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ABSTRACT 

Bacteria are a fruitful source of metabolites, many of which have been the scaffolds for 

the majority of approved antibiotic compounds. In this dissertation, I present the discovery and 

characterization of a bacterial natural product from Bacillus methylotrophicus FZB42, a Gram-

positive, rod-shaped bacterium that stimulates plant growth. A prolific producer of secondary 

metabolites, FZB42 excretes a compound bearing the molecular mass of 1335 Daltons called 

plantazolicin (PZN). I describe the genetic locus responsible for the biosynthesis of PZN, which 

is ribosomally synthesized via an amino acid precursor peptide and post-translationally modified 

to contain thiazoles and (methyl)oxazoles. This group of compounds, known as thiazole/oxazole-

modified microcins (TOMMs), exhibit disparate biological activities and complex chemical 

structures. Using high-resolution mass spectrometry, chemoselective modification, genetic 

interruptions, and various spectroscopic tools, I report the molecular structure of PZN. PZN 

contains two conjugated polyazole moieties and an N
α
,N

α
-dimethylarginine on the amino 

terminus. By altering oxygenation levels during fermentation, PZN analogs were produced that 

bear variability in their heterocycle content, which yielded insight into the order of biosynthetic 

events. Extensive tailoring of PZN endows it with not only a rigid, polyheterocyclic structure, but 

also antibacterial activity. After screening numerous microorganisms, PZN exhibited highly 

selective antibiotic activity against Bacillus anthracis. This remarkably discriminatory activity 

rivals a previously-described B. anthracis-specific gamma (γ) phage lysis assay in distinguishing 

B. anthracis from other members of the Bacillus cereus group. I evaluate this unusually selective 

activity by measuring the RNA expression profile of PZN-treated B. anthracis, which revealed 

significant upregulation of genes within the cell envelope stress response. Using fluorescence 

microscopy, PZN localizes to distinct ~200 nm wide foci within the envelope; furthermore, like 

other cell envelope-acting compounds, PZN depolarizes the B. anthracis membrane. Upon 

selection and whole-genome sequencing of PZN-resistant mutants of B. anthracis, I implicate a 
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relationship between the action of PZN and the phospholipid cardiolipin within the membrane. 

Exogenous cardiolipin increases the potency of PZN in wild type B. anthracis and promotes the 

incorporation of fluorescently tagged PZN in the cell envelope. I propose that PZN localizes to 

and exacerbates structurally compromised regions of the bacterial membrane, which ultimately 

results in cell lysis. 
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CHAPTER I: INTRODUCTION 

1.1 Bacteria as Abundance Sources of Natural Products 

Bacteria harbor extensive capabilities to synthesize structurally complex and useful 

natural products. Roughly two thirds of approved antibiotics are natural products or natural 

product derivatives/mimics (Newman and Cragg, 2012), with such notable examples as 

chloramphenicol (protein synthesis inhibitor) (Gottlieb et al., 1954) and rifampicin (RNA 

polymerase inhibitor) (Sensi et al., 1959). Past success with natural products as antimicrobial 

compounds warrants the exploration into uncharted biosynthetic territory to discover new natural 

products.  

Antibiotics have traditionally been discovered by large screening endeavors, examining 

the bioactivity of bacterial crude extracts for compounds harboring antibiotic activity (Figure 

1.1A). While this method has produced a number of useful compounds, the methodologies are 

tedious and limited.  Frequent compound rediscovery, the lack of laboratory culturable 

organisms, and extensive screening time limit the usefulness of the forward discovery approach 

(Baltz, 2006).  

 Low-cost next-generation DNA sequencing technology is responsible for the surge in 

genomic data mining. The availability of nearly 2,000 new microbial genomes has rekindled 

interest in the biosynthetic capabilities of bacteria (Bachmann et al., 2014; Challis, 2008; Gross, 

2009; Melby et al., 2011; Peric-Concha and Long, 2003; Van Lanen and Shen, 2006), reducing 

the need for timely screening procedures. Recent studies, making use of newly sequenced 

bacterial genomes, have demonstrated the enormous, largely untapped potential of microbes as a 

source of natural products (Bachmann et al., 2014; Bentley et al., 2002; Challis, 2008; Deane and 

Mitchell, 2014; Doroghazi et al., 2014; Doroghazi and Metcalf, 2013; Velasquez and van der 

Donk, 2011).  
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Reverse genetics approaches have demonstrated that Streptomyces coelicolor, one of the 

most studied organisms for natural product/antibiotic research, harbors the genetic capacity to 

produce many additional secondary metabolites of potential importance (Deane and Mitchell, 

2014). This phenomenon extends to the microbial population as a whole (Baltz, 2008; Bentley et 

al., 2002; Deane and Mitchell, 2014; Fischbach and Walsh, 2009; Jensen et al., 2014). 

Bioinformatic tools and databases help to organize the abundance of data that has emerged on 

these previously undescribed biosynthetic pathways (Blin et al., 2013; de Jong et al., 2006; Li et 

al., 2012; Mohimani et al., 2014). Reverse genetics reconciles some of the unfortunate downfalls 

of the forward genetic approach, e.g. a lack of culturable organisms, biosynthetic pathways that 

are silent under laboratory conditions, and compound rediscovery. By making use of the vast 

genomic sequence data available, researchers can enrich for a specific compound class, predict 

chemical structures, biological activities, and manipulate growth conditions to maximize natural 

product potential (Figure 1.1B).  

1.2 Ribosomally Synthesized and Post-Translationally Modified Peptide Natural Products 

 Natural product research and antibiotic discovery encompass numerous classes of 

bacterial compounds (of nonribosomal and ribosomal origin); of primary interest to this research 

is a relatively newly defined class of natural products referred to as the ribosomally synthesized 

and post-translationally modified natural products (RiPPs) (Arnison et al., 2013; Haft et al., 2010; 

Lee et al., 2008; Letzel et al., 2014; Maksimov and Link, 2014; Velasquez and van der Donk, 

2011). RiPPs comprise a diverse natural product landscape, encompassing lanthipeptides, linear 

azol(in)e-containing peptides, lasso peptides, and linaridins, among others. In all cases, a 

ribosomally produced precursor peptide undergoes modification including, but not limited to, 

cyclizations, dehydrations, methylations, and disulfide bond formations (Arnison et al., 2013; 

Dunbar and Mitchell, 2013b). The diverse modifications give rise to an expanse of chemical 

structures and numerous biological activities. The genomic sequence of the precursor peptide and 
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homology of the tailoring enzymes bring forth predictions of the chemical structure of the post-

translationally modified natural product. Furthermore, the microbial and scientific communities 

can “evolve” RiPPs by manipulating either the peptide precursor destined for tailoring or the 

tailoring enzymes themselves.  

1.3 Thiazole/Oxazole-Modified Microcins (TOMMs) 

 One region of largely uncharted biosynthetic RiPP natural product space is the 

thiazole/oxazole-modified microcin (TOMM) family, which is classified by conserved chemical 

modifications and genetic layout (Figure 1.2A) (Haft et al., 2010; Lee et al., 2008; Scholz et al., 

2011). Each TOMM precursor peptide harbors an N-terminal leader region that serves as the 

binding site for enzymes that post-translationally modify a C-terminal core region (Madison et 

al., 1997; Mitchell et al., 2009). The distinguishing chemical feature of a TOMM is the 

installation of heterocycles that are derived from Cys, Ser, and Thr residues, which are abundant 

in the core region of the precursor peptides. During processing by a genetically conserved 

cyclodehydratase, select Cys and Ser/Thr amino acids undergo peptide backbone cyclization to 

become thiazoline and (methyl)oxazoline heterocycles (Figure 1.2B) (Dunbar et al., 2014; 

Dunbar et al., 2012; Dunbar and Mitchell, 2013a). A subset of these are further subjected to a 

flavin mononucleotide (FMN)-dependent dehydrogenation, which yields the fully oxidized 

thiazole and (methyl)oxazole heterocycles (Melby et al., 2014). Together, the TOMM 

cyclodehydratase and dehydrogenase comprise a functional thiazole/oxazole synthetase. The 

genes encoding the synthetase are typically located as adjacent open reading frames in bacterial 

genomes, making such biosynthetic clusters relatively easy to identify using routine bioinformatic 

methods (Donia et al., 2008; Lee et al., 2008; Velasquez and van der Donk, 2011; Wieland 

Brown et al., 2009). TOMM biosynthetic clusters often contain ancillary tailoring enzymes that 

increase the chemical complexity of this natural product family, in addition to leader peptide 

proteolysis (Figure 1.2C) (Datta et al., 2005; Kelly et al., 2009; Liao et al., 2009; Morris et al., 
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2009; Wieland Brown et al., 2009). In many cases, the fully mature TOMM natural product is 

then actively exported from the cell through an ABC transport system.  

Although the unification of the TOMM family of natural products has only recently 

emerged, the molecular structure and biological function of some TOMMs have long been 

established. Examples include microcin B17 (DNA gyrase inhibitor) (Belshaw et al., 1998), the 

cyanobactins (eukaryotic cytotoxins) (Schmidt and Donia, 2009), streptolysin S (virulence-

promoting cytolysin) (Mitchell et al., 2009; Molloy et al., 2011), and the thiopeptides (ribosome 

inhibitors) (Just-Baringo et al., 2014; Melby et al., 2011).  

1.4 Natural Product Isolation and Structure Elucidation 

Genetic deletions and chemical investigation often prime natural product discovery. 

Armed with the genetic context of a natural product, the compound is subjected to isolation and 

purification from the crude bacterial cellular extract, which contains multiple metabolic 

compounds. Structure elucidation typically occurs on the purified compound, but can begin in 

crude form if the compound can be properly separated from the remaining bacterial metabolites.  

1.4.1 Natural product identification via genetic deletions and heterologous production 

 The reverse genetic approach to natural product discovery seeks to identify a connection 

between genes and metabolites. The most definitive method to link genes to molecules is through 

genetic deletion of the implicated genes. Then, by comparing the mutant to the parent strain, 

whether by mass spectrometry or activity screening, natural products can be identified and 

characterized. Heterologous expression of the target gene clusters can enhance this methodology, 

given the natural product remains expressed in the new, genetically amenable host (Ongley et al., 

2013). There are numerous examples of successful natural product identification that rely on both 

native producer and heterologous host expression. Native producer approaches typically involve 

improvement of the host strain to achieve greater natural product yields, including manipulation 



5 

of drug efflux pumps or deletion of undesired natural products that convolute compound 

identification (Ongley et al., 2013).  

1.4.2 Mass spectrometry-guided structure elucidation 

 Mass spectrometry (MS), alone or in conjunction with nuclear magnetic resonance 

(NMR), provides structural information and characterization of peptidic natural products. High 

resolution MS provides an accurate compound mass, which is then used to determine a chemical 

formula within the error of the MS instrument. Tandem MS results in fragmentation of the 

molecule of interest, breaking the compound into segments from which the structure of the full 

peptide can be deduced (Kind and Fiehn, 2010). Competing chemical formulas can often be 

eliminated by integrating knowledge of the chemical modification potentially encoded within the 

gene cluster. In 2011, a MS method was created specifically for linking biosynthetic genes to 

molecules (Kersten et al., 2011). MS data from an organism of interest is subjected to tandem 

MS, and the fragmentation pattern of peptidic compounds is assembled into a sequence tag, 

providing information on the amino acid sequence of the compound. The genome of the 

producing organism can then be searched for loci corresponding to that particular amino acid 

sequence. The assembled fragmentation database includes common post-translational 

modifications, expanding the method’s utility for natural product discovery. In 2013, this method 

was extended to tandem MS networks, relating all metabolites of an organism to their 

fragmentation spectra (Nguyen et al., 2013). This method can even be extrapolated to include 

unsequenced organisms by comparing fragmentation of chemical standards or sequenced 

organisms.  

1.5 Determining the Mode of Action of Antibiotics 

Determining the mode of action (MOA) (or molecular target) of bioactive compounds 

can be challenging, especially if the compound does not have activity similar to other known 

compounds. There exist some typical methodologies for the mechanistic evaluation of antibiotics.  



6 

1.5.1 MOA determination bolstered by genomic sequencing 

After establishing a compound as an antibiotic, MOA research is typically initiated by 

treating a susceptible strain with the compound of interest and isolating resistant mutants (Arias et 

al., 2011; Friedman et al., 2006; Hachmann et al., 2009; Palmer et al., 2011). Resistant mutants 

can be generated in a variety of ways, whether it be spontaneous adaptation or via mutagenesis 

(Price et al., 2003; Vogler et al., 2002). The resistant strains are then bioinformatically mined for 

the genomic polymorphisms endowing them with resistance; oftentimes, the genetic mutations 

provide evidence suggestive of a certain MOA. Validation via engineering genetic deletions or 

overexpression of the suspected target supports the involvement of the genes of interest. 

An orthogonal approach to MOA determination is analyzing the changes in gene 

expression upon exposure to the antibiotic of interest. Transcriptional profiling via RNA-Seq or 

microarray can reveal the metabolic adjustments an affected organism must make in order to 

tolerate the harmful compound (Dengler et al., 2011; Muthaiyan et al., 2008; Shaw and Morrow, 

2003; Wecke et al., 2009). Transcriptome studies provide essential information on how the entire 

bacterium responds to the compound of interest. Sub-inhibitory antibiotic treatment stimulates 

rapid transcriptional responses in bacteria (Goh et al., 2002) and the induced/repressed genes are 

oftentimes indicative of MOA (Brazas and Hancock, 2005; Freiberg et al., 2005; Hutter et al., 

2004).  

1.5.2 Macromolecular synthesis 

Often, antibiotic classes are known to target major pathways within primary metabolism. 

Utilizing radioactive precursors to RNA, DNA, protein, peptidoglycan, and fatty acids, 

researchers can assess the biosynthesis of cellular macromolecules in the presence of the 

compound of interest (Cotsonas King and Wu, 2009; Silver, 2011). Bacteria are grown in the 

presence of the radioactive macromolecular precursors (e.g. nucleotides or amino acids), and 

treated with the tested antibiotic. As the cells grow, radiolabelled precursors are incorporated into 
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their respective macromolecules. Inhibition of radioactive incorporation in cells treated with the 

compound of interest, relative to untreated cells, can thereby inform about the MOA of the 

antibiotic. This protocol can be adapted for high throughput use, providing a way to measure the 

effect of a compound over time and in different concentrations. 

1.5.3 Cytological profiling 

A more recently-described method of analyzing MOA is cytological profiling. 

Cytological profiling uses fluorescence microscopy to reveal how fluorescently tagged 

compounds influence cellular morphology (Nonejuie et al., 2013). The authors use bioinformatics 

to compare numerous morphological characteristics. This method not only distinguishes between 

compounds acting on different cellular pathways, but it can even separate inhibitors that target 

different points along the same pathway. Compounds can be classified by their molecular target 

or provide evidence for a new MOA, based on their fluorescence patterns. 

1.5.4 Difficulties of mode of action determination 

The methodologies described above are not always fruitful, especially for compounds 

with unique MOAs, like daptomycin and nisin. Based on current research, in a calcium-dependent 

manner, daptomycin oligomerizes and displaces phospholipids in the bacterial membrane. 

Daptomycin oligomers assemble into a pore structure that depolarizes the membrane, disrupting 

cell integrity (Pogliano et al., 2012; Silverman et al., 2003; Straus and Hancock, 2006; Zhang et 

al., 2014). However, despite over two decades of research, the exact MOA and stoichiometry of 

daptomycin oligomerization is still debated, illustrating the difficulty in characterizing antibiotics 

that do not target the major biosynthetic pathways. Nisin, on the other hand, exhibits at least two 

MOAs, targeting lipid II, as well as forming pores across the cytoplasmic membrane (Brotz and 

Sahl, 2000). Never-before-seen MOAs can easily convolute target determination of unique 

compounds, and require further experimentation. 
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1.6 Model Organisms 

TOMM natural products are common among bacterial and archaeal species. Here we 

introduce one TOMM producer, Bacillus methylotrophicus FZB42. Chapter 2 will describe the 

genetic context for the TOMM biosynthetic cluster in FZB42, and Chapter 4 will discuss the 

bacterium of most relevance to the determination of its MOA, Bacillus anthracis. 

1.6.1 Bacillus methylotrophicus FZB42 

Bacillus methylotrophicus* FZB42 [previously named Bacillus amyloliquefaciens FZB42 

(Dunlap et al., 2015)] is a Gram-positive, plant growth-promoting bacterium with an impressive 

capacity to produce secondary metabolites with antimicrobial activity (Chen et al., 2007). The 

nonribosomal synthesis of polyketides (bacillaene, difficidin, and macrolactin), lipopeptides 

(surfactin, fengycin, and bacillomycin D), and siderophores (bacillibactin and the product of the 

nrs cluster) are carried out by large gene clusters distributed over the entire genome of FZB42. In 

total, 8.5% of the entire genomic capacity of FZB42 is devoted to the nonribosomal synthesis of 

secondary metabolites, exceeding that of the model Gram-positive bacterium Bacillus subtilis 168 

by more than 2-fold (Chen et al., 2009). Prophage sequences that often harbor RiPP biosynthetic 

gene clusters, of which are common in B. subtilis strains, were not previously detected within the 

FZB42 genome. This finding underscores the diversity of biosynthetic strategies employed by 

FZB42 and offers new possibilities for discovering novel natural products with biomedically 

relevant activities. Specifically, studying the metabolites of soil-dwelling bacteria like FZB42 can 

reveal a number of products that may be useful for combating infectious disease. While most of 

the described natural products from FZB42 are classified as non-ribosomal peptides and 

polyketides, this strain has been recently demonstrated to produce a TOMM which is now 

referred to as plantazolicin (PZN) (Scholz et al., 2011).  
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1.6.2 Bacillus anthracis: disease and differentiation 

Bacillus anthracis is the causative agent of anthrax. Of clear interest to bioterrorism, the 

bacterial spores responsible for the disease can also be encountered by the consumption of 

contaminated meat of grazing livestock or direct contact with infected animals. Preventative 

measures include a variety of bacterial vaccines. Currently, the vaccines used are only 

administered to those with routine exposure (military, veterinarians, researchers), as safety 

concerns and production/storage costs are high (Beierlein and Anderson, 2011; Spencer, 2003). 

The components of the vaccines differ from lot to lot, which may cause complications and 

reactivity after dosage. Furthermore, the vaccines in present circulation are not approved for post-

exposure; therefore, anthrax infections are treated with intense, prolonged antibiotic regimens. A 

60-day course of penicillin, doxycycline, and/or ciprofloxacin is the chosen treatment for the 

most serious manifestation; inhalational anthrax (Inglesby et al., 1999). Antibiotic resistance is a 

logical concern after such prolonged periods of antibiotic treatment, and resistance has been 

documented for the above-mentioned compounds (Brook et al., 2001; Pomerantsev et al., 1992; 

Price et al., 2003). Further, secondary infections like Clostridium difficile-associated diarrhea are 

not uncommon after treatment with quinolones such as ciprofloxacin (Yip et al., 2001). 

Antibiotics, while extremely useful in fighting infections, can actually be harmful to our 

wellbeing due to misuse and overprescribed practices in medical facilities today. We must 

continue to develop and implement new treatment options if we plan to combat these diseases 

while minimizing drug resistance in future generations 

B. anthracis is a Gram-positive bacterium and is a member of the B. cereus sensu lato 

group, which includes B. cereus, B. anthracis, B. thuringiensis, and B. mycoides (Jensen et al., 

2003; Rasko et al., 2005). Microbiologists have debated whether these organisms should be 

considered as one species, given that they can be greater than 99% identical at the DNA level. 

Despite being grouped with other Bacillus species, B. anthracis harbors a number of features that 



10 

set it apart from other members of the B. cereus group. As the causative agent of anthrax and a 

category A priority pathogen, fully virulent B. anthracis contains two conserved plasmids, pXO1 

and pXO2. The genes responsible for producing the anthrax toxin and poly-D-glutamic acid 

capsule are encoded on pXO1 and pXO2, respectively. Importantly though, plasmid content 

cannot be relied upon as a definitive indicator for B. anthracis, as a growing number of B. cereus 

and B. thuringiensis strains are known to carry homologous plasmids (Kolsto et al., 2009; Wright 

et al., 2011). Beyond characteristic plasmid content, B. anthracis, unlike other members of the B. 

cereus group, harbors a nonsense mutation in plcR (phospholipase C regulator), which yields a 

truncated and inactive protein. B. anthracis is therefore devoid of phospholipase C activity, but 

also, owing to the pleiotropic regulation of several other virulence factor genes, plcR dysfunction 

renders B. anthracis non-motile and non-hemolytic (Agaisse et al., 1999).   

Exterior to the cell wall, B. anthracis displays a two-dimensional protein lattice that 

encompasses the entire cell surface. This surface layer (S-layer) is non-covalently attached to the 

cell by lectin-like interactions with a secondary cell wall polysaccharide (SCWP) (Wang et al., 

2013; Zheng et al., 2013), which is covalently tethered to the peptidoglycan and radiates 

outwards. The S-layer is decorated with surface associated proteins in a csaB (cell surface 

attachment)-dependent manner (Mesnage et al., 2000). The B. anthracis SCWP is species-

specific (Choudhury et al., 2006; Weidenmaier and Peschel, 2008) and serves as the binding site 

for gamma (γ) phage (Ganguly et al., 2013; Schuch et al., 2013) and previously described B. 

anthracis typing antibodies (Ezzell et al., 1990). γ phage produces a peptidoglycan hydrolase, 

PlyG, which specifically recognizes the terminal galactoses of the B. anthracis SCWP and 

subsequently hydrolyzes the cell wall (Ganguly et al., 2013). The vast majority of non-B. 

anthracis members within the B. cereus sensu lato group bear terminal glucose moieties in their 

SCWP and thus are resistant to γ phage lysis. However, there exist atypical B. anthracis strains 

which lack the galatose-forming UDP-glucose 4-epimerase. Such B. anthracis strains are resistant 
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to γ phage lysis and would constitute false-negatives in any diagnostic assay based on γ phage 

(Abshire et al., 2005). Additionally, atypical strains of B. cereus exist that encode the galatose-

forming UDP-glucose 4-epimerase, rendering the strain susceptible to γ phage (a false-positive in 

the diagnostic assay) (Hoffmaster et al., 2006). Wip1, another B. anthracis-specific phage, is 

even more selective than γ phage, but yet certain B. cereus strains remain sensitive (Kan et al., 

2013). Similarly taking advantage of differences in the SCWP, the above-mentioned typing 

method uses monoclonal antibodies to the galactose-bearing SCWP. As expected, this assay 

suffers from the same selectivity issues as the γ phage lysis assay (Ezzell et al., 1990).  

1.7 Summary and Outlook 

For more than a century, natural product researchers have extracted thousands of 

structurally complex compounds from living organisms, most of them bacteria. Many of these 

natural products have clinical utility and form the foundation of our modern chemotherapeutic 

arsenal. The most prolific producers of such compounds are soil-dwelling, Gram-positive 

bacteria. Today, antibiotic resistance is on the rise, and the need for antibiotics with novel MOA 

is pressing (Clatworthy et al., 2007).  

TOMMs are a large and expanding category of peptide natural products that are post-

translationally modified to contain heterocycles. A variety of structural scaffolds and chemical 

modifications, installed by conserved tailoring enzymes, endow TOMMs with disparate 

biological activities. A growing number of TOMM natural products have been structurally and 

functionally assessed, but the majority are unknown compounds that have yet to reveal their 

potential utility. In 2008, a predicted TOMM precursor peptide was discovered in Bacillus 

methylotrophicus FZB42. In Chapter 2, we introduce a novel natural compound, a TOMM 

produced by FZB42, referred to as plantazolicin (PZN) and report the initial findings on PZN 

purification and production. We investigate the biosynthetic cluster responsible for the production 

of PZN, and engineer genetic deletions in the native producer to confirm the genes required for 
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biosynthesis, export, and potential self-immunity. In Chapter 2, we begin to explore the 

bioactivity of PZN, screening a panel of Gram-positive and Gram-negative strains for 

antibacterial activity. 

TOMM natural products are characterized by their short unstructured leader peptide that 

undergoes post-translational modification. This endows the peptide with structural rigidity 

(conferred by heterocycle incorporation) and a resultant biological function. At the end of 

Chapter 2, we divulge the precursor peptide sequence of PZN and establish the initial biological 

activity. In Chapter 3, we present the high resolution mass of PZN which, in conjunction with 

tandem MS, NMR, and chemoselective modification, reveals the chemical structure of PZN. 

Bioinformatic analysis of the PZN gene cluster establishes a small family of PZN or PZN-like 

bacterial natural products, demonstrating the potential for compound evolution and chemical 

modification. We further assess the biological activity of PZN, validating the limited spectrum of 

its biological activity. 

Until now, the biological activity of PZN has been only minimally described. In Chapter 

4, we examine the unique specificity of PZN for B. anthracis, the causative agent of anthrax. We 

present a large panel of PZN-treated strains that establish PZN as a B. anthracis specific 

compound at clinically relevant concentrations (1 μg/mL). We investigate the molecular target of 

PZN by assessing the gene expression of B. anthracis upon PZN treatment, as well as analyzing 

the genomic sequences of PZN-resistant B. anthracis mutants. These studies, along with confocal 

localization and synergistic activity with cell envelope-acting antibiotics, provide evidence that 

PZN targets the B. anthracis membrane. 

The current rate of antibiotic discovery is one of many factors hindering our fight in the 

arms race against bacteria. Natural products, which comprise the overwhelming majority of 

antibiotics, are a plentiful source for new medicinal compounds. The reverse genetics discovery 

method has provided a way to tap into this resource by accelerating the identification of new 



13 

compound classes and inspiring ingenious chemical engineering of our existing arsenal. The 

discovery of PZN provides a chemical and biological scaffold to advance natural product research 

as a whole.  
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1.9 Figures 

 

Figure 1.1 | Forward/reverse genetic approaches to natural product discovery. (A) Forward 

natural product discovery begins with bacterial isolation and growth in laboratory culture. 

Bacterial extracts undergo large screens for biological activity, and compounds of interest are 

analyzed for genetic characterization. (B) Reverse natural product discovery utilizes the vast 

genomic sequencing databases in search for specific natural product classes. Compound 

production via the native or heterologous host is followed by compound characterization. The 

genomic sequence alludes to predicted structural scaffolds, simplifying mass spectrometry and 

activity screens. 
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Figure 1.2 | Thiazole/oxazole-modified microcins (TOMMs). (A) Here we depict an example 

of a TOMM biosynthetic gene cluster. (B) An inactive precursor peptide is ribosomally 

synthesized and undergoes chemical installation of heterocycles. First, a cyclodehydratase 

catalyzes the formation of thiazoline/(methyl)oxazoline rings from Cys/Ser/Thr residues in the C-

terminal core region (loss of 18 Daltons). Second, a flavin-dependent dehydrogenase oxidizes the 

heterocycle to afford the thiazole/(methyl)oxazole (additional loss of 2 Daltons, resulting in total 

loss of 20 Daltons). (C) If encoded, ancillary modifications may be incorporated. A protease 

cleaves the N-terminal leader region from the core, resulting in an active compound that is then 

transported to perform its biological activity. 
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CHAPTER II: PLANTAZOLICIN, A NOVEL MICROCIN B17/STREPTOLYSIN S-LIKE 

NATURAL PRODUCT FROM BACILLUS METHYLOTROPHICUS FZB42 

 

This chapter was adapted from Scholz, R., Molohon, K.J., Nachtigall, J., Vater, J., Markley, A.L., 

Sussmuth, R.D., Mitchell, D.A., and Borriss, R. (2011). Copyright © American Society for 

Microbiology, J. Bacteriology, Vol 193, 2011, pp 215-224, doi:10.1128/JB.00784-10. 

 

For this publication, I critically revised the manuscript, figures, and performed the reverse 

transcriptase PCR (RT-PCR, Figure 2.6). 

2.1 Abstract 

Here we report on a novel thiazole/oxazole-modified microcin (TOMM) from Bacillus 

methylotrophicus FZB42, a Gram-positive soil bacterium. This organism is well known for 

stimulating plant growth and biosynthesizing complex small molecules that suppress the growth 

of bacterial and fungal plant pathogens. Similar to microcin B17 and streptolysin S, the TOMM 

from B. methylotrophicus FZB42 undergoes extensive posttranslational modification to become a 

bioactive natural product. Our data show that the modified peptide bears a molecular mass of 

1335 Da and displays antibacterial activity towards closely related Gram-positive bacteria. A 

cluster of twelve genes that covers ~10 kb is essential for the production, modification, export, 

and self immunity of this natural product. We have named this compound plantazolicin (PZN), 

based on the association of several producing organisms with plants and the incorporation of 

azole heterocycles, which derive from Cys, Ser, and Thr residues of the precursor peptide.  

2.2 Introduction 

Bacillus methylotrophicus FZB42 [previously named Bacillus amyloliquefaciens FZB42 

(Dunlap et al., 2015)] is a Gram-positive, plant-growth promoting bacterium with an impressive 

capacity to produce secondary metabolites with antimicrobial activity (Chen et al., 2007). The 

nonribosomal syntheses of polyketides (bacillaene, difficidin, and macrolactin), lipopeptides 

(surfactin, fengycin, and bacillomycin D), and siderophores (bacillibactin and the product of the 

nrs-cluster) are carried out by large gene clusters distributed over the entire genome of B. 
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methylotrophicus FZB42. While these compounds are biosynthesized in a 4’-phosphopantetheine 

transferase (Sfp)-dependent fashion, the production of the antibacterial dipeptide, bacilysin, is 

independent of Sfp (Chen et al., 2009b; Chen et al., 2009c). In total, 8.5% of its entire genomic 

capacity is devoted to the non-ribosomal synthesis of secondary metabolites, exceeding that of the 

model Gram-positive bacterium Bacillus subtilis 168 by more than two-fold (Chen et al., 2009a). 

Prophage sequences that often harbor biosynthetic gene clusters of ribosomally synthesized 

peptides (microcins, lantibiotics/lantipeptides), which are common in B. subtilis strains, were not 

previously detected within the FZB42 genome. However, the presence of antimicrobial 

compound(s) active against sigW mutant strain HB0042 of B. subtilis has been reported. SigW is 

an extracytoplasmic sigma factor that provides intrinsic resistance to antimicrobial compounds 

produced by other Bacilli (Butcher and Helmann, 2006).  

The driving force for the current report was the finding that FZB42 mutant RS6, which is 

deficient in the Sfp-dependent synthesis of lipopeptides, polyketides, and in Sfp-independent 

bacilysin production (Chen et al., 2009c), still produced an antibacterial substance active against 

Bacillus subtilis HB0042. This finding underscores the diversity of biosynthetic strategies 

employed by FZB42 and offers new possibilities to discover novel natural products with 

biomedically relevant activities. Recent genomic analysis of FZB42 revealed a ribosomally 

encoded biosynthetic gene cluster that is conserved among many species across two domains of 

life (Lee et al., 2008). This cluster encodes a small precursor peptide that is posttranslationally 

modified to contain thiazole and (methyl)oxazole heterocycles (Figure 2.1). These rings are 

derived from Cys and Ser/Thr through the action of a trimeric ‘BCD’ synthetase complex, which 

consists of a cyclodehydratase complex (CD) and dehydrogenase (B) (Dunbar et al., 2014; 

Dunbar et al., 2012; Dunbar and Mitchell, 2013; Lee et al., 2008). This mechanism of 

modification is utilized in the biosynthetic pathway for streptolysin S (SLS, Streptococcus 

pyogenes) (Datta et al., 2005), microcin B17 (Li et al., 1996), the patellamides (Schmidt et al., 
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2005), and the thiopeptides (Kelly et al., 2009; Liao et al., 2009; Morris et al., 2009; Wieland 

Brown, 2009). The products of these clusters have been collectively classified as 

thiazole/oxazole-modified microcins (TOMMs) due to their genetic and chemical structure 

conservation (Haft et al., 2010).   

During TOMM biosynthesis, the precursor peptide is bound by the BCD synthetase 

complex through specific motifs within the N-terminal leader sequence (Mitchell et al., 2009; 

Roy et al., 1999). After substrate recognition, heterocycles are synthesized on the C-terminal core 

peptide over two enzymatic steps. The first is carried out by a cyclodehydratase, which converts 

Cys and Ser/Thr residues into the corresponding thiazolines and (methyl)oxazolines. A 

dehydrogenase then oxidizes the ‘azoline’ rings to yield ‘azole’ rings [thiazoles and 

(methyl)oxazoles], resulting in a net loss of 20 Da. The completion of TOMM biosynthesis 

includes the incorporation of ancillary modifications (e.g. dehydrations, methylations, 

macrocyclization, etc.) and leader peptide proteolysis (Datta et al., 2005), (Kelly et al., 2009; 

Liao et al., 2009; Morris et al., 2009; Wieland Brown, 2009). In many cases, the fully mature 

TOMM natural product is then actively exported from the cell through the use of an ABC 

transport system. In this work, we describe the discovery, production, isolation, and initial genetic 

and chemical characterization of a novel TOMM from B. methylotrophicus FZB42. This natural 

product compound has a molecular mass of 1335 Da (cpd1335) and has been named plantazolicin 

(PZN).  

2.3 Results 

2.3.1 MALDI TOF-MS detection of a new metabolite from FZB42 

B. methylotrophicus FZB42 is a prolific producer of antibacterial and antifungal natural 

products. To date, nonribosomally produced peptides, including three antimicrobial lipopeptides 

(surfactin, bacillomycin D, and fengycin), three polyketide antibiotics (bacillaene, difficidin, and 

macrolactin), the antibacterial dipeptide bacilysin, and two siderophores (bacillibactin and the 
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putative product of the nrs- gene cluster) have been identified (Chen et al., 2007). In addition to 

these compounds, small molecule metabolite screening of FZB42 by MALDI-TOF-MS revealed 

a metabolite with a molecular mass of [M+H]
+
 = 1336 Da (Figure 2.2A, cpd1335). The visible 

species at m/z = 1354 Da indicates that this compound also appears in a hydrated form (Figure 

2.2A, +18 Da). This may be attributed to a hydrolysis product given that the +18 Da signal 

progressively dominates after extensive sample manipulation (data not shown). Similar to the 

lipopeptide products, mass spectrometric signals from this compound were detected in surface 

extracts and in the culture filtrate. Based on our previous work on small molecule metabolites 

from FZB42 (Chen et al., 2009a), we surmise that after biosynthesis, cpd1335 is actively 

transported out of the cell. After export, the product presumably accumulates in the peptidoglycan 

layer of FZB42, with a portion being spontaneously released into the culture medium. Thus, we 

set out to determine the biosynthetic origin of cpd1335. 

Previously, we generated a strain of FZB42, dubbed RS6, that is deficient in the 

production of all Sfp-dependent lipopeptides, polyketides, and the Sfp-independent synthesis of 

bacilysin (sfp::ermAM, bac::cm, Table 2.1) (Chen et al., 2009c). We were initially surprised when 

strain RS6 was still capable of producing cpd1335, as assessed by MALDI-TOF-MS (Figure 

2.2B). Clearly, this natural product is not being assembled by typical non-ribosomal machinery, 

such as the non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) biosynthetic 

pathways. This suggested that FZB42 was either assembling cpd1335 using an unrecognized Sfp 

or that cpd1336 was of ribosomal origin (i.e. a bacteriocin). Despite the absence of all known, 

non-ribosomally synthesized secondary metabolites (Chen et al., 2009c), supernatants of the RS6 

mutant strain retained antagonistic activity towards closely related Bacilli, such as B. megaterium, 

B. subtilis 168 (trpC2), and a sigW mutant of B. subtilis designated as strain HB0042 (Table 2.2). 

Butcher and Helmann have reported that the growth of B. subtilis HB0042 was inhibited by an 

unknown substance, a potential bacteriocin, produced by FZB42 (Butcher and Helmann, 2006). 
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Further, BLAST searching returns only one copy of Sfp in the FZB42 genome (Altschul et al., 

1997). These findings led us to favor the hypothesis that cpd1335 was a ribosomally synthesized 

antibacterial substance, which heretofore have not been reported in FZB42. 

2.3.2 Preliminary characterization of cpd1335 

The non-concentrated, cell surface extract of RSpMarA2, the strain which bears a 

mariner transposon insertion in the degU global transcriptional regulator gene (Koumoutsi et al., 

2007), contains significantly higher levels of cpd1335 relative to wild type and the RS6 mutant 

strain (Table 2.1, Figure 2.3A). Due to the elevated production level of cpd1335, strain 

RSpMarA2 was employed for further characterization. The dialyzed surface extract of 

RSpMarA2 was separated by tris-tricine-SDS-PAGE and stained with Coomassie Blue (Figure 

2.4A). While the Coomassie stain was relatively weak, we were able to achieve an improved 

visualization of the peptide-sized band (1-2 kDa) by double staining with Schiff’s reagent after 

oxidation with periodic acid (Figure 2.4B). Periodic acid oxidizes alcohols to aldehydes, which 

then react with Schiff’s reagent (Hardonk and Van, 1964). The band, which presumably contained 

cpd1335 based on electrophoretic migration, was excised for further characterization. After 

extraction from the gel, MALDI-TOF-MS identified m/z = 1354 Da as the most intense ion in the 

monitored mass window (Figure 2.4C), corresponding to the hydrated form [M+H2O+H]
+
 of 

cpd1335. Given that this apparent hydrated product was detected earlier (Figure 2.2), it was not 

surprising that after extensive sample preparation (gel electrophoresis and extraction), the 

hydrated product was the major species. Cpd1335 was found to be growth inhibitory towards 

closely related Gram-positive Bacilli, but no activity was observed towards Gram-negative 

bacteria, such as E. coli K12, Klebsiella terrigena, Erwinia carotovora, and Pseudomonas sp. 

(Table 2.2). 

Solubility profiling of purified cpd1335 revealed that this natural product is extractable 

with chloroform, separable by reverse-phase HPLC-chromatography, and insoluble in water at 
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high concentrations (Figure 2.3). Taken together, our solubility data and production from strain 

RS6 suggest that cpd1335 is a relatively hydrophobic, extensively modified peptide of ribosomal 

origin. 

2.3.3 Bioinformatic assessment of the cpd1335 biosynthetic genes  

Supported by the above preliminary characterization of cpd1335, we performed a 

literature search for small, hydrophobic, modified, antibacterial peptides produced by Gram-

positive bacteria. Research on thiopeptides revealed similar characteristics to cpd1335 (Kelly et 

al., 2009; Liao et al., 2009; Morris et al., 2009; Wieland Brown, 2009). Interestingly, several 

orthologs to the genes involved in thiopeptide biosynthesis can be found clustered in FZB42, 

suggesting that cpd1335 may be synthesized by a related route. Introduction of a spectinomycin 

antibiotic cassette within one of these orthologous genes (RBAM_007480, a putative flavin 

mononucleotide-dependent dehydrogenase) resulted in mutant RS26, which was unable to 

produce cpd1335, as assessed by mass spectrometry (Figure 2.3A). This result strongly suggested 

that cpd1335 was a thiazole/oxazole-modified microcin (TOMM). 

In addition to their similarity to proteins involved in thiopeptide biosynthesis, protein 

BLAST (Altschul et al., 1997) and ClustalW (Thompson, 1994) sequence alignment have 

demonstrated that the FZB42 TOMM biosynthetic proteins also exhibit modest similarity to a 

previously characterized TOMM from Streptococcus pyogenes (Lee et al., 2008). The TOMM 

biosynthetic locus from S. pyogenes is referred to as the sag cluster, for SLS-associated genes. 

SagB (dehydrogenase), SagC and SagD(cyclodehydratase), are homologous to RBAM_007480 

(20% identical, 53% similar) RBAM_007460 (13% identical, 50% similar), and RBAM_007470 

(19% identical, 58% similar), respectively. Also bearing similarity to the SLS biosynthetic cluster 

are RBAM_007490 (SagE, Caax protease; 16% identical, 54% similar), RBAM_007420 (SagG, 

ABC transporter; 15% identical, 53% similar) and RBAM_007430 (SagH, ABC transporter; 22% 

identical, 63% similar) (Datta et al., 2005; Lee et al., 2008). Due to this similarity, we have 
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adopted the sag lettering nomenclature for this biosynthetic cluster (Figure 2.5). Despite the 

genetic similarities between SLS and cpd1335, there is no difference in the hemolytic activity of 

RSpMarA2 (cpd1335 overproducer) and mutant RS26 (devoid of cpd1335 production) on blood 

agar plates using the concentrated, dialysed cell surface extract (Figure 2.3B). This demonstrates 

that cpd1335 is not required for the hemolytic activity of FZB42 and suggests cpd1335 exhibits 

other biological activity. 

2.3.4 Preliminary biological activity for cpd1335  

 It is important to note that although there is remarkable similarity in the genetic 

organization of the TOMM biosynthetic clusters, the chemical structure and biological targets of 

the resultant natural products vary widely (e.g. SLS, cellular membrane; microcin B17, DNA 

gyrase; thiostrepton/thiocillin, 50S ribosome; cyanobactins, anticancer activity). Previous data 

have shown that the specific biological activity of the TOMM product is encoded by the sequence 

of the precursor peptide and that the cyclodehydratase and dehydrogenase are functionally 

redundant (Lee et al., 2008). Although this study has not elucidated the molecular target of 

cpd1335, we have determined that the purified compound is growth inhibitory towards most of 

the Gram-positive Bacilli surveyed, especially B. megaterium and B. subtilis HB0042 (Figure 

2.3C, Table 2.2). Interestingly, extracts of mutant RS26, which do not contain cpd1335, were still 

capable of suppressing the growth of B. subtilis HB0042. This shows that cpd1335 was not solely 

responsible for the specific antibiotic activity previously observed in FZB42 culture fluid 

(Butcher and Helmann, 2006). These results demonstrate that FZB42 biosynthesizes at least one 

additional narrow-spectrum antibiotic, which like cpd1335, is likely synthesized by ribosomes. 

As demonstrated by our mass spectrometry studies (Figure 2.2), cpd1335 requires a 

TOMM-type dehydrogenase for production (Figures 2.1 and 2.5). RBAM_007480 is a sagB-like 

gene, embedded within a cluster of 12 genes involved in the biosynthesis, export, and immunity 

of a posttranslationally modified, hydrophobic natural product (Figure 2.5). The defining feature 
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of all TOMM natural products is the incorporation of Cys- and Ser/Thr-derived heterocycles onto 

a ribosomally synthesized, peptidic backbone. To highlight these suspected modifications, we 

hereafter refer to cpd1335 as plantazolicin (PZN). The PZN biosynthetic 12-gene cluster spans 

nearly 10 kb of the FZB42 chromosome (Figure 2.5). Akin to SLS and microcin B17 production, 

a trimeric thiazole/oxazole BCD synthetase complex is present. Based on similarity to these 

systems, all three genes (pznBCD) will be required for heterocycle formation (pznC, 

RBAM_007460; pznD, RBAM_007470) (Figure 2.5). 

2.3.5 Reverse Transcriptase-PCR 

Transcription of all 12 pzn genes in M9 minimal media was confirmed by RT-PCR 

(Figure 2.6). All amplicons migrated with their expected sizes (Table 2.3). In addition to 

confirming transcription, we also assessed the intergenic regions of the PZN biosynthetic cluster 

to determine if the mRNA was polycistronic. Using the appropriate primers from adjacent genes, 

we determined that the biosynthetic genes are transcribed into two polycistronic mRNAs 

(pznFKGHI and pznJCDBEL) and a monocistronic mRNA for pznA (Figure 2.6). Amplification 

of the region between pznE and pznL resulted in a band that was visible only under extreme 

contrast (data not shown). Numerous attempts to amplify the pznIJ junction were unsuccessful. 

2.3.6 Functional analysis of the PZN gene cluster by gene targeted mutagenesis 

Precursor peptide gene. Like many TOMM clusters, the gene encoding the precursor 

peptide is not annotated as an open reading frame (ORF) in the FZB42 genome (gb CP000560.1) 

(Lee et al., 2008). This gene was identified by a manual ORF search and found to be encoded 

between pznI (RBAM_007440) and pznJ (RBAM_007450) in the opposite direction. Although 

unannotated, this ORF (pznA) bears a robust Shine-Dalgarno sequence, AGGAGG, which is 

found 8 bp upstream of an AUG start codon. pznA is predicted to encode for only 41 amino acids 

(Figure 2.5A), which is 6 shorter than previously reported (Lee et al., 2008). The C-terminal 

region, also known as the core peptide (Oman and van der Donk, 2009), is rich in residues that 
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can be enzymatically cyclized to thiazoles and (methyl)oxazoles (2 Cys, 4 Thr, and 4 Ser). This 

feature is a clear indicator of TOMM precursor peptides (Haft et al., 2010; Lee et al., 2008; 

Wieland Brown, 2009) (Figure 2.1). As expected, the pznA mutant RS32, was also deficient in 

synthesis of PZN (Figure 2.3A, 2.5).  

Operon structure and transcriptional regulation. The pzn biosynthetic gene cluster is 

partitioned into three sections. The first operon (pznFKGHI) consists of genes predicted to be 

involved in immunity, regulation, and transport (Figure 2.5). The product of pznK 

(RBAM_007410) is related to homodimeric repressor proteins of the ArsR family (Busenlehner et 

al., 2003). This protein possibly regulates the expression of other pzn genes through an 

unexplored mechanism. The second operon (pznJCDBEL) harbors the genes encoding for the 

enzymes responsible for converting the inactive PznA precursor peptide into the mature, bioactive 

natural product. A summary of the putative function of the members of the pzn gene cluster in B. 

methylotrophicus FZB42 is given in Figure 2.5B. 

Enzymatic processing of PznA. The enzymes dedicated to the modification and 

processing of the PznA precursor peptide are encoded by the second operon of the PZN 

biosynthetic cluster (pznJCDBEL) (Figure 2.5). The function of the first gene, pznJ, is not known; 

however, uncharacterized orthologs can also be found in two plant-associated, Gram-positive 

organisms, Bacillus pumilus and Clavibacter michiganensis. In the latter organism, pznJ is 

annotated as a putative hydroxylase. Sequence analysis and literature searching fail to 

substantiate this designation. As with the creation of other mutant strains, we applied the splicing 

by overlapping extension (SOE) method (Horton et al., 1990) to replace pznJ with a 

spectinomycin resistance gene. The resulting mutant, RS28, did not produce PZN (Figures 2.3A 

and 2.5), demonstrating that PznJ plays a vital biosynthetic role.  

Based on sequence alignment, PznC is related to the TOMM cyclodehydratase present in 

S. pyogenes, SagC. Previous research on SagC revealed its importance in substrate (SagA) 
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recognition, in addition to its ability to catalyze the peptide backbone cyclization of Cys, Ser, and 

Thr residues (Mitchell et al., 2009). Based on this information, we generated a mutant interrupted 

in pznC, RS31 (Table 2.1). As expected, this mutant does not produce PZN (Figure 2.3A). We did 

not prepare a deletion mutant of pznD (RBAM_007470) or pznE (RBAM_007490). PznD is 

highly similar to SagD from the SLS biosynthetic cluster and contains the ATP binding domain 

necessary for heterocycle formation (Dunbar et al., 2014; Dunbar et al., 2012; Dunbar and 

Mitchell, 2013). Therefore, PznD is expected to be of significant importance in the maturation 

process of PznA. PznE belongs to the type II Caax protease family (Pei and Grishin, 2001). As 

predicted by OCTOPUS (Viklund and Elofsson, 2008), PznE contains 4 transmembrane domains, 

similar to the type II Caax proteases from S. pyogenes, C. botulinum, S. aureus, and L. 

monocytogenes (Lee et al., 2008). We hypothesize that this protein will function as a leader 

peptidase, proteolytically processing the PznA peptide at PMAA/R (Figure 2.5A). Two arguments 

supporting this site as the putative leader peptide processing site are: i. cleavage between or 

before the Ala residues is unlikely given the molecular mass of the resultant peptide and the 

number of modifiable residues, and ii. bacteriocin leader peptides are most often processed after a 

Gly-Gly sequence, but other small residues, such as Ser and Ala, can be found directly N-terminal 

to the scissile bond (Dirix et al., 2004; Oman and van der Donk, 2009; van Belkum et al., 1997).  

The product of the last gene within the cluster, PznL (RBAM_007500), was identified by 

sequence analysis to be a S-adenosylmethionine (SAM)-dependent methyltransferase (Figure 

2.5). Mutant RS33, devoid in pznL (Table 2.1), produced a compound with m/z = 1308.5 Da, 

indicating a loss of 28 Da relative to wild type. Based on this data, PznL is responsible for the 

transfer of two methyl groups to PZN [CH3 = 15 Da; (2 x 15) – 2H = 28 Da] (Figure 2.3A, right 

inset). 

Natural product export and immunity. As mentioned above, pznG (RBAM_007420) and 

pznH (RBAM_007430) are homologous to ABC transporters, with PznG being responsible for 
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binding ATP and PznH carrying out the permease activity. ABC transporters are common 

constituents of TOMM biosynthetic gene clusters and are present across many taxa of bacteria 

and archaea (Lee et al., 2008). The function of the pznF (RBAM_007400) and pznI 

(RBAM_007440) gene products are more convoluted. It has previously been hypothesized that 

one or both of these gene products could be involved in self-immunity of FZB42 against PZN 

(Lee et al., 2008). While a protein BLAST database search on PznF yields homology to putative 

membrane proteins, PznI is annotated as a pentapeptide repeat protein. Research on other proteins 

of the pentapeptide repeat family has revealed that they play important signaling roles via 

coordinating protein-protein interactions (Vetting et al., 2006) and also can confer resistance to 

quinolone antibiotics (Rodriguez-Martinez et al., 2009). To address their potential role in PZN 

production/immunity, the pznI and pznF genes were individually replaced with the spectinomycin 

resistance gene. Although both of these mutants were still able to produce PZN (Figure 2.3A), 

they displayed different growth characteristics. Neither mutant exhibited visible growth defects 

during growth on LB agar plates. In liquid LB media, the pznI mutant (RS27) growth curve was 

indistinguishable from the background strain (RS6). However, the pznF mutant (RS29) displayed 

markedly different growth behavior. Upon reaching a maximum culture density, which was equal 

to that of RS6, RS29 appeared to undergo lysis instead of maintaining a high culture density 

(Figure 2.3D). Mature PZN is present at sufficient quantity to be detected by MALDI mass 

spectrometry during the early stationary growth phase (Figure 2.2), but not at earlier time points 

(data not shown). This suggests that the pznF mutant is more susceptible to the actions of an 

antimicrobial compound produced in higher abundance during later growth phases. Upon treating 

RS6 and RS29 with purified PZN, a larger zone of inhibition was visible for the RS29 strain, 

confirming that the above growth phenotype was indeed PZN-dependent (data not shown). Given 

the observation that FZB42 requires an immunity gene (pznF) for fully competent growth, and  
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that PZN exhibits activity against only select Gram-positive bacteria (Table 2.2), we conclude 

that PZN acts as a narrow spectrum antibacterial compound.  

2.4 Summary and Outlook 

A novel, antibacterial, microcin B17/streptolysin-like compound with a molecular mass 

[M+H]
+
 of 1336 Da (plantazolicin, PZN) was identified in culture supernatant and cell surface 

extract from B. methylotrophicus FZB42. We postulate that the core peptide consists of 14 amino 

acids (RCTCTTIISSSSTF), 10 of which potentially serve as a site of heterocycle formation (Cys, 

Ser/Thr). Although we have not yet ascertained the precise chemical structure of PZN, supportive 

evidence is available that demonstrates this natural product undergoes extensive posttranslational 

modification (Figures 2.2-2.4). Numerous attempts to elucidate the structure of PZN by LC ESI-

MS/MS (tandem) analysis showed an unusually incomplete fragmentation pattern (data not 

shown). Such tandem MS analysis (i.e. collision-induced dissociation) tends to fragment parent 

ions at the amide bond, leading to a series of ions containing the N-terminus (b ion series) and the 

C-terminus (y ion series). If contiguous heterocycles were indeed formed on adjacent residues of 

PznA, an incomplete tandem spectrum would be the expected outcome. A full structural 

elucidation of PZN by other spectroscopic methods is currently underway and will be the subject 

of a future publication. 

A previous bioinformatics survey revealed modest similarity of a putative biosynthetic 

locus from FZB42 with the streptolysin S (SLS) biosynthetic operon from Streptococcus 

pyogenes (Lee et al., 2008). Genes from this operon are designated as SLS-associated genes 

(sag), of which there are a total of 9 (sagA-I). Related gene clusters have been widely 

disseminated among bacteria and archaea. The genetic and biochemical conservation within this 

particular natural product family has led to a new classification of small, highly modified 

bacteriocins, the thiazole/oxazole-modified microcins (TOMMs) (Haft et al., 2010; Lee et al., 

2008). Genetic ablation of RBAM_007480, a gene homologous to sagB, resulted in the inability 
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of FZB42 to synthesize PZN (Figure 2.3). Thus, the FZB42 TOMM cluster appeared to be 

responsible for the synthesis of PZN. Analysis of the local genomic context of RBAM_007480 

identified a 12-gene biosynthetic cluster, encoding hypothetical genes involved in the TOMM 

biosynthesis, immunity, and export (Figure 2.5). The TOMM precursor gene, pznA, encodes a 

small peptide consisting of 41 amino acids. Like pznB (the sagB ortholog), deletion of pznA, 

among other essential genes (e.g. pznC), abolishes the production of PZN. After PznBCD-

dependent heterocycle formation, dimethylation (PznL), and N-terminal processing by a protease, 

(possibly PznE), the core peptide of modified PznA is secreted into the exterior environment via 

the ABC transporters, PznG and PznH. In addition to establishing the order and location of all 

posttranslational events, the biosynthetic role of the requisite PznJ protein is also under 

investigation in our laboratory. 

Several gene clusters encoding TOMMs have been detected in the genomes of plant-

associated bacteria, such as Bradyrhizobium japonicum, Pseudomonas putida, and Clavibacter 

michiganensis (Lee et al., 2008). Performing a protein BLAST search using each PZN gene 

product as the query sequence returns orthologous protein matches from Bacillus pumilus ATCC 

7061 as the top hit after FZB42 itself. The thiazole/oxazole synthetase proteins (PznBCD) from 

B. pumilis (protein IDs: EDW22765.1, EDW22903.1, and EDW23125.1, respectively) 

demonstrated a remarkable degree of amino acid identity to those from FZB42 (PznB, 77%; 

PznC, 63%, and PznD, 82%). Moreover, the pzn genes from B. pumilis are found clustered and in 

identical order to that found in FZB42. Also like FZB42, B. pumilis is a plant saprophyte that 

produces an array of antibacterial and antifungal natural products (Choudhary and Johri, 2009). 

Further, the PznA core peptide sequences from FZB42 and B. pumilis (unannotated, located 

between EDW23486.1 and EDW22932.1) are 100% identical. Taken together, we predict that B. 

pumilis is also a PZN producer.  
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Interestingly, the pzn gene cluster was absent from the genome of B. amyloliquefaciens 

type strain DSM7
T 

(EMBL identifier FN597644), a non-plant-associated bacterium. It is plausible 

that the pzn gene cluster in FZB42 has been horizontally transferred between members of the 

plant rhizosphere. To bolster this possibility, we performed a protein BLAST search of three draft 

genomes of plant-associated B. methylotrophicus strains, which became recently available 

(Borriss et al., 2010). Within the B. methylotrophicus CAU-B946 genome, we found the complete 

12-gene PZN biosynthetic cluster, displaying 95-100% amino acid identity with that of FZB42. 

The genomes of strains B. methylotrophicus YAU-Y2 and NAU-B3 did not possess the complete 

set of genes for the PZN cluster, but did harbor a portion of the immunity/transport operon, 

pznFKGH. These genes displayed 95-100% identity with the corresponding genes from FZB42. 

Although the YAU-Y2 and NAU-B3 genomes lack an intact PZN biosynthetic cluster, the genetic 

composition of these strains implies that the plant-associated members of the B. methylotrophicus 

(plantarum) taxon are at least immune towards, and/or capable of de novo synthesis of PZN.  

A detailed biological function for PZN has yet to be established. Unlike some TOMMs, a 

functional prediction cannot reliably be made based on the sequence of pznA due to its lack of 

homology to other TOMM precursors with known functions. In other words, TOMM precursor 

peptides similar in sequence to SagA are cytolysins (Cotter et al., 2008; Mitchell et al., 2009), 

while unrelated sequences do not encode cytolytic activity (i.e. the precursors for microcin B17, 

patellamides, thiostrepton, etc.). Our preliminary results demonstrate that PZN functions as a 

narrow-spectrum, antibacterial compound. Presumably, this natural product is meant to suppress 

the growth of taxonomically related competitors within the plant rhizosphere. Independent of 

function, PZN should be highly protected from degradation by peptidases within the plant 

rhizosphere due to an extensive degree of modification. 
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2.5 Experimental 

2.5.1 Strain construction 

The B. methylotrophicus strains and plasmids used in this study are summarized in Table 

2.1. Bacillus and indicator strains were cultivated routinely on Luria-Bertani broth (LB) medium 

solidified with 1.5% agar. For production of PZN, a medium containing: 40 g soy peptone, 40 g 

dextrin 10, 1.8 g KH2PO4, 4.5 g K2HPO4, 0.3 g MgSO4 x 7 H2O, and 0.2 ml KellyT trace metal 

solution per L was used. KellyT trace metal solution: 25 mg EDTA disodium salt dihydrate, 0.5 g 

ZnSO4 x 7 H2O, 3.67 g CaCl2 x 2 H2O, 1.25 g MnCl2 x 4 H2O, 0.25 g CoCl2 x 6 H2O, 0.25 g 

ammonium molybdate, 2.5 g FeSO4 x 7H2O, 0.1 g CuSO4 x 5 H2O; adjust to pH 6 with NaOH, 

500 ml H2O. 

The media and buffers used for DNA transformation of Bacillus cells were prepared 

according to Kunst and Rapoport (Kunst, 1995). Competent cells were prepared as previously 

described (Koumoutsi et al., 2004). Mutants were obtained after transformation of the FZB42 

derivatives with linearized, integrative plasmids containing resistance cassettes flanked by DNA 

regions homologous to the FZB42 chromosome. The oligonucleotides used for strain construction 

are listed in Table 2.3. Spectinomycin (90 µg/ml) was used for selecting transformants. Gene 

interruption strains were obtained as follows: PznB RS26: A 2.7 kb PCR fragment was amplified 

from FZB42 chromosomal DNA using primers pznB-fw and pznB-rv. The fragment was then 

cloned into pGEM-T, yielding plasmid pRS26a. Plasmid pRS26b was obtained by insertion of a 

spectinomycin resistance cassette, which was subcloned by PCR using the spc-fw and spc-rv 

primers and the pIC333 plasmid as a template. The cassette was placed into the central region of 

the insert and digested with BglII and BamHI. PznC RS31: With primers pznC-fw and pznC-rv, a 

2.6 kb fragment containing pznC was amplified by PCR and cloned into vector pGEM-T-Easy 

yielding plasmid pRS31a. A central fragment of the insert was removed by digestion with 

Eco105I and replaced with the spectinomycin resistance cassette, yielding pRS31b. PznA RS32: 
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With primers 007400cst-fw and 007400cst-rv, a 2.3 kb fragment encoding the unannotated 

precursor peptide, pznA, was amplified by PCR and cloned into vector pGEM-T-Easy, yielding 

plasmid pRS32a. The precursor peptide gene was cleaved by Bsp1407I and interrupted by 

insertion of a spectinomycin resistance cassette, yielding pRS32b.  

The mutants RS27, RS28, RS29 and RS33 were generated by gene splicing using the 

overlapping extension (SOE) method (Horton et al., 1990). This method assists in avoiding 

possible polar effects caused by interrupted reading frames. SOE PCR fusion products were 

generated using the primers listed in Table 2.3 and the spectinomycin gene of pIC333. A-tailing 

of the Pfu-PCR product was performed according to the Promega pGEM-T protocol and ligated 

into pGEM-T yielding pRS27, pRS28 and pRS29. For mutant RS33, the PCR product was used 

directly for transformation. 

Mutant RSpMarA2 was isolated from a mariner-based (pMarA) transposon library 

prepared in strain CH5 according to Breton et al. (Le Breton et al., 2006). In this transposon 

mutant, pMarA was integrated into the degU gene, which is a global transcriptional regulator that 

activates the bacillomycin D promoter (Koumoutsi et al., 2007). Coincidentally, we observed by 

HPLC-ESI-MS that PZN is overproduced by this strain (Figure 2.3A). 

2.5.2 Bioassay 

LB-Agar (20 ml) was mixed with 0.5 ml of the indicator strain (OD600 ~1.0). 10 µl of 

purified PZN suspended in water was spotted on the agar and incubated for 16 h at 22 °C. The 

growth suppression activity of PZN was observed as clear zone. 

2.5.3 Cell surface extract 

The extract was prepared in the following way: Cells of strain RSpMarA2 and RS26 were 

grown using production media containing 1.5% agar for 24 h at 37 °C. Cells were removed from 

the plates and treated with 50 ml of 70% acetonitrile : 30% water with 0.1% formic acid. After 

centrifugation (7000 rpm, 20 min, 22 °C), the extract was passed through a 0.45 µm filter and 
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concentrated to 2 ml using a rotary evaporator. The extract was dialyzed overnight against 5 L 

distilled water using a 1 kDa membrane (Zellutrans V, Roth).  

2.5.4 HPLC-ESI-MS 

 Bacterial strains were grown for 24 h at 37 °C on solid production media containing 1.5% 

agar. One square centimeter of the bacterial lawn culture was extracted with 50 µl of 70% 

acetonitrile : 30% water with 0.1% formic acid for 30 s with vortexing. After centrifugation 

(14,000 rpm, 5 min) the solution was analyzed by an online HPLC (1100 series HPLC system, 

Agilent Technologies) coupled to a QTRAP 2000 mass spectrometer (Applied Biosystems). A 

sample of extract (4 µl) was separated by HPLC using a Luna C18 100Å 50 x 1 mm column 

(Phenomenex) at a flow rate of 60 µl/min and a linear gradient of 5% to 100% acetonitrile with 

0.1% formic acid in 10 min. MS analysis was performed in positive ion mode. MS settings: mass 

window was from 500 - 1400 Da, ion spray voltage was 4500, and ion source temperature was 

300 °C. 

2.5.5 Purification of cpd1335 

A cell surface extract from a 250 ml culture of strain RSpMarA2 was collected using the 

previous method. During concentration under reduced pressure, cpd1335 precipitated. The 

precipitate was washed 3 times with deionized water, resulting in crude, desalted cpd1335. Pure 

cpd1335 was obtained using RP-HPLC (Grom-Sil ODS-5 ST, 20 x 250 mm, Alltech-Grom, 

Rottenburg-Hailfingen) with a linear gradient elution of 40 - 70% aqueous acetonitrile with 0.1% 

v/v formic acid over 40 min at a flow rate of 15 ml/min. 

2.5.6 MALDI-TOF mass spectrometric analysis 

Strains were grown for 16 h at 37 °C on production media solidified with 1.5% agar. For 

preparation of surface extracts, colonies were picked from the agar plates and extracted by 

vortexing for 30 sec with 50 µl 70% acetonitrile : 30% water with 0.1% formic acid. MALDI-

TOF mass spectra were recorded using a Bruker Autoflex MALDI-TOF instrument containing a 
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337 nm nitrogen laser for desorption and ionization. 2 µl samples were mixed with the same 

volume of matrix solution (a saturated solution of -cyano-4-hydroxycinnamic acid in 50% 

aqueous acetonitrile containing 0.1% v/v trifluoroacetic acid), spotted on the target, air-dried, and 

measured as described previously (Vater et al., 2002). Spectra were obtained by positive ion 

detection and reflector mode MS. 

2.5.7 RT-PCR 

Total RNA was isolated with the Qiagen RNeasy Mini Kit. Cells (1.0 OD600) were 

harvested from M9 minimal media supplemented with BME vitamin mix (Cat. No. B6891) and 

ATCC trace mineral solution (Cat. No. MD-TMS) and treated with the Qiagen RNAprotect 

Bacteria Reagent. Harvested cells were resuspended in 250 μl of 10 mM tris (pH 8.5) with 15 

mg/ml lysozyme and 5 μl proteinase K (20 mg/ml) and digested for 1 h at 22 °C with gentle 

agitation. A DNase I digestion was performed for pznE and pznL using the Qiagen RNase Free 

DNase set. DNase I (7 µl) and RDD DNA digest buffer (7 µl) were used to hydrolyze 

contaminating DNA for 20 min at 22 °C. The RNA isolation protocol was then followed to 

manufacturer’s instructions.  To minimize background, a DNase I digestion (5 µl) was executed 

to the RNA samples and placed at 37 °C for 20 min. Note that this was the second DNase I digest 

for pznE and pznL. Samples were column purified using the RNA cleanup protocol in the RNeasy 

Mini Handbook (Qiagen). Digestion and cleanup were repeated for all RNA samples, excluding 

those used to analyze pznE and pznL. cDNA was prepared with commercially available RT-PCR 

kits using 1 µg of RNA and the primers listed in Table 2.3. 

2.5.8 Tris-Tricine SDS-PAGE 

Gels (18%) were prepared according to Schägger and Jagow (Schägger and von Jagow, 

1987)  with water instead of glycerol and without a spacer gel. Cellular extracts (100 µl) were 

mixed with 5x SDS sample buffer  (20 µl) and then heated at 100 °C for 5 min prior to gel 

loading, along with a Ultra-low Range Molecular Weight Marker (Sigma). The peptides were 
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separated by low current (30 mA) electrophoresis. The gel was subsequently washed with 

destaining solution (10 ml ethanol, 10 ml acetic acid, 50 ml water) for 20 min (x3), and in 

deionized water for 20 min (x3). The gel was stained with Coomassie (EZBlue, Sigma) and/or 

Schiff’s reagent (Sigma) after 1 h oxidation with 0.7% v/v periodic acid. The Coomassie stained 

band was excised from the gel and extracted with 50 µl 70% acetonitrile:30% water with 0.1% 

v/v formic acid for 24 h. The supernatant was used for MALDI-TOF MS measurement. 
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2.7 Figures 

 

Figure 2.1 | Thiazole/oxazole-modified microcin (TOMM) biosynthesis. Through the action of 

a trimeric “BCD” complex, consisting of a cyclodehydratase (CD, green/blue), dehydrogenase 

(B, yellow), thiazoles and (methyl)oxazoles are incorporated onto a peptidic scaffold (black). 

These heterocycles are synthesized from serine/threonine (X = O; R = H/CH3) and cysteine (X = 

S; R = H) residues of the inactive precursor peptide and yield a bioactive natural product. The 

chemical transformations carried out by the cyclodehydratase and the dehydrogenase are shown, 

along with the corresponding mass change from the parent peptide in Daltons. 
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Figure 2.2 | MALDI-TOF mass spectra of B. methylotrophicus surface extracts. The samples 

were prepared from FZB42 (A) and RS6 (B) cells. Surface extracts were prepared and measured 

as described in the Material and Methods section. Peaks at 1336.8 [M+H]
+
, 1354.8 [M+H2O+H]

+
, 

1358.8 [M+Na]
+
, and 1374.8 [M+K]

+
 Da indicate the presence of PZN in the wild type strain, and 

in the Δsfp/ Δbac mutant strain, RS6.  

  



45 

 

Figure 2.3 | Effect of mutations in the pzn gene cluster on biological activity. (A) Extracted 

ion chromatogram of PZN ([M+H]
+
 1336 Da) of FZB42 and mutant strains. This compound (m/z 

= 1336.6 Da, left inset) is synthesized by wild-type FZB42, and by the mutant strains RS6 (Δsfp/ 

Δbac), RS27, and RS29. RSpMarA2 (ΔdegU) overproduces PZN. Strains RS26, RS28, RS31, 

and RS32 were deficient in PZN production. Strain RS33 (right inset) produced a compound with 

m/z = 1308.5 Da, suggesting the loss of two methyl groups (-H2 + C2H6, -28 Da). (B) Hemolytic 

activity of 100 µl extract from RSpMarA2 and RS26 on blood-agar plates. (C) Antibacterial 

activity of PZN. Left: HPLC purified PZN (10 µl of 100 µg/µl suspended in water) was spotted 

onto an agar plate of B. subtilis HB0042 (sigW null) and incubated for 16 h to assess growth 

inhibition. Right: 10 µl of water (negative control). (D) Growth curves of strains RS6 and pznF 

mutant RS29. After approximately 20 h of growth, the RS29 culture density is 9 log units lower 

than RS6. 
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Figure 2.4 | Characterization of cell surface extract. Samples were prepared from RSpMarA2 

and separated by 18% tris-tricine SDS-PAGE stained with either Coomassie EZBlue (A) or 

double-stained with Coomassie EZBlue and Schiff’s reagent (B). M: size marker; 1-5: 1 µL, 2 

µL, 5 µL, 10µL and 20 µL surface extract. (C) MALDI-TOF mass spectrum of the hydrated form 

of PZN (m/z: 1336 + 18 = 1354 Da) obtained by excising the peptide band from the tris-tricine 

SDS-PAGE gel.  

  



47 

 
Figure 2.5 | Plantazolicin gene cluster. (A) FZB42 PZN gene cluster (9892 bp) and amino acid 

sequence of the precursor peptide. (-) putative leader peptide processing site. (B) Proposed 

function of individual PZN genes. Upon deletion of pznF and pznI, cpd1336 (PZN) was detected 

by mass spectrometry. Deletion of pznL resulted in desmethyl PZN (m/z = 1308 Da) while 

individual inactivation of all other tested genes (pznABCJ) did not produce PZN. The functions of 

pznF, pznI, and pznJ require further exploration, but preliminary data suggests that pznF plays a 

role in immunity, pznI encodes a pentapeptide repeat protein, and pznJ is required for PZN 

maturation. 
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Figure 2.6 | RT-PCR reveals polycistronic mRNAs. Reverse transcriptase PCR was performed 

using 1 μg of FZB42 RNA isolated from stationary phase using a commercially available kit. 

PCR products were analyzed in comparison to a negative control lacking reverse transcriptase (-

RT). (A) All genes in the putative PZN cluster are transcribed under the culturing conditions 

employed.  Cells (1.0 OD600) were removed from a stationary culture growing at 37 °C 24 h after 

inoculation. Total RNA was isolated and converted to cDNA by RT-PCR.  cDNA (500 ng) was 

added to each reaction, excluding pznE and pznL (750 ng each). Gene fragments were then 

amplified using specific primers and PCR. Amplicons were assessed by separation on 1.1% 

agarose gels containing ethidium bromide and visualized by UV illumination. (B) Amplification 

of adjacent pzn genes reveals polycistronic mRNA. Not shown: junction A-J did not reveal a 

significant band; junction E-L was visible under extreme contrast. All amplicons migrate with 

their expected sizes. 
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2.8 Tables 

Table 2.1 | Bacterial strains and plasmids used in this study 

Strains  Description Source / reference 

Bacillus subtilis  

DSM10
T
 168, trpC2, type strain  DSMZ 

Braunschweig 

CU1065 168, trpC2 attSPβ (Butcher and 

Helmann, 2006) 

(Butcher and 

Helmann, 2006) 

HB0042 168, trpC2 attSPβ sigW::kan 

Bacillus megaterium 

7A/1 Indicator strain for polyketides Laboratory stock 

Bacillus methylotrophicus  

FZB42 Wild type (Idriss et al., 2002) 

CH5 FZB42 sfp::ermAM yczE::cm (Chen, 2009) 

RSpMarA2 Insertion of pMarA in CH5: degU::kan this work 

RS6 sfp::ermAM, bac::cmR, deficient in 

lipopeptides, polyketides and bacilysin 

(Chen et al., 2009c) 

RS26 (ΔpznB) RS6 ΔRBAM_007480::spc does not produce 

PZN 

this work 

RS27 (ΔpznI) RS6 ΔRBAM_007440::spc produces PZN this work 

RS28 (ΔpznJ) RS6 ΔRBAM_007450::spc does not produce 

PZN 

this work 

RS29 (ΔpznF) RS6 ΔRBAM_007400::spc produces PZN this work 

RS31 (ΔpznC) RS6 ΔRBAM_007460::spc does not produce 

PZN 

this work 

RS32 (ΔpznA) RS6 ΔpznA::spc does not produce PZN this work 

RS33 (ΔpznL) RS6 ΔRBAM_007500::spc produces 

desmethyl-PZN, 1308 Da 

this work 

Plasmids  

pGEM-T Ap
r
, lacZ` Promega 

pMarA plasmid containing mariner transposon 

TnYLB-1 

(Le Breton et al., 

2006) 

pIC333 plasmid with spc cassette  T. Msadek, Institute 

Pasteur, Paris, 

France 

pRS26a pGEM-T with 2700bp pznB this work 

pRS26b pGEM-T with pznB::spc this work 

pRS27 

 

pRS28 

 

pRS29 

 

pRS31a 

pGEM-T with SOE fusion-product 

RBAM_007440/spc 

pGEM-T with SOE fusion-product 

RBAM_007450/spc 

pGEM-T with SOE fusion-product 

RBAM_007400/spc 

pGEM-T with 2600 bp pznC 

this work 

 

this work 

 

this work 

 

this work 

pRS31b pGEM-T with pznC::spc this work 

pRS32a pGEM-T with 2300 bp flanking region pznA this work 

pRS32b pGEM-T with pznA::spc this work 
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Table 2.2 | Activity spectrum of plantazolicin 

Indicator strain Result
a
 Source or reference

b
 

Bacillus brevis ATCC8246 + ATCC 

Bacillus subtilis 168 + (Butcher and Helmann, 

2006) 

Bacillus cereus ATCC14579 + ATCC 

Bacillus licheniformis ATCC9789 + ATCC 

Micrococcus luteus + Laboratory collection 

Bacillus pumilus - Laboratory collection 

Bacillus subtilis CU1065 + (Butcher and Helmann, 

2006) 

Bacillus subtilis HB0042 ++ (Butcher and Helmann, 

2006) 

Bacillus sphaericus + Laboratory collection 

Paenibacillus polymyxa - Laboratory collection 

Paenibacillus granivorans + Laboratory collection 

Bacillus megaterium  7A1 ++ Laboratory collection 

Arthrobacter sp. - Laboratory collection 

Staphylococcus aureus - Laboratory collection 

E. coli K12 - Laboratory collection 

Klebsiella terrigena - Laboratory collection 

Pseudomonas sp. - Laboratory collection 

Erwinia caratovora - Laboratory collection 
a
 Degree of inhibition in a bioassay: ++: inhibition; +: weak inhibition; -: no inhibition 

b
 ATCC: 

American Type Culture Collection 
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Table 2.3 | Oligonucleotides used for gene replacement and SOE PCR 

Oligonucleotide Sequence (5’ to  3’) 

Spectinomycin resistance cassette 

Spc-fw CTCAGTGGAACGAAAACTCACG 

Spc-rv TAAGGTGGATACACATCTTGTC 

pRS26a/b 
 

pznB-fw ATCCATATCGCCAATCATACGG 

pznB-rv GGAATCAATACCTGTCAGTTCG 

pRS31a/b 
 

pznD-fw ATTGACTAGGAGGTATTGGACG 

pznD-rv TTCTATTGAATAGGAGGAGGCG 

pRS32a/b 
 

007400cst-fw TGGAATGCTCTTTCCGCAGTAC 

007400cst-rv GTAACTCTGTTTCCACGTAACC 

SOE PCR 
 

7400 rv TCTTCATCACGCAAATCAGTGC 

7400 fw CCGCATAAACGGGAATTGGAAG 

Spc in 7410  
TCTATAGAAACTTCTCTCAATTAGAA

AAGAAAAGGGCAAGGAAATGAG 

7410 in spc  
ACTCATTTCCTTGCCCTTTTCTTTTCT

AATTGAGAGAAGTTTCTATAG 

Start in spc  
CTTTGTAAAAAGAGGAGCCTGTCTTA

TGAGCAATTTGATTAACGG 

Spc in start  
TTTTTCCGTTAATCAAATTGCTCATA

AGACAGGCTCCTCTTTTTACAAAG 

7430 in spc  
GCTGGGACTAAAAGGAGAGCGGGAA

ATGAGCAATTTGATTAACGG 

Spc in ORF2  
TTCTATAGAAACTTCTCTCAATTAGA

TTTAATATAAAGAAGCATAGACC 

Spc in 7430  
TTTTTCCGTTAATCAAATTGCTCATTT

CCCGCTCTCCTTTTAGTCCCAGC 

ORF2 in spc  
TGGTCTATGCTTCTTTATATTAAATCT

AATTGAGAGAAGTTTCTATAG 

7440 rv TCACGTCCAATACCTCCTAGTC 

7440 fw ATCGACAGAGGGCAGATTATCG 

ORF2 in spc for 7450 fw 
GATTATTGACTAGGAGGTATTGGACA

TGAGCAATTTGATTAACGG 

7460 in spc for 7450 rv 
GTTTGTTGAGACATCTGTATTCCTCC

CTAATTGAGAGAAGTTTCTATAG 

7450 rv TAATGTCGTCCATTTACTCACC 

7450 fw TTGGCTCGAATAAATGTTGACC 
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Table 2.3 (continued) 

Spc in ORF2 for 7450 rv 
TTTTTCCGTTAATCAAATTGCTCATGT

CCAATACCTCCTAGTCAATAATC 

Spc in 7460 for 7450 fw 
TTCTATAGAAACTTCTCTCAATTAGG

GAGGAATACAGATGTCTCAACAAAC 

End in spc for 7500 rv 
CGCTTAGACCCTAAAGATATACTTTC

TCTAATTGAGAGAAGTTTCTATAG 

7490 in spc for 7500 fw 
AACTCTTTGGAGGTGTCACAGTTATA

TGAGCAATTTGATTAACGG 

7500 fw AAGGTCCTAGACGCCCTATTCC 

7500 rv GATGTGTAGTTTTCAACGCTCG 

Spc in end for 7500 fw 
CTATAGAAACTTCTCTCAATTAGAGA

AAGTATATCTTTAGGGTCTAAGCG 

Spc in 7490 for 7500 rv 
CCGTTAATCAAATTGCTCATATAACT

GTGACACCTCCAAAGAGTTTACC 

RT-PCR 
 

pznF-fw GGATTATTGCGTACTCCGTTTC 

pznF-rv CTGCCTCCGCCAATAAATG 

pznK-fw ATGCCAAAGTACGGTTGGG 

pznK-rv CTCCTTGTAGGCTGCTTTCC 

pznG-fw CCACAGGATATCAGCCTTGAAG 

pznG-rv CGATAATCTGCCCTCTGTCG 

pznH-fw CGCTCGCTCAAATTGAAACG 

pznH-rv ACAACAACCCACAGATACGC 

pznI-fw TAGCCTGGAAGCAGAGGGTA 

pznI-rv ACTTTTGGCAGGTGACAACC 

pznA-fw GGAGGAGGTAACAATTATGACTCAA 

pznA-rv GGTACAGGTACAGCGTGCAG 

pznJ-fw TTGGATATCGGAATCGAGTTG 

pznJ-rv CGGATGCCCAATTATCTGTT 

pznC-fw TCATGTCCCTTGGTTGTGTG 

pznC-rv GCCGTGATACCATACTTGAGG 

pznD-fw CGCGATGTAGATGACGTTTG 

pznD-rv GATTGGCGATATGGATTAGTTG 

pznB-fw AAGGCATGCCACTAATTTGG 

pznB-rv GATAAAGAGCTCCGCCAGAA 

pznE-fw CATAGCAATAATGCGTACGGTG 

pznE-rv GAGACATTGTCGGCGAAGA 

pznL-fw GATGAGAGGGAAACCTCATCC 

pznL-rv CTCCCAAACTGTTCCTGTCC 
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CHAPTER III: STRUCTURE DETERMINATION AND INTERCEPTION OF 

BIOSYNTHETIC INTERMEDIATES FOR THE PLANTAZOLICIN CLASS OF 

HIGHLY DISCRIMINATING ANTIBIOTICS 

 
This chapter was adapted with permission from Molohon, K.J., Melby, J.O., Lee, J., Evans, B.S., 

Dunbar, K.L., Bumpus, S.B., Kelleher, N.L., and Mitchell, D.A. (2011) ACS Chem Biol: 6, 1307-

1313. doi: 10.1021/cb200339d. Copyright © (2011) American Chemical Society. 

3.1 Abstract   

The soil dwelling, plant-growth promoting bacterium, Bacillus methylotrophicus FZB42, 

is a prolific producer of complex natural products.  Recently, a new FZB42 metabolite, 

plantazolicin (PZN), has been described as a member of the growing thiazole/oxazole-modified 

microcin (TOMM) family. TOMMs are biosynthesized from inactive, ribosomal peptides and 

undergo a series of cyclodehydrations, dehydrogenations, and other modifications to become 

bioactive natural products. Using high-resolution mass spectrometry, chemoselective 

modification, genetic interruptions, and other spectroscopic tools, we have determined the 

molecular structure of PZN. In addition to two conjugated polyazole moieties, the amino-

terminus of PZN has been modified to N
α
,N

α
-dimethylarginine. PZN exhibited a highly selective 

antibiotic activity towards Bacillus anthracis, but no other tested human pathogen. By altering 

oxygenation levels during fermentation, PZN analogs were produced that bear variability in their 

heterocycle content, which yielded insight into the order of biosynthetic events. Lastly, genome-

mining has revealed the existence of four additional PZN-like biosynthetic gene clusters. Given 

their structural uniqueness and intriguing antimicrobial specificity, the PZN class of antibiotics 

may hold pharmacological value.  

3.2 Introduction 

With facile access to low-cost next-generation DNA sequencing technology, there has 

been a recent surge in genome sequencing. The availability of nearly 2,000 microbial genomes 

has rekindled interest in the biosynthetic capabilities of bacteria (Challis, 2008; Gross, 2009; 

Melby et al., 2011; Peric-Concha and Long, 2003). Given the status of natural products and their 
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derivatives as the largest source of all medicines, exploring uncharted biosynthetic territory holds 

vast potential (Newman and Cragg, 2007). One such region of natural product space includes the 

thiazole/oxazole-modified microcin (TOMM) family (Haft et al., 2010; Lee et al., 2008; Scholz 

et al., 2011). Unlike the well-known non-ribosomal peptides and polyketides, TOMMs are 

derived from inactive, ribosomally synthesized precursor peptides. Each TOMM precursor 

peptide harbors an N-terminal leader region that serves as the binding site for enzymes that 

posttranslationally modify a C-terminal core region (Madison et al., 1997; Mitchell et al., 2009). 

The distinguishing chemical features of a TOMM are heterocycles that derive from Cys, Ser, and 

Thr residues, which are abundant in the core region of the precursor peptide. During processing 

by a genetically conserved cyclodehydratase, select Cys and Ser/Thr amino acids undergo peptide 

backbone cyclization to become thiazoline and (methyl)oxazoline heterocycles (Dunbar et al., 

2014; Dunbar et al., 2012; Dunbar and Mitchell, 2013). A subset of these are further subjected to 

a flavin mononucleotide (FMN)-dependent dehydrogenation, which yields the aromatic thiazole 

and (methyl)oxazole heterocycles. Together, the TOMM cyclodehydratase (CD) and 

dehydrogenase (B) comprise a functional, heterotrimeric thiazole/oxazole synthetase. The genes 

encoding for this synthetase are typically located as adjacent open reading frames in bacterial 

genomes, making such biosynthetic clusters relatively easy to identify using routine bioinformatic 

methods (Donia et al., 2008; Lee et al., 2008; Wieland Brown et al., 2009). TOMM biosynthetic 

clusters often contain ancillary tailoring enzymes that increase the chemical complexity of this 

natural product family. 

Although the unification of the TOMM family of natural products has only recently 

emerged, the molecular structure and biological function of some TOMMs have long been 

established. Examples include microcin B17 (DNA gyrase inhibitor), the cyanobactins 

(eukaryotic cytotoxins), streptolysin S (disease-promoting cytolysin), and the thiopeptides 

(ribosome inhibitors) (Melby et al., 2011). As reported in early 2011, a plant-growth promoting 
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bacterium, Bacillus methylotrophicus FZB42 [previously named Bacillus amyloliquefaciens 

FZB42 (Dunlap et al., 2015)], produces a TOMM with antimicrobial activity towards select 

Gram-positive bacteria (Scholz et al., 2011). In this work, we report the structure and 

antimicrobial specificity of a TOMM natural product from FZB42. In addition to the natural 

production of PZN variants by FZB42, we discovered that other Gram-positive bacteria also 

contain PZN biosynthetic clusters. We further demonstrate the in vivo biosynthesis of PZN in one 

of these newly identified producers.  

3.3 Results 

3.3.1 High resolution mass spectrometry of PZN 

Very recently, the structure of PZN from FZB42 was reported by Süssmuth and co-

workers, primarily using 2D-NMR (Kalyon et al., 2011). Independently, we employed mass 

spectrometry (MS) as our principle spectroscopic tool and arrived at the same structure. Through 

the use of high-resolution, linear ion trap Fourier Transform hybrid MS (LTQ-FT) operating at 11 

tesla, we measured the mass of the protonated form of PZN to be 1336.4783 Da (Figures. 3.1a 

and 3.2). Due to the high mass accuracy of FT-MS and the known sequence of the core region of 

the precursor peptide (1RCTCTTIISSSSTF14) (Lee et al., 2008; Scholz et al., 2011), the 

molecular formula of [PZN+H]
+
 can be deduced (C63H70N17O13S2; theoretical monoisotopic mass 

= 1336.4780 Da; error, 0.22 ppm). This formula required that 9 out of 10 heterocyclizable 

residues (Cys, Ser, Thr) in the core region of the precursor peptide were converted to the azole 

heterocycle (Figure 3.1a). Due to their adjacent positions, these processed residues form a 

contiguous polyazole, which was supported by spectrophotometric analysis. PZN gave absorption 

bands at 260 nm (λmax), 310 nm (minor shoulder), and 370 nm (weak), indicating the presence of 

a complex chromophore (Figure 3.3). The remaining heterocyclizable residue was left at the 

azoline (thiazoline, oxazoline, or methyloxazoline) oxidation state. Also, this formula required 

leader peptide cleavage after Ala-Ala and two methylation events, consistent with earlier deletion 
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studies (Scholz et al., 2011). Collision induced dissociation (CID) was then used to localize the 

site(s) of dimethylation and the azoline heterocycle. Analysis of the doubly charged PZN ion 

using in-line HPLC-FTMS resulted in a spectrum that was featureless from m/z ~700-1100 as a 

result of contiguous heterocycle formation (Figure 3.2). Nonetheless, we noted the production of 

several diagnostic fragment ions, including peptide bond cleavage at Ile-Ile. The masses of these 

resultant ions demonstrated that the N-terminal (b
+
 ion) fragment contained both posttranslational 

methyl groups and that the C-terminal (y
+
 ion) fragment contained the azoline (now restricted to 

oxazoline or methyloxazoline due to the absence of Cys on this fragment). Other informative 

fragment ions were derived from cleavage between Arg1-Cys2(thiazole) and 

Thr13(methyloxazoline)-Phe14. The former cleavage event demonstrated that both 

posttranslational methyl groups were localized to Arg1. Cleavage between Thr13-Phe14 led to 

the formation of several decomposition products that permitted the localization of the 

(methyl)oxazoline to Thr13. From the apparently unstable parent ion, we routinely observed 

formal loss of allene from methyloxazoline (C3H4, 40.0313 Da) to yield a C-terminal amide 

(Figure 3.2). Further support for the location of the azoline heterocycle comes from hydrolysis 

studies, as discussed below. Proposed structures for all assignable ions are given (Figures. 3.4 and 

3.5). 

3.3.2 Localization of the dimethylation site 

Upon in-depth FTMS analysis of singly charged PZN introduced by direct infusion, we 

observed larger ions relative to doubly charged PZN parent ions, including ones consistent with 

the loss of guanidine (-59.0483 Da, m/z 1277.4299; error, 0.63 ppm) (Figure 3.1b). This indicated 

that the site of dimethylation was restricted to either the N-terminal amine or the alkyl sidechain 

of Arg1. The latter is exceedingly improbable since the enzyme known to catalyze this reaction 

(PznL) is predicted by sequence alignment to be a S-adenosylmethionine (SAM)-dependent 

methyltransferase. The only SAM-dependent enzymes capable of engaging in C-H bond 
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activation are the radical SAM enzymes, which are identifiable by numerous conserved Cys 

lacking in PznL (Frey et al., 2008; Lee et al., 2008; Scholz et al., 2011). Higher order CID was 

performed on the deguanidinated form of PZN (m/z 1277), providing corroborating evidence for 

N-terminal dimethylation (Figure 3.6). Further support for the N-terminus being the site of 

dimethylation in PZN comes from chemoselective labeling. We reacted HPLC-purified PZN and 

desmethylPZN (from the pznL deletion strain) with the amine-specific reagent, N-

hydroxysuccinimide (NHS)-biotin (Scholz et al., 2011). As observed by MALDI-MS, labeling 

was only successful in the desmethylPZN reaction, indicating the presence of a free amine in this 

compound, but not in PZN (Figure 3.7). From these studies, we conclude that leader peptide 

cleavage occurs before methylation and that the ABC transport system does not distinguish 

between PZN and desmethylPZN. The nucleophilic N-terminus of desmethylPZN will likely be a 

convenient derivatization point for future structure-activity relationship (SAR) studies.  

From the apparent hydrolysis of PZN following SDS-PAGE (Scholz et al., 2011), we 

were not surprised to find that PZN contained an azoline. Such heterocycles are prone to both 

acid- and base-catalyzed hydrolysis (Frump, 1971; Martin and Parcell, 1961). Mild acid treatment 

of PZN yields m/z 1354 (+18), which was shown by CID studies to be from the reconstitution of 

the Thr13 residue of the precursor peptide (Figure 3.1b). Higher order tandem MS experiments 

further confirmed the location of the PZN methyloxazoline moiety (Figures. 3.5 and 3.6). Since 

the Thr13(methyloxazoline) is the only heterocycle not processed by the dehydrogenase, PznB 

displays a high level of regiospecificity.. While our PZN structure is identical to that just 

published, note that Thr13 has been converted to a methyloxazoline, not a methyloxazolidine as 

reported (Kalyon et al., 2011).  

During our extensive MS analysis of PZN, we noticed that fragmentation of the 

methyloxazoline moiety gave rise to a characteristic mass loss. CID fragmentation of PZN 

yielded an intense daughter ion of m/z 1292.4519 (Figure 3.1b). The mass difference from the 



62 

PZN parent ion is 44.0261 Da, which is consistent with the neutral loss of acetaldehyde (C2H4O, 

exact mass = 44.0262). Loss of acetaldehyde is conceivable from cycloelimination of 

methyloxazoline to yield a nitrile ylide, which can re-cyclize to form an azirine. The microscopic 

reverse of this reaction pathway is well known in the chemical literature where azirines are 

reacted with aldehydes to form oxazolines via 1,3-dipolar cycloaddition (Frump, 1971; Giezenda 

et al., 1973; Sa and Kascheres, 1996). Importantly, the loss of acetaldehyde was observed only 

when methyloxazoline was present on the parent ion (compare Figure 3.1b-c and Figures. 3.4-

3.6). This observation could potentially be capitalized upon in future studies as a means of 

screening complex mixtures for the presence of azoline-bearing natural products. (Melby et al., 

2011) 

3.3.3 Nuclear magnetic resonance (NMR) of PZN 

To corroborate the proposed structure elucidated by MS, we performed a series of two-

dimensional NMR experiments including 
1
H-

1
H-gCOSY, 

1
H-

1
H-TOCSY, and 

1
H-

13
C-gHMBC on 

a 600 MHz instrument (Figures. 3.8-3.10). The results of these experiments are compiled in Table 

3.1. Briefly, the gCOSY and TOCSY spectra confirmed the following: i. Due to the absence of 

NH and CαH correlations, all Cys, Ser, and Thr must be heterocyclized. The NH and CαH 

correlations were readily visible for all internal residues with an intact amide bond (Ile, Ile, Phe). 

ii. The carbon framework of the Arg1, Ile7, Ile8, and Phe14 side chains were not modified and, 

iii. The sole azoline moiety of PZN occurs on a Thr. The 
1
H-

13
C-gHMBC spectrum further 

validated findings from the 
1
H-

1
H experiments, in addition to proving the methylation sites as 

N
α
,N

α
-dimethylArg (Figure 3.10). N-terminal methylation of ribosomally produced peptides in 

bacteria is an exceedingly rare posttranslational modification. While N-terminal dimethylation 

has been described on Ala (e.g. cypemycin) (Claesen and Bibb, 2010) N
α
,N

α
-dimethylArg appears 

to be a novel posttranslational modification (Garavelli, 2004). The structure of PZN provides yet 
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another example of the complex natural product repertoire of B. methylotrophicus FZB42 (Chen 

et al., 2007).  

3.3.4 Production of PZN analogs 

During the course of optimizing the production of PZN for detailed spectroscopic 

analysis, we noticed that the level of culture oxygenation had a substantial impact on the 

production of PZN and derivative metabolites. Under low oxygen fermentation, PZN (m/z 1336) 

was the majority species present after a non-lytic, cell surface extraction procedure, as 

demonstrated by the UV trace, total ion chromatogram (TIC), and the extracted ion 

chromatogram (EIC, Figure 3.11a-c). The product of methyloxazoline ring opening (i.e. 

hydrolyzed PZN, m/z 1354) was also monitored (Figure 3.11c-d). The m/z 1338 species that 

“coelutes” with 1336 at 19.9 min is actually the second isotope peak of m/z 1336 (Figure 3.12). 

Under oxygen saturated cultivation, UV and TIC monitoring revealed an additional, highly 

abundant species at 14.7 min (Figure 3.11a-b). MS analysis demonstrated this species was m/z 

1338, suggestive of a reduced PZN species (dihydroPZN) containing two azolines (Figures. 3.11d 

and 3.13). The earlier elution time on reverse-phase chromatography suggested that this species 

was more polar than PZN, which is consistent with the replacement of an aromatic azole with a 

protonated azoline (expected in 0.1% formic acid). After treatment of m/z 1338 with mild 

aqueous acid, two additions of water were observed (m/z 1356 and 1374). Tandem MS was then 

used to demonstrate that the second azoline was located on the N-terminal half of PZN (Figure 

3.14). Higher order CID analysis prompted the neutral loss of acetaldehyde, indicating the 

heterocycle was derived from Thr, likely the residue directly preceding Ile (Thr6, data not 

shown). To an approximation, this position is sterically and electronically equivalent to the 

previously discussed methyloxazoline (Thr13) since both lie between an N-terminal tetra-azole 

and a C-terminal unmodified, hydrophobic residue (Figure 3.1a). The corresponding 

desmethylPZN species was observed when oxygenation levels were increased during cultivation 
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of the methyltransferase deletion strain (Figures. 3.15 and 3.16). It is possible that azoline 

oxidation is the rate-determining step in PZN biosynthesis. With increased aeration (faster 

metabolism), partially processed PZN products may be more rapidly produced and accepted as 

substrates by proteins acting downstream of the dehydrogenase. The biosynthetic implication of 

observing PZN oxidation intermediates is that the rate of methyloxazoline oxidation at “Thr6” 

(putative) and Thr13 (Figure 3.1a) must be slower than the dissociation rate from the 

heterotrimeric synthetase complex and subsequent maturation steps. An additional ramification of 

intercepting this PZN oxidation intermediate is that cyclodehydration must precede 

dehydrogenation, as has been previously supported by in vitro reconstitution experiments but 

never before demonstrated in vivo (McIntosh and Schmidt, 2010; Milne et al., 1999). While the 

oxygen-dependency of secondary metabolism is well known (Clark et al., 1995), the precise 

mechanism accounting for the production of a more reduced PZN species during increased 

culture aeration is not clear at the present time. 

3.3.5 Bioactivity of PZN and PZN analogs 

In early 2011, the activity of PZN towards 16 distinct bacterial species (18 strains) was 

reported (Scholz et al., 2011). It was determined that PZN was growth-suppressive primarily 

towards Bacillus sp., including B. subtilis. PZN exhibited no activity against any tested Gram-

negative organisms. To further define the selectivity within the Gram-positives, we evaluated the 

scope of PZN activity towards a panel of ubiquitous human pathogens, including methicillin-

resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecalis (VRE), 

Listeria monocytogenes, Streptococcus pyogenes, and Bacillus anthracis strain Sterne. Using a 

microbroth dilution bioassay, we observed potent growth inhibition of B. anthracis (Figure 

3.17a). All other species were unaffected by PZN, with the exception of S. pyogenes, which was 

only inhibited by very high concentrations of PZN. The specificity for PZN against B. anthracis 

was recapitulated in an agar diffusion bioassay (Figure 3.17a), as inhibition zones were not 
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observed for any other tested bacterium (data not shown). The action of PZN upon B. anthracis 

was decidedly bactericidal, as reculturing of treated cells in the absence of PZN led to no 

bacterial growth. Live cell imaging by differential interference contrast (DIC) microscopy 

revealed that B. anthracis treated with PZN at 4 µg mL
-1

 underwent massive lysis, as evidenced 

by an abundance of cellular debris (data not shown). Of the few remaining non-lysed cells, we 

observed marked changes in the appearance of the cell surface (Figure 3.17c-d). While the 

biological target of PZN has yet to be established, the “sidewall spot” phenotype suggests PZN 

has either directly or indirectly compromised the integrity of the cell wall (Tiyanont et al., 2006). 

Due to the selective, biomedically relevant bactericidal activity exhibited by PZN, elucidation of 

the precise mode of action for PZN is ongoing in our laboratory. 

Dimethylation of the α-amino group was apparently critical for PZN’s antibiotic activity, 

as desmethylPZN was devoid of activity against B. anthracis in both bioassays (Figure 3.17a). 

While the molecular basis for this effect is not currently known, dimethylation increases amine 

basicity, increases lipophilicity, and removes two potential H-bond donors. Also tested were the 

effects of hydrolyzing the methyloxazoline moiety of PZN (hydrolyzed PZN, m/z 1354) and the 

variant with two azolines (dihydroPZN, m/z 1338). While hydrolyzed PZN retained measurable 

activity towards B. anthracis, dihydroPZN was devoid of activity. Due to difficulty in separating 

dihydroPZN from the mono- and dihydrolyzed forms (m/z 1356 and 1374), these bioassays were 

performed using a 1:2:2 mixture (non:mono:di). The lack of activity with this mixture of 

hydrolyzed, dihydroPZN compounds might be attributable to the fact that hydrolyzed PZN is 

roughly 8-fold less active than PZN (Figure 3.17a). Although the production of dihydroPZN 

under oxygen-saturated conditions may be artifactual, it nonetheless raises interesting questions 

regarding the regiospecificity of azoline oxidation and the substrate tolerance of the downstream 

tailoring enzymes and export apparatus. 
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3.3.6 Identification of PZN-like gene clusters across phyla 

A targeted bioinformatics survey using the thiazole/oxazole synthetase proteins 

(cyclodehydratase and dehydrogenase) of PZN yielded four highly related biosynthetic gene 

clusters (Figure 3.18). The cluster found in Bacillus pumilus ATCC 7061 (also a plant-growth 

promoting saprophyte) is of identical gene order and direction as the cluster from B. 

methylotrophicus FZB42 (Scholz et al., 2011). The remaining three PZN-like biosynthetic 

clusters were found in the Actinobacteria phylum including Clavibacter michiganensis subsp. 

sepedonicus (potato pathogen) (Bentley et al., 2008), Corynebacterium urealyticum DSM 7109 

(human skin-associated bacterium, causative agent of some urinary tract infections) and 

Brevibacterium linens BL2 (human skin-associated bacterium). The PZN clusters from C. 

urealyticum and B. linens have amino acid similarity values much higher with each other than the 

other PZN producers, which is interesting given their overlapping niche and the absence of 

TOMM genes in sequenced relatives (Figure 3.19). In each of the five species, the PZN 

biosynthetic cluster contained the canonical TOMM genes: a precursor peptide, dehydrogenase, 

and cyclodehydratase complex. Beyond this, all five clusters also include a putative membrane-

spanning leader peptidase from the type II CAAX superfamily (Pei et al., 2011), SAM-dependent 

methyltransferase, and a required protein of unknown function (Scholz et al., 2011). Conversely, 

homologs of the PznF immunity protein and PznGH transporters were not found in the local 

genomic context for the PZN biosynthetic gene clusters for C. urealyticum and B. linens (Figure 

3.18a). This suggests a distinct mechanism of immunity and chromosomally distant transporters 

for these PZN variants. Alternatively, the PZNs from C. urealyticum and B. linens could act 

intracellularly or the biosynthetic gene cluster might always be silent (non-product forming).  

Based on the identical amino acid sequence of the core regions of the precursor peptides 

from FZB42 and B. pumilus, it would be expected that these species produce identical compounds 

(Figure 3.18b). To test if B. pumilus was indeed producing PZN, stationary phase B. pumilus 
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ATCC 7061 cultures were cell surface extracted in an identical manner as with FZB42. MALDI-

TOF-MS of HPLC-purified fractions revealed the presence of m/z 1336, and in an earlier fraction, 

m/z 1354 (+H2O), supporting the production of PZN and hydrolyzed PZN (Figure 3.20a-b). The 

identity of this species as PZN was confirmed by high accuracy mass measurement (LTQ-FT-

MS) and CID analysis (Figure 3.20c-e). As anticipated, B. amylo. FZB42 and B. pumilus were not 

susceptible to the action of PZN (MIC > 128 µg mL
-1

). A non-plant associated strain of B. amylo. 

(NRRL B-14393), which does not produce PZN, was also completely resistant (data not shown). 

Resistance within the Bacillus genus to PZN is clearly complex, with a few strains being bona 

fide PZN producers and others simply harboring the immunity gene [e.g. B. amylo. strains YAU-

Y2 and NAU-B3 (Scholz et al., 2011) and B. atrophaeus 1942, BATR1942_01200, 94% identical 

to FZB42]. Early attempts to isolate a PZN-type natural product from the Actinobacteria family 

members have not yet been successful. The lack of a signal by MALDI-MS and reverse 

transcriptase-PCR suggested that the biosynthetic genes were not transcribed under our 

cultivation conditions (data not shown). As with many “silent” gene clusters, highly precise 

environmental conditions are often necessary for the bacterium to produce particular natural 

products.  

With several PZN-like biosynthetic gene clusters identified in this work, these natural 

products comprise an entirely new class of antibiotic.  Sequence alignment of all five PZN 

precursor peptides showed that there has been evolutionary pressure to maintain a nearly 

invariant chemotype giving rise to the PZN structure (from N- to C-terminus): leader peptide 

cleavage site and N-terminal Arg (FEPxAA*R), five cyclizable residues with position 2 and 4 

always Cys and position 6 always Thr, two hydrophobic residues, five cyclizable residues, and a 

more variable C-terminus that ends with Phe, Trp-Gly, or Gly-Gly (Figure 3.18b). It is probable 

that more PZN producers will emerge with on-going efforts in genome sequencing. Future work 

will establish the contribution of these conserved functionalities on the bioactivity of PZN.  
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3.4 Summary and Outlook 

Here we have reported on the structural uniqueness of PZN, production of oxygen-

dependent derivatives, distribution of producing species, and a striking human pathogen 

selectivity for Bacillus anthracis. Elucidation of the structure, in conjunction with the interception 

of dehydrogenase and methyltransferase intermediates, has provided a glimpse into the 

biosynthetic strategy employed by nature (Figure 3.21). With respect to the bioactivity of PZN, it 

is noteworthy that strains of B. anthracis have been reported to be increasingly resistant to the 

quinolone, beta-lactam, tetracycline, and macrolide classes of antibiotics, thus new strategies to 

overcome this NIAID-designated Category A priority pathogen are needed (Athamna et al., 2004; 

Bryskier, 2002). With improved diagnostic technology, we anticipate that highly discriminating 

antibiotics will play a large role in our future antibiotic repertoire. The ideal drugs will be capable 

of distinguishing between pathogenic bacteria and those that live in commensal and/or symbiotic 

relationships with humans. Selection theory predicts that such drugs will delay the rise of 

antibiotic resistance, as non-targeted species have no evolutionary benefit to develop/obtain a 

resistance mechanism. Faced with the never-ending arms race with multiple drug resistant 

bacteria, novel structural classes of antimicrobials with unique modes of action must continually 

be discovered and clinically implemented to treat bacterial infections. However, more work is 

necessary to determine if PZN-like compounds exhibit desirable in vivo properties. 

3.5 Experimental 

3.5.1 Production and purification of PZN 

Overnight cultures (4 x 20 mL) of B. methylotrophicus FZB42 strain RSpMarA2 (sfp, 

yczE, degU) (Scholz et al., 2011) were used to inoculate 4 x 6 L flasks with 2 L of Luria Burtani 

(LB) broth supplemented with chloramphenicol (7 µg mL
-1

) and kanamycin (7 µg mL
-1

). Cultures 

were grown with shaking for 48 h at 37 °C. Cells were harvested by centrifugation (4,000 x g), 

washed with Tris-buffered saline (pH 8.0), and harvested a second time. Crude PZN was obtained 
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by a non-lytic, methanolic extraction of the cellular surface. Cells were resuspended in MeOH 

(10% culture volume) and anhydrous Na2SO4 (5 g/L culture). The cell mixture was agitated by 

vortex (45 s) and equilibrated for 15 min at 22 °C. The supernatant was retained after 

centrifugation (4,000 x g), vacuum filtered with Whatman filter paper, and rotary evaporated to 

dryness to yield about 100 mg/L of a yellowish-brown solid. This crude material was dissolved in 

80% aqueous MeCN (10 mL for 8 L culture), where the sample separated into two layers. The top 

organic layer was retained and concentrated for injection onto an Agilent 1200 series liquid 

chromatograph that was fitted inline to an Agilent 6100 Series Quadrupole LC/MS. For 

preparative purposes, PZN was reverse phase purified using a Thermo BETASIL C18 column 

(250 mm x 10 mm; pore size: 100 Å; particle size: 5 μm) at a flow rate of 4 mL min
-1

. A gradient 

of 65-85% MeOH with 0.1% formic acid over 32 min was used. The fractions containing PZN (as 

monitored by A266 and MS) were collected into 20 mL borosilicate vials and the solvent removed 

in vacuo. The isolated yield for PZN following this procedure was routinely 150-200 µg L
-1

 

culture. Mutant RS33 (Δsfp, bac, pznL) was prepared similarly, with the only exceptions being a 

24 h fermentation, substitution of spectinomycin (90 µg mL
-1

) for kanamycin, and elimination of 

the TBS wash.  

3.5.2 Production of PZN (elevated oxygen) 

Increased aeration of B. methylotrophicus FZB42 strains RSpMarA2 and RS33 were 

achieved using a New Brunswick Scientific BioFlo 110 Fermenter system. RSpMarA2 and RS33 

(9 L) were cultured at 37 °C with 250 rpm stirring for 24 h. Air was supplied at 5 L/min 

(saturated in oxygen, ~1 L min
-1

).  

3.5.3 On-line RPLC-FTMS 

All reverse phase liquid chromatography (RPLC)-Fourier-transform mass spectrometry 

(FTMS) was conducted using an Agilent 1200 high performance LC (HPLC) system with an 

autosampler coupled directly to a ThermoFisher Scientific LTQ-FT hybrid linear ion trap-FTMS 
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system operating at 11 tesla.  The MS was calibrated weekly using the calibration mixture and 

instructions specified by the manufacturer.  All instrument parameters were tuned according to 

the manufacturer’s instructions (employing bovine ubiquitin for tuning purposes). For all analyses 

of PZN, a 1 mm x 150 mm Jupiter C18 column (Phenomenex, 300 Å, 5 µm) was connected in-

line with the electrospray ionization source (operated at ~5 kV with a capillary temperature of 

200-250 °C) for the MS system.  A typical sample was loaded onto the column using the 

autosampler and separated using a linear gradient of H2O/MeCN and 0.1% formic acid with the 

analytes eluted directly into the MS. All ionized species were subjected to an MS method with 

five MS and MS/MS events:  1) full scan measurement of all intact peptides (all ions detected in 

the FTMS in profile mode; resolution: 100,000; m/z range detected: 400-2000), 2-5) data-

dependent MS/MS on the first, second, third, and fourth most abundant ions from scan (1) using 

collision induced dissociation (CID) (all ions detected in the FTMS in profile mode; minimum 

target signal counts: 5,000; resolution: 50,000; m/z range detected:  dependent on target m/z, 

default charge state: 2, isolation width: 5 m/z, normalized collision energy: 35; activation q value: 

0.40; activation time: 30 ms).  During all analyses, dynamic exclusion was enabled with the 

following settings: repeat count – 2, repeat duration – 30 s, exclusion list size – 300, exclusion 

duration – 60 s.  

3.5.4 Direct infusion FTMS 

After lyophilization for at least 24 h, HPLC purified samples were dissolved in 80% 

MeOH (to ~0.5 mg mL
-1

) and then further diluted 10-fold into 50% MeOH supplemented with 

0.1% (v/v) formic acid. The diluted samples were directly infused using an Advion Nanomate 

100. The singly charged ions were targeted for CID using identical settings as above, except that 

the resolution was set to 100,000. 



71 

3.5.5 N-terminal labeling 

Purified PZN and desmethylPZN were dissolved in 80% MeCN, 10 mM MOPS (pH 8.0) 

to a final concentration of 1.5 mM. An aliquot (5 µL) was transferred to a microfuge tube 

containing 5 µL of 80% MeCN, 10 mM MOPS (pH 8.0) supplemented with 20 mM EZ-

Link
®
 sulfo-NHS-biotin. Control reactions lacked the NHS-biotin reagent. The samples were 

allowed to react for 3 h at 23 °C prior to analysis on an Applied Biosystems Voyager DE-STR 

MALDI-TOF-MS. 

3.5.6 NMR 

PZN was produced from low oxygenation cultures and purified as described in the main 

text methods. PZN (700 µg) was dissolved in 200 µL of DMSO-d6 and placed into an Advanced 

Shigemi 5 mm NMR tube matched to DMSO-d6. NMR experiments were conducted on a Varian 

Unity Inova 500 NB (
1
H-

1
H-gCOSY) and a Varian Unity Inova 600 spectrometer (

1
H, 

1
H-

1
H-

TOCSY and 
1
H-

13
C-gHMBC) using a 5 mm Varian 

1
H{

13
C/

15
N} PFG Z probe and 5 mm Varian 

1
H{

13
C/

15
N} XYZ PFG triple resonance probe, respectively. The 

1
H-NMR, TOCSY and gHMBC 

experiments were conducted at 25 °C and utilized water suppression. A mixing time of 150 ms 

was used for the TOCSY. For the gHMBC, 
1
J and 

n
J were set to 140 and 8 Hz, respectively. 

Chemical shifts were referenced using DMSO (δH=2.50 and δC=39.51), and the spectra were 

processed and analyzed using MestReC. Stereochemical configuration was assumed to be 

identical to the ribosomally produced precursor peptide. 

3.5.7 Determination of MIC 

B. anthracis strain Sterne was grown to stationary phase in a 10 mL LB culture at 37 °C. 

The culture was adjusted to OD600 of 0.01 in LB broth and added to 96-well plates. 2-fold 

dilutions of PZN (5 mg mL
-1

 in 80% MeCN) were added to the cultures (0.5 – 128 µg mL
-1

). 

Kanamycin was added similarly to control samples, with dilutions from 1 – 32 µg mL
-1

. Covered 

plates were incubated at 37 °C for 12 h. The minimum inhibitory concentration that suppressed 
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the growth of at least 99% of the bacteria (MIC99) was established based on culture turbidity. 

Additional pathogens were grown and prepared similarly as above, with the exception of 

optimizing the growth media to match an organism’s nutritional requirements (Streptococcus 

pyogenes, Todd Hewitt broth; Listeria monocytogenes, Enterococcus faecalis st. U503 [VRE], 

and Staphylococcus aureus st. NRS384/USA300 [MRSA], brain heart infusion). Positive 

controls: S. pyogenes and L. monocytogenes, kanamycin; E. faecalis, tetracycline; S. aureus, 

vancomycin. Bactericidal activity was determined by diluting 1 µL of B. anthracis strain Sterne 

grown with 8 µg mL
-1

 PZN into 99 µL of media. The sample was then streaked onto LB agar 

plates and incubated for 24 h for counting colony-forming units. 

3.5.8 Agar diffusion bioassay 

B. anthracis strain Sterne was grown as described previously and diluted to OD600 of 

0.13. The diluted culture (100 µL) was inoculated onto an LB plate and allowed to dry. HPLC-

purified PZN (50-200 µg) was added to a paper disk, dried, and added to the plate. Culture were 

then incubated at 37 °C for 12 h. Kanamycin (8-25 µg) was used as a positive control, and 80% 

MeCN was the negative (solvent) control.  

 3.5.9 Microscopy 

Differential interference contrast (DIC) microscopy images were obtained by preparing 

live cell images of B. anthracis cultures. Samples were pretreated with or without PZN at 4 µg 

mL
-1

 (MIC99) and morphology was assessed using a Zeiss LSM 700 microscope. The objective 

used was a Plan-Apochromat 63x/1.40 Oil DIC M27. The analysis software used was Program 

Zen 2009 Light Edition. 

3.5.10 Production of PZN from Bacillus pumilus ATCC 7061 

Cultures were prepared as described above, but with the exception no antibiotics were 

added. The method employed for metabolite extraction and HPLC purification were identical to 

samples from B. methylotrophicus. Purified fractions were analyzed on a Bruker Daltonics 
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ultrafleXtreme MALDI-TOF/TOF instrument operating in reflector/positive mode. Sinapic acid 

was used as the matrix. 
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3.7 Figures and Tables 

Figure 3.1 
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Figure 3.1 (continued)| Mass spectrometry-based structural elucidation of PZN. (a) After 

biosynthetic processing, the chemical structure of PZN features N
α
,N

α
-dimethylArg (green), two 

thiazoles (red), seven (methyl)oxazoles (blue), and one methyloxazoline (brown). The numbering 

scheme used for each original residue is given at the top of the figure. After treatment with mild 

acid, azolines undergo hydrolytic ring opening to the original amino acid (in this case, Thr). (b) 

CID spectrum of the singly charged PZN ion (m/z 1336) acquired by LTQ-FT-MS. (c) Same as 

(b) except the parental ion analyzed was hydrolyzed PZN (m/z 1354). *Denotes ions resulting 

from the loss of guanidine localize the site of dimethylation to the α-amine of Arg. Localization 

to Arg is further supported by loss of N
α
,N

α
-dimethylArg (m/z 1180). **Denotes ions indicating 

that the sole azoline moiety of PZN is derived from the most C-terminal Thr residue. All masses 

are given in Da and represent the singly-charged ion. For proposed structures of the daughter 

ions, see Fig 3.4 and 3.5. 
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Figure 3.2 | FTICR-MS of PZN (m/z 1336, broadband and CID spectrum of 2+ charge 

state). (a) Broadband spectrum of HPLC-purified PZN on a linear ion trap MS (11 Tesla LTQ-

FT). Visible are the singly and doubly charged positive ions of PZN. Due to the high mass 

accuracy of FT-MS (<5 ppm error) and the known sequence of the precursor peptide (Lee et al., 

2008; Scholz et al., 2011), the molecular formula of PZN was deduced from this mass 

measurement. This formula required that 9 out of the 10 heterocyclizable residues were converted 

to the azole heterocycle and the remaining residue was left at the azoline oxidation state. Also, 

this formula required two methylation events (consistent with earlier deletion studies) and leader 

peptide cleavage after Ala-Ala (see Figure 3.18b). (b) Collision induced dissociation (CID) 

spectrum of m/z 668.7 (PZN
2+

). The fragmentation pattern of PZN in the doubly charged state is 

markedly different than that of the singly charged species shown in Figure 3.1b of the main text. 

The amino acid sequence for the PZN precursor peptide from B. methylotrophicus FZB42 

(BamA) is color-coded by posttranslational modification as follows: N

,N


-dimethylarginine 

(green), thiazoles (red), methyloxazoles and oxazoles (blue), and methyloxazoline (brown). 

Identified fragment ions are also plotted onto the BamA precursor sequence. The most diagnostic 

peaks for localizing posttranslational modifications resulted from Ile-Ile cleavage (green and 

brown mass peaks). These ions demonstrate that both methylation events are on the N-terminal 

fragment and that the sole azoline moiety is on the C-terminal fragment. *Fragment ions with the 

azoline as the most C-terminal moiety spontaneously decompose, supporting the assignment of 

the C-terminal Thr as being converted to methyloxazoline in PZN (assigned in Figure 3.4).  

Under the CID conditions employed, most peptides will fragment at the amide bond. The first 

step in TOMM biosynthesis, cyclodehydration, removes an amide bond from the peptide 

backbone. **Contiguous heterocycles thus preclude the formation of a complete series of y
+
 and 

b
+
 ions and results in a CID spectrum that is featureless from m/z ~710-1100. One non-amide 

cleavage is noted between arginine and cysteine (highest mass ion in the spectrum), which 

permits the methyl groups to both be localized to arginine. ^Internal fragments (assigned in 

Figure 3.4).  



77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 | UV-Vis spectrum of HPLC-purified PZN in DMSO acquired on a Nanodrop 

2000. The instrument was blanked on DMSO, which has a UV cut-off of approximately 245 nm. 

The extinction coefficient for PZN in DMSO is 260 = 560 M
-1

cm
-1

. The max in 80% 

acetonitrile/water is 266 nm. 
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Figure 3.4 | Observed fragments during MS/MS of PZN (m/z 1336). Cleavage sites are shown 

with their corresponding theoretical monoisotopic fragment masses. Some of the observed 

fragments are derived from multiple bond cleavages, denoted by superscripts (these are not 

intended to suggest a pathway of fragmentation). In the lower part of the figure, structures with 

more complex fragmentation pathways are shown with their corresponding masses. The m/z 1277 

structure permits the localization of both methyl groups to the N-terminus of PZN. The m/z 1145 

structure results from the loss of the C-terminal Phe residue and CO. In conjunction with selective 

hydrolysis studies, m/z 1145 and the subsequent azoline decomposition ions (1117 and 1105) 

localize the sole azoline as the C-terminal Thr residue. Further, we note many examples of neutral 

loss of acetaldehyde (C2H4O, exact mass = 44.0262; not to be confused with loss of CO2, exact 

mass = 43.9898; >800 ppm difference). See the main text for an explanation of the formation of 

these ions. 
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Figure 3.5 | Observed fragments during MS/MS of hydrolyzed PZN (m/z 1354). Unlike their 

aromatic azole counterparts, azoline heterocycles are hydrolytically unstable in mild acid and 

mild base (Frump, 1971). Selective acidic hydrolysis of PZN was performed to convert the sole 

azoline heterocycle back to the original amino acid. This reinstates an amide bond that can be 

located by subsequent MS
n
 analysis. Observed cleavage sites are shown with their corresponding 

theoretical monoisotopic fragment masses. Some of the observed fragments are derived from 

multiple bond cleavages, denoted by superscripts (these are not intended to suggest multiple 

fragmentation events or a pathway of fragmentation). Note that upon methyloxazoline hydrolysis 

to threonine, in no cases can neutral loss of acetaldehyde be found. This implies that loss of 

acetaldehyde (formation of azirine) is specific to methyloxazolines under the CID conditions we 

employed. Note that loss of C2H4O is possible from hydrolyzed (Thr-containing) PZN, but only 

via dehydration and subsequent loss of acetylene. Other fragment ions of interest in this map 

confirm the site of dimethylation to be the N-terminal amine. 
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Figure 3.6 | CID spectra for deguanidinated PZN (m/z 1277) and deguanidinated hydrolyzed 

PZN (m/z 1295). MS
3
 collision induced dissociation (CID) spectra for (a) deguanidinated PZN 

(m/z 1277) and (b) deguanidinated hydrolyzed PZN (m/z 1295). **Indicates loss of acetaldehyde 

(44.0262 Da) from methyloxazoline (1277 – 44 = 1233; 1194 – 44 = 1150). Note that this is only 

possible in (a) where an intact heterocycle is found. The ions at m/z 575, 1150, and 1194 

demonstrate that the Arg was dimethylated on the amino terminus. Structural assignments are 

given for the fragments of deguanidinated PZN and deguanidinated hydrolyzed PZN in Figure 3.4 

and 3.5, respectively. 
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Figure 3.7 | N-terminal labeling of PZN and desmethylPZN using NHS-biotin. MALDI-TOF-

MS results of NHS-biotin labeling for (a) PZN (m/z 1336) and hydrolyzed PZN (m/z 1354) and 

(b) desmethylPZN (m/z 1308) and hydrolyzed desmethylPZN (m/z 1326). Abbreviation: 

desmethylPZN, dmPZN. Red traces are samples that included the NHS-biotin reagent while black 

traces are from control reactions that lacked NHS-biotin. Labeling was only observed with 

desmethylPZN, as indicated by the new species at m/z 1534 and 1552. Addition of biotin gives a 

net mass increase of 226 Da (C10H14N2O2S). Specific labeling reactions are given in the methods 

section. 
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Table 3.1 | Complilation of NMR results. Abbreviations: Tz, thiazole; Oz, oxazole; Ozn, 

oxazoline 
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Figure 3.8 | 

1
H-

1
H-gCOSY of PZN. Assigned correlations are drawn on the structure of PZN as 

thickened bonds. The brown circles indicate correlations deriving from the methyloxazoline 

protons (shown as brown bonds in structure). The red asterisk indicates that in the 1D-
1
H-

spectrum, the signal from water was suppressed. This signal was not suppressed for the 2D 

experiment.  
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Figure 3.9 | 
1
H-

1
H-TOCSY of PZN. Assigned correlations are drawn on the structure of PZN as 

thickened bonds. The brown circles indicate correlations deriving from the methyloxazoline 

protons (shown as brown bonds in structure). The red asterisks on the 1D spectra indicate the 

signal from water suppression. This signal was also suppressed for the 2D experiment.  
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Figure 3.10 | 
1
H-

13
C-gHMBC of PZN. Assigned correlations are drawn on the structure of PZN 

as red arrows. The green arrows/circles indicate correlations that localize the posttranslational 

methyl groups to the N-terminus. The brown arrows/circles indicate correlations that demonstrate 

the azoline is methyloxazoline. 
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Figure 3.11 | Effect of fermentation oxygenation on PZN production. High and low oxygenation cultures were extracted and subjected to 

chromatography using an identical procedure. In all panels, vertical lines were drawn at 14.7, 19.9, and 20.5 min. (a) UV chromatogram (Abs 

266 nm) of FZB42 strain RSpMarA2 extract from high and low oxygen fermentation. (b) Same as (a) except the trace is the total ion 

chromatogram (TIC). (c) Extracted ion chromatogram (EIC) of m/z 1336, 1338, and 1354 from a low oxygen fermentation. (d) Same as C 

except under high oxygenation conditions.  
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Figure 3.12 | Predicted isotope pattern for PZN (m/z 1336). Note that the average mass is 

slightly heavier than the first isotope mass. This figure was generated using iMass version 1.1 

(freeware written by Urs Roethlisberger). 
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Figure 3.13 
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Figure 3.13 (continued) | Effect of oxygen levels during fermentation on the production of 

PZN. ESI-MS at selected time points from LCMS analysis (UV, TIC, EIC) shown in Figure 3.11. 

(a) Under low oxygen conditions, PZN (m/z 1336) is the only species present in the 19.9 min 

elution. (b) Under an oxygen saturated fermentation, PZN is found in the 20.5 min elution. (c) As 

expected from the EIC’s shown in Figure 3.11, high oxygen fermentation yields an additional 

compound eluting at 14.7 min consistent with dihydroPZN (dhPZN, m/z 1338). The earlier 

elution of dhPZN relative to PZN is in agreement with azolines being more hydrophilic and basic 

than azoles (azoles are not protonated with 0.1% formic acid). Right insets for all panels show a 

zoomed in spectrum to highlight the isotopic pattern of the singly charged PZN species.  
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Figure 3.14 | Partial localization of the second azoline in dihydroPZN (dhPZN). (a) CID 

spectrum of dhPZN (m/z 1338) acquired using LTQ-FT-MS. The heavier fragment ions are 

identical to those shown in Figure 3.1, with the exception of each fragment being 2 Da heavier. 

The gray box depicts a zoomed in region shown in (b). Brown boxes highlight two ions 

demonstrating that an azoline heterocycle exists on each side of the Ile-Ile. The location of the C-

terminal azoline was localized to the most C-terminal Thr. The location of the N-terminal azoline 

is likely to be the Thr adjacent to Ile due to similar sterics/electronics. However, the precise 

position cannot be concluded from this spectrum. (b) Zoomed in region from (a) (gray box). 

Diagnostic ions are boxed in gray and their respective (predicted) structures drawn in the right 

margin.  
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Figure 3.15 | Effect of oxygen levels during fermentation on the production of 

desmethylPZN. In each case presented, the low oxygen samples were prepared by shake flask 

fermentation of B. methylotrophicus strain RS33 (pznL deletion, desmethylPZN producer) in 2 L 

of LB in 6 L flasks. High oxygen samples were prepared using a biofermentor with 5 L/min air 

input. Both cultures were grown for 24 h at 37 °C. All samples were extracted in an identical 

fashion and subjected to identical chromatographic procedures (analytical C18-HPLC) as 

described in the methods. In all panels, vertical lines are drawn at 14, 17, and 21 min. (a) UV 

chromatogram (Abs 272 nm) of RS33 extract from high and low oxygen fermentation. This trace 

shows that more chromophores absorbing light at 272 nm are produced under high oxygen 

conditions. (b) Same as (a) except the trace is the total ion chromatogram (TIC). (c) Extracted ion 

chromatogram (EIC) of m/z 1308, 1310, and 1326 from low oxygen fermentation. Under these 

conditions, the majority species is desmethylPZN (1308) with trace amounts of hydrolyzed 

desmethylPZN (1326). The 1310 trace that appears to “coelute” with 1308 at 17 min is the 

actually the second isotope peak of 1308, not dihydrodesmethylPZN (see Figure 3.12). (d) Same 

as C except under high oxygenation conditions. The peaks at 14 and 16 min contain primarily 

dihydrodesmethylPZN (m/z 1310) while the peaks at 17 and 21 min contain primarily 

desmethylPZN (m/z 1308). The species eluting at 14 and 16 min are suspected to be regioisomers, 

as are the species eluting at 17 and 21 min. ESI-MS at these selected time points are shown in 

Figure 3.16. 
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Figure 3.16 | Effect of oxygen levels during fermentation on the production of 

desmethylPZN. ESI-MS at selected time points from LCMS analysis (UV, TIC, EIC) shown in 

Figure 3.15. (a) Under low oxygen conditions, hydrolyzed desmethylPZN (m/z 1326) is visible in 

the 14 min elution. (b) As expected from the EIC’s shown in Figure 3.15, the 14 min elution is 

dominated by dihydrodesmethylPZN (m/z 1310) at the 14 min elution. (c) Low oxygen 

fermentation and an elution of 17 min yields exclusively desmethylPZN (m/z 1308). As indicated 

by the ion purity and signal to noise ratio in this spectrum, relative to the other panels, 

desmethylPZN was a majority product and easily separated under the conditions employed. (d) 

Same as C but high oxygen conditions led to the production of a mixture of desmethylPZN and 

dihydrodesmethylPZN (ratio ~60:40, respectively). (e) At 16 min under high oxygen conditions, 

1310 is the majority species produced, consistent with azolines being more hydrophilic than 

azoles. Right insets for panels c-e show a zoomed in spectrum to highlight the isotopic pattern of 

the singly charged desmethylPZN species. The ratio of intensities given in Figure 3.12 applies.  
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Figure 3.17 | Assessment of PZN antibiotic activity. (a) The minimum inhibitory concentration 

(MIC) of HPLC-purified PZN was measured against a panel of Gram-positive human pathogens. 

Values reported were the concentration of PZN that inhibited 99% of the bacteria growth in a 

microbroth dilution bioassay. *Due to separation difficulties, dihydroPZN was supplied as a 1:2:2 

mixture of non-, mono-, and dihydrolyzed species (m/z 1338, 1356, 1374). (b) PZN activity in an 

agar disk diffusion bioassay against B. anthracis Sterne. Upper left disk, 8 µg kanamycin control 

(positive); upper right, solvent control (negative); lower disk, 100 µg PZN (200 µg gave a similar 

inhibition diameter). (c) Visual appearance of live B. anthracis Sterne treated with a solvent 

control by DIC microscopy. (d) Same as (c) except cells were treated with 4 µg mL
-1

 PZN. Scale 

bar is the same for panel c.  
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Figure 3.18 | PZN biosynthetic gene clusters. (a) Open-reading frame diagram showing the 

genetic organization of PZN clusters, which form a subclass of TOMMs. Gene designations and 

predicted functions are color coded in the provided legend. (b) PZN precursor peptide alignment. 

Shown in purple are conserved residues within the N-terminal leader region. *Denotes the leader 

peptide cleavage site, which is known for BamA and BpumA but predicted for the others. Color-

coding indicates the posttranslational modifications of the BamA core region, which are 

extrapolated to the remaining precursor peptides: N
α
,N

α
-dimethylarginine (green), thiazoles (red), 

(methyl)oxazoles (blue), and methyloxazoline (brown). Abbrev.: Bam, Bacillus methylotrophicus 

FZB42; Bpum, Bacillus pumilus ATCC 7061; Cms, Clavibacter michiganensis subsp. 

sepedonicus; Cur, Corynebacterium urealyticum DSM 7109; Blin, Brevibacterium linens BL2.
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Figure 3.19 | Similarity/identity matrix of related (PZN-producing) biosynthetic proteins. 

Shown in yellow are amino acid identity scores obtained by pairwise alignment using ClustalW2, 

which includes the standard parameters for gap penalties. In blue are the corresponding amino 

acid percent similarity values, obtained by recording the ratio of similar amino acids to the full 

protein sequence after alignment (no gap penalties). PznJ, required biosynthetic protein of 

unknown function; PznCD, cyclodehydratase; PznB, FMN-dependent dehydrogenase; PznE, 

suspected leader peptidase; PznL, SAM-dependent methyltransferase. Abbreviations used are 

derived from the genus and species name for each organism. Bam, Bacillus methylotrophicus 

FZB42; Bpum, Bacillus pumilus ATCC 7061; Cms, Clavibacter michiganensis subsp. 

sepedonicus; Cur, Corynebacterium urealyticum DSM 7109; Blin, Brevibacterium linens BL2. 

Bam and Bpum are Firmicutes, while the other three species are Actinobacteria.
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               Figure 3.20   
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Figure 3.20 (continued) | Demonstration of PZN production from Bacillus pumilus ATCC 

7061. Cells were grown in an identical fashion to B. methylotrophicus. (a) The cell surface 

metabolites were extracted with methanol, dried, concentrated, and separated on a preparative 

C18-HPLC column with UV monitoring at 266 nm (λmax for PZN). (b) The 22-min (top), 23-min 

(middle), and 24-min (bottom) fractions from HPLC purification were concentrated and spotted 

on to the MALDI target with sinapic acid. In the earliest fraction, m/z 1354 (hydrolyzed PZN is 

visible). In the latter two fractions, m/z 1336 (PZN) is readily identified, which was pooled for 

further analysis. (c) HPLC purified PZN from B. pumilus was subjected to high-resolution MS 

(LTQ-FT-MS), which verified the molecular formula to be consistent with PZN within the mass 

accuracy of the instrument (<5 ppm). (d) CID spectrum obtained upon isolation of the singly 

charged (m/z 1336) precursor ion. This data is analogous to Figure 3.1b (PZN from B. amylo. 

RSpMarA2). Figure 3.1b. (e) CID spectrum obtained upon isolation of the doubly charged (m/z 

668) precursor ion. This data is analogous to Figure 3.2b (PZN from B. amylo. RSpMarA2). 

However, different instrumental settings had to be employed to visualize the PZN ions, which 

were less abundant than from the B. amylo. overproducer (RSpMarA2) and required summing 

over many scans. An unidentified contaminant and instrumental noise account for the ions 

between m/z 750-1100.  
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Figure 3.21 | Plantazolicin (PZN) constitutes an entirely new class of highly discriminating 

antibiotic. PZN produced by Bacillus methylotrophicus FZB42 is biosynthesized from a 12 open 

reading frame biosynthetic gene cluster, which encodes a 41 amino acid precursor peptide and all 

necessary maturation machinery. One remarkable feature of PZN is the extensive incorporation of 

thiazole and (methyl)oxazol(in)e heterocycles, which are installed by PznBCD. The final 

processing steps are likely carried out by PznE (leader peptide cleavage) followed by PznL-

dependent dimethylation of the newly formed α-amine group of arginine. 
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For this chapter, I established the PZN bioactivity (Figures 4.2, 4.3, and Tables 4.1, 4.4, 4.13), 

performed the radioactivity work (Figure 4.7), RNA experiments and analysis (Figures 4.8, 4.9, 

Tables 4.5, 4.9, 4.6, and 4.12) (Rockhopper was run by J. Doroghazi), growth curve analysis 

(Figure 4.10A), isobolograms (Figures 4.11A and 4.18A) generated spontaneous mutants and 

assembled bacterial genomes (Figure 4.16 and Table 4.14), performed endospore studies (Table 

4.2), γ phage sensitivity (Table 4.3), and qualitative reverse transcriptase PCR (qRT-PCR, Table 

4.16). 

4.1 Abstract 

Plantazolicin (PZN) is a ribosomally synthesized and post-translationally modified 

natural product from Bacillus methylotrophicus FZB42 and Bacillus pumilus. Extensive tailoring 

to twelve of the fourteen amino acid residues in the mature natural product endows PZN with not 

only a rigid, polyheterocyclic structure, but also antibacterial activity. Here we report on the 

remarkably discriminatory activity of PZN toward Bacillus anthracis, which rivals a previously-

described B. anthracis-specific gamma (γ) phage lysis assay in distinguishing B. anthracis from 

other members of the Bacillus cereus group. We evaluate the underlying cause of this selective 

activity by measuring the RNA expression profile of PZN-treated B. anthracis, which, among 

other clues, revealed significant upregulation of genes within the cell envelope stress response. 

PZN depolarizes the B. anthracis membrane like other cell envelope-acting compounds but 

uniquely localizes to distinct ~200 nm wide foci within the envelope. Selection and whole-

genome sequencing of PZN-resistant mutants of B. anthracis implicate a relationship between the 

action of PZN and cardiolipin (CL) within the membrane. Exogenous CL increases the potency of 
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PZN in wild type B. anthracis and promotes the incorporation of fluorescently tagged PZN in the 

cell envelope. We propose that PZN localizes to and exacerbates structurally compromised 

regions of the bacterial membrane, which ultimately results in cell lysis.  

4.2 Introduction 

The current practice of employing broad-spectrum antibiotics to treat bacterial infections 

contributes to the rise of antibiotic resistance (de Man et al., 2000). As a countermeasure, species-

selective and narrow-spectrum antibacterial compounds are garnering increased attention in the 

medical community for their potential as therapeutics and diagnostics (Payne, 2008; Wilson et al., 

2005). Plantazolicin (PZN) is a polyheterocyclic, linear compound of the ribosomally synthesized 

and post-translationally modified peptide (RiPP) natural product family with narrow-spectrum 

antibiotic activity (Figure 4.1) (Scholz et al., 2011). More specifically, PZN is a member of the 

thiazole/oxazole-modified microcins (TOMMs), a recently grouped and rapidly expanding RiPP 

class with ~1,500 identified gene clusters (Arnison et al., 2013; Cox et al., 2015). Previously, 

PZN was described as an antibiotic compound that inhibits Gram-positive organisms closely 

related to its producing organism, Bacillus methylotrophicus FZB42 (Scholz et al., 2011). In 

2011, by screening a small panel of microorganisms, we described PZN as having potent activity 

towards Bacillus anthracis, but not other Gram-positive pathogens (Molohon et al., 2011). 

Several additional PZN-like gene clusters have been identified in six distinct bacterial genera 

(from three phyla) through genome mining, but experimental data on antibiotic specificity has so 

far been limited to PZN (Kalyon et al., 2011; Molohon et al., 2011; Scholz et al., 2011). 

Although PZN has been the subject of total synthesis (Banala et al., 2013; Wilson et al., 2015), 

heterologous expression (Deane et al., 2013), and enzymological studies (Hao et al., 2015; Lee et 

al., 2013; Sharma et al., 2013), insight into the mode of action (MOA) of PZN has not been 

reported in the seven years since the discovery of its biosynthetic gene cluster (Lee et al., 2008). 
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B. anthracis, the causative agent of anthrax and a category A priority pathogen, is a 

Gram-positive bacterium and is a member of the B. cereus sensu lato group, which includes B. 

cereus, B. anthracis, B. thuringiensis, and B. mycoides (Jensen et al., 2003; Rasko et al., 2005). 

Microbiologists have debated whether these organisms should be considered as one species, 

given that some strains share greater than 99% DNA sequence identity. Despite being grouped 

with other Bacillus species, B. anthracis harbors a number of features that set it apart from other 

members of the B. cereus group. Fully virulent B. anthracis contains two conserved plasmids, 

pXO1 and pXO2, which harbor the genes responsible for producing the anthrax toxin and poly-D-

glutamic acid capsule, respectively. However, homologous plasmids are also found in certain B. 

cereus strains (Kolsto et al., 2009). Beyond characteristic plasmid content, B. anthracis, unlike 

other members of the B. cereus group, harbors a nonsense mutation in plcR (phospholipase C 

regulator), rendering B. anthracis non-motile and non-hemolytic (Agaisse et al., 1999).   

Other defining features of B. anthracis that may facilitate species selectivity are exterior 

to the cell wall. B. anthracis displays a two-dimensional protein lattice called the surface layer (S-

layer). Decorated with surface-associated proteins in a csaB (cell surface attachment)-dependent 

manner (Mesnage et al., 2000), the S-layer is non-covalently attached to the secondary cell wall 

polysaccharide (SCWP) (Wang et al., 2013; Zheng et al., 2013), which is covalently tethered to 

the peptidoglycan. The B. anthracis SCWP is structurally unique (Choudhury et al., 2006; 

Weidenmaier and Peschel, 2008) and serves as the binding site for gamma (γ) phage (Ganguly et 

al., 2013; Schuch et al., 2013) and previously described B. anthracis typing antibodies (Ezzell et 

al., 1990). γ phage produce a peptidoglycan hydrolase, PlyG, which specifically recognizes the 

terminal galactoses of the B. anthracis SCWP and subsequently hydrolyzes the cell wall 

(Ganguly et al., 2013). Similarly, typing methods using monoclonal antibodies to the SCWP also 

exploit differences in the terminal sugar unit. However, there exist atypical B. anthracis strains 

that would constitute false-negatives in any diagnostic assay based on these methods (Abshire et 
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al., 2005; Ezzell et al., 1990). Wip1, another B. anthracis-specific phage, is even more selective 

than γ phage, yet certain B. cereus strains remain sensitive (Kan et al., 2013). Thus, the species 

specificity of PZN is intriguing not just from a MOA standpoint, but also as a means to 

distinguish B. anthracis from other B. cereus sensu lato members. 

Here we describe PZN as a remarkably selective small molecule antibiotic towards B. 

anthracis. The intriguing specificity was first examined by gene expression profiling, which 

yielded an expression signature distinct from broader spectrum antibiotics. We have identified 

and characterized a set of resistant mutants and evaluated their role in PZN resistance, which led 

to us to further investigate the bacterial membrane as the probable target of PZN. Using 

fluorescence-based approaches, we confirmed that PZN localizes to the cell envelope and rapidly 

causes membrane depolarization. Taken together with the observation that PZN interacts 

synergistically with the negatively charged phospholipid, cardiolipin (CL), we propose that PZN 

localizes to and aggravates transient weaknesses present in the B. anthracis cell membrane.  

4.3 Results 

4.3.1 Defining the species selectivity of PZN 

PZN was originally described as a Gram-positive antibiotic, inhibiting the growth of B. 

subtilis, B. cereus, and B. megaterium (Scholz et al., 2011). It is important to note, however, that 

the spot on lawn assay employed to reach this conclusion used an exorbitant amount of purified 

PZN (1 mg per spot). Using a microbroth dilution assay, the activity of PZN was later revealed to 

be considerably more selective, in that antibacterial activity was only detected toward B. 

anthracis upon screening a small panel of human pathogens (Molohon et al., 2011; Sterne and 

Proom, 1957). We continued to establish this unusually narrow-spectrum of activity by screening 

a larger panel of strains with varying degrees of genetic similarity (Table 4.1). PZN was found to 

be selective for vegetative B. anthracis, including fully virulent biosafety level 3 strains, with 

minimum inhibitory concentrations (MICs) between 1-16 μg/mL (0.75-12 µM). Endospores, the 
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dormant phase of the B. anthracis life cycle, were resistant to PZN until germination was initiated 

(Table 4.2). By microbroth dilution, B. subtilis and B. cereus were not susceptible to PZN at 

concentrations up to 64 μg/mL, which is in contrast to the previously reported spot on lawn assay 

(Scholz et al., 2011).  

To further investigate the selectivity of PZN towards B. anthracis, we conducted a head-

to-head comparison using the γ phage assay. Prior to modern genomic methods, γ phage 

sensitivity and other phenotype testing were popular methods for identifying B. anthracis 

(Abshire et al., 2005). Notwithstanding the reported 96% positive accuracy, non-B. anthracis 

strains that are sensitive to γ phage and true B. anthracis strains that are insensitive have been 

reported (Abshire et al., 2005; Hoffmaster et al., 2006; Schuch and Fischetti, 2006). We obtained 

a panel of atypical B. cereus strains that are sensitive to γ phage and tested them for PZN 

susceptibility (Table 4.3). B. cereus strains that generated a false positive in the γ phage assay 

were not susceptible to PZN (Kan et al., 2013; Marston et al., 2006; Schuch and Fischetti, 2006). 

In an attempt to further define the attributes giving rise to the species selectivity of PZN, 

we procured various bacterial strains that address key differences between B. anthracis and B. 

cereus. plcR, encoding the phospholipase C regulator, is nonfunctional in B. anthracis but is 

intact in B. cereus (Agaisse et al., 1999). Deletion of plcR in B. cereus did not increase its 

susceptibility to PZN (Table 4.1). Additionally, sortase-deficient strains of B. anthracis, which 

lack the ability to anchor various proteins to the cell wall, remain susceptible to PZN (Davison et 

al., 2005). Similarly, PZN activity was not dependent on the presence or composition of the B. 

anthracis S-layer, as strains deficient in S-layer assembly or decoration, namely those harboring 

mutations in csaB, sap, and eag, are equally susceptible to PZN (Mesnage et al., 2000). We 

further confirmed that susceptibility to PZN is plasmid-independent given that the susceptibility 

of a plasmid-deficient strain, B. anthracis LLNL A0517-1. (Table 4.1; Figure 4.2). Wip1 phage 

and antibody typing have also been used to discriminate B. cereus sensu lato strains, but also 



107 

have known exceptions to their specificity for B. anthracis (Ezzell et al., 1990; Kan et al., 2013). 

We obtained a “false-positive for B. anthracis” strain for each marker: B. cereus CDC32805 for 

Wip1 and B. cereus ATCC 7064 for antibody typing. We again observed no measurable PZN 

susceptibility for either strain (Table 4.1).  

After extensive susceptibility testing, the only notable exception to the B. anthracis 

selectivity of PZN was B. cereus G9241 (MIC of 8 µg/mL). B. cereus G9241 encodes the genes 

for an anthrax-like toxin on its pBCXO1 plasmid, which is named for its homology to the B. 

anthracis pXO1 plasmid (Hoffmaster et al., 2004). As B. cereus G9241 is encapsulated and 

toxigenic, it causes an anthrax-like disease but is undetectable in the γ phage assay (Hoffmaster et 

al., 2006). From a pathogen detection perspective, the action of PZN towards G9241 could be 

considered fortuitous if it were to be further developed as a diagnostic test. Together, these data 

not only highlight the species discrimination of PZN but also rule out plcR-related effects, 

sortase-mediated proteins, the SCWP, the S-layer, and plasmid-borne entities as targets of PZN. 

The spectrum of PZN activity calls into question whether bacteria are the naturally 

intended target. The canonical PZN-producing strain, B. methylotrophicus FZB42, has been 

described to have antifungal and nematicidal activity and is a prolific producer of other natural 

products (Burkett-Cadena et al., 2008; Chen et al., 2007). Liu et al. assigned a nematicidal 

activity to PZN, derived from experiments showing that PZN-deficient FZB42 strains exhibit 

reduced nematicidal activity against Caenorhabditis elegans (Liu et al., 2013). Since these 

experiments employed crude cellular extracts, we evaluated purified PZN in a similar manner, 

embedding the compound in agar (slow killing assay) or providing PZN in a liquid suspension 

(liquid fast killing assay). PZN was found to be no more toxic to C. elegans than a vehicle control 

and is clearly not nematicidal in its own right (Figure 4.3). Purified PZN was also not responsible 

for the antifungal activity of the native producer, leaving the ecological function of PZN 

unknown (Table 4.1). 
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After observing the specificity of PZN under one growth medium condition (Luria-

Bertani broth, LB), we re-assessed specificity against a smaller but representative panel of strains 

in two additional growth media (Mueller-Hinton and brain-heart infusion broths, Table 4.4). All 

tested strains of B. anthracis remained equally susceptible, but unexpectedly, some 

Staphylococcus aureus strains were susceptible to PZN under alternative growth media (MICs 

from 8 – 32 µg/mL). All other tested strains remained non-susceptible to PZN. 

4.3.2 Assessing potential macromolecules as the target of PZN 

In an attempt to identify the molecular target(s) of PZN, two biotinylated PZN probes 

were prepared for affinity purification, a standard technique for identifying targets of bioactive 

small molecules (Ziegler et al., 2013). First, an N-terminally biotinylated PZN was prepared from 

desmethylPZN, which is a biosynthetic intermediate obtainable by fermentation of an expression 

strain missing the PZN N-methyltransferase (Figure 4.1; Figure 4.4) (Molohon et al., 2011). 

Unfortunately, N-biotinylated PZN was devoid of antibiotic activity at the concentrations tested; 

however, C-terminally biotinylated PZN retained bioactivity, albeit with a 16-fold reduction in 

potency (Figure 4.1; Figure 4.5). For this reason, C-terminally labeled PZN-biotin was chosen for 

affinity-based target identification. Despite numerous attempts, we were unable to identify 

interactions unique to PZN-biotin compared to the control (data not shown). A photoaffinity 

tagged derivative of PZN was then prepared on the notion that PZN-biotin may weakly interact 

with its target, (Figure 4.1, Figure 4.6). To minimally perturb potential interactions, a minimalist, 

bifunctional analog containing a diazirine and alkyne was employed to enable crosslinking prior 

to biotinylation and enrichment (Li et al., 2013). Again, no binding partners were identified by 

either mass spectrometry or western blot.  

Because affinity purification-based strategies to identify small molecule targets is most 

successful when the interaction is proteinaceous and of high-affinity (Burdine and Kodadek, 

2004), we next considered the possibility that PZN interacted with a non-protein macromolecule. 
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We used radiolabeled precursors of the cell wall, fatty acids, and RNA (as well as protein), to 

assay for their biosynthesis in the presence of PZN. Similar to the nisin-like lanthipeptide Pep5, 

PZN extensively disrupted macromolecular biosynthesis (Sahl and Brandis, 1982) (Figure 4.7). 

Interestingly, PZN did not affect cell wall biosynthesis compared to the vancomycin control. 

4.3.3 The gene expression signature of PZN 

Sub-lethal antibiotic treatment stimulates rapid transcriptional responses in bacteria (Goh 

et al., 2002) and the induced/repressed genes may be indicative of MOA (Brazas and Hancock, 

2005). We thus performed RNA-Seq to evaluate the transcriptional response of B. anthracis 

following exposure to 0.25 µg/mL (0.25 × MIC) PZN for 10 min (Shaw and Morrow, 2003). A 

total of 74 genes were differentially regulated, including 63 upregulated and 11 downregulated 

genes, with an adjusted false discovery rate (q-value) of 0.01 (Figure 4.8; Table 4.5). The 

expression of a subset of these genes was validated by qRT-PCR (Table 4.6; Table 4.7). Fourteen 

of the upregulated genes were transporter subunits, a common stress response upon antibiotic 

treatment (Li and Nikaido, 2009). Conversely, PZN treatment led to the downregulation of genes 

associated with L-lactate metabolism, for which the implications remain unclear.  

The most highly upregulated B. anthracis genes upon PZN treatment were bas1344 and 

bas1345, which encode a hypothetical protein and a predicted member of the PspA/IM30 family, 

respectively (Table 4.6). These genes are homologous to the B. subtilis genes liaI and liaH (lipid 

II cycle interfering antibiotics), which are involved in the cell envelope stress response. Induction 

of these genes upon antibiotic treatment is well documented in B. subtilis, specifically to 

antibiotics interacting with lipid II in some capacity (e.g., nisin, vancomycin, and bacitracin) 

(Jordan et al., 2008). Induction of lia is also seen upon treatment of B. subtilis with daptomycin, 

despite the lack of direct interaction between daptomycin and lipid II (Wecke et al., 2009). PZN 

treatment also results in massive upregulation of bas5200 and bas5201, which are homologous to 

a B. subtilis thermosensor two-component system that regulates the lipid desaturase, desRK 
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(Martin and de Mendoza, 2013). To our knowledge, PZN is the first compound known to alter the 

expression of desRK, further suggestive of a unique MOA.  

Recently, we reported on the synthesis of a PZN derivative, Me2-Arg-Az5 (Figure 4.1) 

(Hao et al., 2015).  Chemically, Me2-Arg-Az5 represents the N-terminal half of PZN, but the 

activity spectrum of Me2-Arg-Az5 is broader and includes other Bacillus species as well as S. 

aureus (Table 4.8). To investigate their differing spectra of activity, we recorded the gene 

expression profile of B. anthracis treated with Me2-Arg-Az5 under otherwise identical conditions 

(0.25 × MIC, 10 min) by RNA-Seq. The two compounds shared a minor portion of their 

expression profiles, but each profile was largely independent (Figure 4.9; Tables 4.9-4.10). For 

example, sub-lethal Me2-Arg-Az5 treatment also induced the desRK two-component system, but 

expression of liaIH remained unchanged. Additionally, Me2-Arg-Az5 failed to induce B. 

anthracis lysis, in contrast to PZN (Figure 4.10). These data, together with strain susceptibility, 

suggest that PZN and Me2-Arg-Az5 pursue independent, but possibly related, targets.  

4.3.4 PZN depolarizes the B. anthracis membrane 

We examined the activity of PZN towards B. anthracis in the presence of the membrane 

disrupting agents nisin and daptomycin. Based on the resulting isobolograms, both compounds 

elicited strong synergistic activity with PZN (Figure 4.11) (Berenbaum, 1989). Both nisin and 

daptomycin disrupt membrane potential in Gram-positive organisms, and their synergism with 

PZN suggests that PZN might also depolarize the B. anthracis membrane (Ruhr and Sahl, 1985; 

Silverman et al., 2003). Thus, DiOC2(3) (3,3’-diethyloxacarbocyanine iodide) was used to 

measure the membrane potential of PZN-treated B. anthracis cells. As expected, PZN treatment, 

at both inhibitory and sub-inhibitory concentrations, correlated with a decrease in membrane 

potential, suggesting that PZN exerts its action by disrupting the integrity of the cell membrane 

(Figure 4.11). 
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4.3.5 Subcellular localization of PZN 

With mounting evidence that PZN targets the cell membrane, we aimed to determine the 

subcellular localization of PZN by confocal microscopy. Antibiotics derivatized with fluorescent 

probes have previously been used to shed light on their MOAs (Bindman and van der Donk, 

2013; Tiyanont et al., 2006). Localization of PZN was established by employing a Cy5-labeled 

PZN derivative (PZN-Cy5) (Figures 4.1, 4.12) that retained much of its anti-B. anthracis activity 

(MIC of 4 µg/mL, 2 μM). PZN-Cy5 localized to distinct ~200 nm wide foci in B. anthracis 

Sterne (Figure 4.13A). To confirm that PZN-Cy5 behaved in a matter identical to unlabeled PZN, 

we carried out a competition assay where and excess of PZN was applied to B. anthracis Sterne 

followed by addition of PZN-Cy5. Due to the extensive cell lysis elicited by PZN, we employed a 

later-described spontaneously PZN-resistant Sterne mutant (PR06) for this competition assay. 

Just as in B. anthracis Sterne, PZN-Cy5 localized to distinct foci in B. anthracis PR06 (Figure 

4.13B). PZN-Cy5 failed to label strain PR06 when an excess of unlabeled PZN was administered 

first, demonstrating that PZN and the PZN-Cy5 probe identically interact with B. anthracis 

(Figure 4.13C). Due to the photoswitching properties of Cy5, we were able to further investigate 

PZN-Cy5 localization using stochastic optical reconstruction microscopy (STORM, Figure 4.14) 

(Huang et al., 2008). Using this super-resolution imaging technique, B. anthracis Sterne cells 

were again confirmed to accumulate PZN-Cy5 at the foci described above. These foci were 

clearly localized to the surface of the cells, further implicating a component of the cell envelope 

as the target of PZN (Figure 4.15). B. anthracis cells contain 16 ± 2 foci per cell, each with a 

diameter of 181 ± 7 nm, as determined by analysis of 14 cells treated with PZN-Cy5 (Figure 

4.15). Notably, the labeling pattern of PZN-Cy5 is different from BODIPY-vancomycin, which 

has been shown to localize to bacterial septa at the site of peptidoglycan synthesis (Nguyen-Mau 

et al., 2012). If PZN were acting on the cell wall, sites of active PG synthesis or the entire cell 

wall would be labeled with PZN-Cy5. The non-septal, punctate labeling of PZN-Cy5 suggests 
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that the target of PZN is neither nascent nor existing peptidoglycan, which is congruent with the 

observation that PZN did not block cell wall biosynthesis (Figure 4.7).  

4.3.6 Isolation and characterization of PZN-resistant mutants 

An orthogonal strategy for obtaining antibiotic MOA information involves the selection 

and mapping of resistant mutant polymorphisms (Silver, 2011). The genes containing the 

resistance-conferring mutations can either be involved directly in the MOA of the antibiotic or in 

a target-unrelated mechanism of immunity. We isolated PZN-resistant B. anthracis by growing 

the Sterne strain on agar plates containing PZN at 4 × MIC. The resistance frequency was 

determined to be 2.3 × 10
-7

, and the resulting mutants exhibited MICs that were ≥32 μg/mL. 

Genomic DNA was isolated and sequenced for six independently-selected PZN-resistant strains 

(PR01 through PR06) and the parent Sterne strain. Comparison of PR01 through PR06 to the 

parent revealed that all six polymorphisms were confined to a 50-nucleotide section of a single 

gene, bas4114, which is annotated as an AcrR transcriptional repressor (Table 4.11) (Deng et al., 

2013). This particular AcrR protein is predicted to contain a single transmembrane domain near 

the C-terminus (Figure 4.16) (Viklund et al., 2008), which is precisely where the PZN-resistance 

conferring mutations were found, all resulting in premature stop codons. Directly downstream of 

bas4114 are two EmrE-type efflux pumps, encoded by bas4115-4116. We hypothesized that as 

an AcrR transcriptional repressor, BAS4114 would negatively regulate bas4115-4116, and 

mutations near the C-terminus of BAS4114 would result in regulator dysfunction and 

derepression of the efflux pumps. This in turn would increase resistance to PZN. Therefore, 

RNA-Seq was employed to compare the mRNA expression profiles of PR06 to the parent Sterne 

strain. This analysis revealed a significant upregulation of bas4114-4117 (Table 4.12). PR06 and 

the Sterne parent were equally susceptible to Me2-Arg-Az5 (Table 4.8), again underscoring 

differences between PZN and Me2-Arg-Az5. The susceptibility of PR06 to a panel of 
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mechanistically-diverse antibiotics, including daptomycin, was also assessed (Table 4.13). The 

PZN resistance-conferring mutation did not alter the susceptibility towards any tested antibiotic. 

Mutation of bas4114 is clearly the favored route for generating PZN-resistance in B. 

anthracis, as shown by the occurrence of multiple independent mutations within the same gene. 

In order to subvert this resistance mechanism, and to obtain more insightful information about 

PZN MOA, we deleted bas4114-4117 from the parental strain by homologous recombination 

(Figure 4.17) (Janes and Stibitz, 2006). B. anthracis Sterne Δbas4114-4117 thus became the new 

parental strain for isolating second-generation PZN-resistant mutants, as the removal of bas4114-

4117 rendered the strain resensitized to PZN at wild type levels (1 μg/mL). This time, two routes 

were pursued for obtaining PZN-resistant strains. First, we selected spontaneous PZN-resistant 

mutants by challenging with 4 × MIC. Isolation of the spontaneous mutants resulted in a mutation 

frequency an order of magnitude lower than before (1.3 × 10
-8

). Two independently-selected 

resistant strains (PR07 and PR08) were subjected to whole-genome sequencing, revealing single 

point mutations within ftsE (Table 4.14). FtsE is an ATP-binding protein that associates with its 

cognate permease FtsX, which together comprise an ABC transporter that functions during cell 

wall elongation and septum formation (Yang et al., 2011). 

In a second strategy to obtain PZN-resistant mutants, we cultured B. anthracis Sterne 

Δbas4114-4117 in the presence of a sub-lethal concentration of PZN. The concentration of PZN 

was gradually increased with the number of passages (Friedman et al., 2006). We isolated 

genomic DNA from a 1
st
 passage strain (PR09-1, MIC 16 μg/mL) in addition to two independent 

4
th
 passage strains (PR09-4, PR10-4, MICs ≥64 μg/mL) for whole genome sequencing. PR09-1 

contained a point mutation in bas1659, which is annotated as a CitB-like response regulator 

(Table 4.14). Downstream of bas1659 are genes encoding a predicted histidine kinase (bas1660), 

ABC transporter subunits (bas1661-1663), and a cardiolipin (CL) synthase gene (bas1664). 

PR09-4 is a descendent of PR09-1, and as such, PR09-4 contained the same bas1659 mutation as 
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PR09-1 in addition to another point mutation in bas1662 (the permease domain of a locally-

encoded ABC transporter). PR10-4 contained a similar mutation series (bas1663, a second 

permease gene for what is presumably a trimeric ABC transporter) but had an additional mutation 

in bas1842, which is implicated in petrobactin biosynthesis (Lee et al., 2007). However, deletion 

of the petrobactin biosynthetic gene cluster did not decrease susceptibility to PZN (Table 4.1). 

4.3.7 Cardiolipin increases sensitivity to PZN 

We hypothesized that the regulatory- and transport-related mutations upstream of the 

gene encoding CL synthase could alter CL concentrations and thus, CL may be playing a role in 

PZN’s activity. We first examined the effect of exogenous CL on the interaction of PZN with the 

B. anthracis cell membrane. B. anthracis cells were treated with PZN-Cy5 (1 nM) in the presence 

and absence of exogenous CL (up to 100 µg/mL). Cell-associated PZN was then quantified by 

flow cytometry. The extent of PZN-Cy5 binding to B. anthracis was significantly increased when 

cells were co-treated with CL (Figure 4.18). This result is in contrast to that with daptomycin, 

which acts on the bacterial membrane but exhibits an antagonistic relationship with CL (Zhang et 

al., 2014). As predicted, co-administration of CL did not increase the labeling efficiency of 

daptomycin-Cy5 on B. anthracis cells (Figures 4.1, 4.18, 4.19) (Zhang et al., 2014). Congruent 

with these data was the observation that CL potentiated the killing activity of PZN towards B. 

anthracis. Indeed, the strongly synergistic behavior with CL enhanced the potency of PZN 

upwards of 16-fold while CL alone had no antibiotic activity at the concentrations tested (Figure 

4.18). 

The proportion of CL in cell membranes has been reported to increase during growth in 

high osmolarity medium, especially for B. subtilis (Romantsov et al., 2009). We thus tested 

whether increasing the osmolarity of the B. subtilis medium (and thus the CL content) would 

induce susceptibility to PZN. When grown in standard LB supplemented with an additional 1.5 M 

NaCl (final 1.67 M NaCl), PZN was weakly growth-suppressive towards B. subtilis (Table 4.15). 
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By measuring CL from total lipid extractions, CL levels did increase compared to standard 

growth in LB (Table 4.15). However, exogenous cardiolipin alone does not induce PZN 

susceptibility in B. subtilis (data not shown). Unfortunately, members of B. cereus sensu lato, 

including B. anthracis, are not tolerant of high osmolarity media (Peters et al., 1991). Therefore, 

induced susceptibility to PZN under high osmolarity conditions could not be evaluated for these 

strains. 

As stated previously, the stepwise-selected PZN-resistant mutants accumulated mutations 

in genes upstream of the CL synthase gene. We next analyzed the transcriptional response within 

the cls locus, including the upstream regulators/transporters and observed a dramatic increase in 

the expression of several cls genes in PR09-1 and PR09-4, including CL synthase itself and the 

transporters, but not the predicted response regulator and histidine kinase genes (Table 4.16). In 

contrast, there was no differential expression of any tested gene in the PR10-4 strain. Upon CL 

quantification, we did not detect differences in CL content between B. anthracis and the 

Δbas4114-4117 strain; however, only mutant PR10-4 contained a proportionally increased level 

of CL (Table 4.15).  

4.3.8 PZN colocalizes with cardiolipin and regions of increased fluidity 

The genetic and functional association with CL implicates the membrane as the most 

probable target for PZN. The lipid dye 10-N-nonyl acridine orange (NAO) approximates regions 

of the cell membrane enriched in CL (Mileykovskaya and Dowhan, 2000; Petit et al., 1992). 

Alone, NAO staining yielded a patchy appearance on B. anthracis membranes (Figure 4.20). We 

equilibrated B. anthracis cells with PZN-Cy5 and NAO to investigate if PZN localized to CL-rich 

regions in the cell membrane. There existed a clear but imperfect colocalization of the two dyes, 

suggesting a possible interaction with CL in the bacterial membrane (Figure 4.20). Additionally, 

1,1’-Didodecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate, (DilC12(3)), is a dye reported 

to associate with regions of increased fluidity (RIF) within cell membranes, which may also be 
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indicative of CL localization (Strahl et al., 2014). We observed colocalization of DilC12(3) and 

PZN-Cy5, consistent with PZN and CL co-associating with B. anthracis RIFs (Figure 4.20). 

4.4 Summary and Outlook 

Due to genomic advances, B. anthracis, the causative agent of anthrax, can be 

distinguished from the other members of the B. cereus sensu lato group by whole genome 

sequencing, multi-locus sequence typing (Marston et al., 2006; Tourasse and Kolsto, 2008), the 

presence of chromosomal lambdoid prophages (Kolsto et al., 2009), and the presence of a 

characteristic nonsense mutation in plcR. An alternative approach to B. anthracis identification 

now includes susceptibility to PZN, which is a natural product exhibiting potent and specific 

activity for B. anthracis under standard laboratory conditions. Our data demonstrate that the 

species selectivity of PZN is even more discriminating than that of the reputedly selective γ phage 

(Abshire et al., 2005; Kan et al., 2013; Marston et al., 2006; Schuch and Fischetti, 2006).  

B. cereus G9241, which was inhibited by PZN at 8 μg/mL, is a fortuitous exception to 

PZN selectivity, as it was isolated from a patient exhibiting an anthrax-like disease (Hoffmaster et 

al., 2004). Upon treatment with high concentrations of PZN in other rich media, namely Mueller-

Hinton and brain-heart infusion broths, the spectrum of PZN activity is broadened to include 

strains of S. aureus, a phenomenon that convolutes the search for PZN’s precise MOA. Upon 

testing a panel of Gram-positive strains, no bacterium besides S. aureus showed media-dependent 

susceptibility to PZN. 

We were able to rule out certain B. anthracis-defining features, namely the SCWP/S-

layer, plasmid-borne entities, proteins tethered to the cell wall, and plcR-related components as 

targets of PZN by analyzing select B. anthracis strains. Additionally, despite preparing a 

biotinylated PZN derivative that retained antibacterial activity, no proteinaceous binding partners 

could be identified. Similarly, a photoaffinity PZN probe was employed in the event that the 

PZN-biotin probe had decreased affinity for the target, but this too was unsuccessful.  
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The gene expression profile of PZN suggested a target within the B. anthracis cell 

membrane. Sub-lethal concentrations of PZN resulted in the differential expression of 74 genes 

within B. anthracis. Two of the most upregulated genes in the PZN expression profile are 

homologs of liaI and liaH, which are part of a known cell envelope stress response. A number of 

cell wall- and cell membrane-acting antibiotics induce the lia system (e.g. bacitracin, nisin, 

daptomycin, and vancomycin) (Wecke and Mascher, 2011). However, PZN likely has a distinct 

MOA, given that we observed an overall expression profile different from those reported for 

other antibiotics. Of particular note is the overexpression of the lipid desaturase (des) two-

component regulatory system. Cell survival in conditions of increased osmolarity is dependent on 

membrane fluctuations with an increase in unsaturated fatty acid composition (Lopez et al., 

1998). We have demonstrated that by increasing the osmolarity of the growth medium, we can 

induce, to a modest extent, PZN susceptibility in B. subtilis. Increased CL levels are characteristic 

of osmotic stress in B. subtilis, Escherichia coli, and Lactococcus lactis, among others 

(Romantsov et al., 2009). Furthermore, excess CL within the membrane results in increased 

fluidity and lipid bilayer deformation (Unsay et al., 2013). Regulation of the lipid desaturase, 

Des, influences the composition of phospholipids within the membrane (Aguilar et al., 1998). 

Thus, PZN induces stress in the cell membrane, inducing the des two-component system and 

likely affecting membrane fluidity.   

To further illuminate the MOA of PZN, we deleted four adjacent genes (bas4114-4117) 

involved in endowing B. anthracis with spontaneous resistance to PZN. Serially passaging the 

resulting deletion strain for PZN-resistant mutants yielded an accumulation of point mutations 

within a regulator (bas1659) and transporters upstream (bas1662-1663) of a CL synthase gene 

(bas1664). As these are missense mutations, we would not necessarily expect loss of function in 

the protein products. We observed differential expression of the CL synthase and upstream 

transporters in the PZN-resistant mutants, but only the PZN-resistant mutant PR10-4 displayed 
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differential levels of CL in the cell membrane. Increased CL content in the PR10-4 mutant 

suggests that CL does play a role in the activity of PZN, although there is not a straightforward 

relationship between CL content composition and PZN susceptibility. Based on our findings, we 

expect that in addition to CL, other membrane-associated biomolecules contribute to the ability of 

PZN to destabilize B. anthracis cell membranes. 

Nonetheless, our results reveal that CL plays an important role in PZN susceptibility, in 

that CL dramatically increased the potency of PZN without being cytotoxic at the concentrations 

investigated here. Such synergy was not observed between daptomycin and CL, and according to 

the available literature, increased CL contributes to daptomycin resistance in Entercocci; thus, 

although PZN and daptomycin both disrupt membrane function, they exhibit differences in MOA 

(Palmer et al., 2011; Zhang et al., 2014). CL has the potential to dramatically alter membrane 

architecture and may contribute to the susceptibility of B. anthracis through localization to 

distinct foci throughout the cell. The link between PZN and CL is further supported by the 

colocalization of PZN-Cy5 with the quasi-CL-specific dye, NAO, in B. anthracis (Mileykovskaya 

and Dowhan, 2000; Petit et al., 1992). In B. subtilis, NAO organizes into distinct foci at the septa 

and the poles (Matsumoto et al., 2006; Mileykovskaya and Dowhan, 2009), but it appears that in 

B. anthracis Sterne, NAO labels distinct, ~200 nm foci throughout the entirety of the cell 

membrane. Thus, B. anthracis appears to have a unique distribution of CL that facilitates an 

interaction with PZN and leads to cell death, whereas CL within other species may not be 

accessible to PZN. In addition to colocalization with NAO, we report that PZN-Cy5 colocalizes 

with DilC12(3), which is a dye that recognizes regions of increased fluidity (RIFs) in the 

membrane of B. subtilis (Strahl et al., 2014). RIFs are transiently weakened regions within the 

bacterial membrane that affect lipid homeostasis and membrane fluidity.  

In an effort to further understand the remarkable selectivity of PZN susceptibility, we 

initiated a comparative analysis of PZN and Me2-Arg-Az5 activities. Just as the PZN substructure 
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Me2-Arg-Az5 partially resembles PZN, our investigation reveals some similarities but major 

differences in their activities. Me2-Arg-Az5 displayed a broader range of antibiotic activity, 

including S. aureus and multiple Bacillus species (Hao et al., 2015). Importantly, mutations 

conferring PZN resistance did not confer resistance to other antibiotics or to Me2-Arg-Az5. 

Additionally, Me2-Arg-Az5 shared a minor portion of its gene expression profile with PZN; 

together with the evidence that Me2-Arg-Az5 does not lyse B. anthracis cells, we hypothesize that 

Me2-Arg-Az5 and PZN have distinct MOAs. A possible explanation for the observed differences 

between PZN and Me2-Arg-Az5 is that the C-terminal portion of the molecule is responsible for 

the species selectivity of the mature molecule and the N-terminal portion harbors the antibiotic 

activity, although this remains to be more extensively investigated. Thus, while Me2-Arg-Az5 is 

not useful as a mimic for the full-length natural product, it may represent a way to broaden the 

spectrum of PZN activity.  

In this paper, we report a MOA for PZN bioactivity involving cell membrane 

depolarization in a CL-enhanced manner. Through extensive testing, we determined that the 

stringency of PZN for B. anthracis is relaxed only in alternative media conditions. Additionally, 

the compound on its own does not contribute to B. methylotrophicus FZB42 antifungal or 

nematicidal activity. B. anthracis is very similar to other members of the B. cereus sensu lato 

family as described, but strains of B. anthracis designed to analyze key genetic differences retain 

their respective susceptibility to PZN. By imaging with confocal and STORM microscopy, PZN-

Cy5 was found to localize to the cell envelope and colocalize with RIFs and CL. Gene expression 

analysis reveals that PZN operates by a different MOA than previously described cell envelope-

targeting antibiotics. Thus, we present a model for PZN activity wherein PZN takes advantage of 

a locally weakened cell membrane, whether due to RIFs, CL-dependent membrane deformation, 

or some combination thereof. PZN accumulates to such membrane defects, which results in 

membrane depolarization and eventual cell lysis.  
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4.5 Experimental 

4.5.1 Strain and growth conditions 

All strain references are displayed in Table 4.1. All strains were grown in Luria-Bertani 

(LB) broth unless otherwise described (10 g/L tryptone, 5 g/L yeast extract, 10 g/L (0.34 M) 

NaCl). Biosafety level 3 strains of B. anthracis were grown on Mueller-Hinton agar. Neisseria 

strains were grown in gonococcal medium base supplemented with Kellogg’s I and II (Kellogg et 

al., 1963). Streptomyces endospores were isolated on mannitol soybean flour agar (20 g/L 

mannitol, 20 g/L soybean flour, 1.5% agar) and used to determine PZN susceptibility in ISP2 (4 

g/L yeast extract, 10 g/L malt extract, 4 g/L dextrose). Yeast strains were grown in YPD medium 

(10 g/L yeast extract, 20 g/L peptone, 20 g/L dextrose). C. elegans was cultured on nematode 

growth medium with E. coli OP50. Cultures were supplemented with 1.25 mM CaCl2 when 

assaying daptomycin susceptibility. In cases where increased osmolarity was desired, the LB was 

supplemented with additional NaCl (final concentration of 1.84 M). 

4.5.2 PZN production 

Stationary phase cultures of RSpMarA2 (Δsfp, yczE, degU) (Kalyon et al., 2011) were 

grown in LB with 7 µg/mL kanamycin and 7 µg/mL chloramphenicol. Sterilized aluminum sheet 

cake pans were prepared with M9 agar medium supplemented with BME vitamin mix and ATCC 

trace mineral solution and the aforementioned antibiotics. Cake pans were inoculated with 1.5 mL 

stationary phase RSpMarA2 and incubated 48 h at 37 °C. Bacterial lawns were loosened from the 

agar and resuspended in Tris-buffered saline (TBS) (150 mL/pan). The bacteria were then 

harvested via centrifugation (11,000 x g, 20 min). The supernatant was decanted and the cell 

pellets were stored at -20 °C until extraction. 

4.5.3 PZN purification 

PZN was extracted from bacterial pellets by resuspending in 150 mL MeOH/tray of cells 

with intermittent vortexing for 15 min at 22 °C. The cells were harvested by centrifugation as 
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above. The supernatant was vacuum filtered using Whatman filter paper, rotary evaporated, and 

subsequently lyophilized to dryness. The dried, crude PZN was resuspended in MeOH (1 mL/tray 

of extract) and centrifuged to remove insoluble debris (4,000 × g, 10 min). The supernatant was 

then injected onto a RediSep Rf High Performance 15.5 g HP C18 cartridge (Teledyne Isco) and 

purified by MPLC using a Combiflash Rf 200 system (25-100% MeOH/10 mM aqueous 

NH4HCO3 over 120 column volumes). The fractions containing PZN were pooled, rotary 

evaporated, and lyophilized to dryness, yielding roughly 5 mg/tray. PZN was dissolved in DMSO 

at concentrations of 30-50 mg/mL and stored at -80 ˚C for later use. 

4.5.4 PZN bioactivity 

PZN and Me2-Arg-Az5 bioactivity was determined via microbroth dilution assay as 

described in the Clinical and Laboratory Standards Institute manual (2006). The optical density 

(OD600) of a stationary phase culture was adjusted to 0.01 and added to a microtiter plate 

containing serially diluted PZN. Wells were visually inspected for turbidity, and the minimum 

inhibitory concentration (MIC) was determined as the lowest compound concentration that 

incurred no growth after 16 h. MICs were determined in LB unless growth conditions required an 

alternative medium (see above). The S. aureus media-dependent PZN susceptibility was analyzed 

using LB, Brain-Heart Infusion (BHI, Bacto), and Mueller-Hinton (BBL) broths. When indicated, 

cardiolipin (CL) was added to the medium at 100 μg/mL. 

A B. anthracis growth curve was generated using Tecan Infinite M200 Pro. B. anthracis 

Sterne 7702 cultures were grown in LB to stationary phase at 37 ˚C. Cultures were diluted to 

OD600 of 0.05 with fresh LB and allowed to recover to an OD600 of 0.35. Cultures were aliquoted 

into 96-well plates containing PZN and incubated at 37 ˚C with orbital shaking. OD600 was 

measured every 2 min. Values were normalized to an initial OD600 of 0.35 and adjusted to a 1 cm 

path length.  Error bars represent standard deviation of two independent experiments. 
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A growth curve in the presence of Me2-Arg-Az5 was generated as described above with 

the following differences: B. anthracis Sterne 7702 and S. aureus USA300 cultures were grown 

in duplicate to OD600 1.0 and aliquoted into 96-well plates. Wells were treated with 1:1 dilutions 

of Me2-Arg-Az5 at a maximum concentration of 12 µM. The plate was incubated at 37 °C with 

orbital shaking and OD600 was measured every 2 min. Values were normalized to an initial OD600 

of 1.0, adjusted to a 1 cm path length, and averaged at each time point. 

4.5.5 Bacterial endospore preparation and susceptibility screening 

B. anthracis Sterne 7702 endospores were prepared as described previously (Stojkovic et 

al., 2008). Briefly, B. anthracis Sterne 7702 cells were incubated overnight in LB at 37 °C. Difco 

Sporulation Media agar plates (8 g Nutrient Broth, 1 g KCl, 0.25 g MgSO4 + 7H2O, and 17 g 

agar, per liter) was inoculated with 150 μL of the stationary phase culture and incubated at 30 °C 

for 5 days. Lawns were recovered by resuspension in sterile H2O and filtered using 3.1 and 1.2 

μm filters to remove vegetative cells and aggregated endospores. Endospore filtrate was 

incubated at 65 °C for 1 h to remove any remaining vegetative cells. Endospores were harvested 

by centrifugation at 8000 × g for 25 min at 4 °C. After decanting the supernatant, the endospores 

were washed 3 times with 40 mL of H2O, harvesting by centrifugation. Endospores were stored at 

4 °C in H2O and quantified by serial dilution. Endospores were screened for PZN activity by 

incubating 1 × 10
9
 endospores

 
with PZN (0-16 μg/mL) in H2O for 20 h at 37 °C. Endospores were 

subsequently incubated at 65 °C for 1 h to destroy any contaminating vegetative cells, and then 4 

°C for 4 h to recover, and followed by serial dilution onto LB agar plates to assess germination. 

Plate counts represent the average of two trials. 

4.5.6 Gamma (γ) phage sensitivity 

γ phage were propagated as described previously (Abshire et al., 2005) using B. anthracis 

Sterne 7702 cells on brain heart infusion (BHI) agar plates, with no visible loss in infectivity. 

Phage infectivity was tested against a panel of B. cereus and B. anthracis strains using a serial 
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dilution assay. Stationary phase cultures were adjusted to an OD600 of 0.1 and 100 µL was plated 

on BHI plates. 5 µL of phage stock (2.6 × 10
8 
plaque forming units/mL) was serially diluted (2-

fold) and spotted onto the plates and allowed to dry. After incubation at 37 °C for 16 h, plates 

were removed and visually inspected for plaques. 

4.5.7 C. elegans nematicidal assays 

Wild-type N2 C. elegans were cultured on E. coli OP50 using standard techniques 

(Brenner, 1974). Eggs were isolated from gravid hermaphrodites using standard bleaching 

protocols (Emmons et al., 1979) and incubated for 18 h at 20 °C to obtain synchronized L1 

larvae. Cultures were then transferred to new NGM plates seeded with OP50 E. coli and 

incubated for 48 h at 25 °C. Resulting L4 larvae were used for assays adapted from Liu et al (Liu 

et al., 2013).  

Slow killing assays were performed using 12-well cell culture dishes with wells 

containing 1 mL NGM agar amended with 64 μg/mL PZN dissolved in DMSO or an equivalent 

volume (2 μL) of DMSO alone. One half of the slow killing assay wells were also seeded with 10 

µL of OP50 E. coli. The effect of DMSO alone on mortality was also tested and found to be 

negligible. Subsequently, 40-60 L4 hermaphrodites were transferred to each well, incubated at 25 

°C and checked every 24 h for 3 days. Each treatment was performed with two biological 

replicates, each having three technical replicates.  Liquid fast killing assays were also performed 

using 12-well cell culture dishes with wells containing 1 mL M9 buffer combined with 64 μg/mL 

PZN dissolved in DMSO or DMSO alone. 40-60 L4 larvae were transferred into each well and 

incubated at 25 °C for 24 h. Fast killing assays were replicated similarly to the slow killing assay 

(two biological, three technical replicates). For the duplicate assay, an additional control of M9 

buffer was included. In both fast and slow killing assays, animals were scored according to 

criteria shown in Liu et al. Mortality rates were also calculated using identical ratios.  
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4.5.8 RNA isolation and transcriptional profiling of PZN-treated Sterne cells 

For the compound-treated samples, independent 3 mL cultures of B. anthracis Sterne 

7702 cells were grown to an OD600 of 0.4, and 0.25 × MIC of PZN, 0.25 × MIC Me2-Arg-Az5 

(Hao et al., 2015), or an equivalent volume of DMSO was added and allowed to incubate for 10 

min at 37 °C. Together with resistant mutant PR06, RNA was isolated and prepared as described 

previously (Scholz et al., 2011).  RNA-Seq libraries were created using the TruSeq Stranded 

RNA Sample Prep kit (Illumina, San Diego, CA) after rRNA depletion using the RiboZero 

Bacteria kit (Epicentre, Madison, WI). Sequencing was performed for 1 × 100 cycles on a HiSeq 

2000 with Version 3 Chemistry. Transcriptomic data was processed with the Rockhopper version 

1.30 pipeline (McClure et al., 2013) using B. anthracis Sterne and B. anthracis Ames Ancestor 

plasmid pXO1 (NC_007322.2) as references. Default values (allowed mismatches 0.15, minimum 

seed length 0.33, minimum expression of UTRs and ncRNAs 0.5) were used, with the exception 

that reverse complement reads were used for mapping. The RNA-Seq data discussed in this 

publication have been deposited in NCBI's Gene Expression Omnibus (Barrett et al., 2013) and is 

accessible through GEO Series accession number GSE73343 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73343).  

4.5.9 cDNA construction and qRT-PCR analysis 

cDNA was generated using the published protocol from the Promega Improm-II system, 

replacing the reverse transcriptase with Invitrogen m-MLV reverse transcriptase. qRT-PCR was 

performed with iTaq universal SYBR Green Supermix and following manufacturer’s instructions 

using a Roche Lightcycler 480 System. Fold changes upon PZN treatment were calculated as 

described previously (Schmittgen and Livak, 2008). 

4.5.10 Membrane depolarization 

Three independent stationary phase cultures of B. anthracis Sterne 7702 were used to 

inoculate fresh LB and grown to OD600 0.5 at 37 ˚C with shaking. Aliquots (10 µL) were diluted 
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to 1 mL in PBS containing 3 mM DiOC2(3) (3,3’-diethyloxacarbocyanine iodide) and compounds 

(DMSO - vehicle, 5 µM carbonyl cyanide m-chlorophenyl hydrazone (CCCP), 3.0 µM 

daptomycin, 0.5 µM PZN, 1.0 µM PZN). Cells were mixed at 21 °C for 30 min prior to analysis 

by flow cytometry (BD LSR II Flow Cytometry Analyzer). Voltages for fluorescein 

isothiocyanate (FITC) and propidium iodide (PI) fluorescence were set so that average counts per 

cell were between 10
3
 and 10

4
. Geometric means for fluorescence ratios were normalized to the 

control DiOC2(3) samples.  

4.5.11 Compound preparation 

Me2-Arg-Az5. Me2-Arg-Az5 was synthesized as previously described (Sharma et al., 

2013).  

PZN-Cy5. PZN (500 µg, 3.74 x 10
-7

 mol) in 20 µL dimethylformamide (DMF) was 

mixed with 5 µL N,N’-diisopropylethylamine (DIPEA), 10 µL of a 190 mM solution of 1-

hydroxybenzotriazole (HOBt) in DMF, and 10 µL of a 190 mM solution of 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) in DMF for 15 min at 21 °C. Then 29.3 µL of a 10 

µg/µL solution of Cy5 amine (Lumiprobe) in DMF was added. The reaction was protected from 

light and stirred at 22 °C for 24 h. The sample was dried by speed vacuum, redissolved in 5% 

MeOH, and purified on a Sep-Pak C18 cartridge (Waters) on a gradient from 0 – 100% MeOH. 

Fractions containing PZN-Cy5, as determined by MALDI-TOF mass spectrometry, were 

combined and their purity assessed by analytical HPLC (Thermo BetaSil C18 column [250 mm × 

4.6 mm], 40 – 95% MeOH). Concentration was determined using the extinction coefficient of 

Cy5 in DMSO (ε646 = 250,000 L cm
-1

 mol
-1

). 

Daptomycin-Cy5. A 1 mg/mL solution of daptomycin in DMSO was prepared and 33 µL 

was mixed with 2 µL of 10 mM Cy5 NHS ester (Lumiprobe) and stirred at 22 °C, protected from 

light, for 4 h. Labeled compound was purified by reverse-phase chromatography on a Perkin 

Elmer Flexar HPLC outfitted with a Thermo Scientific BetaSil C18 column (250 mm × 4.6 mm 
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I.D., 5 µm particle size) using 10 mM NH4HCO3 as the aqueous phase on a 45 min gradient from 

25 – 95% MeCN at a flow rate of 1 mL/min. Absorbance monitoring at 647 nm was used to 

identify the fraction containing daptomycin-Cy5, which was confirmed by MALDI mass 

spectrometry. Purity was determined by a second analytical HPLC run using the same solvents on 

a 30 min gradient from 40 – 95% MeOH. Concentration was determined using the extinction 

coefficient of Cy5 in DMSO. 

Biotin-PZN (N-terminal label). A 100 mM solution of EZ-link N-hydroxysuccinimide 

(NHS) Biotin (Thermo Scientific) in 80% MeCN, 10 mM MOPS (pH 8.0) was prepared. 

DesmethylPZN (200 µg, 1.53 × 10
-7

 mol) was dissolved in 24 µL of the same buffer and treated 

with 6 µL EZ-link NHS biotin solution for 4 h at 22 °C. The solvent was removed by speed 

vacuum and the sample was dissolved in MeOH for purification by HPLC (BetaSil C18 column, 

250 mm × 4.6 mm, 1 mL/min, 50 – 95% MeOH over 60 min, 10 mM NH4HCO3 aqueous phase, 

monitored at 254 nm). Fractions containing purified biotin-PZN were combined, dried, and 

redissolved in DMSO. B. anthracis Sterne 7702 susceptibility was determined to be >32 µg/mL 

using a standard microbroth dilution assay.  

PZN-Biotin (C-terminal label). PZN (500 µg, 3.74 × 10
-7

 mol) was dissolved in 10 µL 

DMF and 1 µL DIPEA was added to the sample. A solution of 2.0 mM EDC and 2.0 mM HOBt 

in DMF was prepared and 2 µL was added to the PZN. After 5 min stirring, 1.0 mg biotin 

cadaverine was added to the reaction and allowed to proceed at 22 °C for 30 h. The reaction was 

dried by speed vacuum, redissolved in MeOH, and purified by HPLC (BetaSil C18 column, 250 

mm × 4.6 mm, 1 mL/min, 50 – 95% MeOH over 60 min, 10 mM NH4HCO3 aqueous phase, 

monitored at 254 nm). Fractions containing purified PZN-biotin were combined, dried, and 

redissolved in DMSO. B. anthracis Sterne 7702 susceptibility was determined to be 32 µg/mL by 

a standard microbroth dilution assay. 
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PZN-diazirine-alkyne. PZN (6.68 mg, 5.0 × 10
-6

 mol) was dissolved in 75 µL DMF and 

1.4 µL Et3N was added with stirring. The sample was cooled in an ice bath to 0 ˚C. HOBt (0.95 

mg, 0.007 mmol) and EDC (1.1 mg, 0.007 mmol) were dissolved in 100 µL DMF and added to 

the PZN. 2-(2-azidoethyl)-2-(but-3-ynyl)-1,3-dioxolane (0.96 mg, 0.007 mmol) (Li et al., 2013) 

was dissolved in 200 µL DMF and 24 µL was added after 10 min at 0 ˚C with stirring, protected 

from light. The reaction was allowed to warm to 22 ˚C and allowed to proceed for 24 h. The 

solvent was removed by speed vacuum and the sample was redissolved in MeOH. The sample 

was purified by HPLC (BetaSil C18 column, 250 mm × 4.6 mm, 1 mL/min, 50 – 95% MeOH over 

60 min, 10 mM NH4HCO3 aqueous phase, monitored at 254 nm). Fractions containing purified 

PZN-diazirine-alkyne were combined, dried, and redissolved in DMSO. B. anthracis Sterne 7702 

susceptibility was determined to be 32 µg/mL using a standard microbroth dilution assay. 

4.5.12 Structural characterization of PZN derivatives 

Purified samples were dried by speed vacuum and dissolved in 50% MeCN supplemented 

with 1% (v/v) acetic acid. The diluted samples were directly infused using an Advion Nanomate 

100 to an LTQ-FT hybrid linear ion trap-FTMS system (ThermoFisher) operating at 11 T. The 

MS was calibrated weekly using calibration mixture following the manufacturer's instructions, 

and tuned daily with Pierce LTQ Velos ESI Positive Ion Calibration Solution (ThermoFisher). 

Spectra were collected in profile mode with a resolution of 100,000. The singly charged ions 

were targeted for CID using an isolation width of 5 m/z, a normalized collision energy of 35, an 

activation q value of 0.4, and an activation time of 30 ms. Data analysis was performed using 

Thermo Xcalibur software. 

4.5.13 Affinity purification using PZN-Biotin 

LB (200 mL) was inoculated with 10 mL stationary phase B. anthracis Sterne 7702. The 

culture was grown with shaking at 37 °C to OD600 0.5. The sample was divided into 100 mL 

aliquots, centrifuged, and individually resuspended in 1.5 mL lysis buffer (50 mM Tris, 500 mM 
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NaCl, 2.5% v/v glycerol, 0.1% v/v Triton X-100, pH 7.5) with 500 mU mutanolysin. After 

equilibrating for 30 min at 22 °C, the samples were sonicated (4 × 30 s, 50% amplitude) and 

harvested by centrifugation (17,000 × g, 10 min). The insoluble fractions were resuspended in 1.5 

mL 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) buffer (50 mM 

Tris-HCl, 150 mM NaCl, 1% w/v CHAPS, pH 7.5) and sonicated (10 s, 50% amplitude). One 

sample was treated with 1.0 × 10
-7

 mol PZN-biotin and the other was treated with vehicle 

(DMSO). The samples were treated for 30 min at 22 °C before the addition of 100 µL 

streptavidin-agarose resin suspension (pre-equilibrated with Tris buffer, 50 mM Tris-HCl, 150 

mM NaCl, pH 7.5). After mixing for 3 h at 22 °C, samples were applied to Bio-Rad spin columns 

and the flow through was collected. The resin was washed (5 × 4 mL Tris buffer). The resin was 

then resuspended in 200 µL 1% SDS in PBS and boiled for 10 min. After cooling, the eluent was 

collected and analyzed by SDS-PAGE for the presence of unique bands in the sample containing 

PZN-biotin. Unique bands, as visualized by Coomassie and silver stain, were not found compared 

to the vehicle-treated sample (data not shown). Samples were also analyzed by Western blot 

using the following procedure: proteins were transferred by electroblot to a polyvinylidene 

fluoride (PVDF) transfer membrane (EMD Millipore). The membrane was blocked overnight at 4 

°C in TBS containing 0.1% (v/v) Tween-20 (TBST buffer), treated for 1 h at 4 °C with 1/3,000 

dilution of streptavidin-HRP in TBST, and then washed (2 × 30 s then 5 × 5 min) with TBST. 

After washing once in PBS (1 × 30 s), the membrane was treated with 1:1 hydrogen peroxide 

solution:luminol solution (Bio-Rad) for imaging. 

4.5.14 Photoaffinity purification using PZN-diazirine-alkyne 

The procedure used for photoaffinity purification studies was similar to that of affinity 

purification experiments, except that the samples were incubated with PZN-diazirine-alkyne or 

vehicle (DMSO) for 4 h at 4 °C, protected from light. The cells were then exposed to UV (4 W, 

365 nm) for 15 min at 22 °C to induce crosslinking. The samples were pelleted and resuspended 
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in PBS containing 1 mM CuSO4, 128 µM tris(3-hydroxypropyltriazolylmethyl)amine, 1.2 mM 

sodium ascorbate, and 50 µM biotin-azide for 1 h at 22 °C. The cells were then centrifuged 

(4,000 × g, 2 min), the supernatant was decanted, and the cells were resuspended in PBS treated 

with 200 U/mL mutanolysin. After incubation for 1 h at 37 °C, cells were sonicated as previously 

described. The insoluble fraction was separated by centrifugation and resuspended as previously 

described. Clarified lysates and insoluble fractions were all enriched with streptavidin-agarose 

resin as previously described, and eluents were compared by SDS-PAGE followed by Western 

blot and mass spectrometric analysis.  

4.5.15 Macromolecular synthesis assay 

Radiolabel incorporation into cellular macromolecules was carried out as previously 

described (Cotsonas King and Wu, 2009). Briefly, identical B. anthracis Sterne 7702 cultures 

were grown to an OD600 of 0.6 in Luria Broth and diluted to a final OD600 of 0.3. Radiolabelled 

precursor was added to a final concentration of 0.1 μCi, and compound (either PZN or control) 

was added to 1×, or 2× the MIC. Samples were taken at 60 min post-compound addition. OD600 at 

each time point was determined using identically treated cultures lacking radioactive compound. 

The macromolecules of the cultures treated with radiation were precipitated using trichloroacetic 

acid on glass filter disks and washed with dilute acid and ethanol successively. The filters were 

placed in scintillation vials with Ultima Gold scintillation cocktail. Radioactive counts were 

determined using a liquid scintillation analyzer (PerkinElmer Tri-Carb 2910 TR). The 

macromolecules, radiolabelled precursors, and their corresponding control antibiotics were as 

follows:  

cell wall: [1,6-
3
H (N)] N-acetyl-D-glucosamine (ARC, ART 0142), vancomycin control 

protein: [U-
14

C] L-amino acid mixture (MP, 1014750), chloramphenicol control  

 RNA: [
14

C(U)] uridine (ARC, ARC 0154), rifampicin control 

 fatty acid: acetic acid [1-
14

C] sodium salt (ARC, ARC 0101A), triclosan control 
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4.5.16 Confocal microscopy 

In general, cells were prepared by inoculating 5 mL LB with 200 µL of a stationary phase 

culture. After growing to an OD600 of 0.5 at 37 °C with shaking, 1 mL aliquots were centrifuged 

(3 min, 8000 × g), decanted, and resuspended in sterile PBS. Slides were prepared by mixing 1:1 

(v/v) cell suspensions in PBS and liquefied low gelling temperature agarose (Sigma-Aldrich, 2% 

w/v in water). All microscopy images were obtained using a Zeiss LSM 700 Confocal 

microscope with a 63×/1.4 Oil DIC objective and processed using Zen 2012 software. Laser 

intensity and gain were kept at a minimum and held constant for all experiments. Linear contrast 

was equally applied during image processing. To localize PZN, B. anthracis Sterne 7702 was 

treated in PBS with 0.2 µM PZN-Cy5 for 30 min at 22 °C. After washing in PBS (3 × 500 µL), 

cells were resuspended in a final volume of 250 µL PBS. Competition experiments were 

performed using PR06 (PZN-resistant) in PBS treated with DMSO (vehicle) or 1 µM PZN for 20 

min at 22 °C before the addition of 0.05 µM PZN-Cy5. After 20 min at 21 °C, the cells were 

washed in PBS (3 × 500 µL) and resuspended in a final volume of 250 µL PBS. Sterne underwent 

co-treatment in PBS with 0.2 µM PZN-Cy5 for 25 min before the addition of other fluorescent 

compounds. After 5 min additional treatment, cells were washed in PBS (5 × 500 µL) and 

resuspended in a final volume of 250 µL PBS. Concentrations used: NAO (Sigma-Aldrich), 1 

µM; Dil-C12, 1 µM; BODIPY-vancomycin, 1 µM; Bocillin-FL, 1 µM. For CL experiments, cells 

were treated with EtOH (vehicle), 10 µg/mL CL, or 100 µg/mL CL in addition to 0.2 µM PZN-

Cy5 for 30 min. 

4.5.17 Super-resolution microscopy (STORM) 

Cells for 3D super-resolution microscopy were grown and treated with PZN-Cy5 as 

described for confocal microscopy. The cells were immobilized on Nunc® Lab-Tek® 8-well 

chambered coverglass (Sigma-Aldrich) coated with 0.1% (w/v) poly-L-lysine (Sigma-Aldrich). 

After 10 min incubation, unattached cells were removed by washing chambers with sterile PBS. 
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Chambers were filled with 500 µL imaging buffer (10 mM NaCl, 50 mM Tris-HCl (pH 8.5), 10% 

w/v glucose). Immediately prior to imaging, cysteamine (Sigma-Aldrich, 10 mM final 

concentration), catalase (EMD Millipore, 909 U/mL), and pyranose oxidase (Sigma-Aldrich, 4.44 

U/mL) were added to the imaging buffer. 3D super-resolution microscopy was performed as 

described previously (Fei et al., 2015; Rust et al., 2006; Shashikanth et al., 2015). Briefly, 

samples were imaged using an Olympus IX-71 inverted microscope outfitted with a 100× NA 1.4 

SaPo oil objective. Mechanical shutters (LS6T2, Unibliz) were used to alternatively excite the 

sample with a red laser (DL640-100-AL-O, Crystalaser) and reactivate Cy5 with a violet laser 

(405 nm, 20 mW, Spectra Physics Excelsor). The lasers were expanded by 7.5×, reflected by a 

dichoroic mirror (Semrock FF408/504/581/667/762-Di01-25X36), and sent to the sample 

chamber with a focusing lens that also creates an incidental angle slightly smaller than the total 

internal reflection angle, reducing the background signal while allowing illumination of several 

hundred nm along the z-axis. The emission signal from the sample was passed through an 

emission filter (Semrock FF01-594/730-25) and two additional notch filters (Semrock NF01-

568/647-25X5.0 and NF01-568U-25), and was imaged on an EMCCD camera (DV887ECS-BV, 

Andor Tech). A cylindrical lens (SCX-50.8-1000.0-UV-SLMF-520-820, CVI Melles Griot, 2 m 

focal length) in the emission beam path induced astigmatism for 3D detection (Huang et al., 

2008).  ASI CRISP (Applied Scientific Instrumentation) and a piezo-objective (PI P-721.10) were 

used to compensate for vertical drift during data collection. The horizontal drift was corrected in 

the post data acquisition step by the analysis software utilizing the correlation function (Bates et 

al., 2007). The data analysis software was provided by Xiaowei Zhuang (Rust et al., 2006) and 

modified for 3D imaging.  

4.5.18 2D projection analysis 

2D projection analysis was used to determine spatial localization of PZN on B. anthracis 

cells. A total of 11 cells imaged by super-resolution microscopy were aligned lengthwise along 
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the y-axis, and then sectioned to remove poles and septa. Cells were projected onto the XZ plane 

and divided into units of 30 × 30 nm
2
. Within each unit, spot density was determined and color-

mapped. The probability of finding a dye molecule a certain distance R from the y-axis was 

calculated for radial windows with a 20 nm bin size and normalized to the area of the radial 

window.  

4.5.19 PZN-Cy5 cluster analysis 

A density-based clustering analysis algorithm, DBSCAN (Daszykowski et al., 2002), was 

used as previously reported (Fei et al., 2015; Shashikanth et al., 2015) to analyze super-resolution 

images of PZN-Cy5-treated B. anthracis. Briefly, spots in super-resolution images of 14 cells 

were grouped into clusters based on spatial density. The required Npts and Eps parameters were 

set to 19 and 40 nm, respectively, and used to identify core points in high density spots. 

Parameter values empirically set such that core points within a cluster were within Eps distance 

of each other and surrounded by at least Npts points. Cluster borders were defined by points 

located with Eps distance to any core point. Cluster size was calculated as twice the average 

distance between the cluster center and every point in the cluster.  

4.5.20 Selection of spontaneous PZN-resistant mutants 

Spontaneous PZN-resistant mutants were generated by plating 2 × 10
8 
B. anthracis Sterne 

7702 cells grown to stationary phase onto a PZN plate containing 4 × PZN MIC. Surviving 

colonies were tested for sustained PZN resistance via microbroth dilution as described above. 

Resistant mutants PR01, PR02, PR05, and PR06 were subjected to genomic DNA isolation as 

follows: 3 × 10 mL cultures of each strain were grown to stationary phase, harvested, and 

resuspended in 400 µL of water. Cells were lysed with 50 µL of 10% SDS and 5 µL of 20 mg/mL 

RNase solution at 22 °C for 5 min. DNA was isolated via 25:24:1 phenol/chloroform/isoamyl 

alcohol extraction, followed by addition of 24:1 chloroform/isoamyl alcohol. DNA precipitation 

via cold isopropyl alcohol and a subsequent 70% ethyl alcohol wash resulted in purified gDNA. 
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4.5.21 Whole genome sequencing and assembly 

Genomic libraries for resequencing were prepared using the TruSeq DNAseq Sample 

prep kit (Illumina, San Diego, CA). Sequencing was performed on a HiSeq 2000 with Version 3 

Chemistry for 1×100 cycles. SNP and DIP discovery was performed with two different methods. 

Regarding PR02, PR05, and PR06, CLC Genomics Workbench SNP and DIP discovery pipelines 

were employed using with the publicly available B. anthracis str. Sterne genome NC_005945.1 as 

a reference. PR01 required de novo assembly with IDBA UD version 1.0.9, followed by whole 

genome alignment and SNP discovery using Mauve version 2.3.1. Resistant mutants PR03 and 

PR04 were selected separately and underwent Sanger sequencing after PCR amplification of 

bas4114 and sequencing with the BamHI-BAS4114-f primer (Table 4.2). The WGS data 

discussed in this publication have been deposited in NCBI's GenBank and are accessible via 

BioProject accession number: PRJNA295544. Within this BioProject are individual accession 

numbers for each B. anthracis strain (taxId:1392) for which whole genome sequencing was 

performed: CP012720, PR01; CP012721, PR02; CP012722, PR05; CP012723, PR06; CP012724, 

PR07; CP012725, PR08; CP012726, PR09-1; CP012727, PR09-4; CP012728, PR10-4; 

CP012730, Parent1 (for PR01 through PR06); CP012729, Parent2 (for PR07 through PR10-4. 

4.5.22 Genetic deletion of bas4114-bas4117 

Markerless genetic deletions were created in B. anthracis Sterne 7702 following 

established protocols (Janes and Stibitz, 2006). The 500 base pairs upstream and downstream the 

bas4114-4117 gene cluster were cloned into the homologous recombination vector pBKJ236 

using Gibson cloning (New England Biolabs) with the BamHI and NotI restriction sites. The 

pBKJ236 constructs were transformed into the E. coli dam dcm strain SCS110. Overnight 

cultures of the vector-containing SCS110 strain grown in LB containing 500 µg/mL erythromycin 

were used for conjugation along with overnight cultures of the conjugation helper strain E. coli 

SS1827 grown in LB with 200 µg/mL ampicillin and B. anthracis Sterne 7702 grown in BHI. 
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From the stationary phase cultures, 400 µL were removed and washed twice by pelleting and 

suspending in 500 µL of LB to remove residual antibiotic. The pellets were resuspended in 200 

µL of LB, then mixed thoroughly in equal volumes, and 150 µL of the mixture was inoculated 

onto a BHI agar plate without spreading. The inoculum was allowed to dry and the plate was 

incubated at 22 °C for 24 h. The entire growth was then carefully removed from the plate, 

resuspended in 200 µL of LB, and spotted onto a BHI agar plate containing 5 µg/mL 

erythromycin and 60 U/mL polymyxin B (BHIep). The culture was allowed to dry and then 

subsequently plated to achieve single colonies. The plate was incubated at 22 °C until single 

colonies of B. anthracis Sterne 7702 were visible (~48 h). A single colony was used to inoculate 

a 2 mL culture of BHI containing 5 µg/mL erythromycin, and the culture was incubated with 

shaking at 22 °C overnight. The saturated culture was used to inoculate a fresh culture of BHI 

containing 5 µg/mL at a 1:1000 dilution. This culture was incubated at 37 °C with shaking until 

saturation (~8 h), then 150 µL of the culture was spotted onto a BHIep plate and allowed to dry. 

The spot was streaked for single colonies and the plate was incubated at 37 °C overnight. A 

single colony was picked and used to make competent cells as previously described (Quinn and 

Dancer, 1990). Briefly, a colony was used to inoculate a 1 mL culture of LB containing 0.1% 

glucose (LBG). The culture was incubated at 37 °C without shaking for 10 min, and then used to 

inoculate 25 mL of LBG in a 250 mL sealable Erlenmeyer flask. The culture was incubated with 

shaking at 100 rpm at 37 °C until it reached an OD600 of 0.20, at which point it was transferred to 

a 50 mL conical tube and pelleted at 4000 × g at 4 °C for 10 min. The spent media was discarded 

and the pellet was washed with ice cold electroporation buffer (EB; 10% w/v sucrose, 15% v/v 

glycerol, 2 mM potassium phosphate, pH 7.8) twice. The cells were resuspended in 400 µL of 

cold EB, transferred to a 0.4 cm gap electroporation cuvette (USA Scientific), and incubated on 

ice for 10 min. A plasmid encoding the I-SceI restriction enzyme, pSS4332 (Cybulski et al., 

2009), was added as 10 µL of a 500 ng/µL stock and the cells were pulsed one time at 2.5 kV, 25 
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µF, 200 Ω (mean time constant of 4.4 ms). The cells were then placed on ice for 10 min before 

being diluted with 600 µL LBG. The cells were recovered at 37 °C for 2 h and then plated on 

LBG agar plates containing 25 µg/mL kanamycin. Colonies were pooled and passaged repeatedly 

on BHI agar plates containing 25 µg/mL kanamycin until erythromycin sensitive colonies could 

be isolated. Sensitive colonies with the desired genes deleted were determined by PCR 

amplification with the cloning primers and were then repeatedly streaked on antibiotic free BHI 

agar plates until kanamycin sensitive colonies were isolated. Gene deletion was confirmed by 

PCR amplification with gene specific primers (Figure 4.17) and the strains were confirmed to be 

sensitive to both kanamycin and erythromycin by plating on the appropriate antibiotic containing 

BHI agar plates. 

After genetic deletion of bas4114-4117, a second round of spontaneously resistant 

mutants to PZN were selected and isolated as above. Serial-passage mutants were isolated as 

previously described (Friedman et al., 2006), starting with three independent cultures of an OD600 

of 0.1 B. anthracis Sterne 7702 Δbas4114-4117 in 0.25 μg/mL (0.25 × MIC) PZN LB. Cultures 

that grew were diluted to an OD600 of 0.1 and subjected to increased concentrations of PZN, until 

cultures were resistant to 64 µg/mL. Cultures were serially passaged onto PZN-free medium to 

confirm mutant stability. Genomic DNA was isolated as described above. All mutants derived 

from the Δbas4114-4117 deletion strain were sequenced as described and assembled via CLC 

Genomics Workbench and SNP analysis was performed with Mauve version 2.3.1. 

4.5.23 Effect of cardiolipin on fluorescence intensity 

Three independent stationary phase cultures of B. anthracis Sterne 7702 were used to 

inoculate fresh LB (200 µL into 5 mL LB) and the new cultures were grown to OD600 0.5 at 37 ˚C 

with shaking. Samples were prepared by diluting 10 µL aliquots of culture to 1 mL in PBS 

containing 1 nM PZN-Cy5 and vehicle (EtOH), 10 µg/mL CL (Sigma Aldrich), or 100 µg/mL 

CL. After mixing at 22 °C for 30 min, cells were analyzed by flow cytometry as described above 
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for differences in PZN-Cy5 fluorescence intensity. Geometric means were normalized to the 

control samples. 

4.5.24 Cardiolipin quantification from total lipid extracts 

Cultures of B. anthracis Sterne 7702, B. anthracis Δbas4114-4117, B. anthracis PR09-4, 

B. anthracis PR10-4, B. subtilis 168, E. faecium U503, and S. aureus USA300 (three independent 

10 mL cultures for each strain) were grown for 20 h at 37 ˚C. LB containing an additional 1.5 M 

NaCl was inoculated with 200 µL aliquots of stationary phase cultures of B. subtilis 168, E. 

faecium U503, and S. aureus USA300 (three independent 10 mL cultures for each strain) and 

grown for 40 h at 37 °C. The cells were harvested by centrifugation (4000 × g, 10 min, 4 °C) and 

resuspended in 5 mL 2:1 CHCl3:MeOH and 1.25 mL PBS, and then extracted for 1 h at 22 °C. 

The supernatant was removed after centrifugation (4000 × g, 10 min, 4 °C) and layers were 

washed with 1 mL CHCl3 and 1 mL PBS. The organic layer was removed and dried by speed 

vacuum. The crude lipids were redissolved in 200 µL CHCl3 and transferred to microfuge tubes, 

then dried again. The lipids were then dissolved in 20 µL CHCl3 and separated by preparative 

TLC (Analtech Silica Gel G) using 2:1 CHCl3:MeOH. The CL-containing spots were removed 

and extracted with 200 µL 2:1 CHCl3:MeOH for 15 min with shaking. The extracts were dried by 

speed vacuum and redissolved in 20 µL CHCl3. Each sample was spotted (0.5 µL) onto Merck 

Silica Gel 60 F254 analytical TLC plates and separated using 80:20:5 CHCl3:MeOH:AcOH. The 

plates were developed in iodine and imaged using a Bio-Rad ChemiDoc XRS+. ImageJ was used 

to subtract background and measure spot density to determine percent CL out of total lipid 

content. 
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4.7 Figures 

 

Figure 4.1 | Structures. Chemical structures of plantazolicin (PZN) (A), Me2-Arg-Az5 (B), 

Biotin-PZN (C), PZN-Biotin (D), PZN-photoaffinity probe (E), PZN-Cy5 (F), daptomycin (Dap)-

Cy5 (G) NAO, nonyl acridine orange (H), and DilC12(3) perchlorate (I). 
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Figure 4.2 | Confirmation of plasmid loss in B. anthracis 34F2 LLNL A0517-1. (Top) PCR of 

a conserved chromosomal gene, bas4114. (Bottom) pXO1 encoded gene lef is not present in 

A0517-1 or the select B. cereus strains. 
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Figure 4.3 | PZN is not toxic to Caenorhabditis elegans using two different experiments. PZN 

was subjected to purified PZN during both liquid fast killing (A) and slow killing assays (B-C). 

Animals were treated with 64 μg/mL PZN and analyzed by live/dead screening over the course of 

the experiments. P-values were generated using the Log-rank (Mantel-Cox) test. 
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Figure 4.4 | Mass spectrometry structural characterization of biotin-PZN. (A) Mass 

spectrum of the [M+H]
2+

 species by LTQ-FT-MS, which was used to calculate exact mass. (B) 

CID spectrum of the singly charged ion acquired by LTQ-FT-MS. Labeled peaks correspond to 

identified fragments of biotin-PZN, shown on the structure in panel (C). 
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Figure 4.5 | Mass spectrometry structural characterization of PZN-biotin. (A) Mass 

spectrum of the [M+H]
2+

 species by LTQ-FT-MS, which was used to calculate exact mass. (B) 

CID spectrum of the singly charged ion acquired by LTQ-FT-MS. Labeled peaks correspond to 

identified fragments of PZN-biotin, shown on the structure in panel (C). 
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Figure 4.6 | Mass spectrometry structural characterization of PZN-photoaffinity probe. (A) 

Mass spectrum of the [M+H]
2+

 species by LTQ-FT-MS, which was used to calculate exact mass. 

(B) CID spectrum of the m/z 1427 species, corresponding to the loss of N2 from the original 

molecule. Labeled peaks correspond to identified fragments, shown on the structure in panel (C). 
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Figure 4.7 
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Figure 4.7 (continued) | PZN treatment results in the inhibition of three out of four analyzed 

macromolecular pathways. B. anthracis cells were treated with 1 × or 2 × MIC PZN and the 

appropriate radiolabelled precursor to the macromolecule of interest. After incubation for 1 h, 

macromolecules were precipitated and radiolabelled precursor incorporation into protein (A), 

fatty acid (B), peptidoglycan (C), or RNA (D) was measured. Each experiment included samples 

treated with a control compound that is known to affect a particular pathway (protein: 

chloramphenicol; fatty acid: triclosan; peptidoglycan: vancomycin; RNA: rifampicin. All 

compounds were added at 1 × or 2 × MIC, except rifampicin, which required significantly lower 

concentrations to achieve medial inhibition. Percent inhibition was determined by comparing 

radioactive incorporation between cells containing compound vs. vehicle. Error is reported as 

standard deviation with n = 3. 
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Figure 4.8 | B. anthracis gene expression profile when treated with PZN. A volcano plot 

represents the set of differentially regulated genes in response to treatment with 0.25 × MIC of 

PZN. Red (upregulated) and green (downregulated) points are genes with significantly altered 

expression in response to PZN treatment, while black genes did not meet the q-value (< 0.01) 

threshold. Genes where the q-value = 0 were given a value of 1 × 10
-105

. Abbreviations: # – 

hypothetical, * – transporter, ^ – transcriptional regulator, bdbD – B. subtilis hypothetical 

homolog, lldP-1 – L-lactate permease, ldh2/3 – L-lactate dehydrogenase, cydA-2 – cytochrome d 

ubiquinol oxidase, mmgD – citrate synthase 3, hutHIU – histidine utilization genes, gerN – 

germination protein, kamA – L-lysine 2,3-aminomutase, § – remaining upregulated genes. All 

differentially expressed genes are summarized in Table 4.5.  
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Figure 4.9 | The B. anthracis gene expression profile with Me2-Arg-Az5 differs from PZN 

treatment. (A) A volcano plot represents the set of differentially regulated genes in response to 

treatment with 0.25 × MIC of Me2-Arg-Az5. Red (upregulated) and green (downregulated) points 

are significantly expressed genes in response to Me2-Arg-Az5, while black genes did not meet 

the q-value (< 0.01) threshold. Genes where the q-value = 0 were given a value of E-155. 

Abbreviations: # – hypothetical, * – transporter, ^ – transcriptional regulator, atpI – ATP synthase 

protein I, hmp – nitric oxide dioxygenase, lldP-1 – L-lactate permease, ldh2/3 – L-lactate 

dehydrogenase, sugE-1 – EmrE protein (cationic drug membrane transporter), RR – response 

regulator, HK: histidine kinase , § – remaining upregulated. All genes are summarized in Table 

4.10. (B) Venn diagram demonstrating the commonality of the PZN and Me2-Arg-Az5 expression 

profiles. The compilation of common genes is located in Table 4.9. 
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Figure 4.10 | Growth curves of PZN and Me2-Arg-Az5 reveal different phenotypes. (A) B. 

anthracis cells treated with PZN undergo rapid decrease in optical density with concentrations 

above the minimum inhibitory concentration (MIC, determined from microbroth dilution assays). 

Time points were collected every two minutes and adjusted to a 1-cm path length. Error is 

reported as standard deviation with n = 3. (B) B. anthracis treated with Me2-Arg-Az5. Reduction 

in optical density is observed briefly at 4 × MIC. Both growth curves were measured in duplicate 

and normalized to OD600 0.35 (A) and 1.0 (B). 
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Figure 4.11 | PZN synergizes with cell envelope-acting antibiotics and depolarizes the B. 

anthracis membrane. (A) Isobolograms of the minimum inhibitory concentrations (μg/mL) of 

PZN with nisin (top) and daptomycin (bottom). Interactions taking place below the dotted line 

represent synergistic behavior. (B) Detection of membrane potential in B. anthracis. Red/green 

ratios were calculated using mean fluorescence intensities of cells treated for 30 min at RT with 

0.1 µM DiOC2(3) and the vehicle of DMSO (negative control), 0.1 µM DiOC2(3) and 5.0 µM 

CCCP (positive control), 0.1 µM DiOC2(3) and 0.5 µM PZN, and 0.1 µM DiOC2(3) and 1.0 µM 

PZN. Data were normalized to the positive control sample of DiOC2(3) and vehicle (DMSO). 

Error is given as standard deviation with n = 3. P-values are given relative to the DMSO control 

with * indicating < 0.0005 and ** indicating < 0.0001. Abbreviations: Dap, daptomycin; 

DiOC2(3), 3,3’-diethyloxacarbocyanine iodide; CCCP, carbonyl cyanide m-chlorophenyl 

hydrazone. 
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Figure 4.12 | Mass spectrometry characterization of PZN-Cy5. (A) Mass spectrum of the 

[M+H]
2+

 species by LTQ-FT-MS, which was used to calculate exact mass. (B) CID spectrum of 

the singly charged ion acquired by LTQ-FT-MS. Labeled peaks correspond to identified 

fragments of PZN-Cy5, shown on the structure in panel (C). 
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Figure 4.13 | PZN-Cy5 localizes to distinct foci on B. anthracis. (A) Representative 

fluorescence microscopy images are shown for the Cy5, DIC, and merged channels of B. 

anthracis Sterne treated with 0.1 µM PZN-Cy5 (0.05 × MIC) for 30 min. Competition 

experiments in a PZN-resistant B. anthracis strain (PR06, vide infra) show (B) robust labeling 

with 0.05 µM PZN-Cy5 in the absence of unlabeled PZN and (C) significantly decreased labeling 

when cells are pretreated with 1 µM PZN (0.016 × MIC, resistant strain PR06) for 20 min. Scale 

bars, 2 µm.  
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Figure 4.14 | STORM images of PZN-Cy5 labeled B. anthracis. (A) 3-D super-resolution 

images of 12 representative B. anthracis treated with PZN-Cy5. (B) Two representative cells 

rotated about the z-axis show distinct, non-septal localization of PZN-Cy5. Green, blue, and 

yellow circles mark three individual foci in each rotated view. Scale bars, 1 µm. 
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Figure 4.15 | Cluster analysis of B. anthracis treated with PZN-Cy5 and imaged by super-

resolution microscopy. (A) Representation of cell alignment used in subsequent analyses. (B) 

PZN-Cy5 color density map of a representative cell projected onto the XZ plane. (C) Probability 

density of PZN-Cy5 increases as distance from the center of the cell (R) increases, reaching a 

maximum at the cell membrane. (D) Cluster analysis of two representative B. anthracis cells (top) 

shows identified clusters (bottom) used in subsequent size calculations. 
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Figure 4.16 | Hydropathy plot of BAS4114 reveals a single transmembrane helix. (A) The 

amino acid sequence of BAS4114 was analyzed using SPOCTOPUS, which predicted a 

transmembrane domain from residues 151-171. (B) Corresponding amino acids for each predicted 

membrane association. Green, inside the membrane; Red, transmembrane; Blue, outside the 

membrane. 
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Figure 4.17 | Confirmation of bas4114-4117 deletion in B. anthracis Sterne. Specific primers 

for each deleted gene were used to confirm their absence by PCR amplification. 1, bas4114 in 

wild type Sterne (WT); 2, bas4114 in deletion strain; 3, bas4115 in WT; 4, bas4115 in deletion 

strain; 5, bas4116 in WT; 6, bas4116 in deletion strain; 7, bas4117 in WT; 8, bas4117 in deletion 

strain. 
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Figure 4.18 | Cardiolipin increases PZN-Cy5 interaction with bacterial cells. (A) Mean 

fluorescence intensities of B. anthracis cell populations treated with daptomycin-Cy5 or PZN-

Cy5 in the presence or absence of exogenous CL were determined by flow cytometry and 

normalized to cells treated only with the Cy5-labeled compound and vehicle. Error is reported as 

standard deviation with n = 3. The PZN-Cy5 p-values are given relative to the 0 µg/mL control 

with * indicating <0.01 and ** indicating <0.001. The p-values for daptomycin-Cy5 were both 

>0.01. (B) Isobologram of the minimum inhibitory concentrations (μg/mL) of PZN and CL. 

Interactions taking place below the dotted line represent synergistic behavior. 
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Figure 4.19 | Mass spectrometry characterization of daptomycin-Cy5. (A) Mass spectrum of 

the [M+2H]
2+

 species by LTQ-FT-MS, which was used to calculate exact mass. (B) CID 

spectrum of the doubly charged ion acquired by LTQ-FT-MS. Labeled peaks correspond to 

identified fragments of daptomycin-Cy5, shown on the structure in panel (C). 
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Figure 4.20 | PZN colocalizes with CL- and RIF-specific dyes. (A) From left to right, the 

channels for NAO, Cy5, DIC, and a merged image are shown to illustrate the co-localization of 

NAO (yellow) and PZN (red). (B) Same as panel A but with DilC12(3) replacing NAO. Scale 

bars, 2 µm. 

  



159 

4.8 Tables 

Table 4.1 | Minimum inhibitory concentrations reveal the species specificity of plantazolicin 

(PZN) 

Strain MIC (μg/mL) 
MIC 

(μM) 
Source 

B. cereus group 
   

B. anthracis Sterne 34F2 1 0.75 S. Blanke (UIUC) 

B. anthracis Sterne 7702 1 0.75 USDA 

B. anthracis Sterne 7702 Δbas4114-

4117 
1 0.75 This study 

B. anthracis Sterne 7SBON30 1 0.75 (Davison et al., 2005) 

B. anthracis Sterne 7SBON40 1 0.75 (Davison et al., 2005) 

B. anthracis Sterne 7SDG30 1 0.75 (Davison et al., 2005) 

B. anthracis Sterne 7SBTR30 1 0.75 (Davison et al., 2005) 

B. anthracis Sterne 7SBONTO 1 0.75 (Davison et al., 2005) 

B. anthracis Sterne 7SBTRTO 1 0.75 (Davison et al., 2005) 

B. anthracis Sterne 7SBTO30 1 0.75 (Davison et al., 2005) 

B. anthracis BSL3 strains 2 – 16 1.5 – 12 USAMRIID 

B. anthracis CDC 684 2 1.5 USAMRIID 

B. anthracis Sterne 34F2 A0517-1 1 0.75 BEI 

B. anthracis Sterne 34F2 A0517-2 2 1.5 BEI 

B. anthracis Sterne 34F2 ΔblsO 1 0.75 (Anderson et al., 2011) 

B. anthracis Sterne 34F2 ΔcsaB 1 0.75 (Kern et al., 2010) 

B. anthracis Sterne 34F2 Δsap 1 0.75 (Nguyen-Mau et al., 2012) 

B. anthracis Sterne 34F2 Δeag 1 0.75 (Nguyen-Mau et al., 2012) 

B. anthracis Sterne 34F2 Δanthrose 1 0.75 
C. Turnbough (U. 

Alabama Birmingham) 

B. anthracis Sterne 34F2 ΔbclA 1 0.75 
(Tan and Turnbough, 

2010) 

B. anthracis Sterne BA850 

(Δpetrobactin)  
1 0.75 (Carlson et al., 2010) 

B. anthracis Sterne BA781 1 0.75 BEI 

B. anthracis Weybridge 1 0.75 BEI 

B. cereus 14579 >64 >48 USDA 

B. cereus 541 (ΔplcR) >64 >48 (Pomerantsev et al., 2003) 

B. cereus ATCC 7064   >64 >48 ATCC 

B. cereus ATCC 13472   >64 >48 BGSC 

B. cereus BAG4x2-1 >64 >48 BEI 

B. cereus E33L >64 >48 BEI    
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Table 4.1 (continued)    

B. cereus G9241 8 6 BEI 

B. cereus GP7 >64 >48 BGSC 

B. cereus Rock3-44 64 48 NMRS 

B. cereus VD014 >64 >48 BEI 

B. cereus VD115 >64 >48 BEI 

B. mycoides 96/3308 >64 >48 BGSC 

B. samanii C1   >64 >48 BEI 

B. thuringiensis Konkukian 97-27   >64 >48 BEI 

B. thuringiensis israelensis ATCC 

35646 
  >64 >48 BEI 

B. thuringiensis subsp. thuringiensis >64 >48 BGSC 

Atypical gamma phage sensitivity 
   

B. cereus ATCC 4342   >64 >48 BEI 

B. cereus CDC 32805 >64 >48 
(Schuch and Fischetti, 

2006) 

B. cereus 2002013145 >64 >48 CDC 

B. cereus 2002013146 >64 >48 CDC 

B. cereus 2002013100 >64 >48 CDC 

B. cereus 2000031002 >64 >48 CDC 

Non B. cereus group 
   

B. methylotrophicus FZB42   >64 >48 BGSC 

B. amyloliquefaciens B-14393T   >64 >48 BGSC 

B. megaterium 899 32 24 BGSC 

B. pumilus SAFR-032   >64 >48 BGSC 

B. subtilis    

AKP4 (Δdes) >64 >48 
D. de Mendoza (U. 

Nacional de Rosario) 

AKP21 (ΔdesRK) >64 >48 
D. de Mendoza (U. 

Nacional de Rosario) 

BSU-LIKE1 (ΔliaIH) >64 >48 BGSC 

HB0042 >64 >48 Personal Collection 

HB0934 (ΔliaGFSR) >64 >48 J. Helmann (Cornell) 

HB5126 (ΔliaIH) >64 >48 J. Helmann (Cornell) 

str. 168 >64 >48 J. Wells (USCF) 

Brevibacillus formosus SS 86-3 >64 >48 BGSC 

Brevibacillus laterosporus ATCC 

9141 
>64 >48 BGSC 

Neisseria meningititis serotype C >64 >48 (Nassif et al., 1991) 
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Table 4.1 (continued)    

Neisseria sicca >64 >48 ATCC 

Staphylococcus aureus    

12608 >64 >48 P. Hergenrother (UIUC) 

29213 64 48 P. Hergenrother (UIUC) 

33591 64 48 P. Hergenrother (UIUC) 

USA300 >64 >48 P. Hergenrother (UIUC) 

Streptomyces coelicolor >64 >48 USDA 

Streptomyces lividans >64 >48 USDA 

Eukaryotic organisms 
   

Caenorhabditis elegans N2 >64 >48 CGC 

Saccharomyces cerevisiae  >64 >48 H. Zhao (UIUC) 

Talaromyces stipitatus >64 >48 H. Zhao (UIUC) 

    
 

a
n ≥ 3 replicates

 

b
Highlighted strains were tested for gamma phage susceptibility and are displayed in the main 

text 
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Table 4.2 | PZN is not antibacterial against B. anthracis endospores 

[PZN] (μg/mL) CFU/mL
a
 

    Vehicle 9.8E+08 

    0.5 4.3E+08 

    1 8.3E+08 

    2 6.8E+08 

    4 3.4E+08 

    8 6.5E+08 

    16 3.5E+08 

    

      a
Colony forming units per mL of endospore suspension 

 

  



163 

Table 4.3 | γ phage sensitivity and PZN susceptibility of Bacillus strains 

Strain 

γ Phage 

Sensitivity
a
 PZN MIC

b
 Source

c
 

B. anthracis Sterne 7702 +++ 1 USDA 

B. anthracis Sterne 34F2 A0517-1
d
 +++ 2 BEI 

B. cereus 2002013145 +++ >64 CDC
e
 

B. cereus 2002013146 +++ >64 CDC
e
 

B. cereus 2002013100 ++ >64 CDC
e
 

B. cereus 2000031002 +++ >64 CDC
e
 

B. cereus ATCC 4342 + >64 ATCC 

B. cereus ATCC 7064 + >64 ATCC 

B. cereus CDC 32805 + >64 

(Schuch and 

Fischetti, 2006) 

B. cereus G9241 - 8 BEI 

B. megaterium 899 - 32 BGSC 

B. mycoides 96/3308 - >64 BGSC 

    
a 
Plus signs indicate the level of phage sensitivity, with +++ representing the most sensitive  

b 
MIC (minimum inhibitory concentration) as determined by microbroth dilution, units in μg/mL 

c 
Abbreviations: USDA, United States Department of Agriculture; BEI, Biodefense and Emerging 

Infections Research Resources Repository; CDC, United States Centers for Disease Control and 

Prevention; ATCC, American Type Culture Collection; BGSC, Bacillus Genetic Stock Center 
d 
LLNL A0517 was obtained from BEI as a mixture of two colony types. A0517_1 was confirmed 

to be devoid of pXO1 by PCR (Figure 4.2) 
e 
Strains identified by multilocus sequence typing analysis (Hoffmaster et al., 2006) 
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Table 4.4 | MICs of representative strains demonstrating PZN activity in various rich media 

 

MIC (μg/mL) 

 Strain LB
a
 MH BHI 

Bacillus anthracis Sterne 1 1 1 

Bacillus cereus CDC32805 >64 >64 >64 

Bacillus cereus ATCC 4242 >64 >64 >64 

Bacillus sp. Al Hakam >64 >64 >64 

Bacillus methylotrophicus FZB42 >64 >64 >64 

Bacillus subtilis strain 168 >64 >64 >64 

Enterococcus faecium U503 >64 >64 >64 

Listeria monocytogenes 4b >64 >64 >64 

Staphylococcus aureus ATCC 12608 >64 16 32 

Staphylococcus aureus ATCC 29213 64 8 16 

Staphylococcus aureus ATCC 33591 64 8 16 

Staphylococcus aureus USA300 >64 >64 >64 

     a
Luria-Bertani (LB), Mueller-Hinton (MH), Brain Heart Infusion (BHI) 
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Table 4.5 | Complete RNA-Seq analysis of differentially expressed B. anthracis genes after 

PZN treatment 

Locus Tag Gene Description Fold Change q-value 

BAS1222 ywcJ
a
 

formate/nitrite transporter family 

protein -7 3.19E-38 

BAS0577 lldp-1 L-lactate permease -7 2.14E-24 

BAS4869 ldh3 L-lactate dehydrogenase -6 6.40E-27 

BAS0169 

 

hypothetical protein -6 1.30E-25 

BAS4146 

 

hypothetical protein -5 3.66E-19 

BAS4762 ldh2 L-lactate dehydrogenase -4 1.19E-13 

BAS1089 yjzC
a
 hypothetical protein -4 5.38E-16 

BAS1615 yfmQ
a
 hypothetical protein -3 1.49E-05 

BAS3917 

 

hypothetical protein -3 9.12E-04 

BAS4690 cydA-2 

cytochrome d ubiquinol oxidase 

subunit I -3 4.40E-04 

BAS0513 bdbD hypothetical protein -3 1.00E-03 

BAS1942 sdpI
a
 hypothetical protein 2 5.98E-03 

BAS3405 

 

ahpC/TSA family protein 2 6.00E-03 

BAS2363 

 

hypothetical protein 2 1.27E-03 

BAS2776 yetG
a
 hypothetical protein 2 9.17E-04 

BAS1163 

 

hypothetical protein 3 2.06E-03 

BAS0730 yfhC
a
 nitroreductase family protein 3 6.85E-03 

BAS4453 

 

hypothetical protein 3 4.90E-04 

BAS2568 

 

TetR family transcriptional regulator 3 1.43E-03 

BAS2566 kynB hypothetical protein 3 2.83E-03 

BAS0683 yqgI
a
 phosphate ABC transporter permease 3 7.44E-04 

BAS4452 

 

hypothetical protein 3 2.81E-05 

BAS2565 kynA 

tryptophan 2,3-dioxygenase family 

protein 3 3.85E-03 

BAS3439 hutG
a
 formimidoylglutamase 3 1.17E-03 

BAS3871 

 

hypothetical protein 3 1.35E-05 

BAS0214 lagB invasion protein LagB 3 2.21E-04 

BAS1691 fabH2 3-oxoacyl-ACP synthase 3 6.35E-04 

BAS4502 ytpI
a
 hypothetical protein 3 2.71E-06 

BAS1573 

 

hypothetical protein 3 8.18E-03 

BAS0849 

 

hypothetical protein 3 1.49E-06 

BAS1346 liaF
a
 hypothetical protein 3 1.77E-04 

BAS0525 yuaG
a
 hypothetical protein 3 6.06E-04 
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Table 4.5 (continued) 

BAS0610 rocE
a
 amino acid ABC transporter permease 3 1.77E-04 

BAS4777 sodC superoxide dismutase, Cu-Zn 3 6.63E-08 

BAS0524 yuaF
a
 hypothetical protein 4 2.77E-07 

BAS0848 yhaR
a
 enoyl-CoA hydratase 4 1.25E-07 

BAS4173 pstC phosphate ABC transporter permease 4 9.53E-06 

BAS4172 pstA phosphate ABC transporter permease 4 2.15E-07 

BAS4171 pstB 

phosphate transporter ATP-binding 

protein 4 7.63E-07 

BAS1307 ilvE1 

branched-chain amino acid 

aminotransferase 4 1.40E-08 

BAS4560 acsA acetyl-CoA synthetase 4 5.09E-06 

BAS3772 ylbP
a
 hypothetical protein 4 2.05E-05 

BAS0464 rocR-1 

arginine utilization regulatory protein 

RocR 4 1.01E-09 

BAS4877 fadN
a
 3-hydroxyacyl-CoA dehydrogenase 4 1.18E-09 

BAS0624 dppC
a
 

oligopeptide ABC transporter 

permease 4 7.90E-08 

BAS4174 phoX 

phosphate ABC transporter substrate-

binding protein 4 1.87E-08 

BAS5194 fadF
a
 ferredoxin, 4Fe-4S 4 1.32E-07 

BAS1894 dppE
a
 

oligopeptide ABC transporter 

substrate-binding protein 4 1.46E-08 

BAS1070 

 

hypothetical protein 4 1.73E-10 

BAS4778 

 

hypothetical protein 5 5.76E-14 

BAS0681 pstS
a
 

phosphate ABC transporter substrate-

binding protein 5 1.12E-16 

BAS4512 

 

hypothetical protein 5 1.76E-24 

BAS3440 hutI imidazolonepropionase 5 3.49E-21 

BAS2288 

 

hypothetical protein 6 7.47E-08 

BAS0625 

appB, 

oppB
a
 

oligopeptide ABC transporter 

permease 6 3.26E-20 

BAS2146 yokU
a
 hypothetical protein 6 5.30E-39 

BAS0626 

appF, 

oppF
a
 

oligopeptide ABC transporter ATP-

binding protein 6 2.29E-19 

BAS2145 kamA L-lysine 2,3-aminomutase 7 4.12E-35 

BAS3024 

 

arsR family transcriptional regulator 7 1.17E-52 

BAS2188 mmgD citrate synthase 3 8 2.67E-54 

BAS3441 hutU urocanate hydratase 8 5.49E-50 

BAS2649 

 

hypothetical protein 9 5.16E-42 

BAS2650 

 

hypothetical protein 9 2.30E-45 
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Table 4.5 (continued) 

BAS3442 hutH histidine ammonia-lyase 10 9.17E-104 

BAS0627 

appD, 

oppD
a
 

ABC transporter nucleotide-binding 

protein 11 1.62E-95 

BAS2287 yaaN
a
 hypothetical protein 13 4.38E-93 

BAS1521 gerN germination protein gerN 28 0 

BAS3456 

 

hypothetical protein 40 0 

BAS5200 

yvfU, 

desR
a
 DNA-binding response regulator 49 0 

BAS5201 

yvfT, 

desK
a
 sensor histidine kinase 56 0 

BAS5202 yvfS
a
 ABC transporter permease 130 0 

BAS5203 yvfR
a
 ABC transporter ATP-binding protein 135 0 

BAS1345 liaH
a
 PspA/IM30 family protein 1084 0 

BAS1344 liaI
a
 membrane protein 1407 0 

     a
Genes are annotated by sequence homology to the corresponding Bacillus subtilis gene 

The q-value is an adjusted p-value, taking in to account the false discovery rate 
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Table 4.6 | RNA-Seq and qRT-PCR analysis of PZN-treated Bacillus anthracis 

 
  

Fold Change 

Locus Tag Gene Description RNA-Seq qRT-PCR
a
 

BAS0577 lldp-1 L-lactate permease -7  -7 ± 2 

BAS4869 ldh3 L-lactate dehydrogenase -6 -24 ± 14 

BAS4762 ldh2 L-lactate dehydrogenase -4 -3 ± 1 

BAS3439 hutG formimidoylglutamase 3  3 ± 1 

BAS3440 hutI imidazolonepropionase 5  4 ± 0 

BAS3441 hutU urocanate hydratase 8  3 ± 0 

BAS3442 hutH histidine ammonia-lyase 10  5 ± 2 

BAS0627 appD, oppD
b
 

ABC transporter nucleotide-binding 

protein 
11 6 ± 3 

BAS1521 gerN germination protein 28    14 ± 9 

BAS5200 yvfU, desR
b
 DNA-binding response regulator 49 37 ± 30 

BAS5201 yvfT, desK
b
 sensor histidine kinase 56 94 ± 36 

BAS1345 liaH
b
 PspA/IM30 family protein 1084  138 ± 10 

BAS1344 liaI
b
 membrane protein 1407 352 ± 191 

 

a 
Error is given as standard deviation with n ≥ 3 replicates 

b 
Gene annotations are derived from sequence homology to the given B. subtilis gene 
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Table 4.7 | Primers used in this study 

Confirmation of LLNL A0517_1 pXO1 plasmid loss 

pXO1_0172 lef RT-r GATGCGAAAGTAGTGCCAAAGA 

pXO1_0172 lef RT-r CCACAGCATGTCCAAATTCG 

Confirmation of spontaneous mutants 

BamHI-BAS4114-f AAAAGGATCCATGACAGCAAACCGCATTAAAG 

NotI-BAS4114-r AAAAGCGGCCGCTCAGTTTGAAAGGCCTCGC 

Generation and Confirmation of the bas4114-bas4115 deletion strain 

G236Tet-up-vec-f 
TGGAGCTCCACCGCGGTGGCAGGCGTTTGCTGATAC

AC 

G236Tet-up-down-r TAAAAAAGGACAGTTTCATCCCCTACCTACC 

G236Tet-down-up-f GGGGATGAAACTGTCCTTTTTTATATTCATTCAGAC 

G236Tet-down-vec-r 
TCGACCTGCAGCCAAGGACGCATCTGTCTTTGTTTC

AGTG 

TetR-f GCAAACCGCATTAAAGCTGTAGC 

TetR-r CAGTTTGAAAGGCCTCGCC 

SugE4115-f GGCATGGATTTATGTAATCTTAGCTGG 

SugE4115-r GCCTCCTTCGCTTCTTTTTCTTC 

SugE4116-f GGCTTGGGTATTTTTAATTCTAGCTGG 

SugE4116-r CTTAATAGTTTTAAGCCAACAGCGCC 

BAS4117-f GTGGAAAGAAAAAGGGAAGCAACTG 

BAS4117-r GTTCAGAAGAACTGTCCTTTTTAAATAACTTATTCC 

RT-qPCR 
 

Banth 16S qRT-f CGGAATTATTGGGCGTAAAG 

Banth 16S qRT-r TCTCCCAGTTTCCAATGACC 

BAS0577 lldp-1 qRT-f TGGTTCACTATTCGCACCAC 

BAS0577 lldp-1 qRT-r TTTGCTATTGTGCCACCAAC 

BAS0627 appD qRT-f ACGAATTATCTGGCGGAATG 

BAS0627 appD qRT-r AGCCGTTGTTGGCTCATC 

BAS1344 liaI qRT-f GGAGCAGGAGTTGTGTACTGG 

BAS1344 liaI qRT-r GATGGACAAGCCGATTAAACC 

BAS1345 liaH qRT-f ATCAAAGCAAGCGCTTATCG 

BAS1345 liaH qRT-r TTCTAATCGAGTTACTTGCCCTTC 

BAS1521 gerN qRT-f ACGAATGACTGGATTTGATGC 

BAS1521 gerN qRT-r GAAAGTCCTGTTCCTGCAATG 

BAS1659 CitB RR qRT-f AACGACGTTCGATGATGATG 

BAS1659 CitB RR qRT-r TTATCGCATCACGAATACGC 

BAS1660 Sensor HK qRT-f TGAAAGCATTCGGATTACATTG 

BAS1660 Sensor HK qRT-r TCATGCTTACTGGCAAATTCC 

BAS1661 ABC trans qRT-f TGCGAAGATGAATATTGGTGTC 

BAS1661 ABC trans qRT-r ACCCGTACAGTCCAGCAAAG 

BAS1662 ABC trans qRT-f CGGTTGTAATGACGACGATG 
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Table 4.7 (continued)  

BAS1662 ABC trans qRT-r TAGGCGCAGCAATAAGGTG 

BAS1663 ABC trans qRT-f TATGGGAATGTAGGGCAAGG 

BAS1663 ABC trans qRT-r AGAAATTTCACCGTATCATTTGC 

BAS1664 minor cls ClsB qRT-f TGGCACAACAAACTTTACTTCG 

BAS1664 minor cls ClsB qRT-r AACGCCTTATTAACTTGCCCTAC 

BAS1842 asbE qRT-f GGGTATTTGCTTTCTGGTCTTG 

BAS1842 asbE qRT-r TTTCACGGAAGTATGCAAAGG 

BAS1843 asbF qRT-f CAGATCCAGTTGACAGCTTCC 

BAS1843 asbF qRT-r CGGTTCGAACACATGTAAATAATC 

BAS3439 hutG qRT-f TAACGGGCTTTGCAAACAG 

BAS3439 hutG qRT-r CATTTGACGGACCACCATC 

BAS3440 hutI qRT-f TGACCCGCATACTCATCTTG 

BAS3440 hutI qRT-r AAGAATACCTCCGCCTTGTTC 

BAS3441 hutU qRT-f ATTTGTTGGCTTGGTTACGG 

BAS3441 hutU qRT-r CACGACCGATAACGATTGG 

BAS3442 hutH qRT-f TGCGATGGTTGCTCTTACAG 

BAS3442 hutH qRT-r AAAGAACTCCTTGCGCTGTC 

BAS4762 ldh2 qRT-f AATCGTTCGCGGTATTATGG 

BAS4762 ldh2 qRT-r TGGTAGACCAGATTCTTTCCAAG 

BAS4869 ldh3 qRT-f AATCATGAACGTGCAGTTGG 

BAS4869 ldh3 qRT-r TTGCAGTCTTCATAGCTTCCTG 

BAS5033 ftsX qRT-f CGGAAAGACGTTTGAGTTATTTG 

BAS5033 ftsX qRT-r TCGCAATTGTTGCTGTATCTG 

BAS5034 ABC ftsE qRT-f TCTTGAAGATCGTGCAGACG 

BAS5034 ABC ftsE qRT-r ATCGGCAATTACGACTTTCG 

BAS5200 desR qRT-f TTGAAGTAATTGGGCAAGCTG 

BAS5200 desR qRT-r TCTAACCCGCTTTGAATTGG 

BAS5201 desK qRT-f GCAGTGACGAATGTTGTAAAGC 

BAS5201 desK qRT-r CCAATTCCGTTATCTTCTACCG 

BAS5288 TetR reg qRT-f AAGATGAGGAATTGCTTGTTACG 

BAS5288 TetR reg qRT-r CTTGTATAACCGGAATCCTTGG 

BAS5289 transporter qRT-f CGGAGCTCTTGTTGCCTTAC 

BAS5289 transporter qRT-r AAGCACGATTGCGTTTGTTAC 
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Table 4.8 | Minimum inhibitory concentrations (μM) of Me2-Arg-Az5 reveal a broader 

spectrum of activity than PZN 

 

Strain MIC (μM)
a
 

Bacillus anthracis Sterne 7702 3 

Bacillus anthracis PR06 3 

Bacillus anthracis A0517-1 3 

Bacillus cereus ATCC 4342 6 

Bacillus megaterium 899 3 

Bacillus subtilis 168 6 

Escherichia coli DH5a >48 

Enterococcus faecium U503 48 

Listeria monocytogenes 4b >48 

Neisseria sicca ATCC 29256 >48 

Staphylococcus aureus USA300 3 

Streptococcus pyogenes M1 48 

Pseudomonas putida >48 

  a
Minimum inhibitory concentration, determined my 

microbroth dilution assay, measured in μM 

 

 

  



172 

Table 4.9 | Common differentially expressed genes after PZN and Me2-Arg-Az5 treatment 

   

Fold Change 

Locus Tag Gene Description PZN Me2-Arg-5Az 

BAS0169 

 

hypothetical protein -6 -4 

BAS0513 bdbD hypothetical protein -3 -2 

BAS0577 lldp-1 L-lactate permease -7 -7 

BAS1089 

 

hypothetical protein -4 -4 

BAS1222 ywcJ formate/nitrite transporter family protein -7 -7 

BAS1615 

 

hypothetical protein -3 -3 

BAS3917 

 

hypothetical protein -3 -2 

BAS4146 

 

hypothetical protein -5 -5 

BAS4690 cydA-2 cytochrome d ubiquinol oxidase subunit I -3 -2 

BAS4762 ldh2 L-lactate dehydrogenase -4 -4 

BAS4869 ldh3 L-lactate dehydrogenase -6 -4 

BAS5200 ycfU,desR DNA-binding response regulator 49 6 

BAS5201 yvfT, desK sensor histidine kinase 56 5 

BAS5202 yvfS ABC transporter permease 130 13 

BAS5203 yvfR ABC transporter ATP-binding protein 135 12 
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Table 4.10 | Complete RNA-Seq analysis of differentially expressed B. anthracis genes after 

Me2-Arg-Az5 treatment  

 

Locus Tag Gene Description Fold Change qValue 

BAS0577 lldp-1 L-lactate permease -7 5.95E-90 

BAS1222 ywcJ
a
 

formate/nitrite transporter family 

protein -7 1.30E-59 

BAS4134 

 

hypothetical protein -7 1.61E-116 

BAS4146 

 

hypothetical protein -5 6.09E-31 

BAS4711 

 

hypothetical protein -5 3.53E-31 

BAS0169 

 

hypothetical protein -4 9.57E-21 

BAS1089 yjzC
a
 hypothetical protein -4 2.76E-23 

BAS1357 hmp nitric oxide dioxygenase -4 6.57E-12 

BAS4762 ldh2 L-lactate dehydrogenase -4 1.24E-16 

BAS4869 ldh3 L-lactate dehydrogenase -4 3.46E-17 

BAS1023 

 

hypothetical protein -3 3.80E-06 

BAS1349 

 

hypothetical protein -3 1.12E-08 

BAS1615 yfmQ
a
 hypothetical protein -3 1.28E-06 

BAS4990 cggR 

gapA transcriptional regulator 

CggR -3 0.004179 

BAS0070 pabC 4-amino-4-deoxychorismate lyase -2 0.003344 

BAS0513 bdbD hypothetical protein -2 8.87E-04 

BAS0547 maeN
a
 

citrate cation symporter family 

protein -2 0.002003 

BAS0566 rapD, rapI
a
 transcriptional regulator -2 0.004179 

BAS0631 rbsR ribose operon repressor -2 6.17E-05 

BAS1024 

 

hypothetical protein -2 8.87E-04 

BAS1185 

 

hypothetical protein -2 0.007387 

BAS1273 

 

ABC transporter permease -2 8.71E-05 

BAS1666 gltT
a
 

proton/sodium-glutamate symport 

protein -2 5.37E-04 

BAS2706 

 

hypothetical protein -2 0.003549 

BAS2707 

 

ABC transporter ATP-binding 

protein -2 8.05E-04 

BAS3173 

 

transcriptional regulator -2 8.18E-07 

BAS3917 

 

hypothetical protein -2 8.14E-04 

BAS4414 

 

succinate dehydrogenase, 

cytochrome b558 subunit -2 0.003007 

BAS4690 cydA-2 

cytochrome d ubiquinol oxidase 

subunit I -2 0.004179 

BAS4922 nupC
a
 

NupC family nucleoside 

transporter -2 0.004085 

BAS5002 whiA hypothetical protein -2 0.007026 

BAS5316 yycI
a
 YycI protin -2 7.74E-04 

BAS0982 fadR, yvdT
a
 

TetR family transcriptional 

regulator 3 8.50E-04 

BAS4115 sugE-1 sugE protein 4 4.42E-10 

BAS5201 yvfT, desK
a
 sensor histidine kinase 5 2.03E-21 
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Table 4.10 (continued)   

BAS5200 yvfU, desR
a
 DNA-binding response regulator 6 4.21E-26 

BAS0375 yuxN, yfiR
a
 

TetR family transcriptional 

regulator 8 2.92E-37 

BAS0902 atpI
a
 ATP synthase protein I 8 2.99E-46 

BAS5203 yvfR
a
 

ABC transporter ATP-binding 

protein 12 1.66E-119 

BAS5202 yvfS
a
 ABC transporter permease 13 2.82E-151 

BAS0376 ykuC, yfiS
a
 

major facilitator family transporter 

protein 181 0 

     a
Genes are annotated by sequence homology to the corresponding Bacillus subtilis gene 

The q-value is an adjusted p-value, taking in to account the false discovery rate 
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Table 4.11 | B. anthracis Sterne mutations conferring PZN-resistance accumulate in 

bas4114, an AcrR family transcriptional regulator 

Strain 
bas4114 

Mutation 
Consequence 

Sterne Wild type 
DALEAFLCLLDGLMVELLFAGLNRFETRLNASWQVFWR

GLSN
a
 

PR01
c
 457G→T DAL*

b
 

PR02 492^T DALEAFLCLLDGLMV* 

PR03 495^AG DALEAFLCLLDGLMVESYYSQV* 

PR04 504^C DALEAFLCLLDGLMVELLFRRFKSL* 

PR05 506^GC DALEAFLCLLDGLMVELLFAQV* 

PR06 507^ATTCGCA DALEAFLCLLDGLMVELLFAIRRFKSL* 
a 
Amino acids 150-191 of BAS4114. Bold residues represent the predicted transmembrane region, 

as defined by Spoctopus (Figure 4.16) (Viklund et al., 2008) 
b 
Asterisk (*) represents the termination of the protein sequence due to the nonsense mutation. 

c 
MICs for the PZN-resistant (PR) mutants are ≥ 32 μg/mL PZN, compared to 1 μg/mL for the 

wild type. 
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Table 4.12 | Upregulation of bas4114-4117 in PZN-resistant mutant, B. anthracis PR06 

Gene Annotation Fold change 

bas4114 acrR family transcriptional regulator 34 

bas4115 emrE drug efflux pump 152 

bas4116 emrE drug efflux pump 47 

bas4117 hypothetical protein 62 
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Table 4.13 | MICs (μg/mL) of selected antibiotics against PZN-resistant mutant, B. anthracis 

PR06 

Compound B. anthacis Sterne B. anthracis PR06 

Plantazolicin 1 64 

Tetracycline 0.125 0.125 

Vancomycin 1 1 

Triclosan 1 1 

Nisin 2 2 

Kanamycin 4 4 

Cerulenin 4 8 

Spectinomycin 8 4 

Chloramphenicol 8 4 

Daptomycin 8 8 

Ethidium Bromide 16 16 
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Table 4.14 | PZN-resistant mutants of B. anthracis Sterne Δbas4114-4117 

Strain Mutation Gene 
Amino Acid 

Consequence 
MIC

a
 

PR07 bas5034 A425G 
cell division ABC transporter, 

FtsE 
G142E 

8 

PR08 bas5034 G270T 
cell division ABC transporter, 

FtsE 
F90L 

32 

PR09-1 bas1659 G190C 
CitB RR

b
/luxR family 

transcriptional regulator 
V64L 

16 

PR09-4 bas1659 G190C 
CitB RR

b
/luxR family 

transcriptional regulator 
V64L 

>64 

 

bas1662 A638G ABC transporter permease H213R 

 
PR10-4 bas1659 C248T 

CitB RR
b
/luxR family 

transcriptional regulator 
T83M 

64 

 

bas1663 C1127T ABC transporter permease A376V 

 

 

bas1842 A43G petrobactin biosynthesis asbE S15G 

 
a 
MIC as determined by microbroth dilution, measured in μg/mL 

b 
Response regulator 
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Table 4.15 | Effect of B. anthracis Sterne mutations and B. subtilis growth conditions on 

PZN susceptibility and cardiolipin content of bacterial membranes 

 

Strain MIC (µg/mL) % CL
a 

B. anthracis Sterne 7702 1 4.6 ± 0.1 

B. anthracis Sterne 7702 Δbas4114-4117 1 3.6 ± 0.5 

B. anthracis PR09-4 >64 6.1 ± 2.5 

B. anthracis PR10-4 64 24.2 ± 1.6* 

B. subtilis 168 >128 27.5 ± 2.7 

B. subtilis 168
b 

32 37.0 ± 6.1 

 

a
 Error is given as standard deviation with n = 3. P-values were compared to either a parental 

strain (Δbas4114-4117 for PR10-4) or the same strain grown in a normal osmolarity medium with 

* indicating <0.0001 
b
 Luria-Bertani broth supplemented with 1.5 M NaCl  
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Table 4.16 | qRT-PCR of cls locus in evolved PZN-resistant mutants 

 

Fold change 

Gene PR09-1 PR09-4 PR10-4 

BAS1659  NS  NS  NS
a
 

BAS1660  NS  NS  NS 

BAS1661 21 ± 7 48 ± 26  NS 

BAS1662 23 ± 13  NS  NS 

BAS1663 24 ± 9 48 ± 26  NS 

BAS1664 (cls) 39 ± 7 74 ± 26  NS 

BAS1842 (asbE) - -  NS 

BAS1843 (asbF) - -  NS 

    a
NS not significant 
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APPENDIX A: PLANTAZOLICIN PUBLICATION WITH MINOR CONTRIBUTIONS 

 

A.1 Engineering Unnatural Variants of Plantazolicin Through Codon Reprogramming 

This chapter was preprinted with permission from (Deane et al., 2013). 

Deane, C.D., Melby, J.O., Molohon, K.J., Susarrey, A.R., and Mitchell, D.A. (2013) ACS Chem 

Biol: 8, 1998-2008. doi: 10.1021/cb4003392. Copyright © 2013 American Chemical Society. 

I constructed the fosmid library and isolated the clone used for PZN production. 
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APPENDIX B: OTHER PUBLICATIONS WITH MINOR CONTRIBUTIONS 

 

B.1 HIV-1 Integrase Inhibitor-Inspired Antibacterials Targeting Isoprenoid Biosynthesis 

This chapter was reprinted with permission (Zhang et al., 2012). 

Zhang, Y., Fu-Yang, L., Li, K., Zhu, W., Liu, Y.L., Cao, R., Pang, R., Lee, E., Axelson, J., 

Hensler, M., Wang, K., Molohon, K.J., Wang, Y., Mitchell, D.A., Nizet, V., and Oldfield, E. 

(2012) ACS Med Chem Lett: 3, 402-406. doi: 10.1021/ml300038t. Copyright © (2012) American 

Chemical Society. 

 

I conducted the assays generating the minimum inhibitory concentrations for the compounds in 

this manuscript.  
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B.2 Antibacterial Drug Leads Targeting Isoprenoid Biosynthesis 

 

This chapter was reprinted with permission (Zhu et al., 2013). 

Zhu W, Zhang Y, Sinko W, Hensler ME, Olson J, Molohon KJ, Lindert S, Cao R, Li K, Wang K, 

Wang Y, Liu YL, Sankovsky A, de Oliveira CA, Mitchell DA, Nizet V, McCammon JA, Oldfield 

E. (2013) Proc Natl Acad Sci U S A: 110, 123-128. doi: 10.1073/pnas.1219899110. Copyright © 

(2013) American Chemical Society. 

 

I obtained the minimum inhibitory concentrations of the compounds in this manuscript, as well as 

reported the synergistic activity of cpd 17 with methicillin (Figure 7A).  
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B.3 Multitarget Drug Discovery for Tuberculosis and Other Infectious Diseases 

This chapter was reprinted with permission (Li et al., 2014). 

Li, K., Schurig-Briccio, L.A., Feng, X., Upadhyay, A., Pujari, V., Lechartier, B., Fontes, F.L., 

Yang, H., Rao, G., Zhu, W., Gulati, A., No, J.H., Cintra, G., Bogue, S., Liu, Y.L, Molohon, K.J., 

Orlean, P., Mitchell, D.A., Freitas-Junior, L., Ren, F., Sun, H., Jiang, T., Li, Y., Guo, R.T, Cole, 

S.T., Gennis, R.B., Crick, D.C., and Oldfield, E. (2014) J. Med. Chem: 57, 3126-3139. doi: 

10.1021/jm500131s. Copyright © (2014) American Chemical Society. 

 

I obtained the minimum inhibitory concentrations of the compounds against methicillin resistant 

Staphylococcus aureus USA300 (Table 1).  
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