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Abstract

Over the last decade or so, thanks to remarkable breakthroughs in cryp-

tographic techniques, a wave of “cryptographic objects”—identity-based

encryption, fully-homomorphic encryption, functional encryption, and most

recently, various forms of obfuscation—have opened up exciting new possi-

bilities for computing on encrypted data. Initial foundational results on this

front consisted of strong impossibility results. Breakthrough constructions, as

they emerged, often used specialized security definitions which avoided such

impossibility results. However, as these objects and their constructions have

become numerous and complex, often building on each other, the connections

among these disparate cryptographic objects, and among their various security

definitions, have become increasingly confusing.

The goal of this work is to provide a clean and unifying framework for

diverse cryptographic objects and their various security definitions, equipped

with powerful reduction and composition theorems. We model the functionality

desired from a cryptographic object via a schema in an ideal world. Our

new security definition, indistinguishability preservation, is parametrized by a

family of test functions. We say that a scheme securely implements a schema

against a test family in the real world if for every test in the family, if test is

able to hide some bit of information from all adversaries in the ideal world,

then this bit should be hidden in the real world too. By choosing test families

appropriately, we are able to place known security definitions (along with new

ones) for a given object on the same canvas, enabling comparative analysis.

Next, we explore the implications of a meaningful relaxation of our security

definition, the one obtained by considering all-powerful adversaries in the

ideal world. Thanks to our framework, we are not only able to substan-

tially generalize known results connecting two important flavors of security

definitions (simulation and indistinguishability) in cryptography under this
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relaxation, but significantly simplify them too.

We also initiate a systematic study of the security of fundamental cryp-

tographic primitives like public-key encryption under a new class of attacks

that had not been considered so far in the literature. Once again, owing to

the flexibility of our framework, we are able to model such attacks, along

with existing ones, in a clean and satisfactory way.

iii



Acknowledgments

First of all I would like to thank my advisor Manoj Prabhakaran. He is

a brilliant, hard-working, innovative researcher, and at the same time, a

really nice, humble, down-to-earth person. He has given me immense support

throughout the PhD program. Inspite of his busy schedule, we have always

had regular meetings. I have learnt from him how to be persistent, precise,

and thorough.

I am extremely fortunate to have collaborated with some of the most

talented and amazing people in the field of cryptography. In alphabetical

order they are Divesh Aggarwal, Shweta Agrawal, Prabhanjan Ananth, Erman

Ayday, Saikrishna Badrinarayanan, Melissa Chase, Vipul Goyal, Divya Gupta,

Carl Gunter, Jean-Pierre Hubaux, Venkata Koppula, Hemanta K. Maji,

Abishek Kumarasubramanian, Muhammad Naveed, Omkant Pandey, Alon

Rosen, Amit Sahai, Xiaofeng Wang, David Wu, and Ching-Hua Yu. I would

like to thank them all for the time they spent with me and the things that I

learnt from them.

A special thank you to Vipul Goyal for my very first research internship

experience, just after my first year of PhD. The two months I spent at

Microsoft Research India were wonderful in several ways: the office space

was fabulous, the food was awesome, and above all, I met a lot of people

and made some good friends. A special thanks is also in order for Shweta

Agrawal, with whom I started working at the beginning of my third year.

Since then, we have collaborated on a number of projects, and have come to

know each other very well. She is a very nice person, has a lot of ideas, and

always willing to discuss them. I also want to thank her for inviting me to

visit IIT Delhi.

Apart from my advisor, the person with whom I have worked most closely

is Melissa Chase. We started working together in the summer of 2014 during

iv



my internship at Microsoft Research Redmond. Melissa is perhaps the nicest

person I have ever met. Needless to say, she is really smart, focused, and

hard-working. In the last one and a half years, our collaboration has been

quite fruitful, and I hope it stays the same way. I want to thank her for

inviting me to visit Microsoft Research, and offering me another internship,

which I will be starting soon.

I also want to thank my PhD committee members: Carl Gunter, Nikita

Borisov, Nitin Vaidya, and Vinod Vaikuntanathan, whose feedback has been

invaluable.

It has also been a pleasure interacting with members of the theory group

at UIUC. Hsien-Chih Chang, Shalmoli Gupta, Nirman Kumar, Vivek Madan,

Kent Quanrud, Ben Raichel, Ali Vakilian, and others, have been very helpful

and friendly. I had a wonderful time TA’ing CS 473 (Fundamental Algorithms)

taught by Sariel Har-Peled. He is such an easy-going, fun person to work

with. The same goes for my co-TA, Kent Quanrud—a delightful person, and

so helpful.

I am very fortunate to have friends like Mayank Baranwal, Ankita Bhutani,

Debashish Das, Piyush Deshpande, Pranav Garg, Dileep Kini, Vivek Kumar,

Shikhar Mohan, Shishir Pandya, Advitya Patyal, Manila Sarangi, Piyush

Singh, Prakalp Srivastava, and Ankur Taneja. They have made my time in

Urbana-Champaign a truly memorable one. We have done so many things

together from hanging out and making fun of each other, to playing tennis,

squash, and table-tennis, to swimming, biking, and hiking.

Last but not the least I want to thank my family. My father has always

believed in me and encouraged me to pursue my dreams. My mother has

been very loving and supportive. And my wife Shikha—well, let me just say

that it wouldn’t have been possible without her.

v



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Agents Framework . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Defining Cryptographic Agents . . . . . . . . . . . . . . . . . 8

2.2 Reductions and Compositions . . . . . . . . . . . . . . . . . . 12

2.3 Restricted Test Families . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Generic Group . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Functional Encryption . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Fully Homomorphic Encryption . . . . . . . . . . . . . . . . . 52

3.5 Property Preserving Encryption . . . . . . . . . . . . . . . . . 54

3.6 On Bypassing Impossibilities . . . . . . . . . . . . . . . . . . . 58

Chapter 4 Unbounded Simulation . . . . . . . . . . . . . . . . . . . . 61

4.1 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Equivalence of Definitions . . . . . . . . . . . . . . . . . . . . 71

4.4 Reductions and Compositions . . . . . . . . . . . . . . . . . . 79

4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter 5 Adversarial Objects . . . . . . . . . . . . . . . . . . . . . . 83

5.1 The New Model . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Public-key encryption . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



Chapter 1

Introduction

Over the last decade or so, thanks to remarkable breakthroughs in cryp-

tographic techniques, a wave of “cryptographic objects”—identity-based

encryption, fully-homomorphic encryption, functional encryption, and most

recently, various forms of obfuscation—have opened up exciting new possi-

bilities for computing on encrypted data. Initial foundational results on this

front consisted of strong impossibility results. Breakthrough constructions, as

they emerged, often used specialized security definitions which avoided such

impossibility results. However, as these objects and their constructions have

become numerous and complex, often building on each other, the connections

among these disparate cryptographic objects, and among their various security

definitions, have become increasingly confusing.

A case in point is functional encryption (FE) [1]. FE comes in numerous

flavors: public key or symmetric [2, 3], with or without function hiding [4, 5],

public or private index [1], bounded or unbounded key [6, 7, 8]. Each flavor

has several candidate security definitions: indistinguishability based [9, 2],

adaptive simulation based [1], non-adaptive simulation [10], unbounded simu-

lation [11], fully-adaptive security [12], black-box/non black-box simulation

[13] to name a few. In addition, FE can be constructed from obfuscation

[14] and can be used to construct property preserving encryption [15], each

of which have numerous security definitions of their own [16, 17, 18]. It is

unclear how these definitions relate, particularly as primitives are composed,

resulting in a landscape cluttered with similar yet different definitions, of

different yet similar primitives.

The goal of this work is to provide a clean and unifying framework for diverse

cryptographic objects and their various security definitions, equipped with

powerful reductions and composition theorems. In our framework, security is

parametrized by a family of “test” functions, and by choosing the appropriate
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family, we are able to place known security definitions for a given object on the

same canvas, enabling comparative analysis. Our framework is general enough

to model abstractions like the generic group model, letting one translate a

general class of constructions in these heuristic models to constructions based

on standard model assumptions.

Why A Framework? A unifying framework like ours has significant poten-

tial for affecting the future course of development of the theory and practice

of cryptographic objects. The most obvious impact is on the definitional

aspects—both positive and negative results crucially hinge on the specifics of

the definition. Our framework allows one to systematically explore different

definitions obtained by instantiating each component in the framework differ-

ently. We can not only “rediscover” existing definitions in this way, but also

discover new definitions, both stronger and weaker than the ones in the liter-

ature. As an example, we obtain a new notion of “adaptive differing-inputs

obfuscation” that leads to significant simplifications in constructions using

“differing-inputs obfuscation”.

The framework offers a means to identify what is common to a variety of

objects, to compare them against each other by reducing one to another, to

build one from the other by using our composition theorems. In addition, one

may more easily identify intermediate objects of appropriate functionality

and security that can be used as part of a larger construction. Another

important contribution of the framework is the ability to model computa-

tional assumptions suitable for these constructions at an appropriate level of

abstraction1.

Why A New Framework? One might wonder if an existing framework for

secure multi-party computation (MPC), like the Universal Composition (UC)

framework, cannot be used, or repurposed, to handle cryptographic objects as

well. While certain elements of these frameworks (like the real/ideal paradigm)

are indeed relevant beyond MPC, there are several differences between MPC

and cryptographic objects which complicates this approach (which indeed

was the starting point for our framework). Firstly, there is a strict syntactic

requirement on schemes implementing cryptographic objects—namely, that

1cf. in secure multi-party computation, the existence of a semi-honest OT protocol
is a more appropriate assumption that the existence of an enhanced trapdoor one-way
permutation
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they are non-interactive—which is absent for MPC protocols; indeed, MPC

frameworks typically do not impose any constraints on the number of rounds,

let alone rule out interaction. Secondly, and more importantly, the security

definition in general-purpose MPC frameworks typically follow a simulation

paradigm2. Unfortunately, such a strong security requirement is well-known to

be unrealizable (for example, the “virtual black-box” definition of obfuscation

is unrealizable [17]). To be relevant, it is very important that a framework for

modeling obfuscation and other objects admits weaker security definitions.

Finally, a simple framework for cryptographic objects need not model

various subtleties of protocol execution in a network that the MPC frameworks

model. These considerations lead us to a bare-bones framework, which can

model the basic security requirements of cryptographic objects (but little

else).

Cryptographic Agents Framework. Our unifying framework, called the

Cryptographic Agents framework models one or more (possibly randomized,

stateful) objects that interact with each other, so that a user with access to

their codes can only learn what it can learn from the output of these objects.

As a running example, functional encryption schemes could be considered as

consisting of “message agents” and “key agents.”

To formalize the security requirement, we use a real-ideal paradigm, but at

the same time rely on an indistinguishability notion (rather than a simulation-

based security notion). We informally describe the framework below.

B

Test
Ideal
User

O E

Test
Ideal
User

Honest Real User

Figure 1.1: The ideal world (on the left) and the real world with an honest
user.

2One exception to this is the “input-indistinguishable computation” framework of Micali,
Pass and Rosen for secure function evaluation of deterministic functions [19]. Unfortunately,
this framework heavily relies on interactivity of protocols (an “implicit input” is defined by
a transcript; but when a party interacts with an object it received, there is no well-defined
transcript), and is unsuitable for modeling cryptographic objects.
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• Ideal Execution. The ideal world consists of two (adversarially de-

signed) entities — a User and a Test — who can freely interact with

each other. (See the left-hand side of Figure 1.1.) User is given access,

via handles, to a collection of “agents” (interactive Turing Machines),

maintained by B (a “blackbox”). User and Test are both allowed to add

agents to the collection maintained by B, but the class of agents that

they can add are restricted by a schema.3 The User can feed inputs to

these agents, and also allow a set of them to interact with each other,

in a “session.” At the end of this interaction, the user obtains all the

outputs from the session, and also additional handles to the agents with

updated states.

Example: In a schema capturing public-key functional encryption,

there are two kinds of agents – “message agents” and “key agents.” A

message agent simply sends out (i.e., copies into its communication

tape) an inbuilt message, every time it is invoked. A key agent reads

a message from its incoming communication tape, applies an inbuilt

function to it, and copies the result to its output tape. The user can

add only message agents to the collection maintained by B; Test can

add key agents as well. Note that the outputs that the user receives

from a session involving a message agent and a key agent is the output

produced by the key agent (the message agent produces no output; it

only communicates its message to the key agent). 4

• Real Execution. The real execution also consists of two entities,

the (real-world) user (or an adversary Adv) and Test. The latter is

in fact the same as in the ideal world. But in the real world, when

Test requests adding an agent to the collection of agents, the user is

handed a cryptographically generated object – a “cryptographic agent”

– instead of a handle to this agent. The correctness requirement is

that an honest user should be able to perform all the operations any

User can in the ideal world (i.e., add new agents to the collection, and

3Here, a schema is analogous to a functionality in UC security. Thus different primitives
like functional encryption and fully-homomorphic encryption are specified by different
schemata.

4For functional encryption, neither inputs to agents nor their states are relevant, as the
message and key agents have all the relevant information built in. However, obfuscation is
most directly modeled by non-interactive agents that take an input, and modeling fully
homomorphic encryption requires agents that maintain state.
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execute a session of agents, and thereby update their states) using an

“execution” operation applied to the cryptographic agents. In Figure 1.1,

O indicates the algorithm for encoding, and E indicates a procedure

that applies an algorithm for session executions, as requested by the

User. (However, an adversarial user Adv in the real world may analyze

the cryptographic agents in anyway it wants.)

• Security Definition. We define IND-PRE (for indistinguishability

preserving) security, which requires that if a Test is such that a certain

piece of information about it (modeled as an input bit) remains hidden

from every user in the ideal world, then that information should stay

hidden from every user that interacts with Test in the real world as

well. Note that we do not require that the view in the real world can

be simulated in the ideal world.

In the real world we require all entities to be computationally bounded.

But in the ideal world, we may consider users that are computationally

bounded or unbounded (possibly with a limit on the number of sessions

it can invoke). Another variable in our definition is the family of tests:

by default, we consider Tests that are PPT; but we may consider Tests

from a family Γ, in which case the resulting security definition is termed

Γ-IND-PRE security. These choices allow us to model different levels

of security, which translate to various natural notions of security for

specific schemata.
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Chapter 2

Agents Framework

To formalize the model of cryptographic agents, we shall use the standard

notion of probabilistic interactive Turing Machines (ITM) with some modifi-

cations (see below). To avoid cumbersome formalism, we keep the description

somewhat informal, but it is straightforward to fully formalize our model. We

shall also not attempt to define the model in its most generality, for the sake

of clarity.

In our case an ITM has separate tapes for input, output, incoming commu-

nication, outgoing communication, randomness and work-space.

Definition 1 (Agents and Family of Agents). An agent is an interactive

Turing Machine, with the following modifications:

• There is a special read-only parameter tape, which always consists of a

security parameter κ, and possibly other parameters.

• There is an a priori restriction on the size of all the tapes other than

the randomness tape (including input, communication and work tapes),

as a function of the security parameter.

• There is a special blocking state such that if the machine enters such a

state, it remains there if the input tape is empty. Similarly, there are

blocking states which let the machine block if any combination of the

communication tape and the input tape is empty.

An agent family is a maximal set of agents with the same program (i.e.,

state space and transition functions), but possibly different contents in their

parameter tapes. We also allow an agent family to be the empty set ∅.

We can allow non-uniform agents by allowing an additional advice tape.

Our framework and basic results work in the uniform and non-uniform model

equally well.
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Note that an agent who enters a blocking state can move out of it if

its configuration is changed by adding a message to its input tape and/or

communication tape. However, if the agent enters a halting state, it will not

move out of that state. An agent who never enters a blocking state is called a

non-reactive agent. An agent who never reads or writes from a communication

tape is called a non-interactive agent.

Definition 2 (Session). A session maps a finite ordered set of agents, their

configurations and inputs, to outputs and (updated) configurations of the same

agents, as follows. The agents are initialized with the given inputs on their

input tapes, and then executed together until they are deadlocked.1 The result

of applying the session is defined as the collection of outputs and configurations

of the agents when the session terminates (if it terminates; if not, the result

is left undefined).

We shall be restricting ourselves to collections of agents such that sessions

involving them are guaranteed to terminate. Note that we have defined a

session to have only an initial set of inputs, so that the outcome of a session is

well-defined (without the need to specify how further inputs would be chosen).

Next we define an important notion in our framework, namely that of

an ideal agent schema, or simply, a schema. A schema plays the same role

as a functionality does in the Universal Composition framework for secure

multi-party computation. That is, it specifies what is legitimate for a user to

do in a system. A schema defines the families of agents that a “user” and a

“test” (or authority) are allowed to create.

Definition 3 (Ideal Agent Schema). A (well-behaved) ideal agent schema

Σ = (Pauth,Puser) (or simply schema) is a pair of agent families, such that

there is a polynomial poly such that for any session of agents belonging to

Pauth ∪ Puser (with any inputs and any configurations, with the same security

parameter κ), the session terminates within poly(κ, t) steps, where t is the

number of agents in the session.

1More precisely, the first agent is executed till it enters a blocking or halting state,
and then the second and so forth, in a round-robin fashion, until all the agents remain in
blocking or halting states for a full round. After each execution of an agent, the contents
of its outgoing communication tape are interpreted as an ordered sequence of messages to
each of the other agents in the session (some or all of them possibly being empty messages),
and copied over to the respective agents’ incoming communication tapes.
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Other Notation. If X and Y are a family of binary random variables (one

for each value of κ), we write X ≈ Y if there is a negligible function negl

such that |Pr[X = 1] − Pr[Y = 1]| ≤ negl(κ). For two systems M and M ′,

we say M u M ′ if the two systems are indistinguishable to an interactive

PPT distinguisher.

For two functions f and g, we write f(g) to denote the function f ◦ g, so

that f(g)(x) = f(g(x)).

2.1 Defining Cryptographic Agents

In this section we define what it means for a cryptographic agent scheme to

securely implement a given ideal agent schema. Intuitively, the security notion

is of indistinguishability preservation: if two executions using an ideal schema

are indistinguishable, we require them to remain indistinguishable when

implemented using a cryptographic agent scheme. While it consists of several

standard elements of security definitions, indistinguishability preservation as

defined here is novel, and potentially of broader interest.

Ideal World. The ideal system for a schema Σ consists of two parties Test

and User and a fixed third party B[Σ] (for “black-box”). All three parties are

probabilistic polynomial time (PPT) ITMs, and have a security parameter κ

built-in. We shall explicitly refer to their random-tapes as r, s and t. Test

receives a “secret bit” b as input and User produces an output bit b′. The

interaction between User, Test and B[Σ] can be summarized as follows:

• Uploading agents. Let Σ = (Pauth,Puser) where we associate Ptest :=

Pauth ∪ Puser with Test and Puser with User. Test and User can, at any

point, choose an agent from its agent family and send it to B[Σ]. More

precisely, User can send a string to B[Σ], and B[Σ] will instantiate an

agent Puser, with the given string (along with its own security parameter)

as the contents of the parameter tape, and all other tapes being empty.

Similarly, Test can send a string and a bit indicating whether it is a

parameter for Pauth or Puser, and it is used to instantiate an agent Pauth

or Puser, accordingly 2. Whenever an agent is instantiated, B[Σ] sends a

2In fact, for convenience, we allow Test and User to specify multiple agents in a single
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unique handle (a serial number) for that agent to User; the handle also

indicates whether the agent belongs to Pauth or Puser.

• Request for Session Execution. At any point in time, User may

request an execution of a session, by sending an ordered tuple of handles

(h1, . . . , ht) (from among all the handles obtained thus far from B[Σ])

to specify the configurations of the agents in the session, along with

their inputs. B[Σ] reports back the outputs from the session, and also

gives new handles corresponding to the configurations of the agents

when the session terminated.3 If an agent halts in a session, no new

handle is given for that agent.

Observe that only User receives any output from B[Σ]; the communication

between Test and B[Σ] is one-way. (See Figure 1.1.)

We define the random variable ideal〈Test(b) | Σ | User〉 to be the output

of User in an execution of the above system, when Test gets b as input. We

write ideal〈Test | Σ | User〉 in the case when the input to Test is a uniformly

random bit. We also define Time〈Test | Σ | User〉 as the maximum number

of steps taken by Test (with a random input), B[Σ] and User in total.

Definition 4. We say that Test is hiding w.r.t. Σ if ∀ PPT party User,

ideal〈Test(0) | Σ | User〉 ≈ ideal〈Test(1) | Σ | User〉.

When the schema is understood, we shall refer to the property of being

hiding w.r.t. a schema as simply being ideal-hiding.

Real World. A cryptographic scheme (or simply scheme) consists of a

pair of (possibly stateful and randomized) programs (O, E), where O is an

encoding procedure for agents in Ptest and E is an execution procedure. The

real world execution for a scheme (O, E) consists of Test, a user that we shall

generally denote as Adv and the encoder O. (E features as part of an honest

user in the real world execution: see Figure 1.1.) Test remains the same as

message to B[Σ].
3Note that if the same handle appears more than once in the tuple (h1, . . . , ht), it is

interpreted as multiple agents with the same configuration (but possibly different inputs).
Also note that after a session, the old handles for the agents are not invalidated; so a User
can access a configuration of an agent any number of times, by using the same handle.
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in the ideal world, except that instead of sending an agent to B[Σ], it sends

it to the encoder O. In turn, O encodes this agent and sends the resulting

cryptographic agent to Adv.

We define the random variable real〈Test(b) | O | Adv〉 to be the output

of Adv in an execution of the above system, when Test gets b as input; as

before, we omit b from the notation to indicate a random bit. Also, as before,

Time〈Test | O | User〉 is the maximum number of steps taken by Test (with

a random input), O and User in total.

Definition 5. We say that Test is hiding w.r.t. O if ∀ PPT party Adv,

real〈Test(0) | O | Adv〉 ≈ real〈Test(1) | O | Adv〉.

Note that real〈Test | O | Adv〉 = real〈Test ◦ O | ∅ | Adv〉 where ∅ stands

for the null implementation. Thus, instead of saying Test is hiding w.r.t.

O, we shall sometimes say Test ◦ O is hiding (w.r.t. ∅). Also, when O is

understood, we may simply say that Test is real-hiding.

Syntactic Requirements on (O, E). (O, E) may or may not use a “setup”

phase. In the latter case we call it a setup-free cryptographic agent scheme,

and O is required to be a memory-less program that takes an agent P ∈ Ptest

as input and outputs a cryptographic agent that is sent to Adv. If the

scheme has a setup phase, O consists of a triplet of memory-less programs

(Osetup,Oauth,Ouser): in the real world execution, first Osetup is run to generate

a secret-public key pair (MSK,MPK);4 MPK is sent to Adv. Subsequently,

when O receives an agent P ∈ Pauth it will invoke Oauth(P,MSK), and when

it receives an agent P ∈ Puser, it will invoke Ouser(P,MPK), to obtain a

cryptographic agent that is then sent to Adv.

E is required to be memoryless as well, except that when it gives a handle

to a User, it can record a string against that handle, and later when User

requests a session execution, E can access the string recorded for each handle

in the session. There is a compactness requirement that the size of this string

is a priori bounded (note that the state space of the ideal agents are also a

priori bounded). If there is a setup phase, E can also access MPK each time

it is invoked.

4For “master” secret and public-keys, following the terminology in some of our examples.
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Admissibility. We would only be interested in schemes that are admissible

according to the following definition.

Definition 6 (Admissibility of schemes). A cryptographic agent scheme

Π = (O, E) is said to be an admissible scheme for a schema Σ if the following

conditions hold.

• Correctness. ∀ PPT User and ∀ Test,

|Pr[ideal〈Test | Σ | User〉 = 1]− Pr[real〈Test | O | E ◦ User〉 = 1]|

≤ negl

for some negligible function negl. If the difference is 0, (O, E) is said

to have perfect correctness.

• Efficiency. There exists a polynomial poly such that, ∀ PPT User,

∀ Test,

Time〈Test | O | E ◦ User〉 ≤ poly(Time〈Test | Σ | User〉, κ).

IND-PRE Security. Now we are ready to present the security definition of

a cryptographic agent scheme (O, E) implementing a schema Σ. Below, the

honest real-world user, corresponding to an ideal-world user User, is defined

as the composite program E ◦ User as shown in Figure 1.1.

Definition 7. An admissible cryptographic agent scheme Π = (O, E) is said

to be a Γ-IND-PRE-secure scheme for a schema Σ if

• Indistinguishability Preservation. ∀Test ∈ Γ,

Test is hiding w.r.t. Σ⇒ Test is hiding w.r.t. O.

When Γ is the family of all PPT tests – denoted by Γppt, we simply say that

Π is an IND-PRE-secure scheme for Σ.
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Figure 2.1: (O, E) in (b) is a reduction from schema Σ to Σ∗. The security
requirement is that no adversary Adv in the system (a) can distinguish that
execution from an execution of the system in (b) (with Adv taking the place
of honest real user). The correctness requirement is that the ideal User in (b)
behaves the same as the ideal User interacting directly with B[Σ] (as in
Figure 1.1(a)). (c) shows the composition of the hybrid scheme (O, E)Σ

∗

with a scheme (O∗, E∗) that IND-PRE-securely implements Σ∗.

2.2 Reductions and Compositions

A fundamental question regarding (secure) computational models is that of

reduction: which tasks can be reduced to which others. In the context of

cryptographic agents, we ask which schemata can be reduced to which other

schemata. We shall use a strong simulation-based notion of reduction. While

a simulation-based security notion for general cryptographic agents or even

just obfuscations (i.e., virtual black-box obfuscation) is too strong to exist, it

is indeed possible to meet a simulation-based notion for reductions between

schemata. This is analogous to the situation in Universally Composable

security, where sweeping impossibility results exist for UC secure realizations

in the plain model, but there is a rich structure of UC secure reductions

among functionalities.

A hybrid scheme (O, E)Σ
∗

is a cryptographic agent scheme in which O
and E have access to B[Σ∗], as shown in Figure 2.1 (in the middle), where

Σ∗ = (P∗auth,P∗user). If O has a setup phase, we require that Ouser uploads

agents only in P∗user (but Oauth can upload any agent in P∗auth ∪ P∗user). In

general, the honest user would be replaced by an adversarial user Adv. Note

that the output bit of Adv in such a system is given by the random variable

ideal〈Test ◦ O | Σ∗ | Adv〉, where Test ◦ O denotes the combination of Test

and O as in Figure 2.1.

Definition 8 (Reduction). We say that a (hybrid) cryptographic agent scheme

12



Π = (O, E) reduces Σ to Σ∗ with respect to Γ, if there exists a PPT simulator

S such that ∀ PPT User,

1. Correctness: ∀Test ∈ Γppt, ideal〈Test | Σ | User〉 ≈ ideal〈Test ◦
O | Σ∗ | E ◦ User〉.

2. Simulation: ∀Test ∈ Γ, ideal〈Test | Σ | S ◦ User〉 ≈ ideal〈Test ◦
O | Σ∗ | User〉.

If Γ = Γppt, we simply say Π reduces Σ to Σ∗. If there exists a scheme that

reduces Σ to Σ∗, then we say Σ reduces to Σ∗. (Note that correctness is

required for all PPT Test, and not just in Γ.)

Figure 2.1 illustrates a reduction. It also shows how such a reduction can

be composed with an IND-PRE-secure scheme for Σ∗. Below, we shall use

(O′, E ′) = (O ◦ O∗, E∗ ◦ E) to denote the composed scheme in Figure 2.1(c).5

Theorem 1 (Composition). For any two schemata, Σ and Σ∗, if (O, E)

reduces Σ to Σ∗ and (O∗, E∗) is an IND-PRE secure scheme for Σ∗, then

(O ◦ O∗, E∗ ◦ E) is an IND-PRE secure scheme for Σ.

Proof sketch: Let (O′, E ′) = (O ◦ O∗, E∗ ◦ E). Also, let Test′ = Test ◦ O and

User′ = E ◦ User. To show correctness, note that for any User, we have

real〈Test | O′ | E ′ ◦ User〉 = real〈Test′ | O∗ | E∗ ◦ User′〉
(a)
≈ ideal〈Test′ | Σ∗ | User′〉

= ideal〈Test ◦ O | Σ∗ | E ◦ User〉
(b)
≈ ideal〈Test | Σ | User〉

where (a) follows from the correctness guarantee of IND-PRE security of

(O∗, E∗), and (b) follows from the correctness guarantee of (O, E) being a

reduction of Σ to Σ∗. (The other equalities are by regrouping the components

in the system.)

It remains to prove that for all PPT Test, if Test is hiding w.r.t. Σ then

Test is hiding w.r.t. O′.
5If (O, E) and (O∗, E∗) have a setup phase, then it is implied that O′auth = Oauth ◦ O∗auth,

O′user = Ouser ◦ O∗user; invoking O′setup invokes both Osetup and O∗setup, and may in addition
invoke O∗auth or O∗user.
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Firstly, we argue that Test is hiding w.r.t. Σ ⇒ Test′ is hiding w.r.t. Σ∗.

Suppose Test′ is not hiding w.r.t. Σ∗. This implies that there is some User

such that ideal〈Test′(0) | Σ∗ | User〉 6≈ ideal〈Test′(1) | Σ∗ | User〉. But, by

security of the reduction (O, E) of Σ to Σ∗, ideal〈Test′(b) | Σ∗ | User〉 ≈
ideal〈Test(b) | Σ | S ◦ User〉, for b = 0, 1. Then, ideal〈Test(0) | Σ | S ◦
User〉 6≈ ideal〈Test(1) | Σ | S ◦ User〉, showing that Test is not hiding w.r.t.

Σ. Thus we have,

Test is hiding w.r.t. Σ⇒ Test′ is hiding w.r.t. Σ∗

⇒ Test′ is hiding w.r.t. O∗

⇒ Test is hiding w.r.t. O′,

where the second implication is due to the fact that (O∗, E∗) is an IND-PRE

secure implementation of Σ∗, and the last implication follows by observing

that for any Adv, we have real〈Test′ | O∗ | Adv〉 = real〈Test | O′ | Adv〉
(by regrouping the components). �

Note that in the above proof, we invoked the security guarantee of (O∗, E∗)
only with respect to tests of the form Test◦O. Let Γ◦O = {Test◦O|Test ∈ Γ}.
Then we have the following generalization.

Theorem 2 (Generalized Composition). For any two schemata, Σ and Σ∗,

if (O, E) reduces Σ to Σ∗ and (O∗, E∗) is a (Γ ◦ O)-IND-PRE secure scheme

for Σ∗, then (O ◦ O∗, E∗ ◦ E) is a Γ-IND-PRE secure scheme for Σ.

Theorem 3 (Transitivity of Reduction). For any three schemata, Σ1,Σ2,Σ3,

if Σ1 reduces to Σ2 and Σ2 reduces to Σ3, then Σ1 reduces to Σ3.

Proof sketch: If Π1 = (O1, E1) and Π2 = (O2, E2) are schemes that carry out

the reduction of Σ1 to Σ2 and that of Σ2 to Σ3, respectively, we claim that

the scheme Π = (O1 ◦O2, E2 ◦ E1) is a reduction of Σ1 to Σ3. The correctness

of this reduction follows from the correctness of the given reductions. Further,

if S1 and S2 are the simulators associated with the two reductions, we can

define a simulator S for the composed reduction as S2 ◦ S1. �
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2.3 Restricted Test Families

In order to capture various notions of security, we define various corresponding

families of test functions. For some schemata of interest, such as obfusca-

tion, there exist no IND-PRE secure schemes (see Section 3.2.2 for details).

Restricted test families are also useful to bypass these impossibilities.

We remark that one could define test families specifically adapted to the

existing security definitions of various primitives, but our goal is to provide

general test families that apply meaningfully to all primitives, and also, would

support a composable notion of reduction. Towards this we propose the

following sub-class of PPT tests, called ∆. Intuitively ∆ is a set of tests that

reveal everything about the agents it sends to the user except for one bit

b. This exactly captures indistinguishability style definitions such as indis-

tinguishability obfuscation, differing inputs obfuscation, indistinguishability

style FE and such others.

We formalize this intuition as follows: for Test ∈ ∆, each time Test sends

an agent to B[Σ], it picks two agents (P0, P1). Both the agents are sent to

User, and Pb is sent to B[Σ] (where b is the secret bit input to Test). Except

for selecting the agent to be sent to B[Σ], Test is oblivious to the bit b. It

will be convenient to represent Test(b) (for b ∈ {0, 1}) as D ◦ c ◦ s(b), where D

is a PPT party which communicates with User, and outputs pairs of the form

(P0, P1) to c; c sends both the agents to User, and also forwards them to s;

s(b) forwards Pb to B[Σ] (and sends nothing to User).

As we shall see, for both obfuscation and functional encryption, ∆-IND-PRE-

security is indeed stronger than all the standard indistinguishability based

security definitions in the literature.

But a drawback of restricting to a strict subset of all PPT tests is that the

composition theorems (Theorem 1 and Theorem 3) do not hold any more.

This is because, these composition theorems crucially relied on being able

to define Test′ = Test ◦ O as a member of the test family, where O was

defined by the reduction (see Theorem 2). Nevertheless, as we shall see,

analogous composition theorems do exist for ∆, if we enhance the definition

of a reduction. At a high-level, we shall require O to have some natural

additional properties that would let us convert Test ◦ O back to a test in ∆,
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Figure 2.2: Illustration of ∆ and the extra requirements on ∆-reduction. (a)
illustrates the structure of a test in ∆; the double-arrows indicate messages
consisting of a pair of agents. The first condition on H is that (a) and (b) are
indistinguishable to Adv: i.e., H can mimic the message from O without
knowing the input bit to s. The second condition is that (c) and (d) are
indistinguishable: i.e., K should be able to simulate the pairs of agents
produced by H, based only on the input to H (copied by c to Adv) and the
messages from H to Adv.

if Test itself belongs to ∆.

Combining Machines: Some Notation. Before defining ∆-reduction and

proving the related composition theorems, it will be convenient to introduce

some additional notation. Note that the machines c and s above, as well as

the program O, have three communication ports (in addition to the secret

bit that s receives): in terms of Figure 2.2, there is an input port below, an

output port above and another output port on the right, to communicate

with User. (D is also similar, except that it has no input port below, and on

the right, it can interact with User by sending and receiving messages.) For

such machines, we use M1 ◦M2 to denote connecting the output port above

M1 to the input port of M2. The message from M1 ◦M2 to User is defined

to consist of the pair of messages from M1 and M2 (formatted into a single

message).

We shall also consider adding machines to the right of such a machine.

Specifically, we use M / K to denote modifying M using a machine K that

takes as input the messages output by M to User (i.e., to its right), and

to each such message may append an additional message of its own. Recall

that for two systems M and M ′, we say M u M ′ if the two systems are

indistinguishable to an interactive PPT distinguisher. Using this notation,

we define ∆-reduction.
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Definition 9 (∆-Reduction). We say that a (hybrid) obfuscated agent scheme

Π = (O, E) ∆-reduces Σ to Σ∗ if

1. Π reduces Σ to Σ∗ with respect to ∆ (as in Definition 8), and

2. there exists PPT H and K such that

(a) for all D such that D ◦ c ◦ s is hiding w.r.t. Σ, D ◦ c ◦ s(b) ◦ O u
D ◦ c ◦ H ◦ s(b), for b ∈ {0, 1};

(b) c ◦ H ◦ c u c ◦ H / K.

If there exists a scheme that ∆-reduces Σ to Σ∗, then we say Σ ∆-reduces to

Σ∗.

Informally, condition (a) allows us to move O “below” s(b): note that H

will need to send any messages O used to send to User, without knowing b.

Condition (b) requires that sending a copy of the pairs of agents output by

H (by adding c “above” H) is “safe”: it can be simulated by K, which only

sees the pair of agents that are given as input to H. ∆-reduction allows us

to extend the composition theorem to ∆-IND-PRE security. We prove the

following theorems now.

Theorem 4 (∆-Composition). For any two schemata, Σ and Σ∗, if (O, E)

∆-reduces Σ to Σ∗ and (O∗, E∗) is a ∆-IND-PRE secure implementation of

Σ∗, then (O ◦ O∗, E∗ ◦ E) is a ∆-IND-PRE secure implementation of Σ.

Proof sketch: Correctness and efficiency are easily confirmed. To prove

security, we need to show that for every Test ∈ ∆, if Test is hiding w.r.t. Σ,

then it is hiding w.r.t. O ◦ O∗. Since Test ∈ ∆, we can write it as D ◦ c ◦ s.
Let Test′ ∈ ∆ be defined as D ◦ c ◦ H ◦ c ◦ s, where H is related to O as in

Definition 9.

First we shall argue that Test′ is hiding w.r.t. Σ∗. Below, we shall also use

K that relates to H as in Definition 9. For any PPT User, for each b ∈ {0, 1},
we have

Test′(b) ≡ D ◦ c ◦ H ◦ c ◦ s(b)

u D ◦ c ◦ H ◦ s(b) / K

u D ◦ c ◦ s(b) ◦ O / K ≡ Test(b) ◦ O / K.

(2.1)
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So for any PPT User,

ideal〈Test′(b) | Σ∗ | User〉 ≈ ideal〈Test(b) ◦ O / K | Σ∗ | User〉

= ideal〈Test(b) ◦ O | Σ∗ | User′〉

= ideal〈Test(b) | Σ | S ◦ User′〉,

where User′ incorporates K and User, and S is from Definition 8. Hence if Test

is hiding w.r.t. Σ, ideal〈Test(0) | Σ | User′′〉 ≈ ideal〈Test(1) | Σ | User′′〉,
where User′′ stands for S ◦ User′, and hence ideal〈Test′(0) | Σ∗ | User〉 ≈
ideal〈Test′(1) | Σ∗ | User〉. Since this holds for all PPT User, Test′ is hiding

w.r.t. Σ∗. Thus we have,

Test is hiding w.r.t. Σ⇒ Test′ is hiding w.r.t. Σ∗

⇒ Test′ is hiding w.r.t. O∗

⇒ Test ◦ O / K is hiding w.r.t. O∗,

where the second implication follows from the fact that (O∗,E∗) IND-PRE

securely implements Σ∗, and the third from Equation 2.1. Now, since K only

provides extra information to User, if Test ◦ O / K is hiding w.r.t. O∗, then

Test ◦ O is hiding w.r.t. O∗. This is the same as saying that Test ◦ O ◦ O∗ is

hiding (w.r.t. a null scheme), as was required to be shown. �

Theorem 5 (Transitivity of ∆-Reduction). For any three schemata, Σ1,Σ2,Σ3,

if Σ1 ∆-reduces to Σ2 and Σ2 ∆-reduces to Σ3, then Σ1 ∆-reduces to Σ3.

Proof sketch: Let Π1 = (O1, E1) and Π2 = (O2, E2) be the schemes that carry

out the ∆-reduction of Σ1 to Σ2 and that of Σ2 to Σ3, respectively. We

define the scheme Π = (O1 ◦ O2, E2 ◦ E1). As in Theorem 3, we see that Π

reduces Σ1 to Σ3 with respect to ∆. What remains to be shown is that Π

also has associated machines (H,K) as required in Definition 9.

Let (H1,K1) and (H2,K2) be associated with Π1 and Π2 respectively, as in

Definition 9. We let H ≡ H1 ◦ H2. To define K, consider the cascade K1 / K2:

i.e., K1 appends a message to the first part of the input to K (from c ◦ H1)

and passes it on to K2, which also gets the second part of the input (from

H2), and appends another message of its own. K behaves as K1 / K2 but

from the output, it removes the message added by K1. We write this as
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K ≡ K1 / K2 //trim , where //trim stands for the operation of redacting the

appropriate part of the message. Note that K has the required format, in that

it only appends to the entire message it receives.

We confirm that (H,K) satisfy the two required properties:

s(b) ◦ O ≡ s(b) ◦ O1 ◦ O2 u H1 ◦ s(b) ◦ O2 u H1 ◦ H2 ◦ s(b) ≡ H ◦ s(b)

c ◦ H / K ≡ (c ◦ H1 / K1) ◦ H2 / K2 //trim u c ◦ H1 ◦ c ◦ H2 / K2 //trim

u c ◦ H1 ◦ c ◦ H2 ◦ c //trim ≡ c ◦ H1 ◦ H2 ◦ c

where the last identity follows from the fact that the operation //trim removes

the appropriate part of the outgoing message. �

Other Restricted Test Families. We define two more restricted test

families, ∆∗ and ∆det, which are of great interest for the obfuscation and

functional encryption schemata. Both of these are subsets of ∆.

The family ∆det simply consists of all deterministic tests in ∆. Equivalently,

∆det is the class of all tests of the form D ◦ c ◦ s, where D is a deterministic

polynomial time party which communicates with User, and outputs pairs of

the form (P0, P1) to c.

The family ∆∗ consists of all tests in ∆ which do not read any messages

from User. Equivalently, ∆∗ is the class of all tests of the form D ◦ c ◦ s, where

D is a PPT party which may send messages to User but does not accept

any messages from User, and outputs pairs of the form (P0, P1) to c. The

composition theorem for ∆, Theorem 4, extends to ∆∗ as well.

We note the composition (and transitivity) extend to ∆∗ as well. In

particular, the following theorem can be proven by observing that in the proof

of Theorem 4, if we consider Test ∈ ∆∗, then Test′ defined in the proof belongs

to ∆∗. (In contrast, this result does not extend to ∆det, unless the notion of

reduction is severely restricted, by requiring H and K to be deterministic.)

Theorem 6 (∆∗-Composition). For any two schemata, Σ and Σ∗, if (O, E)

∆-reduces Σ to Σ∗ and (O∗, E∗) is a ∆∗-IND-PRE secure implementation of

Σ∗, then (O ◦ O∗, E∗ ◦ E) is a ∆∗-IND-PRE secure implementation of Σ.

Note that here the notion of reduction is still the same as in Theorem 4,

namely ∆-reduction.
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Chapter 3

Applications

Recent times have seen a fantastic boom in the area of computing with

encrypted information. Several exciting primitives supporting advanced func-

tionalities, such as fully homomorphic encryption [20], functional encryption

[1], property preserving encryption [15] have been constructed. Some func-

tionalities require the data to be hidden but permit the function to be public,

while others, most notably program obfuscation [17], permit the data to be

public but the function to be hidden. Let us review the state of the art in

these fields.

Program Obfuscation. Program Obfuscation is the task of garbling a

given program so that the input-output behavior is retained, but everything

else about the program is hidden. The formal study of program obfuscation

was initiated by Barak et al. [17] who showed that the strongest possible notion

of security—a simulation-based notion—called virtual black box security was

impossible to achieve for general circuits. To address this, they defined weaker

notions of security, such as indistinguishability obfuscation (denoted by I-Obf),

which states that for two equivalent circuits C0 and C1, their obfuscations

should be computationally indistinguishable. A related but stronger security

notion defined by [17] was that of differing input obfuscation (denoted by

DI-Obf), which further requires that an adversary who can distinguish between

C0 and C1 can be used to extract an input on which the two circuits differ.

Despite these weakenings, the area of program obfuscation was plagued

by impossibilities [21, 22, 23] for a long time, with few positive results,

often for very specialized classes of functions [24, 25, 26, 27, 28, 29]. This

state of affairs however, has improved significantly in recent times, when

constructions of graded encoding schemes [30] were leveraged to build program

obfuscators for complex functionalities, such as conjunctions [31], d-CNF

formulas [32], circuits [14, 33, 34] and even Turing machines [35] in weaker
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models of computation such as the generic graded encoding scheme model

[31, 32, 33, 35], the generic colored matrix model [14] and the idealized pseudo

free group model [34].

These constructions are proven secure under different notions of security:

virtual black box, I-Obf, DI-Obf. Alongside, several new applications have

been developed for IP-Obf [36] and DI-Obf [35, 37]. There is a growing

research effort in exploring the plausibility and connections between different

notions of obfuscation [38, 39] . A better understanding of various notions of

obfuscation and connections with various related notions such as functional

encryption is slowly emerging [40, 41, 42].

Functional Encryption. Functional encryption generalizes public key en-

cryption to allow fine grained access control on encrypted data. In functional

encryption, a user can be provided with a secret key corresponding to a

function f , denoted by SKf . Given SKf and ciphertext CTx = Encrypt(x),

the user may run the decryption procedure to learn f(x). Security of the

system guarantees that nothing beyond f(x) can be learned from CTx and

SKf . Functional encryption systems traditionally focused on restricted classes

of functions such as the identity function [43, 9, 44, 45, 46, 47, 48, 49], mem-

bership checking [50], boolean formulas [51, 52, 53], inner product functions

[54, 53, 55], and more recently, even regular languages [56]. Recent times saw

constructions for more general classes of functions: Gorbanov et al. [57] and

Garg et al. [58] provided the first constructions for an important subclass of

FE called “public index FE” for all circuits, Goldwasser et al. [8] constructed

succinct simulation-secure single-key FE scheme for all circuits, Garg et al.

[14] constructed multi-key FE schemes for all circuits while Goldwasser et al.

and Ananth et al. [59, 35] also constructed FE for Turing machines.

Functional encryption and obfuscation are not just powerful cryptographic

primitives in their own right, but are also intimately related objects – for

example, it was shown in [14] that indistinguishability obfuscation implies

functional encryption. Recently, differing input obfuscation has been used to

construct FE for Turing machines [35].

In [1], Boneh et al. initiated the study of FE under simulation based

definitions, wherein (informally) the view of any adversary attacking an FE

scheme can also be produced with access to only the information we would
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like it to learn in an ideal sense. They not only show that game based

security definitions—under which the above schemes are proven secure—are

inadequate for certain functionalities, but unfortunately, they also prove that

their stronger simulation based definition cannot be realized even for the

most basic type of functional encryption. This led to a series of works that

studied variants of simulation-based definitions, proved more impossibility

results, gave transformations, etc. [10, 13, 60, 11]. The general consensus

that emerged was that simulation-based security is too strong a requirement

for functional encryption.

Fully homomorphic encryption. Fully homomorphic encryption allows a

user to evaluate a circuit C on encrypted messages {CTi = Encrypt(xi)}i∈[n] so

that Decrypt
(
C(CT1, . . . ,CTn)

)
= C(x1, . . . , xn). Since the first breakthrough

construction by Gentry [20], extensive research effort has been focused on

providing improvements [61, 62, 63, 64, 65, 66, 67].

Recently, Alwen et al. [68] explored the connections between FHE, FE

and obfuscation. In [68], the authors introduce the notion of randomized FE

which can be used to construct FHE. In addition, they explore the problem

of obfuscating specific re-encryption functionalities, introducing new notions

extending those proposed in earlier works on re-encryption [28]. They also

develop techniques to use obfuscated re-encryption circuits to construct FE

schemes.

Property Preserving Encryption. The notion of property preserving

encryption (PPE) was introduced in a recent work by Pandey and Rouselakis

[15]. Property preserving encryption is a symmetric key primitive, which

permits some pre-determined property P (x1, x2) to be publicly tested given

only the ciphertexts CT(x1),CT(x2). In [15], the authors formalize the notion

of PPE, provide definitions of security and provide a candidate construction

for inner product PPE in the generic group model. Subsequently, [69] demon-

strated an attack against the construction in [15], which was fixed in [5].

Agrawal et al. [5] also provide the first standard model construction of PPE.

This rich body of primitives is interdependent not only in terms of philos-

ophy and techniques, but also in terms of non-interaction. Unlike the case

of multi-party computation, where a user (in general) continues to send and

receive messages throughout the protocol, the above primitives do not permit
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users to “keep playing”. A user may create an obfuscated agent once and for

all, and then release it into the wild. This agent is expected to reveal nothing

other than what is permitted by its functionality, but must interface in a well

defined manner with other agents or expected inputs.

Another aspect to note, is that many of the above primitives are known to

be impossible to instantiate under the strong simulation based security desired

by MPC. Indeed, positive results often settle for a weaker indistinguishability

based security, which is also the focus of this work.

We now study various cryptographic primitives, including the above, in our

framework. But first we investigate how a popular abstraction, the generic

group model, used in many cryptographic constructions can be captured in

our model.

3.1 Generic Group

Our framework provides a method to convert a certain class of constructions

— i.e., secure schemes for primitives that can be modeled as schemata — that

are proven secure in heuristic models like the random oracle model [70] or

the (bilinear) generic group model [71, 72], into secure constructions in the

standard model.

To be concrete, we consider the case of the generic group model. There are

two important observations we make:

• Proving that a cryptographic scheme for a given schema Σ is secure in

the generic group model typically amounts to a reduction from Σ to a

“generic group schema” Σgg.

• The assumption that there is an IND-PRE-secure scheme Πgg for Σgg is

a standard-model assumption (that does not appear to be ruled out by

known results or techniques).

Combined using the composition theorem (Theorem Theorem 1), these two

observations yield a standard model construction for an IND-PRE-secure

scheme for Σ.
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Above, the generic group schema Σgg is defined in a natural way: the

agents (all in Puser, with Pauth = ∅) are parametrized by elements of a large

(say cyclic) group, and interact with each other to carry out group operations;

the only output the agents produce for a user is the result of checking equality

with another agent.

We formally state the assumption mentioned above:

Assumption 1 (Γ-Generic Group Agent Assumption). There exists a Γ-

IND-PRE-secure scheme for the generic group schema Σgg.

Similarly, we put forward the Γ-Bilinear Generic Group Agent Assumption,

where Σgg is replaced by Σbgg which has three groups (two source groups

and a target group), and allows the bilinear pairing operation as well.

The most useful form of these assumptions (required by the composition

theorem when used with the standard reduction) is when Γ is the set of

all PPT tests. However, weaker forms of this assumption (like ∆-GGA

assumption, or ∆∗-GGA assumption) are also useful, if a given construction

could be viewed as a stronger form of reduction (like ∆-reduction).

While this assumption may appear too strong at first sight – given the

impossibility results surrounding the generic group model – we argue that it

is plausible. Firstly, observe that primitives that can be captured as schemata

are somewhat restricted: primitives like zero knowledge that involve simulation

based security, CCA secure encryption or non-committing encryption and such

others do not have an interpretation as a secure schema. Secondly, IND-PRE

security is weaker than simulation based security, and its achievability is not

easily ruled out (see discussion in Section 3.6). Also we note that such an

assumption already exists in the context of another popular idealized model:

the random oracle model (ROM). Specifically, consider a natural definition of

the random oracle schema, Σro, in which the agents encode elements in a large

set and interact with each other to carry out equality checks. Then, a ∆det-

IND-PRE-secure scheme for Σro is equivalent to a point obfuscation scheme,

which hides everything about the input except the output. The assumption

that such a scheme exists is widely considered plausible, and has been the

subject of prior research [24, 25, 26, 29]. This fits into a broader theme of

research that attempts to capture several features of the random oracle using

standard model assumptions (e.g., [73, 74]). The GGA assumption above can
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be seen as a similar approach to the generic group model, that captures only

some of the security guarantees of the generic group model so that it becomes

a plausible assumption in the standard model, yet is general enough to be of

use in a broad class of applications.

One may wonder if we could use an even stronger assumption, by replacing

the (bilinear) generic group schema Σgg or Σbgg by a multi-linear generic

group schema Σmgg, which permits black box computation of multilinear

map operations [75, 30]. Interestingly, this assumption is provably false if we

consider Γ to be Γppt, since there exists a reduction of obfuscation schema

Σobf to Σmgg [33, 76], and we have seen that there is no IND-PRE-secure

scheme for Σobf. On the other hand, for Γ being ∆ or ∆∗, say, it remains a

plausible assumption. Indeed, as mentioned earlier, Pass et al. introduced a

computational assumption on multi-linear maps – called “semantic security” –

and showed that the security of candidate constructions for indistinguishability

obfuscation (aftersome modifications) can be based on semantically secure

multi-linear groups [77]. We note that their assumption can be stated similar

to Assumption 1, but using a multi-linear map schema and an appropriate

test-family.

Falsifiability. Note that the above assumption as stated is not necessarily

falsifiable, since there is no easy way to check that a given PPT test is hiding.

However, it becomes falsifiable if instead of IND-PRE security, we used a

modified notion of security IND-PRE′, which requires that every test which is

efficiently provably ideal-hiding is real-hiding. We note that IND-PRE′ security

suffices for all practical purposes as a security guarantee, and also suffices for

the composition theorem. With this notion, to falsify the assumption, the

adversary can (and must) provide a proof that a test is ideal-hiding and also

exhibit a real world adversary who breaks its hiding when using the scheme.

3.2 Obfuscation

In this section we define and study the obfuscation schema Σobf. In the

obfuscation schema, agents are deterministic, non-interactive and non-reactive:

such an agent behaves as a simple Turing machine, that reads an input,

produces an output and halts.
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We begin by showing that the obfuscation schema is “complete” under

reduction as defined in Definition 8. Thus, there is an IND-PRE secure

implementation (O, E) which reduces any general ΣF to Σobf. This means

that if there is an IND-PRE secure implementation of Σobf, say using secure

hardware, then this implementation can be used in a modular way to build

an IND-PRE secure schema for any general functionality.

Next, we show there cannot exist an IND-PRE secure schema for general

functionalities. Thus, we exhibit a class of programs F such that Test is

hiding in the ideal world but for any real world cryptographic scheme (O, E),

Test is not hiding in the real world. Our impossibility follows the broad

outline of the impossibility of virtual black box obfuscation by Barak et al.

[17]. Since our definition of obfuscation schema is implied by virtual black

box obfuscation, we obtain a potential1 strengthening of the result of Barak

et al. [17].

Finally, we relate the notion of IND-PRE obfuscation to standard notions

of obfuscation such as indistinguishability obfuscation and differing inputs

obfuscation. We show that the former is equivalent to IND-PRE restricted to

the ∆det family of tests, while the latter is is equivalent to IND-PRE restricted

to the ∆∗ family of tests. We define a new notion of obfuscation corresponding

to IND-PRE restricted to the ∆ family of tests, namely adaptive differing

inputs obfuscation.

Definition. We first formally define the obfuscation schema. If F is a family

of deterministic, non-interactive and non-reactive agents, we define

Σobf(F) := (∅,F).

That is, in the ideal execution User obtains handles for computing F . We

shall consider setup-free, IND-PRE secure implementations (O, E) of Σobf(F).

A special case of Σobf(F) corresponds to the case when F is the class of

all functions that can be computed within a certain amount of time. More

precisely, we can define the agent family Us (for universal computation) to

consist of agents of the following form: the parameter tape, which is at most

s(κ) bits long is taken to contain (in addition to κ) the description of an

arbitrary binary circuit C; on input x, Us will compute and output C(x)

1we do not have a separation between IND-PRE and VBB obfuscation so far
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(padding or truncating x as necessary). We define the “general” obfuscation

schema

Σobf := (∅,Pobf
user) := Σobf(Us),

for a given polynomial s. Here we have omitted s from the notation Σobf and

Pobf
user for simplicity, but it is to be understood that whenever we refer to Σobf

some polynomial s is implied.

3.2.1 Completeness of Obfuscation

We show that Σobf is a complete schema with respect to schematic reduction

(Definition 8). That is, every schema (including possibly randomized, interac-

tive, and stateful agents) can be reduced to Σobf. We stress that this does

not yield an IND-PRE-secure scheme for every schema (using composition),

since there does not exist an IND-PRE-secure scheme for Σobf, as described

in Section 3.2.2. However, if there is, say, a hardware-based IND-PRE secure

implementation of Σobf, then this implementation can be used in a modular

way to build an IND-PRE secure schema for any general functionality.

We show two kinds of reductions. They use only standard cryptographic

primitives: CCA secure public-key encryption and digital signatures.

1. Any schema (∅,P) in which the agents are non-interactive (but possibly

randomized and reactive) has a reduction (O, E) to Σobf in which O is

setup-free.

2. Any schema Σ = (Pauth,Puser) (possibly with Ptest 6= Puser and containing

possibly randomized, reactive, interactive agents) has a reduction (O, E)

to Σobf in which O has setup.

We point out that if Ptest 6= Puser, in general it is necessary that O has setup,

as otherwise an adversarial user can create obfuscations of programs in Pauth

itself.

We sketch each of these reductions below. The security of these reductions

only depend on standard symmetric-key and public-key cryptography primi-

tives. The proofs are conceptually clean and simple, as the reductions between

schemata occur in an idealized world. However, the detailed descriptions
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of the reductions and the simulator tend to be somewhat long. We provide

some of the details to clarify subtleties and also to illustrate the nature of

the reductions and proofs.

We carry out the reduction in two steps: first we show how to reduce any

schema with non-interactive agents to Σobf, and then build on it to reduce

all schemata (including those with interactive agents) to Σobf.

Construction for Non-Interactive Agents

In this section we reduce any schema of the form ΣRR = (∅,P), in which

the agents are randomized and reactive, but non-interactive, to Σobf. For

this we define an intermediate schema, ΣR of randomized, but non-reactive,

non-interactive agents, and give two reductions: we reduce ΣRR to ΣR and

ΣR to Σobf. These can then be composed together using the transitivity of

reducibility (Theorem 3) to obtain our reduction from ΣRR to Σobf.
2

Below, we will write Σ0 for Σobf, Σ1 for ΣR, and Σ2 for ΣRR.

(O1, E1) to reduce Σ1 to Σ0. On receiving a randomized agent P1 from

Test, O1 uploads the following (deterministic) agent P0 to B[Σ0]: P0 has

the parameters of P1 as well as a freshly chosen seed s for a pseudorandom

function (PRF) built-in as its parameters; when invoked it interprets its

input as (i, x), generates a random tape for P1 using the PRF applied to

(i, x), as r = PRFs(i, x), and executes P1(x; r). (The κ-bit index i is used to

implement multiple independent executions of the randomized agent with the

same input.)

E1 translates User’s interaction with B[Σ1] to an interaction with B[Σ0]:

when User requests to upload a randomized agent to B[Σ1], E1 will upload to

B[Σ0] an agent as created by O1. When B[Σ0] sends E1 a handle, it forwards

it to User. When User sends an execution command with a handle h and an

input x to B[Σ1], E1 translates it to the handle h and input (i, x) for B[Σ0],

where i is a randomly chosen κ-bit index. The correctness of the reduction

follows directly from the security of the PRF, and the fact that it is unlikely

that E1 will choose the same value for i in two different sessions.

2The tape and time bounds for the agents in Σobf will depend on the tape and time
bounds for the schema ΣRR. For simplicity, we leave this bound to be only implicitly
specified by our reductions.
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The simulator S1, which translates Adv’s interaction with B[Σ0] to an

interaction with B[Σ1], behaves as follows: it passes on handles it receives

from B[Σ1] as handles from B[Σ0]. If the user sends an upload command, S1
will upload the agent as it is (since Σ1 allows deterministic agents as well). S1
also maintains a list of the form (h, i, x, y) where h is a handle obtained that

does not correspond to an agent uploaded by Adv, (i, x) is an input for h from

a session execution command given by Adv, and y is the output it reported

back to Adv for that session. On receiving a new session request h(z), i.e., for

an agent handle h with input z, S1 behaves differently depending on whether

h is a handle that corresponds to an agent uploaded by Adv, or not. In the

former case, S1 simply forwards the request h(z) to B[Σ1] and returns the

response from B[Σ1] back to Adv. In the latter case, S1 interprets z as (i, x);

then, if there is an entry of the form (h, i, x, y) in its list, S1 returns y to

Adv; else it forwards the session request (h, x) to Σ0, and gets back (a fresh)

output y, records (h, i, x, y) in its list, and sends y to User. It is easy to show,

from the security of the PRF, that S1 satisfies the correctness requirements.

(O2, E2) to reduce Σ2 to Σ1. We omit the detailed description of O2, E2
and the simulator S2 associated with this reduction, but instead just describe

the behavior of the non-reactive agent P1 that O2 sends to B[Σ1], when given

a reactive agent P2 of schema Σ2.

The idea is that the reactive agent P2 can be implemented by a non-reactive

agent P1 which outputs an encrypted configuration of P2 that can then be

fed back as input to P1. More precisely, P1 will contain the parameters of P2

and keys for a semantically secure symmetric-key encryption scheme and a

message authentication code (MAC) built-in as its own parameters. If invoked

with just an input for P2, P1 considers this an invocation of P2 from its start

configuration. In this case, P1 uses its internal randomness to initialize a

random-tape for P2, and executes P2 on the given input until it blocks or

halts. Then (using fresh randomness) it produces an authenticated ciphertext

of the resulting configuration of P2. It outputs this encrypted configuration

along with the (unencrypted) contents of the output tape of P2. P1 can also

be invoked with an encrypted configuration and an input: in this case, it

checks the authentication, decrypts the configuration (which contains the

random tape for P2) and executes P2 starting from this configuration, with

the given input added to the input-tape.
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The security of this reduction follows from the semantic security of the

encryption and the existential unforgeability of the MAC.

General Construction for Interactive Agents

In this section, we shall reduce a general schema Σ = (Pauth,Puser) to the

schema ΣR from Section 3.2.1, which consists of arbitrary randomized (non-

reactive, non-interactive) agents. Combined with the first of two reductions

from the previous section, using Theorem 3, this gives a reduction of Σ to

Σobf.

Our reduction (O, E) is fairly simple. At a high-level, O will upload an

agent called Prun to B[ΣR], which will be used as a key for carrying out

all sessions. The agents in the sessions are maintained as encrypted and

authenticated configurations, which the Prun will decrypt, execute and update,

and then reencrypt and sign. Note that for this Prun needs to be a randomized

agent (hence the reduction to ΣR rather than Σobf).

More precisely, during setup, Osetup will pick a secret-key and public-key pair

(SK,PK) for a CCA2-secure public-key encryption, and a pair of signing

and verification keys (Sig, V er) for a digital signature scheme, and sets

MPK = PK and MSK = (SK,PK, Sig, V er). It will also upload the

following randomized agent Prun to B[ΣR]: the parameters of Prun include

MSK.

1. Prun takes as input ((C1, σ1, x1), · · · , (Ct, σt, xt)) for t ≥ 1, where Ci are

encrypted configurations of agents in Pauth ∪ Puser, σi are signatures on

Ci, and xi are inputs for the agents.

2. It decrypts each Ci using SK. It also checks the signatures on all the

ciphertexts using V er, except for the ciphertexts that contain a start

configuration3 of an agent in Puser.

3. If all the configurations and signatures are valid, then first Prun chooses

a seed for a pseudorandom generator (PRG) to define the random-tape

of each agent in a start configuration.4

3A start configuration has all the tapes, except the parameter tape, empty. The
configuration also contains information about the agent family that the agent belongs to.

4We use the PRG in a stream-cipher mode: it produces a stream of pseudorandom bits,
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4. Then Prun copies the inputs xi to input tapes of the respective agents

and carries out a session execution.

5. When the session terminates, Prun encrypts each agent’s configuration

(along with the updated seed of the PRG that defines its random tape),

to obtain ciphertexts C ′i; it signs them using Sig to get signatures σ′i;

finally, it halts after outputting ((C ′1, σ
′
1, y1), · · · , (C ′t, σ′t, yt)), where yi

are the contents of the output tapes of the agents.

After setup, when Oauth is given an agent in Pauth by Test, it simply encrypts

(the start configuration of) the agent, signs it, and outputs the resulting pair

(C, σ) as the obfuscation of the given agent. Ouser only encrypts the agent

and outputs (C,⊥) as the obfuscation; it is important that the encryption

scheme used is CCA2 secure.

E behaves as follows. During setup, E receives PK from O and a handle

from B[ΣR]. E sends User the handles corresponding to agents which are

uploaded by User, or received (as cryptographically encoded agents) from

O, or (as part of session output) from Prun. For each agent uploaded by

User, E stores its parameters (i.e., start configuration) encrypted with PK,

indexed by its handle. For cryptographically encoded agents received from O
or Prun, it stores the obfuscation (C, σ), indexed by its handle. When given a

session execution command, E retrieves the cryptographically encoded agents

stored for each handle (with an empty signature if it is an agent in Puser with

start configuration) and sends them to B[ΣR], along with the handle for Prun.

It gets back ((C ′1, σ
′
1, y1), · · · , (C ′t, σ′t, yt)) as the output from the session. It

stores each (C ′i, σ
′
i) received with a new handle, and sends these handles along

with the outputs yi to User.

The correctness of this reduction is straightforward, depending only on

the security of the PRG (and only the correctness of the encryption and

signature schemes). To prove the security property, we sketch a simulator

S. It internally runs Osetup to produce (MSK,MPK) and sends the latter

to Adv. It also sends Adv a handle, to simulate the handle for Prun it would

receive during the setup phase. Subsequently, when S receives handles from

B[Σ] for agents uploaded by Test, it simulates the output of Oauth or Ouser

such that at any point there is an updated seed that can be used to continue extracting
more bits from the PRG.
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(depending on whether the handle is for Pauth or Puser) by encrypting a dummy

configuration for an agent. Note that the ciphertexts produced by Ouser are not

signed. Also, when S receives new handles from a session executed by B[Σ],

it simulates the output of Prun, again by encrypting dummy configurations

(these are signed ciphertexts). S hands over all such simulated ciphertexts to

Adv, and also records them along with the corresponding handles it received

from B[Σ]. When Adv sends a session execution command for Prun, with an

input of the form ((C1, σ1, x1), · · · , (Ct, σt, xt)), S attempts to find a handle

for each Ci as follows: first, S looks up the handles for the ciphertexts, if any,

that it has recorded already. Note that if a ciphertext has a valid signature, it

must have been generated and recorded by S. But if there is any ciphertext

which is not signed, and which does not appear in S’s table, then S will

decrypt the ciphertext; if that gives a valid start configuration for an agent in

Puser, then S will upload that agent to B[Σ], and obtains a handle for it. As

we shall see, this is where the CCA2 security is crucial, as explained below.

(If any of the above steps fail (invalid signature, invalid ciphertext or invalid

decrypted configuration), S can simply simulate an empty output from Prun.)

Once it has a handle hi for every Ci, S asks B[Σ] to execute a session with

those handles and inputs x1, · · · , xt. It returns the resulting outputs as well

as dummy ciphertexts (as already described) as the output from Prun.

The proof that the simulation is good relies on the CCA2 security of the

encryption scheme (as well as the unforgeability of the signatures, and the

security of the PRG). Note that on obtaining handles for various agents

from B[Σ], S hands over dummy ciphertexts to Adv, and if Adv gives them

back to S, it translates them back to the handles. Every other ciphertext

is decrypted by S and used to create an agent that it uploads. However, if

the encryption scheme were malleable, Adv could generate such a ciphertext

by malleating one of the ciphertexts it received (from S or from, say, Ouser).

Thus in the real execution, the agent created by Adv would be related to

an agent created by Ouser, where as in the simulation it would be related to

dummy agent created by S, leading to a distinguishing attack. CCA2 security

prevents this: one can translate a distinguishing attack (Test, Adv and S
together) to an adversary in the CCA2 security experiment, in which, though

the adversary does not have access to the decryption keys as S would, it can

still carry out the decryptions carried out by S using the decryption oracle in
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the CCA2 experiment. The details of this reduction are fairly routine, and

hence omitted.

3.2.2 Impossibility of IND-PRE obfuscation for general
functionalities

In this section we exhibit a class of programs F such that Test is hiding w.r.t

Σobf(F) but for any real world cryptographic scheme (O, E), Test is not hiding

w.r.t. O. The idea for our impossibility follows the broad outline of the

impossibility of general virtual black box (VBB) obfuscation demonstrated

by Barak et al. [17]. Intuitively the impossibility of VBB obfuscation by

Barak et al. follows the following broad outline: consider a program P which

expects code C as input. If the input code responds to a secret challenge α

with a secret response β, then P outputs a secret bit b. Barak et al. show

that using the code of P , one can construct nontrivial input code C that

can be fed back to P forcing it to output the bit b. On the other hand, a

simulator given oracle access to P cannot use it to construct a useful input

code C and has negligible probability of guessing an input that will result in

P outputting the secret b. For more details, we refer the reader to [17].

At first glance, it is not clear if the same argument can be used to rule

out IND-PRE secure obfuscation schema. The argument by Barak et al.

seems to rely crucially on simulation based security, whereas ours is an

indistinguishability style definition. Indeed, other indistinguishability style

definitions such as indistinguishability obfuscation (I-Obf) and differing input

obfuscation (DI-Obf) are conjectured to exist for all functions. However,

our notion of indistinguishability preserving obfuscation is too strong to be

achieved, as the following informal argument shows. Consider the same class

of functions F as in [17], with the bit b as the secret. We construct Test which

expects b as external input, and uploads agents from the function family F .

In the ideal world, it is infeasible to distinguish between Test(0) and Test(1)

since it is infeasible to recover b from black box access. In the real world

however, a user may execute a session in which the agent for P is executed

to produce an agent for C, following which P may be run on C to output the

secret bit.
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3.2.3 Indistinguishability and Differing Inputs Obfuscation

First we provide formal definitions for indistinguishability obfuscation and

differing-inputs obfuscation.

Definition 10 (Indistinguishability Obfuscation). A uniform PPT machine

obf(·) is called an indistinguishability obfuscator for a circuit family F = {Fκ}
if it probabilistically maps circuits to circuits such that the following conditions

are satisfied:

• Correctness: ∀κ ∈ N, ∀C ∈ Fκ, and ∀ inputs x we have that

Pr
[
C ′(x) = C(x) : C ′ ← obf(1κ, C)

]
= 1.

• Relaxed Polynomial Slowdown: There exists a universal polynomial

p such that for any circuit C, we have |C ′| ≤ p(|C|, κ) where C ′ ←
obf(1κ, C).

• Indistinguishability: For every pair of circuits C0, C1 ∈ Fκ, such

that ∀x, C0(x) = C1(x), we have that for all PPT distinguishers D

D
(
1κ,obf(1κ, C0)

)
≈ D

(
1κ,obf(1κ, C1)

)
.

Multiple obfuscated circuits: Using a hybrid argument, one can show that

if obf(·) is an indistinguishability obfuscator, then security also holds against

distinguishers who have access to multiple obfuscated circuits. More formally,

let (C0, C1) be a pair of sequence of circuits where Cb = {Cb,1, Cb,2, . . . , Cb,`}
for b ∈ {0, 1} (and ` is some polynomial in κ). Suppose for every i ∈ [1, `]

and for all x, C0,i(x) = C1,i(x). Then, for all PPT distinguishers D we have

that

D
(
1κ,obf(1κ, C0,1), . . . ,obf(1κ, C0,`)

)
≈ D

(
1κ,obf(1κ, C1,1), . . . ,obf(1κ, C1,`)

)
.

Definition 11 (Differing Inputs Obfuscation). A uniform PPT machine

obf(·) is called a differing inputs obfuscator for a circuit family F = {Fκ} if

it probabilistically maps circuits to circuits such that it satisfies the correctness

and relaxed polynomial slowdown conditions as in Definition 10 and also:
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• Differing Inputs: For every algorithm Sampler which takes 1κ as input

and outputs (C0, C1, aux), where C0, C1 ∈ Fκ, if for all PPT A

Pr
[
C0(x) 6= C1(x) : (C0, C1, aux)← Sampler(1κ);

x← A(1κ, C0, C1, aux)
]
≤ negl(κ),

then for all PPT distinguishers D,

D
(
1κ,obf(1κ, C0), aux

)
≈ D

(
1κ,obf(1κ, C1), aux

)
.

We call the Sampler whose output satisfies the condition given above

(against all PPT A) a good sampler. Note that differing inputs obfuscation

requires indistinguishability to hold for good samplers only.

Multiple obfuscated circuits : Like in the case of indistinguishability

obfuscation, we can show that if a differing inputs obfuscator obf(·) exists,

then it is also secure against the following more general class of sampling

functions. Let Sampler` be an algorithm that on input 1κ outputs a pair

of sequence of circuits (C0, C1) and aux, where Cb = {Cb,1, Cb,2, . . . , Cb,`} for

b ∈ {0, 1} (and ` is some polynomial in κ). We claim that if Sampler` is good,

i.e., for all PPT A,

Pr
[
C0,i(x) 6= C1,i(x) : (C0, C1, aux)← Sampler(1κ);

(x, i)← A(1κ, C0, C1, aux)
]
≤ negl(κ),

then for all PPT distinguishers D,

D
(
1κ,obf(1κ, C0,1), . . . ,obf(1κ, C0,`), aux

)
≈

D
(
1κ,obf(1κ, C1,1), . . . ,obf(1κ, C1,`), aux

)
.

‘

We can prove this claim via a hybrid argument. For i ∈ [0, `], let Hi be the

hybrid consisting of obf(C1,1), . . . ,obf(C1,i), obf(C0,i+1), . . . ,obf(C0,`) and

aux (κ has been omitted for convenience). In order to show that H0 is indis-

tinguishable from H`, it is sufficient to show that for every i ∈ [0, `− 1], Hi is

indistinguishable from Hi+1. Both Hi and Hi+1 have obf(C1,1), . . . ,obf(C1,i),
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obf(C0,i+2), . . . ,obf(C0,`) and aux in common. The only difference is that

while the former has obf(C0,i+1), the latter has obf(C1,i+1).

Consider an algorithm Sampler which on input 1κ, runs Sampler`(1
κ) and

outputs (C0,i+1, C1,i+1, aux
′), where aux′ = (C0, C1, aux). We can easily show

that Sampler is a good sampling algorithm if Sampler` is good. Hence,

(obf(C0,i+1), aux
′) is indistinguishable from (obf(C1,i+1), aux

′). This implies

that Hi is indistinguishable from Hi+1.

3.2.4 Relation to existing notions of Obfuscation

In this section we relate the security notions for obfuscation schema to the

standard notions of obfuscation known in literature, such as indistinguisha-

bility obfuscation and differing inputs obfuscation. These relaxations of the

VBB definition were first proposed by Barak et al. [17], but no constructions

were discovered for a long time. Recently, Garg et al. [14] proposed the first

candidate for indistinguishability obfuscation. Later works assume that this

candidate is also a differing inputs obfuscator [35].

Conversion: Firstly, we note that a (set-up free) obfuscation scheme (O, E)

in our framework can be easily mapped to the syntax of an obfuscation scheme

in the traditional sense. It is easy to see that the efficiency requirement of

(O, E) implies a pre-determined poly(κ) upperbound on the execution time of

E on a single invocation (because, the agents in Σobf have a pre-determined

poly(κ) upperbound on their running time). Hence we can define a circuit

E [O] (with a built-in string O) of a pre-determined poly(κ) size that carries

out the following computation: on input x, it interacts with an internal copy

of E , first simulating to it the message O from O (upon which E will output

a handle), followed by a request from User to execute a session with that

handle and input x; E [O] outputs whatever E outputs. Let O ◦ E denote a

program which, on input a circuit C (of size at most s(κ)), invokes O on C

to obtain a string O, and then outputs the program E [O].

Indistinguishability Obfuscation. We now show that if we restrict our

attention to the family of tests ∆det ⊂ ∆ where D is a deterministic party,

then a secure scheme for this family exists iff an indistinguishability obfuscator

does. Formally,
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Lemma 1. A set-up free ∆det-IND-PRE-secure scheme for Σobf (with perfect

correctness) exists if and only if there exists an indistinguishability obfuscator.

Proof. Suppose (O, E) is a set-up free ∆det-IND-PRE-secure scheme for Σobf,

then O ◦ E is an indistinguishability obfuscator, where O ◦ E is defined

as discussed before. By construction, O ◦ E satisfies the correctness and

polynomial slowdown requirements. So suppose O ◦ E does not satisfy the

indistinguishability preservation property. Then there exists two circuits C0

and C1 which have identical input-output behavior, but there exists a PPT

algorithm D which distinguishes between of O ◦ E(C0) and O ◦ E(C1). Now,

define a simple Test ∈ ∆det which on input b, uploads Cb. It is easy to see

that Test is hiding w.r.t. Σobf as the User gets only black-box access to C0 or

C1. On the other hand, we argue that Test is not hiding w.r.t. O. For this

consider an adversary Adv which, on obtaining a string O from O constructs

the program Z := E [O] and invokes D(Z). Then real〈Test(0) | O | Adv〉 6≈
real〈Test(1) | O | Adv〉 follows from the fact that Z is distributed as

O ◦ E(Cb), where b is the input to Test, and the distinguishing advantage of

D.

We now show how obf(.), an indistinguishability obfuscator, yields a

(perfectly correct) set-up free ∆det-IND-PRE-secure scheme for Σobf. Together

with the observation above, this will prove the lemma. We know that obf

maps circuits to circuits. Hence, O on input a circuit C runs obf on the

same input to obtain another circuit C ′. This latter circuit is forwarded to

E . When E receives a circuit, it forwards a handle to the User; and when it

receives a handle h and an input x from the User, it executes the circuit C ′

corresponding to h on x, and returns C ′(x). Correctness easily follows from

the construction of O and E .

Now, suppose that (O, E) is not a secure implementation. This implies that

there exists a Test ∈ ∆det which is hiding w.r.t Σobf but not w.r.t. O. Hence,

there exists an adversary Adv which can distinguish between Test(0) and

Test(1) in the real world. Using Test and Adv, we construct a distinguisher

D as follows. Recall that Test(b) can be represented as D ◦ cs(b), where D is

a deterministic party. D internally simulates a real world set-up with D, O
and Adv. Note that every pair of circuits (C0, C1) that D sends to c must be

equivalent, otherwise Test would not be hiding w.r.t. Σobf. When D uploads
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(C0, C1), D forwards them to Adv and the challenger. Let us say that the

challenger picks a bit b ∈ {0, 1}. When D receives obf(Cb) = O(Cb) from

the challenger, he forwards it to Adv. Finally, D outputs the view of the

adversary. Since the view of Adv in the experiment where challenger picks b

is identical to its view in the real world when Test has input b, D succeeds in

distinguishing between the case where challenger picks 0 from the case where

it picks 1.

Differing Inputs Obfuscation. Next we show that if we consider the

family of tests which do not receive any input from the user, then a secure

scheme for this family exists iff a differing input obfuscator does. Formally,

Lemma 2. A set-up free ∆∗-IND-PRE-secure scheme for Σobf (with perfect

correctness) exists if and only if there exists a differing-inputs obfuscator.

Proof. We first show the only if direction. Let (O, E) be a ∆∗-IND-PRE-secure

scheme for Σobf. We claim that O ◦ E is a differing inputs obfuscator, where

O ◦ E is defined as discussed before. Towards this, let S be a good sampling

algorithm which takes 1κ as input and outputs (C0, C1, aux). We define a

TestS ∈ ∆∗ as follows: D runs S to obtain (C0, C1, aux); it sends aux to the

User and (C0, C1) to c. The only way an adversary can distinguish between

the case where s uploads C0 from the case where it uploads C1 is if it queries

B[Σobf] with an input x s.t. C0(x) 6= C1(x). But this is not possible because

S is a good sampler. Therefore, TestS is hiding w.r.t. Σobf. This implies that

TestS is hiding w.r.t. O as well. It is now easy to show that (O ◦ E(C0), aux)

is indistinguishable from (O ◦ E(C1), aux).

We now show the if direction of the lemma. Suppose obf(·) is a differing

inputs obfuscator. Using obf we can define a scheme (O, E) in the natural way

(see the proof of the previous lemma for details). We claim that (O, E) is an ∆∗-

IND-PRE-secure scheme for Σobf. Correctness easily follows from construction.

In order to prove indistinguishability preservation, consider a Test ∈ ∆∗. Let

(C0, C1) denote the sequence of pairs of circuits uploaded by D, where Cb =

{Cb,1, Cb,2, . . . , Cb,`} for b ∈ {0, 1}, and aux be the messages sent to the User.

Observe that for both b = 0 and 1, any adversary Adv receives C0, C1, aux, and a

sequence of handles h1, . . . , h`. If Test is hiding w.r.t Σobf, then the probability

that Adv queries with hi and input x such that C0,i(x) = C1,i(x) is negligible.
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Hence an algorithm Sampler which runs Test and outputs (C0, C1, aux) is a

good sampling algorithm. Therefore, (obf(C0,1), . . . ,obf(C0,`), aux) cannot

be distinguished from (obf(C1,1), . . . ,obf(C1,`), aux). We can now show that

Test is hiding w.r.t. O in a manner similar to the previous lemma.

3.2.5 Adaptive Differing Inputs Obfuscation

Earlier, we saw that indistinguishability obfuscation is equivalent to ∆det-

IND-PRE and differing inputs obfuscation is equivalent to ∆∗-IND-PRE. In

Section 3.2.2, we saw that IND-PRE secure obfuscation is impossible for

general functionalities. It is natural to ask what happens “in-between”, i.e.

for ∆ family of tests?

To this end, we state a definition for the security of obfuscation – adaptive

differing-inputs obfuscation, which is equivalent ∆-IND-PRE security. Infor-

mally, it is the same as differing inputs obfuscation, but an adversary is

allowed to interact with the sampler (which samples two circuits one of which

will be obfuscated and presented to the adversary as a challenge), even after

it receives the obfuscation. We define it formally below. An equivalent notion

was defined in [68].

Good sampler : Let F = {Fκ} be a circuit family. Let Sampler be a PPT

stateful oracle which takes 1κ as input, and upon every invocation outputs

two circuits C0, C1 ∈ Fκ and some auxiliary information aux. We call this

oracle good if for every PPT adversary A with oracle access to Sampler, the

probability that A outputs an x such that C0(x) 6= C1(x) for some C0, C1

given by Sampler, is negligible in κ.

Definition 12 (Adaptive Differing Inputs Obfuscation). A uniform PPT

machine obf(·) is called an adaptive differing inputs obfuscator for a circuit

family F = {Fκ} if it probabilistically maps circuits to circuits such that it

satisfies the following conditions:

• Correctness: ∀κ ∈ N, ∀C ∈ Fκ, and ∀ inputs x we have that

Pr
[
C ′(x) = C(x) : C ′ ← obf(1κ, C)

]
= 1.

• Relaxed Polynomial Slowdown: There exists a universal polynomial
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p such that for any circuit C, we have |C ′| ≤ p(|C|, κ) where C ′ ←
obf(1κ, C).

• Adaptive Indistinguishability: Let Sampler be a stateful oracle as

described above. Define Samplerb to be an oracle that simulates Sampler

internally, and when Sampler outputs C0, C1 and aux, Samplerb addi-

tionally outputs obf(1κ, Cb). We require that for every good Sampler,

for all PPT distinguishers D

DSampler0(1κ) ≈ DSampler1(1κ).

As we shall see, this notion of obfuscation is very useful and we will be

able to construct ∆-IND-PRE FE schema by providing a ∆ reduction to a

∆-IND-PRE secure obfuscation schema (see Section 3.3 for more details).

3.3 Functional Encryption

In this section, we present a schema Σfe for Functional Encryption. Although

all variants of FE can 5 be captured as schemata secure against different

families of test programs, we focus on adaptive secure, indistinguishability-

based, public-key FE (with and without function-hiding). In Section 3.3.1 we

introduce the schema Σfe for FE without function-hiding, and in Section 3.3.3

we introduce the schema Σfh-fe for function-hiding FE.

3.3.1 Functional Encryption without Function Hiding

Traditional Definition. The following definition of functional encryption

is from [1, 10]. It corresponds to non-function-hiding, public-key functional

encryption.

Syntax. A functional encryption scheme FE for a circuit family F = {Fκ}
over a message space X = {Xκ} consists of four PPT algorithms:

5Simulation-based definitions can be captured in terms of reduction to the null schema.
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• Setup(1κ) takes as input the unary representation of the security pa-

rameter, and outputs the master public and secret keys (MPK,MSK);

• KeyGen(MSK, C) takes as input the master secret key MSK and a circuit

C ∈ Fκ, and outputs a corresponding secret key SKC ;

• Encrypt(MPK, x) takes as input the master public key MPK and a

message x ∈ Xκ, and outputs a ciphertext CTx;

• Decrypt(SKC ,CTx) takes as input a key SKC and a ciphertext CTx, and

outputs a value.

These algorithms must satisfy the following correctness property for all κ ∈ N,

all C ∈ Fκ and all x ∈ Xκ,

Pr

[
(MPK,MSK)← Setup(1κ);

Decrypt(KeyGen(MSK, C),Encrypt(MPK, x)) 6= C(x)

]
= negl(κ),

where the probability is taken over their coin tosses.

Indistinguishability Security. The standard indistinguishability based

security definition for functional encryption is defined as a game between a

challenger and an adversary A as follows.

• Setup: The challenger runs Setup(1κ) to obtain (MPK,MSK), and gives

MPK to A.

• Key queries: A sends a circuit C ∈ Cκ to the challenger, and receives

SKC ← KeyGen(MSK, C) in return. This step can be repeated any

polynomial number of times.

• Challenge: A submits two messages x0 and x1 such that C(x0) =

C(x1) for all C queried by A in the previous step. Challenger sends

Encrypt(MPK, xb) to A.

• Adaptive key queries: A continues to send circuits to the challenger

subject to the restriction that any C queried must satisfy C(x0) = C(x1).

• Guess: A outputs a bit b′.
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The advantage of A in this security game is given by

|Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]| .

We say that a functional encryption scheme FE = (Setup,KeyGen,Encrypt,

Decrypt) is indistinguishability secure if for all PPT adversaries A, the advan-

tage of A in the security game described above is negligible in κ.

Multiple challenge phases : One can show via a hybrid argument that if

no adversary has a significant advantage in the above security game, then the

same holds for a generalized game where there are multiple challenge phases

interspersed with key query phases. In the generalized game, it is required

that for every (x0, x1) submitted in a challenge phase, and every circuit C

queried in any key query phase, C(x0) = C(x1).

Public-key FE without function-hiding is the most well-studied variant

of FE. Definition. For a circuit family C = {Cκ} and a message space

X = {Xκ}, we define the schema Σfe = (Pfe
auth,Pfe

user) as follows:

• Pfe
user: An agent Px ∈ Pfe

user simply sends x to the first agent in the session,

where x ∈ X is a parameter of the agent, and halts. We will often refer

to such an agent as a message agent.

• Pfe
auth: An agent PC ∈ Pfe

auth, when invoked with input 0, outputs C

(where C ∈ C is a parameter of the agent) and halts. If invoked with

input 1, it reads a message x̃ from its incoming communication tape,

writes C(x̃) on its output tape and halts. We will often refer to such

an agent as a function agent.

Reducing Functional Encryption to Obfuscation. In a sequence of

recent results [14, 35, 78, 37, 79], it was shown how to obtain various flavors

of FE from various flavors of obfuscation. We investigate this connection

in terms of schematic reducibility: can Σfe be reduced to Σobf? For this

reduction to translate to an IND-PRE-secure scheme for Σfe, we will need an

IND-PRE-secure scheme for Σobf, and a composition theorem.

Our main result in this section is a ∆-reduction of Σfe to Σobf. Then,

combined with a ∆-IND-PRE secure implementation of Σobf, we obtain a

42



∆-IND-PRE secure implementation of Σfe, thanks to Theorem 4. 6

Before explaining our reduction, we compare it with the results in [14, 35, 37].

At a high-level, these works could be seen as giving “(Γfe,Γobf)-reductions”

from Σfe to Σobf for some pair of test families Γfe and Γobf, such that

when it is composed with a Γobf-IND-PRE-secure scheme for Σobf one gets

a Γfe-IND-PRE-secure scheme for Σfe. For example, in [14], Γobf = ∆det

(corresponding to indistinguishability obfuscation); there Γfe is a test-family

that captures selective-secure functional encryption. We do not define such

(Γfe,Γobf)-reductions formally in this work, as they are specific to the test-

families used in [14, 35, 37]. Instead, we propose ∆-IND-PRE-security as

a natural security notion for both obfuscation and functional encryption

schemata, and provide a simpler ∆-reduction from Σfe to Σobf.

Our Construction. We shall use a simple and natural functional encryption

scheme: the key for a function f is simply a description of f with a signature

on it; a ciphertext of a message m is an obfuscation of a program which

when given as input a signed description of a function f , returns f(m) if

the signature verifies (and ⊥ otherwise). Essentially the same construction

was used in [37] as well, but they rely on “functional signatures” in which

it is possible to derive keys for signing only messages satisfying an arbitrary

relation. In our construction, we need only a standard digital signature

scheme.

Below we describe our construction more formally, as a reduction from Σfe

to Σobf and prove that it is in fact a ∆-reduction. Let Σfe = (Pfe
auth,Pfe

user)

and Σobf = (∅,Pobf
user). We shall only describe O = (Osetup,Oauth,Ouser); E is

naturally defined, and correctness is verified easily.

• Osetup picks a pair of signing and verification keys (SK,VK) for the

signature scheme as (MSK,MPK).

• Oauth, when given a function agent Pf ∈ Pfe
auth, outputs (f, σ) to be sent

to E , where f is the parameter of Pf and σ is a signature on it.

• Ouser, when given an agent Pm ∈ Pfe
user as input, uploads an agent

Pm,MPK ∈ Pobf
user to B[Σobf], which behaves as follows: on input (f, σ)

6Given a ∆∗-IND-PRE secure implementation of Σobf, we could obtain a ∆∗-IND-PRE
secure implementation of Σfe using the same reduction. This follows from the fact that
the composition theorem for ∆, Theorem 4, extends to ∆∗ as well.
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Pm,MPK verifies that σ is a valid signature on f with respect to the

signature verification key MPK; if so, it outputs f(m), and else ⊥.

To show that this is a valid ∆-reduction, apart from verifying correctness,

we need to demonstrate S, H and K as required in Definition 8 and Definition 9.

We describe these below.

• S will first simulate Osetup, by picking a signing and verification key pair

itself, and publishing the latter as MPK. On obtaining a handle hf for an

agent in Pfe
auth, it runs the agent with no input to recover f , and then simulates

Oauth by outputting (f, σ) where σ is a signature on f . On obtaining a handle

h for an agent in Pfe
user, it outputs a simulated handle h′ from B[Σobf] (for the

agent Pm uploaded by Ouser), and internally keeps a record of the pair (h, h′).

Subsequently, on receiving a session execution request for a simulated handle

h′ with some input, first S checks if the input is of the form (f, σ) and σ is a

valid signature on f . If so, it looks for a handle hf corresponding to f that it

received from B[Σfe]; if no such handle exists, it aborts the simulation. Else it

requests an execution of B[Σfe] session involving two handles hf and h, where

(h, h′) was the pair it had recorded when issuing the simulated handle h′. It

returns the output from this B[Σfe] session as the outcome of the execution

of the simulated B[Σobf] session.

The probability S aborts is negligible, since any PPT adversary will have

negligible probability of producing an f with a valid signature, if it was

not given out by S. Conditioned on the adversary never creating a forged

signature, the simulated and real executions are identical.

• We can define H as follows. It implements Osetup faithfully. When it is

given a pair of agents in Pfe
user, it simply forwards both of them (to s). When

it receives a pair of agents in Pfe
auth from T, if they are not identical, H aborts;

otherwise H will simulate the effect of Oauth by signing the function f in (both)

the agents, and forwards it to User. Now, conditioned on D never outputting

a pair of distinct agents in Pfe
auth, we have D ◦ c ◦ H ◦ s ≡ D ◦ c ◦ s ◦ O.

Now, if D ◦ c ◦ s is hiding w.r.t. Σfe, then it must be the case that the

probability of D outputting a pair of distinct agents is negligible. This is

because, D ◦ c ◦ s will forward the two agents to User, and if the two agents

are not identical, the function-revealing nature of the schema, will let the

User learn the secret bit b.
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• We define K as follows. It observes the inputs sent to H (as reported to

User by c), and whenever it sees a pair of agents in Pfe
user, it appends a copy of

those two agents (as if it was reported the second instance of c in c ◦ H ◦ c).
This in fact ensures that c ◦ H ◦ c ≡ c ◦ H / K.

3.3.2 Indistinguishability Secure FE vs. Secure Schemes for FE
Schema.

We examine the relation between IND-PRE-secure Functional Encryption

with standard notions of security, such as indistinguishability based security.

Firstly, we show that ∆det-IND-PRE-secure is equivalent to indistinguishability

secure FE. Note that an IND-PRE security implies ∆det-IND-PRE security

(for any schema). On the other hand, we show a strict separation between

IND-PRE and ∆det-IND-PRE security for FE.

Lemma 3. A ∆det-IND-PRE-secure scheme for Σfe exists if and only if there

exists an indistinguishability secure FE scheme.

Proof. We first prove the easier side. Let (O, E) be a ∆det-IND-PRE-secure

scheme for Σfe, where O = (Osetup,Oauth,Ouser). We construct an FE scheme

Sfe using (O, E) as follows.

• Setup(1κ): Run Osetup to obtain a master secret key MSK and a public

key MPK.

• KeyGen(MSK, C): Output SKC ← Oauth(C;MSK) (where C is passed to

Oauth as the parameter for the agent P Fun
C ∈ PPubFE

auth ).

• Encrypt(MPK, x): Output CTx ← Ouser(x;MPK) (where x is passed to

Ouser as the parameter for the agent PMsg
x ∈ PPubFE

user ).

• Decrypt(SKC ,CTx): Run a copy of E as follows: first feed it SKC and

CTx as messages from O, and obtain agent handles hC and hx; then

request it for a session execution with handles (hC , hx) (and no input).

Return the output for the agent hC as reported by E .

In order to show that Sfe is an indistinguishability secure FE scheme, we

consider the following Test ∈ ∆det. Upon receipt of a circuit C from User, Test
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uploads C and adds C to a list L. Upon receipt of a pair of inputs (x0, x1), if

for every C ∈ L, C(x0) = C(x1), Test uploads xb. After this, if User sends a

circuit C ′, Test uploads C ′ iff C ′(x0) = C ′(x1). (If User sends any other type

of message, it is ignored.)

Now suppose there is an adversary A who breaks the security of Sfe. Then

we show that the above Test is hiding w.r.t. Σfe but not w.r.t. O. To see

this, firstly note that Test is hiding w.r.t. Σfe by design: there is no way

an adversary can learn whether Test uploaded x0 or x1 in the ideal world.

Now, consider an adversary Adv who runs A internally: first it forwards MPK

received from Osetup to A; then it forwards A’s requests to the challenger (in

the IND security game) to Test; the outputs received from O are forwarded

to A. Finally Adv outputs A’s output bit. It is straightforward to see that

the advantage Adv has in distinguishing interaction with Test(0) and Test(1)

is exactly the advantage A has in the IND security experiment.

We now prove the other side of the lemma. Let FE = (Setup,KeyGen,

Encrypt,Decrypt) be an indistinguishability secure FE scheme. We can con-

struct a ∆det-IND-PRE-secure scheme (O, E) for Σfe using the scheme FE in

a way analogous to how an IND secure FE scheme is constructed from an

IND-PRE secure scheme above. We now show that if (O, E) is not a secure

scheme then neither is FE . That is, if there exists a Test ∈ ∆det such that

Test is hiding in the ideal world, but there exists a PPT adversary Adv which

can distinguish between Test(0) and Test(1) in the real world, then there

exists an adversary A which can break the security of FE in the generalized

IND game.

Recall that Test(b) can be represented as D◦cs(b), where D is a deterministic

party. A internally simulates a real world set-up with D, O and Adv, and

externally participates in the indistinguishability game with a challenger. We

will show that for b ∈ {0, 1}, if challenger picks the bit b, then Adv’s view is

identically distributed to its view in the real world when Test gets input b.

This will complete the proof.

At any point during a run of the real world, D either uploads a pair of

function agents (C0, C1) or a pair of message agents (x0, x1) to c. We can

see that C0 and C1 must be the same circuits, otherwise Test would not be

hiding in the ideal world. Similarly, for every function agent C = C0 = C1
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ever uploaded, it must be the case that C(x0) = C(x1), for every (x0, x1).

It is now easy to simulate the view of Adv. When a function agent C is

uploaded by D, A sends C to the challenger, and forwards the key obtained

to Adv (along with (C0, C1)). When D uploads (x0, x1), A forwards it to the

challenger. The ciphertext returned by the challenger is forwarded to Adv

(along with (x0, x1)).

Lemma 4. There exists a ∆det-IND-PRE secure scheme for Σfe which is not

an IND-PRE secure scheme for Σfe.

Proof. The idea of the separation follows that in [1]. Let β : {0, 1}n → {0, 1}n

be a one-way permutation, and h be its hard-core predicate. Consider a

function family which has only one function f . For all x ∈ {0, 1}n, define

f(x) := β(x). Consider an FE scheme FE where Encrypt(x) is simply a

public-key encryption (PKE) of x, and the secret key for f is the secret key

of the PKE scheme. (Decrypt first runs the decryption algorithm of PKE to

obtain x, and then outputs β(x).) In the indistinguishability game, if the

adversary doesn’t ask for any key, then clearly he cannot distinguish. On the

other hand, if he does request a key for f , he can only send identical messages

to the challenger (β is a permutation), and therefore has no advantage. Hence,

FE is secure under the standard indistinguishability based security definition.

On the other hand, if we transform FE to a scheme (O, E) in the schemata

framework, we show that the latter is not secure. Consider a Test algorithm

which on input a bit b, chooses an n-bit string x uniformly at random, uploads

message agent x and sends b⊕ h(x) to the User. It also uploads a function

agent corresponding to f . Thus, the ideal user sees β(x) and b⊕h(x). Clearly,

in the ideal world a PPT adversary cannot distinguish between Test(0) and

Test(1), since doing so would imply guessing the hard-core bit. However, in

the real world distinguishing between Test(0) and Test(1) is trivial because

decryption reveals x.

Finally, one can see that if Ouser simply outputs β(x) on input x, then we

get a secure IND-PRE scheme.
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3.3.3 Function-Hiding Functional Encryption

Now we turn our attention to function-hiding FE (with public-keys). This a

significantly more challenging problem, both in terms of construction and even

in terms of definition [4, 80, 5]. The difficulty in definition stems from the

public-key nature of the encryption which allows the adversary to evaluate the

function encoded in a key on arbitrary inputs of its choice: hence a security

definition cannot insist on indistinguishability between two arbitrary functions.

In prior work, this is often handled by restricting the security definition to

involve functions that are chosen from a restricted class of distributions, such

that the adversary’s queries cannot reveal anything about the functions so

chosen. The definition arising from our framework naturally generalizes this,

as the security requirement applies to all hiding tests and thereby removes

the need of specifying ad hoc restrictions. We only need to specify a schema

for function-hiding FE, and the rest of the security definition follows from

the framework.

The definition of the schema corresponding to function-hiding FE, Σfh-fe =

(Pfh-fe
auth ,Pfh-fe

user ), is identical to that of Σfe, except that a function agent

PC ∈ Pfh-fe
auth does not take any input, but always reads an input x from

its communication tape and outputs C(x). That is, the function agents do

not reveal the function now.

Constructions. We present two constructions for function-hiding FE –

an IND-PRE-secure scheme for the class of inner-product predicates, and a

∆-IND-PRE-secure scheme for all function families.

• The first construction is in fact an information-theoretic reduction

of the schema Σfh-fe(IP) (where IP denotes the class of inner-product

predicates) to the schema Σbgg. Thus under the assumption that there is

an IND-PRE secure scheme for Σbgg, we obtain a scheme for Σfh-fe, using

Theorem 1. This construction is essentially the same as a construction

in the recent work of [5], which was presented in the generic group model.

Intuitively, the simulation based proof in [5] may be interpreted as a

simulation based reduction from Σfh-fe(IP) to Σgg satisfying Definition 8.

• The second construction is for general function-hiding FE: a ∆-IND-PRE-

secure scheme for Σfh-fe, based on the assumption that a ∆-secure
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scheme for Σobf exists. We mention that this construction is not a ∆-

reduction. It relies on applying a signature to an obfuscation, and hence

our framework cannot be used to model this as a black-box reduction

(indeed, we cannot model the unforgeability requirement of signatures

in our framework).

Function Hiding FE for Inner-Product from Generic Group Schema

Lemma 5. Σfh-fe(IP) reduces to Σbgg.

Proof. As mentioned earlier, our construction follows that of [5]. To formally

define this as a reduction, i.e., a scheme (O, E)Σbgg, we need to translate the

use of generic groups in that construction to fit the interface of B[Σbgg]. Note

that unlike in the generic group model, B[Σbgg] does not send any handles

to the scheme’s O algorithm. Instead, O will work with a concrete group.

Let Ŝ denote the construction S, but instantiated with the concrete group

Zq, where q is the order of the (source and target) groups provided by Σbgg.7

Then, we define O as follows:

• Encoding scheme O:

– Osetup: Run Ŝ.Setup and obtain (MPK,MSK), each of which is a

vector of elements in Zq. Create an agent for each group element

in MPK, and send it to B[Σbgg] (which will send a handle for it to

the user). (If there were to be entries in MPK which are not group

elements, O sends them directly to the user.)

– Oauth: Given an agent Pf ∈ Pfh-fe
auth , extract f from Pf and let

SKf = Ŝ.KeyGen(MSK, f). For each group element in SKf , send it

to B[Σbgg].

– Ouser: Given an agent Pm ∈ Pfh-fe
user , let CTm = Ŝ.Encrypt(MPK,m).

Again, or each group element in CTm, send it to B[Σbgg].

• Executer E: Given handles corresponding to a function agent SKf and

handles corresponding to a message agent CTm, E invokes S.Decrypt
with these handles. During the execution, S will require access to the

7Groups of different orders can also be handled, but for simplicity, we consider the
source and target groups to be of the same order.
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generic group operations, and at the end will output a group element

which is either the identity (in which case the predicate evaluates to

true) or not (in which case it evaluates to false).8 E will use access to

B[Σbgg] to carry out the group operations, and at the end carry out an

equality check to find out whether the final handle output by S.Decrypt

encodes the identity or not.

Correctness follows from correctness of S. To define our simulator, we use

the simulator S.sim, which simulates the generic group oracle to a user. Our

simulator is slightly simpler compared to that for S: there, the simulator

proactively checked if a group element for which a handle is to be simulated

would be equal to a group element for which a handle was previously issued,

and if so, used the handle again. This is because, in the generic group

model, a single group element has only one representation. In our case, the

simulator will issue serial numbers as handles (as B[Σbgg] would have done),

and equality checks are carried out (using information gathered from B[Σfe])

only to correctly respond to equality check requests made by the user to

B[Σbgg]. In all other respects, our simulator is the same as the simulator in

the generic group model. The proof that the simulation is good also follows

the same argument as there.

General Construction from Obfuscation

Lemma 6. If there exists an ∆-IND-PRE-secure scheme for Σobf, then there

exists a ∆-IND-PRE-secure scheme for Σfh-fe.

Proof. Let Π∗ = (O∗, E∗) that be a ∆-IND-PRE-secure scheme for Σobf. Then

we define a scheme (O, E) for Σfh-fe as follows.

• Encoding scheme O:

– Osetup: Generate (VK, SK) as the verification key and signing key

for a signature scheme. Output VK as MPK.

8Though not the case with the construction in [5], a general algorithm in the generic
group model may check for identities by comparing handles, not just at the end, but at any
point during its execution. In this case, E should proactively check every handle it receives
from B[Σbgg] against all previously received handles, to see if they encode the same group
element; if so, the newly received handle is replaced with the existing one.
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– Oauth: Given an agent Pf ∈ Pfh-fe
auth , define an agent P ′f ∈ Pobf

user , which

on input x outputs f(x). Let c :=
(
O∗(P ′f)

)
and σ = SignSK(c).

Send (c, σ) to User.

– Ouser: Given an agent Pm ∈ Pfh-fe
user , define an agent P ′′m,VK ∈ Pobf

user

as follows: on input (c, σ), check if VerifyVK(c, σ) holds, and halt

otherwise; if the signature does verify, invoke E∗ with handle c and

input m, and output whatever E∗ outputs. Let d = O∗(P ′′m,VK)).

Send d to User.

• Executer E: Given handle (c, σ) corresponding to a function agent

and a handle d corresponding to a message agent, E invokes E∗ with

handle d and input (c, σ). It outputs what E∗ outputs.

The correctness of this construction is straightforward. To argue secu-

rity, consider any test Test = D ◦ c ◦ s ∈ ∆, such that Test is hiding

w.r.t. Σfh-fe. Then, for any PPT adversary Adv, we need to show that

real〈Test(0) | O | Adv〉 ≈ real〈Test(1) | O | Adv〉. For this we consider an

intermediate hybrid variable, defined as follows. Let s̃(0, 1) indicate a modified

version of s, which when given two agents Pm0 , Pm1 in Pfh-fe
user , selects Pm0 ,

but when given two agents Pf0 , Pf1 in Pfh-fe
auth , selects Pf1 . Then we claim that

real〈Test0 | O | Adv〉 ≈ real〈D ◦ c ◦ s̃ | O | Adv〉 ≈ real〈Test1 | O | Adv〉.
For simplicity, consider D which only outputs a single pair of function agents

(Pf0 , Pf1) and a single pair of message agents (Pm0 , Pm1). (The general case

is handled using a sequence of hybrids, in a standard way.)

To show the first approximate equality, consider a test Test′ and adver-

sary Adv′ which work as follows. Test′ internally simulates Test(0) and O
with the following differences: when Osetup outputs the signing key SK, Test′

forwards it to Adv′; when the two agents Pf0 , Pf1 are sent to s, Test′(b)

outputs Pfb to B[Σobf] (or O∗). Adv′, when it receives c from O∗, first

signs it using SK to obtain σ, and then passes on (c, σ) to an internal

copy of Adv; otherwise, it lets Adv directly interact with Test′. It can

be seen that real〈Test′(0) | O∗ | Adv′〉 = real〈Test(0) | O | Adv〉 and

real〈Test′(1) | O∗ | Adv′〉 = real〈D ◦ c ◦ s̃ | O | Adv〉. Further, Test′ ∈ ∆.

Also, it is easy to see that if Test′ is not hiding w.r.t. Σobf, then Test is

not hiding w.r.t. Σfh-fe (because User’s interface to Σfh-fe can be used to

emulate its interface to Σobf). Thus, if Test is hiding w.r.t. Σfh-fe, then
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real〈Test′(0) | O∗ | Adv′〉 ≈ real〈Test′(1) | O∗ | Adv′〉. This establishes

that real〈Test0 | O | Adv〉 ≈ real〈D ◦ c ◦ s̃ | O | Adv〉.

To show that real〈D ◦ c ◦ s̃ | O | Adv〉 ≈ real〈Test1 | O | Adv〉, we

consider another test Test′′. Now, Test′′ internally simulates Test(1) and O
with the following differences: when the two message agents Pm0 , Pm1 are sent

to s, Test′′(b) sends (P ′′m0,VK
, P ′′m1,VK

) to Adv′′ and outputs P ′′mb,VK
to B[Σobf]

(or O∗), where P ′′mb,VK
was as defined in the description of Ouser. Then,

real〈Test′′(0) | O∗ | Adv〉 = real〈D ◦ c ◦ s̃ | O | Adv〉, and

real〈Test′′(1) | O∗ | Adv〉 = real〈Test(1) | O | Adv〉.

Also, as before, Test′′ ∈ ∆. If Test′′ is hiding w.r.t. Σobf, then we can conclude

that

real〈Test′′(0) | O∗ | Adv〉 ≈ real〈Test′′(1) | O∗ | Adv〉,

and hence

real〈D ◦ c ◦ s̃ | O | Adv〉 ≈ real〈Test(1) | O | Adv〉.

Thus it only remains to show that Test′′ is hiding w.r.t. Σobf. Firstly, by

the security of the signature scheme, for any PPT adversary User, w.h.p.,

it does not query Σobf with a handle and an input (c, σ) for a c that was

not produced by Test′′. Now, conditioned on this event, if User distinguishes

Test′′(0) and Test′′(1), this User can be turned into one that distinguishes

between Test(0) and Test(1) when interacting with Σfh-fe. Thus, since Test is

hiding w.r.t. Σfh-fe, it follows that Test′′ is hiding w.r.t. Σobf, as was required

to be shown.

3.4 Fully Homomorphic Encryption

In this section, we present a cryptographic agent schema Σfhe for Fully

Homomorphic Encryption (FHE). This schema consists of reactive agents

(i.e., agents which maintain state across invocations). For a message space

X = {X}κ and a circuit family F = {F}κ, we define the schema Pfhe =

(Pfhe
test ,Pfhe

user) as follows:
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• An agent PMsg ∈ Pfhe
user is specified as follows: Its parameter tape consists

of an initial value x. When invoked with an input C on its input tape,

it reads a set of messages x2, x3, . . . , xt from its communication tapes.

Then it computes C(x1, .., xt) where x1 is its own value (either read

from the work-tape, or if the work-tape is empty, from its parameter

tape). Then it updates its work-tape with this value. When invoked

without an input, it sends its message to the first program in the session.

• An agent PDec ∈ Pfhe
auth is defined as follows: when executed with an

agent PMsg it reads from its communication tape a single message from

PMsg and outputs it.9

Given a ∆det-IND-PRE secure scheme (O, E) for Σfhe, we show how to con-

struct a semantically secure FHE scheme Sfhe = (Setup,Encrypt,Decrypt,Eval).

For a formal treatment of FHE, see [81].

• Setup(1κ) : Run Osetup to obtain public key PK and secret key SK.

• Encrypt(x,PK) : Run Ouser((0, x),PK) to obtain a ciphertext CTx. Here

0 denotes that x is a parameter for agent PMsg.

• Decrypt(CT, SK) : Let D ← Oauth(1, SK), where 1 denotes that the agent

is PDec. Then run a copy of E as follows: first feed it D and CT as

messages from O, and obtain handles hD and hm; then request it for a

session execution with (hD,⊥) and (hm,⊥). Return the output for the

agent hD as reported by E .

• Eval(C,CT1,CT2, . . . ,CTn): Run a copy of E as follows: first feed it

CT1,CT2, . . . ,CTn as messages fromO, and obtain handles h1, h2, . . . , hn.

Then request E to run a session with (h1, f), (h2,⊥), . . . , (hn,⊥). Out-

put the ciphertext CT returned by E .

Correctness follows easily from construction. Compactness follows from the

fact that the size of string recorded for each handle by E is a priori bounded.

We now show that Sfhe is semantically secure. On the contrary, suppose there

9Note that there is no parameter to a Pauth agent as there is only one of its kind.
However, we can allow a single schema to capture multiple FHE schemes with independent
keys, in which case an index for the key would be the parameter for Pauth agents.
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exists an adversary A who breaks the semantic security of Sfhe. Consider the

following Test(b): Upon receipt of inputs x0, x1 from User, Test chooses xb

and uploads it (as parameter for agent PMsg). This Test is clearly hiding in

the ideal world, because in the absence of a decryption agent, an adversary

only obtains handles from B[Σfhe]. Therefore, by IND-PRE security of (O, E),

Test is also hiding w.r.t. O.

Now, consider an adversary Adv who runs A internally: first it forwards

PK received from Osetup to A; then it forwards A’s requests (x0, x1) to the

challenger (in the semantic security game) to Test; the outputs received fromO
are forwarded to A. Finally Adv outputs A’s output bit. It is straightforward

to see that the advantage Adv has in distinguishing interaction with Test(0)

and Test(1) is exactly the advantageA has in the semantic security experiment.

3.5 Property Preserving Encryption

In this section, we formally define PPE and the standard notion of security

for it [15].

Definition 13 (PPE scheme). A property preserving encryption scheme for

a binary property P : M×M → {0, 1} is a tuple of four PPT algorithms

defined as follows:

• Setup(1κ) takes as input the security parameter κ and outputs a secret

key SK (and some public parameters).

• Encrypt(m, SK) takes as input a message m ∈M and outputs a cipher-

text CT.

• Decrypt(CT, SK) takes as input a ciphertext CT and outputs a message

m ∈M.

• Test(CT1,CT2) takes as input two ciphertexts CT1 and CT2 and outputs

a bit b.

We require that for all messages m,m1,m2 ∈M, the following two conditions

hold:
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• Decryption: Pr[SK ← Setup(1κ);Decrypt(Encrypt(m, SK), SK) 6= m] =

negl(κ), and

• Property testing: Pr[SK← Setup(1κ);Test(Encrypt(m1, SK),Encrypt(m2,

SK)) 6= P (m1,m2)] = negl(κ),

where the probability is taken over the random choices of the four algorithms.

Security. In [15], the authors show that there exists a hierarchy of meaningful

indistinguishability based security notions for PPE, which does not collapse

unlike other familiar settings. At the top of the hierarchy lies Left-or-Right

(LoR) security, a notion that is similar to full security in symmetric key

functional encryption.

LoR security. Let ΠP = (Setup,Encrypt,Decrypt,Test) be a PPE scheme

for a binary property P . Consider an adversary A in the security game

exp
(b)
LoR,A(1κ) described below, for b ∈ {0, 1}. The Setup algorithm is run

to obtain a secret key SK and some public parameters. A is given the

parameters, and access to an oracle Ob(SK, ·, ·), such that Ob(SK,m0,m1) =

Encrypt(mb, SK). Let Q = {(m(0)
1 ,m

(1)
1 ), (m

(0)
2 ,m

(1)
2 ), . . . , (m

(0)
` ,m

(1)
` )} denote

the queries made by A to the oracle. At the end of the experiment, A
produces an output bit; let this be the output of the experiment. We call

A admissible if for every two (not necessarily distinct) pairs of messages

(m
(0)
i ,m

(1)
i ), (m

(0)
j ,m

(1)
j ) ∈ Q, P (m

(0)
i ,m

(0)
j ) = P (m

(1)
i ,m

(1)
j ). We also refer to

such messages as admissible.

Definition 14 (LoR security). The scheme ΠP is an LoR secure PPE scheme

for a property P if for all PPT admissible adversaries A, the advantage of A
defined as below is negligible in the security parameter κ:

AdvLoR,A(κ) :=
∣∣Pr[exp

(0)
LoR,A(1κ) = 1]− Pr[exp

(1)
LoR,A(1κ) = 1]

∣∣,
where the probability is over the random coins of the algorithms of ΠP and

that of A.
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3.5.1 PPE as a schema

In this section, we present a cryptographic agent schema ΣPPE for property

preserving encryption(PPE).

Let P : M ×M → {0, 1} be a (polynomial-time computable) binary

property over the message space M. The schema ΣPPE = (PPPE
auth , ∅), where

PPPE
auth has two kinds of agents, denoted by PMsg and PDec, is defined as follows:

• PMsg for a message m ∈M is specified as follows: it has a message m on

its parameter tape. When invoked with a command compute on its input

tape, it reads a message m′ from its communication tape, computes

P (m,m′), outputs it and halts. When invoked with a command send,

it sends its message m to the first agent in the session.

• PDec reads from its communication tape a single message and outputs

it.

3.5.2 Equivalence

In this section, we show that ∆det-IND-PRE and LoR security notions are

equivalent for PPE.

Theorem 7. A ∆det-IND-PRE secure scheme for ΣPPE exists if and only if

an LoR secure scheme for PPE exists.

We first prove the only if side of the theorem. Let (O, E) be a ∆det-IND-PRE-

secure scheme for ΣPPE, where O = (Osetup,Oauth,Ouser). We construct a PPE

scheme SPPE using (O, E) as follows.

• Setup(1κ): Run Osetup to obtain the public parameters MPK and secret

key MSK.

• Encrypt(m,MSK): Output CTm ← Oauth((0,m),MSK) where the first

bit 0 indicates that the parameter m is for the agent PMsg.

• Decrypt(CT,MSK): Let D ← Oauth(1,MSK), where 1 denotes that the

agent is PDec. Then run a copy of E as follows: first feed it D and CT

as messages from O, and obtain handles hD and hm; then request it for
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a session execution with (hD,⊥) and (hm, send). Return the output for

the agent hD as reported by E .

• Test(CT1,CT2): Run a copy of E as follows: first feed it CT1 and CT2

as messages from O, and obtain handles h1 and h2. Then request E
to run a session with (h1, compute) and (h2, send). Output the answer

returned by E .

It is easy to see that the decryption and property testing properties of

PPE are satisfied. In order to show that Sfe is an LoR secure PPE scheme,

we consider the following Test ∈ ∆det. Let L be a list of pairs of messages,

which is initially empty. Upon receipt of a pair (m0,m1) from User, Test

checks if for every (m′0,m
′
1) ∈ L, Test(m0,m

′
0) = Test(m1,m

′
1) and vice versa,

and Test(m0,m0) = Test(m1,m1). If the checks pass, Test uploads mb and

adds (m0,m1) to the list; otherwise this pair is ignored. (If Test receives a

single message m from the User, it is treated as a pair (m,m).) Now suppose

there is an adversary A who breaks the security of SPPE. Then we can show

that the above Test is hiding w.r.t. ΣPPE but not w.r.t. O. The proof is very

similar to the one given for Lemma 3, so we omit it here.

Next, we prove the if side of the theorem. Let SPPE = (Setup,Encrypt,Decrypt,

Test) be an LoR secure PPE scheme. We construct a scheme (O, E) in the

cryptographic agents framework as follows:

• Osetup(1
κ): Run Setup(1κ) to obtain (MPK,MSK).

• Oauth((b,m);MSK): If b = 0, output CT ← Encrypt(m,MSK), else

output MSK itself. (Recall that 0 denotes an agent in PMsg, while 1

denotes an agent in PDec.)

• E: When O sends a ciphertext CT, forward a handle h to the User

and store (h,CT). When O sends a key MSK, forward the handle hkey

and store (hkey,MSK). When User requests a session execution with

(h1, compute) and (h2, send), retrieve the corresponding ciphertexts CT1

and CT2, and return Test(CT1,CT2) to the User. On the other hand,

when User sends (hkey,⊥) and (h, send), retrieve the ciphertext CT

corresponding to h, and return Decrypt(CT,MSK) to the User.
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We now show that if (O, E) is not a secure scheme then neither is SPPE.

That is, if there exists a Test ∈ ∆det such that Test is hiding w.r.t. ΣPPE but

not w.r.t. O, then there exists an adversary A which can break the security

of SPPE in the LoR security game. Recall that Test(b) can be represented as

D ◦ cs(b), where D is a deterministic party. It is clear that if D ever uploads a

key agent, then every pair of messages (m0,m1) that it uploads must be such

that m0 = m1 (otherwise Test would not be hiding in the ideal world). Such

a Test would trivially be hiding in the real world. On the other hand, even

if D never uploads a key agent, it must always upload admissible pairs of

messages (see definition of LoR security) to remain hiding w.r.t. ΣPPE. Rest

of the proof is similar to Lemma 3, and hence omitted.

Other Examples. Several examples that we have not discussed, such as

witness encryption and other flavors of FE, can also be naturally modeled

as schemata. We present one more example — namely, property preserving

encryption — in Section 3.5, and leave the others to future work on these

objects.

3.6 On Bypassing Impossibilities

An important aspect of our framework is that it provides a clean mechanism

to tune the level of security for each primitive to a “sweet spot.” The goal

of such a definition is that it should imply prevalent achievable definitions

while bypassing known impossibilities. The tuning is done by defining the

family of tests, Γ with respect to which IND-PRE security is required. Below

we discuss a few schemata and the definitions we recommend for them, based

on what is known to be impossible.

Obfuscation. As we show in Section 3.2, an IND-PRE-secure scheme for

Σobf cannot exist. The impossibility proof relies on the fact that the test

can upload an agent with (long) secrets in them. However, this argument

stops applying when we restrict ourselves to tests in ∆: a test in ∆ has the

structure D ◦ c ◦ s and c will reveal the agent to User. Note that then there

could be at most one bit of uncertainty as to which agent was uploaded.

We point out that ∆-IND-PRE-security is much stronger than the prevalent
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notions of indistinguishability obfuscation and differing inputs obfuscation,

introduced by Barak et al. [17]. Indeed, to the best of our knowledge, it would

be the strongest definition of obfuscation known that can plausibly exist for

all functions. We also observe that ∆-IND-PRE-secure obfuscation 10 is easier

to use in constructions than differing-inputs obfuscation, as exemplified by

our constructions in Section 3.3.1 and Section 3.3.3.

Functional Encryption. Public-key function-hiding FE, as modeled by

Σfh-fe, is a stronger primitive than obfuscation (for the same class of functions),

as the latter can be easily reduced to the former. This means that there is no

IND-PRE-secure scheme for Σfh-fe for general functions. We again consider

∆-IND-PRE security as a sweet-spot for defining function-hiding functional

encryption. Indeed, prior to this definition, arguably there was no satisfactory

definition for this primitive. Standard indistinguishability based definitional

approaches (which typically specify an explicit test that is ideal-hiding) run

into the problem that if the user is allowed to evaluate a given function

on any inputs of its choice, there is no one natural ideal-hiding test. Prior

works have proposed different approaches to this problem: by restricting

to only a specific test [4, 80], or using a relaxed simulation-based definition

[82]. ∆-IND-PRE security implies the definitions of Boneh et al. [4, 80], but

is in general incomparable with the simulation-based definition in [82]. These

latter definitions can be seen as using a test in the ideal world that allows the

adversary to learn more information than in the real world. Our definition

does not suffer from such information leakage.

For non-function-hiding FE (captured by the schema Σfe) too, there are

many known impossibility results, when simulation-based security definitions

are used [1, 13, 11]. At a high-level, these impossibilities followed a “com-

pression” argument – the decryption of the challenge CT with the queried

keys comprise a pseudorandom string R, but the adversary’s key queries and

challenge message are sequenced in such a way that to simulate its view, the

simulator must somehow compress R significantly. These arguments do not

apply to IND-PRE-security simply for the reason that there is no simulator

implied by it. We do not have any candidate constructions for IND-PRE-secure

scheme for Σfe, for general functions, but we leave open the possibility that

it exists. We do however, provide a construction for a ∆-IND-PRE-secure

10or equivalently, adaptive differing-inputs obfuscation
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scheme for Σfe, assuming one for Σobf.

Generic Group and Random Oracle. It is well known that a proof of

security in the generic group or the random oracle model provides only a

heuristic security guarantee. Several works have shown that these oracles are

“uninstantiable,” and further there are uninstantiable primitives that can be

implemented in the models with such oracles [83, 84, 85, 86, 87]. These results

do not contradict Assumption 1, however, because the primitives in question,

like non-commiting encryptions, zero-knowledge proofs and even signature

schemes, do not fit into our framework of schemata. In other words, despite

its generality, schemata can be used to model only certain kind of primitives,

which seem insufficient to imply such separations between the generic group

model and the standard model. As such, we propose Assumption 1, with

Γ = Γppt, the family of all PPT tests, as an assumption worthy of investigation.

However, the weaker assumption, with Γ = ∆ suffices for our construction in

Section 3.3.3, if we settle for ∆-IND-PRE security for the resulting scheme.
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Chapter 4

Unbounded Simulation

A few years back, Bitansky and Canetti proposed a new definition of obfus-

cation, called Virtual Grey-Box (VGB) obfuscation [88]. Recently, Bitansky

et al. [18] gave a surprising characterization of VGB obfuscation as being

equivalent to a seemingly simpler definition of obfuscation, called strong in-

distinguishability obfuscation (SIO). Further, based on this, they showed that

under a variant of a semantic-security assumption on graded encoding schemes

(a.k.a. multi-linear maps) [77], any NC1 circuit can be VGB-obfuscated.

We use VGB obfuscation as a guide to extend the agents framework to

incorporate a statistical element into its security definition. One motivation

for doing so is to obtain a similar security definition for all primitives that can

be expressed as agents. These primitives include various forms of functional

encryption, fully-homomorphic encryption, as well as graded encoding schemes.

Going beyond the definition, we seek to prove results similar to those for

VGB obfuscation in this abstract framework. Also, we seek to extend the

machinery for composition in the original agents framework to our extension.

In this work, we successfully carry out all elements of this program.

Firstly, we identify two new elements to incorporate into the agents frame-

work. The first element is the notion of “statistical hiding.” The main security

definition in the agents framework is that of indistinguishability preserving

(IND-PRE) security, which requires that if a “test” hides its input bit from

all adversaries in an ideal world, it should hide it from all adversaries in

the real world too. Originally, the adversaries in the real and ideal world

were all required to be efficient. We present a new definition of s-IND-PRE (s

for statistical), which requires a test to hide its input bit from all (efficient)

real-world adversaries only if it hides it from all computationally unbounded1

1Even though computationally unbounded, the number of queries that an adversary
can make in the ideal world is restricted to be polynomial in the security parameter.
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adversaries in the ideal world.

The second definitional element we identify is a new test family, that

we denote by Γ∗. It is a new family which consists of computationally

unbounded, “non-interactive” tests. Here non-interactive means that the test

will not receive any message from the outside (except its one bit input).

With these two new elements in place, we can define a new notion of security,

namely, Γ∗-s-IND-PREfor any primitive (or “schema”) in the agents framework.

Note that Γ∗-s-IND-PRE is an indistinguishability-preserving security notion,

and does not involve a simulator, like in VGB obfuscation. But, our first

result is that when applied to obfuscation, this definition is equivalent to

VGB obfuscation. Further, we observe that the “semantic-security” notion for

graded encoding schemes introduced by Pass et al. [77] (or more precisely, its

strengthening, as used in [18]) corresponds to Γ∗-s-IND-PRE secure schemes

for a graded encoding schema.

Next, we recover the main result of [18] using a simpler proof – by showing

that SIO is also equivalent to Γ∗-s-IND-PRE secure obfuscation. Our proof

is simpler because Γ∗-s-IND-PRE secure obfuscation serves as the “right”

intermediate notion between VGB obfuscation and SIO.

But perhaps more significantly, our version of this theorem is not a result

about obfuscation, but a significantly more general result about the framework

itself. We show that for all primitives that can be expressed as agents, Γ∗-

s-IND-PRE security is equivalent to a simulation-based security notion as

well as to a restricted indistinguishability definition (which, for the case of

obfuscation, reduces to SIO).

The final component in our extension of the agents framework is a com-

position theorem. Given that our new security definition involves a compu-

tationally unbounded adversary in the ideal world, the original composition

theorem in Section 2.2 breaks down. However, we present a new information-

theoretic variant of the notion of reduction between schema, to reestablish a

composition theorem. Specifically, we show that a statistical reduction from

a schema Σ to another schema Σ∗ can be combined with a Γ∗-s-IND-PRE

secure scheme for Σ∗, to obtain a Γ∗-s-IND-PRE secure scheme for Σ.

An illustrative application of this composition theorem is to recover another

result of [18] regarding the existence of VGB obfuscation for all NC1 circuits.
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Indeed, once cast in our framework, this result is natural and immediate:

[76] gave (using a different terminology) a reduction from obfuscation of NC1

circuits to graded encoding schemas, and [77, 18] put forth the assumption

that there exists an Γ∗-s-IND-PRE secure scheme for the graded encoding

schema. Under this assumption, our composition theorem immediately yields

the result that VGB obfuscation exists for all NC1 circuits.

4.1 Technical Overview

We outline the definitional aspects first, and then present a high-level sketch

of the proof of our main theorem (IND-CON ⇔ Γ∗-s-IND-PRE ⇔ Γ∗-s-SIM),

and the composition theorem.

4.1.1 Security Definitions

We extend the indistinguishability preservation notion naturally to consider

statistical hiding in the ideal world. In s-IND-PRE security, a test in Γ is

required to be hiding in the real world only if it is statistically hiding in the

ideal world — i.e., hiding against computationally unbounded adversaries

(who are still limited to making polynomial number of accesses to the agents

uploaded by the test). Further, we introduce a sharper quantitative notion

of s-IND-PRE security, which makes explicit the (polynomial) gap permitted

between the extent of ideal world hiding and real world hiding.2

We also introduce a new test family denoted by Γ∗, which consists of

computationally unbounded tests, which do not accept any messages from the

adversary. Alternately, a test in Γ∗ can be considered as sampling a collection

of agents to upload, and a string of bits to communicate to the adversary

(taking only a challenge bit as input in the experiments).

Combined, the above two elements fully define Γ∗-s-IND-PRE. Next, we

2In IND-PRE security it is only required that a negligible distinguishing probability in
the ideal world translates to a negligible distinguishing probability in the real world. The
security notion here is tighter in that it requires indistinguishability to be preserved up to
a polynomial loss, even if the original distinguishing probability in the ideal world is not
negligible.
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turn our attention to giving two security definitions which are not of the

indistinguishability-preserving genre. Firstly, s-SIM is a statistical simulation

based security notion, which, on the face of it, is a stronger definition than

s-IND-PRE. In s-SIM security, it is required that for every real world adversary

Adv, there is an ideal world simulator S, which has a similar distinguishing

probability as Adv has in the real world experiment. To be a strong security

guarantee, we require that the simulator cannot depend on the test (but it

can depend on Adv). We instantiate s-SIM security against the test-family

Γ∗. This generalizes the notion of VGB security for obfuscation.3

The other security definition we introduce, called IND-CON (for indis-

tinguishability of concentrated distributions) generalizes the notion of SIO

introduced by [18] for obfuscation, to all schemas. Here indistinguishability

is required only against tests which upload agents from two distributions

which are not only indistinguishable in the ideal world, but in fact “con-

centrated” — with high probability, the outcome of any query strategy4 is

already determined.

4.1.2 Equivalence of Security Notions

It is easy to see that Γ∗-s-SIM ⇒ Γ∗-s-IND-PRE ⇒ IND-CON.5 Our main

result is a proof that the reverse implications hold as well, and hence the

three notions are identical.

Our proof could be seen as a simplification and significant generalization of

3Γ∗-s-SIM security for obfuscation is easily seen to imply VGB security, but unlike
in VGB obfuscation, it allows obfuscation of multiple programs, and allows auxiliary
information to be given to the adversary. However, the equivalence results we prove imply
that even this apparently stronger notion is equivalent to SIO security.

4As opposed to the case of obfuscation, for general schemas, a query can typically
depend on previous queries. For example, in a graded encoding schema, it may be the
case that a “zero-test” can be performed only after a sequence of operations on encodings
provided by the test. A query-strategy is a polynomially deep (but exponentially large) tree
which fully specifies a (deterministic) choice of ideal world queries based on the outcomes
of the previous queries, and potentially using the agents generated by those queries.

5In this chain, we may insert a weaker version of s-SIM, which allows the simulator to
depend on the test as well as the adversary (but not on the challenge bit given to the test),
between Γ∗-s-SIM and Γ∗-s-IND-PRE security. Since all these notions turn out to be the
same, in this paper we avoid defining the weaker simulation. However, for more general
test families, or without the requirement of statistical security, this notion of a simulation
could be of independent interest.
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the proof in [18] that SIO implies VGB obfuscation. We briefly overview the

proof of [18] before explaining our version. There it is shown how to construct

a computationally unbounded simulator which receives access to a single

circuit computing a binary function, makes only polynomially many queries

to the circuit, and learns a sufficiently accurate approximation of the circuit

so that it can simulate it to the given adversary, provided that the obfuscation

scheme is SIO secure. The simulator iteratively narrows down the set of

possibilities for the circuit it is given access to, by making carefully chosen

queries. Firstly, the simulator narrows down the possibilities to a set of circuits

R such that a uniform distribution over R is a concentrated distribution (this

is called the concentration step of the proof). However, the adversary may

behave differently on certain circuits within this set; the computationally

unbounded simulator can identify this subset D6 To determine if the circuit is

from D using a small number of queries, the simulator relies on SIO security:

since the adversary can distinguish the obfuscation of each of the circuits

in D from the obfuscation of a random circuit in R (with distinguishing

advantage of the same sign), it follows that it can distinguish the obfuscation

of a random circuit in D from a random circuit in R. Hence, by SIO security,

it must be the case that the uniform distribution over D is not concentrated

around the same majority outcome as R is (and possibly, not concentrated

at all). This is exploited to argue that a small set of queries can be found

to check if the circuit is in D or not (this is called the majority-separation

step). If after making these queries, the simulator determines that the circuit

is not in D, it can obfuscate a random cricuit from R and present it to the

adversary. On the other hand, if it is in D, this allows the simulator to

make significant progress, because as D is not concentrated, it must be a

significantly small fraction of R. The simulator iterates the concentration and

majority-separation steps alternately until it determines that the circuit is

not in D. It can be argued that the number of iterations (and the number of

queries within each iteration) is logarithmic in the size of the space of circuits

being obfuscated.

In our proofs, the simulation is required only in showing that Γ∗-s-IND-PRE

security implies Γ∗-s-SIM security. Here, the simulator can rely on the

6More precisely there are two parts of D, corresponding to positive and negative
distinguishing advantage. For simplicity, here we assume that only one such part is
non-empty.

65



“stronger” s-IND-PRE security guarantee, and obtain a “separating query”

more directly, without relying on R being concentrated: indeed, if D is

distinguishable from R in the real world, then s-IND-PRE security guarantees

that there is a (small-depth) query strategy that separates the two. Performing

this query strategy either allows D to be significantly shrunk, or allows R to

be significantly shrunk (since otherwise, it will not be a sufficiently separating

query strategy). If R shrinks, then D is redefined with respect to the new

R (and may become as large as the new R). Iterating this procedure makes

D empty, with the number of iterations being logarithmic in the size of the

space of agents.

Roughly, the above argument corresponds to the majority-separation step

in the proof of [18]. An analogue of the concentration step appears in the

proof that IND-CON security implies Γ∗-s-IND-PRE security, described below.

A potentially difficult part in proving IND-PRE security in general is that

it requires one to show that every ideal-hiding test is real-hiding, and it is

not clear which tests are ideal-hiding. Our proof can in fact be viewed as a

characterization of tests in Γ∗ that are statistically ideal-hiding. A test in Γ∗

can be identified with a pair of distributions D0 and D1, corresponding to the

collection of agents (and auxiliary information) it generates when the challenge

bit is 0 and 1 respectively. For a test to be ideal hiding, the outcome of any

(polynomial depth) query-strategy must have essentially the same distribution

for both D0 and D1, but the distributions are not concentrated (which requires

the outcome of any query strategy to be essentially deterministic). We give

a simple combinatorial lemma which shows that there is an efficient query

strategy that breaks down any distribution D into concentrated distributions

(plus a negligible mass on an unconcentrated distribution). The query strategy

reveals which constituent concentrated distribution a collection of agents come

from. Hence, if D0 and D1 are ideal-hiding, then both of them should have

essentially the same distribution over concentrated distributions. Now, for

each concentrated distribution, IND-CON security guarantees that the two

distributions are real-hiding too.

66



4.1.3 Simplification and Generalization

We highlight two contributions of our result, given the prior work of [18].

Technically, it simplifies the proof by changing a nested iterative construction

(used in the simulator), into two separate constructions, each with a simple

iterative procedure. At a more conceptual level, apparently technical aspects in

the proof of [18] – namely, the concentration step and the majority-separation

step – are reflected in two separate concrete concepts (namely, IND-CON ⇒
Γ∗-s-IND-PRE and Γ∗-s-IND-PRE ⇒ Γ∗-s-SIM).

But more importantly our result also ties these results to the new framework

of cryptographic agents. While the development of the notions of VGB

obfuscation and SIO were important contributions to our understanding of

obfuscation, our result shows that their equivalence has more to do with certain

structural properties of the security definition (captured in Γ∗-s-IND-PRE

security) rather than obfuscation itself. Indeed, we show that the same security

definition, applied to the graded encoding schema captures the independently

developed notion of “semantic-security” for graded encoding [77].7 More

broadly, Γ∗-s-IND-PRE security can be used to model über assumptions for a

variety of cryptographic encoding schemes (e.g., groups, groups with bi-linear

pairings etc.). Our result shows that in all these cases, there is an equivalent

simulation based security notion as well as a low-level security notion for

concentrated distributions.

4.1.4 Composition Theorem

The composition theorem in Section 2.2 breaks down in the case of s-IND-PRE

security, since it involves an ideal-world adversary who is computationally

unbounded. However, if the reduction is a statistical reduction – i.e., Σ can

be information-theoretically securely constructed based on Σ∗– then we show

that the composition theorem holds. Further, the composition theorem holds

even if we restrict to the test family Γ∗.

A consequence of this composition theorem is that we can readily obtain the

7The original notion in [77] essentially corresponds to s-IND-PRE security for a test
family which requires the tests to be efficient. Without this requirement, the security
notion is termed strong-sampler semantic-security.
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result that, if a strong-sampler semantically-secure graded encoding scheme

exists, then there exists a VGB obfuscation scheme for NC1 circuits. We point

out that in obtaining this result, we do not rely on the IND-CON security

definition at all. While [18] crucially used the notion of SIO for obtaining

this result, the notion of Γ∗-s-IND-PRE is sufficient: the proof relies on the

fact that Γ∗-s-IND-PRE is equivalent to VGB security for obfuscation and to

strong-sampler semantic security for graded encoding schemes and on the

composition theorem for Γ∗-s-IND-PRE (as well as the existence of a statistical

reduction from obfuscation for NC1 to graded encoding schemes).

4.2 Definitions

Recall the formal definition of cryptographic agents from Section 2.1. While

the way various entities interact in the real and ideal worlds remains the same,

we now allow adversaries to be unbounded in the ideal world—but restricted

to making a polynomially bounded number of queries. This is captured by

the following statistical hiding definition.

Definition 15 (Statistical ideal world hiding). A Test is η-s-hiding w.r.t. a

schema Σ if, for all unbounded users User who make at most η queries,

|Pr[ideal〈Test(0) | Σ | User〉 = 1]− Pr[ideal〈Test(1) | Σ | User〉 = 1]| ≤ 1

η
,

where ideal〈Test(b) | Σ | User〉 is the output of User in an execution of

the ideal system, when Test gets b as input.

The real world hiding definition is now parameterized by adversary’s running

time.

Definition 16 (Real world hiding.). A Test is η-hiding w.r.t. O if for all

adversaries Adv who run for at most η time,

|Pr[real〈Test(0) | O | Adv〉 = 1]− Pr[real〈Test(1) | O | Adv〉 = 1]| ≤ 1

η
,

where real〈Test(b) | O | Adv〉 is the output of Adv in an execution of the

real system, when Test gets b as input.
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Γ∗ test family. This family consists of computationally unbounded tests

which do not accept any messages from the user/adversary. W.l.o.g, such a

test is fully characterized by a distribution over ~P ∈ {0, 1}∗ × P∗test.8

The first part of ~P , which we denote as ~P0 ∈ {0, 1}∗, is a message from test

to the user/adversary; the remaining components of the vector ~P denote a

(possibly empty) collection of agents from Ptest.

For ~P ∈ {0, 1}` ×P itest, we write O(~P ) to denote a random encoding of ~P

which consists of (~P0,O(~P1), · · · ,O(~Pi)) (as well as the public-key MPK if

O involves a set-up). We write Adv(O(~P )) to denote the random variable

corresponding to the bit output by Adv when given a random sample of O(~P ).

Definition 17 (s-IND-PRE security). An admissible cryptographic agent

scheme Π = (O, E) is said to be a p-Γ∗-s-IND-PRE-secure scheme for a

schema Σ if for all Test ∈ Γ∗ and every polynomial η, if Test is p(η)-s-hiding

w.r.t. Σ, then it is η-hiding w.r.t. O.

If Π = (O, E) is p-Γ∗-s-IND-PRE-secure for some polynomial p, then we

simply refer to it as Γ∗-s-IND-PRE-secure scheme.

We also define a simulation-based security notion in our agents framework.

Definition 18 (Simulation-based security). An admissible cryptographic

agent scheme Π = (O, E) is said to be a p-Γ∗-s-SIM-secure scheme for a

schema Σ if for all polynomials `, η and any adversary Adv which runs in

time at most `(κ), there exists a computationally unbounded simulator S that

makes at most p(η(κ), `(κ)) queries, such that for all Test ∈ Γ∗,

|Pr[ideal〈Test | Σ | S〉 = 1]− Pr[real〈Test | O | Adv〉 = 1]| ≤ 1

η(κ)
.

A cryptographic agent scheme Π = (O, E) is said to be a Γ∗-s-SIM-secure

scheme if it is a p-Γ∗-s-SIM-secure scheme for some (bivariate) polynomial p.

We remark that one can consider a weaker notion of simulation where S
can depend on Test. As we shall see, for Γ∗, this weaker notion is no different

from the notion defined above.

8In our results, we can typically assume an upperbound on the number of bits commu-
nicated by the test, since there will be a bound on the running time of an adversary that it
interacts with.
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4.2.1 Concentrated distributions

Recall that in the ideal world, User can make queries — i.e., requests to run

sessions — to B[Σ] and obtain the outcome of the session (and handles for

the updated configurations of the agents involved in the session). User can

carry this out repeatedly, and adaptively. The following definition captures

this procedure (for a deterministic User).

Definition 19 (Query Strategy). A d-query-strategy is a tree of depth at most

d where each internal node u is labeled with a query Qv and each outgoing

edge from u is labeled with a different possible outcome of Qu. The execution

of a query strategy on a collection of agents ~P is a path in this tree starting

from the root node, such that an edge from node u, labeled with an answer

ans, is present in the path if and only if ~P (Qu) = ans. The outcome of the

entire execution, denoted by ~P (Q) is the (concatenated) outcomes of all the

queries in the path.

Let P denote the family of agents. Also, for a query strategy Q, and
~P ∈ {0, 1}` ×

⋃`
i=0P i, let ~P (Q) denote the outcome of executing the query

strategy Q on ~P . We use the convention that the first query in Q is an empty

query and its answer is the auxiliary information ~P0 ∈ {0, 1}∗.

Definition 20 (Concentrated distributions). A distribution ensemble D over

P` is said to be η-concentrated if for all κ there exists a function A (called

an answer function) which maps query strategies to answers, such that for all

depth η(κ) query strategy Q,

Pr
~P←D(κ)

[~P (Q) 6= A(Q)] ≤ 1

η(κ)
.

A pair of distribution ensembles (D0,D1) is said to be η-concentrated if

they are both η-concentrated with the same answer function.

Definition 21 (Indistinguishability of concentrated distributions.). An ad-

missible scheme Π = (O, E) is q-IND-CON secure for Σ = (Pauth,Puser) if

for every polynomial η, and any pair of distribution ensembles (D0,D1) over⋃η(κ)
i=0 P

η(κ)
test which are q(η)-concentrated, we have that for any PPT adversary
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Adv with running time at most η(κ),∣∣∣Pr ~P←D0(κ)
[Adv(O(~P )) = 1]− Pr ~P←D1(κ)

[Adv(O(~P ))] = 1
∣∣∣ ≤ 1

η(κ)
.

A scheme Π = (O, E) is IND-CON secure if it is q-IND-CON secure for

some polynomial q.

A probability lemma. The following is a simple lemma which can be

used to relate two distributions with a small statistical difference to a single

common distribution; further, the lemma allows the common distribution to

avoid a subset S of the sample space, provided the given distributions have

low mass on it. Below, ∆ (·, ·) denotes the statistical difference between two

distributions.

Lemma 7. For any two probability distributions A0, A1 over the same sample

space, and any subset S of the sample space, there exists ε ≤ ∆ (A0,A1) +

min{Pra←A0 [a ∈ S],Pra←A1 [a ∈ S]}, a distribution AS over S, and two dis-

tributions A′0,A′1 such that for each b ∈ {0, 1}, Ab is equal to the distribution

of a in the following experiment:

α ∼ Bernoulli(ε); if α = 0, a← AS, else a← A′b.

4.3 Equivalence of Definitions

In this section we prove our main results (Theorem 8 and Theorem 9).

Theorem 8 (Equivalence of IND-CON and IND-PRE). A cryptographic agent

scheme Π = (O, E) is a Γ∗-s-IND-PRE-secure scheme for a schema Σ if and

only if it is IND-CON secure for Σ.

To prove Theorem 8, or more specifically, that IND-CON ⇒ Γ∗-s-IND-PRE,

we rely on the following lemma, which gives a query strategy that can be

used to narrow down a distribution over agents to a concentrated distribution

(except with negligible probability over the choice of the agents). As sketched

in Section 4.1.2, this lemma gives a characterization of hiding tests in terms

of concentrated distributions and is at the heart of proving Theorem 8.
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Below, for a distribution D over agent vectors and a query strategy Q,

D|Q→ans denotes the distribution obtained by restricting D to the subset

{~P |~P (Q) = ans}.

Lemma 8. Let Ptest be a set of agents with polynomially long representation.

Then, for any polynomial ρ, there exists a polynomial π such that for any

polynomial η, any function ε > 0, and any distribution D over Rη = {0, 1}η×
Pηtest, there is a π(η · log 1

ε
)-query strategy Q such that

Pr
~P←D

[D|Q→~P (Q) not ρ(η)-concentrated] ≤ ε.

Proof. The query strategy can be defined as repeatedly, conditioned on the

previous queries and answers, identifying and carrying out a query strategy

whose answer is not concentrated (i.e., no one answer has probability more

than 1− ρ(η)) until the remaining distribution is ρ(η)-concentrated, or the

budget on the number of queries (depth of the strategy) has been exhausted.

We shall show that this leads to the mass in unconcentrated leaves of the

query strategy tree to be at most ε.

More formally, consider a tree in which each node v is associated with a

subset Rv ⊆ Rη and (unless it is a leaf node) with a query strategy Qv of

depth at most σ := ρ(η). The set at the root is the entire set Rη. For R ⊆ Rη,

let D|R denote the distribution D restricted to the set R. A node v is a leaf

node either if the distribution D|Rv is σ-concentrated or if v is at a depth σ.

For every internal node v, Qv is a query strategy of depth at most σ such

that for all ans, Pr~P←D|Rv
[~P (Qv) = ans] ≤ 1− 1

σ
. Note that such a Qv exists

since D|Rv is not σ-concentrated (v being an internal node). For each possible

answer ans to Qv, v has a child vans such that Rvans = {~P ∈ Rv | ~P (Qv) = ans}.

Let L` be the set of all nodes at depth `. Note that for each v ∈ L`,

|Rv| ≥ 1, whereas
∑

v∈L`
|Rv| ≤ |Rη|. Therefore, |L`| ≤ |Rη|. On the other

hand, note that if u is a child of v in this tree, then Pr~P←D[~P ∈ Ru | ~P ∈
Rv] ≤ 1 − 1

σ
. Thus for all v ∈ L`, Pr~P←D[~P ∈ Rv] ≤ (1 − 1

σ
)`. Hence,

Pr~P←D[~P ∈
⋃
v∈L`

Rv] ≤ (1− 1
σ
)` · |Rη|.

We can choose ` = Ω(σ · log(|Rη|/ε)) so that Pr~P←D[~P ∈
⋃
v∈L`

Rv] ≤ ε.

Finally, note that |Rη| = ζη for some polynomial ζ (determined by the size

of Ptest) and σ = poly(η), so that ` is polynomial in η · log 1
ε
.
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We prove the two directions of Theorem 8 separately. Intuitively, IND-CON

security is a “weaker” notion, and hence the first direction below is easier to

see. The second direction relies on Lemma 8.

Γ∗-s-IND-PRE ⇒ IND-CON: Suppose that for some polynomial q, Π = (O, E)

is a q-Γ∗-s-IND-PRE secure scheme for a schema Σ. We shall show that Π is

q-IND-CON secure for Σ.

Let η be a polynomial, and (D0,D1) be a pair of distribution ensembles

which are q(η)-concentrated. Let A denote the answer function that maps

depth q(η) query strategies to answers, so that for any such query strategy

Q, for both b ∈ {0, 1}, we have Pr~P←Db
[~P (Q) 6= A(Q)] ≤ 1

q(η)
.

Consider the test Test which on input b ∈ {0, 1}, uploads a sample from

the distribution Db. Observe that Test ∈ Γ∗. Consider any unbounded ideal-

world user User that makes at most q(η) queries. For each setting of the

random-tape of User, its behavior can be identified with a query strategy

of depth at most q(η). For any such strategy Q, irrespective of the bit b,

with probability at least 1− 1/q(η) User receives the answer A(Q). Thus, for

any User which makes at most q(η) queries |Pr[ideal〈Test(0) | Σ | User〉 =

1]−Pr[ideal〈Test(1) | Σ | User〉 = 1]| ≤ 1/q(η). That is, Test is q(η)-s-hiding

w.r.t. Σ.

Then, since Π is a q-Γ∗-s-IND-PRE secure scheme for Σ, we have that Test is

η-hiding w.r.t. O. That is, for any adversary Adv with running time at most η,

|Pr[real〈Test(0) | Σ | User〉 = 1]− Pr[real〈Test(1) | Σ | User〉 = 1]| ≤ 1/η.

But Pr[real〈Test(b) | Σ | User〉 = 1] is simply Pr~P←Db
[Adv(O(~P )) = 1].

Hence, by the definition of IND-CON security, Π is q-IND-CON secure for

Σ.

IND-CON ⇒ Γ∗-s-IND-PRE: Suppose Π is an IND-CON secure scheme for Σ.

Then, there is a polynomial q such that it is q-IND-CON secure. We shall

show that Π is p-Γ∗-s-IND-PRE secure, for some polynomial p.

Let Test be an arbitrary test in Γ∗, that is η∗-hiding w.r.t. Σ. We shall

show that Test is η-hiding w.r.t. Π, where η∗ = p(η) (for a polynomial p to

be determined).

We consider the space Rη of all possible agents vector produced by tests,
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i.e., Rη = {0, 1}η × Pηtest.9 Let D0 and D1 be the distributions over Rη,

produced by Test on input b = 0 and b = 1 respectively. Now, we apply

Lemma 8 to the distribution D0, with η as above, ρ(η) := 2q(η/2), and (say)

ε = 2−η. Let Q be the query startegy guaranteed by the lemma. Also, let

µ = ρ(η)/2.

Let B = {ans | D0|Q→ans is not 2µ-concentrated}. Also let C = {ans |
D0|Q→ans is 2µ-concentrated around some answer function A, but D1|Q→ans is

not µ-concentrated around A}. Then, for ans 6∈ B∪C, the pair of distributions

(D0|Q→ans,D1|Q→ans) is µ-concentrated.

We argue, relying on the fact that Test is η∗-hiding, that the mass of B ∪C
under D0 is O(µ/η∗). Firstly, mass of B under D0 is bounded by Lemma 8

to at most ε. Next, for each ans ∈ C, let Aans be the answer function that

D0|Q→ans is 2µ-concentrated around. Since D1|Q→ans is not µ-concentrated

around A, there is some query strategy Qans with depth at most µ, such that

Pr~P←D1|Q→ans
[~P (Qans) 6= Aans(Qans)] > 1 − 1/µ. But since Q′ has depth less

than 2µ, Pr~P←D0|Q→ans
[~P (Qans) 6= Aans(Qans)] ≤ 1− 1/(2µ). Hence, there is a

query strategy Q′ (obtained by extending each leaf of Q with answer ans ∈ C
with the query strategy Qans) of depth at most π(η2) + µ (which we shall

arrange to be less than η∗), such that

Pr
~P←D0

[~P (Q′) = ans||Aans(Qans) for ans ∈ C] ≥ Pr
~P←D0

[~P (Q) ∈ C] · (1− 1

2µ
)

Pr
~P←D1

[~P (Q′) = ans||Aans(Qans) for ans ∈ C] < Pr
~P←D1

[~P (Q) ∈ C] · (1− 1

µ
)

≤ ( Pr
~P←D0

[~P (Q) ∈ C] + 1/η∗)·

(1− 1

µ
)

The difference between these two probabilities is more than Pr~P←D0
[~P (Q) ∈

C] · 1
2µ
− 1

η∗
. But as the depth of Q′ is less than η∗, and Test is η∗-hiding, this

difference is upperbounded by 1
η∗

. Hence Pr~P←D0
[~P (Q) ∈ C] ≤ 4µ

η∗
.

Now, we view the test, on each input b, as sampling its agents vector ~P

by first sampling the answer ~P (Q), and then sampling ~P conditioned on this

9Note that we truncate the auxiliary information to η(κ) bits, and the number of agents
uploaded by the test to η(κ). This is because, to show that Test is η-hiding w.r.t. Π, it is
enough to consider adversaries who read at most η bits of the messages from Test.
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answer. ~P (Q) itself is sampled from the distribution Ab = {~P (Q)}~P←Db
. Now,

we invoke Lemma 7 on the distributions A0 and A1 with the set S = B ∪ C.

This results in ε = O( µ
η∗

), given the above bound (and since ∆ (A0,A1) ≤
1/η∗). Thus, the test, with probability 1 − ε samples ans 6∈ B ∪ C (from a

distribution independent of b) and then samples ~P ← Db|Q→ans. (With the

remaining ε probability, it samples ~P depending on b as appropriate.) Recall

that, for ans 6∈ B ∪ C, we have that (D0|Q→ans,D1|Q→ans) is µ-concentrated,

where µ = q(η/2). Hence we can apply the q-IND-CON security to conclude

that no adversary can distnguish between b = 0 and b = 1 in the real

experiment with advantage more than ε+ (1− ε)η/2. We shall set ε < η/2 so

that this advantage is less than η, as we need to prove. This requirement and

the above bounds on η∗ can be satisfied by setting, say, η∗ = π(η2) + q(η).

Thus, we choose p such that p(η) > π(η2) + q(η).

Theorem 9 (Equivalence of IND-PRE and SIM). A cryptographic agent

scheme Π = (O, E) is a Γ∗-s-IND-PRE-secure scheme for a schema Σ if and

only if it is Γ∗-s-SIM-secure for the same schema.

Proof. Intuitively, Γ∗-s-IND-PRE security is “weaker” than Γ∗-s-SIM security,

and hence the first direction below is easier to see.

Γ∗-s-SIM ⇒ Γ∗-s-IND-PRE:

Suppose Σ = (O, E) is a p-Γ∗-s-SIM secure scheme for Σ, for some (bivari-

ate) polynomial p. We shall show that Σ is a q-Γ∗-s-IND-PRE schema for a

polynomial q to be determined.

For a Test ∈ Γ∗ and η, suppose there exists a PPT adversary Adv which

runs in at most η time but can distinguish between Test with bit 0 and 1

with probability at least 1/η. That is,

|Pr[real〈Test(0) | O | Adv〉 = 1]

− Pr[real〈Test(1) | O | Adv〉 = 1]| > 1/η. (4.1)

We need to show that there is an ideal world user User, which makes at most

q(η) queries and achieves a distinguishing advantage of at least 1/q(η).

Since Π is p-Γ∗-s-SIM secure, given Adv which runs in time at most η, there

exists an unbounded simulator S making at most p(3η, η) queries, such that
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for all tests (and in particular, for Test) and b ∈ {0, 1}:

|Pr[ideal〈Test(b) | Σ | S〉 = 1]−

Pr[real〈Test(b) | O | Adv〉 = 1]| ≤ 1

3η
. (4.2)

And therefore,

|Pr[ideal〈Test(0) | Σ | S〉 = 1]− Pr[ideal〈Test(1) | Σ | S〉 = 1]|

>
1

η
− 2

4η
=

1

2η
.

We set q such that q(η) ≥ p(3η, η) and 1
3η
≥ 1

q(η)
. For instance, we can set

q(x) = p(3x, x) + 3x.

Note that in the above proof, we could allow S to depend on Test, and

therefore, even the weaker notion of simulation mentioned after Definition 18

implies IND-PRE security.

Γ∗-s-SIM ⇒ Γ∗-s-IND-PRE: Suppose Π = (O, E) is q-Γ∗-s-IND-PRE secure for

a schema Σ. Fix a PPT adversary Adv whose running time is upperbounded

by a polynomial `, and a polynomial η. We shall construct a simulator S
for Adv in the ideal world, which makes at most p(η, `) queries and suffers a

simulation error of at most 1/η. W.l.o.g, we may assume that η ≥ ` (if not,

we set η to be ` below).

In the ideal world, when a test Test ∈ Γ∗ uploads ~P ∗ ∈ {0, 1}∗ × P∗test, S
attempts to learn a sufficiently accurate approximation ~P † using a polynomial

depth query strategy, and then faithfully simulate O(~P †) to Adv. Note that

since Adv’s running time is upperbounded by the polynomial `, w.l.o.g, the

simulator considers ~P to be in {0, 1}` × P`′test, where `′ is the lesser of ` and

the actual number of agents uploaded by Test.

S defines Ri ⊆ {0, 1}` × P`
′

test and Di ⊆ Ri inductively as follows, for

integers i ≥ 0, up till i = i∗ such that Di∗ = ∅. It then samples ~P † ← Ri∗ ,

and completes the simulation. We shall argue that this is a good simulation

and that it can be carried out with at most p(`) queries.

Below, we write Adv(O(Ri)) to denote the random variable corresponding

to the output of Adv when a random ~P ← Ri is encoded using O and given
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to Adv; also, recall that Adv(O(~P )) denotes the similar random variable when

the fixed agent vector ~P is encoded and given to Adv.

1. Firstly, for each i, we define D∗i in terms of Ri, as follows. D∗i is the

larger of the two sets D∗i,0 and D∗i,1, where D∗i,b is given by{
~P ∈ D∗i | (−1)b(Pr[Adv(O(~P )) = 1]− Pr[Adv(O(Ri)) = 1]) >

1

η
.

}
We shall maintain the invariant that Di ⊆ D∗i , for all i ≥ 0.

2. R0 = {0, 1}` × P`′test, and D0 = D∗0.

3. If Di 6= ∅, we define Ri+1 and Di+1 as follows. Consider the test

Testi ∈ Γ∗, which on input b = 0 uploads ~P ← Di, and on input b = 1,

uploads ~P ← Ri.
10 Since Di is not empty, and Di ⊆ D∗i,β for some

β ∈ {0, 1}, we have

|Pr[real〈Testi(0) | O | Adv〉 = 1]− Pr[real〈Testi(1) | O | Adv〉 = 1]|

= (−1)β
1

|Di|
∑
~P∈Di

(Pr[Adv(O(~P )) = 1]− Pr[Adv(O(Ri)) = 1]) >
1

η

since for each ~P ∈ Di ⊆ D∗i , we have (−1)β(Pr[Adv(O(~P )) = 1] −
Pr[Adv(O(Ri)) = 1]) > 1

η
.

That is, Testi is not η-hiding (against Adv, which runs for less than

` ≤ η time). Since the scheme Π = (O, E) is Γ∗-s-IND-PRE-secure, there

must exist an ideal world adversary, or equivalently, a query strategy

Qi of depth at most q(η) which has advantage of more than σ := 1/q(η)

in distinguishing Testi(0) and Testi(1).

S executes the query strategy Qi to obtain an answer ansi. It defines

R′i = {~P ∈ Ri | Qi(~P ) = ansi}, and D′i = {~P ∈ Di | Qi(~P ) = ansi}. If

|R′i| ≤ (1− σ)|Ri|, then set Ri+1 = R′i and Di+1 = D∗i+1. Otherwise, set

Ri+1 = Ri, Di+1 = D′i.

Note that if |R′i| > (1− σ)|Ri| then |D′i| ≤ (1− σ)|Di|, because otherwise

Qi cannot distinguish Testi with advantage σ (as, for b = 0 and b = 1, it

10Note that Testi may be computationally inefficient. This is the only reason we are not
able to prove analogous results for a test-family that is like Γ∗ but restricted to PPT tests.
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receives an answer other than ansi with probability less than σ). Therefore,

we make progress in each iteration: either |Ri+1| ≤ (1 − σ)|Ri| (in which

case |Di+1| ≤ |Ri+1|), or |Ri+1| = |Ri| and |Di+1| ≤ (1 − σ)|Di|. Hence, for

i∗ ≤ log2
1−σ |R0| we have Di∗ = ∅.

The total number of queries made by the simulator above is bounded by

q(η) · log2
1−σ |R0|. Note that log2 |R0| ≤ `+ nΣ · `, where nΣ is a (polynomial)

upperbound on the number of bits required to represent an agent in the

schema Σ. Also, 1
log2(1−σ)

= O(q(η)), so that log2
1−σ |R0| = O((nΣ · ` · q(η))2).

Hence, we can set p(η, `) to be this polynomial.

4.3.1 Extensions: Limited Agent-Space and Resettable Tests

Firstly, in the above results we can use a test-family which is a subset of Γ∗

as follows. Note that the tests in Γ∗ may upload any number of agents and

send messages of any length (i.e., we considered ~P ∈ {0, 1}∗ × P∗test). But

our proofs go through unchanged if we restrict to a subset of Γ∗ which uses

an arbitrary subset of ~P ∈ {0, 1}∗ ×P∗test. (In this case, IND-CON is suitably

modified to use the same subset of agent vectors.) In particular, we may

restrict to the test-family Γ∗1 ⊆ Γ∗ which uploads a single agent.

Secondly, we consider the possibility of using a test-family that is larger

than Γ∗. Above, the restriction to Γ∗ was crucial in allowing the construction

of a composite query strategy by grafting a query strategy onto the leaves of

another query strategy. However, if the test allowed itself to be treated as

an agent – i.e., allowing a User to access Test from any state in its history –

then the above equivalences would carry over. Thus, we may define a test-

familty Γreset consisting of tests which are allowed to accept messages from

the user/adversary and react to them, but also allows the user/adversary to

reset it to the beginning (without changing its random tape). Then the above

proofs extend to show that IND-CON ⇔ Γreset-s-IND-PRE ⇔ Γreset-s-SIM,

for all schemas. Note that tests in Γ∗ are effectively resettable and hence

Γreset ⊇ Γ∗. We defer a formal definition of Γreset to the final version.
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4.4 Reductions and Compositions

We define a new information-theoretic notion of reduction between schemata

which would allow for composition of Γ∗-s-IND-PRE secure schemes. When

compared to Definition 8, the main difference is that we require the hybrid

world to be secure against unbounded adversaries (who make a polynomial

number of queries). Another difference is that the correctness requirement is

w.r.t. all tests, not just polynomially bounded ones.

Definition 22 (Statistical Reduction). We say that a (hybrid) cryptographic

agent scheme Π = (O, E) statistically reduces Σ to Σ∗ with respect to Γ̃, if

there exists an unbounded S such that for all unbounded User (both of whom

make a polynomial number of queries),

1. Correctness: ∀ Test ∈ Γ, ideal〈Test | Σ | User〉 ≈ ideal〈Test ◦
O | Σ∗ | E ◦ User〉.

2. Simulation: ∀ Test ∈ Γ̃, ideal〈Test | Σ | S ◦ User〉 ≈ ideal〈Test ◦
O | Σ∗ | User〉.

If there exists a scheme that reduces Σ to Σ∗, then we say Σ reduces to Σ∗.

(Note that correctness is required for all Test, and not just in Γ̃.)

Proofs of the following two theorems closely follow the corresponding ones

in Section 2.2.

Theorem 10 (Composition). For any two schemata, Σ and Σ∗, if (O, E)

reduces Σ to Σ∗ with respect to Γ∗ and (O∗, E∗) is a Γ∗-s-IND-PRE secure

scheme for Σ∗, then (O ◦O∗, E∗ ◦ E) is a Γ∗-s-IND-PRE secure scheme for Σ.

Proof. Let (O′, E ′) = (O ◦O∗, E∗ ◦ E). Also, let Test′ = Test ◦ O and User′ =

E ◦ User. To show correctness, note that for any PPT User, we have

real〈Test | O′ | E ′ ◦ User〉 = real〈Test′ | O∗ | E∗ ◦ User′〉
(a)
≈ ideal〈Test′ | Σ∗ | User′〉

= ideal〈Test ◦ O | Σ∗ | E ◦ User〉
(b)
≈ ideal〈Test | Σ | User〉
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where (a) follows from the correctness guarantee of IND-PRE security of

(O∗, E∗), and (b) follows from the correctness guarantee of (O, E) being a

reduction of Σ to Σ∗. (The other equalities are by regrouping the components

in the system.)

It remains to prove that for all Test ∈ Γ∗, if Test is hiding w.r.t. Σ then

Test is hiding w.r.t. O′. Note that if Test ∈ Γ∗, then Test′ ∈ Γ∗ too.

Firstly, we argue that Test is hiding w.r.t. Σ ⇒ Test′ is hiding w.r.t. Σ∗.

Suppose Test′ is not hiding w.r.t. Σ∗. This implies that there is some (un-

bounded) User such that

ideal〈Test′(0) | Σ∗ | User〉 6≈ ideal〈Test′(1) | Σ∗ | User〉.

But, by the statistical security of the reduction (O, E) of Σ to Σ∗,

ideal〈Test′(b) | Σ∗ | User〉 ≈ ideal〈Test(b) | Σ | S ◦ User〉,

for b = {0, 1}. Then,

ideal〈Test(0) | Σ | S ◦ User〉 6≈ ideal〈Test(1) | Σ | S ◦ User〉,

showing that Test is not hiding w.r.t. Σ. Thus we have,

Test is hiding w.r.t. Σ⇒ Test′ is hiding w.r.t. Σ∗

⇒ Test′ is hiding w.r.t. O∗

⇒ Test is hiding w.r.t. O′,

where the second implication is due to the fact that Test′ ∈ Γ∗ and (O∗, E∗)
is a Γ∗-s-IND-PRE secure implementation of Σ∗, and the last implication

follows by observing that for any Adv, we have real〈Test′ | O∗ | Adv〉 =

real〈Test | O′ | Adv〉 (by regrouping the components).

Theorem 11 (Transitivity of Reduction). For any three schemata, Σ1,Σ2,Σ3,

if Σ1 statistically reduces to Σ2 and Σ2 statistically reduces to Σ3, then Σ1

statistically reduces to Σ3.

Proof. If Π1 = (O1, E1) and Π2 = (O2, E2) are schemes that carry out the

statistical reduction of Σ1 to Σ2 and that of Σ2 to Σ3, respectively, we claim
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that the scheme Π = (O1 ◦ O2, E2 ◦ E1) is a statistical reduction of Σ1 to

Σ3. The correctness of this reduction follows from the correctness of the

given reductions. Further, if S1 and S2 are the simulators associated with the

two reductions, we can define a simulator S for the composed reduction as

S2 ◦ S1.

4.5 Applications

In this section we briefly summarize how the above results can be instantiated

to rederive the main results of [18]. We first define schemata for graded

encoding schemes and obfuscation.

Graded Encoding Schema Following “set-based” graded encoding [18, 14,

76, 77], we define the graded encoding schema ΣGE = (∅,PGEuser ), where PGEuser

contains a single type of agent. The schema is specified by a ring R(+,×)

and a subset S of 2[k] for a level k ∈ N. An agent PMsg ∈ PGEuser is specified

by a pair (x, S) where x ∈ R and S ∈ S. Initially it also makes a copy of

(x1, S1) = (x, S) and stores (x1, S1) on its work-tape. When invoked without

an input, it just sends (x1, S1) to the first program in the session. When

invoked with an input Oper on its input tape, it first parses Oper as follows:

• Oper = + (resp. −): It reads a message (x2, S2) from its incoming

communication tape. If S1 = S2, it updates its work-tape with (x1 +

x2, S1) (resp. (x1 − x2, S1)); otherwise, it writes ⊥ on its outgoing

communication tape and enters a blocking state.

• Oper = ×: It reads a message (x2, S2) from its incoming communication

tape. If S2 ∈ S and S1 ∩ S2 = ∅, it updates its work-tape with

(x1× x2, S1 ∪ S2); otherwise, it writes ⊥ on its outgoing communication

tape and enters a blocking state.

• Oper = Zero-Test: It first checks whether S1 is the universe set [k].

If not, it writes ⊥ on its outgoing communication tape and enters a

blocking state. Otherwise, if x = 0 it writes 1; otherwise, 0.

Now, we state the following propositions which easily follow from the

definitions. Below we refer to the test-family Γ∗1 from Section 4.3.1.
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Proposition 1. For a function family F , a Γ∗1-s-SIM secure scheme for

Σobf(F) is a VGB obfuscation scheme for F , and vice-versa.

With the modification to IND-CON also to distributions over a single agent

(circuit), we have the following proposition.

Proposition 2. For a function family F , an IND-CON secure scheme for

Σobf(F) is an SIO scheme for F and vice versa.

The next proposition refers to the graded encoding schema.

Proposition 3. A graded encoding scheme is a strong-sampler semantically

secure graded encoding scheme if and only if it is a Γ∗-s-IND-PRE secure

scheme for the schema ΣGE.

Finally, following is an adaptation of the result in [76].

Proposition 4. For any function family F ∈ NC1, there exists a statistical

reduction from Σobf(F) to ΣGE.

From the above propositions, and the theorems in the previous sections,

we obtain the following corollaries. In particular, the first corollary follows

from Theorem 8, Theorem 9 (as extended in Section 4.3.1), Proposition 1 and

Proposition 2.

Corollary 12 ([18]). An obfuscation scheme is a VGB obfuscation for a

function family F if and only if it is an SIO for F .

Combining Proposition 4 with the composition theorem (Theorem 1),

Theorem 9, Proposition 3, and Proposition 1, we obtain the following corollary.

Corollary 13 ([18]). If there exists a strong-sampler sematically-secure graded

encoding scheme, then there exists a VGB obfuscation scheme for any function

family F ∈ NC1.
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Chapter 5

Adversarial Objects

The cryptographic agents model is well suited to study a wide variety of

interesting cryptographic tools like functional encryption, obfuscation, fully

homomorphic encryption, etc. By instantiating the framework with different

test families, and giving different capabilities to ideal world adversaries, one

can get various levels of security for these tools, establish novel connections

between them, and understand how complex they are with respect to each

other. Despite the generality and power of the model, it does not capture

attacks involving objects maliciously generated by an adversary, because there

is no way a test can operate on them. Hence, non-malleable properties of

fundamental primitives like public-key encryption, signatures, etc. cannot be

studied in the current form of the framework.

Let us illustrate the problem with the example of public-key encryption

(pke). A natural schema Σpke for pke is straightforward: an agent Pm ∈ Puser

simply sends m to the first agent in the session; Pauth has only one agent who

reads a message m̃ from its incoming communication tape and writes the

same on its output tape. One can easily show that semantic security for pke

is equivalent to ∆det-IND-PRE security for Σpke. Semantic security, however,

provides only minimal guarantees; in particular, it does not protect against

malleability attacks. Hence, a more appropriate requirement is cca (chosen

ciphertext attack) security. Here, adversary is additionally given access to a

decryption oracle, who can decrypt any ciphertext except the challenge. If no

adversary is able to take advantage of this extra facility, then we know that

it is not possible to create ciphertexts of related messages from a ciphertext

of a given message.

Now, if we want to capture malleability attacks on public-key encryption

in our framework, we would like a test who can receive ciphertexts from the

adversary and check if they are related to the ciphertexts it sent. Our model
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certainly allows tests and adversaries to send arbitrary messages to each other,

but unfortunately, tests do not have a direct way to decrypt ciphertexts.

Specifically, the secret key is sitting with Oauth, and it can be released only if

a test uploads the key agent. Even if it does so, the secret key goes to the

adversary.

As a result, we need to extend the framework so that tests can run sessions

of their own on the objects transferred by the adversary and the ones they

create. Further, it should be possible to upload an object and get private

access to it, i.e., unless test explicitly asks an object to be transferred, it

won’t be. With these changes in the framework, we can design a test such

that indistinguishability preservation w.r.t. to it would imply cca security.

Whenever this test receives an object from the adversary, it will run a session

on that object with the secret key (which is never transferred), and transfer

the output. When adversary sends two messages, one is chosen based on the

bit b, and uploaded to create an object, which is then transferred. From now

on, test would decrypt any object for the adversary as long as it is not the

one it sent.

There is one problem with this approach though. The test described above

operates on the objects received from the adversary, but there are no objects

in the ideal world! One could derive a special test from the one above whose

behavior is similar, except that it works with handles instead of objects. But

in the ideal world, handles an adversary transfers may not have any meaning

for the special test. Furthermore, working with a test and another derived

from it could be cumbersome, and would require changing the way we define

IND-PRE security. It would be nice to define a test which is oblivious to the

mechanics of real/ideal world.

We thus allow adversaries to transfer objects to tests in much the same

way as tests transfer to them. So in the ideal world, an adversary could ask

the schema to transfer an agent it has created, and test would then get access

to it via a local handle. Further, we require that in the real world, a test

is run with its own (O, E) so that when an adversary transfers an object, E
provides a handle to test. Hence, one can define a single test whose behavior

is meaningful in both real and ideal worlds. Also note that both these worlds

are very symmetric in terms of how various entities are placed, and how they

communicate with each other.
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The new framework we have defined seems adequate to study security in the

presence of maliciously generated objects, but at least in the case of public-key

encryption, we have only looked at ciphertext objects. Public and secret keys

could be corrupt too, but we can’t take that into account because they are not

treated as objects in the current formulation. Specifically, the set-up process

is run exactly once by O and in an honest manner. Achieving security in this

restricted setting was already quite challenging for sophisticated primitives

like functional encryption. But for a simpler object like public-key encryption

we could ask for more security, and it would be quite interesting if we can

achieve it.

We thus modify our framework further and remove all structural require-

ments from O. Secret and public key objects can be created and exchanged

like any other object. Both tests and adversaries can create such objects and

if they like, they can transfer them to the other entity. There is no need to

have separate agent families for tests and users; we can achieve the same

effect by designing tests who generate a secret key object but don’t transfer it

to users. The description of the framework becomes much simpler as a result.

5.1 The New Model

Ideal World. The ideal system for a schema Σ consists of two parties Test

and User and a fixed third party B[Σ] (for “black-box”). All three parties are

probabilistic polynomial time (PPT) ITMs, and have a security parameter κ

built-in. We shall explicitly refer to their random-tapes as r, s and t. Test

receives a “secret bit” b as input and User produces an output bit b′.

B[Σ] maintains two lists of handles ListTest and ListUser, which contain the

set of handles belonging to Test and User respectively. At the beginning of

an execution, both the lists are empty, and new handles are always generated

by a deterministic procedure.

While Test and User can arbitrarily talk to each other, the interaction with

B[Σ] can be summarized as follows:

• Instantiating agents. Let Σ = (P ,P†) where we associate P with

honest parties and P† with corrupt ones. Test and User can, at any
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point, choose an agent from P and send it to B[Σ]. More precisely, they

can send a string str to B[Σ], and B[Σ] will instantiate an agent with

the given string (along with its own security parameter) as the contents

of the parameter tape, and all other tapes being empty. However, if

User is corrupt, it can ask B[Σ] to instantiate agents from P† too. In

any case, whenever an agent is instantiated, B[Σ] adds (h, str) to the

list of the party who uploaded the string, where h is a new handle, and

sends h to it.

• Request for Session Execution. At any point in time, Test or User

may request an execution of a session, by sending an ordered tuple of

handles (h1, . . . , ht) (from among all the handles obtained thus far from

B[Σ]) to specify the configurations of the agents in the session, along

with their inputs (i1, . . . , it)
1. B[Σ] executes the session to obtain a

collection of outputs and updated configurations of agents. It generates

new handles h̃1, . . . , h̃u corresponding to the updated configurations,

adds them to the list of the party who requested for session execution,

and returns the new handles along with the output of the session to

it. (If an agent halts in a session, no new handle is given out for that

agent).

• Transferring agents. The two modes of interacting with B[Σ] de-

scribed above can be considered local: when Test (resp. User) uploads

an agent or requests for a session execution, only Test (resp. User)

hears back from B[Σ]. The other party does not get any information

in this process (unless they directly communicate with each other).

In particular, the agents one party has created (either directly or via

session executions) are not accessible to the other party. The new mode

of interaction, transferring agents, described below fills exactly this gap.

At any point in time, a party, say Test, can request B[Σ] to provide User

with access to an agent in its list by sending the handle h corresponding

to that agent, along with a special command Transfer. Upon receiving

this request, B[Σ] adds a new handle h′ to ListUser (with the same

1Note that if the same handle appears more than once in the tuple (h1, . . . , ht), it is
interpreted as multiple agents with the same configuration (but possibly different inputs).
Also note that after a session, the old handles for the agents are not invalidated; so a party
can access a configuration of an agent any number of times, by using the same handle.
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configuration as h), and sends h′ to User. Analogously, we can describe

what happens when User issues the Transfer command.

We define the random variable ideal〈Test(b) | Σ | User〉 to be the output

of User in an execution of the above system, when Test gets b as input. We

write ideal〈Test | Σ | User〉 in the case when the input to Test is a uniformly

random bit. We also define Time〈Test | Σ | User〉 as the maximum number

of steps taken by Test (with a random input), B[Σ] and User in total.

Definition 23. We say that Test is hiding w.r.t. Σ if ∀ PPT party User,

ideal〈Test(0) | Σ | User〉 ≈ ideal〈Test(1) | Σ | User〉.

When the schema is understood, we shall refer to the property of being

hiding w.r.t. a schema as simply being ideal-hiding.

Discussion. The ideal world is very symmetric with respect to Test and

User: both Test and User interact with B[Σ] in the same way. (This is in

contrast to the original formulation of Cryptographic Agents wherein only

User can receive outputs from B[Σ].) One crucial difference, however, is that

while a corrupt User can upload agents from both P and P†, Test can only

upload agents from the former.

Real World. A cryptographic scheme (or simply scheme) Π is a stateless

(possibly randomized) algorithm Impl with a repository Repo. The repository is

a table where each entry consists of a unique handle and a cryptographic object

(represented, for instance, as a binary string). At the start of an execution,

Repo is empty. Whenever the scheme gets an input ((h1, . . . ht), (i1, . . . , i`))

(either t = 0 for creating an object, or t = ` for a session execution), objects

corresponding to h1, . . . , ht are retrieved from Repo and given to Impl (along

with i1, . . . , i`). Impl is executed to obtain two kinds of results: objects and

outputs. The objects are added to Repo, with a new handle for each, and the

new handles, along with the outputs, are returned.

The real world for a schema Σ = (P ,P†) consists of two parties Test

and User, each with their own copy of a scheme Π = (Impl,Repo), say

ΠTest = (ImplTest,RepoTest) and ΠUser = (ImplUser,RepoUser). Like the ideal

world, Test and User can arbitrarily talk to each other, but exchange of

objects takes place in a different way—by connecting RepoTest and RepoUser
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with each other. If Test is interested in sending an object to User, it uploads

the handle corresponding to that object along with a command Transfer.

RepoTest retrieves the object and sends it to RepoUser, who stores it together

with a new handle, and returns that handle to User. Analogously, we can

describe how objects can be transferred from User to Test.

Note that we do not allow Test direct access to the cryptographic objects

stored in its repository. In particular, it cannot send a handle to RepoTest,

and get the object corresponding to it in return. Also observe that if User is

corrupt, which we denote by Adv, it may not run the scheme it is supposed

to. It can run any arbitrary algorithm and send any object of its choice to

RepoTest.

We define the random variable real〈Test(b) | Π | Adv〉 to be the output

of Adv in an execution of the above system, when Test gets b as input; as

before, we omit b from the notation to indicate a random bit. Also, as before,

Time〈Test | Π | Adv〉 is the maximum number of steps taken by Test (with a

random input), Π and Adv in total.

Definition 24. We say that Test is hiding w.r.t. Π if ∀ PPT party Adv,

real〈Test(0) | Π | Adv〉 ≈ real〈Test(1) | Π | Adv〉.

When Π is understood, we may simply say that Test is real-hiding.

IND-PRE Security. We are ready to present the security definition of

a cryptographic agent scheme Π = (Impl,Repo) implementing a schema Σ.

Below, the honest real-world user, corresponding to an ideal-world user User,

is defined as the composite program ΠUser ◦User . Let Γppt denote the family

of all PPT Test.

Definition 25. A cryptographic agent scheme Π = (Impl,Repo) is said to

be a Γ-IND-PRE-secure scheme for a schema Σ = (P ,P†) if the following

conditions hold.

• Correctness. ∀ PPT User and ∀ Test ∈ Γppt, ideal〈Test | Σ | User〉 ≈
real〈Test | Π | ΠUser ◦User〉. If equality holds, Π is said to have perfect

correctness.

• Efficiency. There exists a polynomial poly such that, ∀ PPT User, ∀
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Test ∈ Γppt,

Time〈Test | Π | ΠUser ◦ User〉 ≤ poly(Time〈Test | Σ | User〉, κ).

• Indistinguishability Preservation. ∀ Test ∈ Γ,

Test is hiding w.r.t. Σ⇒ Test is hiding w.r.t. Π.

When Γ is the family Γppt, we simply say that Π is an IND-PRE-secure scheme

for Σ.

Note that the correctness and efficiency requirements are w.r.t. all PPT

Test.

5.2 Public-key encryption

Public-key encryption is perhaps the most basic application of cryptography.

We treat every component of an encryption scheme—secret-key, public-key,

and ciphertexts—as objects that can be maliciously generated and distributed.

Besides the usual commands like Encrypt:m and Decrypt that correspond to

encryption and decryption, we have many others that capture the functionality

we expect an encryption scheme to provide, but rarely describe it explicitly.

For instance, commands of the form “is ?” check the type of an agent,

and those of the form “Comp ” compare two agents to see if they are the

same. We have a separate “PubGen” command to enable a clearer separation

between secret-key and public-key. Invoking this command on a secret-key

agent, transforms it into a public-key agent.

We now formally define a schema Σpke = (Ppke,P†pke) for public-key encryp-

tion. The agent family Ppke captures the functionality available to honest

users, and P†pke provides some additional features for corrupt users. We would

ideally want P†pke to be empty for best possible security, but it may be too

strong a requirement to be satisfied.

An agent in the family Ppke is initialized with (Sec-Key, tag) on the param-

eter tape by giving the command Init, for a tag←R {0, 1}κ chosen by B. It

behaves on various inputs as follows.

89



• “PubGen”: If the parameter tape has (Sec-Key, tag), then set it to

(Pub-Key, tag).

• “Encrypt:m”: If the parameter tape has (Pub-Key, tag), then sample

id-tag←R {0, 1}κ and change it to (Cptxt,m, tag, id-tag).

• “Decrypt”: If the parameter tape has (Cptxt,m, tag, id-tag), then send

tag to the other agent in the session. Else, if the parameter tape has

(Sec-Key, tag) and the incoming communication tape has (tag∗,m) such

that tag = tag∗, then write m on the output tape, else write ⊥.

• “IsSK?”: If the parameter tape has (Sec-Key, tag), then write true on

the output tape, otherwise write false.

• “IsPK?”: If the parameter tape has (Pub-Key, tag), then write true on

the output tape, otherwise write false.

• “IsCT?”: If the parameter tape has (Cptxt,m, tag, id-tag), then write

true on the output tape, otherwise write false.

• “CompSK”: If the parameter tape has (Sec-Key, tag), then check if the

first agent in the session. If yes, then send (Sec-Key, tag) to the second

agent. Else, if the incoming communication tape has tag∗ such that

tag = tag∗, then write true to the output tape, else write false.

• “CompPK”: If the parameter tape has (Pub-Key, tag), then check if the

first agent in the session. If yes, then send (Pub-Key, tag) to the second

agent. Else, if the incoming communication tape has tag∗ such that

tag = tag∗, then write true to the output tape, else write false.

• “CompCT”: If the parameter tape has (Cptxt,m, tag, id-tag), then check

if the first agent in the session. If yes, then send (Cptxt, tag, id-tag)

to the second agent. Else, if the incoming communication tape has

(tag∗, id-tag∗) such that tag = tag∗ and id-tag = id-tag∗, then write true

to the output tape, else write false.

We leave open the problem of designing an IND-PRE secure scheme for Σpke

for a suitable test family. Even a ∆-IND-PRE scheme would imply strong

properties like cca-security [89, 90] and key-anonymity [91], among others.
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Chapter 6

Conclusion

In this work, we provided a general unifying framework to model various

cryptographic primitives and their security notions, along with powerful re-

duction and composition theorems. Our framework easily captures seemingly

disparate objects such as obfuscation, functional encryption, fully homomor-

phic encryption, property preserving encryption as well as idealized models

such as the generic group model and the random oracle model.

Given that various cryptographic primitives can all be treated as objects of

the same kind (schema), it is natural to compare them with each other. We

have shown that obfuscation is complete (under standard computational as-

sumptions), but completely leave open the question of characterizing complete

schemata. We also raise the question of characterizing trivial schemata—those

which can be reduced to the null schema, as well as characterizing realizable

schemata—those which have (say) Γppt-IND-PRE-secure schemes.

We presented a hierarchy of security notions {∆∗-IND-PRE,∆det-IND-PRE}
≤ ∆-IND-PRE ≤ IND-PRE ≤ SIM defined using various test families (or, in

the case of SIM, as a reduction to the null-schema), but the relationships

between these for any given schema are not fully understood. We leave it

as an open problem to provide separations between these various notions

of security for various schemata. For the case of functional encryption we

provide a separation of ∆det-IND-PRE from IND-PRE. For obfuscation we

conjecture that all the above notions are different from each other for some

function family.

We gave reduction and composition theorems for Γppt and ∆ (which extends

to ∆∗ as well), and use them for showing the completeness of obfuscation

and designing a number of schemes. Given the importance of such theorems

in simplifying the design and analysis of schemes, it is interesting to explore

alternate notions of reduction that give more flexibility, i.e., place less re-
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strictions on the designer. There has been a recent boom of constructions

based on different flavors of obfuscation (indistinguishability obfuscation in

particular). Can the new notion of reduction help us view these constructions

in the agents framework, and help drive further research?

We generalized the equivalence of unbounded simulation and strong indis-

tinguishability for obfuscation to any arbitrary schema in our framework, by

first giving analogous definitions SIM and IND-CON, respectively, and then

showing that they are both equivalent to IND-PRE. What does this equiva-

lence tell us about the security of other schemata like functional encryption,

fully-homomorphic encryption, etc? We know several impossibility results for

functional encryption when the simulator is bounded in the ideal world. But

the case of unbounded power has not received much attention. Indeed, it is

plausible that SIM secure FE schemes exist for several interesting function

families. Our equivalence provides a potentially easier way to resolve this

question, since one can work with the more approachable indistinguishability

based definition instead.

Finally, we saw how extending our agents framework can help one cleanly

capture and study a wide range of attacks. We gave a schema for public-key

encryption, and leave open the problem of designing a secure scheme for it,

which would at once imply many desirable properties.

We believe that with time the agents framework—owing to its generality,

flexibility, and power—would emerge as the right one to study the security of

various cryptographic primitives, both classic and modern.
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