.22 mmol, 0.26 g), PhSiH3 

(1.1 mmol, 0.135 mL) in 1:1 (DMF/DCM), and agitating in N2 for 2 h. The resin was washed 

with DCM (3 x 20 mL), 0.5% of sodium diethyldithiocarbamate in DMF (3 x 20 mL), DMF (3 x 

20 mL), 1:1 DCM/DMF (3 x 20 mL). The Fmoc-group was removed and coupling was 

performed by adding PyAOP (0.5 mmol), HOAt (0.5 mmol) in DMF to the resin and agitating 

the resin in DMF for 5 min followed by addition of 2,4,6-collidine (1 mmol) and agitation (2 x 

2.5 h). After washing and drying the resin, a little of the resin was cleaved (95:2.5:2.5 = 

TFA:TIS:H2O) for 1 h and analyzed by ESI. ESI-MS calculated for C24H37N6O6S (M+H+) 

537.24, observed 537.4. (Notebook IX, Page 43) 

Intermediate 3.7. The residues (from C to N terminus) 

Phe, Leu, Ala, Gly, Val, Gly, and Leu were coupled by 

the same chemistry as before. After Fmoc-deprotection, 

test cleavage was performed on a small amount of resin. ESI-MS calculated for C57H88N13O13S 
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(M+H+) 1194.62, observed 1194.6; calculated for C57H89N13O13S (M+2H)2+ 597.3, observed 

597.9. (Notebook IX, Page 43) 

Intermediate 3.8. The residue Gly was coupled, 

the resin was dried, and the resin was split into 

approximately two equal portions. Further 

synthesis was performed on ca. half of the resin (~0.05 mmol). Gly was coupled for another 

round followed by coupling of Ile. The dipeptide Fmoc-PheDhb-OH required extensive coupling 

durations of 1 h and 3 h – with 0.2 mmol of amino acids and coupling agents when Kaiser test 

indicated incomplete coupling. Therefore, coupling was repeated with 0.3 mmol of dipeptide and 

coupling agents for 11 h, upon which Kaiser test indicated complete coupling. A little of the 

resin was cleaved and the peptide was analyzed by ESI-MS. ESI-MS calculated for 

C93H127N17O19S (M+2H)2+ 908.95, observed 909.0. (Notebook IX, Page 44) 

Peptide 3.10. After Fmoc-removal, 

Fmoc-DL-MeLan building block with 

allyl/alloc protection (0.2 mmol) was 

coupled using HATU (0.2 mmol), HOAt (0.2 mmol), and DIPEA (0.4 mmol) for 5 h. Kaiser test 

gave dark brown coloration (Kaiser test has been found to be inconclusive for N-terminal 

Lan/MeLan residues). Subsequent amino acids (0.5 mmol) were coupled using HATU (0.5 

mmol), HOAt (0.5 mmol), and DIPEA (0.8 mmol). Ala involved double coupling (1 h, 2h). 

Kaiser test was clean at this stage. Pro involved single 5 h coupling. Cys(Trt) involved overnight 

coupling (7 h). The allyl/alloc groups were deprotected by adding Pd(PPh3)4 (0.2 mmol) and 

PhSiH3 (1 mmol) in DMF/DCM (1:1), and agitating for 7 h. The resin was washed with DCM (3 

x 20 mL), 0.5% solution of sodium diethyldithiocarbamate in DMF (3 x 20 mL), and DMF/DCM 
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(1:1, 3 x 20 mL). Then the Fmoc-group was removed and coupling/cyclization was performed by 

adding PyAOP (0.5 mmol), HOAt (0.5 mmol) in DMF and after 5 min of agitation, 2,4,6-

collidine was added and the reaction was stirred (couple was performed twice for 1.5 h and 3 h). 

The resin was washed and dried overnight by a stream of N2. Test cleavage followed by analysis 

by MALDI-TOF MS indicated product formation. The calculated m/z for C96H143N22O22S3 is 

2051.98, observed 2052.12. The resin (0.6 g) was cleaved and the obtained peptide was 

lyophilized. Peptide was purified using a Phenomenex Jupiter C12, 4 µm Proteo 90 Å column 

with a gradient of 2% to 100% A (0.1% TFA in H2O) in D (80% MeCN in 0.086% TFA) over 45 

min (flow rate: 4 mL/min). Of the crude peptide, 46 mg was purified in 11 injections. Yield: 3 

mg (partially purified material). (Notebook IX, Page 45) 

3.4.7. Cys to Dha Elimination Reaction on Synthesized CylLS-T2C (DL-A Ring, DL-B Ring)    

Synthesized and purified peptide 3.10 (236 g) was taken in an Eppendorf tube and to the 

content was added acetonitrile (16 L) and the mixture vortexed to generate a white suspension. 

To the suspension, 50 L of 0.1% aqueous TFA was added to generate a clear solution. The 

solution was diluted with 134 L of H2O followed by addition of 20 L of TCEP (10 mM stock), 

and 65 L of NH4HCO3 (200 mM stock, pH 8.9) resulting in a solution with final pH 8.4. To the 

solution was added 2,5-dibromohexanedioic acid (1 mg) and then the white suspension was 

stirred at RT (1 h) and at 37 °C (4 h). MALDI-TOF MS of both the crude suspension and the 

supernatant (after centrifugation) indicated product formation (m/z calculated for 

C96H141N22O22S2 (M+H+) 2018, observed 2018.47). From the reaction, sample was prepared for 

analytical HPLC purification to ensure the dissolution of any precipitated product, leaving the 

residue of unreacted 2,5-dibromohexanedioic acid. The sample preparation was as follows: The 
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reaction was centrifuged (16100 x g, 2 min) and the supernatant was collected. To the residue 

was added 16 L of MeCN and vortexed, followed by addition of 200 L of aqueous 0.1% TFA 

and then further vortexed. The suspension was centrifuged (16100 x g, 2 min) and the 

supernatant was combined with the earlier supernatant. This step was repeated twice and the 

combined supernatants (ca. 800 L) was injected onto a Hypersil gold C4 column with a flow 

rate of 1 mL/min. Product eluted with Rt of 29.8 min. This reaction was performed in several sets 

and purified to generate the desired peptide 3.11 in sufficient quantity for bioassays. (Notebook 

IX, Page 48) 

3.4.8. Mutagenesis of Cytolysin S Gene 

The numeric 1 designates the first residue of the core peptide and the last residue of the 

leader peptide is denoted by 1. The cylLS precursor gene is encoded within the multiple cloning 

site (MCS) 1 of pRSFDuet-1 plasmid with cylM gene encoded in the MCS 2 (provided by Dr. 

Weixin Tang) (15). The cytolysin S mutants were generated using the following primers by 

QuikChange site-directed mutagenesis based on a modified protocol (38). The cylLS gene in 

pRSF-Duet plasmid was used as a template to introduce the single point mutations. cylLS-T2S 

was used as a template to generate cylLS-T2S/T1S, and cylLS-T2C was used as a template to 

generate cylLS-T2C/T7A. (Notebook VIII, Pages 65, 66, and Notebook IX, Pages 22, 25) 

Primer Name Primer Sequences (5’ to 3’) 

CylLS_T2S_FP CAGGCAGAAACCAGCCCGGCATGTTTTACC 

CylLS_T2S_RP GGTAAAACATGCCGGGCTGGTTTCTGCCTG 

CylLS_T1S/T2S_FP GTTCAGGCAGAAAGCAGCCCGGCATG 

CylLS_T1S/T2S_RP CATGCCGGGCTGCTTTCTGCCTGAAC 
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CylLS_T2C_FP CAGGCAGAAACCTGCCCGGCATGTTTTACC 

CylLS_T2C_RP GGTAAAACATGCCGGGCAGGTTTCTGCCTG 

CylLS_T2C/T7A_FP CCGGCATGTTTTGCAATTGGTCTGGGTG 

CylLS_T2C/T7A_RP CACCCAGACCAATTGCAAAACATGCCGG 

 

3.4.9. General Procedure for Overexpression of Cytolysin Variants 

Electrocompetent E. coli BL21 (DE3) cells were transformed with the pRSFDuet-1 

plasmid encoding cytolysin precursor peptide in MCS1 and CylM in MCS2, and the transformed 

cells were spread on LB + Kan (50 g/mL) agar plate and incubated at 37 °C overnight. Cells 

from a single colony were used to inoculate a LB + Kan (50 g/mL) starter culture (100 mL), 

which was shaken at 37 °C overnight. The starter culture was used to grow a large scale LB + 

Kan (50 g/mL) culture (2 x 2.5 L) at 37 °C to OD600 nm of 0.6 to 0.7. The culture was cooled in 

the cold room (4 °C) for 30 min and then induced with IPTG to a final concentration of 0.5 mM. 

The culture was then incubated at 18 °C for 17 h when OD600 nm reached around 1.2. The cells 

were harvested by centrifugation (10,500 x g, 15 min) and the cell pellets were stored in two 50 

mL tubes. One of the pellets was used to obtain the modified cytolysin peptide. The pellet was 

thawed on ice and LanA start buffer (compositions of LanA, LanB1, LanB2 and elution buffer is 

described in Section 2.4.18) was added and mixed with pipet followed by lysis by sonication (4.4 

s on, 9.9 s off, 35% amplitude). The lysed cells were centrifuged (23,800 x g, 30 min) and the 

supernatant was filtered through 0.45  filters and loaded onto a Ni-His trap column pre-

equilibrated with LanA start buffer. Following loading, the column was washed with 3 CV of 

Lan buffer1 (B1). To the cell pellet was further added LanB1 and mixed with a pipet followed by 

sonication (4.4 s on, 9.9 s off, 35% amplitude). The lysed cells were centrifuged (23,800 x g, 30 
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min) and the supernatant was filtered through 0.45  filters and loaded onto Ni-His trap column. 

Following loading the column was subsequently washed with Lan B1 (4 CV) and Lan buffer 2 (6 

CV) followed by elution (3 CV). The eluted fraction was zip-tipped and analyzed by MALDI 

MS, which indicated the presence of the desired peptide. The eluent was desalted on C4 SPE 

column and lyophilized to obtain fluffy white peptide. (Notebook VIII, Pages 88 (CylLL-WT), 89 

(CylLS-WT), 71 (CylLS-Dhb2Dha), 72 (CylLS-Dhb1Dha/Dhb2Dha), and Notebook IX, Pages 23 

(CylLS-Dhb2Cys), 26 (CylLS-Dhb2Cys/Dhb7Ala))  
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CHAPTER 4. SYNTHESIS OF MICROBISPORICIN ANALOGUES 

4.1. INTRODUCTION 

Microbisporicin (also known as NAI-107) is a lanthipeptide produced by Microbispora 

corallina and is the most potent lantibiotic known to date (1). Microbisporicin was found to be 

an inhibitor of peptidoglycan biosynthesis with a different mode of action than the one exhibited 

by -lactams or glycopeptides (2). Microbisporicin showed activity against Staphylococcus 

aureus, but not against the L form of the pathogen (L3751), which lacks a functional cell wall 

suggesting this peptide targets the peptidoglycan. In vitro biochemical studies revealed that 

microbisporicin inhibited the assembly of lipid II molecules from its precursor components (3). 

These results were further corroborated by in vivo mode of action studies where soluble 

peptidoglycan precursors accumulated following treatment of cells with microbisporicin. 

Together these results point towards microbisporicin being capable of inhibiting peptidoglycan 

biosynthesis.  

Clinically relevant Gram-positive pathogens like methicillin-resistant S. aureus (MRSA) 

and vancomycin-resistant enterococci (VRE) are susceptible to microbisporicin (4). 

Microbisporicin showed superior activity (MICs ≤ 0.13–4.0 g/mL) than vancomycin and 

teicoplanin against Staphylococci, Streptococci, Enterococci, and Lactobacilli. The lanthipeptide 

was also active against anaerobic Clostridia (MICs ≤ 0.13 g/mL) and Propionibacteria (MIC ≤ 

0.13–4.0 g/mL). Compared to other lanthipeptides, microbisporicin has stronger antimicrobial 

activity against aerobic and anaerobic Gram-positive, as well as against Gram-negative bacteria 

such as Moraxella catarrhalis, Neisseria spp., and Haemophilus influenza (5). Furthermore, 

microbisporicin showed better in-vivo efficacy in mouse models of infections of Streptococcus 
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pneumonia, MRSA, and VRE compared to linezolid, vancomycin, or penicillin G (6). The in 

vivo pharmacodynamics of microbisporicin against various S. aureus strains revealed potent 

activity against a murine thigh infection model (7). Based on the promising potential described 

above, microbisporicin is currently in late preclinical-phase trials and has shown better results in 

treating multidrug resistant infections than linezolid and vancomycin (8). 

 To further understand the potent bioactivity of microbisporicin, structural 

characterization of this lanthipeptide was performed. The structures of microbisporicin A1 and 

A2 were obtained through chemical degradation and extensive NMR characterization studies (1, 

4, 9). The N-terminal portion of microbisporicin (residues 1-11) exhibits high similarity to nisin. 

This motif has been previously shown to be important for binding the pyrophosphate moiety 

present in lipid II (10). The B ring in microbisporicin is the most rigid one with a -turn, while 

the C ring is larger and more mobile than the N-terminal ring (9). Besides the usual post-

translational modifications found in lanthipeptides, microbisporicin is the first example of a  

lanthipeptide containing a 5-chloro-tryptophan (ClTrp) and mono- (in A2 lanthipeptide) or bis- 

(in A1 lanthipeptide) hydroxy-proline (Figure 4.1) (4). The unusual post-translational 

modifications present in this lanthipeptide coupled with its unique antimicrobial activities 

suggest these modifications to be important for conferring microbisporicin’s potent bioactivity. 
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Figure 4.1. Structures of microbisporicin A1 and A2. The difference between the two peptides is 

in the extent of hydroxylation of Pro14. Trp4 is chlorinated and the C-terminus is characterized 

by S-[(Z)-2-aminovinyl]-D-cysteine moiety. 

 

The biosynthetic gene cluster responsible for microbisporicin biosynthesis has been 

identified (mibA, mibB, mibC, mibD, mibH, mibS, mibO, Figure 4.2) (8). The mibA gene encodes 

the precursor peptide MibA, which is a 57-aa peptide with an N-terminal leader region covering 

33 residues. The dehydratase MibB encoded by mibB is a homolog of the nisin dehydratase 

NisB, and its structure and enzymatic activity has been recently characterized (Ortega et al. 

unpublished). MibC is the lanthipeptide cyclase and shows homology to other members of its 

class. MibD decarboxylates the C-terminal Cys to give rise to an enethiolate moiety. Whether 

this enzyme also catalyzes the Michael-type addition to generate the C-terminal S-[(Z)-2-

aminovinyl]-D-cysteine is still not clear (8). First observed among lanthipeptides, the flavin-

dependent tryptophan halogenase MibH and the flavin reductase MibS coordinate to chlorinate 

Trp4. Another unique post-translational modification, hydroxylation of Pro14, is predicted to be 

carried out by MibO, a cytochrome P450 enzyme (8). The importance of the chlorination at Trp4 

and hydroxylation at Pro14 was established, when the deschloro and non-hydroxylated 
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microbisporicin analogues, which are produced in small amounts by the producing strain, 

showed reduced antimicrobial activity (11). Halogenation of microbisporicin occurs within the A 

ring, a conserved motif present in many class I lantibiotics. Based on the importance of ClTrp for 

microbisporicin bioactivity and the prevalence of this A ring in class I lantibiotics, MibH might 

serve as an enzymatic tool to insert ClTrp in other class I lantibiotics. This strategy could enable 

the creation of lantibiotic analogs with improved biological activity. 

 

Figure 4.2. Biosynthetic gene cluster highlighting the genes responsible for the post-translational 

modifications in color (courtesy of Manuel Ortega, adapted from Bibb and co-workers (8).  

 

To achieve this objective currently the substrate specificity of the halogenase MibH is 

being investigated to reveal the minimum recognition motif within the precursor peptide that 

would still be chlorinated by MibH. Biochemical assays revealed chlorination to be leader 

peptide independent but require at least some of the rings since the linear MibA was not a 

substrate (Ortega et al. unpublished). However, it is still not clear what region within the core 

peptide is important for recognition by MibH. To address this question, halogenation assays were 

designed using a microbisporicin analog containing only the A and B rings.  

Since the biosynthesis of microbisporicin has not yet been reconstituted in vitro nor in E. 

coli, chemical synthesis of the A and B rings of microbisporicin was envisioned to discern 

whether MibH is capable of recognizing just these two rings for efficient chlorination of Trp4 

within the A ring in the synthesized peptide. The peptide sequence from residues 1 to 11 poses 

challenges typically associated with the synthesis of highly hydrophobic peptides. Additionally, 

the synthesis of Dha5 within the A ring has not been attempted earlier by Fmoc-based SPPS. In 
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addition, besides serving as a mechanistic probe, the chemical synthesis of rings A and B of 

microbisporicin allows us to access a substrate that could be used for MibH co-crystallization 

attempts. Truncated synthetic microbisporicin should have a more rigid framework compared to 

the full-length peptide, and hence could be a better substrate for binding the enzyme MibH to 

facilitate crystallization of the peptide-enzyme complex.  

The dehydratase MibB dehydrates Ser/Thr residues in MibA via glutamylation of Ser/Thr 

residues followed by glutamate elimination. In our efforts to obtain co-crystal structures of the 

dehydratase MibB with its substrate MibA, a short peptide containing a non-hydrolyzable Ser-

Glu amide was designed. Due to the flexibility of the MibA core region, attempts of obtaining 

co-crystal structures of MibB in complex with MibA have been unfruitful. To address this 

problem, I synthesized a shorter peptide containing a non-hydrolyzable Ser-Glu amide for 

crystallization attempts. This shorter peptide should contain a lower degree of conformational 

freedom and thus might be a better substrate for co-crystallization. To assess whether this 

peptide would be a substrate analogue for MibB, a peptide analog containing a Ser-Glu ester was 

also synthesized, and the extent of glutamate elimination catalyzed by MibB was assessed via 

mass spectrometry.  

4.2. RESULTS AND DISCUSSION 

4.2.1. Synthesis of the A and B Rings of Microbisporicin 

The structure of the A and B ring fragment of microbisporicin contains one Lan and one 

MeLan crosslink, with an additional ValDhb moiety at the N-terminus (Figure 4.3). MibH 

chlorinates the Trp4 in the full-length modified precursor peptide. 
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Figure 4.3. Structure of the A and B ring of deschloro-microbisporicin.  

Owing to the high hydrophobicity of the target peptide, PEG-based ChemMatrix resin 

was employed. To prevent racemization of the C-terminal MeLan, a bulky trityl linker was used 

to connect the growing peptide chain to the resin. Attempts at introducing the Dha5 within the A-

ring using a Fmoc-TrpDha-OH dipeptide building block did not yield the desired product. The 

electrophilicity of the Dha moiety and the reactivity of the free indole of Trp (primarily at C2 

(12)) could lead to undesired side-reactions. Hence, a Cys residue was instead introduced in 

place of Dha5 as a Dha precursor. This strategy also solved the potential problem of the 

reactivity of indole ring in Trp as Nα-Fmoc-Nin-Boc-L-Trp was used to incorporate the Trp. After 

cyclization to generate the A-ring, Fmoc-ValDhb-OH dipeptide was coupled, to generate the 

target peptide upon final deprotection and cleavage from the resin. The peptide was purified and 

subjected to elimination reaction where the Cys5 was transformed to Dha5 chemo-selectively as 

described in chapter 3, generating the target peptide 4.1 (Scheme 4.1, Figure 4.4).  

 



165 

 

 

Scheme 4.1. Synthesis of peptide 4.1. Reagents and conditions: (a) SOCl2; (b) Coupling of 

compound 3.24; (c) piperidine, DMF; (d) SPPS; (e) Pd(PPh3)4, PhSiH3, DMF, CH2Cl2; (f) 

PyAOP, HOAt, 2,4,6-collidine, DMF; (g) coupling of compound 3.25; (h) cleavage from resin 

using 92:4:4 of TFA:H2O:triisopropylsilane; (i) 2,5-dibromohexanediamide. Prior to cleavage 

from resin, all residues contained appropriate side-chain protecting groups for Fmoc SPPS. 
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Figure 4.4. Purification and analysis of A and B ring of deschloro-microbisporicin. (A) HPLC 

trace of the elimination reaction. Fraction between Rt of 20.1-20.9 min contained the product. 

(B) MALDI-TOF MS of the product fraction. 

 

4.2.2. Synthesis of Microbisporicin Tetrapeptide with Glutamylated Ser3 and its Analogue 

The N-terminal tetrapeptide fragment of microbisporicin was synthesized on solid phase. 

Using orthogonal protections, peptide with glutamylated Ser linked by an ester bond was 

generated (Figure 4.5, Scheme 4.2). 

 

Figure 4.5. Microbisporicin tetrapeptide with glutamylated Ser3. Linear tetrapeptide fragment of 

the N-terminal portion of microbisporicin. The glutamate is tethered to Ser3 with an ester 

linkage. 
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Scheme 4.2. SPPS of microbisporicin tetrapeptide with ester-linked glutamylated Ser3 (peptide 

3.32). Reagents and conditions: (a) 20% piperidine in DMF (2 x 5 min) (b) Coupling of Fmoc-

Ser(Trt)-OH using HCTU/DIPEA chemistry (2 h) (c) 4-nitrobenzyl chloroformate (3 equiv.), 

DIPEA (30 equiv.), DCM (45 min) (d) wash with TFA:TIPS:DCM (2:2.5:95.5) until filtrate is 

colorless (e) coupling of Boc-Glu(-tBu)-OH using DIC (10 equiv.), DMAP (1 equiv.) in 

DMF/DCM (1:9), overnight  (f) SnCl2 (6 M), HCl in diethyl ether (5 mM) in DMF (2 x 1 h) (g) 

coupling of compound 4.16 using DIC (4 equiv.), HOAt (4 equiv.) (h) cleavage with 

TFA:TIPS:H2O (95:2.5:2.5). 

 

Another analogue of the tetrapeptide with glutamylated Ser linked by an amide bond was also 

generated by SPPS (Figure 4.6, Scheme 4.3).  

 

Figure 4.6. Microbisporicin tetrapeptide with glutamylated 2,3-diaminopropanoic acid. The 

tetrapeptide is the N-terminal portion of microbisporicin.  
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Scheme 4.3. SPPS of microbisporicin tetrapeptide with amide-linked glutamylated 2,3-diamino 

propanoic acid. Reagents and conditions: (a) 20% piperidine in DMF (b, d, e) coupling using 

HCTU, DIPEA (c) Pd(PPh3)4, PhSiH3 (f) TFA/TIPS/H2O (95/2.5/2.5) 

 

4.3. CONCLUSION AND OUTLOOK 

Microbisporicin is a clinically relevant lanthipeptide owing to its strong antimicrobial 

activity, and is currently being evaluated in preclinical trials. Part of its strong bioactivity is 

dependent on the unique post-translational chlorination of Trp4 and hydroxylation of Pro14. 

These unusual post-translational modifications were found to be independent of the presence of 

leader peptide. The N-terminal portion of microbisporicin core peptide containing the A and B 

ring shares structural similarity with other class I lanthipeptides like nisin. This A and B ring in 

nisin forms the motif that binds to the pyrophosphate region of lipid II. The rest of the 

microbisporicin core peptide has a distinct structure containing an amino-vinyl Cys moiety at the 

C-terminus. It is interesting to see if the halogenase MibH recognizes the common 

microbisporicin motif of the A and B ring and chlorinate the Trp4 within the A-ring. This would 

also reflect on whether MibH requires the distinct structural features of the entire 

microbisporicin core peptide for activity. 

  I have synthesized the N-terminal portion of microbisporicin containing rings A and B 

ring via solid phase to address this question. The purified peptide was subjected to enzymatic 
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assay with MibH (with Manuel Ortega). However, MibH failed to chlorinate the Trp4 residue in 

the synthetic A and B ring of microbisporicin (peptide 4.1). Based on this result, the A and B-

rings are not the sole motif for MibH recognition. This result indirectly points that the C 

terminus of microbisporicin is also critical for recognition and efficient chlorination of Trp4 by 

MibH. 

MibB is the dehydratase that glutamylates Ser/Thr residues followed by elimination. 

MibB did not eliminate the glutamate from the synthetic tetrapeptide 4.7 (with Manuel Ortega). 

Hence, a longer portion of the core peptide is required for effective binding of the substrate by 

the enzyme MibB. 

4.4. EXPERIMENTAL 

4.4.1. Synthesis of Boc-ValDhb-OH Building Block 

Compound 4.14. L-Threonine tert-butyl ester hydrochloride (1 g, 4.72 

mmol) was dissolved in DCM (24 mL) and DIPEA (1.24 mL, 7.1 

mmol). To the solution, Boc-valine (1.03 g, 4.72 mmol), HOBt (0.73 g, 4.72 mmol), and EDC-

HCl (0.9 g, 4.72 mmol) were added as solid. The reaction was stirred for 17 h. The reaction was 

washed with sat. aqueous NaHCO3, 10% citric acid, and water. Each aqueous layer was back-

extracted with DCM. The organic fractions were combined, washed with brine, dried over 

Na2SO4, filtered, and concentrated. Yield: 1.9 g (quantitative). 1H NMR (500 MHz, CDCl3)  

6.55 (d, J = 8.8 Hz, 1H), 5.09 (d, J = 8.8 Hz, 1H), 4.48 (dd, J = 8.8, 2.8 Hz, 1H), 4.28 (qd, J = 

6.4, 2.8 Hz, 1H), 3.92 (dd, J = 8.8, 6.4 Hz, 1H), 2.12 (m, 1H), 1.47 (s, 9H), 1.44 (s, 9H), 1.2 (d, J 

= 6.4 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 7.2 Hz, 3H). 13C NMR (125 MHz, CDCl3) 
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, 19.2, 17.9. HRMS-ESI 

calculated for C18H34N2O6Na 397.2315, observed 397.2307. (Notebook IX, Page 84)  

Compound 4.15. Compound 4.14 (0.92 g, 2.46 mmol) was dissolved in 

DCM (30 mL) and triethylamine (0.93 mL, 6.67 mmol) was added, 

and the solution was chilled in an ice-bath. Methanesulfonyl chloride (0.42 mL, 5.43 mmol) was 

added dropwise, and the solution was stirred for 1 h, gradually warming to room temperature. 

The reaction was concentrated under reduced pressure, then taken up in 1,2-dichloroethane (30 

mL) and DBU (1.6 mL). The reaction was heated to reflux in an oil bath (90 °C) for 4 h, and then 

concentrated. The residue was taken up in EtOAc, washed with 10 % citric acid, saturated 

aqueous NaHCO3, brine, dried over Na2SO4, filtered, and concentrated. The residue was purified 

by flash chromatography (SiO2, 7:1, then 4:1 hexanes/EtOAc) to generate product. Yield: 0.64 g 

(73%). 1H NMR (500 MHz, CDCl3) 6.71 (q, J = 7.2 Hz, 1H), 5.05 (d, J = 7.2 Hz, 1H), 4.04 (t, 

J = 7.2 Hz, 1H), 2.22 (m, 1H), 1.74 (d, J = 7.2 Hz, 3H), 1.48 (s, 9H), 1.45 (s, 9H), 1.02 (d, J = 

6.8 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H). 13C NMR (125 MHz, CDCl3) 169.8,163.5, 150.8, 132.7, 

81.9, 67.8, 60.4, 30.9,28.4,  28.2, 19.5, 17.8, 14.9(Notebook IX, Page 85)

Compound 4.16. Compound 4.15 (0.1 g, 0.28 mmol) was dissolved in 

DCM (2.0 mL), and to the solution TFA (2.0 mL) was added, following 

which the reaction was stirred for 1.5 h. The reaction was concentrated under reduced pressure, 

the residue was repeatedly taken up in DCM, and the solution was re-concentrated to remove the 

remaining acid. To the resulting residue was added sodium carbonate (0.06 g, 0.56 mmol), H2O 

(3 mL) and 1,4-dioxane (3 mL), and the solution was chilled in an ice-bath. Boc2O (0.067 g, 0.31 

mmol) was added portion-wise as a solid. The reaction was stirred for 20 h, gradually warming 

to room temperature. The reaction was diluted with H2O and acidified to pH 2.0 with 2 M HCl. 
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The faintly cloudy solution was transferred to a separatory funnel along with 50 mL of EtOAc 

and shaken. Further 10 mL of H2O was added to the aqueous layer, which was then extracted 

with EtOAc (2 x 50 mL). The combined organic layer was dried over Na2SO4 and concentrated 

on the rotary evaporator. DCM was added to transfer the content to a scintillation vial and dried 

in the rotary evaporator to generate a white residue. The content was further dried using a 

vacuum pump overnight. Yield: 0.077 g (92%). 1H NMR (500 MHz, CDCl3) 6.84 (q, J = 7 Hz, 

1H), 3.97 (d, J = 6.5 Hz, 1H), 2.09 (sep, J = 7 Hz, 1H), 1.76 (d, J = 7 Hz, 3H), 1.45 (s, 9H), 1.03 

(d, J = 7 Hz, 3H), 0.99 (d, J = 7 Hz, 3H). HRMS-ESI calculated for C14H25N2O5 301.1763, 

observed 301.1761. (Notebook IX, Page 39)  

4.4.2. Synthesis of Fmoc-ValDhb-OH Building Block 

Compound 4.17. Compound 4.15 (0.63 g, 1.77 mmol) was 

dissolved in DCM (5.6 mL), and to the solution TFA (5.6 mL) was 

added, following which the reaction was stirred for 1.5 h. The 

reaction was concentrated under reduced pressure, repeatedly taken up in DCM, and re-

concentrated to remove the remaining acid. To the resulting residue was added sodium carbonate 

(0.38 g, 3.54 mmol), H2O (17 mL) and 1,4-dioxane (17 mL), and the system was chilled in an 

ice-bath. Fmoc-OSu (0.6 g, 1.71 mmol) was added portion-wise as a solid. The reaction was 

stirred for 19 h, gradually warming to room temperature. Over time, the reaction turned from 

colorless to milky white. The volatile components were removed under reduced pressure, when 

white suspension forms. The reaction was diluted with H2O and acidified to pH 2.0 with 2 M 

HCl. The aqueous suspension was extracted with EtOAc (3 x 100 mL), when cloudy organic 

layer forms. The organic layer was washed with brine and then concentrated to ~ 25 mL, when 

white cloudy precipitate formed. Excess hexanes was added (200 mL) to the suspension and the 
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white flocculent suspension was filtered over a Buchner funnel to yield white powder. The 

powder was further dried on a vacuum pump for 6 h. Yield: 0.7 g (94%). 1H NMR (500 MHz, 

CDCl3) 7.79 (d, J = 7.6 Hz, 2H), 7.68 (t, J = 6.8 Hz, 2H), 7.39 (t, J = 7.2 Hz, 2H), 7.30 (t, J = 

7.2 Hz, 2H), 7.24 (d, J = 8.8 Hz, 1H), 6.84 (q, J = 7.2 Hz, 1H), 4.39 (d, J = 6.8 Hz, 1H), 4.24 (t, J 

= 7.2  Hz, 1H),  4.05 (m, 1H), 2.13 (m, 1H), 1.74 (d, J = 7.2  Hz, 3H), 1.04 (d, J = 6.8 Hz, 1H), 

0.99 (d, J = 6.8 Hz, 1H). 13C NMR (125 MHz, CDCl3) 183.2, 172.2, 157.5, 144.0, 141.4, 

135.3, 127.6, 127.4, 124.9, 119.7, 66.7, 61.1, 47.2, 30.8, 17.4, 12.9. HRMS-ESI calculated for 

C24H26N2O5Na 445.1739, observed 445.1737. (Notebook IX, Page 86) 

4.4.3. SPPS of the Deschloro-Microbisporicin A and B Rings with Cys5 

 

The general procedure for peptide synthesis followed was described in Section 3.4.5. 

HATU was used as coupling agent for most of the couplings unless otherwise stated. The 

coupling duration and repeats in coupling are mentioned in parenthesis. Capping was performed 

after coupling each Fmoc-protected amino acid residue. 

 

Intermediate 4.3. Compound 3.24 was loaded onto the trityl-linked 

ChemMatrix resin (0.1 mmol) as follows. Compound 3.24 (0.15 mmol, 

85 mg) was dissolved in 10 mL of DCM, to which DIPEA (0.75 mmol, 0.13 mL) was added, the 
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solution was applied to the swelled chlorinated resin, and reacted for 3 h. After washing the 

resin, the unreacted resin was capped by reacting with AcOH (0.5 mmol, 0.03 mL), and DIPEA 

(2 mmol, 0.35 mL) dissolved in DCM (10 mL) for 2 h. The resin was washed and dried. 

Absorbance measurement at 301 nm for a known amount to resin led to a calculated resin 

substitution of ~ 0.1 mmol/g. Fmoc-Gly-OH was coupled (1 h + 1 h), followed by Fmoc-Pro-OH 

(2 h + 2 h). Allyl/alloc groups were removed followed by Fmoc removal. Subsequent coupling 

was performed by adding PyAOP (0.5 mmol), and HOAt (0.5 mmol) in DMF to the resin and 

agitating the resin in DMF for 5 min followed by addition of 2,4,6-collidine (1 mmol) and 

agitation (2 x 2.5 h). After washing and drying the resin, a little of the resin was cleaved 

(95:2.5:2.5 = TFA:TIS:H2O) for 1 h and analyzed by ESI. ESI-MS calculated for C14H23N4O5S 

359.13 (M+H+), observed 359.5. (Notebook IX, Page 93) 

Intermediate 4.5. Half of the resin-attached intermediate 

was taken forward (~0.05 mmol resin). To the swelled 

resin, compound (DL-Lan-allyl/alloc) was coupled (11.5 h 

coupling). Fmoc-Leu-OH was coupled (1.5 h + 2 h), then Fmoc-Cys(Trt)-OH (1 h + 4.5 h) was 

coupled, followed by coupling of Fmoc-Trp(Boc)-OH (10 h). The allyl/alloc group was removed 

followed by Fmoc-deprotection, and coupling with PyAOP, HOAt, and collidine to install the A 

ring. After washing and drying the resin, a little of the resin was cleaved (95:2.5:2.5 = 

TFA:TIS:H2O) for 1 h and analyzed by ESI. ESI-MS calculated for C40H57N10O10S3 933.33 

(M+H+), observed 933.5. (Notebook IX, Page 94) 

 Peptide 4.6. To the resin-attached intermediate, 

Fmoc-ValDhb-OH (0.2 mmol, 85 mg) was coupled 

for 13 h. After washing and drying the resin, a little 
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of the resin was cleaved (95:2.5:2.5 = TFA:TIS:H2O) for 1 h and analyzed by ESI. HRMS-ESI 

calculated for C49H71N12O12S3 1115.4398, observed 1115.4436. The resin was cleaved in 10 mL 

of TFA:TIPS:H2O (92:4:4) for 1.5 h, and the obtained peptide was lyophilized. Peptide was 

purified using a Phenomenex Luna C18 column with a gradient of 20% to 100% A (80% MeCN 

in 0.086% TFA) in D (0.1% TFA in H2O) over 37 min (flow rate: 8 mL/min). Of the crude 

peptide, 14.6 mg was purified in 4 injections. Yield: ca. 1 mg. (Notebook IX, Page 94) 

4.4.4. Synthesis of Peptide 4.1 by Cys to Dha Conversion in Peptide 4.6 

Peptide 4.1. Purified peptide 4.6 (280 g) was split into two Eppendorf tubes and to each tube, 

was added acetonitrile (20 L) and the mixture was vortexed to generate a white suspension. To 

the suspension, 20 L of 0.1% aqueous TFA was added to generate a clear solution. The solution 

was diluted with 250 L of H2O followed by addition of 8 L of TCEP (10 mM stock), and 40 

L of NH4HCO3 (200 mM stock, pH 8.9) resulting in a solution with final pH 8.4. To the 

solution in each tube was added 2,5-dibromohexanediamide (1 mg) and then the white 

suspension was stirred at RT (1 h) and at 37 °C (4 h). MALDI-TOF MS of the reaction indicated 

product formation (m/z calculated for C49H69N12O12S2 (M+H+) 1081.45, observed 1081.51). The 

sample was prepared for analytical HPLC purification to ensure the dissolution of any 

precipitated product, leaving the residue of unreacted 2,5-dibromohexanediamide. The sample 

preparation was as follows: The reaction was centrifuged (16100 x g, 2 min) and the supernatant 

was collected. To the residue was added 16 L of MeCN and the resulting mixture vortexed, 

followed by addition of 150 L of aqueous 0.1% TFA, and then further vortexed. The 

suspension was centrifuged (16100 x g, 2 min) and the supernatant was combined with the 

earlier supernatant. This step was repeated again by suspending the residue with 5 L of MeCN 
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and 50 L of aqueous 0.1% TFA and centrifugation. The combined supernatants (ca. 950 L) 

were injected into a Hypersil gold C4 column and purified using a gradient of 20% A to 100% A 

in 45 min with a flow rate of 1 mL/min. Product eluted with Rt of 20.4 min. MALDI-TOF MS 

indicated the presence of clean peptide 4.1 (Notebook IX, Page 100).  

4.4.5. SPPS of Microbisporicin Tetrapeptide with Ester-Linked Glutamylated Ser3 

Peptide 4.7. Nα-Fmoc-Nin-Boc-L-Trp-Wang resin (333 mg, substitution: 0.3 mmol/g) was 

swelled in DMF, and the Fmoc was removed. Fmoc-L-Ser(trt)-OH (0.57 g, 0.4 mmol), HCTU 

(0.17 g, 0.4 mmol), DIPEA (0.14 mL, 0.8 mmol), and HOAt (54 mg, 0.4 mmol) was dissolved in 

5 mL of DMF and applied to the resin, which was agitated  with nitrogen for 1 h to obtain resin-

bound intermediate 4.8. After Fmoc-removal, 4-nitrobenzylchloroformate (80 mg, 0.37 mmol) 

and DIPEA (0.5 mL, 3 mmol) was dissolved in DCM and applied to the resin while agitating for 

45 min to obtain resin-bound intermediate 4.9. The trityl-group was removed by washing thrice 

with 15 mL of TFA:TIPS:DCM (2:2.5:95.5). The yellow filtrate gradually turned colorless. After 

washing the resin further with DCM (3 x 1 min), the resin was placed in a round bottom flask. 

Boc-Glu(OtBu)-OH (1 mmol, 0.3 g), diisoproylcarbodiimide (1 mmol, 0.16 mL), and 4-

dimethylaminopyridine (13 mg, 0.1 mmol) dissolved in 1:9 of DMF/DCM was applied to the 

resin and the mixture stirred overnight for 14 h. The resin was transferred back to the fritted 

container and filtered to obtain resin-bound intermediate 4.10. Tin(II) chloride (5.68 g) was 

dissolved in 5 mL of HCl in diethyl ether (final concentration of 5 mM) in DMF. The tin(II) 

chloride solution was applied to the resin and sparged under nitrogen (2 x 1 h). After washing the 

resin with DMF and DCM, Boc-ValDhb-OH (compound 4.16, 71 mg, 0.24 mmol), HOAt (27.2 

mg, 0.2 mmol), and DIC (0.04 mL, 0.26 mmol) dissolved in 5 mL of DMF was applied to the 

resin and coupled for 4.5 h. After washing and drying the resin, the final cleavage was performed 



176 

 

using a mixture of TFA:TIPS:H2O (95:2.5:2.5) for 1.5 h. Out of 45.5 mg of crude peptide, 25 mg 

was purified using a Phenomenex C18 column to yield ca. 2 mg of purified peptide 4.7 (gradient: 

2% A, 98% B to 100% A in 45 min, flow rate: 1 mL/min, Rt 14 min). ESI-MS calculated for 

C28H39N6O9 603.27, observed 603.4.  

4.4.6. SPPS of Microbisporicin Tetrapeptide with Amide-linked Glutamylated 2,3-Diamino 

Propanoic Acid 

Peptide 4.11. Nα-Fmoc-Nin-Boc-L-Trp-Wang resin (333 mg, substitution: 0.3 mmol/g) was 

swelled in DMF, and the Fmoc-group was removed. N-Fmoc-N-allyloxycarbonyl-L-2,3-

diaminopropionic acid (123 mg, 0.3 mmol), HCTU (124 mg, 0.3 mmol), and DIPEA (0.1 mL, 

0.6 mmol) was dissolved in 5 mL of DMF and reacted with the resin for 1 h to obtain resin-

bound intermediate 4.12. Allyl-group removal was carried out by reacting with Pd(PPh3)4 (115.6 

mg, 0.1 mmol), and PhSiH3 (0.13 mL, 1.0 mmol) dissolved in 10 mL of 1:1 DMF/DCM in the 

dark for 3 h. Resin was washed with DCM (3 x 10 mL), 0.5% sodium diethyldithiocarbamate in 

DMF (3 x 10 mL), and 1:1 DMF/DCM (3 x 10 mL). To the washed resin, Boc-Glu(OtBu)-OH 

(91 mg, 0.3 mmol), HCTU (124 mg, 0.3 mmol), and DIPEA (0.1 mL, 0.6 mmol) dissolved in 5 

mL of DMF was added and the reaction was left for 1 h to obtain resin-bound intermediate 4.13. 

After Fmoc-removal, Fmoc-ValDhb-OH (64 mg, 0.15 mmol), HCTU (62 mmol, 0.15 mmol), 

and DIPEA (0.05 mL, 0.3 mmol) dissolved in 5 mL of DMF was reacted with the resin for 14 h. 

After washing the resin, the Fmoc-group was removed. After washing and drying the resin, the 

final cleavage was performed using a mixture of TFA:TIPS:H2O (95:2.5:2.5) for 1.5 h. Crude 

peptide (35.6 mg) was purified using a Phenomenex C18 column over 9 injections to yield ca. 1.5 

mg of purified peptide 4.11 (gradient: 2% A, 98% D to 100% A in 45 min, flow rate: 1 mL/min, 

Rt 14.7 min). ESI-MS calculated for C28H40N7O8 602.29 (M+H+) observed 602.4.  
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CHAPTER 5. SYNTHESIS TOWARDS UNDERSTANDING OF THE BIOSYNTHETIC 

PATHWAYS OF DEHYDROPHOS, FOSFAZINOMYCIN, AND RHIZOCTICIN‡‡ 

 

5.1. INTRODUCTION 

Phosphonate and phosphinate compounds are characterized by the presence of carbon 

phosphorus bonds (C–P in phosphonates, and either C–P–C or C–P–H in phosphinates). 

Phosphonates have high stability toward enzymes that hydrolyze P–O bonds in phosphate esters 

and anhydrides, and are stable to treatment with boiling acids or bases (3). Phosphonates 

structurally mimic phosphates and carboxylates, thereby competing with these native substrates 

for binding to enzyme active-site (4). Some phosphonates also covalently bind to and irreversibly 

inhibit enzymes (5). As phosphates and carboxylates are widespread in nature, the potential for 

harnessing phosphonates as compounds to modulate/inhibit enzyme function is vast.  

 

Figure 5.1. Structures of few notable phosphonate compounds. The C–P bonds are colored red. 

Several natural and artificial phosphonates exhibit antifungal, herbicidal, antiparasitic, or 

antimicrobial properties (6). Glyphosate is a commonly used herbicide that inhibits pathways 

                                                 
‡‡ Adapted in part with permission from: 

1. Bougioukou, D. J., Mukherjee, S., and van der Donk, W. A. (2013) Revisiting the biosynthesis of 

dehydrophos reveals a tRNA-dependent pathway, Proc. Natl. Acad. Sci. U.S.A. 110, 10952-10957. 

2. Gao, J., Ju, K.-S., Yu, X., Velásquez, J. E., Mukherjee, S., Lee, J., Zhao, C., Evans, B. S., Doroghazi, J. R., 

Metcalf, W. W., and van der Donk, W. A. (2014) Use of a Phosphonate Methyltransferase in the Identification of 

the Fosfazinomycin Biosynthetic Gene Cluster, Angew. Chem. Int. Ed. 53, 1334-1337. 
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that are involved in the biosynthesis of aromatic amino acids in plants (7). The bisphosphonate 

alendronate is effective in preventing and treating osteoporosis (8). Adefovir is a reverse 

transcriptase inhibitor employed to treat viral infections that cause hepatitis B (9), and cidofovir 

is another antiviral drug that is effective in treating retinal infections that occur in some AIDS 

patients (10). Fosfomycin is used for treating urinary tract infections (11), and telavancin is a 

phosphonate analogue of vancomycin with improved ADME (absorption, distribution, 

metabolism, and excretion) properties (12) (Figure 5.1).  

The biosynthesis of most of the phosphonates commences with the installation of the C–P 

bond by phosphoenol pyruvate mutase (PepM) (13-15) (Figure 5.2). The equilibrium of the 

reaction strongly favors the reactant phosphoenol pyruvate (PEP) over phosphonopyruvate 

(PnPy). The strength of the P–O bond in PEP accounts for the observed equilibrium constant 

(Keq = 500, favoring PEP) (13). The thermodynamically unfavorable equilibrium is 

biosynthetically driven forward in most phosphonate pathways by an irreversible 

decarboxylation step catalyzed by phosphonopyruvate decarboxylase to generate 

phosphonoacetaldehyde (PnAA) (Figure 5.2, drawn in red) (16, 17). Various transformations of 

PnAA result in the production of multiple phosphonates. In one route, PnAA is reduced by a 

conserved metal and NAD(P)H dependent group III alcohol dehydrogenase (AD) to yield 2-

hydroxyethylphosphonate (2-HEP), which is the common intermediate towards production of 

dehydrophos (18), fosfomycin (19), and phosphinothricin (20). 2-HEP is also converted to 

methyl phosphonate by methylphosphonate synthase, which cleaves the C–C bond in 2-HEP in 

an Fe(II) dependent fashion (21). PnAA can also be transaminated to yield 2-

aminoethylphosphonate, which is involved in forming the polar head groups in phospholipids 

and phosphonoglycans (22). Finally, the rhizocticin and plumbemycin families arise from the 
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product of an aldol reaction between PnAA and the enolate form of pyruvate (23). The 

unfavorable PepM equilibrium can also be driven forward by nucleophilic addition of an acetate 

anion equivalent to the carbonyl group of PnPy (24). This is believed to be the committed step to 

the biosynthesis of FR-900098 and fosmidomycin. The compounds K-26 and I5B2 do not appear 

to arise from PEP (Figure 5.2, in dotted box) (25).  

 

Figure 5.2. Overview of the biosynthesis of a number of phosphonate and phosphinate natural 

products. The equilibration of PEP and PnPy followed by irreversible generation of PnAA is 

conserved in most of the phosphonates, and is colored red. The phosphonate products of various 

biosynthetic pathways are colored blue. Adapted from Peck et al. (6). 

 

5.1.1. Biosynthesis of Dehydrophos 

Dehydrophos, formerly known as A53868 factor A, is a broad-spectrum antibiotic 

isolated from Streptomyces luridus (26). The structure was revised thrice, being finally corrected 

by comparing the NMR spectra of synthetic standards with the spectra of 13C and 15N labelled 
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dehydrophos, obtained from the producing organism (Figure 5.3A) (27). Studies on the structure-

activity relationship and screening of the bioactivity of Salmonella mutants indicated a “Trojan-

horse” type mechanism, where the peptide is required for the uptake by the membrane-bound 

permeases followed by the action of proteases to release the active phosphonate cargo inside the 

cells (28, 29). The protease mediated cleavage of dehydrophos results in the formation of 1-

aminovinylphosphonate, Ala(P), which tautomerizes to the corresponding imine, and finally 

hydrolyzes to generate methyl acetylphosphonate (MAP) (Figure 5.3B) (29). The bioactivity of 

dehydrophos is thought to arise from MAP, which is a potent inhibitor of pyruvate 

dehydrogenase (30), and bacterial 1-deoxy-D-xylulose 5-phosphate synthase (31).  

 
Figure 5.3. Structure of dehydrophos and its conversion into MAP. (A) The two previously 

reported incorrect structures as well as the correct structure of dehydrophos are shown. (B) The 

generation of MAP from dehydrophos by the action of peptidases followed by tautomerization 

and hydrolysis of the resultant imine is presented.  

 

The early steps in the biosynthesis of dehydrophos share the common pathway employed 

for most phosphonates (Figure 5.4) (18), where DhpE and DhpF perform the roles of PEP 

mutase and decarboxylase, respectively. DhpG is an Fe(II)-dependent dehydrogenase that 

reduces PnAA to 2-HEP in a NADH dependent fashion. DhpA is an -ketoglutarate-dependent 

non-heme iron dioxygenase responsible for the hydroxylation at C1 to  generate  1, 2-

dihydroxyethyl phosphonate (DHEP). The next reaction is phosphorylation of the hydroxyl 

group at the C2 position by DhpB, an enzyme homologous to glycerate kinase. The resultant 
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product, 1-hydroxy-2-phosphorylethyl phosphonate (HP-EP), is oxidized by DhpC to 1-oxo, 2-

phosphorylethylphosphonate (OP-EP). The rest of the biosynthetic steps were putatively 

assigned (assigned steps are indicated by dotted arrows, Figure 5.4). Transamination of OP-EP 

was predicted to be catalyzed by DhpD, which shows homology to aspartate aminotransferases. 

The resulting compound, 1-amino-2-phosphorylethylphosphonate (AP-EP), also referred to as 

the phosphonate analogue of phosphoserine (pSer(P)), was thought to be coupled to Leu and Gly 

by the enzymes DhpH and DhpK. DhpH and DhpK contain putative Acyl-CoA N-acyltransferase 

domains known to catalyze peptide bond formation. Vinyl group formation was initially believed 

to be catalyzed by -elimination of phosphate moiety of pSer(P) by the N-terminal portion of 

DhpH, followed by coupling of the resulting 1-aminovinylphosphonate (Ala(P)) to Leu by the 

C-terminal portion of DhpH (Figures 5.4 and 5.5). The problem with this hypothesis is that 

Ala(P) is prone to tautomerisation and subsequent hydrolysis, and hence will not be suitable for 

coupling to Leu, unless the putative Ala(P) intermediate is tightly bound by DhpH and is well-

shielded from solvent. The work described in this chapter focuses on this transformation and 

helps to clarify the incorporation of the vinyl moiety in dehydrophos (1). In addition, the Gly-L-

Leu-Ala(P) intermediate was proposed to be methylated by the SAM-dependent 

methyltransferase DhpI to complete the biosynthesis of dehydrophos (32). In this work, we 

showed that methylation actually occurs at an earlier step in the biosynthetic pathway (1).  
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Figure 5.4. Dehydrophos biosynthetic pathway proposed earlier to this work. Established early 

stages (solid arrows) and predicted late stages (dotted arrows) in the biosynthesis of dehydrophos 

(18). Adapted from Bougioukou et al. (1).  

 

 
 

Figure 5.5. Biosynthetic gene cluster for dehydrophos production showing functional 

assignment of putative enzymes. Figure courtesy, Dr. Despina Bougioukou (1).  

 

In addition to the work on dehydrophos biosynthesis, I have synthesized compounds 

involved in the biosynthetic pathways of fosfazinomycin and rhizocticin. In the fosfazinomycin 

project, the synthesized phosphonate was used to confirm the structure of a novel phosphonate 

product obtained from the strain, Streptomyces sp. WM6372. The phosphonate compound was 

found to be a substructure of fosfazinomycin, and conditions were developed which led to 

fosfazinomycin production from this strain (2). In the rhizocticin project, my efforts involved  

synthesizing an intermediate in the rhizocticin biosynthetic pathway. We anticipated using this 

intermediate to establish the activities of the putative enzymes in vitro.  
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5.2. RESULTS AND DISCUSSIONS 

5.2.1. Dehydrophos§§*** 

5.2.1.1. PLP-Dependent Activity of DhpD and DhpH  

Based on a previous report (18), DhpD was proposed to reversibly interconvert pSer(P) 

and OP-EP (Figure 5.4). The formed pSer(P) was expected to undergo a -elimination reaction 

catalyzed by the PLP-domain of DhpH. Rac-pSer(P) (compound 5.1) was synthesized to probe 

these hypotheses (Scheme 5.1). Compound 5.1 was not found to be a substrate of DhpD, when 

used in the presence of pyruvate, oxaloacetate, or -ketoglutarate as amino acceptors. 

Interestingly, incubation of compound 5.1 with His6-DhpH or His6-DhpH-N generated acetyl 

phosphonate (AP) as the only product (Figure 5.6). DhpH (or DhpH-N) is proposed to have 

catalyzed -elimination of the phosphate group in pSer(P), generating Ala(P), which 

tautomerizes to its imine form, followed by hydrolysis to generate AP. Incubation of the 

generated AP with DhpD and L-Ala was then shown to form L-Ala(P) (Figure 5.7).  

 

Scheme 5.1. Synthesis of rac-pSer(P) starting from Cbz-L-Ser-OH. Scheme reproduced from the 

appendix (1). 

                                                 
§§ Adapted with permission from: 

1. Bougioukou, D. J., Mukherjee, S., and van der Donk, W. A. (2013) Revisiting the biosynthesis of 

dehydrophos reveals a tRNA-dependent pathway, Proc. Natl. Acad. Sci. U.S.A. 110, 10952-10957. 

*** I have synthesized the compounds used in this study. All other experiments were performed by Dr. Despina 

Bougioukou, post-doctoral researcher in the van der Donk group, Institute of Genomic Biology, UIUC. 

5.1 
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Figure 5.6. 31P-NMR studies on the activities of DhpD and DhpH. (A) 31P-NMR spectrum after 

generation of AP from L-Ala(P), when treated with DhpD in the presence of pyruvate. (B) 31P-

NMR spectrum after generation of L-Ala(P) from AP, when treated with DhpD in the presence of 

L-Ala. (C) 31P-NMR showing conversion of pSer(P) to AP by DhpH. (D) 31P-NMR of C spiked 

with standard of AP. Figure courtesy, Dr. Despina Bougioukou, IGB, UIUC (1).  

 

 

Figure 5.7. Generation of L-Ala(P) from pSer(P) using DhpH and DhpD. 

 

5.2.1.2. tRNA-Dependent Activity of DhpH 

The full length His6-DhpH exhibited a high A260/A280 ratio (ca. 1.3), suggesting that 

nucleic acid co-purified along with the protein. The C-terminal domain of DhpH (His6-DhpH-C) 

was also associated with a high A260/A280 ratio, whereas the N-terminal domain of DhpH (His6-

DhpH-N) exhibited a lower A260/A280 ratio of 0.7. Treatment with RNase eliminated the nucleic 

acids from the prepared protein, suggesting that RNA was co-purified with DhpH and DhpH-C. 

The isolated RNA contained leucyl-tRNA, since it was able to load L-[14C(U)]-Leu in the 

presence of ATP and purified leucyl-tRNA synthetase (LeuRS). The hypothesis of whether 

DhpH can generate Ala(P) from pSer(P), and subsequently catalyze reaction with L-Leu-
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tRNALeu to generate L-Leu-Ala(P), was tested. Aminoacylated tRNALeu was generated insitu by 

LeuRS in the presence of total tRNA from E. coli, ATP, L-[14C(U)]-Leu, and thermostable 

inorganic pyrophosphatase (TIPP). This system was incubated with DhpH and compound 5.1, 

and the product was monitored by a sensitive thin-layer chromatography (TLC) assay, where any 

product incorporating the L-[14C(U)]-Leu would show up as a radioactive spot on the TLC. No 

evidence of product with Rf value similar to my chemically synthesized L-Leu-Ala(P) 

(compound 5.2, Scheme 5.2) was observed, ruling out the formation of compound 5.2  by the 

action of DhpH. As shown in Section 5.2.1.1, the action of DhpH-N and DhpD produced Ala(P) 

starting from pSer(P). We investigated whether the DhpH can generate L-[14C(U)]-Leu-Ala(P), 

when the same assay was set up as earlier with the addition of DhpD and L-Ala. Indeed, upon 

performing such an assay, the Rf value of the radioactive spot on the TLC matched with the Rf 

value obtained from my chemically synthesized L-Leu-Ala(P) (compound 5.3 of Scheme 5.3 and 

Figure 5.8). The identity of L-Leu-L-Ala(P) was confirmed based on NMR and analytical HPLC 

studies on the enzymatically prepared and synthetic compound 5.3 (Figure 5.9).  

 

Scheme 5.2. Synthetic scheme for L-Leu-Ala(P). 
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Scheme 5.3. Synthetic scheme for L-Leu-Ala(P). 

 

Figure 5.8. Radioactive TLC analysis of conversion of rac-pSer(P) to L-[14C(U)]-Leu-Ala(P) by 

the activity of DhpH and DhpD in a one-pot reaction. (A) Scanned phosphor imaging plate of a 

silica TLC sheet spotted with lane 1, DhpH, rac-pSer(P), L-[14C(U)]-Leu, tRNA and 

(re)generation components of Leu-tRNALeu; lane 2, same as in lane 1 with the addition of L-Ala; 

lane 3, same as in lane 1 with the addition of L-Ala and DhpD; lane 4, spots created with the Rf 

values obtained from synthetic L-Leu-Ala(P) and L-Leu-Ala(P). (B) Ninhydrin-stained TLC of 

lane 1, L-Leu; lane 2, L-Leu  L-Leu-Ala(P)  L-Leu-Ala(P); lane 3, L-Leu-Ala(P); lane 4, L-

Leu-Ala(P).  Figure coutesy, Dr. Despina Bougioukou, IGB, UIUC (1).  

A B 
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D 

 
 

Figure 5.9. HPLC traces and 1H NMR spectra comparing chemically and enzymatically 

prepared L-Leu-L-Ala(P). A. HPLC trace of synthetic L-Leu-(L/D)-Ala(P) B. 1H NMR spectrum 

of HPLC fraction containing synthetic L-Leu-L-Ala(P) in D2O. C. HPLC trace of enzymatically 

prepared L-Leu-L-Ala(P). D. 1H NMR spectrum of enzymatically prepared L-Leu-L-Ala(P) in 

D2O. Figure coutesy, Dr. Despina Bougioukou, IGB, UIUC (1). 

 

5.2.1.3. Fe(II)/-KG/O2-Dependent Activity of DhpJ††† 

As the generation of L-Leu-L-Ala(P) was established, we investigated the installation of 

the vinyl group in dehydrophos. Owing to solubility problems, DhpJ was expressed as a maltose 

binding protein (MBP) fusion protein (MBP-DhpJ). DhpJ generated L-Leu-Ala(P) from L-Leu-

L-Ala(P), along with a side product that is a dipeptide hydroxylated at the -carbon of L-Ala(P). 

                                                 
††† I have synthesized L-Leu-L-Ala(P) and L-Leu-Ala(P). 
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On treating the monomethylated version, L-Leu-L-Ala(POMe), only the unsaturated L-Leu-

Ala(POMe) was observed, suggesting that L-Leu-L-Ala(POMe) is the physiological substrate 

of DhpJ, and the methylation by DhpI occurs prior to the action of DhpJ.  

 

Scheme 5.4. Representation of the activity of DhpJ where L-Leu-Ala(POMe) is the sole 

product arising from L-Leu-L-Ala(POMe). Figure coutesy of Dr. Despina Bougioukou, IGB, 

UIUC (1).  

 

5.2.1.4. Peptidyl-Transferase Activity of DhpK 

Assays were performed with MBP-DhpK because of the poor solubility of DhpK. MBP-

DhpK was able to catalyze the addition of Gly to the N terminus of synthetic L-Leu-Ala(P) 

(compound 5.3), L-Leu-Ala(P) (compound 5.2), and methylated L-Leu-Ala(POMe) in the 

presence of in situ generated Gly-tRNAGly. The identity of the tripeptide products was confirmed 

by comparing the HPLC profile and the NMR spectra with synthetic tripeptides (compounds 5.4 

and 5.5, Scheme 5.5). The HPLC traces of Gly-L-Leu-L-Ala(P) prepared enzymatically and by 

synthesis is shown as an example (Figure 5.10). The compounds were synthesized as 

diastereomers, which were separated by HPLC. The revised biosynthetic pathway is shown in 

Figure 5.11.  
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Scheme 5.5. Synthesis of phosphono-tripeptides. Scheme showing the synthesis of (A) Gly-L-

Leu-Ala(P) and (B) Gly-L-Leu-Ser(P). 

 

A 

 

B 

 

Figure 5.10. HPLC traces of Gly-L-Leu-L-Ala(P). (A) Synthetically prepared diastereomeric 

mixture of tripeptides. (B) Enzymatically prepared Gly-L-Leu-L-Ala(P). 
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Figure 5.11. Revised biosynthesis of dehydrophos. Steps in the biosynthesis of dehydrophos 

established prior to this work are colored black. The steps elucidated in this current work are 

drawn in blue. Note that the conversion of OP-EP to pSer(P) has yet to be experimentally 

verified. 

 

5.2.2. Fosfazinomycin‡‡‡§§§ 

 

The purification of novel phosphonates leading to their structural elucidation is a 

challenging task owing to their high polarity and water solubility. The substrate tolerance of the 

O-methyltransferase from the dehydrophos biosynthetic pathway, DhpI, enables it to methylate a 

wide range of phosphonate molecules. Using this enzyme, an assay was set up to identify and 

purify unknown phosphonates. A method termed as “stable isotope labelling of phosphonates in 

extract” (SILPE) was developed, which involved the treatment of spent media, which was 

suspected to contain novel phosphonates, with DhpI in the presence of a mixture of SAM and 

CD3-SAM. The material was analyzed by LCMS, and phosphonates that were modified by DhpI 

                                                 
‡‡‡ Adapted with permission from: 

2. Gao, J., Ju, K.-S., Yu, X., Velásquez, J. E., Mukherjee, S., Lee, J., Zhao, C., Evans, B. S., Doroghazi, J. R., 

Metcalf, W. W., and van der Donk, W. A. (2014) Use of a Phosphonate Methyltransferase in the Identification of 

the Fosfazinomycin Biosynthetic Gene Cluster, Angew. Chem. Int. Ed. 53, 1334-1337. 
§§§ My contribution to this project is the synthesis of compound 5.7. 
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would generate two ions separated by 3.0188 Da, enabling rapid identification of phosphonate 

species. Using this method, two previously unknown phosphonates were identified from 

Streptomyces sp. WM6372, a strain predicted to be a phosphonate producer as it was found to 

encode the pepM gene encoding phosphoenolpyruvate mutase (Figure 5.12). The structures of 

these compounds were confirmed by NMR spiking experiments with chemically synthesized 

methyl phosphonoacetate (compound 5.6) and 2-hydroxy-2-phosphonoacetate (compound 5.7) 

(Scheme 5.6 and Figure 5.13). This strain was cultivated in various media, and the production of 

fosfazinomycin A and B was observed after growth in R2AS medium (Structure drawn in Figure 

5.12). The biosynthetic gene cluster was putatively assigned in this study.  

 
 

Figure 5.12. Identification of two novel phosphonates from Streptomyces sp. WM 6372. (A) 31P 

NMR spectra of the spent medium of Streptomyces sp. WM 6372, showing the region depicting 

phosphonates. (B) 31P NMR spectra of the media after treatment with DhpI and SAM. (C) 

Structure of phosphonates responsible for the signal in A. Also drawn are the structures of 

fosfazinomycin A and B. Figure courtesy of Dr. Jiangtao Gao, IGB, UIUC (2). 

 

   
 

Scheme 5.6. Scheme showing the synthesis of compound 5.7.  

 

 

5.7 

5.6 

5.6 5.7 

5.6 
5.7  
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Figure 5.13. 31P NMR spiking experiments to confirm identity of phosphonates produced by 

Streptomyces sp. WM 6372. (A) 31P NMR of spent medium of Streptomyces sp. WM 6372. (B) 
31P NMR of synthesized compound 5.6. (C) Spiking of A with compound 5.6. (D) 31P NMR of 

synthesized compound 5.7. (E) Spiking of C with compound 5.7. Figure courtesy of Dr. Jiangtao 

Gao, IGB, UIUC (2). 

 

5.2.3. Rhizocticin 

 

Rhizocticins are phosphonate oligopeptide antibiotics produced by Bacillus subtilis 

ATCC6633. The structures of rhizocticins were determined in 1988 (33), and were found to 

contain the C-terminal non-proteinogenic amino acid (Z)-L-2-amino-5-phosphono-3-pentenoic 

acid (APPA). The anti-fungal activity of rhizocticin was thought to arise due to cleavage of the 

molecule by host peptidases to release APPA that inhibits threonine synthase, interfering with 

Thr biosynthesis, and consequently blocking protein synthesis. Dr. Svetlana Borisova (post-

doctoral researcher, IGB, UIUC) proposed the biosynthetic gene cluster responsible for 

rhizocticin production (23). The initial steps of the biosynthesis were established to generate 

compound 5.8, starting from PEP. Subsequent enzymatic reactions were proposed to occur by 

any of three pathways, leading to rhizocticin B formation (Figure 5.14). Of the proposed routes, 

the third pathway is attractive, as it does not require the generation of the toxic APPA 

intermediate. To experimentally validate the proposed biosynthetic pathways, I synthesized the 
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intermediate common to pathways B and C, compound 5.9, adapting the synthesis of similar 

molecules reported by Cox et al. (Scheme 5.7) (34). The reverse reaction of the aminotransferase 

RhiJ on compound 5.9 could potentially produce compound 5.8, thus allowing us to investigate 

all three pathways. However, in experiments performed by Dr. Svetlana Borisova, which 

involved treatment of compound 5.9 with the enzymes putatively assigned to the rhizocticin 

biosynthetic pathway, no change in the starting material was observed based on 31P NMR 

studies. The failure to observe any transformation of compound 5.9 could stem from problems 

with in viro reconstitution of the enzymes. Another possiblity is that there are other unidentified 

critical components to the biosynthetic pathway.  

 

Figure 5.14. Biosynthetic pathway of rhizocticins. The established biosynthetic pathway shown 

connected by solid arrows, involves generation of compound 5.8 starting from PEP. Compound 

5.8 was proposed to be the intermediate that could participate in one of the three pathways drawn 

to generate rhizocticin B. Figure adapted from Borisova et al. (23) 
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Scheme 5.7. Scheme for the synthesis of compound 5.9.  

 

5.3. CONCLUSION AND OUTLOOK 

In this chapter, I have presented my collaborative efforts to understand the biosynthesis 

of dehydrophos, fosfazinomycin, and rhizocticin. I have synthesized substrates and intermediates 

that were instrumental in elucidating the late-stage biosynthesis of dehydrophos. In a series of 

biochemical assays performed by Dr. Despina Bougioukou (post-doctoral researcher, IGB, 

UIUC), many unexpected transformations were revealed during the course of this work (Figure 

5.11). Acetyl phosphonate (AP) was generated by the action of the PLP-dependent N-terminal of 

DhpH on pSer(P). An amino group was then introduced into the resulting ketone of AP by a 

second PLP-dependent enzyme, DhpD, to generate L-Ala(P) – a synthetic antibiotic from Roche 

that was not previously thought to exist naturally. The C-terminal domain of DhpH was found to 

have an unprecedented activity in natural product biosynthesis, involving the coupling of an L-

Leu moiety derived from L-leucyl-tRNALeu onto the L-Ala(P) intermediate to generate L-Leu-L-

Ala(P). The product of this in vitro reaction was validated with an authentic synthetic standard. 

The resultant compound was then monomethylated by DhpI to yield L-Leu-L-Ala(POMe). The 

final steps of dehydrophos biosynthesis involved the installation of the vinyl moiety by DhpJ and 

the coupling of a Gly residue by DhpK. Synthetic standards were used to validate the reactivity 

of each of these enzymes. 
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Dr. Jiangtao Gao (post-doctoral researcher, IGB, UIUC) developed the SILPE method to 

purify and identify novel phosphonates, which involved the substrate-tolerant methyltransferase 

of the dehydrophos pathway, DhpI. He employed the technique to detect novel phosphonate 

species from Streptomyces sp. WM6372. I synthesized a compound that confirmed the major 

phosphonate product obtained from this strain. This compound was a substructure of 

fosfazinomycin, and conditions were achieved to obtain fosfazinomycin from the strain. My 

efforts in the rhizocticin pathway were to experimentally validate the late-stage biosynthetic 

pathway of rhizocticin, as proposed by Dr. Svetlana Borisova (post-doctoral researcher, IGB, 

UIUC). However, we did not observe any activity of the putative enzymes with a synthetic 

putative common intermediate. Further studies are required to successfully reconstitute the 

enzymes in vitro, and refine the biosynthetic pathway of rhizocticin. 

5.4. EXPERIMENTAL 

5.4.1. General Procedure 

Commercially available reagents were used without further purification. All reactions 

were performed under nitrogen atmosphere unless otherwise noted. Reaction progress and 

fractions from flash chromatography purifications were monitored by thin layer chromatography 

(TLC) on silica-gel-coated glass plates with a F254 fluorescent indicator. Visualization was 

achieved by fluorescence quenching during UV irradiation, ninhydrin stain (0.5% ninhydrin in 

ethanol), or permanganate stain (1.5 g KMnO4, 10 g K2CO3, 1.25 mL 10% NaOH in 200 mL of 

H2O). Flash chromatography was performed using Silicycle SiliaFlash P60, 230-400 mesh silica 

gel. Cation exchange resin AG 50W-X8, hydrogen form (100-200 mesh) was purchased from 

Bio-Rad and used for compound purification when noted. Reversed-phase high performance 

liquid chromatography (RP-HPLC) was performed using an Agilent 1200 series quad pump 



197 

 

system equipped with a diode array detector and a G1956B mass spectrometer with a multimode-

electrospray/atmospheric pressure chemical ionization (MM-ES+APCI) source. For analytical 

scale HPLC, a Synergi 4 µ Fusion-RP 80A column (150 x 4.6 mm, 4 µm, Phenomenex Torrance, 

CA) was used with a flow rate of 0.5 mL/min (column A). For preparative HPLC, a Synergi 4 µ 

Fusion-RP 80A semi-preparative column (200 x 10 mm, 4 µm, Phenomenex Torrance, CA) was 

used with a flow rate of 4 mL/min, (column B). Elution Gradient: 0-15 min 100 % Solvent A 

(0.1 % formic acid (FA) in water), 15-30 min 25 % A, 75 % solvent B (0.1 % FA in methanol), 

30 to 33 min 75 % Solvent B, 38 to 43 min 100 % Solvent A. Flow: 4mL / min. Detection: @ 

210 nm, 4 mL per fraction. NMR data are represented as follows: Chemical shift, multiplicity (s 

= singlet, d = doublet, t = triplet, q = quartet, m = multiplet and/or multiple resonance), coupling 

constant (if determined), integration, assignment. Mass spectrometry (except LC-MS) was 

performed at the University of Illinois Mass Spectrometry Center. 

5.4.2. Small Molecule Synthesis 

Compound 5.10. Starting from Cbz-L-Ser-OH, compound 5.10 was 

synthesized in three steps following a literature procedure (28). 1H NMR 

(500 MHz, CDCl3) /ppm = 7.36-7.32 (m, 5H; arom), 5.27-5.25 (d, J = 10 

Hz, 1H; NH ), 5.13 (s, 2H; CH2-Bn ), 4.25-4.18 (m, 1H; H), 3.92-3.78 (m, 2H; H), 3.76 (d, J = 

12.5 Hz, 3H; OCH3), 3.74 (d,  J= 12.5 Hz, 3H; OCH3), 0.88 (s, 9H, SiC(CH3)3), 0.05 (s, 6H, 

Si(CH3)2). 
31P NMR (202 MHz, CDCl3) /ppm = 26.7. MS (ESI): m/z = 418.2 (M+H+). 

(Notebook IV, pages 11, 15, and 17)  

Compound 5.11. Compound 5.10 (0.25 g, 0.6 mmol) was placed in a round 

bottom flask, the compound was dissolved in 9 mL of toluene, and the solution 
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was stirred under N2 atmosphere and cooled on an ice-bath. To the reaction mixture, a 1 M 

solution of boron tribromide in hexanes (2.4 mL, 2.4 mmol) was added dropwise and the solution 

was stirred on an ice bath for 10 min, when a white suspension formed. The reaction flask was 

subsequently transferred to an oil bath preheated to 70 ˚C, and the solution was stirred for 5 h. 

The brown reaction mixture was quenched by adding 3.0 mL of dry MeOH and the reaction 

mixture turned nearly colorless (35). The reaction mixture was diluted by adding EtOAc (15 mL) 

and extracted twice with 10 mL of H2O. The aqueous layers were back extracted with 10 mL of 

EtOAc and the aqueous fraction was lyophilized to generate a yellow powder. The crude mass 

was passed through a cation exchange column and eluted with water to obtain a final yield of 75 

mg (57 %) of bromide salt of the product as white solid. (Notebook II, page 85) 

Compound 5.12. This compound was synthesized as previously 

reported (28, 32). 1H NMR (500 MHz, CDCl3) /ppm = 7.38-7.30 

(m, 5H; arom), 6.48 (dd, J = 10 Hz, 1H; NH), 5.2 (d, J = 10 Hz, 1H; 

NH), 5.11 (d, J = 12.5 Hz, 1H; CH2Bn), 5.09 (d, J = 12.5 Hz, 1H; 

CH2Bn), 4.55-4.46 (m, 1H), 4.28-4.18 (m, 1H), 4.02-3.96 (m, 1H), 

3.73 (m, 6H; OCH3), 1.68 (m, 4H), 0.95-0.93 (m, 6H; H Leu), 0.89 (s, 9H; SiC(CH3)3), 0.07 (s, 

6H; Si(CH3)2). 
31P NMR (202 MHz, CDCl3)  26.4, 26.29 (pair of diastereomers). (Notebook III, 

pages 21, 22) 

Compound 5.13. Compound 5.12 (1.0 g, 1.88 mmol) was treated 

with 4 mL of 1 M TBAF solution in THF (4 mmol) with vigorous 

stirring under nitrogen for 45 min. The reaction mixture was diluted 

with 100 mL of dichloromethane (DCM) and washed with 0.1 M aqueous HCl (2×25 mL). The 
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acidic layer was back extracted with 20 mL of DCM. The organic layers were collected, dried 

over Na2SO4, filtered, and concentrated. The residue was purified by flash chromatography 

(SiO2) eluting with 3% MeOH in DCM to 4% MeOH in DCM to yield the desired product (0.69 

g, 1.66 mmol, 88%). 1H NMR (500 MHz, CDCl3) /ppm = 7.36-7.26 (m, 5H; arom), 5.51-5.44 

(m, 1H), 5.11-5.09 (m, 2H, CH2-Bn), 4.56-4.48 (m, 1H), 4.34-4.24 (m, 1H), 3.98-3.92 (m, 1H), 

3.80-3.68 (m, 6H; OCH3), 1.71-1.62 (m, 2H), 1.58-1.51 (m, 1H), 0.99-0.89 (m, 6H; H Leu). 13C 

NMR (125 MHz, CDCl3) /ppm = 173, 156, 136, 128.6, 128.3, 67, 61.7, 61.4, 54, 53, 52, 42, 25, 

24.  31P NMR (202 MHz, CDCl3) /ppm = 26.2, 25.9 (pair of diastereomers). HRMS (ESI): m/z 

calc. for C18H29N2O7P 417.1792, found 417.1791. TLC: Rf = 0.15 (3% MeOH in DCM). 

(Notebook III, page 23) 

Compound 5.14. Compound 5.13 (52.7 mg, 0.13 mmol) was dissolved in 

1.7 mL of toluene and the flask was immersed in an ice-bath. To this 

solution, 380 L of a 1 M solution of boron tribromide in hexanes (0.38 

mmol) was added dropwise and the reaction was stirred at 0 ˚C for 10 min when the reaction 

mixture turned from colorless to white. The flask was transferred to an oil bath heated to 70 ˚C 

and the reaction was stirred for an additional 3 h, when the reaction mixture turned brown. The 

reaction mixture was allowed to cool to room temperature and was quenched with 2 mL of dry 

MeOH, when a clear brownish-black solution formed. The solution was concentrated on a rotary 

evaporator. The residue was diluted with 6 mL of water and extracted with 5 mL of ethyl acetate. 

The organic layer was back-extracted with 5 mL of water. The combined aqueous layers were 

collected and lyophilized to obtain crude product (60 mg). The crude product was purified by Fe-

IMAC and the purest fraction was lyophilized (ca 1.6 mg). 1H NMR /ppm = 4.18-4.06 (m, 1H; 
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H Ser), 3.95-3.70 (m, 2H; H Ser), 3.60- 3.48 (m, 1H; H Leu), 1.65-1.45 (m, 3H; H/ Leu), 

0.85-0.72 (m, 6H; H Leu). 31P NMR (202 MHz, D2O) /ppm = 17, 16.7 as diastereomers. 

(Notebook IV, page 5) 

Compound 5.15. Compound 5.13 (0.15 g, 0.37 mmol) was dissolved 

in dry DCM (2 mL). The flask was cooled in an ice-bath, and 

triethylamine (0.1 mL, 0.74 mmol) and methanesulfonyl chloride 

(0.06 mL, 0.77 mmol) were added. The reaction mixture was allowed to warm to room 

temperature and stirred for 1 h and 15 min. The solvent was evaporated and 31P NMR 

spectroscopy indicated complete conversion to the mesylated product. 31P NMR (500 MHz, 

CDCl3) /ppm = 22.76, 22.70 (pair of diastereomers). The mesylated product was dissolved in 5 

mL of dry THF, followed by addition of diazabicycloundecene (DBU, 0.14 mL, 0.93 mmol) and 

the solution was refluxed for 30 min. The reaction mixture was then cooled and the solvent was 

evaporated. The residue was purified by flash chromatography (SiO2) with 100 % EtOAc as the 

eluent to yield the desired product (103 mg, 0.26 mmol, 60 %). 1H NMR (500 MHz, CDCl3) 

/ppm = 7.71 (s, 1H; NH), 7.38-7.32 (m, 5H; arom), 6.73-6.64 (d, J = 42 Hz, 1H; =CHtrans), 5.65-

5.61 (d, J = 19.5 Hz, 1H; =CHcis), 5.13 (s, 2H; CH2-Bn), 4.22 (s, 1H; NH), 3.75 (d, J = 7.5 Hz, 

3H; OCH3), 3.73 (d, J = 7.5 Hz, 3H; OCH3), 1.71-1.66 (m, 2 H; H Leu), 1.54- 1.50 (m, 1H; H 

Leu), 0.96 (s, 6H; HLeu). 13C NMR (125 MHz, CDCl3) /ppm = 172, 156, 136, 129, 128.8, 

128.5, 128.2, 116, 67, 54, 53.5, 41, 25, 23, 22. 31P NMR (202 MHz, CDCl3) /ppm = 15.8. 

HRMS (ESI) m/z calc. for C18H27N2O6P 399.1685, found 399.1686. TLC: Rf = 0.5 (100 % 

EtOAc). (Notebook III, page 37) 
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Compound 5.2. Compound 5.15 (42.3 mg, 0.11 mmol) was dissolved in 

1.6 mL of toluene and the flask was immersed in an ice bath. To the 

solution, a 1 M solution of BBr3 in hexanes was added (0.32 mL, 0.32 

mmol), and the flask was transferred to an oil bath heated to 70 ˚C for 3 h and allowed to cool to 

30 ˚C. The reaction mixture was quenched by addition of 2 mL of dry MeOH. The solvent was 

evaporated and the residue suspended in 4 mL of deionized water after which the mixture was 

extracted with EtOAc (2×3 mL) and the EtOAc layers were back-extracted with water (3 mL). 

The combined aqueous layers were lyophilized to generate crude product (~ 31.5 mg). LC-MS 

purification was performed using analytical HPLC (column A) to optimize the conditions for 

separation, after which preparative HPLC (column B) was used to purify the compound. Product 

was collected with Rt=10.5 min, which was checked by MS. The presence of product was 

confirmed by 31P and 1H NMR spectroscopy. 1H NMR (500 MHz, D2O) /ppm = 8.28 (s, 1H; 

NH), 5.89-5.82 (d, J = 35 Hz, 1H; =CHtrans), 5.50-5.47 (d, J = 15.5 Hz, 1H; =CHcis), 3.96-3.93 (t, 

J = 8 Hz, 1H; HLeu), 1.69-1.53 (m, 3H; H/Leu), 0.82-0.79 (m, 6H; H Leu). 31P NMR (202 

MHz, CDCl3) /ppm = 6.44. Yield: 1.2 mg HRMS (ESI) m/z calculated for C18H28N2O6P 

399.1685, found 399.1686. (Notebook III, page 39) 

Compound 5.16. N-Cbz-L-Leu-OH (334 mg, 1.26 mmol) was 

suspended in 5 mL of dry DCM. To this mixture, 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC-HCl; 240 

mg, 1.25 mmol) was added, followed by addition of dimethyl-1-aminoethyl phosphonate (194 

mg, 1.02 mmol) and DIPEA (0.6 mL, 3.57 mmol); the solution was stirred at room temperature 

for 18 h. The reaction mixture was diluted with DCM (20 mL) and washed with 10% citric acid 

(10 mL), followed by sat. aqueous NaHCO3 (10 mL), and brine (10 mL). The organic layer was 
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dried with Na2SO4, filtered, and concentrated under reduced pressure. The crude product was 

purified by silica gel flash chromatography and the product eluted with 3% EtOAc in hexanes 

(280 mg, 69%). 1H NMR (500 MHz, CDCl3) /ppm = 7.34-7.27 (m, 5H; arom), 5.10-5.05 (m, 

2H, CH2-Bn), 4.55-4.45 (m, 1H), 4.32-4.26 (m, 1H), 3.73-3.65 (m, 6H; OCH3), 1.7-1.45 (m, 3H; 

H/ Leu), 1.35-1.22 (m, 3H; CH3), 0.94-0.86 (m, 6H; H Leu). 31P NMR (202 MHz, CDCl3) ( 

= 28.95, 28.72); product present as two diastereomers. MS (ESI): m/z = 401.4 (M+H+). TLC: Rf 

= 0.48 (10% MeOH in DCM). (Notebook IV, page 74) 

Compound 5.3. Compound 5.16 (283 mg, 0.71 mmol) was dissolved in 9 

mL of toluene and the flask was cooled in an ice-bath. To this solution, 

2.1 mL of a 1 M solution of BBr3 in hexanes (2.1 mmol) was added and 

the reaction was stirred for 10 min at 0 °C resulting in a yellow precipitate. The flask was placed 

in an oil bath maintained at 70 °C for 4.5 h. The reaction mixture was cooled and 10 mL of dry 

MeOH was added to quench the reaction. A clear greenish-black solution formed, which was 

concentrated on a rotary evaporator to remove all solvents, the residue was redissolved in 5 mL 

of EtOAc and extracted with H2O (5 mL). The aqueous layer was collected in a vial and 

lyophilized. Crude yield: 189 mg. 1H NMR (500 MHz, CDCl3) /ppm = 4.10-3.90 (dq, J = 10 

Hz; H AlaP), 3.85-3.80 (dd, J = 10 Hz; H Leu), 1.65-1.50 (m, 3H; H/), 1.22-1.12 (m, 3H; 

CH3), 0.85-0.76 (t, 6H; H Leu). 31P NMR (202 MHz  = 23.45, 22.81) indicated the presence of 

the product as two diastereomers. HRMS (ESI) m/z calculated for C8H19N2O4P 239.1161, found 

239.1158. The crude product (189.6 mg) was purified by RP-HPLC (column B) to yield 20 mg 

of each diastereomers. (Notebook IV, page 77) 
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Compound 5.4. Gly-L-Leu-Ala(P) was synthesized from Boc-

Gly-L-Leu-Ala(P) methyl ester using similar chemistry as 

reported previously (32). 1H NMR (500 MHz, CDCl3) /ppm = 

4.20-4.17 (t, J = 5 Hz, 1H; H Leu), 4.08-4.00(m, 1H; H AlaP), 3.70-3.65 (s, 2H; H Gly), 

1.54-1.37 (m, 3H; H/ Leu), 1.20-1.12 (m, 3H; H Ala), 0.77-0.67 (dd, J = 5 Hz, 6H; H Leu). 

31P NMR (202 MHz /ppm = 23.45, 22.81) indicated the presence of product as two 

diastereomers. MS (ESI): m/z =237.1 (M−H+). The 33 mg of crude product was purified by RP 

HPLC (column B) to give 4 mg and 2.4 mg of the two diastereomers. (Notebook IV, pages 21, 

27) 

Compound 5.17. This compound was synthesized by 

peptide coupling of Boc-Gly-L-Leu-OH (32) with a Ser(P) 

analog obtained after deprotection of the N-terminal Cbz 

group of compound 5.10. Boc-Gly-L-Leu-OH (242 mg, 0.84 mmol) was dissolved in 3 mL of 

dry DCM, to which dimethyl (1-amino-2-((tert-butyldimethylsilyl)oxy)ethyl)phosphonate (198.3 

mg, 0.7 mmol) and N-methylmorpholine (0.12 mL,1.09 mmol) were added. To this suspension, 

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC-HCl, 201.2 mg, 1.05 

mmol) was added and the reaction was stirred for 8 h 45 min. The reaction mixture was then 

diluted with DCM and extracted with 10% citric acid (10 mL), sat. aqueous NaHCO3 (20 mL), 

and brine (20 mL). The organic layer was dried over sodium sulfate, filtered, and concentrated. 

The residue was purified by silica gel flash chromatography eluting with 3% MeOH in DCM. 

(165 mg, 0.3 mmol, 42%). 1H NMR (500 MHz, CDCl3) /ppm =  6.49-6.45 (t, J = 10 Hz, 1H), 

4.75-4.45 (m, 1H), 4.03-3.96 (m, 1H), 3.82-3.74 (m, 6H; OCH3), 1.70-1.52 (m, 4H), 1.45 (s; 9H, 
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C(CH3)3 Boc), 1.02-0.96 (m, 1H), 0.96-0.91 (t, 6H, HLeu), 0.91-0.89 (d, 9H; SiC(CH3)3), 0.08 

(t, 6H; Si(CH3)3). 
31P NMR (202 MHz, CDCl3) /ppm =  26.41, 26.27 indicated product as two 

diastereomers. MS(ESI) m/z: 554.2 (M+H+). TLC: Rf = 0.3 (10% EtOAc). (Notebook IV, page 

23) 

Compound 5.5. Compound 5.17 (54.3 mg, 0.098 mmol) was 

dissolved in 1.5 mL of toluene and the flask was cooled in an ice 

bath. To this solution, 1 M BBr3 in hexanes (0.3 mL, 3.06 equiv) 

was added and the reaction was stirred on an ice bath for 10 min. Then the flask was transferred 

to an oil bath pre-heated to 70 °C and the reaction was stirred for another 4 h. After cooling the 

reaction mixture to room temperature, 2 mL of dry MeOH was added to quench the reaction. The 

resulting clear solution was concentrated on a rotary evaporator after which the residue was 

taken up in EtOAc (5 mL) and extracted with water (5 mL). The aqueous layer was lyophilized 

(crude yield: 45.2 mg). The crude material was purified by RP-HPLC (column B) to yield two 

diastereomers (1.6 mg and 1.5 mg).1H NMR (500 MHz, CDCl3) /ppm =  4.32-4.28 (m, 1H; 

HLeu), 4.10-4.04 (m, 1H; H SerP), 3.81-3.75 (m, 1H), 3.76-3.72 (d, 2H, H Gly), 3.60-3.52 

(m, 1H), 1.62-1.46(m, 3H, H/ Leu), 0.80-0.75 (dd, J = 5 Hz, 6H, H Leu). Both diastereomers 

had a similar 1H NMR pattern. 31P NMR (202 MHz  = 14.4, 14.7). HRMS (ESI) m/z calculated 

for C10H22N3O6P 312.1324, found 312.1322. (Notebook IV, page 29) 

Compound 5.18. Thionyl chloride (1.64 mL, 22.6 mmol) was added 

dropwise to 10 mL of dry MeOH in a round bottom flask placed in an ice 

bath and the reaction was stirred for 5 min. To the reaction mixture, a solution of 

benzyloxyacetic acid (3.13 g, 18.8 mmol) in 10 mL of dry MeOH was cannula transferred over a 
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period of 15 min. The reaction was allowed to warm to room temperature and was stirred under 

N2 for 22 h. The reaction mixture was concentrated on a rotary evaporator and dissolved in 30 

mL of dichloromethane (DCM). The solution was then extracted with 2 × 30 mL of saturated 

NaHCO3 solution and 1 × 20 mL of brine. The organic layer was dried over Na2SO4 and 

concentrated on a rotary evaporator. The residue was purified by flash chromatography (SiO2) 

using 100% DCM as eluent to generate product 5.18 as a colorless oil. TLC: Rf 0.61 (100% 

DCM). Yield: 3.1 g (91%). 1H and 13C NMR data matched the reported spectra (36). (Notebook 

III, page 90) 

Compound 5.19. Lithium diisopropyl amide (LDA) was generated in-situ by 

adding n-BuLi (6.76 mL, 10.8 mmol, 1.3 equiv.) to a solution of dry 

diisopropyl amine (1.76 mL, 12.5 mmol, 1.5 equiv.) in 5 mL of dry THF at −78 ˚C. After stirring 

at −78 ˚C for 10 min, the solution was stirred for another 10 min in an ice bath and cooled back 

to −78 ˚C. To the generated LDA, a solution of methyl benzyloxyacetate 5.18 (1.49 g, 8.3 mmol) 

in 5 mL of dry THF was cannula-transferred over 10 min. The reaction was stirred at −78 ˚C for 

10 min. This reaction mixture was cannula-transferred to a solution of phosphorus oxychloride 

(0.78 mL, 8.3 mmol, 1 equiv.) in 5 mL of dry THF at −78˚C over a period of 15 min and allowed 

to stir at −78 ˚C for 12 h. Then, a mixture of benzyl alcohol (1.72 mL, 16.6 mmol, 2 equiv.) and 

pyridine (1.34 mL, 16.6 mmol, 2 equiv.) was added to the reaction mixture, which was allowed 

to warm to room temperature overnight while stirring. The reaction was quenched by the 

addition of 5 mL of water after which the reaction mixture was immediately diluted with 60 mL 

of ethyl acetate and washed with 20 mL of brine. The organic layer was dried over Na2SO4 and 

concentrated. The residue was purified by flash chromatography (SiO2) using a gradient from 

20% to 50% EtOAc in hexanes. This procedure had to be used three times as a result of very 
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closely eluting impurities to generate product 5.19. TLC: Rf 0.38 (50% EtOAc in hexanes). Yield 

= 251 mg (7%). 1H NMR (600 MHz, CDCl3) /ppm = 7.31-7.28 (m, 15H), 5.1 (d, J = 10 Hz, 

4H), 4.79-4.77 (d, J = 10 Hz, 1H), 4.56-4.54 (d, J = 10 Hz, 1H), 4.45-4.41 (d, J = 20 Hz, 1H), 

3.73 (s, 3H). 13C NMR (150 MHz, CDCl3) /ppm=167.6, 136.0, 135.8, 128.0-128.6, 75.3 (d, 

J=158.5 Hz), 74.2 (d, J=12.1 Hz), 68.9 (d, J=10.6 Hz), 52.7. 31P NMR (202 MHz, CDCl3) /ppm 

=15.96 (product). HRMS (ESI) m/z calculated for C24H26O6P 441.1467 (M+H+), observed 

441.1452. 31P NMR analysis demonstrated the formation of product (δ = 15.9 ppm) along with a 

side product (δ = 1.36 ppm), which eluted with the same Rf value. The side product was 

identified as PO(OBn)2OMe by NMR and MS analysis. (Notebook III, pages 92, 93) 

Compound 5.7. Methyl 2-(benzyloxy)-2-(bis(benzyloxy)phosphoryl)acetate 

5.19 (126.4 mg) was dissolved in 5 mL of dry MeOH in a 50 mL round 

bottomed flask and 10% Pd/C (54 mg) was added. The heterogeneous mixture was sparged with 

H2 (1 atmosphere) for 20 min, and allowed to stir for 20 h. The reaction mixture was filtered over 

Celite and concentrated. ESI MS indicated mainly the presence of mono-benzyl protected 

product. The product from this reaction was dissolved in 5 mL of dry THF and an additional 25 

mg of 5% Pd/C was added, the vessel was kept under 1 atmosphere of H2 and stirred for 23 h. 

The reaction mixture was filtered over Celite. The mixture was purified by size-exclusion 

chromatography Sephadex LH-20 to yield the desired product 5.7 as a white power (3 mg, 6% 

yield). 1H and 13C NMR data matched the reported spectra as obtained from acidic hydrolysis of 

fosfazinomycin (37). (Notebook III, page 95) 

Compound 5.20. To a stirred suspension of L-aspartic acid (2.66 g, 20 

mmol) in 15 mL of dry MeOH kept chilled in an ice bath, SOCl2 (2 
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mL) was added dropwise. L-Aspartic acid dissolved and the solution turned yellow. The 

reaction mixture was left to stir for 49 h and 10 min. Then, the reaction was concentrated 

under reduced pressure and a yellow oil formed. The concentrated oil was triturated with 

cold ether when a yellowish solid forms. The solid was transferred to a Buchner filter and 

repeatedly washed with cold ether to yield a white solid, which was dried overnight with a 

vacuum pump. Yield = 3.8 g (96%). 1H NMR (400 MHz, CDCl3)  8.83 (s, 2H), 4.58 (m, 

1H), 3.84 (s, 3H), 3.75 (s, 3H), 3.33-3.26 (m, 2H). (Notebook I, page 89) 

 Compound 5.21. Compound 5.20 (1.99 g, 10 mmol) was suspended in 

16 mL of dry THF at room temperature. To the solution, Et3N (1.54 mL 

of, 11 mmol) was added followed by addition of Boc anhydride (2.42 g, 

11 mmol). The solution was stirred under N2 for 4 h. TLC indicated the 

disappearance of starting material. Product appeared as a pink white creamy mass. It was 

evaporated in-vacuo in a rotary evaporator to give a dense pink-white residue. The residue was 

dissolved in 12 mL of EtOAc. The solution was washed with 12 mL of H2O in a separatory 

funnel. The organic layer was dried over Na2SO4 and concentrated in-vacuo to yield a dry solid, 

which on drying with a vacuum pump overnight gave a pink-white solid. Yield = 2.56 g (84%). 

1H NMR (400 MHz, CDCl3) = 5.5 (d, 1H), 4.58(m, 1H), 3.76(s, 3H), 3.64 (s, 3H), 3 (dd, 1H), 

2.8 (dd, 1H), 1.42 (s, 9H). (Notebook I, page 90) 

Compound 5.22. Compound 5.21 (1.57 g, 6.03 mmol) was dissolved in 20 

mL of CH3CN. To the solution, DMAP (0.16 g, 1.29 mmol, 0.21 equ) was 

added, followed by Boc2O (2.42 g, 11.1 mmol, 1.84 equiv). The clear 

yellow solution was allowed to stir at room temperature in N2 for 22 h after 
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which the solution became reddish brown, which was concentrated to give a dry red solid. Crude 

weight: 2.19 g. The residue was purified by flash chromatography (SiO2) to yield 1.9 g (87%) of 

product. Rf = 0.48 in 30 % EtOAc in hexanes. 1H NMR (500 MHz, CDCl3)  = 5.42 (t, 1H), 

3.76(s, 3H), 3.74 (s, 3H), 3.22 (dd, 1H), 2.78 (dd, 1H), 1.5 (s, 2H). (Notebook II, page 27) 

 Compound 5.23. Two round bottom flasks were used, in one of which 

compound 5.22 (0.604 g, 1.67 mmol) was dissolved in 5.0 mL of dry 

DMF and stirred at 78˚C under nitrogen. In the other round bottom 

flask, 5.0 mL of THF was added and under nitrogen, 1.2 mL of (7.4 

mmol, 4.43 equiv.) of diethyl methylphosphonate was added followed by addition of 5.0 mL of 

1.6 M BuLi (8 mmol, 4.8 equiv.) in hexane, and the solution was allowed to stir for 20 min. The 

entire content of the 2nd flask was transferred to the 1st flask by a cannula over a period of 25 

min, after which the reaction mixture was allowed to stir for another 1.5 h at −78 ˚C under 

nitrogen. The reaction was then quenched by adding 0.45 µL (8 mmol, 4.81 mmol) of glacial 

acetic acid, and the solution was allowed to come to room temperature. Then, the reaction 

mixture was diluted by adding ethyl acetate (30 mL) after which the solution was washed with 

brine in a separatory funnel. The organic layer was dried over Na2SO4, the solvent was 

evaporated by a rotary evaporator, and the residue was further dried with a vacuum pump. Crude 

weight = 1.45 g. The residue was purified by flash chromatography (SiO2) using 3:2 

EtOAc/petroleum ether as the eluent. Rf = 0.25 in 3:2 EtOAc/petroleum ether. Yield = 0.53 g (66 

%). 1H NMR (500 MHz, CDCl3)  = 5.5 (dd, 1H), 4.15 (m, 4H), 3.7 (s, 3H), 3.6 (dd, 1H), 3.25 

(dd, 1H), 3.1 (dd, 1H), 2.9 (dd, 1H), 1.5 (s, 18H), 1.33 (m, 6H). 31P NMR (500 MHz, CDCl3) = 

20.57 (s, 1P). (Notebook II, page 6). 
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 Compound 5.24. Compound 5.23 (0.531 g, 1.1 mmol) was 

transferred to a round bottom flask with a few drops of DCM, 4.0 

mL of 5 M HCl was added and the solution was refluxed for 4 h, and cooled to room 

temperature. The solution was extracted with ethyl acetate (3 x 20 mL). The aqueous layer 

containing the compound was concentrated. Crude weight = 0.25 g. 31P and 1H NMR of the 

crude material indicated the presence of product. The product was purified by Dowex 50wx-

8 resin twice. After the 2nd ion exchange  chromatography, the eluents were collected into 

four fractions and lyophilized yielding, 8.8 mg, 17 mg, 91 mg, and 16 mg. Overall yield: 133 

mg (49%). A 1H NMR spectrum indicated the presence of product with minor side product 

containing a monomethyl phosphonate ester. The third fraction was carried forward for the 

next reaction. 1H NMR (500 MHz, D2O)  4.19-4.17 (m, 1H), 3.39-3.24 (m, 2H), 3.13-2.98 

(m, 2H). 31P NMR (500 MHz, D2O) 17.72. (Notebook II, page 9) 

Compound 5.8. Compound 5.24 (30 mg, 0.14 mmol) was 

transferred to a 10 mL round bottom flask and dissolved in 0.8 mL 

of milipore water, the solution was cooled to 0 ˚C, to which NaBH4 was added. The solution 

was stirred in an ice-bath for 2 h, and quenched by adding a few drops of 1 M HCl and 

lyophilized. 1H and 31P NMR spectra and ESI MS indicated the presence of product along 

with other minor impurities like mono-ethyl protected phosphonate. The product was purified 

by eluting thorough Dowex ion-exchange chromatography. Yield = 27.9 mg. 31P NMR (500 

MHz, D2O) 22.5. (Notebook II, page 31) 
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