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ABSTRACT

In this thesis, we present a system that uses a single camera and an inertial
measurement unit (IMU) to navigate an Unmanned Aerial Vehicle (UAV) in a
previously unknown environment. The approach consists of two parts. First,
we apply a state-of-the-art simultaneous localization and mapping (SLAM)
method to the video stream of a onboard camera. From the SLAM system,
an up-to-a-scale pose of the camera is estimated, because the absolute size
of the environment cannot be estimated with a single camera. Second, the
estimated pose is fused with the data from IMU to resolve the scale ambiguity.

While analyzing the performance of the system, we find that the conver-
gence rate of scale decreases when the magnitude of scale increases. This
relationship has not been demonstrated and explained before. In this thesis,

we present an analysis and explanation of this phenomenon.
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CHAPTER 1

INTRODUCTION

Recently, Unmanned Aerial Vehicles (UAV) have been a popular research
topic not only in the defense industry but also for civilian applications.
Thanks to their agility and relatively low cost, UAVs can be applied in var-
ious tasks such as aerial photography, surveillance, and search and rescue.
For example, UAVs were used in the 2010 Haiti earthquake’s rescue mission
to count the number of tents and identify the aid requirement [1|. Amazon
is working on the idea of using a UAV to deliver its commodities. With the
data collection equipment, UAVs can fly around a construction site and help
managers keep track of construction progress [2].

Multirotor UAVs, in comparison to the traditional fixed wing UAVs, are
of special interest because of their ability to perform fast maneuvers and
hover [3] [4]. In addition, the ability to vertically take off and land enables
multirotor UAVs to maneuver in a constrained, indoor environment.

Autonomous mobile robots need to navigate with a wide range of sensors.
Figure 1.1 shows a classification of sensors used in robotic navigation [5].
Ideally, we want a sensor for navigation to have high update rate (framer-
ate) but low drift both spatially and temporally. Inertial measurement units
(IMUs) have, typically, a framerate on the order of 1KHz, but the accumula-
tion of error makes the estimation of position drift very quickly. Camera and
laser-scanner based odometry approaches provide measurements at medium
rates and do not drift as long as the vehicle maintains its current position [6].
The Global Positioning System (GPS) and Laser Trackers can provide drift
free position estimation, but the framerate is low.

Currently the vast majority of UAVs navigate in their environments using
GPS as a reference for position. Unfortunately, GPS signals are often un-
reliable or non-existent in environments where UAVs are operating such as
urban canyons, indoors, and any areas where direct satellite line-of-sight is

impeded.
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Figure 1.1: Classification of sensors in robotic navigation [5]

Sensor Example Price Weight Framerate
MYV Bluefox-MLC 200 WG | 310 USD | 16 gram | up to 90 Hz
HOKUYO UST-20LX 2858 USD | 130 gram | up to 40 Hz

Table 1.1: Sensor comparison

Since GPS navigation solutions are not always reliable, UAVs require other
independent navigation systems. In comparison to laser scanners, cameras
are usually of lower price, are lighter, and have faster framerates. Using the
MYV Bluefox-MLC 200 WG camera and HOKUYO UST-20LX laser scanner
as examples, the price, weight, and framerate are listed in the table 1.1.
These properties make camera a popular sensor for robot navigation.

In the context of camera based robotic navigation, some research focus on
using fiducial markers distributed along a predetermined path [7] [8] to resolve
the localization issue. The downsides with these approaches is that they
require additional equipment, time, and prior access to the target location
to set up.

Another alternative to the markers-based navigation is vision-based si-
multaneous localization and mapping (VSLAM) which has recently become
possible with the steady advances in computing power. The general idea

of Visual SLAM is: based on the images collected by a camera, a map is



established, then the camera can be localized based on the map. The map
can be used to avoid the obstacles, and gain more understanding about the
environment; the estimated position can be used to stabilize the robot or to
make the robot follow a certain path.

One of the most important problems of monocular VSLAM is the ambigu-
ity in the scale, which means the camera cannot give the absolute size of the
environment (e.g. size in SI units). This is called scale ambiguity. To resolve
this ambiguity, IMU data is combined with the output of VSLAM, which is
called visual inertial sensor fusion.

While analyzing the performance of scale estimation, we find that the
convergence rate of scale decreases when the magnitude of scale increases.

This phenomenon has not been presented before.

1.1 Outline

In Chapter 2, we introduce one of the state-of-the-art VSLAM algorithms:
PTAM, which is short for Parallel Tracking and Mapping [9]. The visual
inertial sensor fusion methods are presented in Chapter 3. In Chapter 4, we
present the relationship between the scale convergence rate and the magni-
tude of scale. In Chapter 5, we summarize this thesis and give an outlook of

future research.



CHAPTER 2

SIMULTANEOUS LOCALIZATION AND
MAPPING

Simultaneous localization and mapping (SLAM) systems are crucial for au-
tonomous robot navigation in a previously unknown environment. In this
chapter, we provide background information about SLAM.

The basic idea of SLAM is that a map of the surrounding environment is
continuously updated based on the robot’s onboard sensor data (mapping),
while simultaneously the position and orientation of the robot is estimated
based on the built map (tracking). In the area of vision-based SLAM (VS-
LAM), people usually use the position of landmarks in an absolute global
frame (also called world frame) to represent a map of the environment. The
landmarks are typically distinctive feature points and patches, which are also
referred to as keypoints. The position and orientation of the camera can then
be estimated based on the estimated position of keypoints. When the cam-
era enters a new environment or identifies new landmarks, new keypoints are
added into the map, and the map is updated.

Although the basic idea of VSLAM seems simple, actually solving the V'S-
LAM problem is very challenging. First of all, in order to run the VSLAM
algorithm onboard, the computational complexity has to be considered: es-
pecially when the map keeps growing. In addition, rapid acceleration and
erratic motion of a camera may cause the failure in tracking the landmarks.
How to make the VSLAM systems more robust to these motion is still an
open challenge. Moreover, monocular based VSLAM systems suffer from the
scale ambiguity. While the metric information is not very important in the
structure-from-motion context, it is crucial in robotic control. Apart from the
above problems, robustly dealing with dynamic environments and efficiently
detecting loop-closure are also very popular research areas.

Currently, the VSLAM problem is addressed in different ways. Filtering
based methods marginalize out past poses and summarize the information

gained over time with a probability distribution. Keyframe based methods



retain the optimization approach, but computationally must select only a
small number of past frames to process [10]. On the side of filter based
VSLAM, two successful systems are [11] and [12]. The first one is based on
the extend Kalman filter (EKF) and the map is represented as states. The
second one adapts the FastSLAM 2.0 presented in [13] and uses particle filter
to estimate the map and motion of the camera. In the filter based VSLAM
systems mentioned above, tracking is tightly coupled with mapping and every
camera frame is used for both tracking and mapping.

The focus of this chapter: Parallel Tracking and Mapping (PTAM) which
was proposed in [9] is a keyframe based VSLAM algorithm. In PTAM,
keyframes refer to the subset of camera images which are used to build the
map and the corresponding position and orientation of the camera when
these images are taken. Fach keyframe also stores a four-level image pyra-
mid: level 0 corresponds to the original image and level 3 corresponds to the
most downsampled image. In [10], the authors show both theoretically and
experimentally that keyframe bundle adjustment based VSLAM outperforms
filtering based ones since it gives the most accuracy per unit of computing
time.

The structure of this chapter is as follows: first, the basic algorithm will
be shown in the section 2.1. Then the three main components: initialization,
tracking and mapping will be further discussed in section 2.2 to 2.4. Origi-
nally PTAM was designed for small augmented reality workspace. However,
this is not always the case for aerial robotic missions. In section 2.5, the

adaption for large scale environment by Weiss in [14] is discussed.

2.1 Overview

The PTAM flow chart is shown in figure 2.1. Different from common VSLAM
algorithms with the frame-to-frame characteristic, such as [11], PTAM splits
the VSLAM task into two separate threads: the tracking thread and the
mapping thread. Since both of the threads need a map to work on, a map
is initialized using the stereo technique (5 point algorithm) shown in [15].
Once the initial map is built, the tracking thread will run to estimate the
position and orientation of the camera relative to the world frame. When the

displacement of the camera exceeds certain threshold, new keyframes will be



added to update the map.

Figure 2.1: PTAM flow chart

2.1.1 Notation

The notation conventions are as follows:

———————————
: MapMaker::Run()
| }
Tracking Thread 1
1
1 True New
1 key frame?
Map Not True 1
Available? | Jrase
]
l False : Locally False
+ Track the map 1 « Add 2 key frame converged?
* Compute camera pose 1 to the map
* Check tracking quality 1 * Add map point lee
1 )
l 1 Require local and Globally False * Local bundle
1 glo_bal bundle converged? adjustment
Tracking True |« Relocalize |1 adjustment
—
lock lost? * Recover 1 l
1 True « Global bundle
l False : » Check map points adjustment
1 + Discard bad points
Need new Fwe 1
key frame? |
False

All the matrices are denoted by upper-case, bold letters and vectors

are denoted by lower-case, bold letters.

Number 0 represents the world frame, character “C” represents the

camera frame and “C}” represents the camera frame for j-th keyframe.

The coordinate transformation from the world frame to camera frame

is denoted as TS € SE(3) and the coordinate transformation from

the camera frame for j1-st keyframe to j2-nd keyframe is denoted as
C.

T € SE(3).

The i-th keypoint is represented as p; and it is represented in the world

frame in the homogeneous form, i.e. p; = pY = [2?,49, 29 1]T.

The projective coordinate of the i-th keypoint in the current image is

represented as = CamProj(T§p;) and CamProj represents the

Vs
pin-hole camera projection model.



e The measured coordinate of the i-th keypoint in the current image is

represented as p; = | _|.
Vg

e The reprojection error is defined as e; = p; — CamProj(T§p;).

2.2 Initialization

The necessity of initialization comes from the “chicken-or-egg” nature of the
keyframe based VSLAM problem: tracking needs a map to triangulate the
camera’s motion while mapping needs the position and orientation to locate
the keypoints. This problem is addressed in PTAM by incorporating user

cooperation. The steps are:

1. The user sends out a command to take the first keyframe. Keypoints
in the first keyframe are detected by the FAST corner detector [16].

2. The user smoothly translates (keeping the rotation small) the camera
some small distance. When the camera is moving, the keypoints are

tracked. This is shown as figure 2.2.

3. When the distance camera moves is enough, the user sends out the
command to take the second keyframe. At this time, the correspon-
dences between the tracked keypoints are used by the 5 point algorithm
and RANSAC to estimate the essential matrix [17] and build the basic

map.
4. The basic map is refined through bundle adjustment.

Note that the ambiguity of scale is first shown in the initialization of
PTAM. When applying the 5 point algorithm to determine the essential
matrix, only 5 out of the 6 degrees of freedom can be determined. In order
words, the essential matrix can only be determined up to a scale, leaving
translation t undetermined. In the real implementation, the translation t is

assumed as a constant number.



Transiate the camera slowly sideways, and press spacebar again to perform stereo Init.

Figure 2.2: Tracking of the keypoints in the first keyframe

2.3 Tracking

The tracking thread compares the features in the images with the already
existing map and thereby estimates the position and orientation (pose) of
the camera. First, the pose of the camera is estimated by applying a simple
motion model such as a decaying velocity model. Then data association is
performed by projecting the keypoints into the camera frame. After the
data association is done, the algorithm computes the pose of the camera by

minimizing the projection error.

3~ o (1P C)
C* = argmin Y Obj (% + O'T> (2.1)
¢ = '

op

According to [9], Obj(-, or) is the Tukey biweight objective function men-
tioned in [18] and o7 is a robust estimate of the distribution’s standard

deviation derived from all the reprojection errors.



2.4 Mapping

2.4.1 Adding Keyframes

In order to achieve real time computation and a more accurate map, a subset
of camera images (i.e. keyframes) are used to build the map of the environ-
ment. A camera image is selected as a keyframe when the following criterion

are satisfied:

e Tracking quality is good.
e Mapping does not exceed the computational limit.

e The camera must be more than a minimum distance from the previ-
ously generated keyframe positions. One of the following criteria should
be satisfied: 1)Median difference between observation and projection
should be larger than a threshold; 2)Normalized distance between cur-
rent position and last keyframe generated position should be greater
than a threshold.

Figure 2.3 illustrates the generation of new key-frames, the red vertical
lines represent the generation of a new keyframe. From the figure, we can see
either the reprojection distance or the normalized spatial distance exceeding

certain thresholds (the green line) causes the generation of a new keyframe.

2.4.2 Bundle Adjustment

In the keyframe based VSLAM, bundle adjustment can be defined as re-
fining the keypoints’ position p; and the camera position and orientation
for keyframe C; simultaneously [9]. This is done by minimizing the robust

objective function

{H{Cy---Ck} {p1---PN}} = argmin ZZOZ)J ZJ+UT) (2.2)

2CKP1PNJ111 ;

This is called global bundle adjustment because it refines all the keypoints
and keyframes simultaneously. For some computation critical situations,
global bundle adjustment is not feasible. Only part of keyframes and corre-

sponding keypoints are refined. This is called local bundle adjustment.
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2.5 Adaptation for Large Scale Environment

The PTAM software package® used in this thesis is implemented by the re-
searchers from ETH Zurich Autonomous Systems Lab?. In order to adjust
PTAM to a large scale environment, the algorithm is modified to decrease

the computational complexity. The adaptations are:

e The modified PTAM algorithm only keeps local map (only store N

closest keyframes which ensures constant complexity).

e The modified PTAM algorithm discards original image for map feature
and just uses some more salient features to do the mapping. By doing

this, the number of mapping outliers will be reduced significantly.

e In tracking, FAST corners are replaced by AGAST corners to get better

performance.

Figure 2.4 shows the PTAM GUI. The pose of the camera for which
keyframe is shown as a coordinate frame along with a point-cloud based

map of the scene.

\I.III' II\ l'“ I{ :

Figure 2.4: PTAM GUI

Thttp://wiki.ros.org/ethzasl ptam
2http:/ /www.asl.ethz.ch/
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CHAPTER 3

VISUAL INERTIAL SENSOR FUSION

As discussed in the Chapter 2, PTAM suffers from the scale ambiguity. In
order to resolve this ambiguity, information from other sensors which contain
metric information is fused with the information from the camera. For ex-
ample, in [19], the authors use an ultrasound altimeter to estimate the scale.
Ultrasound sensors, however, cannot provide reliable distance measurements
when the sensor reading is beyond a certain range. This is also the problem
for other range based sensor such as stereo rigs. Inertial measurement units
(IMUs) are commonly equipped on aerial robots. In addition, IMU can pro-
vide directly the vertical direction (i.e. the direction of gravity in the body
frame) [20] [21] [22] and metric information to estimate the scale [23]. IMUs
act as a good complement to a camera.

In this chapter, the methods of fusing visual and inertial data are discussed.
To begin with, a brief review of inertial sensing is presented. Then, two types
of visual inertial methods are introduced and compared. In this thesis, we
will focus on the loosely-coupled visual inertial sensor fusion based on the
extended Kalman filter (EKF) and the relative part is Section 3.3. We im-
plemented the loosely-coupled visual inertial sensor fusion system described

in [24], and the experimental results are shown in Section 3.4.

3.1 Inertial Measurement Unit

Inertial measurement units (IMUs) are sensors which exploit inertia to mea-
sure the linear motion (specific force) and angular motion (angular rate).
Usually, an IMU consists of three orthogonal accelerometers to measure the
specific forces and three orthogonal gyroscopes to measure the angular rate.
Figure 3.1 shows the arrangement of accelerometers and gyroscopes of an

orthogonally arranged IMU. Usually, the IMUs on aerial robots are strap-

12



down IMUs which means the IMUs are fixed in the body frame (the z°, 3°
and 2° in figure 3.1 represent the axes in the body frame). Figure 3.2 shows

the microcontroller containing strap-down IMU of the UAVs from Ascending

Technologies.
b
@ ﬁ Accelerometer
[ £ Gyroscope
= y?
xP

Figure 3.1: Components in an orthogonally arranged IMU

An IMU uses its accelerometers to measure the specific force. The phys-
ical principle of a single-axis accelerometer is shown as figure 3.3 [25]. The

dynamics of the system can be expressed as:
B(t) + 2Cw, 2 (t) + wiz(t) = ij(t) (3.1)

Where ( and w,, represent the damping and natural frequencies of this system;
they are determined by the spring constant k£, the damper constant b, and
the mass m. In this case, we can use the deviation of the mass from the
equilibrium point (z) and its first and second derivatives to represent the
acceleration of ¢, which represents the acceleration of the body frame. Note
here the gravity will only change the equilibrium point of this mass-spring-

damper system; therefore, it cannot be measured separately.

13



Figure 3.2: Microcontroller with a strap-down IMU on Asctec UAV

The measurement of angular rate is relative to measuring Coriolis force.
When gyroscope spinning disk which has moment of inertia I rotates with
angular velocity p, if the angular velocity of the body frame is w, the moment

on the disk due to the Coriolis force can be computed as
M=1Iwxp (3.2)

Since I is known we can compute the angular velocity w by measuring angular

velocity p and moment M.

3.2 Data Fusion Methods

[25] gives a good introduction on visual inertial sensing. According to the
authors, the methods for visual inertial fusion can be broadly categorized
into two categories: loosely-coupled visual inertial fusion and tightly-coupled
visual inertial fusion. Loosely-coupled visual inertial fusion systems treat the
visual estimator and inertial estimator separately and run them at different
rates. A filter is used to combine the data from visual and inertial estimators.
The basic idea can be shown in figure 3.4. The images are first fed into a
vision based localization system such as VSLAM or visual odometry (VO).
Pose with scale ambiguity can be generated from the VSLAM/VO system.

Later the pose with ambiguity is fused with the accelerometer and gyroscope

14



Equilibrium

b Ll_l
Figure 3.3: Physical principle of accelerometer
data from an IMU. The metric position, orientation, and biases in the IMU

are estimated. Examples of loosely-coupled visual inertial fusion are [23|
and [24].

VSLAM/VO ica'ed -
o€ Filter
States: Pose, Scale,
gyro Biases
IMU e

Figure 3.4: Loosely-coupled visual inertial fusion

Tightly-coupled visual inertial fusion systems combine the raw data both
from vision (images) and IMU (gyroscope and accelerometer data) in a single
filter. In the single statistical filter, the metric position, orientation, biases
in the IMU, and position of features in the image are estimated. Examples

of tightly-coupled visual inertial fusion are [26], [27].
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Figure 3.5: Tightly-coupled visual inertial fusion

There are advantages and disadvantages for both loosely-coupled visual
inertial fusion and tightly-coupled visual inertial fusion. One of the biggest
advantages of loosely-coupled visual inertial fusion is its modular property.
The loosely-couple visual inertial systems treat the VSLAM /VO based pose
estimation as a black box and therefore users can replace the VSLAM/VO
method easily with the latest VSLAM/VO methods such as [28] and [29]. In
addition, this structure provides convenience for system integration such as
adding additional sensors. The problem with loosely-couple visual inertial
fusion are: 1) while use visual and inertial sensors separately, some infor-
mation of the correlations between sensors is missing 2) a failure detection
mechanism is necessary to detect if the VSLAM /VO module is still working
properly. Since tightly-coupled visual inertial fusion systems have maximal
exploitation of sensing cues and take the correlations among internal states
of different sensors into account, they can provide better accuracy and ro-
bustness [30]. The tightly-coupled visual inertial fusion systems can be much
more complicated than loosely-coupled visual inertial fusion systems. In this

thesis, we focus on loosely-coupled visual inertial fusion systems.

3.3 EKF based Loosely-coupled Visual Inertial
Fusion

In this Section, an EKF based loosely-coupled sensor fusion system is pre-
sented. This sensor fusion framework is based on [5] and [24]. First, the
linear Kalman filter and extend Kalman filter (EKF) are introduced. Then,

16



the application of EKF on loosely-coupled visual inertial sensor fusion is

presented.

3.3.1 Kalman Filter

The Kalman filter is a popular algorithm to filter and fuse noisy sensor data
and to produce state estimates. The estimated states in the Kalman filter
tends to be more precise (has lower covariance) than the states computed
based on a single measurement alone. Kalman filter is a recursive method,
which means the estimation in current time step is based on the estimation
in the previous time step. Also Kalman filter is one kind of Gaussian filter
[31] which means the posteriors are presented as Gaussian random variables.
Other assumptions of Kalman Filter are that the measurements are subject
to Gaussian random noise and the system is linear. Under these assumptions,
it can be shown that Kalman filter is an optimal estimator.

Assume the discrete time state transition model is:
Xk = Fka,1 —+ Bkuk + Wi (33)

where:

e Fy: State transition matrix at the time step k.

xi: States at time step k.

By: Control-input model at time step k.

uy: Input at time step k.

e wy: Processing noise at time step k and with a zero mean normal

distribution with covariance matrix Qy, i.e. wi ~ N (0, Qs).

The measurement model is:
7y — Hka + Vi (34)

where:

e 7,: Measurement at time step k.

17



e H,: Output model at time step k.

e vi: Measurement noise at time step k with a zero mean normal distri-

bution with covariance matrix Ry (i.e. wi ~ N(0, Ry)).
Also denote:
® Xjx—1: Prediction at time step k.
e P, ;_: Prediction covariance at time step k.

® Xy Posterior at time step £, which means the estimation after incor-

porating the measurement at time step k.
e P, .. Posterior covariance at time step k.
The Kalman filter has a two-step structure:
1. Prediction:

Xpjh—1 = FiXp_1jp—1 + Bruk

. (3.5)
P11 = FkPk—1|k—1FkT + Qx
2. Correction:
Sk = HkPk|k71HkT + Ry,
Ky = Pk|k71HkTSk_1 (3.6)

Kok = Kipo—1 + Ki(ze — HiXppp—1)

Py = (I — KyHy)Pppp1

Note in the prediction step, the covariance of states increases and in the

correction step, the covariance of states decreases.

3.3.2 Extended Kalman Filter

In order to apply the Kalman filter in nonlinear systems

X = f(Xk—1, uk) + Wi

Zy — h(Xk) + Vi

18



we need to linearize nonlinear function f(x,u) and h(x) in equation 3.7 with

respect current states and inputs. This results in:

of
Fy = 8_X|5‘k\k—1:uk 9.8
oh (3.8)
Hy = &’imk—r
Then equations 3.5 and 3.6 will become:
1. Prediction:
}A(kk_ :f}'\ii _1, Uk
|k—1 ( f 1)k—1 )T (3.9)
Pujp—1 = FiProp—1Fiow + Qx
2. Correction:
Sk = HiPy— 1 Hi" + Ry
Ky = Pk|k71HkTSk71 (3.10)

Kok = Kipo—1 + Ki(ze — h(Xgjp-1))

Pip = (I — KyHy)Ppppy

3.3.3 Visual Inertial Loosely-coupled Fusion with EKF

In this section, we briefly present the idea of fusing VSLAM output with
IMU data using the EKF based on [5] and [3]. To begin with, we specify the

coordinate system used in this section. There are four frames:

e Vision frame: the reference frame in PTAM. The vision frame is de-
noted as V

e World frame: gravity aligned frame. The origin’s position is the same

as the vision frame. The world frame is denoted as W.

e Body frame: the frame attached to the IMU. This frame will rotate
when the UAV rotates. Body frame is denoted as B.

e Camera frame: the frame attached to camera. The camera frame is
denoted as C.

19



The states we estimate are: the position and velocity of the IMU in the
world frame (p}, v}’), the rotation quaternion from the world frame to
IMU frame ¢5,, the acceleration bias b,, the gyroscope bias b,, the rotation
quaternion from the vision frame to the world frame ¢}, the scale A, the
rotation quaternion from body frame to camera frame ¢ and the position
of the camera frame in the body frame p5. Measurements from the IMU are

a,, and w,, with noise n, and n,, The system dynamics can be presented as:

Py = vy

2'11?} = R%V(am —by—ny)— g

_ 1 (3.11)
Q)[/sv = §(Wm — by — nw)(hl/sv

by = M, ba = M, A = 0,4 = 0.

where R is the corresponding rotation matrix of quaternion ¢®.
Denote the measurement of unscaled position as z, and the measured ori-

entation as z,. The measurement is:

2 =pe = Ryy(phy + REE)N
2 =5 = a5 Q) at R aw,

where ) represents the quaternion multiplication.

(3.12)

The system can be linearized and discretized to fit into the form shown in

3.3.2. Then, EKF can be used to solve the estimation problem.

3.4 Implementation and Experimental Results

In this section, the implementation of the framework shown in [5] and [3] is
presented. In Section 3.4.1, the hardware system is introduced. In Section
3.4.2, a real experiment is performed and the estimation result is shown to

prove the success of the implementation.
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3.4.1 Hardware Implementation

We implemented the sensor fusion framework! on an AscTec Firefly UAV
(figure 3.6). The hexacopter is redundant and offers vibration damped slots
for various payloads. It is equipped with an AscTec MasterMind with a high
performance 1.7 GHz third Generation Intel Core i7 processor and multiple
USB 2.0 ports to communicate with the payload.

To apply the PTAM method discussed in the previous section, we fixed a
downward-facing MatrixVision Bluefox camera on the Firefly. The camera

sends images to the Mastermind at about 40 frames per second.

— |

Flight Control

E "

Motion
Capture
Marker

MatrixVision .. )
Bluefox Cam

Figure 3.6: Experimental setup of the AscTec Firefly equipped with the
Bluefox camera, MasterMind board, flight control unit, and motion capture
markers.

The basic architecture of the sensor fusion framework is shown in figure 3.7.
The state prediction is performed on the flight control unit (microcontroller),
which contains the IMU. The prediction is running at 1000 Hz. The predicted
states are sent to the onboard computer to perform the covariance prediction
and update. When the states are updated by incorporating the data from
VSLAM, they are sent back to the flight control unit for UAV control.

Thttp://wiki.ros.org/ethzasl _sensor fusion
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Propagation | Statds Sync

Measurement \ .
Update . > Mastermind

Covariance /

Update

Figure 3.7: Architecture of sensor fusion framework

3.4.2 Experimental Results

To verify the position and attitude estimates from PTAM and the sensor
fusion, we use a motion capture system to provide a ground truth. The
motion capture system consists of 24 OptiTrack Flex 3 cameras that capture
pose data at 100 Hz with an centimeter level accuracy. We perform 5 separate
tests and the overall testing time is 2260.2 seconds.

First we test the position estimation performance when the initialization
error of scale is small (less than 0.1). The real scale is estimated by perform-
ing least square estimation. Denote the coordinate from the motion capture
at time step 7 as x; *“? € R? and the coordinate from the PTAM at the
same time as x?'" € R3, we solve the scale \ by solving the minimization
problem:

(Xptam)Txmocap

7 (2

* . ptam mocap|| _ i
A= argznmii] sz AX; H (X T (3.13)

i

We use test 1 as an example. The initialization error of scale is 0 and the

estimation result is shown as figure 3.8. The RMS error of scale estimation is
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. PTAM estimation Sensor fusion estimation
Test | Duration (s)

X y z scale | x (m) | y (m) | z (m)
1 185 0.0789 | 0.0985 | 0.0511 | 0.0440 | 0.0446 | 0.0622 | 0.0154
2 211.2 0.1056 | 0.1064 | 0.0440 | 0.0221 | 0.0744 | 0.0597 | 0.0263
3 692.4 0.4381 | 0.3557 | 0.5403 | 0.0134 | 0.0574 | 0.0668 | 0.0520
4 604.0 0.1527 | 0.1399 | 0.2842 | 0.0655 | 0.0584 | 0.0511 | 0.0533
5 567.6 0.1368 | 0.1047 | 0.0769 | 0.0682 | 0.0553 | 0.0540 | 0.0406

Table 3.1: RMS error in position estimation, scale initialization error is 0

0.0440. The estimation results of x,y,z position are shown as figure 3.9, 3.10,
and 3.11. We can see, the position estimation is more accurate after fusing
with IMU data. Moreover, notice that from 125th second to 140th second,
although PTAM experiences a short time failure in position estimation, the
position estimation from visual inertial fusion system can still track the actual
motion of the UAV. The RMS error in position estimation of both PTAM
and visual inertial fusion is shown as table 3.1. We can see, when the scale is
initialized accurately, by fusing the output of PTAM with IMU data we can
achieve better precision than only using the PTAM output.

Then we perform visual inertial fusion to the same data but with greater
initialization error (0.4 instead of 0) in scale. Again, we use test 1 as an exam-
ple. Figure 3.12 shows the convergence of scale. The corresponding position
estimation is shown as figure 3.13, 3.14, and 3.15. The RMS error in position
estimation is shown as table 3.2. Notice in the table the PTAM estimation
error is not shown since it is the same as in table 3.1. Comparing table 3.1
and 3.2 we can see, while the scale is converging, scale estimation error can
cause position estimation error. In the next chapter, scale estimation will be

discussed.
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Figure 3.8: Estimation of scale when the scale initialization error is 0
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Figure 3.9: Estimation of position in x direction when the scale
initialization error is 0
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Figure 3.10: Estimation of position in y direction when the scale
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Figure 3.11: Estimation of position in z direction when the scale

initialization error is 0
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Sensor fusion estimation
scale | x (m) | y (m) | z (m)
185 0.3082 | 0.0481 | 0.0974 | 0.0514
211.2 0.3164 | 0.0844 | 0.1253 | 0.0522
692.4 0.1117 | 0.0639 | 0.1114 | 0.1235
604.0 0.2217 | 0.1533 | 0.1153 | 0.1620
567.6 0.2049 | 0.0610 | 0.0909 | 0.1540

Test | Duration (s)

QY = W~

Table 3.2: RMS error in position estimation, scale initialization error is 0.4
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Figure 3.12: Estimation of scale when the scale initialization error is 0.4
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Figure 3.13: Estimation of position in z direction when the scale

initialization error is 0.4
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Figure 3.14: Estimation of position in z direction when the scale

initialization error is 0.4
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CHAPTER 4

SCALE ESTIMATION

As discussed in Chapter 2 and 3, fusing IMU data with the output from VS-
LAM systems can resolve the ambiguity of scale. In addition, experimental
results have shown that the estimation error of scale may result in an error
in the estimation of position. When applying EKF to perform state estima-
tion, the nonlinear system is linearized with respect to the estimated state,
which is called as operating point. In this chapter, the relationship between
the scale estimation performance and the operating point of scale will be
presented. To the best of the author’s knowledge, this relationship has not
been presented and analyzed before. The author believes understanding this
relationship will be beneficial in designing scale estimators which have more
consistent performance. We will first present the relationship in the EKF
based scale estimation. A simplified model, which can capture the relation,
is then established to simplify the analysis. Lastly, the operation point’s
effects on the innovation term of the EKF will be discussed with simulation

results.

4.1 Problem Formulation

The scale A can be defined as:

Motiongam
= (4.1)

Motion,qq

Motion g, represents the displacement of the camera estimated in the VS-
LAM system, and M otion,., represents the actual displacement which is in
ST units. In VSLAM systems, the distance between the first and the second
keyframes is usually assumed as unit distance in order to solve for the essen-

tial matrix. The actual displacement, however, can be of any distance. This
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means theoretically the magnitude scale can be any number between 0 and
infinity.

Before fusing the VSLAM output with the IMU data to estimate the scale,
an initial guess of the scale has to be given. Figure 4.1, 4.2, and 4.3 show the
convergence behavior of scale with different initial guesses. As can be seen,
the convergence rate becomes slower when the magnitude of scale guess is

greater.

16 -

141

12+

10 [ 1 SR R N

scale
[ee)
T

-

O 1 1 1 1 1 1 I
-100 0 100 200 300 400 500 600 700
time(s)

Figure 4.1: Scale estimation with different initial guesses (experiment 1)

In order to clarify the relationship between convergence rate and the op-
erating point of the system. With the data in experiment 1, we fix the error
in the initial guesses (i.e. keep the initial guess 0.5 lower than the real scale)
and vary the real scale from 0.52 to 2.6 with step size 0.52. The convergence
can be seen in figure 4.4. The dot dash lines represent the real values of scale.
The scale is considered to be converged when the estimation error decreases
below 0.05. We plot the relationship between the real scale and the conver-
gence time in figure 4.5. As the real data shows, while applying the EKF to
loosely-coupled visual inertial fusion, the convergence rate of scale decreases
when the operating point of scale increases. That is to say, with the same

external excitation, it will take longer time for scale to converge from a+ A\
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Figure 4.2: Scale estimation with different initial guesses (experiment 2)
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Figure 4.3: Scale estimation with different initial guesses (experiment 3)
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to a than b + A\ to b, where a and b are positive numbers subject to a > b
and A) is the initial error of scale. In the rest of this chapter, we analyze

and explain this relationship.

3-
25+
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-100 0 100 200 300 400 500 600 700
time(s)

Figure 4.4: Scale estimation with different scale magnitude

4.2  Model of Scale Estimation Problem

We propose a model for the scale estimation problem in this section. Simula-
tion results are shown to prove this simplified model captures the relationship
between the operating point of the system and convergence rate. We review
the continuous time extended Kalman filter first, because the continuous
time EKF will be used in the analysis in the remainder of this chapter. In
addition, the relationship between the Kalman gain in the continuous time

EKF and the Kalman gain in discrete time EKF' is presented.
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Figure 4.5: Relationship between the magnitude of scale and convergence
time

4.2.1 Continuous-time Extended Kalman Filter
With a dynamic system:

= f(z,u)+w, w~ N(0,Q)

(4.2)
y=nh(z)+v, v~ N(0,R)

The prediction and update are coupled in the continuous time EKF, which is
different from the discrete time EKF. The way to solve the continuous time

EKF is presented as follows

&= f(#,u) + K(z = h(#))
P=FP+PFT —KHP+Q

K=PH"R™' (4:3)
of oh

F=_"lu H=—1
83:'““ ax|”

where 7 is the estimation of state, z is the actual measurement, P is the

covariance matrix of the states and K is the Kalman gain.
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From [32], denoting the Kalman gain computed in the discrete time system

as K4 and the step size in time discretization is At, we have
Ky~ KAt (4.4)
assuming At is sufficiently small. Note that the sign of K; and K is the

same.

4.2.2 Model of scale estimation

The proposed model of the scale estimation problem can be written as

=0
A=0 (4.5)
zZ = AZ.

The physical meaning of x is the position of a visual inertial system which is
subject to one-dimensional motion. Assume the acceleration can be precisely
measured, and the velocity is precisely initialized. This means the velocity
of the visual inertial system v can be measured precisely. We use A to denote
the scale and z to denote the measurement. The real scale can be represented
as ¢, which is a constant. We initialize \at ¢+ A\ where the initial error
A in scale estimation is sufficiently small (e.g. 0.5).

Denote the position estimation error as Ax = x — Z and scale estimation
error as AA =X —\. To analyze the effect of operating point of scale on the
performance of scale estimation, we assume we have accurate guess of the
initial position

z(0) = z(0), (4.6)
we also assume we know the processing noise covariance matrix () and mea-

surement noise covariance matrix R.
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4.2.3 Simulation result

In the simulation, without loss of generality, the trajectory of the visual-

inertial system can be specified as:
x = sin(0.2t) (4.7)

The simulation time spans from 0 to 100 s. The initialization error A\ is set
as +0.5. Assuming a precisely initialized position, real scale ¢ varies from
1 to 15 with step size 2. The convergence of scale estimation error (A\) is
shown in figure 4.6. Note that the operating point of scale s positively
related to real scale ¢ (i.e. greater real scale ¢ indicates greater 5\) We can
use the ¢ to represent the level of the magnitude of scale (we also call it scale
level in this chapter). With the convergence criteria as 0.1, the relationship

between real scale "¢" and convergence time can be shown as figure 4.7.
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Figure 4.6: Convergence behavior of scale with different real scale values.
Lines with different colors correspond to different real scale values

We can see the scale convergence rate decreases as the magnitude of op-

erating point () increases, this coincide with the relationship shown in the

real data.
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Figure 4.7: Convergence time of scale with different real scale values

If we combine the proposed equation 4.5 and equation 4.3, we have

x;:v+k1(z—5\£)
2 . (4.8)
A= ko(z — A2).
Recall the definition of estimation error Az and AN\ is
ANr=x—1
R (4.9)
AN =)\ — ),
we have
Ai = —ki(z — \2
1 ) (4.10)

AN = —ky(z — \2).
We can see the convergence of A\ has two contributors:
e The Kalman gain.
e The innovation term z — AZ.

In the next section, we will perform analysis and simulation to explain the

36



effects of the operating point of scale (;\) on the innovation term.

4.3 Operating Point of Scale’s Effects on Innovation
Term

In order to analyze the effects of the innovation term, we first fix the Kalman
gain. We precompute the time variant Kalman gain when the real scale "¢"
is equal to 15 (figure 4.8 and 4.9) and apply it to different situations with
different "¢". The relationship between the convergence time and scale level
is shown as figure 4.10 and 4.11.

As we can see, when the scale level increases the convergence rate for scale
still decreases. Figure 4.12 shows the effect of scale level on the innovation
term, different colors represent different scale levels. We can see that the
smaller the scale level (also the magnitude of the operating point of scale),
the greater the amplitude of the innovation term. Greater innovation term
will result in larger output injection in the estimator and a faster convergence

rate.
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Figure 4.8: Precomputed Kalman gain k;
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To sum up, in this chapter we present a relationship between the con-
vergence rate of scale estimation and the operating point of the system. In
particular, we find that greater magnitude of scale will cause lower conver-
gence rate in the scale estimation. From the simulation, we found one of the
reasons of this relationship is greater magnitude of scale will result in smaller

amplitude of the innovation term.

40



CHAPTER 5

CONCLUSIONS

In this thesis, we have presented a system which uses a monocular camera
and an IMU to navigate an aerial robot in an previously unknown area.
Parallel Tracking and Mapping (PTAM) is used provide the scaled position
and orientation of the aerial robot. The output of PTAM is then fused with
IMU data to resolve the scale ambiguity result from the nature of monocular
vision. We perform flight tests to show the improvement in estimation by
fusing IMU data. We have also shown that, when using EKF to perform
loosely-coupled visual inertial fusion, the convergence rate of scale depends
on the operating point of scale. When the magnitude of the operating point of
scale increases, the convergence rate of scale decreases. From the simulation,
we have shown this relationship is because when the operating point of scale
increases, the amplitude of innovation term in the EKF becomes smaller.
In the future we shall explore utilizing this property to improve the scale

estimation in visual inertial sensor fusion.
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