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Abstract

New architectures for extreme-scale computing need to be designed for higher energy efficiency than current

systems. The DOE-funded Traleika Glacier architecture is a recently-proposed extreme-scale manycore

that radically simplifies the architecture, and proposes a cluster-based on-chip memory hierarchy without

hardware cache coherence. Programming for such an environment, which can use scratchpads or incoherent

caches, is challenging. Hence, this thesis focuses on architecting, programming, and evaluating an on-chip

incoherent multiprocessor memory hierarchy.

This thesis starts by examining incoherent multiprocessor caches. It proposes ISA support for data

movement in such an environment, and two relatively user-friendly programming approaches that use the

ISA. The ISA support is largely based on writeback and self-invalidation instructions, while the program-

ming approaches involve shared-memory programming either inside a cluster only, or across clusters. The

thesis also includes compiler transformations for such an incoherent cache hierarchy.

Our simulation results show that, with our approach, the execution of applications on incoherent cache

hierarchies can deliver reasonable performance. For execution within a cluster, the average execution time

of our applications is only 2% higher than with hardware cache coherence. For execution across multiple

clusters, our applications run on average 20% faster than a naive scheme that pushes all the data to the

last-level shared cache. Compiler transformations for both regular and irregular applications are shown to

deliver substantial performance increases.

This thesis then considers scratchpads. It takes the design in the Traleika Glacier architecture and

performs a simulation-based evaluation. It shows how the hardware exploits available concurrency from

parallel applications. However, it also shows the limitations of the current software stack, which lacks smart

memory management and high-level hints for the scheduler.
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Chapter 1

Introduction

Continuous progress in transistor integration keeps delivering manycore chips with ever-increasing transis-

tor counts. For these chips to be cost-effective in a not-so-distant future — for example, as nodes of an

exascale machine [35] — they will need to operate in a much more energy-efficient manner than they do

today, following the ideas of what has been called Extreme-Scale Computing [30].

One such extreme-scale architecture is Runnemede [14], which is a processor architecture adopted in the

Traleika Glacier (TG) project [31]. A Runnemede chip integrates about 1,000 cores and runs at low supply

voltage. One of the keys to its expected high energy efficiency is a radically-simplified architecture. For

example, it employs narrow-issue cores, hierarchically organizes them in clusters with memory, provides

a single address space across the chip, and uses an on-chip memory hierarchy that does not implement

hardware cache coherence. It includes incoherent caches and scratchpads.

An on-chip memory hierarchy without hardware coherence may have advantages in ease of chip imple-

mentation and, for some of the applications expected to run on these machines, even in energy efficiency.

However, programming for it presents a non-trivial challenge. Indeed, the compiler or programmer has

to orchestrate the movement of data between the different cache/memory levels. Moreover, although one

can argue that large exascale machines such as a Traleika Glacier system will mostly run regular numerical

codes, this is not the whole story. A single Runnemede chip, with so much compute power, is also an en-

ticing platform on which to run smaller, more irregular programs. If so, the question remains as to how to

program for such a memory hierarchy.

There are several other proposals of multiprocessor cache hierarchies without hardware coherence or

with simplified hardware coherence. Two examples are Rigel [33] and Cohesion [34], which are many-

cores to accelerate regular visual applications. There is also substantial work on software cache coherence

schemes, mostly relying on detailed compiler analysis of the code (e.g., [16, 18, 20]), and also using bloom

filters to summarize communication [7]. Moreover, there are efforts that try to simplify the design of hard-

1
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Figure 1.1: Runnemede chip architecture from [14].

ware cache-coherence protocols (e.g., [17, 45, 49]).

While we can learn from this work, the goal of this thesis is slightly different. One goal is to improve on

how to use incoherent cache hierarchies. Hence, I design the Instruction Set Architecture (ISA), compiler,

and a relatively user-friendly programming environment to use a cluster-based incoherent cache hierarchy

like Runnemede’s. Compared to past work, my goal is not seeking to simplify or minimize hardware cache

coherence protocols. Instead, I am trying to exploit this novel cache hierarchy using, as much as possible,

existing cache structures and programming styles.

A second goal of this thesis is to understand how well scratchpads work. The scratchpad structure of

Runnemede is evaluated using its full software stack. The software stack is fairly elaborated and has been

developed by assembling pieces from different parties. The evaluation is done in terms of performance and

energy efficiency.

1.1 Motivation

Runnemede [14] is an extreme-scale manycore recently proposed by Intel for the 2018-2020 timeframe.

The chip integrates about 1,000 cores, and its goal is to use energy very efficiently. To do so, the manycore

operates at low supply voltage, and can change the voltage and frequency of groups of cores separately.

In addition, one of the keys to higher energy efficiency is a drastically-simplified architecture. Specifi-

cally, cores have a narrow-issue width and are hierarchically grouped in clusters with memory. Functional

core heterogeneity is avoided and, instead, the chip relies on voltage and frequency changes to provide het-

erogeneity. All cores share memory and a single address space, but the on-chip memory hierarchy has no
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support for hardware cache coherence. Figure 1.1 shows the manycore’s architecture from [14].

As shown in the figure, each core (called XE) has a private cache, which is called L1. This is a normal

cache but without hardware-coherence support. A core also has a scratchpad labeled in the figure as L1

Memory. A group of 8 cores forms a cluster called a Block, which has a second level of SRAM called L2.

Multiple blocks are grouped into a second-level cluster called Unit, which also has a third level of SRAM

called L3. The system can build up hierarchically further, but I will disregard it in this thesis for simplicity

of explanation.

In Runnemede, L2 and L3 are scratchpad memories rather than caches, each with their own range of

addresses. In this thesis, I will first assume they are incoherent caches (Chapter 2) and then that they are

scratchpads (Chapter 3).

The fact that the cache hierarchy is not coherent means that the application (i.e., the programmer or

compiler) has to orchestrate the data movement between caches. This may be seen as a way to minimize

energy consumption by eliminating unnecessary data transfers — at least for the more regular types of

applications that are expected to run on this machine. However, it introduces a programming challenge.

In the rest of this thesis, I first focus on a hierarchy with incoherent caches. I propose an ISA support,

compiler, and programming model for a cluster-based incoherent cache hierarchy like the one described.

Then, I focus on a memory hierarchy with scratchpads only. I evaluate the scratchpad hierarchy with all its

software stack.
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Chapter 2

Architecting, Programming, and Evaluating
Incoherent Caches

In this chapter, we seek to understand how to program an incoherent multi-processor cache hierarchy, and

what hardware support is required to get a balance between performance and programmability.

The contributions of this chapter are as follows:

• We propose a simple ISA support to manage an incoherent cache hierarchy, largely based on writeback

and self-invalidation instructions. We show the subtle issues that these instructions need to face, including

reordering in the pipeline, and effective use of caches organized in clusters for energy efficiency.

•We show two relatively user-friendly programming approaches that use this ISA to program the machine.

The programming approaches involve shared-memory programming either inside a cluster only, or across

clusters. They rely on annotating synchronization operations, and on identifying producer-consumer pairs.

• Our simulation results show that, with our approach, the execution of applications on incoherent cache

hierarchies can deliver reasonable performance. For execution within a cluster, the average execution time

of our applications is only 2% higher than with hardware cache coherence. For execution across multiple

clusters, our applications run on average 20% faster than a naive scheme that pushes all the data to the

last-level shared cache.

This chapter is organized as follows. Section 2.1 describes the basic ISA architecture proposed; Sec-

tions 2.2 and 2.3 present our two programming approaches; Sections 2.5 and 2.6 evaluate our design.

2.1 Basic Architectural Support

2.1.1 Using Incoherent Caches

In the architecture considered, all cores share memory but the cache hierarchy is not hardware-coherent.

Writes by a core are not automatically propagated to other cores because caches do not snoop for coherence

requests, nor is there any directory entity that maintains the sharing status of data. For a producer and a
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consumer core to communicate the value of a variable, we need two operations. First, after the write, the

producer needs to export the value to a shared cache that the other core can see. Then, before the read, the

consumer needs to prepare for importing the fresh value from the shared cache.

The first operation is done by a writeback (WB) operation that copies the variable’s value from the local

cache to the shared cache. The second operation is a self-invalidation (INV) that eliminates a potentially

stale copy of the variable from the local cache. Between the WB and the INV, the processors need to

synchronize. Figure 2.1 shows the sequence.

Producer

write x;
WB(x);
synch;

Consumer

INV(x);
synch;

read x;

Figure 2.1: Communication between incoherent caches.

We call the set of dynamic instructions between two consecutive synchronizations of a thread an epoch.

For correct operation, at the beginning of an epoch, a thread self-invalidates any data that it may read in

the epoch and that may be stale because of an earlier update by other threads. At the end of the epoch, the

thread writes-back any data that it may have written in the epoch and that may be needed by other threads

in later epochs.

Except for the lack of automatic coherence, cache hierarchies operate as usual. They use lines to benefit

from spatial locality but they do not need to support inclusivity.

2.1.2 Instructions for Coherence Management

WB and INV are memory instructions that give commands to the cache controller. For this initial discussion,

assume that each processor has a private L1 cache and there is a shared L2 cache. WB and INV can have

different flavors. First, they can operate on different data granularities: byte, word, double word, or quad

word. In this case, they take as an argument the address of the byte, word, double word, or quad word.

Second, WB and INV can also operate on a range of addresses. In this case, they take two registers, one

with the start address and the other with the length. Finally, with the mnemonic WB ALL and INV ALL,

they operate on the whole cache. In this case, there is no argument.
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Since caches are organized into lines for spatial locality, WB and INV internally operate at cache line

granularity. Specifically, WB writes back all the cache lines that overlap with the address or address range

specified. Consequently, when two different cores write to different variables in the same memory line and

then each performs a WB on its variable, we need to prevent the cores from overwriting each other’s result.

To prevent it, and to minimize data transfer volume, we use fine-grained dirty bits in the cache lines. If our

finest grain is bytes, then we use per-byte Dirty (D) bits. When a WB is executed, the cache controller reads

the target line(s) and only writes back the dirty bytes. WB has no effect if the target addresses contain no

modified valid data. After a line is written back, it is left in unmodified valid state in the private cache.

INV eliminates from the cache all the cache lines that overlap with the address or address range speci-

fied. Since a cache line has a single Valid (V) bit, all the words in the line need to be eliminated. If the line

contains some dirty bytes, the cache controller first writes them back to the shared cache before invalidating

the line. If there are no valid cached lines in the target addresses, INV has no effect.

Overall, WB and INV do not cause the loss of any updated data that happens to be co-located in a target

cache line. Hence, the programmer can safely use WB and INV with variables or ranges of variables, which

the hardware expands to cache line boundaries. The lines can include non-shared data. At worst, we trigger

unnecessary moves.

2.1.3 Instruction Reordering

The INV and WB instructions introduce some reordering constraints with respect to loads and stores to the

same address. The important constraints are INV versus load, and WB versus store. The minimum set of

ordering constraints is INV→ load and store→WB. Reordering of these two sequences results in reading

stale value or not exposing modified value. Thus, they must not be reordered in any case. We consider more

ordering constraints to respect programmers’ intention.

Consider INV first. Neither loads that precede an INV nor loads that follow the INV can be reordered

by the compiler or hardware relative to the INV (Figure 2.2a). Effectively, a thread uses INV(x) to refresh its

view of x and, therefore, reordering would imply that a load sees a different view than the one the program

intended.

Consider now a WB. Neither stores that precede the WB nor stores that follow the WB can be reordered

by the compiler or hardware relative to the WB (Figure 2.2b). The reason is that a WB(x) posts the value of
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 x
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buffer

(e)

st x
INV(x)

st x

Figure 2.2: Ordering constraints.

x globally and, therefore, reordering would imply that the value posted would be different than the one the

program intended.

Reordering stores that precede or follow INV is also disallowed. An INV always writes-back dirty data

before invalidating the line. Consequently, no data is lost. However, it also means that a reorder can affect

the time when a value is posted globally, and the value posted, as in the WB case. Consequently, we disallow

such reordering as well (Figure 2.2c).

Finally, loads that precede or follow a WB can always be reordered (Figure 2.2d). This is because a WB

does not change the value of the line in the local cache. Hence, a reodered load sees the same value. Note

that this ability to pick a load that follows a WB to the same address and execute it before the WB can help

performance.

These reordering requirements can be easily enforced in hardware. INV moves in the pipeline like a

store. Consequently, by the time an INV(x) in the write buffer initiates its cache update, prior loads to x will

be retired and prior stores to x will be completed. Moreover, no subsequent load or store to x will be allowed

to initiate its cache access for as long as INV(x) is in the write buffer (Figure 2.2e).

WB is also placed in the write buffer like a write. Stores to x before and after WB(x) will follow program

order. Loads to x that follow WB(x) will be allowed to proceed to the cache earlier (Figure 2.2f).

Finally, we consider the point when a WB or an INV instruction is complete. This point is significant
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because only then can a fence instruction following the WB or INV instruction complete (Figure 2.2g). On

the surface, an INV completes when the L1 cache acknowledges that the line has been invalidated, and a

WB when the L1 confirms that the line has been safely written back to L2. In reality, however, we need

to be more conservative and wait for any current cache eviction to be completed before claiming that the

WB or INV has completed. The reason is that, if the line that the WB or INV is supposed to write back or

invalidate, respectively, was dirty and is currently being evicted to L2, the WB or INV instruction will not

find it in L1, and we will claim WB or INV completion. However, the intended operation is not completed

until the L2 is updated. Consequently, at any time, we keep a counter of the lines that are currently being

written back. A fence after a WB or INV will only complete when the WB or INV are complete and the

eviction counter is zero.

2.1.4 Synchronization

Since conventional implementations of synchronization primitives rely on the cache coherence protocol,

they cannot be used in machines with incoherent cache hierarchies. Any lock release would have to be

followed by a WB, and spinning for a lock acquire would require continuous cache misses because each

read would be preceded by INV.

To avoid such spinning over the network, machines without hardware cache coherence such as the Tera

MTA, IBM RP3, or Cedar, have provided special hardware synchronization in the memory subsystem. Such

hardware often queues the synchronization requests coming from the cores, and responds to the requester

only when the requester is finally the owner of the lock, the barrier is complete, or the flag condition is set.

All synchronization requests are uncacheable. The actual support in Runnemede [14] is not published, but

it may follow these lines.

In this paper, we place the synchronization hardware in the controller of the shared caches. We pro-

vide three synchronization primitives: barriers, locks, and conditions. When a synchronization variable

is declared, the L2 cache controller allocates an entry in a synchronization table and some storage in the

controller’s local memory. When a processor issues a barrier request, the controller intercepts it, and only

responds when the barrier is complete. Similarly, for a lock acquire request or a condition flag check, the

controller intercepts the requests and only responds when it is the requester’s turn to have the lock, or when

the condition is true. In addition, the controller releases the synchronization when timeout occurs to avoid a
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Figure 2.3: Annotations for communication patterns enabled by: barriers (a), critical sections (b), flags (c),
and dynamic happens-before epoch orderings (d).

hardware deadlock.

Since synchronization support is not the focus of this paper, we do not consider further details.

2.2 Programming Model 1: MPI + Shared Intra Block

The first programming model that we propose for this machine is to use a shared-memory model inside each

block and MPI across blocks. In this case, the MPI Send and MPI Recv calls can be implemented cheaply.

A sender and a receiver communicate message information using hardware synchronization through the

last level cache. This eliminates receiver’s busy-waiting with spinning over on-chip network and enables

a rendezvous protocol between the sender and the receiver. Data transfer is done through common shared

level cache, i.e. L3 cache. Specifically, an MPI Send of variable x is translated into a copy of x to a location

x buff in an on-chip L2-uncacheable shared buffer. An MPI Recv of variable y is translated into a copy from

location y buff in the L2-uncacheable shared buffer to location y. Moreover, in communication with multiple

recipients such as a broadcast, there is no need to make multiple copies; a single copy to x buff suffices. The

multiple receivers will all read from the same location. Finally, we can implement non-blocking MPI Isend

and MPI Irecv calls by using another thread in the core to perform the copies. One can implement a protocol

in a similar way to [26].

In the rest of this section, we focus on intra-block shared-memory programming. We first describe the

proposed approach and then some advanced hardware support.
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2.2.1 Intra-block Programming

Ideally, we would like to use the compiler to analyze the program and automatically augment it with WB and

INV instructions. For many programs, however, it is hard to get efficient compiler-generated instrumentation

due to intensive use of pointers and dynamic communication patterns. For this reason, we develop a simple

approach that is easily automatable, even if it does not attain optimal performance. Also, the programmer

can use his knowledge of the program to improve its performance.

The approach is based on relying on the synchronization operations in the data-race-free (DRF) program.

In the DRF program, the synchronization can be used as explicit markers of changes in communication

patterns. Hence, at the point immediately before and after a synchronization operation, depending on the

type of synchronization, WB and INV instructions are inserted. Our algorithm decides which instructions to

add, and the programmer can refine or overwrite them. For the programs with data races, we consider them

separately. While the behavior of C or C++ programs with data races is undefined, it is desirable to have a

way to support them as programmers originally intended. We provide fine-grained WB/INV for handling

such a case.

Recall that a block has a per-core private L1 cache and a shared L2 cache (Figure 2.4a). In addition,

there is a one-to-one thread-to-core mapping and no thread migration for simplicity of discussion.

L1

Proc.

Block Network

L2

(a) Block

L3

(b) Unit

Unit Network

Block

Figure 2.4: Single block (a) and multi-block (b) cache hierarchy.

Annotating Different Communication Patterns.

Each type of synchronization operation gives us a clue of the type of potential communication pattern that

it manages. For instance, a program-wide barrier synchronization marks a point where a thread’s post-

barrier accesses can communicate with pre-barrier accesses from any of the other threads (Figure 2.3a).

10



Hence, the simplest scheme is as follows: immediately before the barrier, we place a WB for all the shared

variables written since the last global barrier; immediately after the barrier, we place an INV for all the

shared variables that will receive exposed reads (i.e., a read before any write) until the next global barrier.

In some cases, a thread owns part of the shared space, and reuses it across the barriers as if it was its

private data. In this case, we do not need to write back and invalidate that part of the shared space. Also, the

programmer can often provide information to reduce WB and INV operations. Finally, if the code between

global barriers is long and we lack information on the sharing patterns, we use WB ALL and INV ALL,

which write back and invalidate the entire L1 cache.

Threads often communicate by accessing variables inside a critical section protected by lock acquire

and lock release (Figure 2.3b). In this case, immediately before the acquire, we place an INV for all the

shared variables that will receive exposed reads inside the critical section. Moreover, immediately before

the release, we place a WB for all the shared variables written inside the critical section. This basically

conforms release consistency memory model. Note that we place the INV before the acquire rather than

after to reduce the duration of the critical section.

Threads also coordinate with flag set-wait synchronization (Figure 2.3c). In this case, immediately

before the signal, the producer thread needs a WB for all the shared variables written in the epochs since

a global barrier or an equivalent point of full WB. Also, immediately after the wait, the consumer thread

needs an INV for all the shared variables that will receive exposed reads in the epochs until the next global

barrier or equivalent point of full INV. Like in the case of barriers, if such epochs are very long, we use WB

ALL and INV ALL, respectively.

For other types of structured synchronization patterns that we have not seen in our applications, we

can follow a similar methodology. However, there is also a general pattern of communication through

dynamically-determined happens-before order — especially in irregular applications. After a thread com-

pletes a critical section, it may want to consume data that was generated by earlier holders of the critical

section before they executed the critical section (Figure 2.3d). For example, this is observed with task-queue

operations. A thread places a task in the task-queue and then another thread fetches the task and processes

it. The task-queue is updated using a critical section, but there is significant communication outside the

critical section as the consumer processes the task.

We call this pattern Outside Critical-Section Communication (OCC). Unless the programmer explicitly
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states that there is no OCC, our programming model has to assume that there is. Hence, before a lock

acquire, we add a WB of the shared variables written since a global barrier or point of full WB. After a lock

release, we add an INV of all the exposed reads until the next global barrier or point of full INV. Often,

these become WB ALL and INV ALL.

Discussion.

Many programs running on a Runnemede-style chip are likely to have a structure based on global barriers.

In this case, it is easy for the compiler or programmer to insert WB and INV instructions.

Relying on explicit synchronization to orchestrate data transfers is insufficient when the program has

data races. Indeed, the communication that data races induce in cache-coherent hierarchies is invisible in

an incoherent cache hierarchy. Consider an example in Figure 2.5 with declaration of volatile variables and

proper fence for memory models. Two processors try to communicate with a plain write and a spinloop

without synchronization, but the spinloop may last forever (Figure 2.5a). This is because the consumer may

not see the update.

for (; ; ) {
if (flag)
process (data);

}

// producer// consumer

data = 1;

flag = 1;

(a)

// consumer

for (; ; ) {

process (data);
}

}

if (flag) {

(b)

// producer

data = 1;
flag = 1;

fence;
fence;

WB (data);

WB (flag);

INV (flag);

INV (data);

Figure 2.5: Enforcing data-race communication.

If we want to support the data-race communication, we need to identify the data race and augment it

with WB, INV, and fence instructions. Specifically, as shown in Figure 2.5b, the producer needs to follow

each update with a WB, while the consumer needs to precede each read with an INV. Moreover, to prevent

access reordering, we need a fence between the two WBs in the producer and the two INVs in the consumer.

The data-race communication pattern can be re-written by the programmer to use a hardware synchro-

nization flag. In this case, the busy-waiting loop is changed to a hardware flag wait, while the producer write

is changed to a hardware flag set.
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Table 2.1: Classification of the benchmarks based on the communication patterns present.

Benchmark Class Barrier Critical Outside Critical Data Race

FFT Barrier x
LU Barrier x

Cholesky Outside Critical x x x x
Barnes Barrier + Outside Critical x x x

Raytrace Critical x x x
Volrend Barrier + Outside Critical x x x
Ocean Barrier + Critical x x
Water Barrier + Critical x x

Application Classification.

Table 2.1 lists the applications that we use for intra-block programming in Section 2.6, and classifies them

according to the communication patterns present. For each application, we list the main pattern under the

Main column, and then other patterns that the application exhibits under Other. The patterns are those just

described: barrier, critical section, flag, outside critical section, and data race.

From the table, we see that different applications have different dominant communication patterns. FFT

and LU have mostly communication patterns enabled by barriers; Raytrace have patterns enabled by critical

sections; Cholesky has the outside critical-section communication pattern. In addition, some applications

have multiple patterns. Raytrace has asymmetric data races in its work pool structure. While a thread

updates the work pool in a critical section, another thread reads it outside of any critical section. Overall,

the data shows that our programming model needs to support at least all the communication patterns that

we described earlier.

2.2.2 Advanced Hardware Support

Surrounding epochs with full cache invalidation (INV ALL) and writeback (WB ALL) results in unnecessar-

ily low performance — especially for short epochs such as critical sections. One alternative is to explicitly

list the variables or address ranges that need to be invalidated or written back. However, this approach is un-

desirable because it requires programming effort and programmers are prone to make mistakes. To improve

both performance and programmability, we proposed two small hardware buffers called Entry Buffers. They

can substantially reduce the cost of WB and INV in relatively-short epochs.
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Modified Entry Buffer (MEB) for WB.

The MEB is a small hardware buffer that automatically accumulates the IDs of the cache lines that are being

written in the epoch. Therefore, at the end of the epoch, when we need to write back the lines written in the

epoch, we can use the MEB information. With this support, we avoid a traversal of the cache tags and the

costly writeback of all the dirty lines currently in the cache. In short epochs, the MEB can save substantial

overhead.

The MEB is designed to be cheap. It is small (e.g., 16 entries) and each entry only includes the ID of a

line, rather than a line address. For example, for a 32-Kbyte cache with 64-byte lines, the ID is 9 bits. The

MEB is updated in parallel with a write to the L1 cache. Specifically, every time that a clean byte is updated

(recall that the cache has per-byte D bits), if the line’s ID is not in the MEB, it is inserted.

Some entries in the MEB may become stale. This occurs when an MEB entry is created for a line that

is written to, and later the line is evicted from the cache by another line that is never written to. To simplify

the MEB design, stale entries are not removed. At the end of the epoch, as the MEB is traversed, only dirty

lines are written back.

We use the MEB in small critical sections that conclude with WB ALL because the programmer did

not provide additional information. The MEB records all the lines written in the critical section. When we

reach WB ALL at the end of the epoch, the MEB is used, potentially saving many writebacks. However, if

the MEB overflows during critical section execution, the WB ALL executes normally.

Invalidated Entry Buffer (IEB) for INV.

At the beginning of an epoch, we need to invalidate all the lines that the epoch will expose-read and that are

currently stale in the local cache. Since explicitly listing such lines may be difficult, programmers may use

INV ALL. This operation is very wasteful, especially in small epochs. Hence, we propose not to invalidate

any addresses on entry, and to use the IEB instead.

The IEB is a small hardware buffer that automatically collects the addresses of memory lines that do not

need to be invalidated on a future read. They do not need to because they have already been read earlier in

the epoch and, at that point, they have been invalidated if they were in the cache. Hence, they are not stale.

With the IEB, we can keep the number invalidations to a very small number.

The IEB only has a few entries (e.g., 4) because it is often searched and needs to be fast. Each entry has
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the actual address of a line that needs no invalidation on a future read. The IEB contains exact information,

and is updated as follows. The IEB is accessed at every L1 read. If the line’s address is already in the IEB,

no action is taken. Otherwise, the action depends on the outcome of the cache access. Specifically, if the

read hits in the cache and the target byte is dirty, no action is taken. This is because the byte was written

in the past by the current core and, therefore, it is not stale. In all other cases, the line’s address is added to

the IEB. Moreover, if the read hits in the cache, the line is invalidated. Finally, in either hit or miss, the read

gets a fresh copy of the line from the shared cache.

Unlike the MEB, the IEB does not store unneeded entries. Every read is checked against the IEB, to

avoid invalidating the same line twice. Invalidations are expensive because they are followed by a cache

miss in the critical path.

Finally, the IEB is most useful in short epochs like small critical sections. The reason is that if the IEB

needs to track many lines, it may overflow. Each time that an IEB entry is evicted, if the corresponding line

is accessed again, the hardware causes one unnecessary invalidation. The execution is still correct, but the

performance decreases.

2.3 Programming Model 2: Shared Inter Block

The second programming model that we propose for this machine is to use a shared-memory model across

all processors — irrespective of whether they are in the same block or in different ones (Figure 2.4b). Our

main idea is that, to obtain performance, we need to have level-adaptive WB and INV instructions. This

means that, if two threads that communicate end-up being mapped into the same block, then the WB and

INV operate as described until now: WB writes the line back to L2 and INV invalidates the line from L1.

However, if the two threads end-up being mapped into different blocks, then WB writes back the line all the

way to L3, and INV invalidates the line from both L1 and L2. We require that an application annotated with

level-adaptive WB and INV runs correctly both within a block and across blocks without any modification.

For completeness, we also provide an instruction that explicitly writes back lines to the L3 cache (and

to the L2 in the process) and one that explicitly invalidates lines from the L2 cache (and from the L1 in the

process). They are WB L3(Addr) and INV L2(Addr), respectively.

In this section, we first describe the proposed programming approach and then the hardware support.
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2.3.1 Inter-block Programming

In the programming approach of Section 2.2, relatively little information was needed to insert WB and INV

instructions. In the approach presented here, we need two types of information to insert level-adaptive WB

and INV. First, we need to know how the program’s computation is partitioned and mapped into threads.

We assume static mapping of computation to threads. For example, given a parallel loop, the relevant infor-

mation may be that the iterations are logically grouped into N consecutive chunks (where N is the number

of threads), and chunk i is executed by thread i. Note that we do not know how the threads themselves will

map to physical processors at runtime (i.e., which processors and in what clusters). However, such mapping

will not be allowed to change dynamically.

The second piece of information needed is the producer-consumer patterns. Specifically, we need to

identify: (i) all the data that is produced by thread i and consumed by thread j, and (ii) what epochs in i and

j produce and consume the data, respectively.

Once we know this information, we can annotate the code with the level-adaptive WB and INV instruc-

tions WB CONS (Addr, ConsID) and INV PROD (Addr, ProdID). In these instructions, we augment the WB

mnemonic with CONS for consumer, and give it as a second argument the ID of the consumer thread Con-

sID. Similarly, we augment the INV mnemonic with PROD for producer, and give it the ID of the producer

thread ProdID.

For the example of threads i and j producing and consuming x, the instructions inserted are as follows

(Figure 2.6). At the end of the epoch that produces x in thread i, we place WB CONS (x, j), while at the

beginning of the epoch that consumes x in thread j, we place INV PROD (x, i). The implementation of these

instructions is described in Section 2.3.2.

Thread i Thread j

Epoch

WB_CONS(x,j)

INV_PROD(x,i)

Epoch = x

x = 

Figure 2.6: Example of level-adaptive WB and INV.

Generating this information requires deeper code analysis than in the first programming model (Sec-

tion 2.2). Hence, while the first programming model can handle applications with pointers and irregular
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structures, this second model is targeted to more compiler-analyzable codes. In our experiments of Sec-

tion 2.6, we use OpenMP applications.

To be able to insert level-adaptive WB and INV instructions, the compiler starts by performing inter-

procedural control flow analysis to generate an interprocedural control flow graph of the program. Then,

knowing how the computation is partitioned into threads, the compiler performs data flow analysis to find

pairs of producer and consumer epochs in different threads (i, j). Then, the compiler inserts WB CONS in i

and INV PROD in j.

In the following, we present some details of our compiler algorithm for level-adaptive WB and INV.

First, we present the general case; then we consider irregular applications.

Extracting Producer-Consumer Pairs.

Programs that have no pointer manipulation or aliasing, use OpenMP work-sharing constructs, and schedule

OpenMP for loops statically are typically amenable to compiler analysis. In these programs, there may be

data dependence between serial and parallel sections and between parallel sections. Typically, the relation

between serial and parallel sections is relatively easy to analyze, while the relation between parallel sections

is harder to analyze. It requires understanding the program’s inter-procedural control flow and performing

dataflow analysis.

Inter-procedural control flow analysis finds parallel for loop iterations that potentially communicate with

each other. From each starting for loop, we traverse the control flow graph to find reachable for loops. Those

for loops that are unreachable are not considered further. The reachable loops are now targets of dataflow

analysis. We apply DEF-USE analysis from a preceding for loop as a producer to any reachable for loop as

a consumer. We compare the array structures accessed by the producer and consumer loops to determine

if any is in both loops. If an array is in both, we compare the indices. Since we use static scheduling, we

know the mapping of iteration to thread ID. Consequently, the compiler can determine if there is a data

dependence between two threads. In this case, it puts WB CONS (address,consumerID) in the producer and

INV PROD (address, producerID) in the consumer.

We perform this analysis in a semi-automatic way using some extensions to the ROSE compiler in-

frastructure [43] that we developed. The analyzer gives two types of information: what OpenMP code

section has producer-consumer relation, and whether this requires WB CONS/INV PROD. Programmers
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insert WB/INV at proper places according to the information. Note that the consumer and producer IDs in

the WB CONS and INV PROD instrumentation are typically expressed as equations of local thread ID.

Our approach is similar to interprocedural analysis used in auto parallelizing compiler [11, 28]. Our

approach is also similar to the translation from OpenMP to MPI [8, 9] and to the implementation of software

DSM [5]. They all use control flow and data flow analysis to find communicating data and producer-

consumer pairs. In particular, inferring MPI Send corresponds to inserting WB CONS, and inferring

MPI Recv corresponds to inserting INV PROD.

However, our approach differs from previous techniques in four aspects. First, our approach does not

maintain explicit replicated copies of data, while translated MPI code or software DSM does. Second, our

approach executes the serial section in only one thread, and the result is written back by WB to the global

cache; translated MPI code executes the serial section in all nodes. Third, our approach implements single

producer-multiple consumers with a single WB in the producer; MPI requires multiple MPI Send if point-

to-point communication is used. Finally, our approach is reasonably efficient even if exact dataflow analysis

is not possible — e.g., when we do not know the exact consumers accurately. In this case, the producer

writes back the data to the last level cache. In an MPI translation, we would need to send messages to all

the possible receivers.

Handling Irregular Cases.

Many scientific applications use sparse computations that both are iterative and have data access patterns

that remain the same across iterations. An example is the conjugate gradient method for solving systems of

linear equations using sparse matrix-vector multiplications. For such codes, we use an inspector [21, 53] to

gather information on irregular data accesses so that WB and INV instructions can be performed only where

necessary. The inspector is inserted in the code and is executed in parallel by the threads. The cost of the

inspector is amortized by the ensuing selective WB and INV.

Figure 2.7 shows an excerpt from conjugate gradient. The original code contained a loop that reads

array p[] with indirect accesses (Line 19), and another loop that writes p[] (Line 27). We assume static

scheduling of OpenMP loops with chunk distribution. Thus, continuous iterations are allocated for each

thread.

The inspector loop is placed at the beginning (Line 9). It determines the ID of the writer thread that will
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1 #pragma omp p a r a l l e l
2 {
3 / / i n s p e c t o r code s t a r t s
4 i n t t o t a l t h r e a d s = o m p g e t n u m t h r e a d s ( ) ;
5 i n t my id= o m p g e t t h r e a d n u m ( ) ;
6 i n t m y j s t a r t =( n / t o t a l t h r e a d s )* my id ;
7 i n t my j end =( n / t o t a l t h r e a d s ) * ( my id + 1 ) ;
8 i n t t a r g e t i d ;
9 i n t i , j , k ; / / a l l p r i v a t e by d e f a u l t p o l i c y o f OpenMP

10
11 f o r ( j = m y j s t a r t ; j<my j end ; j ++) {
12 f o r ( k=A[ j ] ; k<A[ j + 1 ] ; k ++) {
13 t a r g e t i d = c o l i d x [ k ] / ( n / t o t a l t h r e a d s ) ;
14 c o n f l i c t [ k ] = t a r g e t i d ;
15 }
16 }
17 / / i n s p e c t o r code ends
18
19 f o r ( i =0 ; i<imax ; i ++) {
20 #pragma omp f o r
21 f o r ( j =0 ; j<n ; j ++) {
22 f o r ( k=A[ j ] ; k<A[ j + 1 ] ; k ++) {
23 i f ( c o n f l i c t [ k ] != my id )
24 INV PROD(&(p [ c o l i d x [ k ] ] ) , c o n f l i c t [ k ] ) ;
25 read p [ c o l i d x [ k ] ] ; / / i n d i r e c t a c c e s s
26 }
27 . . .
28 #pragma omp f o r
29 f o r ( j =0 ; j<n ; j ++) {
30 w r i t e p [ j ] ;
31 }
32 WB L3 range (&(p [ m y j s t a r t ] ) ,
33 my j end−m y j s t a r t ) ;
34 #pragma omp b a r r i e r
35 }
36 }

Figure 2.7: An iterative loop with irregular data references with the inspector.

produce the value obtained by each read. The result is stored in array conflict. Then, at every iteration of

the loop that reads, it checks the ID of the writer (Line 21). If it is not the same as the reader’s ID (Line 21),

it inserts an INV PROD instruction with the ID of the thread that will produce it (Line 22). Otherwise, it

skips the INV.

In the figure, after the loop that writes to p[], we place a WB to the L3 cache for the whole range written.

We could perform a similar analysis like the one described for the read, and save some writes to L3 by using

WB CONS. For simplicity, we write everything to L3.
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2.3.2 Hardware Support

We implement WB CONS and INV PROD as follows. In each block, the L2 cache controller has a

ThreadMap table with the list of the IDs of the threads that have been mapped to run on this block. This

table is filled by the runtime system when the threads are spawned and assigned to processors, typically at

the beginning of the program.

When a thread executes the WB CONS(addr,ConsID) instruction, the hardware checks the ThreadMap

in the local L2 controller and determines whether or not the thread with ID ConsID is running in the same

block. If it is, for each of the lines in addr, the hardware writes back the dirty bytes only to L2. Otherwise,

the dirty bytes are written back to both L2 and L3. Note that, for a given line, this operation may require

checking both the L1 and L2 tags.

When a thread executes the INV PROD(addr,ProdID) instruction, the hardware checks the ThreadMap

in the local L2 controller and determines whether or not the thread with ID ProdID is running in the same

block. If it is, for each of the lines in addr, the hardware invalidates the line only from L1. Otherwise, the

line is invalidated from both L1 and L2. For each line, this operation requires checking both the L1 and L2

tags.

Note that when a thread’s WB CONS propagates the target updates to L3, the other L1 caches in the

same block, and the L1 and L2 caches in other blocks, may retain stale copies of the line. Similarly, when

a thread’s INV PROD self-invalidates the target addresses from the L1 and L2 caches, the other L1s in the

same block, and the L1 and L2 caches in other blocks, may keep stale values.

It is sometimes necessary for an epoch to perform a full WB or INV of the whole cache. Hence, we

also support WB CONS ALL (ConsID) and INV PROD ALL (ProdID). When the producer and consumer

are in different blocks, the first instruction writes back not just the local L1 but also the whole local block’s

L2 to the L3. Similarly, the INV PROD ALL instruction self-invalidates not only the local L1 but also the

whole local block’s L2.

A program annotated with WB CONS and INV PROD runs correctly both within a block and across

blocks without modification.
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2.4 Compiler Support

This work was done in collaboration with Sanket Tavarageri from Ohio State University. We present the

details in the Appendix.

2.5 Experimental Setup

Since this thesis is about shared-memory programming, we evaluate the first programming model (Sec-

tion 2.2) by running programs within a block, without any MPI component. We evaluate the second pro-

gramming model (Section 2.3) by running programs across blocks.

Consider the intra-block runs first. We evaluate the configurations in the upper part of Table 2.2. For

programming simplicity, the baseline uses WB ALL and INV ALL for all the synchronization primitives

discussed in Section 2.2.1 and shown in Figure 2.3. Then, in B+M, B+I, and B+M+I, we augment the

baseline with the MEB, IEB, and both MEB and IEB, respectively. These hardware buffers are only used in

critical sections, which are small. Finally, we compare to the same machine with hardware cache coherence

(HCC).

Intra-Block Experiments
Name Configuration
Base Baseline: WB ALL and INV ALL
B+M Base plus MEB
B+I Base plus IEB
B+M+I Base plus MEB and IEB
HCC Hardware cache coherence

Inter-Block Experiments
Name Configuration
Base Baseline: WB ALL and INV ALL to L3
Addr WB and INV of addresses to L3
Addr+L WB CONS and INV PROD

Table 2.2: Configurations evaluated.

We run the SPLASH2 applications, which use pointers heavily and have many types of synchronization.

Specifically, we run FFT (64K points), LU (512x512 array, both contiguous and non-contiguous), Cholesky

(tk15.O), Barnes (16K particles), Raytrace (teapot), Volrend (head), Ocean (258x258, both contiguous and

non-contiguous), and Water (512 molecules, both nsquared and spatial). We use the SESC cycle-level

execution-driven simulator to model the architecture in the upper part of Table 2.2. The architecture has 16
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cores in a block. The coherent machine we compare to (HCC) uses a full-mapped directory-based MESI

protocol.

Intra-Block Experiments
Architecture 16 out-of-order 4-issue cores
ROB 176 entries
Private L1 32KB WB, 4-way, 2-cycle RT, 64B lines
Shared L2 2MB WB, 8-way/bank,

11-cycle RT (local bank), 64B lines
On-chip net 2D-mesh, 4 cycles/hop, 128-bit links
Off-chip mem Connected to each chip corner, 150-cycle RT

Inter-Block Experiments
Architecture 4 blocks of 8 cores each
Shared L3 16MB WB, 8-way/bank,

20-cycle RT (local bank), 64B lines

Table 2.3: Architecture modeled. RT means round trip.

We now consider the inter-block runs. We evaluate the configurations in the lower part of Table 2.2.

The baseline is a simple design that communicates via the L3 cache. This means that a WB pushes the

dirty lines to both L2 and L3, and an INV invalidates the lines in both L1 and L2. Moreover, it always

uses WB ALL and INV ALL. The more optimized Addr configuration communicates via L3 but specifies

the target addresses in the WB and INV. Finally, Addr+L uses our level-adaptive WB and INV instructions,

which also specify the target addresses.

We run four OpenMP applications, namely EP, IS and CG from the NAS Parallel Benchmark suite, and

a 2D Jacobi benchmark that we developed. CG is irregular. We use an analysis tool that we developed based

on the ROSE compiler [43, 38] to instrument the codes with WB CONS and INV PROD instructions. We do

not apply nested parallelism but, instead, only parallelize the outermost loop in a nest across all processors.

We do not apply any loop optimization such as loop interchange or loop collapse either.

The architecture modeled is shown in the lower part of Table 2.2. We model 4 blocks of 8 cores each.

The parameters not listed are the same as in the intra-block experiments.

2.5.1 Area analysis

An incoherent cache hierarchy requires less area that a hardware-coherent one, even if we neglect the co-

herence controller logic. Specifically, consider the incoherent hierarchy first. While we explained per-byte

dirty bits for the finest granularity in previous sections, it is more practical to use per-word dirty bits for
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many parallel programs, which have word or coarser granularity for inter-thread communication. We as-

sume per-word dirty bits in the evaluation. The lines in the L1 and L2 caches need a single valid bit plus

per-word dirty bits; the lines in the last level (L3) cache only need a valid and a dirty bit. Consider now a

MESI protocol, which has 4 stable line states and many transient ones. It easily needs 4 bits to encode a

state. Hence, each line in the L1, L2 and L3 caches needs 4 bits for the state. In addition, each line in the

L2 and L3 caches needs directory information. For example, if we consider a full-mapped directory for the

hierarchy in the inter-block experiments, each L2 line needs 8 presence bits (since we have 8 processors per

block), and each L3 line needs 4 presence bits (since we have 4 blocks). Overall, the MESI protocol needs

more area because it requires more bits in the L3 cache, which is the largest one, while the incoherent cache

hierarchy adds the overhead mostly to the smaller L1 and L2 caches.

For a cache hierarchy with 4 blocks, we find that a full-map hardware-coherent cache hierarchy has

an overhead of 3.65 Mb, while the incoherent one has an overhead of only 2.96 Mb, which is 18.9% less.

With more blocks, the incoherent hierarchy has more scalability because it has a constant cost regardless

of the number of blocks; the hardware-coherent one requires more area for the directory as we add more

blocks. For example, with 8 blocks and 8 cores per block, the hardware-coherent hierarchy has an overhead

of 9.34Mb, while the incoherent one has an overhead of 5.92Mb, which is 36.6% less.

2.6 Evaluation

This section evaluates our proposed hardware support and programming models for an incoherent hierar-

chical cache hierarchy like the one in Runnemede [14]. The evaluation has two parts. In Section 2.6.1,

we evaluate our intra-block hardware and programming model. We compare the performance to that of the

same multicore with hardware cache coherence.

In Section 2.6.2, we evaluate our inter-block hardware and programming model. For this case, there is

no standard hierarchical hardware cache coherence that we can compare to. We would have to design one

such protocol, explain it and justify it. Therefore, instead, we focus on evaluating the effect of our level-

adaptive WB and INV instructions. Hence, we compare the performance to systems with WB and INV that

always communicate via the last-level cache.
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Figure 2.8: Normalized execution time of the applications.

2.6.1 Performance of Intra-block Executions

Figure 2.8 shows the execution time of the applications for the different architectures considered. From

left to right, the bars correspond to HCC, Base, B+M, B+I, and B+M+I. For a given application, the bars

are normalized to HCC. Each bar is broken down into 5 categories: stall time due to INV (INV stall) and

WB (WB stall), stall time due to lock (lock stall) and barrier (barrier stall) synchronization, and rest of the

execution. Barrier stall time mostly stems from load imbalance between threads. Lock stall time is the time

spent waiting for lock acquires. Note any stall time for fine-grained INV/WB instruction is included in the

execution time.

We classify the applications into those that exhibit coarse-grain or relatively little synchronization (FFT,

LU cont, LU non-cont, and Water Spatial) and the rest. In the former class, the WB and INV overheads

have very little impact. As a result, all the architectures considered have performance similar to HCC.

The rest of the applications have finer-grain synchronization. In these codes, the overhead of WB and

INV stalls in Base is often large and, in the case of Raytrace, very large. In Raytrace, where the Base bar

reaches over 2, there are frequent lock accesses in a set of job queues. Its fine-grain structure is the reason

for the large overhead. The bars also show that the overhead in Base comes mostly from INV stall, WB stall,

and lock stall. The latter is largely the result of WB stall in the critical section and its chaining effect to other

acquire waiters. On average for all the applications, Base’s execution time is 20% higher than HCC.

We can speed-up execution by using the MEB to reduce the number of WBs that are needed before

exiting the critical sections. This optimization succeeds in eliminating practically all the WB stall and lock
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stall. We can see, therefore, that the MEB is very effective. The resulting bars (B+M) are close to HCC.

One exception is Raytrace, where the bar is still around 1.4.

The third bar (B+I) shows that the IEB alone is not very effective to speed-up execution. The INV stall

reduces a bit, but the WB stall and lock stall return, and the bars return to about the same height as Base. The

problem is that, even though the number of INVs decreases, there is a large number of WBs before exiting

the critical sections, which lengthens the critical sections and slows down the program. The fewer misses

due to fewer INVs do not help significantly. Moreover, the IEB is so small that it sometimes overflows,

becoming ineffective.

However, the fourth bar (B+M+I) shows that, by adding both the MEB and the IEB, we get the best

performance. All the categories of overheads decrease. As a result, the programs are now not much slower

than with hardware cache coherence (HCC). On average, the execution time of the applications with B+M+I

is only 2% higher than with HCC. This is a large speed-up compared to Base, whose execution time was

20% higher than HCC. Overall, we have a system without hardware cache coherence that is about as fast as

one with hardware coherence.

We now consider the traffic generated by HCC and B+M+I. Given that HCC and B+M+I have a similar

average performance, their relative traffic is a proxy for their relative energy consumption. Figure 2.9 shows,

for each application, their relative traffic in number of flits normalized to HCC. Each bar is broken down into

traffic between the L2 cache and memory (memory), and three sources of traffic between the processor and

L1/L2: linefill due to read/write misses, writeback traffic, and invalidations. Traffic-heavy synchronization

using benign data races is converted to hardware synchronization primitives.

From the figure, we see that these applications have on average slightly less traffic in B+M+I than in

HCC. This is despite the fact that these applications were not written for an incoherent cache hierarchy. As a

result, B+M+I suffers from the fact that the analysis of which words need to be invalidated or written back is

not very precise, and often requires the use of INV ALL and WB ALL. On the other hand, B+M+I removes

traffic over HCC in three ways. First, B+M+I causes no invalidation traffic. Second, B+M+I does not suffer

from ping-pong traffic due to false sharing. Finally, B+M+I performs writeback of only dirty words, thanks

to its per-word dirty bits. Overall, B+M+I causes only slightly less traffic and, hence, consumes about the

same energy as HCC.

We expect that, for applications written for an incoherent cache hierarchy, the total traffic and energy
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Figure 2.9: Normalized traffic of the applications.

in B+M+I will be lower than in HCC — because of the three reasons listed above. Moreover, even if the

performance and energy is similar for HCC and B+M+I, the latter has the major advantage of needing

simpler hardware, which translates into lower time-to market for the machine, and lower machine cost.

2.6.2 Performance of Inter-block Executions

To evaluate the effect of level-adaptive WB and INV, we start by counting the number of global WBs (those

gone to the L3) and global INVs (those gone to the L2). Recall that Addr always performs global WBs

and INVs, while Addr+L only performs them if producer and consumer are in different blocks. Figure 2.10

compares these counts for Addr and Addr+L for our applications. The bars are normalized to the values for

Addr.

Only Jacobi and CG take advantage of level-adaptive instructions (Addr+L bars). In Jacobi, Addr+L

reduces the number of global WBs and INVs to one third of the number in Addr. This shows the impact of

WB CONS and INV PROD. In CG, as explained in Section 2.3.2, we use INV PROD but not WB CONS.

Hence, Addr+L only reduces the number of global INVs, not WBs. The number of global INVs remaining

is 78% of the number in Addr. With these level-adaptive instructions, we reduce network traffic and miss
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stall time.

However, EP and IS show no impact. In these applications, the major data communication pattern is

reductions. Since a reduction does not have ordering, it is not possible to know the producer-consumer

order. Thus, level-adaptive WB and INV cannot help. To exploit local communication, one could re-write

the code to have hierarchical reductions, which reduce first inside the block and then globally.

Figure 2.11 compares the performance of Base, Addr, and Addr+L for the applications. The bars are

normalized to Base, which always performs WB ALL to L3 and INV ALL to L2. We see that, in Jacobi,

knowing which addresses to WB and INV pays off (Addr). The remaining WBs and INVs are relatively

few and, therefore, making some of them local with Addr+L has only a modest further impact. Overall, the

execution time of Addr+L is 36% of Base. In CG, Addr+L has a significant impact. Its reduction in global

INVs attains an execution speed-up of 15% over Base. EP and IS do not show gains.

Overall, we conclude that level-adaptive WB and INV can speed-up codes by transforming some global

operations into local. Their impact is a function of the contribution of the global operations to the execution

time to start with. On average for our applications, Addr+L reduces the execution time by 5% over Addr

and by 20% over Base.
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Figure 2.11: Normalized execution time of the applications.
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Chapter 3

Evaluating Scratchpads in Traleika Glacier

Exascale system design brings many challenges in all disciplines. An unprecedented large problem size

and system size require keeping scalability in mind throughout all design phases. Requirements for both

performance and energy efficiency lead to fundamental rethinking from the ground up. Hardware needs to be

re-examined from every aspect; and software needs many changes for maximum concurrency and minimum

data movement. As a result, the Traleika Glacier (TG) project (X-Stack) [31] adopts near-threshold voltage

for energy efficiency, narrow-issue simpler core design, dataflow-like parallel programming language, and

explicit control over data movement.

Complicated requirements of exascale system drive us in two directions. First, HW/SW co-design is

needed. Second, multi-scale analysis is required. While system level scalability can be explored with

new software infrastructure on currently available large systems, fine-grained analysis complements it with

detailed analysis of unit performance and energy efficiency on the target hardware. Our focus of evaluation

is on fine-grained analysis with simulation of the target hardware architecture.

For HW/SW co-design and fine-grained evaluation, architectural simulation is key. Simulation enables

design space exploration. On the hardware side, many parameters such as issue width, register file size,

on-chip memory capacity, and network configuration can be configured. Simulation provides easy ways

to evaluate the effect of parameter changes or architectural changes without actual hardware implementa-

tion. Software also gets benefits by running a full stack software on the simulator. Thus, software can be

implemented and evaluated before actual hardware implementation or FPGA prototyping.

In this chapter, we evaluate through simulations the TG chip using scratchpads only. Our simulations

include the whole system stack, which has been developed under the DOE X-Stack project. The software

stack includes a dataflow-inspired programming model where programmers break computations into event-

Driven Tasks (EDTs) that use datablocks (DBs), a runtime system that schedules such tasks called open

community runtime (OCR), and an llvm-based compiler.
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Our key observation from the evaluation is the following:

• In an architecture with as much on-chip parallelism as TG, it is important to schedule the event-driven

tasks(EDTs) for parallelism, so that individual EDTs execute as soon as possible, subject to the data

dependencies of the program. Typically, at any given time, there are many idle XEs that can be

utilized.

• Given the cluster-based, hierarchical organization of on-chip memory modules, it is key to ensure that

the datablocks (DBs) are close to the EDTs that use them. This means that we need DB allocation

and migration for locality. Moreover, when the DB is not needed anymore, de-allocation to free-up

space for other DBs is beneficial.

• Intelligent DB allocation is a requirement not just to attain good performance; it is a requirement for

energy savings. It makes a big difference in energy consumption whether or not the DB and its EDT

are located close by.

• It is hard to manually perform EDT scheduling for parallelism and DB management for locality. The

programmer has to understand the code well. It is still an open problem regarding whether or not

these operations can be effectively performed automatically.

• The system evaluated still has certain overheads and inefficiencies that need to be improved in future

versions. In particular, launching and migrating EDTs is slow. In addition, some of the statistics do

not provide correct insights due to the limitation of the current simulator.

In this chapter, we introduce key features of our target platform used in the X-Stack project in Sec-

tion 3.1. Benchmark kernel programs are explained in Section 3.2, and detailed performance/energy ef-

ficiency evaluation follows in Section 3.3. We also discuss the limitation of current studies regarding the

existing simulator framework. We conclude with our suggestion for future directions of exascale research

platform in Section 3.4.
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3.1 Background for XStack

3.1.1 Hardware architecture

The TG project borrowed its processor design from a previous research prototype processor architecture

used in the UHPC program [1]. The processor architecture is not user friendly but focused on providing

potential energy efficiency. The compiler or runtime is expected to orchestrate data movement to minimize

energy consumption. The architecture is also introduced as codename ’Runnemede’ [14].

Hardware architecture of Runnemede has the following features:

First, Runnemede has a many-core architecture with two different types of cores. The Control Engine

(CE) runs task-based execution runtime, which provides OS functionality (scheduling, memory manage-

ment). The Execution Engine (XE) runs tasks of user applications. The CE schedules an executable task on

an available XE, and the XE runs the scheduled task until the completion of the task. These two types of

cores are optimized for different goals. The CE is a full-featured core to handle OS and run legacy codes of

the standard library while the XE is geared to low-power processor using RISC instruction set, FP-specific

ISA, large register files, simple pipeline, and no interrupt handling.

Second, Runnemede has hierarchical structure. A single CE controls scheduling of multiple XEs. One

CE and multiple XEs, for instance 8 XEs, establish a block. A block has block-shared memory, and network

interface to other components in the chip. A unit consists of multiple blocks with unit shared memory and

another network interface. A chip consists of multiple units with chip shared memory. This hierarchical

structure allows designers to make a many-core chip easily using a core/block as a building block.

Third, Runnemede has scratchpad memories at every level of hierarchy as shown in Figure 3.1. Ex-

ploiting data locality of each level of hierarchy greatly contributes to minimum data movement and energy

efficiency. While Runnemede architecture also has incoherent caches, the original Runnemede architecture

uses scratchpad memory as main components of memory hierarchy. The current simulator lacks support for

L1 incoherent caches; our evaluation in this chapter precludes L1 caches.

3.1.2 Software Platform

Open Community Runtime (OCR) [2] runs on the Runnemede processor and controls concurrency of user

applications. OCR defines a dataflow-like programming model, provides low-level APIs to programmers

30



ALU 

RF 

L1$ L1S 

L2$ L2S 

LL$ LLS 

IPM 

DDR 

NVM 

DDR 

NVM 

Disk 
Pool 

O
(1

0
) 

O
(1

0
0

) 

O
(1

) 

O
(1

0
) 

O
(1

0
0

0
) 

O
(1

) 

C
o

res p
er b

lo
ck 

B
lo

cks w
/ sh

ared
 L2

 p
er d

ie
 

D
ies w

/ sh
ared

 LL$
/SP

A
D

 p
er so

cket 

B
o

ard
s w

/ lim
ited

 D
D

R
+N

V
M

 p
er C

h
assis 

C
h

assis w
/ large D

D
R

+N
V

M
 p

er Exa-m
ach

in
e

 

M
ach

in
es + D

isk arrays 

O
(1

) 

So
ckets w

/ IP
M

 p
er B

o
ard

 

U
n

it
s 

/ 
Q

u
a

n
ti

ty
 

Figure 3.1: Hierarchical memory configuration (borrowed from the final report of [31]).

or compilers, and manages user applications and system resources for parallelism, data locality, resource

management, resiliency, and energy efficiency.

In the OCR parallel programming paradigm, user applications consist of event-driven tasks (EDTs) and

events between EDTs. An EDT is a portion of code that needs to be executed sequentially. Different EDTs

can be run in parallel when there is no dependence between them. EDTs communicate with each other

using a datablock (DB). A DB is a fixed-size contiguous memory, which is a unit for memory allocation/de-

allocation/communication. When a DB is passed to another consumer EDT, the globally unique identifier

(GUID) of the DB is passed.

An EDT has pre-slots for starting its execution and post-slots for notifying its completion to other EDTs.

When all DBs in pre-slots are available, and events in pre-slots are satisfied, then the EDT is ready to be

scheduled. The EDT releases DB and satisfies events to inform the next EDTs. Dependencies between

EDTs are described by the programmer or compiler, and the OCR runtime is responsible for the scheduling

of EDTs. Programming concepts and examples are shown in Figure 3.2. The above example is for producer-

consumer, and the second example is for spawning two EDTs after the completion of the first EDT.
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Figure 3.2: OCR dependency examples (borrowed from [31]).

On Runnemede architecture, OCR runs on CE. CE schedules ready-to-be-scheduled EDTs on available

XEs. On the completion of the EDT, XE signals to CE. Then, CE tries to schedule a new EDT if there is

an available EDT in the queue. During the execution of the EDT on XEs, the EDT can call the runtime for

system functions.

Major differences from conventional parallel programs are two-fold. First, the OCR programming

paradigm provides point-to-point synchronization. Data dependencies and events for control dependencies

are knobs for point-to-point synchronization between EDTs. Compared with conventional synchronization

such as barriers, this synchronization mechanism can allow more concurrency and less load imbalance by

exposing more executable EDTs. Second, data are managed at DB granularity. Although one DB can be

read/written by multiple EDTs concurrently, racy accesses from different EDTs are prohibited. A well-

written program has a good partitioning of data into DB tiles, and DBs are associated with specific EDTs.

This relation can be exploited to minimize data movement. For instance, scheduling relevant EDTs on the

same XEs can benefit from data locality. Since memory allocation goes through memory hierarchy from

L1 scratchpad memory through its block memory to DRAM, scheduling a consumer EDT on the XE which
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Figure 3.3: FSim architecture model (borrowed from the final report of [31]).

executed the producer EDT is a good heuristic for data locality.

3.1.3 Simulator

A functional simulator (FSim) [19] is provided to evaluate exascale system architecture. FSim was first

developed under the UHPC program to provide a simulation environment for the system described in Sec-

tion 3.1.1. It is adopted by the TG project as an abstraction of the hardware layer. FSim is highly parallel

and scalable to accommodate many-cores as depicted in Figure 3.3, leading to reasonable evaluation time

for HW/SW co-development. Parallel speed-up is achieved by running multiple threads for a multi-core

block, and having multiple processes over multiple machines for multi-block configuration. While multi-

threaded processes communicates using shared memory, multiple processes communicate through sockets.

Next-level network interface (NLNI in Figure 3.3 connects processes, which is an equivalent component

to a network switch in an on-chip network. In this way, FSim is geared to today’s cluster systems with

multi-core processors.

Since the initial motivation of the simulator is to have a platform for quick design exploration and
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to enable SW development on evolving hardware specification, FSim did not have the requirements for a

detailed timing simulation. Instead, FSim models functionality behaviorally and provides images of system

components. For instance, the simulation agent for CE is implemented using QEMU [3], which is a machine

emulator, because functional emulation is sufficient to evaluate correctness of the SW stack. QEMU also

provides a good set of full system images, which enables CE to function as a general purpose core running

runtime software. The simulation agent for XE is based on a configurable processor model, which has

basic modeling for latency of functional units, dependency between instructions, and instruction-issuing

width. Shared memory (block shared memory, unit shared memory, chip shared memory), DRAM, and

networks are provided as rough functional models. They can be enhanced for detailed modeling since they

are provided as plug-ins.

While FSim provides scalable, reasonable simulation models for SW design, its support for the hardware

architect is relatively lacking. The first limitation is its timing model. As a timing model of the system,

a Lamport logical clock scheme [37] is applied. CE and XE increment their Lamport clocks at every

instruction execution, and communication between them is synchronized using the SYNC function. Since

receive is causally related to send, the message sent has an incremented Lamport clock value. At the

receiver, a new Lamport clock value is determined as the maximum of the local Lamport clock and the

received Lamport clock. Passive agents such as shared memories also update their local Lamport clocks

to preserve the causality of accessing memories from different agents. Figure 3.4 shows behavior of the

Lamport clock in FSim.

L i s l o c a l Lamport c l o c k .
M i s Lamport c l o c k v a l u e i n t h e message .

a g e n t s :
e x e c u t e : INC ( L )
send : M = INC ( L )
r e c e i v e : L = SYNC(M) = max ( L , M)

Figure 3.4: FSim Timing Synchronization.

While the Lamport clock preserves happens-before order between events of cores, the reliance of syn-

chronization solely on message communication leads to high variance of the resulting timestamp. FSim

does not have throttling of active agents; thus, the local Lamport clock of agents can differ significantly.

Under this circumstance, any direct/indirect communication between agents can incur clock warping for
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slowly-progressing agents. When a simulation thread for XE1 gets more processor time, or executed in-

structions on XE1 are simpler and quicker than those on XE2, then XE1 can have the bigger timestamp.

When XE2 accesses XE1 or any XE1’s touched agent, XE2’s Lamport clock must be synchronized with

the bigger value. This makes the current Lamport clock scheme inappropriate to be used as a performance

number. We reduce the variance and clock warping effect by eliminating unnecessary timestamp synchro-

nization between XE and CE and prohibiting clock warping through shared memory agents. While this new

scheme provides a good sense of proxy numbers, it still has limitations in accuracy; reported performance

numbers should be understood as proxy numbers and relative numbers between different configurations.

For energy estimations, FSim provides a dynamic capacitance model (Cdyn model). From a basic power

model, P = a fCV 2, the circuit activity factor a and the total switched capacitance C are variable while

the operating frequency f and the operating voltage V are fixed. Thus, dynamic capacitance calculation

focuses on aC, which is called Cdyn. Each instruction has its own capacitance number and activity factor,

which are results of an instruction fetch, use of functional units, memory accesses, etc. FSim gets the

configuration value of each component capacitance, and sums them up for total dynamic capacitance. The

resulting Cdyn is used for core power/energy calculation. Memory and network energy calculation is simpler

than core energy calculation. FSim counts activity numbers and they are multiplied by unit energy for

network/memory access.

3.2 Target Benchmark Program Study

We have used four kernel programs from OCR repository [4]: Cholesky, Smith-Waterman, FFT, and SAR.

These four programs show distinct characteristics in degree of parallelism, memory access patterns, and

data partitioning. The level of effort in programming also varies depending on programmers’ efforts and

understanding of OCR and TG architecture.

3.2.1 Cholesky

Cholesky is a decomposition method of a positive definite matrix into a product of a lower triangular matrix

and its conjugate transpose. The algorithm is iterative, and values produced in the previous iteration are used

in the current iteration. The algorithm has O(N3) complexity because it iterates N (the matrix size in one

dimension) times for matrix elements (N×N). The simplified sequential algorithm is written in Figure 3.5.
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f o r ( k = 0 ; k < N; k ++) {
A[ k ] [ k ] = s q r t (A[ k ] [ k ] ) ;

f o r ( j = k +1; j < N; j ++) {
A[ j ] [ k ] = A[ j ] [ k ] / A[ k ] [ k ] ;
f o r ( i = k +1; i < N; i ++) {

A[ i ] [ j ] = A[ i ] [ j ] − A[ i ] [ k ] * A[ j ] [ k ] ;
}

}
}

Figure 3.5: Cholesky algorithm.

The parallel version of Cholesky divides an entire input matrix into t× t tiles, where t (the number of

tiles in one dimension) is N (the matrix size in one dimension) divided by T (the tile size in one dimension).

An external program transforms an original matrix into a tiled lower triangular form, and the Cholesky

program starts from it.

The original sequential algorithm has three different tasks. In Computation A, it computes the square

root of the topmost element in each iteration. In Computation B, for the leftmost column, each element is

divided by the topmost element. Finally, in Computation C, for all other remaining elements, two elements

from the leftmost column are operated on. After tiling, each tile has a different task set depending on its

location. The topmost tiles need to have all three computations (Sequential EDT type), while the leftmost

column tile has computations B and C (Trisolve EDT type). The remaining tiles need to have computation

C only (Diagonal/non-diagonal EDT type). Thus, three different EDTs are used for the different types of

tiles.

Figure 3.6 shows three EDT types and their read set. An EDT for the current tile (blue) has dependencies

on EDTs for tiles being read (green). The top row shows the EDTs executed in iteration i; the second row

shows the EDTs executed in iteration i+1. In each iteration, there are three types of EDTs. The Sequential

EDT is the single tile in blue in the leftmost plot of each iteration. It needs to execute first. The Trisolve

Task EDTs are the blue tiles in the central plot of each iteration. They can only execute after the Sequential

Task EDT completes. Finally, the Update Non-Diagonal and Update Diagonal Task EDTs are the blue tiles

in the rightmost plot of each iteration. They can only execute after the Trisolve Task EDTs complete.

The total number of EDTs is calculated as follows:

The sum of tiles at iteration i is calculated as ∑
i
k=1 k.

For all iterations, it is ∑
t
k=1

k(k+1)
2 = 1

6 t3 + 1
2 t2 + 1

3 t.
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At iteration i 

At iteration i+1 

sequential trisolve Diagonal/non-diagonal Previous tile 

Current tile 

Figure 3.6: Dependencies between EDTs in Cholesky factorization over iterations.

For example, for tile number 10×10, the total number of EDTs is 220.

3.2.2 Smith-Waterman

Smith-Waterman is a DNA sequence alignment algorithm. The algorithm traverses an input data matrix

from the top-left element to the bottom-right element with diagonal steps due to data dependence on the

left element and the top element. In the parallel version, tiled data layout is used to avoid per-element

synchronization.

Figure 3.7 shows the dependence structure between EDTs. The EDT for a tile has dependencies on the

EDTs for the tiles in NW, W, N directions. In the figure, this is shown as the blue tile depending on the

three green tiles. In turn, the tile processed in the current EDT creates data that is used in the EDTs for the

tiles in the S, SE, E directions. This creates a wave-front style parallelism that leads to a maximum degree

of concurrency of N when N×N tiles are available. Figure 3.8 shows concurrent execution of EDTs and

scheduling with the conventional barrier synchronization.
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Figure 3.7: Dependence between EDTs in Smith-Waterman.
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XE0

time

XE1

XE2

XE3

Figure 3.8: Concurrent execution of EDTs with diagonal parallelization and its expected scheduling on XEs.

3.2.3 FFT

FFT implements the Fast Fourier Transform algorithm by Cooley-Tukey. In the parallel version, the algo-

rithm works in a divide-and-conquer style until each EDT gets the predefined minimum data size as depicted

in Figure 3.9. However, this version of FFT does not use data tiling, thus only one DB is created and shared

among all EDTs. This is a result of a direct translation from the sequential version of the program without

thinking of the communication volume and the hierarchical memory configuration of TG architecture.
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Figure 3.9: Dependence between EDTs in FFT.

3.2.4 SAR

SAR is a synthetic aperture radar algorithm, which is used to create images of an object, such as landscapes.

An antenna, typically mounted on a moving platform such as an aircraft, forms a synthetic aperture and

is used to capture multiple images. The application combines images from multiple antenna locations to

create a finer resolution image.

The SAR application has 5 distinct phases of fork-join style parallelism as shown in Figure 3.10. During

each phase, the application has a maximum concurrency of (Problem Size / Blocking Factor) tasks. The total

number of tasks created during the entire execution is approximately 5 × (Problem Size / Blocking Factor).

We experimented with a problem size of 64×64 pixels and a blocking factor of 32×32 pixels. Hence, we

expect a maximum of 4 concurrent tasks and a launching task at any point in the program. We can expect

low XE utilization with this concurrency level, and multi-block configuration suffers from this limitation

severely.

3.2.5 Comparison

Table 3.1 shows a comparison of the four kernels in terms of parallelism and memory access behavior.

Note that FFT has only a single DB allocated in mainEdt, which is a result of a direct translation from the

sequential version of the program. Other programs have tiled data and associated EDTs.
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worker 

Figure 3.10: Dependence between EDTs in SAR.

Kernel Parallelism Style Degree of Parallelism Number of Datablocks

Cholesky Variable over time (decreasing) max. t(t−1)
2

t(t+1)
2

Smith-Waterman Variable over time t t2

(increasing in first half,
decreasing in second half)

FFT Variable over time 2n/minimumprocessingsize 1
(divide-and-conquer and merge)

SAR Fork-join style t2 t2

Table 3.1: Comparison of kernel programs (N is the problem size in one dimension, T is the tile size in one
dimension, and t is N/T, which is the number of tiles in one dimension.)

3.3 Evaluation

We measure the execution time in number of simulation cycles, and energy consumption in FSim. While

we try to take all four applications for the evaluation, Cholesky is extensively used to see effects of varying

parameters since it is a well-written parallel program with proper tiling. We use 64KB L1 scratchpad,

1.25MB L2 block shared memory, and DRAM for memory allocation. These three levels are the maximum

level that the current version of OCR memory allocator supports.

3.3.1 Performance Scaling

Figure 3.11 shows the execution time for different numbers of blocks and XEs per block, normalized to

the execution time of the configuration with one block and one XE per block (b1x1). We use the b1x1

configuration as a baseline, which executes the EDTs sequentially.

Cholesky shows good performance scaling with more XEs up to b2x8 (two blocks with eight XEs each).

Adding more XEs does not improve the performance for this problem size. Adding more blocks provides
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Figure 3.11: Normalized execution time of the applications.

more computation resources, but it also increases the latency of memory accesses if inter-block accesses are

required. All runs use a tiled version of Cholesky with data size 500 and tile size 50. If we used a non-tiled

version for the baseline, the baseline performance would be worse because the single data block would be

allocated in the main memory, rather than on the block memories.

Smith-Waterman is run with data size 3200 and tile size 100. It shows performance improvement up to

b2x8. FFT is run with problem size 18. It shows performance improvement until b1x8. More than 8 XEs

do not help the performance much. SAR runs with the tiny problem size, and executes a 64×64 image size

with 32×32 tile size. It shows meaningful speedups until b1x8. The limitation of parallel speedup comes

from the limited concurrency level of the problem size.

3.3.2 Energy Consumption

Figure 3.12 shows the breakdown of the energy consumption with varying numbers of blocks and XEs

per block. The bars are normalized to the one XE configuration (b1x1). We use the same problem sizes

and configurations as in the previous section. Our basic expectation is that the energy consumption is

approximately constant as we increase the number of XEs because the work done is similar (except for

some overhead of parallelization and OCR). However, it is also possible that, with more blocks, the energy

consumption decreases. This is because we have more block memory (BSM) to allocate DBs, which is
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Figure 3.12: Energy consumption breakdown of the applications.

cheaper to access than DRAM memory.

From the figure, we see that DRAM energy consumption dominates in Cholesky, Smith-Waterman and

FFT. This is because accesses to DRAM are very costly in energy. With a single block, the data size used

in the programs is larger than the block memory size (1.25MB). Thus, even with tiling, not all DBs are

located in on-chip memory; about half of them are allocated in DRAM. As we move to the b2x8 configu-

ration, both Cholesky and Smith-Waterman show energy reduction. This is because of the increased block

memory. More DBs are allocated in the block memories, and the number of DRAM accesses decreases.

Unfortunately, FFT has a single DB, and it is large enough to be allocated in DRAM. Thus, most accesses

go to DRAM. FFT shows the necessity of DB tiling. SAR is a more computation-intensive kernel, and its

small problem size is absorbed by the block memory.

In general, with more XEs, the DRAM energy and network energy have a tendency to increase. This is

because the scratchpad memory is used by both the program and OCR. The memory usage of OCR increases

with more cores.
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3.3.3 Effect of the Granularity of Parallelism

Varying the tile size results in two effects: changing the number of concurrent EDTs and the location of

the memory allocation. Smaller tile sizes enable more concurrent EDTs; however, more EDTs/DBs can

incur more storage overhead for OCR internal data structures. Larger tile sizes have trade-offs between

parallelism and EDT overhead.

To see the effect of tiling, we use Cholesky with a matrix size of 500 and vary the number of tiles by

changing the tile size from 25 to 250. The results are shown in Figure 3.13, normalized to b1x1 and tile size

of 50. With bigger tiles, the parallelism is lower and, therefore, execution time is higher. With smaller tiles,

we have more tiles and more parallelism. This reduces the execution time. In the case of tile size 25, we see

speed-ups until the b4x8 configuration. However, for tile size 50, the execution time does not decrease after

b2x8 because of EDT overhead.
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Figure 3.13: Normalized execution time with different tile sizes.

Going from tile size 50 to tile size 100, we reduce the total number of computing EDTs from 220 to 35.

With tile size 100, the performance of b1x1 is better than the case of tile size 50 because of less overhead

of EDTs. However, tile size 100 has lower scalability. Increasing the number of XEs hits scalability limits

earlier than with tile size 25 or 50. In the case of tile size 250, there is no parallelism because all EDTs
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processing tiles have a dependence chain. Therefore, increasing the number of XEs is useless.

Figure 3.14 shows the energy consumption with varying tile size. Tile size 100 shows the lowest energy

due to less complexity of EDT relations. For smaller tile sizes, the memory allocation of more events and

OCR data structures reduces the size of the block memory for the application.
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Figure 3.14: Normalized energy consumption breakdown with different tile sizes.

3.3.4 Scheduling EDTs for Parallelism

To see the impact of scheduling EDTs for parallelism, we consider Cholesky with the b1x4 configuration.

In Figure 3.6, we showed the dependence between EDTs in Cholesky. With traditional barrier-based par-

allelization, iterations must be separated by barriers. Thus, all the EDTs in iteration i must be completed

before any EDTs in iteration i+1 execute.

With OCR, EDTs from different iterations can be executed concurrently if there is no dependence re-

maining for the EDT. OCR tracks dependence between EDTs at finer-granularity. In Cholesky, the EDT of

a tile in iteration i+1 does not need to wait for the EDTs of all the tiles in iteration i to complete. Instead,

a tile in iteration i+1 can be processed as soon as all those it depends on (in iterations i and i+1) complete.

This is what OCR enables in a manner that is transparent to the programmer. With OCR, we can overlap

EDTs from different iterations, as long as the dependence between individual tiles are respected.

Figure 3.15 shows a timeline of the EDT scheduling observed during execution. The figure shows
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which EDT is executing on each XE. The color code is as follows: the first gray block is the MainEDT,

which creates all other EDTs, and sets dependence between them. Green blocks are Sequential Task EDTs,

blue blocks are Trisolve Task EDTs, red blocks are Update Non-Diagonal Task EDTs, and purple blocks

are Update Diagonal Task EDTs.
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Figure 3.15: EDT scheduling timeline of Cholesky.

Figure 3.15 shows that EDTs do not wait for all the EDTs from the previous iteration to complete. In

the figure, EDT A is an Update Non-Diagonal EDT from iteration 1, and EDT B, is a Sequential EDT in

iteration 2. These two EDTs do not have any data dependence, even though they are in different iterations.

Consequently, under OCR, they execute concurrently. The same occurs between independent EDTs in a

single iteration. For example, EDT C is a Trisolve EDT from iteration 2 and EDT D is an Update Diagonal

EDT from iteration 2. They happen not to have data dependence, and so OCR executes them concurrently.

The result is more concurrency than under traditional barrier-based parallelization.
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Figure 3.16: EDT scheduling timeline of Smith-Waterman.

Figure 3.16 shows a timeline of Smith-Waterman for 4x4 tiles running on 1 block with 4 XEs. We see

that the execution is much more concurrent, and more XEs are busy on average. With global barriers, as

in Figure 3.8, only tiles of the same color can run in parallel. In Figure 3.16, orange EDTs start execution

before all the purple ones finish. Also, pink EDTs extend the time for which 4 XEs are running. With more

overlapped execution, OCR enables better exploitation of fined-grained parallelism. The only effect that

limits the concurrency is the true dependence between the EDTs.

Given this environment, we tried to improve the performance by using the hint framework, which sched-

ules EDTs close to the memory module where the corresponding DBs are allocated. Programmers can give

hints for scheduling, e.g. giving preference to the location of the DB in the first member in the dependence

list. The effect of this hint-based scheduling should be reduced latency and energy; however, we did not

find any noticeable benefits of using the hint framework. We observed that when all the XEs are busy,

the scheduler chooses an available XE regardless of the hint. Moreover, when DBs are allocated in the

DRAM, the EDT always needs to access DRAM, irrespective of where it is scheduled. Finally, it is hard for

programmers to add hints for an EDT with multiple dependencies.
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3.3.5 Multi-level Memory Allocation

In this section, we show the impact of managing the allocation and de-allocation of DBs for data locality.

Exploiting locality leads to reduced memory access latency, and reduced energy in memory and the network.

To illustrate this optimization, we apply it to Cholesky.

Cholesky has three distinct DB allocation places in the code (via ocrDbCreate). Initially, it allocates

DBs for input data. During execution, both sequential EDTs and trisolve EDTs allocate DBs. The problem

size considered is 500 with tile size 50, and we run it on a b1x4 configuration. In this case, the program

requires more storage than the capacity of the L2 memory in the block (i.e., the BSM memory). Thus, after

the BSM is filled with DBs, all subsequent DB allocation goes to DRAM. Figure 3.17 shows DB allocation

result of b1x4 execution with data size 500 and tile size 50. The figure only shows DB allocation results

of sequential EDT and trisolve EDT. Red block means DB is allocated in DRAM. All DBs are allocated in

DRAM in this execution.
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Figure 3.17: DataBlock allocation with the default policy.
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Figure 3.18: DataBlock allocation with active de-allocation policy.

With smarter management of on-chip memories, we can reduce DRAM accesses by allocating more

DBs in BSM. It requires securing more capacity in BSM by moving previously-used DBs to higher level

of memories (towards DRAM), or freeing previously-used DBs from BSM. The former is DB migration;

the latter is DB de-allocation. DB migration is not implemented yet in OCR, thus our evaluation is for DB

de-allocation.

De-allocation requires careful analysis of future reference to the DB. Otherwise, de-allocation is not

complete due to future reference, or it makes loss of useful DBs. For programs which have temporary storage

for the current EDT, DB de-allocation is easy. We only have to insert ocrDbDestroy at the end of the EDT.

For programs which have regular one-to-one communication patterns, instrumentation is also easy because

we know producer-consumer pairs easily, and the consumer can determine disposal of DBs. For example,

Smith-Waterman creates temporary DBs for computation, and also creates DBs for communication. The

DB for temporary use is destroyed by the EDT itself and the DBs for communication are destroyed by the

consumer after use.

Cholesky has more complicated producer-consumer pairs, and it shows a 1:N producer-consumer rela-

tion. We instrument Cholesky for DB de-allocation carefully with perfect knowledge of DB use, and see

the effect of DB de-allocation. Figure 3.18 shows where a new DB is allocated after de-allocation. Blue

blocks show BSM-allocated DBs while red blocks still show DRAM allocation. Although more DBs are
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Figure 3.19: Memory access breakdown with different policies.

de-allocated from BSM, only half of newly-created DBs are allocated in BSM. This is due to OCR behavior

of allocation. OCR shares the same memory allocator as the application. After the application de-allocates

the DB, the freed region is also open to OCR. Another half of freed regions are reused by OCR, unexpect-

edly. For more intuitive results of memory de-allocation, memory allocation space for OCR needs to be

separated from the memory space for the application.

0

0.2

0.4

0.6

0.8

1

1.2

b1x1 b1x4 b1x8 b2x8 b4x8 b8x8

baseline

w/ de-allocation

Figure 3.20: Performance improvement of data block de-allocation.
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Figure 3.21: Energy improvement of data block de-allocation.

As a result of memory allocation in BSM after de-allocation, memory access breakdown in Figure 3.19

shows more accesses to BSM. The figure shows where remote memory requests are serviced from. Com-

pared to the baseline without DB de-allocation, the new version shows more accesses to BSM, and reduces

DRAM accesses. This, in turn, results in performance improvement in Figure 3.20, and energy improvement

in Figure 3.21.

3.3.6 Estimation of Errors in Performance Simulation

We show performance numbers not as an absolute performance number, but as a proxy number for relative

comparison. Lamport clock scheme inherently shows inflated time, which is considered upper bound of ex-

ecution time (lower bound of the performance). We try to minimize errors of Lamport clock by eliminating

sources of big timestamp warp. The applied methods include elimination of CE timestamp increment, no

timestamp increment at busy-waiting, and no timestamp synchronization through shared memory agents.

To see how much error the simulator can have, we compare EDT execution results. While execution

time is determined by many parameters, including memory access latency and CE response time, we sim-

plify conditions to homogeneous EDT execution, mostly single source of DB location, and no complicated

dependency graph. With these constraints, we compare the results of Smith-waterman with single block
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execution. A very aggressive assumption about the variation of the EDT execution time is that other than

the shortest execution time of the EDT is due to timing inflation of Lamport clock scheme, thus, an error

of the simulator. From this assumption, the average execution time of EDTs on XEs has the error rate

in Figure 3.22. The value 1.1 means maximum 10% error of Lamport clock scheme can exist compared to

minimum execution time of the EDT on the XE. Average is weighted average considering different numbers

of scheduled EDTs on XEs. The plot shows less-than-10% errors.
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Figure 3.22: Error estimation in performance numbers.

Multi-block simulation is also similar to the previous result. But it has a hard-to-control parameter, DB

location. EDT execution time varies with DB allocation places due to different memory access latencies.

Multi-block configuration introduces BSM capacity, and there are variations between an EDT accessing

BSM and an EDT accessing DRAM. For the EDT with the same DB location, the result is similar to the

single block simulation result in Figure 3.22.

Note that our parallel speedup effect is under-estimated due to Lamport clock scheme. Adding more

blocks may increase communication between blocks, leading to more timing synchronization between

blocks. Since timing synchronization chooses bigger number of the timestamp, the execution time is over-

estimated; parallel speedup is under-estimated.
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3.4 Future Directions

Future work needs to focus on the following directions:

• First and foremost, we need to improve the efficiency of the OCR implementation on FSim. It is

not possible to extract conclusions on the recommended size of EDTs in TG or the recommended

frequency of DB migration in TG unless the system is reasonably tuned. We hope to see improvements

over the next few months. Specifically, EDT launch and migration, and DB allocation and migration,

need to be supported with low overhead. Similarly, the procedure to gather some statistics, such as

the execution time, needs to be improved.

• It is also important to show that effective EDT scheduling for parallelism and DB management for

locality can be done automatically.

• The FSim simulator needs to be extended to support Incoherent Caches, so that a meaningful evalua-

tion of incoherent caches versus scratchpads can be performed in the context of TG.
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Chapter 4

Related Work

Our work is based on Runnemede [14] as a baseline architecture. Runnemede has a multi-level scratchpad

hierarchy with the option of implementing it with caches. Other closely related works are Rigel [33] and its

successor Cohesion [34]. Rigel is a many-core accelerator architecture without hardware cache coherence.

Cohesion adds support for bridging hardware cache coherence and software cache coherence. Programmers

can choose the coherence scheme based on the characteristics of the application or program phase. Rigel

and Cohesion with software cache coherence have similarities to ours in that they use incoherent caches,

and writeback and invalidation operations to maintain coherence. We have two major improvements over

these past works.

First, we define the ordering constraints of the INV and WB instructions. By doing so, we enable the

use of these instructions in out-of-order cores correctly and more efficiently. Second, we provide simple

yet effective approaches to program incoherent caches both within a block and across blocks. While Rigel

and Cohesion have multiple levels of on-chip caches, they do not provide mechanisms for multi-level soft-

ware cache coherence. INV and WB instructions work between the private L1 cache and the block-shared

L2 cache. For inter-block communication, programmers need to use global memory access instructions

manually. Moreover, communication occurs through the last-level global cache regardless of the current

thread mapping. This inefficiency was justified with their accelerator workloads, which do not have much

inter-block communication. However, exploiting block locality is required for more efficient use of memory

hierarchy for general parallel programs.

In the remainder of this chapter, we summarize other related works in comparison to ours from software-

only approaches to self-invalidation based hardware protocols. We also cover coarse-grained dataflow exe-

cution models as related works to the OCR model.
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4.1 Software Cache Coherence

Our work in Chapter A started from reassessing early works in software cache coherence. Prior studies

have developed compiler analysis techniques to generate cache coherence instructions for software managed

caches. The compiler work in the appendix distinguishes itself from prior works both by being more general

as well as more precise, as explained below.

Cheong et al. [16] use a data flow analysis to classify every reference to shared memory either as a

memory-read or a cache-read. A read reference is marked as a memory-read if the compiler determines

that the cache resident copy of the data has possibility of being stale, otherwise the reference is marked

as cache-read. Invalidation is done selectively on memory-read to avoid indiscriminate invalidation of the

entire cache. A limitation of the approach is that the data flow analysis is carried out at the granularity of

arrays which may cause invalidations for an entire array even if two processors are accessing distinct parts

of it.

Another work of Cheong et al. adapts version control scheme to coherence management. The cache

maintains version number of variables and the compiler provides information about what version is valid

for the use. This scheme exploits temporal locality across epochs.

Choi et al. [18] propose to improve inter-task locality in software managed caches by using additional

hardware support: an epoch number is maintained at runtime using a system-wide epoch counter and each

cache word is associated with a time-tag which records the epoch number in which the cache copy is created.

Then they develop an epoch flow graph technique to establish conditions under which it can be guaranteed

that the cached copy of a variable is not stale. This scheme improves Cheong’s version control scheme by

having a global epoch number, but the analysis here too treats an entire array as a single variable.

Darnell et al. [20] perform array subscript analysis to gather more accurate data dependence information

and then aggregate cache coherence operations on a number of array elements to form vector operations.

This method however can handle only simple array subscripts: only loop iterators are allowed as subscripts.

OBoyle et al. [39] develop techniques to identify data for Distributed Invalidation (DI) for affine loops

that are run on distributed shared memory architectures. The DI scheme uses a directory to maintain coher-

ence, and where possible it seeks to eliminate invalidation messages from the directory to remote copies and

associated acknowledgments. Their analysis to minimize invalidation messages has similarities to our anal-

ysis for minimizing invalidations. But the coherence equations in DI place some restrictions on the kinds
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of affine loops that can be analyzed: for example, conditional execution within the loop is disallowed, and

increments of loop iterators must be unity. The approach presented in this paper efficiently handles arbitrary

affine loops including those whose iterator values are lexicographically decreasing, that have a non-unit

trip-count, or have a modulus operator etc., and conditionals are permitted. The DI work does not involve

writebacks, which however are a part of our software cache coherence model, and we develop techniques to

optimize writebacks as well. We also optimize irregular codes using an inspector-executor approach, while

such codes are not optimized in the DI scheme.

Kontothanassis et al. [36] narrows the performance gap between hardware and software coherence in

large systems using memory-mapped network interfaces that support a global physical address space. They

showed very effective program modification techniques for performance. The four techniques used are 1)

separation of synchronization variables, 2) data structure alignment and padding, 3) identification of reader-

writer locks, 4) remote reference to avoid coherence management of fine grained shared data. Although

some of these schemes are helpful to our target applications, we did not use the code modification suggested

in their paper. Our goal is to provide hardware/software support without changing the synchronization or

data layout appeared in the original codes.

Distributed shared memory (DSM) provides a shared global address space for physically distributed

memory systems. TreadMarks [5] is a DSM system running on commercially available workstations and

operating systems. The main focus of TreadMarks is to reduce network traffic. It uses lazy release consis-

tency, which allows write propagation to be postponed until the next acquire. It allows multiple writers to the

same page as long as different variables are written, reducing impacts of false sharing. Shasta [46] modifies

the executable and adds checks for shared data availability in the local machine. If a required block is not

available in the local machine, it asks the home node of the block. By emulating hardware cache coherence

if required in the code, Shasta provides coherent memory image. Munin [13] supports multiple consistency

protocols, which allow the programmer to choose the best protocol for the access pattern. Munin also allows

multiple writers similar to TreadMarks.

DSM has similarities to ours in that it provides coherent memory images without direct hardware support

for cache coherence. However, DSM usually chooses a coarse-grained granularity, such as a page, because

the communication occurs between machines/clusters. Our solution provides variable granularity from a

word to the entire cache because we target data sharing in many-core processor chip.
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4.2 Self-Invalidation-based Hardware Coherence Protocol

Self-invalidation has been a popular approach to simplify the coherence protocol or to get software assis-

tance. We summarize previous works and show the difference to our work.

Selective invalidation using bloom filters [7] reduces unnecessary self-invalidation. At each epoch, each

core accumulates the addresses written using bloom filters. The generated signature of the written addresses

is transferred with a synchronization release. A new synchronization acquirer self-invalidates its private

cache using the signature received. While this work takes advantage of selective invalidation, it incurs a

large overhead in lock-intensive programs. Specifically, this scheme invalidates entries in the L1 cache only

after the lock is acquired. As a result, it increases the time duration of the critical section. This, in turn,

affects all the other lock waiters. In our proposal in section 2.2.2, we provide the MEB/IEB structures to

isolate critical sections from other epochs. The required invalidations and writebacks are few, and limited

to addresses actually used in the critical section.

SARC coherence [32] improves directory-based coherence protocol by reducing overheads of the di-

rectory. First, it exploits tear-off read-only (TRO) copies when a cached copy is used immediately and will

not be used again. TRO copies of data are self-invalidated after the use, leading to reduction of invalidation

traffic. Second, it uses writer prediction to reduce indirect accesses through home directory. While SARC

coherence reduces overheads of the current directory protocol, it does not reduce hardware complexity. It

bases on data-race-free programs with proper synchronization, and becomes bases of VIPS protocols below.

The VIPS-M protocol [45] employs self-invalidation and self-downgrade with a delayed write-through

scheme. The protocol relies on private and shared page classification. Cache lines in shared pages are self-

invalidated at synchronization, and are self-downgraded using delayed write-through, which is associated

with MSHR entries. Our work differs in that we use writeback L1 caches, and try to minimize unnecessary

self-invalidation using MEB/IEB. If lock synchronization is used only for communication between criti-

cal sections (non for communication outside critical sections), the invalidation of the whole L1 cache at

synchronization points is wasteful. Our proposals support this scenario well.

DeNovo [17] tries to simplify the hardware cache coherence protocol by using programming-model or

language-level restrictions for shared memory accesses (e.g., determinism and data-race freedom). Data-

race-freedom implies no concurrent writer to the cached data, and self-invalidation at next phase guarantees

no stale copy is read. The benefit of DeNovo’s approach is the simpler coherence protocol for design and

56



verification. It also reduces chip area by only registering writers instead of tracking all sharers. DeN-

ovoND [49] extends the programming model to non-deterministic applications using lock synchronization.

Access signature is made by tracking writes in the critical section, and it is used for self-invalidation by lock

acquirer. DeNovoSync [48] extends its coverage to arbitrary synchronization, by registering synchroniza-

tion reads. Our work seeks solutions without assumptions of the perfectly correct program. Since it is hard

to guarantee complete data-race-freedom of very long legacy parallel codes, we just require programmers to

identify benign data races and, if required, simply instrument them. Although we do not advocate programs

with data races, we do not prohibit programs with data races.

TSO-CC [23] proposes a self-invalidation based coherence protocol for the TSO memory model. The

TSO memory model guarantees write propagation in program order, and synchronization is written with

that property. TSO-CC exploits the property in a lazy manner in that write propagation is guaranteed at the

time synchronization variable is read rather than at the point of write. The protocol uses self-invalidation

for shared lines after pre-defined number of read accesses. If newly read line is written from other cores,

which means there is an update to the cache content of the local core, then self-invalidation for all shared

cache lines is executed. This protocol eliminates sharer tracking and reduces write-initiated invalidation

overheads. However, it introduces complicated hardware logic such as timestamp handling to reduce the

range of self-invalidation.

There are two notable self-invalidation based coherence protocols for GPUs.

Temporal coherence [47] proposes a timestamp-based coherence protocol for GPU. It uses a chip-wide

synchronized counter, and the timestamp is used to determine when to self-invalidate. Hardware predictor

gives data with a predicted lifetime. At the predicted lifetime, the data are self-invalidated to eliminate

invalidation traffic. The efficiency relies on the accuracy of the hardware predictor. Simple prediction

scheme works well with highly regular characteristics of GPU kernels.

QuickRelease [29] improves the performance of release consistency on GPU. With fine-grained syn-

chronization, release stall is a bottleneck to the performance. QuickRelease has a FIFO structure for storing

written addresses to complete release operations quickly. When a release operation is enqueued to the FIFO,

cache contents of written addresses registered in the FIFO are all flushed to the higher level memory. This

scheme has similarities to MEB design in two aspects. First, it keeps an approximate list of written ad-

dresses. Second, the addresses in the FIFO are used for completing release operation. Major difference
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from ours is that our proposal uses IEB to reduce invalidation range as well as eliminating invalidation re-

quests. Combination of MEB/IEB separates coherence management of the critical section from other code

sections and it reduces programmers’ effort. QuickRelease uses invalidation broadcast. Its focus is to reduce

cache look-up for the release and shorten time for the release.

Note also that, although these works show ways of implementing simpler coherence protocols using

self-invalidation, they are fundamentally limited to a two-level cache hierarchy.

Concurrently with our work, Ros et al. [44] have extended self-invalidation protocols to hierarchical

cluster architectures. Their work uses the hierarchical sharing status of pages to determine the level of self-

invalidation. While using dynamic page-sharing information enables hierarchical coherence protocols, it

complicates page management. In contrast, our work uses information extracted from the program statically,

instead of dynamic information, in order to infer the target of inter-thread communication.

4.3 Coarse-grained data flow execution

The execution model of OCR is inspired by dataflow model. Dataflow model represents a program as a

directed graph of data movement. The execution is driven by the availability of operands. Its static form

was first proposed by Jack Dennis [22]. Static dataflow allows only one data token on the arc of graph.It

was later extended to dynamic dataflow [6], which allows multiple data tokens on the arc of the dataflow

and supports function calls. Dynamic dataflow exploits fine-grained parallelism; however, it suffers from

overheads of associative token matching and lack of locality.

Hybrid dataflow models were introduced to reduce fine-grain synchronization costs and improve locality

in dataflow model. They were implemented by combining dataflow actors into larger sequential code blocks

for more locality and by having dataflow-like synchronization between threads. EARTH [50] supports

an adaptive event-driven multi-threaded execution model. It has two thread levels: fibers and threaded

procedures. Fibers are fine-grain threads communicating through dataflow-like synchronization. While

instructions inside a fiber follows sequential execution semantics, fibers are scheduled based on data and

control dependence. Threaded procedures enclose fibers, and all fibers in a threaded procedure share the

local variables and input parameters. In Hybrid Technology Multi-Threaded (HTMT) program execution

model [27], code is divided into many fine-grained threads. Threads are scheduled according to not only

data and control dependencies but also locality requirements. HTMT extends the dataflow model with
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consideration of different latencies from memory hierarchy levels.

The reincarnation of dataflow in exascale era stems from both hardware and software reasons. Using

near-threshold voltage computation for energy efficiency reasons increases process variation, leading to

performance variation between cores even in a chip. Software also suffers from load imbalance due to non-

uniform data distribution and irregular memory accesses. These lead to a programming model with dynamic

load balancing.

The execution model of OCR is runtime-managed codelets. Codelet execution model [54] consists of

small sized codes, called codelets, and dependencies between codelets. A codelet is a non-pre-emptable se-

quence of instructions. A runtime manages dependencies between codelets and scheduling of codelets onto

processing elements. Scheduling always finds available processing elements for a codelet, achieving dy-

namic load balancing. In OCR implementation, an EDT corresponds to a codelet, and an event corresponds

to a dependency between codelets.

There are more related works to the implementation of hybrid dataflow and the codelet model.

Concurrent Collections (CnC) [12] is a high-level parallel programming model that enables program-

mers to write highly-parallel programs without considering a explicit degree of parallelism and scheduling

onto the processing element. Programmers provide declarative annotations in existing programs, and CnC

executes codes as much as parallel unless pieces of codes do not have data dependence and control depen-

dence with each other. Mapping onto the processing element and scheduling is determined by the runtime.

CnC provides a coordination language for dataflow execution, so with proper tuning specification, CnC

itself is equivalent to the codelet execution model. CnC also serves as a high level language on top of OCR.

ETI SWARM [24] is one of the first implementations of the codelet execution model. It provides a

low-level runtime framework that exploits dynamic task parallelism on shared memory and the distributed

memory system. SWARM achieves asynchronous execution for computation and long latency communica-

tion through the use of continuation codelet. While the focus of CnC is to provide coordination capabilities

to tuning experts, SWARM provides low level interface to represent dependence and scheduling constraints.

PaRSEC [10] is a framework for compiling a program to a directed acyclic graph of tasks and schedul-

ing tasks for dynamic load balancing. PaRSEC uses job data flow (JDF) representation for dependency

description. Scheduling considers JDF analysis as well as currently ready tasks. To improve data locality

on NUMA architectures, scheduler also considers task locality; A newly created task is enqueud in the local
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queue and a ready task in the local queue is favored for scheduling.
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Chapter 5

Conclusions

Runnemede is a recently-proposed extreme-scale manycore that radically simplifies the architecture, and

proposes a cluster-based on-chip memory hierarchy without hardware cache coherence. To address the

challenge of programming for a memory hierarchy like Runnemede’s, this paper proposed ISA support for

data movement, and two simple approaches that use the ISA to program the machine. The ISA support is

based on writeback and self-invalidation instructions. We showed the subtle issues that these instructions

need to face, including reordering in the pipeline, and effective use of caches organized in clusters for energy

efficiency. The programming approaches involved either shared-memory programming inside a cluster only,

or shared-memory programming across clusters.

Our simulation results showed that the execution of applications on incoherent cache hierarchies with

our support can deliver reasonable performance. For execution within a cluster, the average execution time

of the applications is only 2% higher than with hardware cache coherence. For execution across multiple

clusters, our applications run on average 20% faster than a naive scheme that pushes all the data to the

last-level shared cache.

In our TG X-Stack project evaluation, we observed basic scalability of OCR program and runtime on

Runnemede architecture. However, we also observed limitations of current architecture and simulators, and

we proposed improvements in DB allocation, EDT scheduling and support for incoherent caches.

61



Appendix A

Compiler Support for Incoherent Caches

A.1 Overview

A computer system with software managed cache coherence does not implement cache coherence protocols

in hardware. It is necessary to explicitly insert coherence instructions in a parallel program to ensure correct

execution. The software orchestrates cache coherence using the following coherence primitives.

• Writeback: The address of a variable is specified in the instruction and if the addressed location

exists in the private cache and has been modified, then it is written to a shared cache or main memory.

• Invalidate: The instruction causes any cached copy of the variable in the private cache to be discarded

(self-invalidation) so that the next read to the variable fetches data from the shared cache.

The above coherence operations provide a mechanism for two processors to communicate with each

other by using the shared cache: if processor A has to send an updated value of a shared variable X to

processor B, then processor A issues a writeback instruction on X, and processor B later invalidates X so

that a subsequent read to X fetches the latest value from the shared cache.

Figure A.1 shows the API for the invalidate and writeback instructions. These API functions use argu-

ments at the granularity of word, double-word, or quad-word. The invalidate range and writeback range

functions have a start address and number of bytes as parameters.

In this appendix chapter, we address the question of how to automatically generate cache coherence

instructions for execution on software managed caches. The variables that potentially hold stale data —

invalidate set — have to be identified in order that copies of those variables in the private cache are dis-

carded; the data that are produced at a processor, but might be consumed at other processors — writeback

set — need to be characterized so that those data are written to the shared cache and are available to other

processors for future reads.
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In this section, we use an example to provide an overview of the analyses performed and optimizations

applied by the algorithms developed in the paper. Figure A.2 shows a 1d-jacobi stencil code. In an iteration

of the stencil computation, elements of array B are updated using three neighboring elements of array A in

parallel (line 4). Then, all values of array B are copied to array A in parallel (line 8). In the next iteration,

the new values of array A are used to update elements of array B. This process is repeated tsteps times (loop

at line 1).

The parallelism in the computation is realized using OpenMP work-sharing constructs: the loops with

iterators i are declared parallel (line 3 and 7), and different iterations of those loops may be assigned to

different processors to execute them in parallel. The value written to B[i] by first statement (S1) is read by

the second statement (S2). Since a different processor may execute the statement producing B[i] than those

that consume B[i], B[i] has to be written-back to shared cache after S1 and is invalidated before S2.

Similarly, array element A[i] is written at S2 and has uses in three iterations of the first loop at S1. The

reference A[i] must therefore be written-back after S2, and invalidated before S1. The code obtained thus for

Software Cache Coherence (SCC) is shown in Figure A.3.

However, there are opportunities to improve performance of the shown code on a software cache coher-

ence system:

1. If iterations of the parallel loops in Figure A.2 are mapped to processors such that an iteration with

a certain value of i is assigned to the same processor in the first and second loops (line 3 and line 7),

then B[i] is produced and consumed at the same processor. Therefore, writing back of B[i] at S1,

and invalidating of it at S2 can be avoided, resulting in lower overhead and better cache locality (read

misses to array B in the second loop will be avoided).

Thus, analysis to compute invalidate and writeback sets that considers the iteration-to-processor map-

ping can avoid many potentially conservative coherence operations.

i n v a l i d a t e w o r d ( void * add r ) ;
i n v a l i d a t e d w o r d ( void * add r ) ;
i n v a l i d a t e q w o r d ( void * add r ) ;
i n v a l i d a t e r a n g e ( void * addr , i n t num bytes ) ;

w r i t e b a c k w o r d ( void * add r ) ;
w r i t e b a c k d w o r d ( void * add r ) ;
w r i t e b a c k q w o r d ( void * add r ) ;
w r i t e b a c k r a n g e ( void * addr , i n t num bytes ) ;

Figure A.1: Coherence API list
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1 f o r ( t = 0 ; t <= t s t e p s −1; t ++) {
2 #pragma omp p a r a l l e l f o r
3 f o r ( i = 2 ; i <= n−2; i ++) {
4 S1 : [ i ] = 0 . 3 3 3 3 3 * (A[ i −1]+A[ i ]+A[ i + 1 ] ) ;
5 }
6 #pragma omp p a r a l l e l f o r
7 f o r ( i = 2 ; i <= n−2; i ++) {
8 S2 :A[ i ]=B[ i ] ;
9 }

10 }

Figure A.2: 1-d Jacobi stencil

1 f o r ( t = 0 ; t <= t s t e p s −1; t ++) {
2 #pragma omp p a r a l l e l f o r
3 f o r ( i = 2 ; i <= n−2; i ++) {
4 i n v a l i d a t e d w o r d (&A[ i −1 ] ) ;
5 i n v a l i d a t e d w o r d (&A[ i ] ) ;
6 i n v a l i d a t e d w o r d (&A[ i + 1 ] ) ;
7 S1 : B[ i ] = 0 . 3 3 3 3 3 * (A[ i −1]+A[ i ]+A[ i + 1 ] ) ;
8 writeback dword (&B[ i ] ) ;
9 }

10 #pragma omp p a r a l l e l f o r
11 f o r ( i = 2 ; i <= n−2; i ++) {
12 i n v a l i d a t e d w o r d (&B[ i ] ) ;
13 S2 :A[ i ]=B[ i ] ;
14 writeback dword (&A[ i ] ) ;
15 }
16 }

Figure A.3: 1-d Jacobi stencil for SCC (unoptimized)

2. Further, if iterations are mapped to processors in a block-cyclic manner, fewer invalidations and write-

backs will be required. Consider for example that the iterations of the parallel loops are scheduled to

processors in a block-cyclic manner with a chunk-size of 16. In that scenario, a processor writes to a

consecutive set of words at S2 (line 8 in Figure A.2) — from A[k+1] to A[k+16] (for some ‘k’) and the

same processor in the next iteration reads elements A[k] to A[k+17] at S1 (due to line 4). Therefore,

only A[k], and A[k+17] have to be invalidated. Equally, other processors would only reference A[k+1]

and A[k+16], and hence, only those two array cells have to be written-back.

With the above considerations, one can proceed as follows.

1) By explicitly mapping iterations of the two parallel loops to processors through the use of myid and by

pinning threads to cores, we can reduce the number of coherence operations;

2) The parallel iterations are distributed among processors in a block-cyclic manner.

The resulting code is shown in Figure A.4. The very last write to a variable by any processor is also

written-back so that results of the computation are available at the shared cache. The algorithms that we de-
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1 f o r ( t = 0 ; t <= t s t e p s −1; t ++) {
2 #pragma omp p a r a l l e l p r i v a t e ( myid , i1 , i 2 ) {
3 myid = o m p g e t t h r e a d n u m ( ) ;
4 f o r ( i 1 =myid ; i1<= f l o o r ( ( n−2 ) / 1 6 ) ; i 1 +=8) {
5 i f ( t >= 1) {
6 i n v a l i d a t e d w o r d (&A[16* i1 −1 ] ) ;
7 i n v a l i d a t e d w o r d (&A[16* i 1 + 1 6 ] ) ;
8 }
9 f o r ( i 2 =max ( i 1 * 1 6 , 2 ) ; i2<=min ( i 1 *16+15 , n−2); i 2 ++) {

10 S1 : B[ i 2 ] = 0 . 3 3 3 3 3 * (A[ i2 −1]+A[ i 2 ]+A[ i 2 + 1 ] ) ;
11 }
12 i f ( t == t s t e p s −1)
13 wri teback range (&B[ i 1 * 1 6 ] , s i z e o f ( double ) * 1 6 ) ;
14 }
15 }
16
17 #pragma omp p a r a l l e l p r i v a t e ( myid , i1 , i 2 ) {
18 myid = o m p g e t t h r e a d n u m ( ) ;
19 f o r ( i 1 =myid ; i1<= f l o o r ( ( n−2) /16 ) ; i 1 +=8) {
20 f o r ( i 2 =max ( i 1 * 1 6 , 2 ) ; i2<=min ( i 1 *16+15 , n−2); i 2 +=1){
21 S2 : A[ i 2 ]=B[ i 2 ] ;
22 }
23
24 i f ( t <= t s t e p s −2) {
25 writeback dword (&A[16* i 1 ] ) ;
26 writeback dword (&A[16* i 1 + 1 5 ] ) ;
27 }
28 e l s e i f ( t == t s t e p s −1) {
29 wri teback range (&A[ i 1 * 1 6 ] , s i z e o f ( double ) * 1 6 ) ;
30 }
31 }
32 }
33 }

Figure A.4: 1-d Jacobi stencil for execution on an 8-processor SCC system

velop in the paper automatically produce the code in Figure A.4 by performing a) an exact data dependence

analysis (Section A.3.1), b) iteration-to-processor mapping aware code generation (Section A.3.2).

A.2 Background

A.2.1 Execution Model

Release Consistency: The execution of parallel programs consists of epochs (intervals between global

synchronization points). Examples of epochs include, code executed between successive barriers, the code

region between acquiring and releasing of a lock. In an epoch, data that were written potentially by other

cores in previous epochs and that a core may need to read in the epoch are invalidated. Before the end of

the epoch, all the data that a core has written in the epoch and that may be needed by other processors in
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future epochs are written-back to the shared level cache.

Before an epoch completes, all prior memory operations, including ordinary load/store instructions and

coherence instructions, are completed. Then the next epoch can start, and the following memory operations

can be initiated. Further, ordering constraints between memory instructions are respected: The order of a

store to address i and the following writeback for address i should be preserved in the instruction pipeline of

the processor and caches. Similarly, the order of invalidation to address j and a following load from address

j should be preserved in the pipeline and caches to guarantee fetching of the value from the shared cache.

Coherence Operations at Cache line granularity: Coherence operations are performed at the granularity

of cache lines — all the lines that overlap with specified addresses are invalidated or written-back. If the

specified data are not present in cache, then coherence instructions have no effect. In addition, writeback

instructions write back only modified words of the line. In doing so, writeback instructions avoid the incor-

rectness issue that may arise from false sharing: if two processors are writing to variables that get mapped

to the same cache line, and whole cache lines (and not just the dirty words) are written-back, then one

processor’s modified words may be overwritten with another processor’s clean words. Therefore, per-word

dirty bits are used to keep track of words of a cache line that are modified.

A.2.2 Notation

The code shown in Figure A.5 is used as a working example to illustrate the notation and the compiler

algorithm in the next section.

Tuple sets: A tuple set s is defined as:

s = {[x1, . . . ,xm] : c1∧·· ·∧ cn}

where each xi is a tuple variable and each c j is a constraint for the range of each tuple. The iteration spaces

1 f o r ( t 1 =0; t1<=t s t e p s −1; t 1 ++) {
2 #pragma omp p a r a l l e l f o r p r i v a t e ( t 3 )
3 f o r ( t 2 =0; t2<=n−1; t 2 ++) {
4 f o r ( t 3 =1; t3<=n−1; t 3 ++) {
5 S1 : B[ t 2 ] [ t 3 ] = B[ t 2 ] [ t 3 +1] + 1 ;
6 }
7 }
8 }

Figure A.5: A loop nest
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of statements can be represented as tuple sets. For example, the iteration space of statement S1 in the code

shown in Figure A.5 can be specified as the tuple set IS1 : IS1 = {S1[t1, t2, t3] : (0 ≤ t1 ≤ tsteps− 1)∧ (0 ≤

t2 ≤ n−1)∧ (1≤ t3 ≤ n−1)}

Access relations: An access relation r is defined as:

r = {[x1, . . . ,xm] 7→ [y1, . . . ,yn] : c1∧·· ·∧ cp}

where each xi is an input tuple variable, each y j is an output tuple variable and each ck is a constraint.

Array accesses appearing in the code may be modeled as access relations from iteration spaces to access

functions of the array references. The two accesses to array ‘B’ in Figure A.5, B[t2][t3] and B[t2][t3+1],

are represented as the following relations:

rS1
write ={S1[t1, t2, t3] 7→ B[t ′2, t

′
3] : (t ′2 = t2)∧ (t ′3 = t3)}

rS1
read ={S1[t1, t2, t3] 7→ B[t ′2, t

′
3] : (t ′2 = t2)∧ (t ′3 = t3 +1)}

The Apply Operation: The apply operation on a relation r and a set s produces a set s′ denoted by, s′ = r(s)

and is mathematically defined as:

(~x ∈ s′)⇐⇒ (∃~y s.t.~y ∈ s∧ (~y 7→~x) ∈ r)

The set of array elements accessed by an array reference in a loop (data-footprint) may be derived by

applying access function relations on the iteration space sets. For the array accesses in the example code

shown in Figure A.5, data-footprints of the two accesses are: rS1
write(I

S1),rS1
read(I

S1).

The Inverse Operation: The inverse operation r = r−1
k operates on an access relation rk to produce a new

access relation r such that r has the same constraints as rk but with the input and output tuple variables

swapped. (~x 7→~y ∈ r)⇐⇒ (~y 7→~x ∈ rk).

A.2.3 Polyhedral Dependences

In the Polyhedral model, for affine array index, dependence analysis [25] can precisely compute flow (Read

After Write — RAW) and output (Write After Write — WAW) dependences between dynamic instances of
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statements. The dependences are expressed as maps from source iterations to target iterations involved in

the dependence.

The flow dependence determined by polyhedral dependence analysis (for example, using ISL [51]) for

the code in Figure A.5 is:

D f low = {S1[t1, t2, t3] 7→ S1[t1 +1, t2, t3−1] : (0≤ t1 ≤ tsteps−2)∧ (0≤ t2 ≤ n−1)∧ (2≤ t3 ≤ n−1)}

The relation characterizes the flow dependence that exists between the write reference B[t2][t3] and the read

reference B[t2][t3+1]. An analysis tool like ISL can also be used to emit information regarding live-in data:

data that are read in the loop but are not produced by any statement instances in the scope of analysis. A list

containing maps from an iteration point that reads live-in data to the live-in array elements that it reads is

computed. For the running example, the live-in maps are:

Dlive−in = {S1[0, t2, t3] 7→ B[t2, t3 +1] : 0≤ t2 ≤ n−1∧1≤ t3 ≤ n−2;

S1[t1, t2,n−1] 7→ B[t2,n] : 0≤ t1 ≤ tsteps−1∧0≤ t2 ≤ n−1}

The two maps capture live-in data read for read reference B[t2][t3+1].

A.3 Compiler Optimization for Regular Codes

The iteration space of an epoch in a parallel loop is modeled by considering iterator values of the parallel

loop and its surrounding loops as parameters. In the parallel loop in Fig. A.5, the t2 loop is parallel and an

iteration of t2 constitutes a parallel task executed in an epoch. Its iteration space is modeled by considering

values of iterators t1 and t2 as parameters — tp and tq respectively:

IS1
current = {S1[t1, t2, t3] : (t1 = tp)∧ (t2 = tq)∧ (1≤ t3 ≤ n−1)}.

A.3.1 Computation of Invalidate and Writeback Sets

Invalidate Set: Algorithm 1 shows how the invalidate set for a parallel task is computed. It is computed

by forming the union of invalidate data sets corresponding to all statements within the parallel loop by

iterating over each statement. For each statement Si, first the source iterations of the dependence — Isource
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— whose target iterations are in the current slice for that statement — ISi
current — are determined by applying

the inverse relation of the flow dependence. From this set, any of the source iterations that lie in the current

slice —
⋃

Sj∈stmts IS j
current , are removed from Isource because the source and target iterations are run on the same

processor and no coherence instruction is needed. The array elements written by iterations of Isource are

placed in the set of data elements for which invalidation coherence instructions must be issued to guarantee

coherence. To this set is added the live-in list corresponding to data elements that come in live from outside

the analyzed region.

Require: Flow Dependences : D f low, Live-in read maps : Dlive in, Current Iteration Slices:
Icurrent , Write maps: rwrite

Ensure: Statement and Invalidate set pairs: DSi
invalidate

1: for all statements - Si do
2: DSi

invalidate← φ

3: Isource←D−1
f low(I

Si
current)\ (

⋃
Sj∈stmts IS j

current)

4: Din f low←
⋃

Sj∈stmts rS j
write(Isource)

5: Dlive in data←Dlive in(ISi
current)

6: DSi
invalidate← (Din f low∪Dlive in data)

7: end for

Algorithm 1: Compute Invalidate Set

Example: The application of the algorithm to the running example results in the following invalidate set:

DS1
invalidate = {[tq, i1] : 2≤ i1 ≤ n}. The array elements read in the parallel task are marked for invalidation.

Writeback Set: Algorithm 2 shows how we compute the writeback set for a parallel task that possibly

has multiple statements in it. To find the writeback set corresponding to a statement Si, first all target itera-

tions (Itarget) of all dependences are identified whose source iterations lie in ISi
current . Those target iterations

that are within the same parallel task —
⋃

Sj∈stmts IS j
current are removed from Itarget (line 3). Then the inverse

dataflow relation is applied to this set and the intersection to the current iteration slice is computed (line 4) to

identify the source iterations (Iproducer) in the slice that write values needed outside this slice. These values

must be part of the writeback set. Further, if a write by an iteration is the last write to a certain variable,

it must also be written back since it represents a live-out value from the loop. The iterations that are not

sources of any output dependencies produce live-out values. Such iterations are determined by forming the

set difference between ISi
current and domain of output dependences — dom Dout put .

Example: The algorithm produces the following writeback set for the example in Figure A.5: DS1
writeback =
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Require: Flow Dependences : D f low, Output Dependences : Dout put , Current Iteration Slices:
Icurrent , Write maps: rwrite

Ensure: Statement and Writeback set pairs: DSi
writeback

1: for all statements - Si do
2: DSi

writeback← φ

3: Itarget ←D f low(ISi
current)\ (

⋃
Sj∈stmts IS j

current)

4: Iproducer←D−1
f low(Itarget)∩ ISi

current

5: Dout f low← rSi
write(Iproducer)

6: Ilive out ← ISi
current \dom Dout put

7: Dlive out data← rSi
write(Ilive out)

8: DSi
writeback← (Dout f low∪Dlive out data)

9: end for

Algorithm 2: Compute Writeback Set

{[tq, i1] : (tp ≤ tsteps−2∧2≤ i1 ≤ n−1)∨ (tp = tsteps−1∧1≤ i1 ≤ n−1)}.

For 0 to tsteps-2 iterations of the outermost t1 loop, only elements B[t2][2:n-1] need to be written back

as they will be read in the next iteration of t1 loop. Array cell B[t2][1] does not need to be written back

because it is overwritten in a later t1 iteration and its value is not read. But the very last write to B[t2][1],

i.e., when t1 = tsteps-1, has to be written back as it is a live-out value of the loop.

Code Generation The invalidate and writeback sets are translated to corresponding cache coherence in-

structions by generating a loop to traverse elements of the sets using a polyhedral code generator — ISL

[51]. The invalidations and writebacks are combined into coherence range functions whenever elements of a

set are contiguous in memory: when the inner-most dimension of the array is the fastest varying dimension

of the loop.

A.3.2 Optimization: Analysis Cognizant of Iteration to Processor Mapping

The techniques described until now do not assume any particular mapping of iterations to processors. How-

ever, if a mapping of processors to iterations is known, many invalidations and write-backs could possibly

be avoided. For example, in the code shown in Figure A.5, the flow dependence (mentioned in §A.2.3) is:

S1[t1, t2, t3] 7→ S1[t1 + 1, t2, t3− 1]. If parallel iterations of the ‘t2’ loop are mapped to processors such that

an iteration with a particular ‘t2’ value always gets mapped to the same processor, the source and target

iterations of the flow dependence get executed on the same processor, making invalidations and write-backs
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1 f o r ( t 1 =0; t1<=t s t e p s −1; t 1 ++) {
2 #pragma omp p a r a l l e l p r i v a t e ( myid , t2 , t 3 ) {
3 myid = o m p g e t t h r e a d n u m ( ) ;
4 f o r ( t 2 =myid ; t2<=n−1; t 2 +=8) {
5 i f ( t 1 == 0) {
6 i n v a l i d a t e r a n g e (&B[ t 2 ] [ 2 ] , s i z e o f ( double ) * ( n−2 ) ) ;
7 }
8 i n v a l i d a t e d w o r d (&B[ t 2 ] [ n ] ) ;
9 f o r ( t 3 =1; t3<=n−1; t 3 ++) {

10 S1 : B[ t 2 ] [ t 3 ] = B[ t 2 ] [ t 3 +1] + 1 ;
11 }
12 i f ( t 1 == t s t e p s −1) {
13 wri teback range (&B[ t 2 ] [ 1 ] , s i z e o f ( double ) * ( n−1 ) ) ;
14 }
15 }
16 }
17 }

Figure A.6: Optimized loop nest for SCC

due to the dependence unnecessary.

In order to incorporate this optimization, Algorithm 1 and 2 are modified to take iteration to processor

mapping into account. Line 3 of Algorithm 1 is now changed to:

Isource←D−1
f low(I

Si
current)\ (

⋃
Sj∈stmts IS j

current ∪ Isame proc)

and line 3 of Algorithm 2 is changed to:

Itarget ←D f low(ISi
current)\ (

⋃
Sj∈stmts IS j

current ∪ Isame proc),

where Isame proc is the set of iterations that is executed on the same processor as the processor on which

Icurrent is executed.

For the working example, let us say that the OpenMP scheduling clauses specify that iterations are

cyclically mapped onto processors and the number of processors used is 8. Then, we encode that information

into the following iteration to processor map: ri2p = {S1[t1, t2, t3] 7→ [t ′2] : t ′2 = t2 mod 8}. The parallel

region code is all the iterations that are mapped to a parametric processor ‘myid’: Imy proc = r−1
i2p(myid).

The iteration set IS1
current is a subset of Imy proc with the values of the t1 and t2 loop iterators parameterized.

Using the modified algorithms, the cache coherence code generated for the working example is presented

in Figure A.6. In the optimized code, only the live-in data is invalidated: elements B[t2][2 to n] at time-step

t1 = 0, only a single element — B[t2][n] at later time-steps, since other elements are written to by the same

processor ensuring that the updated values are present in the processor’s private cache. Only the live-out

data is written back at the last time-step: t1 = tsteps−1.
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A.4 Compiler Optimization for Irregular Codes

The irregular computations – codes whose data flow is not expressed in an affine index form and control flow

may not be determined precisely, are handled with a combination of compile-time and run-time techniques.

We first describe a completely general scheme (Section A.4.1) that preserves data locality in caches within

an epoch but not across epochs. Then, we present specialized methods (Section A.4.2, Section A.4.3) for

certain classes of irregular codes which preserve data locality across epoch boundaries.

A.4.1 Bulk Coherence Operations: Basic Approach

The tasks that are executed in an epoch (interval between synchronization points) by construction do not

have any dependences between them (otherwise, the dependences would induce serialization of tasks and

hence, the tasks would have to be executed in different epochs). Therefore, all data accessed within an epoch

can be safely cached and cache coherence is not violated.

i n v a l i d a t e a l l ( ) ;
w r i t e b a c k a l l ( ) ;

Figure A.7: Coherence API for conservative handling

For irregular applications that have non-affine references and hence, are not amenable to the analysis

presented in the previous section, software cache coherence is achieved conservatively: at the beginning

of an epoch, the entire private cache is invalidated and at the end of the epoch, all data that are written in

the epoch (dirty words) are written to the shared cache. The coherence API functions shown in Figure A.7

are inserted in the parallel program at epoch boundaries to conservatively manage software coherence. The

basic approach outlined above preserves intra-epoch cache data locality, but cannot exploit any temporal

locality that exists across epoch boundaries.

A.4.2 Inspector-Executors

Many scientific applications use sparse and irregular computations and are often iterative in nature and

furthermore, the data access pattern remains the same across iterations. Examples include programs for

solving partial differential equations, irregular stencils, the conjugate gradient method for solving systems

of linear equations which uses sparse matrix-vector multiplications, atmospheric simulations that use semi-

regular grids.
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1 whi le ( conve rged == f a l s e ) {
2 #pragma omp p a r a l l e l f o r
3 f o r ( i =0 ; i<n ; i ++) {
4 r e a d A[B[ i ] ] ; / * data−d e p e n d e n t a c c e s s * /
5 }
6
7 #pragma omp p a r a l l e l f o r
8 f o r ( i =0 ; i<n ; i ++) {
9 w r i t e A[C[ i ] ] ; / * data−d e p e n d e n t a c c e s s * /

10 }
11 / * S e t t i n g o f converged v a r i a b l e n o t shown * /
12 }

Figure A.8: A time-iterated loop with irregular data references

For such codes, we propose the use of inspectors [21, 53] to gather information on irregular data accesses

so that coherence operations are applied only where necessary. The inspectors that are inserted in the parallel

codes are themselves parallel and are lock-free. The cost of inspectors is amortized by the ensuing selective

invalidations of data and thus fewer unnecessary L1 cache misses over many iterations of the iterative

computation. Figure A.8 shows an iterative code that has data-dependent references to a one-dimensional

array, viz., A[B[i]] and A[C[i]]. We first illustrate the inspector approach for the simple example. The ideas

are more generally applicable in the presence of multiple arrays and multi-dimensional arrays.

The inspector-code determines if a) the write performed at a thread has readers at other threads: if that

is the case, the variable has to be written-back to the shared cache so that other threads will be able to obtain

the updated value of the variable. b) the variable being read at a thread was written by another thread: if

yes, the variable has to be invalidated at the private cache so that the fresh value is got from the shared

cache. Figure A.9 presents the inspector-inserted parallel code corresponding to the iterative code shown in

Figure A.8 for execution on software managed caches.

Two shadow arrays — A thread and A conflict for array A that has data-dependent accesses are initialized

(lines 4, 5). In the first phase, A thread records the ids of the threads that write to array cells (line 12). In

the second phase, if an array cell is read by a thread different from the writer thread, the corresponding

cell in A conflict array is set to 1 (line 22). Since the computation loops are parallel, the inspection is also

carried out in parallel. Consequently, accesses to arrays A thread and A conflict are guarded with coherence

instructions. If there are multiple readers for an array cell then more than one thread may set the respective

cell of A conflict to 1 in phase two and multiple threads will write-back the same value, namely 1 to the

shared cache (in line 23). Since the same value is being written, any ordering of writes by different threads
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1 / * I n s p e c t o r code b e g i n s * /
2 #pragma omp p a r a l l e l f o r
3 f o r ( i =0 ; i<n ; i ++) {
4 A t h r e a d [ i ] = −1;
5 A c o n f l i c t [ i ] = 0 ;
6 writeback word (& A t h r e a d [ i ] ) ;
7 writeback word (& A c o n f l i c t [ i ] ) ;
8 }
9 / / Phase 1 : Record w r i t e r t h r e a d i d s

10 #pragma omp p a r a l l e l f o r
11 f o r ( i =0 ; i<n ; i ++) {
12 A t h r e a d [C[ i ] ] = myid ;
13 writeback word (& A t h r e a d [C[ i ] ] ) ;
14 }
15 / / Phase 2 : Mark c o n f l i c t e d i f w r i t e r and r e a d e r t h r e a d s are n o t t h e same
16 #pragma omp p a r a l l e l f o r
17 f o r ( i =0 ; i<n ; i ++) {
18 i n v a l i d a t e w o r d (& A t h r e a d [B[ i ] ] ) ;
19 i f ( A t h r e a d [B[ i ] ] != −1 && A t h r e a d [B[ i ] ] != myid ) {
20 A c o n f l i c t [B[ i ] ] = 1 ;
21 writeback word (& A c o n f l i c t [B[ i ] ] ) ;
22 }
23 } / * I n s p e c t o r code ends * /
24 #pragma omp p a r a l l e l { i n v a l i d a t e a l l ( ) ; }
25 whi le ( conve rged == f a l s e ) {
26 #pragma omp p a r a l l e l f o r
27 f o r ( i =0 ; i<n ; i ++) {
28 i f ( A t h r e a d [B[ i ] ] != −1 && A t h r e a d [B[ i ] ] != myid )
29 i n v a l i d a t e w o r d (&A[B[ i ] ] ) ;
30 r e a d A[B[ i ] ] ;
31 }
32 #pragma omp p a r a l l e l f o r
33 f o r ( i =0 ; i<n ; i ++) {
34 w r i t e A[C[ i ] ] ;
35 i f ( A c o n f l i c t [C[ i ] ] == 1)
36 writeback word (&A[C[ i ] ] ) ;
37 }
38 / * S e t t i n g o f converged v a r i a b l e n o t shown * /
39 }
40 #pragma omp p a r a l l e l { w r i t e b a c k a l l ( ) ; }

Figure A.9: An iterative code with irregular data references for SCC system

works.

Later in the computation loops, a thread invalidates a variable (line 36) before reading it if the variable

has a writer (as opposed to read-only data) and that writer is a different thread. A thread after writing to a

variable, writes it back (line 44) if the variable is marked conflicted.

A.4.3 Exclusion of Read-Only Data from Coherence

For irregular codes whose data access patterns potentially change with each iteration, we adopt a conserva-

tive approach that yet excludes read-only data from coherence enforcement and thus, is more accurate than
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1 / * Pro logue b e g i n s * /
2 w r i t e b a c k a l l ( ) ;
3 #pragma omp p a r a l l e l
4 { i n v a l i d a t e a l l ( ) ; }
5 / * Pro logue ends * /
6
7 whi le ( c o n d i t i o n ){
8 #pragma omp p a r a l l e l
9 {

10 / * r e g u l a r / i r r e g u l a r code * /
11 }
12 }
13
14 / * E p i l o g u e b e g i n s * /
15 #pragma omp p a r a l l e l
16 { w r i t e b a c k a l l ( ) ; }
17 i n v a l i d a t e a l l ( ) ;
18 / * E p i l o g u e ends * /

Figure A.10: A loop with bulk coherence operations at parallel region boundaries

a full invalidation and writeback approach outlined earlier. We consider parallel regions — parallel loops

along with surrounding looping structures and perform analysis of the parallel region as a stand-alone unit.

The read-only data of the parallel region need not be invalidated/written-back. Only those variables that are

both written and read in the parallel region are invalidated and written-back at epoch boundaries.

For this scheme to work, however, the following conditions have to be met:

1. None of the processors should have cached stale values of read-only data of the parallel region. (This

could happen, for example, when a program has a parallel region P followed by a sequential segment

Q and later a parallel region R . And, variable x is read-only in P and R , but is modified in Q ).

2. Since, in the parallel region coherence is enforced only on data that are both read and written, for

written-but-not-read data coherence operations should be introduced following the parallel region to

ensure that future accesses to them get updated values.

To meet condition 1), a prologue is introduced that writes back all dirty words from the master thread

and then does a full invalidation of caches at all threads. Condition 2) is fulfilled by writing-back all dirty

words from all threads and doing a full-invalidation by the master thread in an epilogue. The code shown in

Figure A.10 uses the outlined approach. Algorithm 3 presents the overall parallel-region analysis technique.

Overall Approach The overall compiler analysis operates by checking if it can apply optimizations in the

following order (most constrained to unconstrained): 1) regular programs with static schedules (§A.3.2),
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2) regular programs with dynamic schedules (§A.3.1), 3) inspector-executor (§A.4.2): if the array-indexing

variables (e.g., in reference A[B[i]], we refer to B[i] as the indexing variable) are not written inside the

time-loop and the control flow, if any, does not contain variables that are written inside the time-loop. 4)

exclusion of read-only data (§A.4.3), finally, for the rest, 5) bulk coherence operations (§A.4.1).

Table A.1: Benchmarks. Legend: #PL: Number of Parallel Loops; #PLI: Number of Parallel Loops con-
taining irregular accesses

Does application
have irregular

Benchmark Description accesses? #PL #PLI Techniques used
gemm Matrix-multiply : C = α.A.B+β.C No 2 0 Polyhedral
gemver Vector Multiplication and Matrix Addition No 3 0 Polyhedral

jacobi-1d 1-D Jacobi stencil computation No 2 0 Polyhedral
jacobi-2d 2-D Jacobi stencil computation No 2 0 Polyhedral

LU LU decomposition No 1 0 Polyhedral
trisolv Triangular solver No 1 0 Polyhedral

CG Conjugate Gradient method Yes 3 1 Inspector-Executor
+ Polyhedral

backprop Pattern recognition using unstructured grid Yes 2 0 Bulk + Polyhedral
hotspot Thermal simulation using structured grid Yes 2 0 Bulk + Polyhedral
kmeans Clustering algorithm used in data-mining Yes 1 1 Exclusion of RO data

pathfinder Dynamic Programming for grid traversal Yes 1 1 Exclusion of RO data
srad Image Processing using structured grid Yes 2 2 Inspector-Executor

Require: AST of Parallel region: P
Ensure: AST of Parallel region for SCC: PSCC

1: Prologue← API to write-back all dirty words from master thread; API to invalidate entire
cache of all threads

2: Read Set ← Arrays and scalars that are read in P
3: Write Set ← Arrays and scalars that are written in P
4: Coherence Set ← Read Set ∩Write Set
5: for all epoch code e ∈ P do
6: Invalidate Sete← Read Sete∩Coherence Set
7: Writeback Sete←Write Sete∩Coherence Set
8: Insert API for Invalidate Sete and Writeback Sete
9: end for

10: E pilogue← API to write-back all dirty words from all threads; API to invalidate entire cache
of master thread

11: PSCC ← Append {Prologue,P ,E pilogue}

Algorithm 3: Generate Coherence Instructions using Parallel Region Analysis
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Table A.2: Simulator parameters

Processor chip 8-core multicore chip
Issue width; ROB size 4-issue; 176 entries

Private L1 cache 32KB Write-back, 4-way,
2 cycle hit latency

Shared L2 cache 1MB Write-back, 8-way,
multi-banked

11 cycle round-trip time
Cache line size 32 bytes

Cache coherence protocol Snooping-based MESI protocol
Main Memory 300 cycle round-trip time

A.5 Experimental Evaluation

We evaluate the performance of compiler-generated coherence instructions for execution of parallel pro-

grams on software managed caches. The main goal of the compiler support developed in the paper is to

insert coherence instructions — invalidate and writeback functions only where necessary. The conservative

invalidations (of non-stale data) result in read misses which lead to degraded performance relative to a hard-

ware coherence scheme. Therefore, to assess efficacy of the compiler techniques, we compare read misses

in L1 caches, and execution time on software and hardware managed caches. (The number of misses at the

shared cache is unaffected and will be the same for software and hardware cache coherence.)

Conservative coherence operations in software scheme increase accesses to the shared cache and also,

cause increased traffic on the system bus. The hardware cache coherence protocol uses control messages to

maintain coherence, which a software scheme does not. Therefore, if the software coherence mechanism

results in comparable cache misses as a hardware protocol, then the software coherence also reduces network

traffic and cache energy. We therefore measure the number of words transferred on the system bus and cache

energy by software and hardware coherence systems.

A.5.1 Benchmarks

The benchmark programs used for the experiments and their characteristics are listed in Table A.1. The

benchmark programs — gemm, gemver, jacobi-1d, jacobi-2d, LU, trisolv are taken from PolyBench bench-

mark suite [42]. The PolyBench benchmark suite is a collection of widely used linear algebra, and stencil

codes. The codes are parallelized using a polyhedral compiler – PoCC [41]. All array references in the Poly-
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Bench programs are affine and coherence instructions are generated using Polyhedral techniques presented

in Section A.3.

The backprop, hotspot, kmeans, pathfinder, srad applications are taken from Rodinia suite [15], and

they contain affine as well as irregular data references. The Rodinia suite provides parallel programs from

various application domains. At the parallel region boundaries in Rodinia applications, bulk coherence

instructions (invalidate all and writeback all) are applied (Section A.4.1) while the parallel regions are op-

timized. Inspector-executor method (Section A.4.2) is used for irregular data references in CG and srad

applications. Exclusion of read-only data optimization described in Section A.4.3 is employed in kmeans

and pathfinder codes. The parallel loops in backprop and hotspot benchmarks are amenable to polyhedral

analysis and therefore, bulk coherence operations are inserted at the beginning and end of parallel regions,

and coherence operations in parallel loops are derived using polyhedral algorithms (Section A.3).

A.5.2 Set-up

The snooping-bus MESI protocol hardware coherence (referred to as HCC in the following text), and soft-

ware cache coherence (referred to as SCC) have been implemented in an architectural multi-processor sim-

ulator — SESC [40]. Details of the simulator setup are described in Table A.2.

We compare performance and energy of the following four coherence schemes:

1. HCC: Parallel programs are executed using MESI hardware coherence.

2. SCC-basic: The coherence instructions are inserted without iteration-to-processor aware analysis for

affine references and without the use of inspector-executor or read-only data exclusion scheme for

irregular accesses. That is, coherence instructions are generated with methods described in Sections

A.3.1 and A.4.1 only without further optimizations. The resulting codes are run on software managed

caches.

3. SCC-opt: The coherence management is optimized using compiler optimizations presented, and the

resulting programs are executed on software managed caches.

4. HCC-opt: To study if any optimizations applied to SCC codes (such as explicit mapping of iterations

to processors) can also benefit the benchmarks for hardware coherence, SCC-opt programs are adapted
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to run on HCC systems: coherence operations and any inspectors inserted are removed from SCC-opt

codes and these variants are run on the HCC system.

The performances of only parallel parts of benchmarks are measured — sequential initialization and

finalization codes are excluded from measurements because the performance of sequential code is expected

to be the same on SCC and HCC systems. Threads are pinned to cores for both schemes.

A.5.3 Performance Results
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Figure A.11: L1 data cache read misses (lower, the better). The L1 read miss ratios for HCC are also shown
as numbers above the bar.

Figure A.11 plots the read misses in L1 cache. The number of L1 read misses and execution cycles are

normalized with respect to HCC statistics (the number of misses and execution cycles of HCC is considered

1). The L1 read miss ratios (fraction of L1 reads that are misses) for HCC are also indicated in the graph.

On average across benchmarks, HCC-opt has the same number of cache misses as HCC; SCC-basic suffers

135% more misses and SCC-opt experiences only a 5% increase (avg. column in the graph). The average of

normalized execution time for the three variants — HCC-opt, SCC-basic, and SCC-opt are, 0.98, 1.66, and

0.97 respectively. We observe that SCC-opt greatly improves performance over SCC-basic and brings down

cache misses comparable to those of HCC. Further, performance of HCC-opt is very similar to that of HCC.

The gemm and trisolv benchmarks exhibit the so-called communication free parallelism: the outer loop

in these codes is parallel. Therefore, there is no communication between processors induced by data depen-
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dences. All code variants of gemm and trisolv have virtually the same number of cache misses and execution

cycles. In applications that have irregular references, namely backprop, CG, hotspot, kmeans, pathfinder,

srad, the parallel region boundaries are guarded with full-invalidation and full-writeback instructions (de-

scribed in A.4.3) The affine accesses in the parallel regions are optimized; irregular accesses are handled

using inspectors or invalidation and write-back of entire arrays that are both written and read in the parallel

region (read-only arrays and scalars are excluded). For backprop and pathfinder, full invalidation of cache

at parallel region boundaries results in some loss of data locality which results in increased L1 cache read

misses. The CG and srad benchmarks have iterative loops and irregular accesses whose indexing structures

do not change across iterations. Therefore, for those two benchmarks, inspector codes are inserted for de-

riving coherence operations. The inspectors contribute to a certain number of L1 read misses. The reduced

cache misses in SCC-opt of srad compared to its HCC counterpart is an artifact of the interaction that exists

between cache coherence and cache replacement policy (LRU): false-sharing in HCC can cause soon-to-be-

reused data to be evicted, which favors SCC. The migratory writes may sometimes cause invalidations of

not-to-be-reused data and thus, making way for other to-be-reused data and this benefits HCC. Conversely,

the gemver is an example of hardware cache coherence working to HCC advantage, where the number of

misses for HCC is lower compared to SCC-opt.
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Figure A.12: Execution time (the lower, the better)

The running time (depicted in Figure A.12) shows a strong correlation between L1 cache read misses

and performance. In HCC, the snooping overhead plays a significant role in determining execution time: In
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our implementation, we assign 1 cycle to a read/write snooping request. In SCC, each coherence instruction

incurs a two-cycle overhead. In addition to these overheads, there may be additional overheads depending

upon the response to a snooping request in HCC (e.g., a read request may return an updated value from

another processor) and the number of cache lines specified in the coherence instruction in SCC — each

cache line incurs a 2-cycle delay. Because of removal of hardware cache coherence, we observe a 3%

performance gain for SCC-opt over HCC on average.

Discussion: The performance results obtained for HCC and SCC schemes are sensitive to architectural

choices made in the simulator implementation. And, we have opted for architectural choices that favor HCC

even though on a real system they may be impractical or too costly. E.g., we have allotted a 1-cycle delay

for a snooping request and on a real system it might take multiple cycles. The implemented HCC protocol in

the simulator concurrently sends a snoop request to other cores, and also a memory request to the L2 cache.

Alternately, the L1 cache can also be designed to send a memory request to the L2 cache after a snoop miss,

but this will increase the delay when there is a snoop miss.

A.5.4 Energy Results
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Figure A.13: Traffic on the system bus (the lower, the better). Average number of words per cycle for HCC
is also shown above the bar.

Bus data transfers: Figure A.13 shows the traffic (number of words transferred) on the system bus

for different schemes. All values are normalized with respect to HCC. The average number of words trans-
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ferred per cycle (obtained by dividing total number of words with number of execution cycles) for HCC is

also shown. For hardware coherence scheme, the traffic on the bus includes snoopy-bus coherence related

exchange of messages, transfers between private L1 caches and shared L2 cache triggered by cache misses

at L1 and replacement of cache lines at L1. For SCC, this includes data transfers between L1 caches and

L2 cache prompted either by L1 misses and evictions, or invalidation and writeback coherence instructions.

The HCC normalized data transfers on the bus for HCC-opt, SCC-basic, and SCC-opt are 0.99, 1.73, and

1.01 respectively, on average. In backprop and srad, SCC-opt does fewer write-backs to L2 cache compared

to HCC; the L1 cache misses are lower for SCC-opt in the case of srad. Consequently, SCC-opt incurs fewer

data transfers in backprop and srad. Conservative writebacks in kmeans increases the traffic on the bus for

SCC-opt compared to HCC.
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Figure A.14: L1 and L2 Cache Energy (the lower, the better). The first bar shows HCC energy and second
bar SCC-opt energy

L1 and L2 cache energy: The cache SRAM is a major consumer of energy in a processor. We compare

dynamic cache energy consumption for HCC and SCC-opt schemes based on the number of accesses to tag

SRAMs and data SRAMs. Using the SESC simulator, event counts for all relevant activities in the L1 and

L2 caches are collected to account for all tag and data accesses to SRAMS. CACTI [52] is used to obtain

the energy per access for tag and data for each cache level. The L1 cache employs dual ported SRAM to

service snoop requests quickly. For SCC also we used the same dual ported SRAM for a fair comparison

(per-access cost is a function of, inter alia, number of ports). The L1 cache accesses tag and data together
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for local processor requests while for snooping requests it accesses data SRAM only after tag hit. The L2

cache is configured to be in sequential access mode — it starts to access data SRAM after tag matching. We

did not consider main memory energy because main memory accesses would be the same for both HCC and

SCC schemes.

Figure A.14 plots relative energy consumption in caches for hardware and software cache coherence

approaches: energy expenditure by HCC is considered 1 and energy dissipation by SCC-opt is scaled with

respect to HCC. The break-down of energy expended in L1 and L2 caches is indicated. On average (arith-

metic mean) SCC-opt energy consumption in caches is 5% less than that of HCC. Most of the savings in

SCC-opt come from two sources: elimination of snooping requests in L1 cache, and reduction in the num-

ber of writeback words by partial line transfers (only dirty words are written back to shared L2 cache in a

software managed cache as opposed to entire cache lines which are the granularity of communication for

HCC). We also observe that energy spent in all L1 caches together is around 86%, while the rest — 14% is

expended in L2 cache.
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