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ABSTRACT 

Recent work has shown that a mobile data collector moving along a predefined trajectory can 

improve the real-time data collection duration and efficiency in wireless sensor networks 

(WSN). Due to the fixed trajectory and limited communication range, data collection is 

conducted using a many-to-one communication pattern known as convergecast. However, 

because of the confidentiality concern of data being transmitted, security issues such as security 

key leakage, eavesdropping, and malicious attack raise significant challenges in minimizing 

the data collection time. To address this issue, we present the design and implementation of the 

Secure Minimum Time Data Collection (SMTDC) protocol, a tree formulated, and time-

scheduled protocol for large scale, stationary, hardware-limited WSN. SMTDC can cooperate 

with many existing security communication frameworks.  During the tree formation phase of 

SMTDC, we build well-balanced optimized trees that have the potential for minimum data 

collection time. We formulate our approach as an integer linear programming problem and 

solve it using linear relaxation based iterative rounding (LR-IR). During the time scheduling 

phase of SMTDC, we use a heuristic time-slot arrangement algorithm to solve the tree 

scheduling problem. The proposed algorithms and schemes are validated through simulation 

experiments using GUROBI solver and OMNET++ under realistic WSN topology. The result 

shows that SMTDC tree formation outperforms other algorithms in building a more effectively 

secure and load-balanced tree, and SMTDC scheduling significantly improves the data 

collection time over pre-generated tree topology. 

 

Keywords—Wireless sensor networks; secure data collection; tree formation; time 

scheduling 

  



iii 

 

 

 

 

 

 

 

 

 

 

To my mother, for her love and support. 

  



iv 

ACKNOWLEDGMENTS 

 

First and foremost, I would like to express my special appreciation to my advisor, Dr. Klara 

Nahrstedt, for initially giving me the opportunity to become a MONET member three years 

ago, for continuing to support and guide me, and for all the valuable discussion and comments. 

Professor Nahrstedt’s perseverance, enthusiasm, and wisdom about computer science, as well 

as her patience and kindness with students, have influenced me deeply and played an important 

role in my growth. I will be always grateful and remember her trust, support, and 

encouragement for the rest of my life. 

Besides my advisor, I would like to thank to Dr. King-Shan Lui and Haiming Jin; they gave 

me great advice about my research, and encouragement and help whenever I needed them. 



v 

TABLE OF CONTENTS 

Chapter 1 Introduction ............................................................................................................... 1 

Chapter 2 Related Work ............................................................................................................ 5 

2.1 Security threats and challenges in WSN ..................................................................... 5 

2.2 Tree formation mechanism in WSN ........................................................................... 7 

2.3 Scheduling mechanism in WSN .................................................................................. 8 

Chapter 3 System Model and Observation .............................................................................. 10 

3.1 Security communication framework ......................................................................... 10 

3.2 Messages lifecycle analysis....................................................................................... 12 

3.3 Data collection time model for tree with height one ................................................. 14 

3.4 Data collection time model for general trees ............................................................ 17 

Chapter 4 SMTDC Design and Solution ................................................................................. 22 

4.1 SMTDC tree formation ............................................................................................. 22 

4.2 SMTDC scheduling ................................................................................................... 32 

Chapter 5 Performance Evaluation .......................................................................................... 37 

5.1 Performance of SMTDC tree formation ................................................................... 37 

5.2 Performance of SMTDC scheduling ......................................................................... 43 

Chapter 6 Conclusion ............................................................................................................... 45 

Appendix A  Specifications of Raspberry Pi ........................................................................... 46 

Appendix B  Deduction of Security Constraint ....................................................................... 47 

References ................................................................................................................................ 48 

 



1 

Chapter 1 INTRODUCTION 

With wireless connectivity, advanced sensor networks, and machine-to-machine 

communications, the Internet of Things (IoT) has profound implications for industrial 

automation. As a key component of IoT, wireless sensor networks (WSNs) have been finding 

their application in diversified scenarios, such as smart grid monitoring, traffic monitoring, 

battlefield monitoring, etc. 

WSN applications used in military and commercial fields require the data communication 

within the network to be secure. But on the other hand, thousands of tiny and inexpensive 

sensor nodes are hardware-limited devices, and they have boundaries in communication and 

data processing. The confidentiality of data decreases communication efficiency, and 

complicates the WSN topology [1]. Furthermore, an inefficient topology leads to a sacrifice of 

network lifetime [2], and most importantly, prolongs the data collection time of WSN [3], [4], 

[5]. Based on the above motivation and related works, in this thesis we focus on large-scale 

WSNs with vast amount of stationary measurement devices (MDs) deployed in the target area, 

and one mobile sink, or data collector (DC), gathering data from MDs. All MDs are hardware-

limited devices and have limited power for long range message transmission. DC is unable to 

reach every MD to collect data because of spatial and temporal constraints. So the DC only 

connects directly to MDs that are in its proximity. We define the MDs in the direct 

communication area with DC as root MDs. The data collected by MDs, which are outside the 

DC’s communication area, has to be forwarded to root MDs first in a multi-hop manner.   

As shown in Figure 1.1, a DC is installed on a vehicle that moves along a predefined fixed 

trajectory, a road, or a certain street. When the DC is moving along its trajectory (the red line 

in Figure 1.1), it can only communicate with the MD nodes in the blue shaded area due to their 

closer proximity. All other MDs outside the blue shaded area must first forward their messages 

to the MDs in this area, and then complete the final data transmission to DC. 

In the current large-scale WSN systems, as mentioned in [6], [7], [8], security of data 

communication between two telemetric devices is one essential condition. Rehana et al. use 

symmetric key encryption for both encryption and decryption of the packets when sending 

packets over the wireless network in [7].  Gong et al. introduce an asymmetric PKI model in 
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[8], where, in addition to a password, the user uses the public key of the server for message 

encryption and decryption. 

 

Figure 1.1: A real example of trajectory defined DC in WSN 

In this thesis we aim at minimizing the data collection time in large-scale, secure WSNs. We 

design a data collection protocol to be used in a more general security scenario, which applies 

to many security communication frameworks, not to one specific security situation. We 

generalize the preexisting confidential data communication mechanism of one relay-node, MD 

or DC in our WSNs to three serial stages, encryption, transmutation, and then decryption. 

Besides, in secure data collection, a strong correlation exists between data, and hence, 

sequential data integration is needed. We generalize one round of data collection in a WSN to 

be a propagation in an aggregated convergecast tree, in which messages transmit first top-down 

then bottom-up. Specifically, when one root MD, or other MD nodes, receive a data collection 

command message from a DC or its parent MD nodes, it will forward this secure message to 

its child MDs, and wait for the feedback from all of its child MDs before sending the message 

back to its parent MD. 

Based on this scenario, we start by researching the primary limiting factors of data collection 

time in WSNs, which are mentioned in [3], [5]. The limiting factors can be categorized as 

follows: (1) co-channel interference, (2) half-duplex communication model of each sensor node, 

(3) topology of the network, and (4) time scheduling of certain topology. As mentioned in [5], 

[9], constraint (1) can be easily eliminated using interference-aware TDMA or single-channel, 

CSMA-based protocols. Constraint (2) is inevitable due to the legacy telemetric devices widely 

deployed in real industry. To achieve further improvement, we focus on the limiting factors (3) 
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and (4), and we are building an optimized tree topology and a time scheduling arrangement 

method that minimizes the data collection time. At the same time we aim to achieve the balance 

between workload and security issues, such as leakage of confidential messages. 

Although significant effort has been expended in recent years on building optimized trees and 

designing scheduling methods for maximum data throughput and minimum data collection 

time in general wireless networks, the security issue in the process of tree formation has not 

been considered. Besides, as we will discuss in Chapter 2, almost all of these works [3], [5] 

choose to use shortest path derived algorithms when building trees. While these mechanisms 

are relatively easy to implement, they do not consider balancing the workload of each sensor 

node. Besides, none of the previous work discussed the impact of routing tree formation on 

time slot scheduling under the influence of security constraints and load balancing limitation. 

These shortcomings motivate us to design and implement a secure, load-balanced tree 

formation mechanism for fast data collection. 

We first undertake a series of experiments on a state-of-the-art wireless sensor network 

hardware, Raspberry Pi. Under generalized security protocol, where every MD or DC has to 

execute encryption, decryption, and then transmutation for every message between them, we 

study how the data collection time for one single MD is influenced by the number of child MDs. 

We also investigate how the data collection time of the entire WSN is influenced by different 

topologies of WSN. Our experiments show that given a certain number of MDs in a WSN, 

minimum data collection time varies significantly with the average number of child nodes of 

all MDs. Therefore, we introduce our Secure Minimum Time Data Collection (SMTDC) 

protocol for secure WSN. 

In the SMTDC tree formation part, the expected data collection time of WSNs is formalized as 

finding convergecast trees. And in this optimization problem our objective is to find the 

minimum summation of time spent in each level of the tree. The time spent in each level of the 

tree depends on the average number of child MDs for one parent MD. This optimization 

problem is NP-hard, so we propose an approximation algorithm, algorithm 1, to solve it. In 

addition, under the uncertain load balancing conditions (undecided average number of child 

MDs before tree formation), we design a heuristic iterative algorithm, algorithm 2, to solve this 

nonlinear optimization problem. After SMTDC tree formation builds a convergecast tree, in 

the SMTDC scheduling part, we use a message priority algorithm, algorithm 3, to further 

reduce the data collection time. 
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The following lists our key findings and contributions. We: 

 Generalize the current prevailing security protocol of message transmission into three-stage 

model, systematic analysis and the impact of load balance on the data collection time. 

 Formulate the SMTDC tree topology as a 0-1 integer linear programing problem which 

aims to build tree topologies that potentially have minimum data collection time. We 

propose an approximation algorithm with the help of linear relaxation based iterative 

rounding to solve this NP-hard problem. 

 Propose a heuristic iterative algorithm to solve a nonlinear optimization problem, in which 

the load balancing condition is undecided before SMTDC tree formation. 

 Design a heuristic SMTDC scheduling algorithm that achieves the minimum data collection 

time for any convergecast tree topology in which messages propagate using top-down 

bottom-up models. 

 Conduct simulation experiments using GUROBI solver and OMNET++ under realistic 

WSN topology, the results of which validate the proposed algorithms and prove that 

SMTDC is a scalable, load-balancing, minimum data collection protocol 

 

The rest of the thesis is organized as follows: in Chapter 2, we discuss related work and briefly 

introduce our previous security protocol. Chapter 3 gives an overview of the network and 

transmission model of SMTDC, and discusses our load balancing observation. In Chapter 4, 

we present two phases of SMTDC, the SMTDC tree formation scheme and the SMTDC 

scheduling scheme. Chapter 5 evaluates the performance of proposed schemes and Chapter 6 

concludes the thesis. 
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Chapter 2 RELATED WORK 

In this chapter, we first briefly investigate security challenges occurring in WSNs, which can 

be generalized to a probability problem. As mentioned earlier, we designed our SMTDC to 

cooperate with prevailing security protocols to handle security attacks. Then we review the 

state-of-the-art tree formation mechanism and scheduling mechanism for data collection in 

WSN. 

2.1 Security threats and challenges in WSN 

In reality, WSNs tend to be more vulnerable to various security attacks than wired networks as 

the unbounded transmission medium is more accessible to security attacks than those of the 

bounded medium. Nearly all security schemas believe that the adversary can achieve full 

control over a sensor node in a WSN by direct or close-range physical access. This 

characteristic of WSNs posed various challenges to researchers. Besides, sensor nodes are 

normally deployed randomly in expansive unprotected areas, such as enemy territory. Even if 

each sensor has advanced equipment, they are hard to protect from being compromised. 

Attacks against WSNs can be classified according to different criteria. One is to separate them 

into attacking against the security mechanism and attacking against the basic routing 

communication mechanism. Also we can separate attacks into passive adversary and active 

adversary based on the types of attacks. The passive adversary only monitors the 

communication channel, stealing key material which threatens the confidentiality of data. The 

active adversary takes efforts to modify or alter the transmission system, which threatens 

authentication and breaks the behavior of the WSN. Here we point out the major types of 

attacks in WSNs: 

 Denial of service (DoS): The DoS attack [10], [11] tries to exhaust the resources of the 

victim. DoS prevents the legitimate network user from normally accessing the services 

and resources by flooding garbage packets to sensor nodes. DoS attacks can be 

performed in different layers of the network [12]. Jamming and malicious flooding are 

two representative example of DoS attack. 

 Sybil attack: In a Sybil attack [13], [14], a node forges the identities of more than one 

node in the WSN, thus the distributed algorithm is unable to maintain data integrity. 
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Newsome et al. [13] show that they can use radio resource testing to discover the Sybil 

node in a WSN with certain probability. 

 Wormhole attack: In a Wormhole attack [15], [16], an attacker learns or records the 

message packets at one location in the WSN and mimics or sends these messages at 

another location. The attack creates a tunnel in the WSN, and this is a significant threat 

because an attacker is unnecessary to compromise a node to accomplish the attack. 

 Blackhole attack: Blackhole attack [17], [18] usually occurs in flooding-based 

protocols. An attacker maliciously manipulates a node to act as a black hole that attracts 

all the traffic in the WSN; it attracts the traffic with declarations such as: this node 

contains high-quality data or the shortest path to a sink node. Thus the malicious node 

is able to insert itself into the sink and sensor nodes, and all messages between sink and 

sensor node have to pass through it. 

 Hello Flood attack: Hello Flood attack [19] uses ‘hello’ packets to convince the sensor 

nodes that the malicious node is their neighbor. The attacker usually uses a high 

transmission range and sends ‘hello’ packets in a large area of the WSN. Thus, when 

victim nodes try to send messages to the sink node, they go through the attacker as they 

treat it as their neighbor, and victim nodes are ultimately spoofed by the attacker. 

Table 2.1. Summary of Security Threats and Countermeasures in WSN 

Attack type Countermeasure 

scheme 

Characteristic 

DoS attack, 

Jamming 

 enhanced detection 

protocols  [20] 

Consistency checking,  

signal strength measurements for poor packet delivery 

ratios,  

Location information as the consistency check. 

Sybil attack Newsome et al. [13] Regularly changing of key,  

Resetting of device and changing of session keys, 

Position verification for detecting Sybil entity. 

Wormhole 

attack 

TIK [21] Monitoring system using packet leach techniques, 

with symmetric cryptography and time 

synchronization. 

Blackhole 

attack 

Intrusion Detection 

System  [17] 

Local information collected by watch dogs and 

optimized into the global information, global decision 

made by cluster head to compensate vulnerability in 

communication pattern. 

Hello Flood 

attack 

Singh et al. [19] Using signal strength and client puzzle method. 

Nodes classified based on the signal strength.  

Battery power used to check the validity of suspicious 

nodes. 

 



7 

In Table 2.1, we summarize a variety of types of threats and their corresponding 

countermeasures and security schemes. 

 

2.2 Tree formation mechanism in WSN 

The number of papers written on data collection, clustering, and tree formation is too vast to 

enumerate comprehensively. Instead, we focus our review on key works, particularly those that 

have aimed at data collection in large-scale WSNs with mobile sinks and stationary sensor 

nodes. 

To the best of our knowledge, one major algorithm for tree formation in the data collection 

protocol is the shortest path algorithm (SPA) or similar. In tree formation using SPA, a node 

in the WSN chooses its parent node based on the shortest hop to the data collector (sink) among 

its neighbor nodes. An SPA like Dijkstra's algorithm uses the number of hops as its only 

criterion, rather than other important factors such as workload, speed, and cost. The result is 

that tree formation using SPA generates an unbalanced tree, in which some nodes tend to have 

large numbers of child nodes that exceed the resource constraints of the sensor devices. 

For example, Gao et al. [3] use SPA, and their model is based on the fact that the mobile sink 

has to talk to every data collection node in its direct communication area (DCA), which 

equivalently means the mobile sink has to build a tree with every sensor with tree height at 

least one. In our protocol, a nearby sensor node in the DCA area can be formed into one single 

tree, obviously a smaller height summation than that of the algorithm in [3]. 

The ENergy Critical node Aware Spanning Tree (ENCAST) algorithm proposed by Zou et al. 

also uses the idea of SPA; ENCAST finds a shortest path tree by breadth-first traversal from 

the data collector (sink). The data path in this tree is guided by the minimum number of hops 

towards the data collector. One case that can happen in their work is that there might be multiple 

SPA trees in a sensor WSN, due to the fact that one node may have many neighbors with the 

same minimum-hop to the sink. The energy of a node is ENCAST’s second criterion of path 

selection; however, certain nodes’ energy may decrease faster than others, which leads to a 

rapid changing in the tree topology. 

In [2], Chen et al. also use SPA to build a shortest-path tree, and they use an adjustment method 

to convert the data collection tree to a load balancing tree with the purpose of balancing the 
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work load of each no-left node. They assume each node in the tree has limited power, and data 

collection and forwarding messages consume a certain amount of power. The load-balancing 

tree in [2] is focused on saving the energy of each parent node, thus increasing the lifetime of 

the network. 

Bandara et al. [22] present a Generic Top-down Cluster (GTC) and cluster tree formation 

algorithm that overcomes clustering tree problems such as large variations in tree, and large 

distance from sink to leaf node. They achieve this by varying parameters and properties in their 

GTC algorithm such as controlled breadth and depth, tree size, etc. 

Erciyes et al. [23] propose two algorithms to form spanning trees in sensor networks. The first 

algorithm is a modification of the spanning tree formation algorithm and forms a hierarchical 

spanning tree with a given sink, and it also considers the energy consumption in the WSN. The 

second algorithm is a modification of the breadth-first search algorithm.  

In [5], [24], they use the Capacitated Minimal Spanning (CMS) tree heuristic. They are all 

based on one greedy scheme presented by Dai and Han [25]. CMS is a centralized solution that 

assumes there is only one single root or base station with limited number of sensor nodes in 

the grid network, so that one centralized root sensor node has to be determined first. In addition, 

CMS focuses on constructing a top-balanced tree over the sensor network, which means CMS 

only guarantees that a roughly equal number of subtree nodes of the first level of sensor nodes 

are directly connected to the mobile sink. 

 

2.3 Scheduling mechanism in WSN 

In this section, we introduce the most representative papers on scheduling mechanisms in 

WSNs, particularly scheduling mechanisms under certain or predefined topologies. A 

scheduling mechanism is mainly used for eliminating interference and parallel transmission, 

thus lowering the bound on data collection time and reducing the energy consumption. 

Incel et al. [5] combine scheduling with transmission power control; their concurrent 

transmission is conducted by using multiple frequency channels. They are the pioneers in 

discussing the effect of multichannel scheduling combined with the impact of tree topology 

and channel assignment mechanism. They design algorithms to achieve the lower bound on 
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scheduling length under the tree topology WSN in realistic settings; their algorithms are based 

on breadth first search. 

In [26], Song et al. present an energy-efficient and time-optimal packet scheduling algorithm 

for a raw data convergecast tree. In their case, data is collected in periodic rounds from all the 

nodes to the sink, and the interference is assumed to be eliminated. In addition, they bring up 

a 3-coloring scheme for channel assignment, and they briefly mention that 3-coloring mitigates 

the interference on links in sensor trees. But it is not certain whether the color represents the 

frequency, codes, or other interference factors. 

Here we have to mention an important work done by Florens et al. [27]. In their work, they 

propose an optimal centralized algorithm to obtain transmission schedules that achieve 

minimum delay in data collection for both omnidirectional and directional channels. They 

derive the lower bounds on the time for special network topologies, such as line, multiline, and 

tree. However, the effect of data fusion and integration for raw data, which is the major 

integration characteristic for WSN, is not considered. Besides, Florens et al. assume the same 

time slot length for the sink node and relay node. 

Revah and Segal in [28] extend the work of Florens [27] by reducing not only the average 

delivery time but also the completion time. They argue that Florens’ work [27] does not 

consider the idle time of messages transmission. They argue it is unrealistic that a message can 

be transmitted without any delay. In their algorithm, messages in different subsets can be 

transmitted together without being delayed by messages from other subsets. However, they did 

not test their algorithm in a tree topology WSN. 

Chen et al. [24] also extend Florens et al. [27] in their time scheduling algorithm; they double 

the length of the time on the relay node and introduce a guard-time such that the sink can 

receive messages continuously. 
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Chapter 3 SYSTEM MODEL AND OBSERVATION 

3.1 Security communication framework 

In our convergecast data collection tree, all MD nodes, including root MD, can also be 

categorized, based on their communication roles, into two types: relay MD, and leaf MD. The 

relay MD sends the combined security information given by a higher level MD in the tree to 

each of its child MD nodes, and the relay MD waits for the response of the encrypted data 

collection message from its child MD nodes. The leaf MD nodes only respond to relay MD 

nodes, and they do not need to transmit the data collection message to other MD nodes. As 

mentioned before, one of the major differences between this thesis and most of the previous 

work is that we consider the security issue a top priority when we design our protocol. Hence, 

we choose three-serial-stage message transmission mechanisms such that message and data are 

encrypted in the WSN, which provides protection against eavesdropping, modification, and 

injection of packets. And this message transmission mechanisms is used in the top-down, and 

then bottom-up, data collection approach such that we can have the minimum number of 

messages in one round of data collection for the entire WSN. In other convergecast data 

collection protocols which do not consider the issue of security transmission, such as [2], [3], 

[5], every sensor node sends an unencrypted message through a path to the sink node in the 

tree as soon as the sensor node fetches some local data. Hence, a relay node has to send multiple 

messages to its parent node for all the sensors in its sub-branch. As mentioned in [29], the more 

the number of messages transmitted by the data collection protocol in the WSN has been 

increased, the more the risk to secure transmission over the WSN has increased. 

In our convergecast tree for data collection, we regard one message between two MDs as an 

edge. The total number of messages equals the number of edges times two in the final tree 

topology. Every relay node in our framework does data compression and integration after it 

gets all the messages from its child nodes. Thus, each edge transmits two messages: one for 

top-down transmission, and one for bottom-up. Hence we lower both the number of messages 

needed for data collection and the security risk in message transmission. 

SMTDC is designed to have built-in extensibility and scalability to support many security 

communication protocols. A representative secure communication protocol with packet 

integration that can be used in a top-down-bottom-up collection mechanism is [6]. In [6], the 



11 

confidentiality of the data between two nodes is ensured through encryption and decryption 

using different types of Diffie-Hellman (DH) keys, including a public group key of the entire 

tree and public/private key pair of MDs. When an MD receives one message, it has to decrypt 

the message received and verify necessary signatures first, then it prepares for forwarding. 

When an MD forwards one message, it will use its own DH half key and sign it. Then, it sends 

this encrypted message to its child node or parent MD node, maybe a leaf node, or root MD 

node. 

Inspired by many security protocols such as [6], [7], here we define the secure top-down-

bottom-up data collection mechanism that our SMTDC is based on. In one round of data 

collection, the top-down-bottom-up mechanism consists of two phases: the top-down phase 

and the bottom-up phase. And the secure message transmission in data collection consists of 

three serial stages: encryption, transmission, and decryption.  

In the top-down phase of data collection, the messages are transmitted from the root node in 

the top of tree to leaf nodes in the bottom of tree. When a relay MD node receives a secure 

message from its parent node, it decrypts the message first; then the relay MD encrypts an 

individual secure message for each of its child MDs, and then transmits secure messages 

separately to its child MDs.  

In the bottom-up phase of data collection, when a relay MD node receives a secure message 

from its child MD nodes, it decrypts the message first and then executes necessary data 

integration. After it receives messages from all its child MD nodes, it prepares and encrypts a 

new message and transmits to its parent MD. 

We need to mention that a leaf MD in the top-down phase only receives a message from its 

parent MD and executes decryption; in the bottom-up phase, the leaf MD encrypts a new 

message and transmits to its parent node. 

Figure 3.1 shows how the security protocol works with top-down-bottom-up collection 

mechanism in one round of data collection. There are four MD nodes (MD0~MD3) in the tree 

topology, and every message in the data collection (black solid number circle ❶~❻) consists 

of three serial stages: encryption, transmission, and decryption. When an MD node (e.g. MD1) 

receives a security message in the top-down data collection (message ❶ from MD0), it 

decrypts the message first, then encrypts and prepare for new messages, and then transmits to 

its child nodes and waits for a reply. (MD1 decrypts message ❶, then encrypts two messages, 
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❷ and ❸, then transmits to its child nodes MD2 and MD3.) One MD does not send a secure 

message back to its parent node in the bottom-up phase until it receives the bottom-up messages 

from all its child MDs. (MD1 does not encrypt and send message ❻ to MD0 until MD1 

receives ❹ and ❺ from MD2 and MD3.) 

 

 

  Figure 3.1: Top-down and bottom-up data collection mechanism 

The top-down-bottom-up data collection mechanism can cooperate with many secure 

transmission protocols, such as [7] and [8], to ensure the confidentiality of messages. In this 

thesis, the cryptography is not our focus; we use a three-serial-stage message transmission 

model as a prototype secure message communication framework that cooperates with SMTDC 

for the simulations in the rest of the thesis. 

 

3.2 Messages lifecycle analysis 

As we mentioned before, the lifecycle of security messages for one half-duplex MD has three 

serial stages: encryption, transmission, and decryption. Let 𝑡𝑒 be the time spent for encryption 

before sending one security message, 𝑡𝑡 be the time spent for transmitting, and 𝑡𝑑 be the time 

for decryption of one security message. So the time spent on one edge in the tree is equal to 

𝑡𝑒 + 𝑡𝑡 + 𝑡𝑑 . The specific values of 𝑡𝑒 , 𝑡𝑡 , and 𝑡𝑑  can vary according to different security 

protocols and different hardware devices, but [30], [31], and [32] reach a consensus that the 

transmission time 𝑡𝑡 is dominant compared to 𝑡𝑒 , 𝑡𝑑. 
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To understand whether the transmission time is still a dominant portion in computationally-

constrained devices, we conducted experiments in our test bed, where we use credit card sized 

Raspberry Pi [33] devices to emulate the wireless resource-constrained MDs. Raspberry Pi is 

a tiny, single-board computer (or embedded device) with limited computational, storage and 

communications capabilities. The CPU is 700 MHz and the memory available is 512MB. The 

Raspberry Pi is equipped with USB WiFi adapter, which has an internal chip antenna and is 

compatible with 802.11b/g/n; we use the mode of 150 Mbps 802.11n for our simulation. (Some 

of the specifications of Raspberry Pi are listed in Appendix A.) 

 

Figure 3.2: Simple linear topology 

 

Figure 3.3: Total time line of linear topology 

Under the simple topology shown in Figure 3.2, using our top-down-bottom-up mechanism 

with security protocol [6], we record the timeline of message passing from MD1 to MD2, to 
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MD3, then back to MD1 under different data sizes and key sizes using Raspberry Pi. Results 

are shown in Figure 3.3. ‘MD1-MD2’ means the time between MD1 receiving the message and 

MD2 receiving the message (𝑡𝑒 + 𝑡𝑡 of message from MD1, 𝑡𝑒 for the encryption in MD1, and 

𝑡𝑡  for the transmission between MD1 and MD2). ‘MD2-MD3’ means the time from MD2 

receiving the message until MD3 receives the message, which includes (𝑡𝑑 + 𝑡𝑒 + 𝑡𝑡) as MD2 

has to decrypt the message first (𝑡𝑑 + 𝑡𝑒 for the decryption and encryption in MD2). We find 

that transmission time 𝑡𝑡 is about three times greater than encryption and decryption time 

together, 𝑡𝑡 ≈ 3 ∗ (𝑡𝑒 + 𝑡𝑑) in our protocol [6] under linear topology shown in Figure 3.2. 

 

3.3 Data collection time model for tree with height one  

In this section, based on previous observation of  𝑡𝑒 , 𝑡𝑡,  and 𝑡𝑑 , we investigate the data 

collection time model for a tree with height equal to one, with only one parent node, and in 

which all leaf nodes directly connect to the parent node (tree topology shown in Figure 3.4). 

We define 𝑇𝑟𝑜𝑢𝑛𝑑 as the total time needed for one parent MD node to gather data from its child 

MD nodes, in a tree with height equal to one in one round of data collection; 𝑇𝑡𝑜𝑝−𝑑𝑜𝑤𝑛 is the 

time needed for the top-down phase of data collection, and 𝑇𝑏𝑜𝑡𝑡𝑜𝑚−𝑢𝑝 is the time needed for 

the bottom-up phase of data collection in the above scenario. 

We measure 𝑇𝑟𝑜𝑢𝑛𝑑 with the number of child MD nodes in the range from one to ten, using the 

message encryption and decryption mechanism mentioned in security protocol [6] and 

assuming all MDs are half-duplex mode hardware-limited devices. We record the total time, 

comprising the data collection time of one parent MD with those of various numbers of child 

MDs.  

 

Figure 3.4: Parent-leafs topology 
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As shown in Figure 3.4, let us assume that in one round of data collection, one parent MD 

(𝑀𝐷0) has 𝑛 child MD nodes (𝑀𝐷1~ 𝑀𝐷𝑛). In hardware-limited devices, we find that one 

single process takes nearly 100% of CPU resources. In addition, they are all half-duplex devices, 

so the message from parent MD to child MD and the message from child MD to parent MD 

cannot be transmitted at the same time. As mentioned previously, one round of data collection 

in one level of the tree has two phases, top-down and bottom-up. For the topology in Figure 

3.4, Figure 3.5 shows the top-down data collection timeline, where the x-axis represents the 

timeline for all MDs. We can see that in the top-down phase, the parent relay MD, 𝑀𝐷0, needs 

to first encrypt every message and send them to child MDs, 𝑀𝐷1~ 𝑀𝐷𝑛 , separately. The 

encryption and transmission of one MD have to be in serial order, so the parent 𝑀𝐷0 sends 𝑛 

secure messages to 𝑛  child MDs, which takes 𝑛 ∗ (𝑡𝑒 + 𝑡𝑡). And all child MD nodes can 

process the security messages in parallel; as shown in Figure 3.5, the decryption time, 𝑡𝑑, for 

𝑀𝐷1and 𝑀𝐷2 overlaps with the encryption and transmission time of 𝑀𝐷0, but it still takes 𝑡𝑑 

time for the last MD node, 𝑀𝐷𝑛, to finish decrypting the last top-down message. And we can 

see that 𝑀𝐷1~ 𝑀𝐷𝑛−1 already finish decryption when 𝑀𝐷𝑛  receives a message from 𝑀𝐷0 . 

Thus the total time for the top-down phase is  𝑛 ∗ (𝑡𝑒 + 𝑡𝑡) + 𝑡𝑑.  

 

Figure 3.5: Top-down phase of data collection timeline for one parent MD and its 𝑛 child 

MDs 

Figure 3.6 shows the bottom-up data collection timeline for the topology in Figure 3.4. 

Similarly, in the bottom-up phase, all child MD nodes, 𝑀𝐷1~ 𝑀𝐷𝑛, send secure messages to 

parent 𝑀𝐷0, and 𝑀𝐷0 takes 𝑛 ∗ (𝑡𝑑 + 𝑡𝑡) to receive and decrypt all individual messages, but 

before the first child MD (𝑀𝐷1 in the figure) transmits a message to 𝑀𝐷0, it has to encrypt the 



16 

message first. As shown in Figure 3.6, 𝑀𝐷1 takes 𝑡𝑒 before 𝑀𝐷0 receives the first message, 

and we assume that 𝑀𝐷2~ 𝑀𝐷𝑛 already finish encryption when 𝑀𝐷1 communicates with 𝑀𝐷0. 

As shown in Figure 3.5, all the 𝑡𝑒 for 𝑀𝐷2~𝑀𝐷𝑛 overlap with the timeline of 𝑀𝐷0; thus the 

total time for the bottom-up phase is 𝑛 ∗ (𝑡𝑑 + 𝑡𝑡) + 𝑡𝑒.  

 

 

Figure 3.6: Bottom-up stage of data collection timeline for one parent MD with its 𝑛 child 

MDs 

Thus we can say that the time in which a parent MD in a certain level of the convergecast tree 

can finish one round of data collection, 𝑇𝑟𝑜𝑢𝑛𝑑, equals the time for both the top-bottom and 

bottom-up stages. Thus: 

𝑇𝑟𝑜𝑢𝑛𝑑 = 𝑇𝑡𝑜𝑝−𝑑𝑜𝑤𝑛 + 𝑇𝑏𝑜𝑡𝑡𝑜𝑚−𝑢𝑝 

𝑇𝑟𝑜𝑢𝑛𝑑 =  𝑛 ∗ (𝑡𝑒 + 𝑡𝑡) + 𝑡𝑑 + 𝑛 ∗ (𝑡𝑑 + 𝑡𝑡) + 𝑡𝑒  

 𝑇𝑟𝑜𝑢𝑛𝑑 = (𝑛 + 1) ∗ (𝑡𝑒 + 𝑡𝑑) +  2𝑛 ∗ 𝑡𝑡 (3.1) 

And in one certain level, the average time spent for one child MD is:  

 
𝑇𝑟𝑜𝑢𝑛𝑑

𝑁𝑢𝑚 𝑜𝑓 𝑐ℎ𝑖𝑙𝑑 𝑀𝐷
=
(𝑛 + 1) ∗ (𝑡𝑒 + 𝑡𝑑) +  2𝑛 ∗ 𝑡𝑡

𝑛
  (3.2) 

We measure the 𝑇𝑟𝑜𝑢𝑛𝑑 with child MD range from 1 to 10. The simulation result are shown in 

Figure 3.7, where the x-axis is the number of child MD nodes, 𝑛. The measured total time, 
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𝑇𝑟𝑜𝑢𝑛𝑑 (the red round-dots line), maps the primary vertical axis (the y-axis on the left). And 

the prediction time per child MD (the green dashed line) and the average time per child MD 

(the blue triangle-dots line) map the secondary vertical axis (the y-axis on the right). The 

prediction time per child MD equals the predicted 𝑇𝑟𝑜𝑢𝑛𝑑 (equation (3.1), with given 𝑛, 𝑡𝑒 , 𝑡𝑑, 

and 𝑡𝑑) divided by the number of child MD. The average time per child MD equals the actual 

measured time (𝑇𝑟𝑜𝑢𝑛𝑑 from simulations) divided by the number of child MDs. In Figure 3.7, 

we can see that our average time per child MD satisfies our prediction time model. 

 

Figure 3.7: Simulation result of parent-leafs topology 

 

3.4 Data collection time model for general trees 

In this section we generalize our data collection time model to apply to all general convergecast 

trees, which have greater heights than the tree discussed in the previous section. And one of 

the major differences between this thesis and most of the previous work is that we integrate the 

load balancing function of the data collection time in one single level of the tree, denoted as 

𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏),  into our security data collection mechanisms.  
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Total data collection time of one convergecast tree is calculated as the summation of time spent 

in each level of the tree; the ‘level’ is the distance from one edge to the root MD. As mentioned 

in section 3.1, our security protocol collects the data initially from top to bottom, then waits for 

responses from bottom back to top, and we assume that different relay MD nodes in the same 

level can communicate with their child MD nodes at the same time. And one MD node must 

collect all data from its child MD node before sending back to its parent node. Thus, the total 

time in our data collection model is defined as follows: 

 𝑇𝑡𝑜𝑡𝑎𝑙 = ∑(𝑇𝑡𝑜𝑝−𝑑𝑜𝑤𝑛
ℎ𝑖 + 𝑇𝑏𝑜𝑡𝑡𝑜𝑚−𝑢𝑝

ℎ𝑖 )

𝐻

ℎ𝑖=1

 (3.3) 

Here, 𝑇𝑡𝑜𝑡𝑎𝑙 is the total data collection time of an entire tree; 𝐻 is the total level of the tree; 

𝑇𝑡𝑜𝑝−𝑑𝑜𝑤𝑛
ℎ𝑖 , 𝑇𝑏𝑜𝑡𝑡𝑜𝑚−𝑢𝑝

ℎ𝑖  are the top-down and bottom-up data collection time period in a given 

level, ℎ𝑖. As we mentioned before, for two different edges in the tree, if the parent relay MDs 

of these edges are different, then 𝑡𝑒 , 𝑡𝑡, and 𝑡𝑑  of two different MDs can overlap in time. From 

Figure 3.5 and 3.6, we know that 𝑇𝑡𝑜𝑝−𝑑𝑜𝑤𝑛
ℎ𝑖  and 𝑇𝑏𝑜𝑡𝑡𝑜𝑚−𝑢𝑝

ℎ𝑖  largely depend on the maximum 

time of one parent relay MD in that specific level. 

For example, in Figure 3.2, edge MD1-MD2 belongs to level 1, and edge MD2-MD3 belongs 

to level 2. The total time for data collection equals four continuous time periods: 𝑇𝑡𝑜𝑝−𝑑𝑜𝑤𝑛
1  for 

transmission between MD1-MD2, 𝑇𝑡𝑜𝑝−𝑑𝑜𝑤𝑛
2  for MD2-MD3, 𝑇𝑏𝑜𝑡𝑡𝑜𝑚−𝑢𝑝

2  for MD3-MD2, and 

𝑇𝑏𝑜𝑡𝑡𝑜𝑚−𝑢𝑝
1  for MD2-MD1. In Figure 3.8, edges MD1-MD2, MD3-MD4, and MD3-MD5 are 

all in the second level. From the transmission model defined before, time spent in the second 

level depends largely on the collection time of subtree MD3, because time spent in subtree 

MD3 is longer than time in subtree MD1, and both times can overlap with each other. 

 

Figure 3.8: Example of tree structure  
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Constructing a convergecast tree and calculating the total data collection time under the best 

scheduling scenario with a single channel is shown to be NP-complete on general graphs by 

Choi et al. [34] and many other related works. We provide a heuristic method and generalize 

the total time in our data collection model as: 

 𝑇𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑇𝑙𝑒𝑣𝑒𝑙
ℎ𝑖 (𝑁𝑠𝑢𝑏_ℎ𝑖)

𝐻

ℎ𝑖=1

 (3.4) 

where 𝐻 is the total height of the tree, 𝑇𝑙𝑒𝑣𝑒𝑙
ℎ𝑖 (𝑁𝑠𝑢𝑏) is the data collection time function for level 

ℎ𝑖, 𝑁𝑠𝑢𝑏_ℎ𝑖 is the average number of child MDs for the relay parent MDs in level ℎ𝑖. In Figure 

3.8, MD0, MD1, MD3 are three relay MD nodes, and each of them has 2, 1, 2 MD nodes, so 

𝑁𝑠𝑢𝑏_1 =2, 𝑁𝑠𝑢𝑏_2 =
1+2

2
= 1.5.  

Previously, we calculated the data collection time for one relay MD node with 𝑛 child leaf MDs 

as 𝑇𝑟𝑜𝑢𝑛𝑑, 𝑇𝑟𝑜𝑢𝑛𝑑 = (𝑛 + 1) ∗ (𝑡𝑒 + 𝑡𝑑) +  2𝑛 ∗ 𝑡𝑡. We use 𝑇𝑟𝑜𝑢𝑛𝑑 to simulate 𝑇𝑙𝑒𝑣𝑒𝑙
ℎ𝑖 (𝑁𝑠𝑢𝑏_ℎ𝑖); 

thus, we define: 

 𝑇𝑙𝑒𝑣𝑒𝑙
ℎ𝑖 (𝑁𝑠𝑢𝑏_ℎ𝑖) = (𝑁𝑠𝑢𝑏_ℎ𝑖 + 1) ∗ (𝑡𝑒 + 𝑡𝑑) +  2𝑁𝑠𝑢𝑏_ℎ𝑖 ∗ 𝑡𝑡 (3.5) 

We further simplify the definition of total data collection time of one tree, 𝑇𝑘, to: 

 𝑇𝑡𝑜𝑡𝑎𝑙
𝑘 = 𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏) ∗ 𝑦𝑘 (3.6) 

 𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏) = (𝑁𝑠𝑢𝑏 + 1) ∗ (𝑡𝑒 + 𝑡𝑑) +  2𝑁𝑠𝑢𝑏 ∗ 𝑡𝑡 (3.7) 

where 𝑁𝑠𝑢𝑏 is the average number of child MDs for all the relay parent MDs in the entire tree, 

and 𝑦𝑘 is the height of tree 𝑇𝑘, which equals the number of edges from the farthest leaf MD to 

the root MD. 

Now we simplify 𝑇𝑙𝑒𝑣𝑒𝑙
ℎ𝑖 (𝑁𝑠𝑢𝑏_ℎ𝑖) to 𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏); we define 𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏) as the data collection 

time for each level in the tree, and if the average number of child MDs for all the relay MDs 

equals to 𝑁𝑠𝑢𝑏 , we assume the data collection time for each level is the same. This 

simplification is based on the two following observations: (1) Equation (3.5) is approximately 

proportional to 𝑁𝑠𝑢𝑏: In equation (3.5) we first calculate the specific time spent in each level, 

then calculate the summation to get the entire time for the tree. In equation (3.6) we first 

calculate the average time spent in each level of tree (𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏)) based on 𝑁𝑠𝑢𝑏, then we 
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time it to the height of tree 𝑦𝑘. The difference between the two approaches is negligible. (2) In 

our SMTDC tree formation part introduced in the next chapter, we intend to build a load 

balancing tree in all levels of the tree, which has benefits in time scheduling and thus in 

minimizing the data collection time, as well as benefits in bearing unbalanced energy 

consumption and extending network lifetime as mentioned in Chen et al. [2]. 

 

Figure 3.9: Average number of child MDs, 𝑁𝑠𝑢𝑏 vs. data collection time per level 

To test the model of 𝑇𝑡𝑜𝑡𝑎𝑙
𝑘  (equation (3.6)), we measured data collection time obtained with 

10~20 MDs, under various tree topologies. In Figure 3.9, the x-axis is 𝑁𝑠𝑢𝑏, and the y-axis is 

the data collection time per level, which equals 
𝑇𝑡𝑜𝑡𝑎𝑙
𝑘

𝑦𝑘
. The solid line is our estimation of  

𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏) using equation (3.7). One dot represents the total time per level for one specific 

tree topology; we can see that the scatter points are very close to our estimation line. Trees with 

the same 𝑁𝑠𝑢𝑏  have different data collection times per level, because the tree topology 

influences the total time. Dot 𝐴 is the data of tree 𝕋1’𝑠 topology, which is shown in Figure 3.10 

and dot 𝐵 is tree 𝕋2’𝑠 topology shown in Figure 3.11. 
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Figure 3.10: Tree 𝕋1′𝑠 topology 

 

Figure 3.11: Tree 𝕋2’𝑠 topology 

In a balancing tree, the load is equivalently distributed between all relay MDs to avoid 

concentrating all work in a small subset of relay MDs. For example, 𝕋1 and 𝕋2 in Figure 3.10 

and 3.11 both have heights equal to 2 and 𝑁𝑠𝑢𝑏 equals 2. However, in𝕋2, MD0 bears a higher 

forwarding load than MD1 because MD0 has three child MDs, and MD1 only has one. By 

contrast, 𝕋1 is more balanced in energy consumption, as all relay MDs, MD0, MD1, and MD4 

in 𝕋1have equal numbers of child MDs.  
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Chapter 4 SMTDC DESIGN AND SOLUTION 

 

Based on the previous chapter, we find that for a tree convergecast data collection model using 

a general security communication framework, every message needs three serial stages: 

encryption, transmission, and then decryption. Conceptually, there are three possible 

bottlenecks on the time of data collection: (1) the height of tree, (2) in each level of tree, the 

time spent for relay MD nodes to process each forwarding message and communicate with 

child MD nodes, (3) time spent on fetching local data. We can assume that (3) is a slight amount 

of time compared to message transmission and it can be eliminated by wisely using the interval 

between different rounds of data collection. Therefore, (1) and (2) become the fundamental 

obstacles to minimizing the data collection time. 

In our SMTDC, we ask and answer two questions based on observations and experiments with 

hardware-limited devices in WSNs: (1) How can we build an optimized routing tree topology 

in a WSN which has relatively minimal height and is also well balanced, such that this tree 

topology potentially minimizes data collection time? (2) If this tree is built by following our 

intentions and constraints, how can we improve the data collection time even further by wisely 

scheduling the message forwarding sequence of MDs? At the same time, we also consider 

security issues such as security key leakage, eavesdropping, and DoS attack. 

In this chapter we will introduce the processes of SMTDC protocol in detail, including SMTDC 

tree formation and SMTDC scheduling. 

4.1 SMTDC tree formation 

The first phase of SMTDC is the tree formation phase. In this phase, based on previous 

observation, we generalize the data collection time of a tree to the multiplication result of the 

total height of trees and time spent in each level of the tree. We first develop a linear 

optimization problem for minimum data collection time with fixed average number of child 

MD nodes for all relay MDs (𝑁𝑠𝑢𝑏 ), which is an NP-hard problem; then we propose an 

approximation algorithm (Algorithm 1) to solve this. Furthermore, we present a heuristic 

iterative method that uses Algorithm 1 to generate the tree topology for practical 

implementation when 𝑁𝑠𝑢𝑏 are unknown. 
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4.1.1 Notation definition of tree formation 

Before we introduce our SMTDC tree formation, we need to define notations that are utilized 

in this work. Table 4.1 lists the notations.  For a simple initial deployment shown in Figure 4.1, 

we plan to build a desired tree topology shown in Figure 4.2 based on this initial topology. 

Let 𝐺 be the background sensor nodes topology, and let ℳ be the set for all MD nodes, ℳ =

{1,2, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}. The data collector (DC), which is one mobile sink node, moves along a 

fixed predefined path with constant speed to collect data (the black vehicle in Figures 4.1 and 

4.2). We assume that due to the limitation of transmission distance between two sensor devices 

(DC and MD, MD and MD), only a small number of MD nodes can directly communicate with 

the DC. We define these MD nodes with close proximity as potential root MD set, ℛ, in Figure 

4.1; ℛ = {1,2}, 𝑘 is potential root MD node, if 𝑘 ∈ ℛ. And ℛ ⊆ℳ. 

For MD node 𝑖 ∈ ℳ, it has set of neighbors 𝕊(𝑖), as the potential parent node set. For example 

in Figure 4.1, 𝕊(𝑎) = {𝑁𝑈𝐿𝐿, 𝑏, 𝑐, 𝑑, 1}, the ′𝑁𝑈𝐿𝐿′ element only exists in 𝕊(𝑖), where 𝑖 is a 

potential root MD node and 𝑖 has no parent MD. 

The term ℎ is the distance (number of hops) from node  𝑖 to node  𝑘 (root MD node) in the 

final deployment. 𝐻𝑚𝑎𝑥 is the max height of each tree and can be predefined as limiting the 

maximum height of one tree topology. 

 𝑋𝑖,𝑗,ℎ
𝑘  means that, in the final deployment, node 𝑖  belongs to tree 𝑇𝑘  and its parent node 

is 𝑗, (𝑗 ∈  𝕊(𝑖)). And the distance from node 𝑖 to root node 𝑘 is ℎ.  

 

 

Figure 4.1: Initial deployment 
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Figure 4.2: Final deployment 

 

 𝑋𝑖,𝑗,ℎ
𝑘 = 

{
  
 

  
 

1,   𝑖𝑓 𝑀𝐷𝑖
′𝑠 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑀𝐷𝑘

𝑣𝑖𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 𝑀𝐷𝑗 , 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑓𝑟𝑜𝑚 𝑀𝐷𝑖  𝑡𝑜 𝑀𝐷𝑘  𝑖𝑠 ℎ

0,   𝑖𝑓 𝑀𝐷𝑖
′𝑠 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑀𝐷𝑘

𝑣𝑖𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 𝑀𝐷𝑗 , 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 𝑓𝑟𝑜𝑚 𝑀𝐷𝑖  𝑡𝑜 𝑀𝐷𝑘  𝑖𝑠 ℎ 

 

Thus, for all nodes in ℳ, we have  𝑋𝑖,𝑁𝑈𝐿𝐿,0
𝑖 = 1, if node 𝑖 is selected as a root MD node in the 

final deployment; otherwise,  𝑋𝑖,𝑁𝑈𝐿𝐿,0
𝑖 = 0. We should mention that 𝑁𝑈𝐿𝐿 ∈  𝕊(𝑖), for all 𝑖 ∈

ℛ. We use 𝑦𝑘  to represent the height of tree 𝑇𝑘 , and 𝑦𝑘  depends on the farthest node from 

node 𝑘 in the tree; hence 𝑦𝑘 satisfies: 

𝑦𝑘 = 𝑚𝑎𝑥 (ℎ •   𝑋𝑖,𝑗,ℎ
𝑘 ), ∀𝑖 ∈ ℳ,∀ℎ ≤ 𝐻𝑚𝑎𝑥 , 𝑗 ∈  𝕊(𝑖) 

or in problem definition we say: 

 𝑦𝑘 ≥ ℎ •   𝑋𝑖,𝑗,ℎ
𝑘 , ∀𝑖 ∈ ℳ, ∀ℎ ≤ 𝐻𝑚𝑎𝑥, 𝑗 ∈  𝕊(𝑖)  

For example, in Figure 4.2, in the final deployment node f belongs to tree 𝑇2, and the distance 

from node 𝑓 to node 2 is 3, and 𝑋𝑓,𝑒,3
2  equals to 1, so 𝑦2 ≥ 3 ∗  𝑋𝑓,𝑒,3

2 , thus 𝑦2 ≥ 3. 

 

As we mentioned earlier, we design SMTDC to be adapted to multiple security communication 

frameworks, not to some specific security protocol. We generalize different security challenges, 

such as Sybil attack, denial of service (DoS) attack, information spoofing, and key leakage, 

mentioned in [29], [35], to a simple probability problem. We assume that every MD node 

𝑖, (𝑖 ∈ ℳ) encounters a security issue, with probability  𝑝𝑖 (not identical). The probability that 
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the tree 𝑘  encounters a security issue because of individual MD is 𝑃𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑(𝑇𝑘)  (the 

probability that 𝑇𝑘  is attacked). We limit 𝑃𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑(𝑇𝑘)  to be no larger than a predefined 

threshold 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

 

TABLE 4.1. Notations 

𝑡𝑒 Encryption time of one message 

𝑡𝑑 Decryption time of one message 

𝑡𝑡 Transmission time of one message 

𝐺 Background sensor node topology 

𝑇𝑟𝑜𝑢𝑛𝑑 
Time that one parent MD in a certain level takes to finish one round of data 

collection (formula 3.1) 

𝑇𝑡𝑜𝑝−𝑑𝑜𝑤𝑛 
Time that one parent MD in a certain level takes to finish top-down stage in 

one round of data collection 

𝑇𝑏𝑜𝑡𝑡𝑜𝑚−𝑢𝑝 
Time that one parent MD in a certain level takes to finish bottom-up stage 

in one round of data collection 

𝑇𝑡𝑜𝑡𝑎𝑙 Total time of data collection 

ℳ MD set 

ℛ Potential root MD set 

𝕊(𝑖) Potential parent node set 

ℎ 
Distance (number of hops) from one node  to one root MD in the final 

deployment 

𝐻𝑚𝑎𝑥 Predefined maximum value of tree height 

𝑇𝑘 Tree with root 𝑀𝐷𝑘 

 𝑋𝑖,𝑗,ℎ
𝑘  

In the final deployment, 𝑀𝐷𝑖 belongs to tree 𝑇𝑘, its parent node is 𝑀𝐷𝑗 , and 

the distance from 𝑀𝐷𝑖 to root node 𝑘 is ℎ 

 𝑝𝑖 Probability that 𝑀𝐷𝑘  encounters a security issue 

𝑃𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑(𝑇𝑘) 
Probability that the tree 𝑘 encounters a security issue because of individual 

MD 

𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 Threshold value for tree being attacked or key leakage 

𝑁𝑚𝑖𝑛 Minimum number of the balancing constraint 

𝑁𝑚𝑎𝑥 Maximum number of the balancing constraint 

𝑁𝑠𝑢𝑏 Average number of child MD nodes for all relay MD nodes in the tree 

𝑑𝑡𝑖 Data collection time needed for a subtree branch, whose root is 𝑀𝐷𝑖 

𝑟𝑏𝑖 
The time from when an MD receives a top-down message from higher level 

until a subtree branch of this MD, 𝑀𝐷𝑖, readies to send bottom-up message 

back to this MD. 

𝑆𝑒𝑞 Transmission sequence, for one relay MD 
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4.1.2 Tree formation with predefined 𝑁𝑠𝑢𝑏 

We define our SMTDC tree formation as follows: 

Objective function:  

 min 𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏)∑ 𝑦𝑘
𝑘∈ℛ

 (4.1) 

 𝑠. 𝑡.  𝑦𝑘 ≥ ℎ •   𝑋𝑖,𝑗,ℎ
𝑘 , ∀𝑖 ∈ ℳ,∀ℎ ≤ 𝐻𝑚𝑎𝑥, 𝑗 ∈  𝕊(𝑖) (4.2) 

where 𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏) is the time spent on each level of a tree, according to a certain 𝑁𝑠𝑢𝑏 (details 

in equation (3.7)); and ∑ 𝑦𝑘𝑘∈𝑅  is the total height of all trees in our final tree formations. 

(1) Security constraint:  

Assume that every MD node 𝑖, (𝑖 ∈ ℳ) encounters a security issue, such as key leakage or 

eavesdropping, with probability  𝑝𝑖 (not identical). The probability that the tree 𝑘 encounters a 

security issue because of an individual MD is 𝑃𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑(𝑇𝑘). We limit 𝑃𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑(𝑇𝑘) to be no 

larger than some predefined threshold 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑; then leakage constraint is as follows (details 

in Appendix B): 

 ∑ ∑ ∑ 𝑋𝑖,𝑗,ℎ
𝑘

𝐻

ℎ=1𝑗 ∈ 𝕊(𝑖)𝑖∈ℳ

• log (
1

1 − 𝑝𝑖
) ≤ 𝑙𝑜𝑔 (

1

1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
) , ∀𝑘 ∈ ℛ (4.3) 

 

(2) Tree constraint:  

Each node, 𝑖 ∈ ℳ, is contained in only 1 tree, and it can only have one height, and only one 

parent:  

 ∑ ∑ ∑ 𝑋𝑖,𝑗,ℎ
𝑘

𝐻

ℎ=1𝑗 ∈ 𝕊(𝑖)𝑘∈ℛ

= 1, ∀𝑖 ∈ ℳ (4.4) 

Each node and its parent have to be in the same tree, and the parent’s height, ℎ, is one less than 

the node’s height: 
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  𝑋𝑖,𝑗,ℎ
𝑘 ≤ ∑  𝑋𝑗,𝑙,ℎ−1

𝑘

𝑙∈𝕊(𝑗)

 ,    ∀𝑖 ∈ ℳ,   𝑘 ∈ ℛ, 𝑗 ∈ 𝕊(𝑖), 𝑙 ∈  𝕊(𝑗) (4.5) 

Constraints (4.4) and (4.5) prevent the redundant loop in the tree topology. 

(3) Load balance constraint: 

As all MD nodes are resource-constrained in terms of computation power, communication 

bandwidth, and storage capacity, we define the maximum number of child MD nodes as 𝑁𝑚𝑎𝑥, 

and the minimum number of child MD nodes as 𝑁𝑚𝑖𝑛. 

 

𝑁𝑚𝑖𝑛 ≤ ∑ 𝑋𝑖,𝑗,ℎ
𝑘

𝑖 ∈ 𝕊(𝑗)

≤ 𝑁𝑚𝑎𝑥 ,     ∀𝑗 ∈ ℳ, 𝑘 ∈ ℛ, ℎ ≤ 𝐻𝑚𝑎𝑥  

 𝑋𝑖,𝑗,ℎ
𝑘 ∈ {0,1}, ∀𝑖 ∈ ℳ, 𝑘 ∈ ℛ, 𝑗 ∈  𝕊(𝑖) 

(4.6) 

Since adding 𝑁𝑠𝑢𝑏  to the load balance constraint will generate an exponential number of 

constraints to our problem definition, which takes exponential time to solve using a current 

optimization problem solver like GUROBI, we use a compromise solution, and use 𝑁𝑚𝑎𝑥 and 

𝑁𝑚𝑖𝑛 to simulate 𝑁𝑠𝑢𝑏. 

 
𝑁𝑚𝑎𝑥 = 𝑁𝑠𝑢𝑏 ∗ (1 + 𝛼), 𝑁𝑚𝑖𝑛 = 𝑁𝑠𝑢𝑏 ∗ (1 − 𝛼),

𝛼 ∈ [0,1)  
(4.7) 

where 𝛼 is a predefined constant value. We intend to build a balanced tree, in which all relay 

nodes tend to have similar numbers of child MD nodes; thus, we use 𝑁𝑚𝑎𝑥  and 𝑁𝑚𝑖𝑛 to reduce 

the complexity of our calculation. 

As we know, the SMTDC tree formation is a mixed-integer programming problem, which is 

also an NP-hard problem. Thus, we use linear relaxation-based iteration rounding (LR-IR) 

techniques in an approximation algorithm to solve this problem. 

 

Algorithm 1: LR-IR for SMTDC tree formation  

Input: 𝐺, 𝑝𝑖, 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, ℛ,ℳ,𝐻𝑚𝑎𝑥 , 𝑁𝑠𝑢𝑏 , 𝑡𝑒 ,  𝑡𝑑, 𝑡𝑡, 𝛼 
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Output: SMTDC{ 𝑋𝑖,𝑗,ℎ
𝑘 } 

1: Preprocessing to determine the 𝑁𝑚𝑖𝑛, 𝑁𝑚𝑎𝑥 , 𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏)  and reduce the number of 

undetermined variables in solution set { 𝑋𝑖,𝑗,ℎ
𝑘 }. 

a. Calculate 𝑁𝑚𝑖𝑛, 𝑎𝑛𝑑 𝑁𝑚𝑎𝑥 based on 𝑁𝑠𝑢𝑏 and 𝛼 

b. Calculate 𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏) based on 𝑁𝑠𝑢𝑏 , 𝑡𝑒 ,  𝑡𝑑 , 𝑡𝑡 

c. Run Dijkstra's algorithm to get the shortest hops 𝑑𝑖𝑠𝑡𝑖,𝑘 for each MD node 𝑖 ∈ ℳ, 

and Eliminate variable 𝑋𝑖,𝑗,ℎ
𝑘  , 𝑓𝑜𝑟 𝑎𝑙𝑙  ℎ < 𝑑𝑖𝑠𝑡𝑖,𝑘, ∀𝑖 ∈ ℳ 

d. Eliminate variable 𝑋𝑖,𝑗,ℎ
𝑘  , 𝑓𝑜𝑟 𝑎𝑙𝑙  ∀𝑖 ∈ ℳ, 𝑘 = 𝑗, 𝑏𝑢𝑡 ℎ ≠ 1, 𝑎𝑛𝑑 ℎ = 1, 𝑏𝑢𝑡  𝑘 ≠ 𝑗 

e. Eliminate variable 𝑋𝑖,𝑗,ℎ
𝑘  , 𝑓𝑜𝑟 𝑎𝑙𝑙  ∀𝑖 ∈ ℳ, 𝑘 = 𝑖, 𝑏𝑢𝑡 ℎ ≠ 0, 𝑜𝑟 𝑗 ≠ 𝑁𝑈𝐿𝐿 

2: while True do 

3: solve the LP relaxation of the SMTDC with  𝑋𝑖,𝑗,ℎ
𝑘 ∈ [0,1], and get the optimal 

fractional solution set { 𝑋𝑖,𝑗,ℎ
𝑘∗ }. 

4: round the largest fractional variable 𝑋𝑖,𝑗,ℎ
𝑘∗  in the solution set { 𝑋𝑖,𝑗,ℎ

𝑘∗ } to 1 (𝑋𝑖,𝑗,ℎ
𝑘∗ ∈

(0,1), and 𝑋𝑖,𝑗,ℎ
𝑘∗ ∈ { 𝑋𝑖,𝑗,ℎ

𝑘∗ }). 

5: check constraint (4.4), then set  𝑋𝑖,𝑗,ℎ
𝑘 = 0, for the same 𝑖 in step 4. 

6: if ∀ 𝑋𝑖,𝑗,ℎ
𝑘∗ ∈ {𝑋𝑖,𝑗,ℎ

𝑘∗ },  𝑋𝑖,𝑗,ℎ
𝑘∗ = 0 𝑜𝑟  𝑋𝑖,𝑗,ℎ

𝑘∗ =  1 (∀ 𝑖 𝑎𝑛𝑑 𝑗 ∈ ℳ, 𝑘 ∈ ℛ,   ℎ ≤

𝐻𝑚𝑎𝑥) then: 

7: return solution set { 𝑋𝑖,𝑗,ℎ
𝑘∗ }. 

8: end 

9: end 

10: Root MD node selection: 𝑀𝐷𝑖 is root MD node if 𝑋𝑖,𝑁𝑈𝐿𝐿,0
𝑖 = 1, for all 𝑋𝑖,𝑗,ℎ

𝑘∗  in solution set 

{ 𝑋𝑖,𝑗,ℎ
𝑘∗ }. 

In the first step of Algorithm 1 (line 1), we first run Dijkstra's or a similar algorithm to get the 

shortest hops ℎ𝑖,𝑘 from all MD nodes to root MD nodes. Here 𝑖 ∈ ℳ, 𝑘 ∈ ℛ; as we cannot find 

a smaller distance than 𝑑𝑖𝑠𝑡𝑖,𝑘, we set all  𝑋𝑖,𝑗,ℎ
𝑘 = 0, for all ℎ < ℎ𝑖,𝑘, ∀𝑖 ∈ ℳ. In each round 
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of LP relaxation of Algorithm 1, we round the largest fraction solution { 𝑋𝑖,𝑗,ℎ
𝑘∗ }  to 

1, 𝑓𝑜𝑟 𝑎𝑙𝑙  ∀𝑖 ∈ ℳ, 𝑘 = 𝑗, 𝑏𝑢𝑡 ℎ ≠ 1. 

In the preprocessing part of the algorithm in line 1.d, if one MD node itself is also treated as 

the root MD node of one tree, the parent index can only equal to 𝑁𝑈𝐿𝐿, and the height index 

can only equal to 0. For example, when 𝑖 = 𝑗, only variables like 𝑋𝑖,𝑁𝑈𝐿𝐿,0
𝑖  exist.  We eliminate 

variable   𝑋𝑖,𝑗,ℎ
𝑘  , for all  ∀𝑖 ∈ ℳ, 𝑘 = 𝑖, but ℎ ≠ 0, or 𝑗 ≠ 𝑁𝑈𝐿𝐿. 

(a) Initial MD topology (b) Solution after round 5 

  

(c) Solution after round 9 (d) Solution after round 13 

Figure 4.3: The procedure of SMTDC tree formation 
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We show a simple case of the procedure of SMTDC tree formation of Algorithm 1 in Figure 

4.3. The background topology is extracted from the Smart Grid (SG) data set of Washington 

DC [36], the red line is the trajectory of a DC node, the MD nodes in the blue shaded area 

belong to the potential root MD set, ℛ. Figure 4.3 (a) shows the original MD deployment. 

Figure 4.3 (b), (c), and (d) show the formation of trees during rounds of iteration (while loop, 

line 2 to line 9), after the data preprocessing part (line 1). For convenience, we set 𝑁𝑠𝑢𝑏 to 2, 

𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to 0.8 and 𝑝𝑖 to an identical value for all MDs. In each round of iteration, one edge 

(the green line) is determined after rounding the largest fractional 𝑋𝑖,𝑗,ℎ
𝑘∗  to 1 (line 4), which 

means the entire tree topologies are built step by step, and every round of iteration decides one 

edge in the final tree topologies. Figure 4.3 (b) shows the solution after round 5, as we can see 

only five edges are connected, because we only have set five 𝑋𝑖,𝑗,ℎ
𝑘∗  to 1 during the first 5 rounds. 

Figure 4.3 (c) shows the solution after round 9; we can see that new nodes join the tree, and 

new edges are connected. Figure 4.3 (d) shows the final solution after round 13; the orange 

hexagons represent the MDs that are selected as root MD in the final deployment. 

 

4.1.3 Iterative SMTDC tree formation 

In the previous section, when given the value of 𝑡𝑒 ,  𝑡𝑑, 𝑡𝑡, and 𝑁𝑠𝑢𝑏 , the 𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏) is a 

constant value with equation (3.7), and the objective function (4.1) is linear. As we know, if 

the objective function is linear and the constrained space is a polytope, then tree formation with 

predefined 𝑁𝑠𝑢𝑏  is a linear programming problem, which can be solved using well-known 

linear programming solutions. However, if 𝑁𝑠𝑢𝑏 is not given, the objective function (4.1) is 

nonlinear. And a nonlinear programming problem is hard to solve and takes unrealistic 

computation time as a whole because of its high dimension. 

From the observation in Chapter 3 (equation (3.7)), we can find that 𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏)  is 

approximately proportional to 𝑁𝑠𝑢𝑏; they have the same monotonicity (equation (3.7)). Besides, 

when 𝑁𝑠𝑢𝑏 increases, according to our definition, each relay MD tends to have more child MDs; 

thus, the total height of the tree decreases with certain amount of MDs in that area. So we can 

say when 𝑁𝑠𝑢𝑏 increases, ∑ 𝑦𝑘𝑘∈ℛ  decreases. Moreover, in our previous observation, we have 

shown that for cases of extreme 𝑁𝑠𝑢𝑏, the total data collection time is very large. For example, 

when 𝑁𝑠𝑢𝑏 closes to one, in this case every 𝑦𝑘 is very large, because if 𝑁𝑠𝑢𝑏 is small, then the 

number of child MDs allowed for one relay MD is small and every tree is likely a line topology. 
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Another case is when 𝑁𝑠𝑢𝑏 closes to 𝑙𝑜𝑔 (
1

1−𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
), in which every 𝑦𝑘 is  close to one and 

∑ 𝑦𝑘𝑘∈ℛ  is small, because when an MD is selected as a root MD or relay MD, it requires many 

child MDs (constraint 𝑁𝑠𝑢𝑏), and its child MD number is close to the maximum number of 

nodes allowed in a tree, which closes to 𝑙𝑜𝑔 (
1

1−𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
), such that the height of the tree (𝑦𝑘) 

is likely one or two and total heights of all trees ∑ 𝑦𝑘𝑘∈ℛ  is small. The total data collection time 

is large in the above two cases because there is hardly any parallel transmission in either line 

topology or start topology.  

Based on the above observation, we give the iterative procedure in Algorithm 2 for SMTDC 

tree formation when the desired average number of child 𝑁𝑠𝑢𝑏 is unknown. 

 

Algorithm 2: Heuristic iterative SMTDC tree formation 

Initialization: Set round number 𝑖 = 0,𝑁𝑠𝑢𝑏
(0)

= 𝑁𝑠𝑢𝑏
𝑖𝑛𝑖𝑡 , 𝛼 = 0.5 

1: Obtain { 𝑋𝑖,𝑗,ℎ
𝑘 } with Algorithm 1: LR-IR for SMTDC tree formation with 𝑁𝑠𝑢𝑏 = 𝑁𝑠𝑢𝑏

(𝑖)
 

2: Obtain data collection time 𝑇𝑡𝑜𝑡𝑎𝑙
(𝑖)

= 𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏)∑ 𝑦𝑘𝑘∈ℛ  

3: if absolute value |𝑁𝑠𝑢𝑏
(𝑖)

− 𝑁𝑠𝑢𝑏
(𝑖−1)

| < 𝛿1 𝑎𝑛𝑑 (𝑇𝑡𝑜𝑡𝑎𝑙
(𝑖) − 𝑇𝑡𝑜𝑡𝑎𝑙

(𝑖−1)) < 𝛿2 then: 

4:  return solution of { 𝑋𝑖,𝑗,ℎ
𝑘 } in round 𝑖 

5: else: 

6:  Compute next round estimation 𝑁𝑠𝑢𝑏
(𝑖+1)

,  𝑁𝑠𝑢𝑏
(𝑖+1)

=
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑖𝑙𝑑 𝑁𝑜𝑑𝑒,|ℳ|

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡 𝑁𝑜𝑑𝑒,|𝑃|
 based 

on solution of { 𝑋𝑖,𝑗,ℎ
𝑘 } in round 𝑖 

7:  Increment 𝑖 and go to line 1. 

In Algorithm 2, 𝑖  is the round number, and 𝛿1  and 𝛿2  are two predefined values. We first 

initialize 𝑁𝑠𝑢𝑏
(0)

 to some predefined value; based on this 𝑁𝑠𝑢𝑏
(0)

, we can determine the load balance 

constraint (4.6). Then we run Algorithm 1 and generate the tree topologies, which satisfy 
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constraint (4.6), and we get an estimated minimum data collection time 𝑇𝑡𝑜𝑡𝑎𝑙
(𝑖)

. In line 3, we 

check whether the 𝑁𝑠𝑢𝑏
(𝑖)

 and 𝑇𝑡𝑜𝑡𝑎𝑙
(𝑖)

 already converge to a certain value; if they converge and 

satisfy conditions in line 3, it means tree topologies generated in round 𝑖 and tree topologies 

generated in round (𝑖 − 1) are nearly identical, so we stop the iteration and return a solution of 

{ 𝑋𝑖,𝑗,ℎ
𝑘 }. If 𝑁𝑠𝑢𝑏

(𝑖)
 and 𝑇𝑡𝑜𝑡𝑎𝑙

(𝑖)
 do not satisfy conditions in line 3, it means we can generate a better 

topology for smaller data collection time, so in the new topology, we calculate the 𝑁𝑠𝑢𝑏
(𝑖+1)

 to 

reset the load balance constraint (4.6). 

We will show in next chapter that this heuristic iterative algorithm works as designed and will 

converge within the limited number of rounds, and it will generate certain topology even with 

different initial values of 𝑁𝑠𝑢𝑏
(0)

. 

 

4.2 SMTDC scheduling 

We solve the second question that we brought up before: If the tree is built using the SMTDC 

tree formation approach, how can we improve the data collection time by solving the time 

scheduling problem? We take into account only the tree topology under the assumption that all 

interferences are eliminated, and each MD is in half-duplex model. For one single MD node, 

its transmission, encryption, and decryption times, 𝑡𝑡 , 𝑡𝑒 , 𝑡𝑑, have to be in different time slots. 

Also we consider the scheduling in the context of our top-down-bottom-up data collection 

model. Therefore, the SMTDC scheduling problem becomes: given one tree topology, decide 

the encryption and transmission sequence of child MDs in each relay MD node. 

Figure 4.4 presents a quick example to illustrate the influence of different scheduling 

approaches on the total data collection time under the same tree topology. A circled number, 

such as ①, ②, ③, represents the priority that one parent relay MD node refers to, when the 

relay MD wants to send the initial top-down encryption message to its child MD nodes. In 

Figure 4.4 (a), when MD0 receives a message from a higher level and plans to forward the 

message to its child MD nodes, it first sends a security message to MD1 and MD3. After MD1 

and MD3 receive the message, MD0 then sends a message to MD2. The timeline of the 

topology in Figure 4.4 (a) is shown in Figure 4.5. Another scheduling arrangement is shown in 

Figure 4.4 (b), where MD0 sends a message to MD2 first, then to MD1 and MD3. The timeline 

of the topology in Figure 4.4 (b) is shown in Figure 4.6. One obvious benefit is that as the 
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message arrives at MD2 earlier, the data collection time spent in the MD2 subtree branch can 

overlap with the time in which MD0 talks to MD1 and MD3. The 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝  in Figure 4.6 

indicates that MD0 talks to MD1 and MD3 while MD2 talks to MD4 and MD5. So in the 

second scheduling arrangement, even in level 2 (MD4, MD5, 𝑁𝑠𝑢𝑏 is 2), it takes the same 

amount of time as the first approach, but in level 1 it can be considered that MD0 only talks to 

MD2.  

 

    

(a)       (b) 

Figure 4.4: Example of scheduling arrangement for same topology 

So the total time for the tree topology in Figure 4.4 (b) equals time spent in level two plus time 

spent in level one, 𝑇𝑙𝑒𝑣𝑒𝑙(2)(𝑁𝑠𝑢𝑏 = 2) + 𝑇𝑙𝑒𝑣𝑒𝑙(1)(𝑁𝑠𝑢𝑏=1). Based on equation (3.3) we can get 

the total time of the tree in Figure 4.4 (b), 𝑇𝑏 = 5(𝑡𝑒 + 𝑡𝑑) +  6𝑡𝑡. As shown in Figure 4.5, for 

tree topology in Figure 4.4 (a), it takes additional 2(𝑡𝑒 + 𝑡𝑡) because MD0 has to transmit the 

message to MD1 and MD3 first, so the total data collection time for the tree topology in Figure 

4.4 (a) is 𝑇𝑎 = 5𝑡𝑑 +  7𝑡𝑒 + 8𝑡𝑡. Our experiment using Raspberry Pi shows that 𝑇𝑏 roughly 

equals 72% of 𝑇𝑎, which proves that wisely scheduling the message transmission sequence of 

relay MDs can minimize the data collection even further.  
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Figure 4.5: Timeline for the topology in Figure 4.4 (a) 

 

Figure 4.6: Timeline for the topology in Figure 4.4 (b) 

We describe a time slot assignment schema in Algorithm 3, called the SMTDC -Scheduling 

arrangement, which is run locally by each MD. The key concepts of this algorithm are: (1) In 

the convergecast tree, let the transmission of different branches be as parallel as possible, such 

that the data collection time of subtrees can overlap in order to save the total time. (2) For every 

relay parent MD, it puts its child MD, whose subtree takes longer time in data collection, in 

top priority when the parent MD is forwarding messages to all of its child MDs. The reason 

one subtree branch takes longer than another is that it is higher, or there are more MD nodes in 
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the subtree, etc., so we distribute the task to this subtree first. We use 𝑑𝑡𝑖 to represent the data 

collection time needed for a branch subtree, whose root is 𝑀𝐷𝑖. 

 

Algorithm 3: SMTDC Scheduling Arrangement 

After the tree topology is determined by SMTDC tree formation, each MD node already knows 

its parent and child MD nodes, based on { 𝑋𝑖,𝑗,ℎ
𝑘 }. Every MD node uses this algorithm to 

determine the message forwarding order.  

Initialization:  

a. Total branch data collection time, 𝑑𝑡: 0 

b. Children data time set CDT ← Ø, 

c. Reply back time set RBT← Ø, 

d. Child MD transmission sequence 𝑆𝑒𝑞 ← Ø 

1: if 𝑀𝐷𝑖 is a leaf MD node, set 𝑑𝑡 = 𝑡𝑒 + 𝑡𝑑. 

2: return 𝑑𝑡 to its parent MD 

3:  done 

4: else if 𝑀𝐷𝑖 is a relay MD node: 

5: wait until 𝑀𝐷𝑖 receives all 𝑑𝑡 messages from its 𝑗 child MD nodes (𝑑𝑡1 ~𝑑𝑡𝑗 ) 

6: child data time set: CDT ← {𝑑𝑡1, 𝑑𝑡2, … , 𝑑𝑡𝑗} 

7: sort CDT in decreasing order: {𝑑𝑡1
′ , 𝑑𝑡2

′ , … , 𝑑𝑡𝑗
′} 

8: set child MD transmission sequence, 𝑆𝑒𝑞, based on CDT in decreasing order. 

9: calculate reply back time for every child MD: 𝑟𝑏𝑗  

10: 𝑟𝑏𝑗 ← 𝑑𝑡𝑗
′ + 𝑗 ∗ (𝑡𝑒 + 𝑡𝑡) 
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11: construct reply back time set RBT ← {𝑟𝑏1, 𝑟𝑏2, … , 𝑟𝑏𝑗} 

12: sort RBT in increasing order: {𝑟𝑏1
′ , 𝑟𝑏2

′ , … , 𝑟𝑏𝑗
′} 

13: for each 𝑟𝑏𝑗
′ in increasing order in RBT: 

14:  𝑑𝑡 = 𝑀𝑎𝑥(𝑑𝑡, 𝑟𝑏𝑗
′) + (𝑡𝑡 + 𝑡𝑑) 

15: end for 

16: return 𝑑𝑡 back to its parent MD node 

17: end if 

For every MD node running Algorithm 3, it first judges whether it is itself a leaf MD. If it is 

itself a leaf MD, then it does not need to consider the transmission sequence because it has no 

child MD. Thus it simply replies with the time needed for message encryption and decryption, 

𝑡𝑒 + 𝑡𝑑. If one MD is a relay node, it needs to decide the transmission sequence, 𝑆𝑒𝑞, for all of 

its child MD nodes. And it also needs to calculate and return the time needed for its own 

subbranch. The 𝑆𝑒𝑞 is decided by the amount of time needed by its child subtrees, where the 

parent relay MD node transmits first to the subtree that takes longer time (line 8, Algorithm 3). 

The total time of one subtree branch is calculated in lines 11 to 15. In the child data time set, 

CDT, every element, 𝑑𝑡𝑖 , indicates the time needed for the 𝑀𝐷𝑖  subtree to finish the data 

collection. In the reply back time set, RBT (in line 12), every element 𝑟𝑏𝑗 is the time when a 

child MD node, 𝑀𝐷𝑗 , is ready to send a message back to the parent MD (but has not sent yet). 

So in line 10, 𝑟𝑏𝑗 equals 𝑑𝑡𝑗
′ plus 𝑗 ∗ (𝑡𝑒 + 𝑡𝑡), where 𝑗 ∗ (𝑡𝑒 + 𝑡𝑡) is the time needed for 𝑀𝐷𝑗  

to receive a message from its parent MD, as 𝑀𝐷𝑗 ’s subtree data collection time is ranked 

number 𝑗 among all its parent MD’s child nodes. And when we calculate 𝑑𝑡, we consider that 

every bottom-up message back to the parent MD has to add one 𝑡𝑡 for message transmission 

and one 𝑡𝑑 for the parent MD to decrypt the message.  

As in both line 7 and line 12, it takes 𝑂(𝑁𝑙𝑜𝑔𝑁) time to sort the CDT and RBT, it is obvious 

that the worst-case running time of Algorithm 3 is 𝑂(𝑁𝑙𝑜𝑔𝑁), where 𝑁 is the number of child 

MD nodes in one relay MD.  
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Chapter 5 PERFORMANCE EVALUATION 

In this chapter, we evaluate the performance of the proposed SMTDC protocol under different 

settings and topologies to see how factors such as the probability of encountering a security 

problem, load balancing limitation, size of tree, and scheduling arrangement impact the 

performance of data collection time for the SMTDC protocol. 

5.1 Performance of SMTDC tree formation 

We run experiments of SMTDC tree formation on the SG data set of Washington DC [36], 

which contains 8, 20, 35, 50, 100, 150 nodes, of all the smart grid poles in the city. Figure 4.1 

contains 8 nodes, and two of these nodes are root MD nodes. We assume that MDs 

communicate with each other wirelessly with an identical communication range of 75 m. We 

use the GUROBI solver [37] for solving the LP relaxation in the main while loop of our 

Algorithm 1, and we use different Python scripts to do the data preprocessing part. Figure 4.2 

and Figure 4.3 (d) show the simulation result of our algorithm on the 8-node and the 16-node 

sample case. For our simulation, the algorithm works as designed.  

5.1.1 Simplified simulation for tree height 

Figure 5.1 shows the comparison of total tree depth of the generated tree from our SMTDC, 

CTF in [6], and random tree algorithm. In CTF, it tries to build trees that have minimum height 

summation, and it assumes the link delay for one level in the tree, which is the time for one 

MD node to talk to any number of child MD nodes, is identical for hardware-limited devices. 

In the random tree algorithm, every MD randomly selects a neighbor and builds a random tree. 

Because CTF and random tree algorithm do not consider the load balancing factor and they 

assume 𝑝𝑖 is identical for 𝑖 ∈ ℳ. In SMTDC, we set  𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏) in our objective function 

(4.1) to be constant value ‘1’, thus our objective function (4.1) becomes: 

min ∑ 𝑦𝑘
𝑘∈ℛ

 

We loosen the load balance constraint (4.6); we let 𝑁𝑚𝑎𝑥 be 12, such that the load balance 

constraint will not be an primary constraint when we build the tree; and we set all 𝑝𝑖 to 0.5%,  

𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to 20% to simply our algorithm. 
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In this simulation we prove two points: First, in simplified tree formation, where minimizing 

the total summation of heights is the only objective, our SMTDC tree formation and Algorithm 

1 work as desired, and provide an even better solution compared to the CTF and the random 

tree algorithm. Second, SMTDC tree formation can be adapted to a more sophisticated and 

realistic scenario. We consider additional factors such as time for transmission and data 

procession, security issues, and load balancing issues, all of which are a huge leap from 

previous work. 

 

Figure 5.1:  Comparison of the total tree depth of SMTDC, CTF, and random tree algorithm 

5.1.2 Influence of 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

To simulate the relationship between the probability threshold of encountering security 

problems of each tree, 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, and the data collection time, 𝑇𝑡𝑜𝑡𝑎𝑙, we fix the number of 

MDs to be 100, and we choose 𝑁𝑠𝑢𝑏to be 3 and 4, and use the data collection model mentioned 

in section 3.4. In addition, we use the data from the total time of parent MD vs. number of child 

MD nodes in Figure 3.7 to simulate the time spent on each level of the tree. We assume the 

probability  𝑝𝑖 satisfies a roughly normal distribution, with average value equal to 0.005 and 

its standard deviation equal to 0 0.005, but all probabilities within the range of (0, 0.01]. We 

vary the threshold probability of one tree, 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, from 0.05 to 0.3.  
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Figure 5.2: Data collection time vs 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Figure 5.2 shows our simulation result, and this result reflects the trade-off between security 

and efficiency of data collection in our problem formation. The reason is that the higher the 

value of 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , the higher the number of MD nodes allowed in one single tree (from 

constraint (4.3)), and each tree tends to be higher. On the other hand, the smaller the value of 

𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , the smaller the number of MDs allowed in a tree and each tree in the final 

deployment tends to be shallow. As the total number of MD nodes in the entire background 

topology is fixed, in the first case, when the 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is large, the number of trees is small, 

but each tree has higher height. In the second case, when the 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is small, the total 

number of trees is very high, and each tree has low height.  

And we know, in a convergecast tree with certain value of 𝑁𝑠𝑢𝑏, the total number of nodes in 

one single tree grows exponentially when the height increases. Thus when 𝑁𝑠𝑢𝑏 is fixed, in the 

first case (when 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is large), the summation of heights for all trees is small, and has a 

shorter total data collection time, while in the second case (when 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is small), the 

summation of heights for all tree is large compared to the first case, and has a higher total data 

collection time.  

In addition, in our simulation the SMTDC yields the same result when 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is larger than 

0.25 because 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  influences the number of MD nodes allowed in one tree. When 

𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is larger than 0.25, the number of MD nodes allowed in one tree is more than 57, at 

which point constraint (4.3) is no longer a determining factor for our SMTDC tree formation. 
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In contrast, when 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is smaller than 0.1, the number of MD nodes allowed in one tree 

is smaller than 18, at which point every tree is forced to be shallow because of constraint (4.3), 

thus leading to more trees and greater total height in the WSN, as mentioned previously. 

 

5.1.3  The influence of load balancing factor 

We simulate the relationship between load balancing factor and the data collection time. We 

still use the topology with 100~150 MD nodes. We assume the threshold probability of one 

tree, 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, to be fixed to a certain value, 0.15, and we vary the average number of child 

MD nodes in the tree, 𝑁𝑠𝑢𝑏, from 1.125 to 6. We run experiments on three groups of data; for 

each group,  𝑝𝑖 satisfies a normal distribution, with average value equal to 0.005, 0.01, 0.015, 

but falls within the range of (0, 0.02]. And we use the function 𝑇𝑙𝑒𝑣𝑒𝑙(𝑁𝑠𝑢𝑏) of equation (3.7) 

to simulate the time spent on each level of the tree. We have to mention that the total number 

of MD nodes is not exactly the same after the tree SMTDC formation process (but within the 

range of 100~150 MDs), especially for 𝑁𝑠𝑢𝑏 larger than 5. The reason is that it requires minor 

adjustments for some relay MDs to satisfy 𝑁𝑠𝑢𝑏 constraint (4.6) and (4.7). But this adjustment 

does not influence the predicting data collection time in SMTDC tree formation. 

 

Figure 5.3: Total collection time (Sec) vs. 𝑁𝑠𝑢𝑏 for different 𝑝𝑖 
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In Figure 5.3, we show the prediction time for data collection versus load balancing parameter 

𝑁𝑠𝑢𝑏 in a 100+ MDs topology. This observation reflects the trade-off between load balancing 

and efficiency. More specifically, if load balancing parameter 𝑁𝑠𝑢𝑏 is too small, e.g. 𝑁𝑠𝑢𝑏 less 

than two, the summation of heights/levels for the entire topology tends to be large. Even if the 

time spent in each level is relatively small (equation (3.7)), the multiplication result of the total 

levels and the time spent in each level (formula (4.1)) is large, hence it has a longer data 

collection time. On the other hand, if balancing parameter 𝑁𝑠𝑢𝑏 is too large, e.g. 𝑁𝑠𝑢𝑏 larger 

than 5, even though the summation of heights for the entire topology tends to be small, 

according to our prediction model (equation (3.7)) the time spent on each level becomes longer 

(a single half-duplex device has to communicate with its child nodes sequentially, without 

parallel communication), and the prediction time (the multiplication result) according to our 

objection formula (4.1) increases again. The simulation result in Figure 5.3 matches our 

observations previously that, with total number of 𝑛 hardware-limited half-duplex MD nodes, 

the data collection time of a line topology, in which 𝑁𝑠𝑢𝑏 is one, and a star topology, in which 

𝑁𝑠𝑢𝑏 is 𝑛 − 1, is much longer than those of other tree topologies. The reason is that there is no 

parallel communication for relay MD nodes in line topology and star topology.  

We have to mention that when  𝑝𝑖 is smaller than 0.005, equally, the number of MDs allowed 

in one tree is more than 44.5, which means that, for a 100 MD topology, constraint (4.3) is no 

longer a determining factor for our SMTDC tree formation algorithm. But when  𝑝𝑖 is larger 

than 0.015, the number of MDs allowed in one tree is smaller than 15; at that time, constraint 

(4.3) becomes a determining factor. And each tree allows fewer MDs than the case when  𝑝𝑖 is 

0.005 or 0.01, thus our objective function (4.1) becomes larger. 

 

5.1.4 Simulation of iterative SMTDC tree formation algorithm 

In this part we test our heuristic iterative SMTDC tree formation algorithm (Algorithm 2, 

mentioned in section 4.1.3). Rather than specifying a certain value of 𝑁𝑠𝑢𝑏 and bringing the 

predefined 𝑁𝑠𝑢𝑏   into Algorithm 1, we initialize 𝑁𝑠𝑢𝑏
(0)

 to three different values and run 

Algorithm 2 under the same map of 100+ MDs, and we choose 𝑝𝑖 to satisfy a roughly normal 

distribution, with average value equal to 0.01, and  𝑝𝑖 within the range of (0, 0.02]. In addition, 

𝑡𝑒 ,  𝑡𝑑 , 𝑡𝑡, and 𝛼  all choose the same settings as the second group of experiments in the 

previous section. 
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Figures 5.4 and 5.5 show the result of our simulation. In these figures, the x-axis represents the 

round of iterations. The y-axis in Figure 5.4 represents the value of 𝑁𝑠𝑢𝑏
(𝑖)

 in round 𝑖, and the y-

axis in Figure 5.5 represents the value of 𝑇𝑡𝑜𝑡𝑎𝑙
(𝑖)

 in round 𝑖. The large marker dots in both figures 

represent the round after which Algorithm 2 converges to a certain value and terminates.  

 

Figure 5.4: 𝑁𝑠𝑢𝑏
(𝑖)

 vs. round of iteration 

  

Figure 5.5: Total data collection time vs. round of iteration 
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We can see from both groups of experiments that, when the round of iteration increases, the 

𝑁𝑠𝑢𝑏
(𝑖)

 and the total time converge to a certain value, which means after a certain number of 

rounds of iteration, the tree topologies do not change too much between two iterations (the 

termination points are the large markers in the two figures). In Figure 5.5, we can also see that 

when the rounds of iteration increase, the total data collection time decreases, because in each 

round of iteration, we use Algorithm 1 to generate a better tree, and we change the load 

balancing constraint (equations (4.6) and (4.7)) before we run the next round of iteration. 

 

5.2 Performance of SMTDC scheduling 

In this section, we analyze the performance of the SMTDC scheduling assignment method 

discussed in section 4.2. Specifically, after we generate a tree topology using the SMTDC tree 

formation method in section 4.1, we apply our scheduling arrangement approach to observe the 

improvement of data collection time compared to the expectation model in section 4.1. We 

emphasize again that the total data collection time in section 4.1 is calculated by using the 

objective function (4.1) in the SMTDC tree formation part. The main purpose of section 4.1 is 

to build optimized tree topologies with the potential for fast data collection by using the 

SMTDC scheduling approach in section 4.2. So, in this section, the total data collection time 

is recalculated by our SMTDC scheduling approach, which tends to be smaller and more 

precise than the prediction time in section 4.1. 

We also compare SMTDC scheduling to random scheduling method, and all simulations of 

scheduling arrangement methods under OMNET++. We use a background topology with about 

100 MD nodes. The 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is fixed to a certain value, 0.15. And 𝑝𝑖  satisfies a roughly 

normal distribution, with the average value equal to 0.01, and  𝑝𝑖 within the range of (0, 0.02]. 

We vary the average number of child MD nodes in the tree, 𝑁𝑠𝑢𝑏, from 1.125 to 6 to generate 

different tree topologies (using Algorithm 1). For each specific tree topology with certain 𝑁𝑠𝑢𝑏, 

we can get three data collection times; one expectation time is calculated by objective function 

(4.1) and another is generated by running the random transmission scheduling model, where 

every relay MD in the tree topology sends a top-down message by random sequence order to 

its child MDs, and every relay MD receives a bottom-up message with FIFO sequence. The 

third data collection time is generated by our SMTDC scheduling approach. These three groups 

of data are presented in Figure 5.6. Our SMTDC scheduling approach shows a great 
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improvement over the SMTDC time expectation model and performs better than the random 

scheduling approach. We can see from Figure 5.6 that SMTDC scheduling has a great 

improvement especially for large 𝑁𝑠𝑢𝑏; e.g., when 𝑁𝑠𝑢𝑏 larger than 5, SMTDC scheduling is 

45% faster than SMTDC prediction. 

 

Figure 5.6: Comparison of random scheduling, SMTDC prediction model, and SMTDC 

scheduling 
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Chapter 6 CONCLUSION 

In this thesis, we studied the secure minimum data collection time in large scale, stationary 

WSNs where nodes are hardware-limited devices and they communicate in a half-duplex 

model. We proposed a load balanced, secure, and efficient data collection protocol, called 

SMTDC, with path-constrained mobile data collectors. The SMTDC can be adapted and 

cooperate with any universal security communication protocol where message passing can be 

separated into three serial stages: encryption, transmission, and decryption. SMTDC has two 

phases, the first of which is to build optimized convergecast tree topologies in the WSN which 

have relatively minimal height, and are also well balanced. A heuristic approximation 

algorithm by means of a linear relaxation is presented to build optimized trees, and the 

algorithm calculates one expectation time with the predefined average number child nodes, 

𝑁𝑠𝑢𝑏 . When 𝑁𝑠𝑢𝑏  is uncertain, we use an iterative method to get close-to-optimal tree 

topologies. To further improve the data collection time from our expectation, in the second 

phase of SMTDC, we develop a scheduling arrangement algorithm, with a heuristic idea that 

lets the time spent on each subtree overlap with other subtrees as much as possible. Through 

simulations conducted using real topologies, we demonstrated that SMTDC performs well, as 

planned. To the best of our knowledge, the SMTDC is the first protocol used for minimizing 

the data collection time in a WSN that considers and combines the security and load balancing 

issues together. 
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APPENDIX A  SPECIFICATIONS OF RASPBERRY PI 

 

Table A.1. Raspberry Pi specifications 

 

Price $ 35 

SoC Broadcom BCM 2835 

CPU 700 MHz ARM1176JZFS core with floating point 

GPU Broadcom VideoCore IV @250MHz 

Memory 

(SDRAM) 
512MB 

Onboard 

Storage 
SD/MMC/SDIO card slot 

Onboard 

Network 
10/100 Ethernet 

Size 85.60mm x 85.60mm x 56mm (or roughly 3.37″ 2.21″ 0.83″) 

Weight 45 g (1.6 oz) 

Operating 

systems 

Arch Linux ARM, Debian GNU/Linux, Gentoo, Fedora, FreeBSD, 

NetBSD, Plan 9, Raspbian OS, RISC OS, Slackware Linux. 
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APPENDIX B  DEDUCTION OF SECURITY CONSTRAINT 

Assume that every sensor in a WSN, 𝑀𝐷𝑖(𝑖 ∈ ℳ), encounters a security problem, such as key 

leakage or eavesdropping, with probability  𝑝𝑖 (not identical). The probability that the tree 𝑘 

encounters a security problem because of an individual MD is 𝑃𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑(𝑇𝑘). We say the tree 

satisfies the security constraint if 𝑃𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑(𝑇𝑘) is no larger than some predefined threshold 

𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, so we have: 

𝑃𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑(𝑇𝑘)  = 1 − ∏ (1 − 𝑝𝑖)

𝑖:𝑀𝐷𝑖∈𝑇𝑘

= 1 − (1 − 𝑝𝑖)
|𝑇𝑘| ≤ 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ ∏𝑖:𝑀𝐷𝑖∈𝑇𝑘
 (1 − 𝑝𝑖) 

log(1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ≤ log (∏𝑖:𝑀𝐷𝑖∈𝑇𝑘
 (1 − 𝑝𝑖)) = ∑ log (1 − 𝑝𝑖)

𝑖:𝑀𝐷𝑖∈𝑇𝑘

 

− log(1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ≥  − ∑ log (1 − 𝑝𝑖)

𝑖:𝑀𝐷𝑖∈𝑇𝑘

 

log (
1

1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
) ≥  ∑ log (

1

1 − 𝑝𝑖
)

𝑖:𝑀𝐷𝑖∈𝑇𝑘

 

……… 

∑( log (
1

1 − 𝑝𝑖
) ∑ 𝑋𝑖,𝑗,ℎ

𝑘

𝑖:𝑀𝐷𝑖∈𝑇𝑘𝑖 ∈ℳ

) ≤ log (
1

1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
) , ∀𝑘 ∈ ℛ   

∑ ∑ ∑ 𝑋𝑖,𝑗,ℎ
𝑘

𝐻

ℎ=1𝑗 ∈ 𝕊(𝑖)𝑖∈ℳ

• log (
1

1 − 𝑝𝑖
) ≤ 𝑙𝑜𝑔 (

1

1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
) , ∀𝑘 ∈ ℛ   
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