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ABSTRACT

Parallel I/O is an essential component of modern High Performance Computing (HPC). Ob-

taining good I/O performance for a broad range of applications on diverse HPC platforms is

a major challenge, in part because of complex inter-dependencies between I/O middleware

and hardware. The parallel file system and I/O middleware layers all offer optimization

parameters that can, in theory, result in better I/O performance. Unfortunately, the right

combination of parameters is highly dependent on the application, HPC platform, and prob-

lem size/concurrency. Scientific application developers do not have the time or expertise

to take on the substantial burden of identifying good parameters for each problem config-

uration. They resort to using system defaults, a choice that frequently results in poor I/O

performance. We expect this problem to be compounded on exascale class machines, which

will likely have a deeper software stack with hierarchically arranged hardware resources.

We present a line of solution to this problem containing an autotuning system for optimiz-

ing I/O performance, I/O performance modeling, I/O tuning, I/O kernel generation, and

I/O patterns. We demonstrate the value of these solution across platforms, applications,

and at scale.
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CHAPTER 1

INTRODUCTION

High Performance Computing (HPC) applications are constantly moving towards simulating

scientific phenomenon at finer granularities and massive scales by leveraging advances in

parallel processing hardware. Finer granularities mean larger amount of data and this has

caused the growth of data to be at an unprecedented rate. Such rapid growth of data in size

and in complexity requires efficient techniques to manage data on file systems. However,

scalability of applications is often limited by poorly performing parallel I/O. Ensuring fast

and efficient parallel I/O is critical for many HPC applications.

I/O can be a significant bottleneck on HPC application performance. The need to in-

crease checkpoint frequency and the increasing emphasis on big data analytics increase the

importance of I/O. Parallel I/O systems are complex: I/O is often done at the application

level using a high-level library, such as HDF5 [1]; HDF5 is implemented atop MPI-IO [2]

which, in turn, performs POSIX I/O calls against a parallel file system, such as Lustre [3].

Each of these subsystems has multiple configuration parameters and performance can be

very sensitive to their settings.

However, the configuration of these parameters to obtain the best possible I/O perfor-

mance depends on diverse factors, such as the I/O application, storage hardware, problem

size, and number of processors. HPC application developers, typically experts in their sci-

entific domains, do not have the time or expertise to explore the intricacies of I/O systems.

They often resort to using default I/O parameter settings that can result in poor performance

and inefficient use of available I/O bandwidth. As the complexity and concurrency of future

HPC systems grow, we expect that so too will obstacles to achieving high-performance I/O.

Application developers should be able to achieve good I/O performance without becoming

experts on the tunable parameters for every file system and I/O middleware layer they

encounter. Scientists want to write their application once and obtain reasonable performance

across multiple systems–they want I/O performance portability across platforms. From an

I/O research-centric viewpoint, a considerable amount of effort is spent optimizing individual

applications for specific platforms. While the benefits are definitely worthwhile for specific

application codes, and some optimizations carry over to other applications and middleware

1



layers, it would be ideal if a single optimization framework was capable of generalizing across

multiple applications.

In order to use HPC machines and human resources effectively, it is imperative that we

design systems that can hide the complexity of the I/O stack from scientific application

developers without penalizing performance. Our vision is to develop a system that will

allow application developers to issue I/O calls without modification and rely on an intelligent

runtime system to transparently determine and execute an I/O strategy that takes all the

levels of the I/O stack into account.

1.1 Dissertation Organization

Our autotuning framework discussed in detail in Chapter 3 is the first effort towards this

goal. This framework uses a genetic algorithm to search a large space of tunable parameters

and to identify effective settings at all layers of the parallel I/O stack. The parameter settings

are applied transparently by the autotuning system via dynamically intercepted HDF5 calls.

To validate our autotuning system, we applied it to three I/O benchmarks (VPIC, VOR-

PAL, and GCRM) that replicate the I/O activity of their respective applications. We tested

the system with different weak-scaling configurations (128, 2048, and 4096 CPU cores) that

generate 30 GB to 1 TB of data, and executed these configurations on diverse HPC plat-

forms (Cray XE6, IBM BG/P, and Dell Cluster). In all cases, the autotuning framework

identified parameter values that substantially improved write performance over default sys-

tem settings. We consistently demonstrate I/O write speedups between 2x and 100x for test

configurations as compared to the default I/O settings.

While the GA-based autotuing framework consistently demonstrates I/O write speeds

between 2x and 100x in Chapter 3, the overhead of the GA approach is significant. We

reduce the search time significantly by using empirical models of the I/O performance in

Chapter 4.

Tools that capture and analyze I/O activity and guide performance optimization are

highly desired. Unfortunately, understanding the I/O behavior of an HPC application is not

a simple task due to the previously noted complex interactions between multiple software

components. Chapter 5 shows how Recorder’s trace output can be used to investigate I/O

activity and identify performance inefficiencies in two I/O benchmarks running on a leading

edge HPC platform. We believe that a multi-level I/O tracing framework can provide key

insights to end users and I/O library developers working to improve I/O on HPC platforms.

Realistic I/O kernels are an important tool for the study of I/O. They can be used to
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evaluate storage systems (both current storage systems, through execution and new designs,

through simulation); they facilitate collaboration between institutions: There are many

cases where full-fledged application codes can not be shared between institutions, because

of their proprietary or classified nature. An I/O kernel can provide detailed information

on the I/O characteristics of such an application while providing little information on the

computation it performs. In addition, it can be run faster. In Chapter 6, we show how to

create automatically such an I/O kernel program, by executing the target application with

an instrumented I/O library, next “compressing” the resulting I/O traces into a compact C

program that generates those traces.

Chapter 7 focuses on developing and testing a framework for tuning parallel I/O of ar-

bitrary applications. We believe that I/O patterns are the key to this general problem.

Therefore, we first define a notion of I/O patterns, and populate a database of good config-

urations for these patterns calculated by our autotuning framework. We then implement an

intelligent runtime system, which will be capable of extracting I/O patterns from arbitrary

applications, and consulting the performance database to propose an improved I/O strategy.

In Chapter 8, we go over the related research projects and publications to each of the

components of this work. We finally conclude with the list of contributions along with some

possible future research directions in Chapter 9.
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CHAPTER 2

BACKGROUND

2.1 Parallel I/O

A parallel I/O subsystem typically consists of various layers of middleware libraries and

hardware. The most common parallel I/O stack in current HPC machines has high-level

I/O libraries and file formats (e.g., HDF5, NetCDF, and ADIOS), I/O middleware (e.g.,

MPI-IO and POSIX), parallel file systems (e.g., Lustre, GPFS, and PVFS), and storage and

I/O hardware. When parallel applications perform I/O operations, the data moves from

individual processors to the storage hardware through the multiple layers of the stack.

Figure 2.1 shows a contemporary parallel I/O software stack with HDF5 [4] as the high-

level I/O library, MPI-IO as the middleware layer, and a parallel file system (Lustre, GPFS,

etc.). While each layer of the stack exposes tunable parameters for improving performance,

there is little guidance for application developers on how these parameters interact with each

other and affect overall I/O performance.

Additionally, to achieve good I/O performance, each of the layers offers optimization

strategies. For instance, MPI-IO provides two modes of writing data to disks: independent

I/O and collective I/O [5]. With independent I/O, each MPI process writes the data to

storage independent of other processes of the application. In collective I/O mode, the data

is collected at a few aggregator processes and the aggregators write the data to storage. The

collective I/O mode is preferable when the number of MPI processes is large because too

many requests to the file system degrade I/O performance. Throughout this chapter, we

focus on the write operations that originate from large simulations.

A typical implementation of a collective I/O write operation includes two phases: the

data collection phase at aggregators and the I/O phase [6]. Each MPI process first analyzes

its request to the file and calculates the start offset and end offset. These two variables

identify the segment of the file accessed by the processor. After calculating these variables,

each process sends their values to all the other processes. The aggregators then compute the

partitions, called file domains, of the file they are responsible for writing. In ROMIO [5],
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HDF5
(Alignment, Chunking, etc.)

MPI I/O
(Enabling collective buffering, Sieving buffer size, 
collective buffer size, collective buffer nodes, etc.)

Application

Parallel File System
(Number of I/O nodes, stripe size, enabling prefetching 

buffer, etc.)

Storage HardwareStorage Hardware

Figure 2.1: Parallel I/O Stack and various tunable parameters

which is the basis for many MPI-IO implementations, the aggregators split the range of the

file being updated equally in a block-cyclic distribution. Figure 2.2 shows an example file

domain assignment in a configuration with “a” I/O aggregators (processes shaded in gray),

each of them in charge of one file domain.

Parallel file systems, such as Lustre, typically use multiple storage servers to parallelize

I/O operations. Lustre uses Object Storage Targets (OSTs) for storing chunks of data.

Lustre allows users or applications to control the number of OSTs, called the stripe count,

and the size of contiguous chunks of data, called the stripe size, for storing the data. The

MPI-IO aggregators write blocks of size equal to the stripe size in a round-robin fashion [7].

Several algorithms have been designed for selecting the aggregators and writing data to

stripes [8]. Among these, CB alignment algorithm 2 has been developed by the Cray MPT

library. Figure 2.2 illustrates the CB algorithm 2, where the block size used to partition the

file into domains is equal to the stripe size, consequently written to OSTs in a round-robin

fashion. In this algorithm, Cray’s MPT sets the collective buffering buffer size equal to the

Lustre stripe size. Therefore, the main I/O parameters to tune are: Lustre stripe count,

Lustre stripe size, and the MPI-IO number of collective buffering nodes (aggregators).

Note that from now on, we define write time to be the time elapsed from calling a write

operation in a higher-level library until the function is done, consisting of all the communi-

cation and I/O time needed for this operation.
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Figure 2.2: An illustration of Cray CB algorithm 2.

2.2 HPC Platforms

All the experiments in this dissertation are conducted on the following HPC platforms:

• Edison: Edison is a supercomputer at National Energy Research Scientific Computing

Center (NERSC). It is a Cray XC30 system consisting 5, 576 twenty-four core nodes

with 64GB of memory per node. It has Cray Aries with Dragonfly topology and three

Lustre file systems with aggregate bandwidth of 168 GB/s. We only used scratch2

file system in these experiments with maximum of 96 OSTs and 48 GB/s peak I/O

bandwidth. Cray’s MPI library v7.0.4, HDF5 v1.8.11, and H5Part v1.6.6 were used

on Edison.

• Hopper: Hopper is another supercomputing system located at NERSC. It is a Cray

XE6 system containing 6, 384 twenty-four core nodes with 32GB of memory per node.

It employs the Gemini interconnect with a 3D torus topology. We used a Lustre file

system with 156 OSTs and a peak bandwidth of about 35GB/s for storing data. We

used Cray’s MPI library v6.0.1, HDF5 v1.8.11, and H5Part v1.6.6 for compiling the

I/O kernels.

• Intrepid: Intrepid, a IBM BlueGene/P (BG/P) system at Argonne Leadership Com-

puting Facility (ALCF) is a 40-rack half a peta-flop system. Each rack contains 1024

nodes with 850 MHz quad-core processors and 2GB RAM per node. It is also equipped

with 640 I/O nodes with more 7.6 PB of storage.
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• Stampede: Stampede is a Dell PowerEdge C8220 cluster at the Texas Advanced

Computing Center. It has 6, 400 sixteen core nodes with 32GB of memory per node.

It uses Mellanox FDR InfiniBand technology with a two-level fat-tree topology. Stam-

pede’s Lustre file system with 160 OSTs (in the testing experiments for consistent

comparisons we use 156 OSTs as the maximum stripe count for Stampede as well) has

shown peak of 159 GB/s I/O bandwidth. Intel compiler v13.0.2, MVAPICH2 v1.9a2,

HDF5 v1.8.10 and H5Part v1.6.5 were used on Stampede.

Table 2.1 lists details of these HPC systems; note that the number and type of I/O

resources vary across these platforms. We also note that the I/O stack is different on

Intrepid from that on Hopper and Stampede. On Intrepid, the parallel file system is GPFS,

while Hopper and Stampede use the Lustre file system. GPFS uses dedicated I/O Nodes

(IONs) to act as proxies between the compute nodes and storage nodes. Each ION serves

64 4-core nodes, and the collection of the ION and compute nodes is called a pset.

HPC System Architecture Node Hardware Filesystem Storage Hardware Peak I/O BW

NERSC/Hopper Cray XE6
AMD Opteron processors,
24 cores per node,
32 GB memory

Lustre
156 OSTs,
26 OSSs

35 GB/s [9]

ALCF/Intrepid IBM BG/P
PowerPC 450 processors,
4 cores per node,
2 GB memory

GPFS
640 IO Nodes,
128 file servers

47 GB/s (write) [10]

TACC/Stampede Dell PowerEdge
Xeon E5-2680 processors,
16 cores per node,
32GB memory

Lustre
160 OSTs,
58 OSSs

159 GB/s [11]

Table 2.1: Details of various HPC systems used in this thesis

2.3 Application I/O Kernels

We chose three parallel I/O kernels to evaluate our autotuning framework: VPIC-IO, VORPAL-

IO, and GCRM-IO. These kernels are derived from the I/O calls of three applications,

Vector Particle-In-Cell (VPIC) [12], VORPAL [13], and Global Cloud Resolving Model

(GCRM) [14], respectively. These I/O kernels represent three distinct I/O write motifs

with different data sizes.

• VPIC-IO—plasma physics: VPIC is a highly optimized and scalable particle

physics simulation developed by Los Alamos National Lab [12]. VPIC-IO uses the

H5Part [15] API to create a file, write eight variables, and close the file. H5Part

provides a simple veneer API for issuing HDF5 calls corresponding to a time-varying,
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multi-variate particle data model. VPIC-IO extracts all the H5Part function calls of

the VPIC code to form the VPIC-IO kernel. The particle data written in the kernel

is random data of float data type. The I/O motif of VPIC-IO is a 1D particle of a

given number of particles and each particle has eight variables. The kernel writes 8M

particles per MPI process for all experiments reported in this chapter.

VPIC-IO uses the H5Part library [16] to initiate and write data pertaining to particles.

The code is run in weak-scaling configuration, where each MPI process writes eight

million particles; as the number of processes increases, the number of particles increases

proportionately. Each particle has eight (six float and two integer) variables. All

processes issue one write call per variable (i.e., eight write calls) in order to write the

data into a single shared HDF5 file.

Figure 2.3 shows the partitioning of VPIC-IO file domains for two Lustre stripe size

settings. In VPIC-IO with a 1D-array pattern, each processor writes 4 bytes per

particle for each variable (since all the variables are of 32-bit floating point type) of

this 1D dataset into the file in the order of their ranks. All of our experiments are

conducted with 8 million particles which leads to write sizes of 32 MB by each processor.

Therefore for each of the collective write calls, process 0 writes to file offset 0 to 32 MB,

process 1 writes to file offset 32 MB to 64 MB, ... The top figure shows the partitioning

for a stripe size of 16MB and the bottom figure shows it for a stripe size of 128MB. The

notation Pi refers to the MPI processes, while ai refers to aggregators. On Hopper,

the size of the file domains of each aggregator is equal to the stripe size. Hence, the

stripe size directly affects the number of write calls issued at each aggregator.

• VORPAL-IO—accelerator modeling: This I/O kernel is extracted from VOR-

PAL, a computational plasma framework application simulating the dynamics of elec-

tromagnetic systems, plasmas, and rarefied as well as dense gases, developed by TechX

[13]. This benchmark uses H5Block to write non-uniform chunks of 3D data per proces-

sor. The kernel takes 3D block dimensions (x, y, and z) and the number of components

as input. In our experiments, we used 3D blocks of 100x100x60 with different number

of processors and the data is written for 20 time steps.

VORPAL-IO leverages the H5Block library [17], which uses HDF5 library to handle

block structured data. VORPAL-IO partitions a 3D grid of points into a 3D grid of

processes. Each process writes the sub-block of points in its partition. For example, in

a 128-process run with a block of size 300× 100× 60 and a decomposition of (8, 4, 4),

the size of the total block is going to be 2400×400×240. This kernel is also configured
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to run in a weak-scaling mode.

In terms of I/O pattern, VORPAL-IO is more complex than VPIC-IO. It writes 3D

block structured grids using 3D HDF5 datasets. The way that we have configured

this I/O kernel is that each block is of size (300× 100× 60). In contrast to VPIC-IO,

VORPAL-IO variables are of type double and of size 8 bytes. Therefore, the size of

each block is 13MB. The method to scale VORPAL-IO is also different than VPIC-IO.

VORPAL-IO has a configurable non-uniform grid decomposition scheme, in which user

can specify out of the number of processors, how does each of these three dimensions

get scaled. For example, for a 128-core run of VORPAL-IO, if the user chooses the

block decomposition as (8, 4, 4), total X-dimension of the grid will be 2400 (= 300×8),

Y-dimension and Z-dimension will be 400 (= 100× 4) and 240 (= 60× 4) respectively.

This grid and the way the blocks are assigned to each process rank is shown in figure

2.4.

• GCRM-IO—global atmospheric model: This I/O kernel simulates I/O for

GCRM, a global atmospheric circulation model, simulating the circulations associ-

ated with large convective clouds. This I/O benchmark also uses H5Part to perform

I/O operations. The kernel performs all the GCRM I/O operations with random data.

I/O pattern of GCRM-IO corresponds to a semi-structured geodesic mesh, where the

grid resolution and subdomain resolution are specified as input. In our tests we used

varying grid resolutions at different concurrencies. By default, this benchmark uses 25

vertical levels and 1 iteration.

9



a0=Pi

P0

P3

16 MBFile
Domain 0 P0

File
Domain 1 P0a1=Pj

P1

P2

P4

P7

P5

P6 .
.
.

16 MB
File

Domain 2 P1

File
Domain 3

P1

16 MB

16 MB
File

Domain 4 P2

a2=Pk

a3=Pe

.

.

.

.

.

.

16 MB

(a) Lustre stripe size = 16 MB

a0=Pi

P0

P3

128 MB
File

Domain
0

P0
P1
P2
P3

File
Domain

1

P4
P5
P6
P7

a1=Pj

P1

P2

P4

P7

P5

P6

.

.

.

.

.

.

.

.

.

128 MB

(b) Lustre stripe size = 128 MB

Figure 2.3: Partitioning of file domains and processors between aggregators in
VPIC-IO when the Lustre stripe size is (a) 16MB, (b) 128MB.

10



y=
40

0

300

Rank 0

60

x=2400

10
0

z=
24

0

Rank 1 ...

Rank 31...

Rank 7

Rank 8

Rank 16

Rank 24

Rank 23

Rank 15

...

...

...

...

...

...

Figure 2.4: 3D Block structure of VORPAL-IO datasets in HDF5

11



CHAPTER 3

TAMING PARALLEL I/O COMPLEXITY WITH
AUTOTUNING

In this chapter, we present our first step towards accomplishing the ambitious goal of taming

parallel I/O complexity automatically. We develop an autotuning system that searches a

large space of configurable parameters for multiple layers and transparently sets I/O param-

eters at runtime via intercepted HDF5 calls of the I/O stack to identify parameter settings

that perform well. We apply the autotuning system to three I/O kernels extracted from

real scientific applications and identify tuned parameters on three HPC systems that have

different architectures and parallel file systems.

In brief, this chapter makes the following research contributions:

• We design and implement an autotuning system that hides the complexity of tuning

the Parallel I/O stack.

• We demonstrate high performance across diverse HPC platforms.

• We demonstrate the applicability of the system to multiple scientific application bench-

marks.

• We demonstrate I/O performance tuning at different scales (both concurrency and

dataset size).

The remainder of this chapter is structured as follows: Section 3.1 presents our I/O

autotuning system; Section 3.2 discusses the experimental setup used to evaluate benefits

of the autotuning system across platforms, applications, and at scale. Section 3.3 presents

performance results from our tests and discusses the insights gained from the autotuning

effort. Finally, Section 3.4 offers concluding thoughts.

3.1 Autotuning Framework

The main challenges in designing and implementing an I/O autotuning system are (1) se-

lecting an effective set of tunable parameter values at all layers of the stack, and (2) applying
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the parameters to applications or I/O benchmarks without modifying the source code. We

tackle these challenges with the development of two components: H5Evolve and H5Tuner.

For selecting tunable parameters, a näıve strategy is to execute an application or a repre-

sentative I/O kernel of the application using all possible combinations of tunable parameter

values for all layers of the I/O stack. This is an extremely time and resource consuming

approach, as there are many thousands of combinations in a typical parameter space. A rea-

sonable approach is to search the parameter space with a small number of tests. Towards this

goal, we developed H5Evolve to search the I/O parameter space using a genetic algorithm

(GA). H5Evolve samples the parameter space by testing a set of parameter combinations and

then, based on I/O performance, adjusts the combination of tunable parameters for further

testing. As H5Evolve passes through multiple generations, better parameter combinations

(i.e., sets of tuned parameters with high I/O performance) emerge.

An application can control tuning parameters for each layer of the I/O stack using

hints set via API calls. For instance, HDF5 alignment parameters can be set using the

H5Pset_alignment() function. MPI-IO hints can be set in a similar fashion for the

collective I/O and file system striping parameters. While changing the application source

code is possible if the code is available, it is impractical when testing a sizable number of

parameter combinations. H5Tuner solves this problem by dynamically intercepting HDF5

calls and injecting selected parameter values into parallel I/O calls at multiple layers of the

stack without the need for source code modifications. H5Tuner is a transparent shared li-

brary that can be preloaded before the HDF5 library, prioritizing it over the original HDF5

function calls.

Figure 3.1 shows our autotuning system that uses both H5Tuner and H5Evolve for search-

ing a parallel I/O parameter space. H5Evolve takes the I/O parameter space as input and

for each experiment generates a configuration file in XML format. The parameter space

contains possible values for I/O tuning parameters at each layer of the I/O stack and the

configuration file contains the the parameter settings that will be used for a given run.

H5Tuner reads the configuration file and dynamically links to HDF5 calls of an application

or I/O benchmark. After running the executable, the parameter settings and I/O perfor-

mance results are fed back to H5Evolve and influence the contents of the next configuration

file. As H5Evolve tests various combinations of parameter settings, the autotuning system

selects the best found performing configuration for a specific I/O kernel or application.
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Figure 3.1: Overall Architecture of the Autotuning Framework

3.1.1 H5Evolve: Sampling the search space

As mentioned previously, due to large size of the parameter space and possibly long execution

time of a trial run, finding optimal parameter sets for writing data of a given size is a

nontrivial task. Depending on the granularity with which the parameter values are set, the

size of the parameter space can grow exponentially and unmanageably large for a brute force

and enumerative optimization approach. As an example, for these experiments in this work,

for Lustre-specifc configurations without chunking, the parameter space contains 13, 440

total possible configurations; Lustre-specific configurations with chunking contains 336, 000

different configurations.

Exact optimization techniques are not appropriate for sampling the search space given

the variable-length nature of the objective function, which is the runtime of a particular

configuration. Instead of relying on the simplest approach, exhaustive search, adaptive

heuristic search approaches such as genetic evolution algorithms, simulated annealing, etc.,

can traverse the search space in a reasonable amount of time. In H5Evolve, we explore

genetic algorithms for sampling the search space.

A genetic algorithm (GA) [18] is a meta-heuristic for approaching an optimization prob-
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Figure 3.2: A pictorial depiction of the genetic algorithm used in the autotuning
framework.

lem, particularly one that is ill-suited for traditional exact or approximation methods. A

GA is meant to emulate the natural process of evolution, working with a “population” of

potential solutions through successive “generations” (iterations) as they “reproduce” (inter-

mingle portions between two members of the population) and are subject to “mutations”

(random changes to portions of the solution). A GA is expected, although this cannot nec-

essarily be proven, to converge to an optimal or near-optimal solution, as strong solutions

beget stronger children, while the random mutations offer a sampling of the remainder of

the space.

Our implementation, dubbed H5Evolve, is shown in Figure 3.2. It was built in Python

using the Pyevolve [19] module, which provides a framework for performing genetic algorithm

experiments in Python.

The workflow of H5Evolve is as follows. For a given benchmark at a specific concurrency

and problem size, H5Evolve runs the genetic algorithm (GA). H5Evolve takes a predefined

parameter space which contains possible values for the I/O tuning parameters at each layer

of the I/O stack. The evolution process starts with a randomly selected initial population.

H5Evolve generates an XML file containing the selected I/O parameters (an I/O configura-

tion) that H5Tuner injects into the benchmark. In all of our experiments, the H5Evolve GA
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uses a population size of 15; this size is a configurable option. Starting with an initial group

of configuration sets, the genetic algorithm passes through successive generations. H5Evolve

uses the runtime as the fitness evaluation for a given I/O configuration. After each gen-

eration has completed, H5Evolve evaluates the fitness of the population and considers the

fastest I/O configurations (i.e., the “elite members”) for inclusion in the next generation.

Additionally, the entire current population undergoes a series of mutations and crossovers

to populate the other member sets in the population of the next generation. This process

repeats for each generation. In our experiments, we set the number of generations to be

40, meaning that H5Evolve runs a maximum of 600 executions of a given benchmark. We

used a mutation rate of 15%, meaning that 15% of the population undergoes mutation at

each generation. After H5Evolve finishes sampling the search space, the best performing

I/O configuration is stored as the tuned parameter set.

3.1.2 H5Tuner: Setting I/O parameters at runtime

The goal of the H5Tuner component is to develop an autonomous parallel I/O parameter

injector for scientific applications with minimal user involvement, allowing parameters to be

altered without requiring source code modifications and a recompilation of the application.

The H5Tuner dynamic library is able to set the parameters of different levels of the I/O

stack—namely, the HDF5, MPI-IO, and parallel file system levels in our implementation.

Assuming all the I/O optimization parameters for different levels of the stack are in a con-

figuration file, H5Tuner first reads the values of the I/O configuration. When the HDF5

calls appear in the code during the execution of a benchmark or application, the H5Tuner

library intercepts the HDF5 initialization function calls via dynamic linking. The library

reroutes the intercepted HDF5 calls to a new library, where the parameters from the con-

figuration are set and then the original HDF5 function is called using the dynamic library

package functions. This approach has the added benefit of being completely transparent to

the user; the function calls remain exactly the same and all alterations are made without

change to the source code. We show an example in Figure 3.3, where H5Tuner intercepts

an H5FCreate() function call that creates an HDF5 file, applies various I/O parameters,

and calls the original H5FCreate() function call.

H5Tuner uses MiniXML [20], a small XML library to read the XML configuration files. In

our implementation, we are reading the configuration file from user’s home directory, giving

the user the ability to change the configuration file. Figure 3.4 shows a sample configuration

file with HDF5, MPI-IO, and Lustre parallel file system tunable parameters.
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H5Tuner Design

hid_t H5Fcreate(const char *name, unsigned flags, 
hid_t create_id, hid_t access_id )

HDF5 Library (Unmodified)

Application,  
I/O benchmark,
Appl. I/O kernel

H5Fcreate()

H5Tuner

1. Obtain the address of H5Fcreate using dlsym()
2. Read I/O parameters from the XML control file
3. Set the I/O parameters(e.g. for MPI we use 
MPI_Info_set()) 
4. Setup the new access_id using new MPI_Info
5. Call real_H5Fcreate(name, flags, 
create_id, new_access_id)

H5Fcreate()

6. Return the result of call to real_H5Fcreate()

Figure 3.3: Design of H5Tuner component as a dynamic library which intercepts
HDF5 functions to tune I/O parameters

3.2 Experimental Setup

We have evaluated the effectiveness of our autotuning framework on three HPC platforms

using three I/O benchmarks at three different scales. The HPC platforms include Hopper,

Intrepid, and Stampede. The I/O benchmarks are derived from the I/O traces of the VPIC,

VORPAL, and GCRM applications. We ran these benchmarks using 128, 2048, and 4096

cores. A full description of these platfroms and applications can be found in Chapter 2.

In the following subsections, we briefly explain the data sizes of these I/O benchmarks at

different scales.

3.2.1 Scale and dataset sizes

We designed a weak-scaling configuration to test the performance of the autotuning frame-

work at three concurrencies, i.e., 128, 2048, and 4096 cores. The amount of data each core

writes is constant for a given I/O kernel, i.e., the amount of data an I/O kernel writes in-

creases proportional to the number of cores used. Table 3.1 shows the sizes of the datasets

generated by the I/O benchmarks. The amount of data written by a kernel ranges from 32
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<Parameters>
    <High_Level_IO_Library>
        <alignment> 0, 65536 </alignment>
    </High_Level_IO_Library>

    <Middleware_Layer>
        <cb_buffer_size> 1048576 </cb_buffer_size>
        <cb_nodes> 32 </cb_nodes>
    </Middleware_Layer>

    <Parallel_File_System>
        <striping_factor FileName="sample_dataset.h5part"> 4 </striping_factor>
        <striping_factor> 16 </striping_factor>
        <striping_unit> 65536 </striping_unit>
    </Parallel_File_System>
</Parameters>

Figure 3.4: An XML file showing a sample configuration with optimization pa-
rameters at different levels of the parallel I/O stack. The tuning can be applied
to all files an application writes or to a specific file.

GB (with 128 cores) to 1.1 TB (with 4096 cores).

I/O Benchmark 128 Cores 2048 Cores 4096 Cores

VPIC-IO 32 GB 512 GB 1.1 TB

VORPAL-IO 34 GB 549 GB 1.1 TB

GCRM-IO 40 GB 650 GB 1.3 TB

Table 3.1: Weak scaling configuration for the three I/O benchmarks

3.2.2 Parameter space

H5Evolve can take arbitrary values as input for a parameter space. However, evolution of

the GA will require more generations to search a parameter space with arbitrary values.

To shorten the search time, we selected a few meaningful parallel I/O parameters for all

the layers of the I/O stack based on previous research efforts [21] and our experience [9].

We have chosen most of the parameter values to be powers-of-two except some parallel file

system parameters. We set the largest parameter value of Lustre stripe count to be equal

to the maximum number of available OSTs, which is 156 on Hopper and 160 on Stampede.

The GPFS parameters that we tuned are Boolean. The process of curtailing parameter

values to reasonable ranges based on knowledge of page sizes, min/max striping ranges and

powers-of-two values can be done by one who is modestly familiar with the system. And

this task needs to be performed only once on a per-system basis. Table 3.2 shows ranges of
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various parameter values. A user of our autotuning system can set the parameter space by

simply modifying the parameter list in H5Evolve. Adding new parameters to search needs

simple modifications to H5Tuner. The following is a list of parameters we used as part of

the parameter space and their target platforms.

• Lustre (on Hopper and Stampede):

– Stripe count (strp fac) sets the number of OSTs over which a file is distributed.

– Stripe size (strp unt) sets the number of bytes written to an OST before cycling

to the next OST.

• GPFS (on BG/P Intrepid):

– Locking: Intrepid has a ROMIO (an MPI-IO implementation [22]) driver to

avoid NFS-type file locking. This option is enabled by prefixing a file name

with bglockless:.

– Large blocks: ROMIO has a hint for GPFS named IBM largeblock io which

optimizes I/O with operations on large blocks.

• MPI-IO (on all three platforms):

– Number of collective buffering nodes (cb nds) sets the number of aggregators for

collective buffering. On Intrepid, the parameter to set the number of aggregators

is bgl nodes pset.

– Collective buffer size (cb buf size) is the size of the intermediate buffer on an

aggregator for collective I/O. We set this value to be equal to the stripe size on

Hopper and Stampede.

• HDF5 (on all three platforms):

– Alignment (align(thresh, bndry)): HDF5 file access is faster if certain

data elements are aligned in a specific manner. Alignment sets the start of any

file object with size more than a threshold value to an address that is a multiple

of a user-specified block size.

– Chunk size (chunk size): In addition to contiguous datasets, where datasets

are stored in single blocks in files, HDF5 supports chunked layout in which the

data are stored in separate chunks. We used this parameter specifically for the

GCRM-IO kernel.
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Parameter Min Max # Values

strp fac 4 156/160 10
strp unt / cb buf siz 1 MB 128 MB 8
cb nds 1 256 12
align(thresh, bndry) (0,1) (16KB, 32MB) 14
bglockless True False 2
IBM largeblock io True False 2
chunk size 10 MB 2 GB 25

Table 3.2: A list of the tunable parameters and their ranges used for experiments
in this study. We show the minimum and maximum values for each parameter,
with powers-of-two values in between. The last column shows the number of
distinct values used for each parameter.

3.3 Results

Out of the 27 experiments (3 I/O benchmarks x 3 concurrency levels x 3 HPC platforms),

we successfully completed 24 experiments in time for this chapter. Due to computer resource

allocation limitations on Stampede, we could not finish the three 4096-core experiments on

that system. However, we expect the performance improvement trends in the remaining

runs to be the same as the completed experiments.

In the following subsections, we first compare the I/O rates that our autotuning system

achieved with those obtained using system default settings. We then discuss the achieved

speedup with respect to different platforms, I/O benchmarks, and concurrency/scale in

Sections 3.3.3, 3.3.4, and 3.3.5, respectively.

Application/
Bandwidth (MB/s)

# Cores
Platform VPIC-IO VORPAL-IO GCRM-IO

Default Tuned Speedup Default Tuned Speedup Default Tuned Speedup

128
Hopper 400 3034 7.57 378 2614 6.90 757 2348 3.10

Intrepid 659 1126 1.70 846 1102 1.30 255 1801 7.05

Stampede 394 2328 5.90 439 2130 4.85 331 2291 6.90

2048
Hopper 365 14900 40.80 370 12669 34.16 240 17816 74.12

Intrepid 2282 5964 2.61 2033 4842 2.38 414 870 2.10

Stampede 380 13047 34.28 436 12542 28.70 128 13825 107.73

4096
Hopper 348 17620 50.60 320 12192 38.00 413 20136 48.67

Intrepid 2841 7014 2.46 3131 7766 2.47 523 2177 4.16

Table 3.3: I/O rate and speedups of I/O Benchmarks with Tuned Parameters
over Default Parameters

20



VPIC VORPAL GCRM

0

1000

2000

3000

Hopper Intrepid Stampede Hopper Intrepid Stampede Hopper Intrepid Stampede

I/O
 B

an
dw

id
th

 (
M

B
/s

)

Default
Tuned

(a) 128 cores

VPIC VORPAL GCRM

0

5000

10000

15000

Hopper Intrepid Stampede Hopper Intrepid Stampede Hopper Intrepid Stampede

I/O
 B

an
dw

id
th

 (
M

B
/s

)

Default
Tuned

(b) 2048 cores

VPIC VORPAL GCRM

0

5000

10000

15000

20000

Hopper Intrepid Hopper Intrepid Hopper Intrepid

I/O
 B

an
dw

id
th

 (
M

B
/s

)

Default
Tuned

(c) 4096 cores

Figure 3.5: Summary of performance improvement for each I/O benchmark
running on (a) 128 cores, (b) 2048 cores, (c) 4096 cores. The I/O bandwidth
axes’ scales are different in each of the plots.
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3.3.1 Tuned I/O performance results

The plots in Figure 3.5 present the I/O rate improvement using tuned parameters that

our autotuning system detected for the three I/O benchmarks. H5Evolve ran for 10 hours,

12 hours, and 24 hours for the three scale to search through the parameter space of each

experiment. In most cases, the GA evolved through 15 to 40 generations. We selected

the tuned configuration that achieves the best I/O performance through the course of the

GA evolution. Figure 3.5 compares the tuned I/O rate with the default I/O rate for all

applications on all HPC systems at 128, 2048, and 4096 core scales. We calculated I/O rate

as the ratio of the amount of data a benchmark writes into a HDF5 file at any given scale to

the time taken to write the data. The time taken includes the overhead of opening, writing,

and closing the HDF5 file. The overhead of HDF5 call interception by H5Tuner, which is

included in the time taken, was negligibly small, even at high core count. The I/O rate on

the y-axis is expressed in MB/s. Readers should note that the range of I/O rates shown in

each of the three plots is different. The measured default I/O rate for a benchmark on a

HPC platform is the average I/O rate we obtained after running the benchmark three times.

The default experiments correspond to the system default settings that a typical user of the

HPC platform would encounter should he/she not have access to an autotuning framework.

Table 3.3 shows the raw I/O rate numbers (in MB/s) of the default and tuned experiments

for all 24 experiments. We also show the speedup that the auto-tuned settings achieved over

the default settings for each experiment. For all the benchmarks, platforms, and concur-

rencies, the speedup numbers are between 1.3X and 38X, with 48X, 50X, 70X, and 100X

speedups in four cases. We note that the default I/O rates for the Intrepid platform are

noticeably higher than those on Hopper and Stampede. Hence, the speedups on Hopper and

Stampede with tuned parameters are much larger than those on Intrepid.

3.3.2 Tuned configurations

Table 3.4 shows the sets of selected parameter values for all benchmarks on all systems for

the 2048-core experiments. Due to space constraints, we cannot present a detailed analysis

for all experimental configurations at the other two scales; we generally observed similar

trends for the 128-core and 4096-core experiments. First, we note that the tuned values are

different for each benchmark and platform. This highlights the strength of the autotuning

framework: while I/O experts and sysadmins can probably recommend good settings for a

few cases based on their experience, it is hard to encapsulate that knowledge and generalize

it across multiple problem configurations.
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VPIC-IO and VORPAL-IO on Hopper and Stampede have similar tuned parameters, i.e.,

strp fac, strp unt, cb nds, cb buf size, and align. On Intrepid, these two bench-

marks include bgl nodes pset, cb buf size, bglockless,

IBM largeblock io, and align. On all platforms, GCRM-IO achieved better perfor-

mance with HDF5’s chunking and alignment parameters, and Lustre parameters (stripe

factor and stripe size) without the MPI-IO collective buffering parameters. We chose this

parameter space for GCRM-IO as Howison et al. [21] demonstrated that the HDF5 chunk-

ing provides a significant performance improvement for this I/O benchmark. Moreover, we

show that the autotuning system is capable of searching a parameter space with multiple

HDF5 tunable parameters. On Intrepid, GCRM-IO did not use GPFS tunable parameters

because going through HDF5’s MPI-POSIX driver (this is a driver in HDF5 which only uses

MPI’s communication) voids the MPI-IO layer, which is needed to set the GPFS parameters.

Despite that, HDF5 tuning alone achieved 2X improvement.

We note some higher-level trends from Table 3.4. At the same scale and with the same

benchmark, the tuned parameters are different on various platforms, even with the same

parallel file system. For example, although the VPIC-IO benchmark on Hopper and Stam-

pede use the Lustre file system, their stripe settings to achieve the highest performance are

different. The tuned parameters can be different on the same platform and at the same scale

for different benchmarks. For instance, the VPIC-IO and VORPAL-IO benchmarks obtain

the highest I/O rates with different MPI-IO collective buffering settings and HDF5 align-

ment settings, whereas their Lustre settings are the same. Similarly, the same benchmark

at different scales on the same platform have different tunable parameters. For example,

at 128-cores (not shown in the table), VPIC-IO achieves tuned performance with 48 Lustre

stripes and 32 MB stripe size, whereas at 2048-cores, VPIC-IO uses 128 stripes with 64 MB

stripe size. We analyze these observations further in the following sections.

3.3.3 Tuned I/O performance across platforms

Figure 3.6(a) shows the distribution of speedups (time to write with the system’s default

I/O configuration over the tuned I/O configurations) with tuned parameters across Hopper,

Intrepid, and Stampede systems representing three different architectures. The speedups

are color-coded by I/O benchmark. Overall, the autotuning system achieved improved per-

formance on all platforms for all benchmarks. We can observe that the speedups on Hopper

and Intrepid are lower than those on Stampede. The speedups on Hopper range from 3.10

to 74.12, with an average of 28.55. Speedups on Intrepid range from 1.30 to 7.05 with an
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I/O Kernel System Tuned Parameters

VPIC-IO Hopper

strp fac=128, strp unt=64MB,
cb nds=1024,
cb buf size=64MB, align=(0,64K)

VPIC-IO Intrepid

bgl nodes pset=512,
cb buf size=128MB,
bglockless=true,
largeblock io=false, align=(8K,
1MB)

VPIC-IO Stampede

strp fac=128, strp unt=8MB,
cb nds=512,
cb buf size=8MB, align=(8K, 2MB)

VORPAL-IO Hopper

strp fac=128, strp unt=16MB,
cb nds=1024,
cb buf size=16MB, align=(1K,16K)

VORPAL-IO Intrepid

bgl nodes pset=128,
cb buf size=128MB,
bglockless=true,
largeblock io=true, align=(8K, 8MB)

VORPAL-IO Stampede

strp fac=160, strp unt=2MB,
cb nds=512,
cb buf size=2MB, align=(8K, 8MB)

GCRM-IO Hopper

strp fac=156, strp unt=32MB,
chunk size=(1,26,327680)=32MB,
align=(2K, 64KB)

GCRM-IO Intrepid
chunk size=(1,26,1048760)=1GB,
align=(1MB, 4MB)

GCRM-IO Stampede

strp fac=160, strp unt=32MB,
chunk size=(1,26,1048760)=1GB,
align=(1MB, 4MB)

Table 3.4: Tuned parameters of benchmarks on the systems for 2048-core ex-
periments

average of 2.76. Speedups on Stampede ranges from 4.85 to 107.73, with an average of 31.39.

As mentioned earlier, higher speedups on Stampede are due to poor default performance. In

contrast, lower speedups on Intrepid can be attributed to higher default performance. The

tuned raw I/O rates on Stampede are similar to those on Hopper.

The aim of this section is to highlight how the autotuning framework can deduce high per-

formance configurations for the same application at the same scale, but running on different

platforms. We highlight this capability by choosing the VPIC-IO benchmark running on

2048 cores on Hopper and Intrepid, and provide some insights on the configuration returned

by the GA.

We consider the effect of choosing the collective buffer size parameter for VPIC-IO as

illustrated by Figures 3.7 and 3.8. On Hopper (Figure 3.7), multiple buffer size values

(equal to the Lustre stripe sizes) obtain good I/O performance, and on average the 32 MB
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Figure 3.6: Speedups with respect to platforms, benchmarks, and scale of the
experiments.
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buffer size achieves the best I/O rate (although 64 MB has achieved the peak performance,

but at other scales and in this scale 32 MB has consistently shown high performance). In the

VPIC-IO benchmark, each MPI process writes eight variables and the size of each variable

is equal to 32 MB. When the Lustre stripe size is equal to 32 MB, it obtains the best

performance on Hopper. The powers-of-two fractions and multiples of 32 MB also obtain

reasonably good performance. On Intrepid (Figure 3.8), we obtain the best performance

when the collective buffer size is 128 MB. From Table 3.4, we can see that the number of

pset nodes from the tuned parameters is 512, i.e., four MPI processes are being served by

one collective buffer. When VPIC-IO writes 32 MB per process, a total of 128 MB data

gets collected at the collective buffer node (aggregator) and this node writes data to the

file system as one I/O request, which we believe aligns well with the GPFS file system to

achieve the best performance. We note that the framework is able to derive these meaningful

configurations without detailed prior knowledge of platform specific features.
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Figure 3.7: The effect of Hopper’s Collective Buffer Size on performance of
VPIC-IO on 2048 cores
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Figure 3.8: The effect of Intrepid’s Collective Buffer Size on performance of
VPIC-IO on 2048 cores

3.3.4 Tuned I/O for different benchmarks

Figure 3.6(b) presents the speedup numbers with respect to different I/O benchmarks.

Speedups for VPIC range from 1.70 to 50.60, with an average of 16.04. Speedups for VOR-

PAL range from 1.30 to 38.00 with an average of 13.69. Speedups for GCRM ranges from

2.10 to 107.73 with an average of 33.50.

We now discuss the configurations returned by the autotuning framework for different

applications, while holding the platform and scale constant. We highlight the VORPAL-IO

and GCRM-IO applications, running on 2048 cores of Stampede, and consider tuned the

Lustre configurations returned by the GA. Figures 3.9 and 3.10 show the impact of Lustre

stripe size on the VORPAL-IO and GCRM-IO benchmarks. Both of these benchmarks

obtain the highest performance using Lustre stripe count of 160. However, VORPAL-IO

obtains the best performance using 2 MB stripe size, whereas GCRM-IO works well using

32 MB stripe size. We note that these different high performance configurations likely result

from the different I/O patterns exercised by these benchmarks: VORPAL-IO uses MPI-IO

in collective mode whereas GCRM-IO uses MPI-POSIX driver. This result highlights a

strength and a weakness of the autotuning approach: the autotuning process can produce

a good configuration which performs well in practice, but is hard to reason about. On the

other hand, it would be very hard for a human expert to propose this configuration in the

first place since the interactions in the software stack are very complicated to analyze.
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Figure 3.9: The effect of Lustre Stripe Size value on performance of VORPAL
on 2048 cores of Stampede

3.3.5 Tuned I/O at different scales

Figure 3.6(c) demonstrates the weak scaling performance obtained by our framework. We

observe that the autotuning system obtains higher speedups on 2048 and 4096-core experi-

ments. This shows that the default settings on all platforms fare reasonably well at a smaller

scale. But, as the scale of the application increases, more resources are at stake and that

presents more opportunities to optimize the stack.

Figure 3.11 shows another view of Figure 3.6(c) with raw I/O rates of benchmarks at

various scales grouped based on platform. Each box illustrates the range of I/O rates of the

benchmarks. This also illustrates our observation above that autotuning is more beneficial

at larger scale. This figure also shows that the Lustre-based platforms, i.e., Hopper and

Stampede, can achieve higher I/O rates than the GPFS-based platform (Intrepid) with

tuning at the scales we experimented. We also show that tuning helps improving performance

on BG/P based Intrepid.

3.4 Conclusions

We have presented an autotuning framework for optimizing I/O performance of scientific

applications. The framework is capable of transparently optimizing all levels of the I/O

stack, consisting of HDF5, MPI-IO, and Lustre/GPFS parameters, without requiring any

modification of user code. We have successfully demonstrated the power of the framework
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Figure 3.10: The effect of Lustre Stripe Size value on performance of GCRM on
2048 cores of Stampede

by obtaining a wide range of speedups across diverse HPC platforms, benchmarks, and

concurrencies. Perhaps most importantly, we believe that the autotuning framework can

provide a route to hiding the complexity of the I/O stack from application developers,

thereby providing a truly performance portable I/O solution for scientific applications.
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CHAPTER 4

IMPROVING PARALLEL I/O AUTOTUNING WITH
PERFORMANCE MODELING

While we consistently demonstrated I/O write speedups between 2X and 100X in the pre-

vious chapter, the overhead of the GA approach was significant. For example, running the

GA for fifteen generations with a population of forty members typically takes about twelve

hours. This overhead is considerable; it severely limits the general-purpose applicability of

such an autotuning framework.

In this chapter, we significantly reduce the search time by using empirical models of the

I/O performance. We characterize performance of a typical parallel I/O subsystem with

multiple levels of data movement and develop performance prediction models. Existing

models for predicting parallel I/O performance (see, e.g., [23–25]) often aim for highly accu-

rate predictions of I/O performance and are relatively complex. Many of these models have

limited applicability, being restricted to specific systems or I/O kernels. We take a two-step

approach: the first step crafts an empirical model that effectively reduces the search space

of interest and the second step searches in this small parameter space.

This chapter makes the following technical contributions:

• We develop an approach to construct automatically an I/O performance model

• We use the model thus constructed to reduce the search space for good I/O configu-

rations

• We demonstrate the applicability of the autotuning framework to scientific I/O kernels

with different write patterns and various problem sizes

The chapter is structured as follows. Section 4.1 describes the platform and the application

I/O kernels used in this study. Section 4.2 presents a general development of nonlinear

models for predicting parallel I/O performance while Section 4.3 describes the usage of

models by our autotuning framework. In Section 4.4, we demonstrate the performance

benefit over different settings. We discuss initial work on accounting for interference from

the I/O activity of the other jobs running on a system in Section 4.5. We conclude the

chapter in Section 4.6.
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4.1 Experimental Setup

We have tested our autotuning framework on Hopper and examined three I/O kernels in our

study: VPIC-IO, VORPAL-IO and GCRM-IO. Plese refer to Chapter 2 for a full description

of Hopper and the I/O Kernels.

4.2 Empirical Performance Models

We now summarize our approach for building models based on I/O performance data for

the purposes of autotuning.

4.2.1 Nonlinear regression model preliminaries

We denote the independent variables/parameters (e.g., the stripe count) in our model by

x = [x1, · · · , xnx ] and the scalar-valued output/dependent variable (e.g., the write time)

associated with the configuration x by y(x). In our setting, this output depends on the state

of the system and can be viewed as stochastic. By yj we denote a particular measurement

of the output at a specific xj. Hence, data collected from a set of experiments is of the

form {(xj, yj) : j = 1, . . . , ny}, where the xj need not be distinct (which occurs if replicated

measurements are conducted at a particular xj).

We consider smooth, nonlinear models, which can be written as linear combinations of nb

nonlinear basis functions φ,

m(x; β) =

nb∑
k=1

βkφk(x). (4.1)

Once a basis φ has been selected, the hyperparameters β can be selected by standard

regression-based approaches. For example, since these models are linear in β, a common

approach is to employ

β̂ = arg min
β

ny∑
j=1

(
m(xj; β)− yj

)2
, (4.2)

which corresponds to the maximum likelihood estimator for β under the assumption that y

is Gaussian.

There can be many choices of basis functions; for simplicity, we focus on terms that are

low-degree polynomials in either the parameter, xi, or the inverse of the parameter, 1
xi

. In
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particular, we consider terms of the form{
nx∏
i=1

(xi)
pi : pi ∈ {−1, 0, 1}, i = 1, . . . , nx

}
. (4.3)

We could have expanded our set to include terms that could better account for differences

in scale (e.g., x1 log(x2)) or higher degree polynomials (e.g.,
x21x2
x23

), but found that the set

(4.3) was sufficiently rich for our purposes.

Since one of our goals in building a model of the form (4.2) was simplicity of the model,

we desired to incorporate only a handful of basis terms, nb, from the set (4.3). Each term in

(4.3) can be defined by the integer vector p ∈ {−1, 0, 1}nx . We let m̂(x; P) denote the model

prediction at x resulting from selecting a basis defined by P = {p1, · · · ,pnb} and using the

coefficients defined by (4.2). Given an initially empty set P, we follow a greedy procedure

(also known as a forward model selection approach) of adding to P the p that most reduces

the prediction error. Formally, this means we determine the p that solves

min
p∈{−1,0,1}nx

ny∑
j=1

(
m̂(xj; P ∪ p)− yj

yj

)2

. (4.4)

After updating P, this procedure can be repeated until: (i) we have reached a desired limit

on the number of terms to include, (ii) we have exhausted the set in (4.3), or (iii) additional

terms lead to negligible reductions of the prediction error (which, under certain regularity

assumptions can be interpreted as the terms not being statistically significant). In our

experiments, we always terminated the approach based on (i), reaching an upper limit to

the number of model terms.

Before proceeding, we note that in (4.4) we are using a relative error metric that is slightly

different from the usual least-squares error criterion (e.g., as used in (4.2)). We made this

choice in order to bias our model terms toward smaller values of the output y. In the context

of I/O models for optimization, we are less interested in accurately predicting large times

than we are small times. An alternative approach to building models based on a bias toward

high-performing configurations is discussed in [26].

4.2.2 Development of I/O performance models

We now examine nonlinear regression models in the context of modeling I/O write times

for a given application. As discussed previously, the main I/O parameters on a Lustre file

system are Lustre stripe settings (e.g., stripe count and stripe size) and MPI-IO collective
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buffering settings (e.g., number of collective buffering nodes and collective buffering size).

In order to identify potential challenges and illustrate our approach, we first vary only the

stripe settings. In subsequent tests, we also vary the collective buffering settings and consider

multiple file sizes.

Output variability on a single node

We begin by examining the problem of building a single model for write times as Lustre

settings are modified. In order to isolate Lustre settings, we developed a micro-benchmark

that uses POSIX I/O from a single node to write a single file on the Lustre file system. We

fixed the file size to about 20 GB (20 * 1024 = 20480 MB). Since we have a single node using

POSIX I/O, the number of I/O aggregators is also fixed. Table 4.1 shows the different stripe

settings that comprised the set of training configurations in this first set of experiments.

# of
Parameter Tested Values Values

c, stripe count 1,2,4,8,16,32,64,96,128,156 10
s, stripe size (MB) 1,2,4,8,16,32,64,96,128 9

Table 4.1: Training configurations (90 in total) tested as part of the single-node
experiment.

One of our goals in this initial analysis was to inspect write time variability in simple

settings (in this case, using a single node). Therefore, we evaluated all 90 training configu-

rations in four different experiments (each taking place on different days of a week) in order

to increase our chances of encountering different levels of interference from the I/O activity

of other jobs running on a shared system, such as Hopper.

Figure 4.1 shows the 360 write times recorded as part of these four experiments. Here, the

90 training configurations are sorted by the minimum write time across the four experiments.

Variability within a particular configuration is illustrated by a vertical line connecting the

four write times for that experiment. It can be seen that, even in this single-node setting,

interference/noise can have a significant impact on the performance.

This variability can significantly complicate the modeling process since it necessitates a

more careful definition of the modeling objectives prior to performing experiments. For ex-

ample, if one wishes to model “average” I/O performance, then experimental setups would

need to sufficiently sample across different system states/sources of the variability. Further-

more, since this variance is nonstationary (having different magnitudes from configuration

to configuration), accurately modeling performance across the entire configuration space can
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Figure 4.1: I/O performance variability and effect of interference on a single
node writing to a file.

be a daunting task, likely requiring one to also model the variability over the configuration

space.

In our context, we are interested in identifying sets of high-performing configurations

(that are not already in the training set) for subsequent evaluation; we are less concerned

with the accuracy of model predictions in an absolute sense. In Figure 4.1, we observe

that the highest-performing configurations tend to be less sensitive to noise; reordering the

configurations based on the mean or median of the four experiments has little effect on the

constituents of the highest-performing quartile. Consequently, we have decided to use the

minimum time of each of the experiments in building our models. In Section 4.5 we discuss

the problem of variability.

Given the nx = 2 parameters c (the stripe count) and s (the stripe size), there are 3nx =

9 possible terms in the set (4.3). Following the approach described in Section 4.2.1 and

selecting nb = 6 terms, we arrive at the basis {1, c, s, 1
c
, 1
s
, s
c
} (the remaining, unselected

terms being cs, c
s

and 1
cs

). The maximum of 4 aggregators were chosen because of a well-

known criteria in the literature of having 1 aggregators per node and 128 cores of Hopper

is at least 5 nodes. We performed a cross-validation test of this form of model by randomly

partitioning the 90 outputs into training and testing subsets. We determine values of the

model coefficients β1, . . . , β6 for a model using the six terms {1, c, s, 1
c
, 1
s
, s
c
} by using the

training subset. The resulting model is then evaluated on the testing subset (to which the
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model was not fit). Figure 4.2 shows that the trained model predicts the write times of the

testing subset nearly as well as it does the write times of the training subset. Furthermore,

the lowest quartile of write times are predicted within 10% of the observed write time values.

Figure 4.2: Correlation between observed and predicted single-node write times
on training (50%) and testing (50%) subsets.

To complete our description of our methodology, we provide our final model for the write

time data. Using the nonlinear basis above and all 90 data points, we obtain the model

m(c, s) = β1 + β2c+ β3s+ β4
1
c

+ β5
1
s

+ β6
s
c

= 28 + 0.3c+ 0.3s+ 20
c

+ 10
s
− 0.2 s

c
.

(4.5)

Write time models for multiple nodes

Having observed that nonlinear regression models can predict the trend of I/O performance

when one node is writing to one file, we now show how such a model can be used when

writing to shared files from multiple nodes. To this end, we use the VPIC-IO benchmark

with 128 cores and a file size of 32 GB.

For training, we consider the same 90 combinations of the stripe size, s, and stripe count,

c, shown in Table 4.1, but we enrich the configuration space to include aggregators, a. In

particular, we consider one, two, and four collective buffering nodes, for a total of 270 (c, s, a)
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configurations. We performed two different runs of the 270 configurations, with the training

data again taken as the minimum write time over these two runs.

The data, shown in Figure 4.3, reveal that, for small stripe count values (c ≤ 2), the

write behavior is difficult to predict with the simple models considered here. Consequently,

we formed our model on the basis of the remaining 216 configurations. As illustrated in

Figure 4.3, the five-term model of the form

m(c, s, a) = β1 + β2
c

a
+ β3

s

a
+ β4

1

a
+ β5

a

cs
(4.6)

tends to reproduce the training data well. We again note that the empirical data suggests

that the variability is smaller for the configurations with lower write times. Furthermore,

even though the models we consider in this chapter do not directly account for the variability,

we observe that our realized predictions tend to yield more accurate predictions for those

configurations where little variability is seen.

Figure 4.3: Raw data and nonlinear model of the form (4.6) for VPIC-IO write
times as the number of aggregators is varied.

Thus far we have only considered a single file size when building nonlinear regression

models. This modeling approach reflects the typical workflow in automatic empirical per-

formance tuning, where one wishes to determine parameter values for actionable decisions.
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In the language of mathematical optimization, we would seek to solve, for example,

min
(c,s,a)∈Ω

g(c, s, a), (4.7)

where g(c, s, a) represents an empirical performance metric (e.g., run time when there is

no contention, mean energy consumption) for a single problem (fixed file size/input, fixed

machine, etc.) and Ω represents the space of realizable/correct configurations [27]. In general

(i.e., with no additional assumptions on the metric g), solving (4.7) directly is challenging

because it requires many empirical evaluations.

Provided that a model for g is available, one can consider substituting this model in for

g in (4.7). If this model is easy to optimize over, one can obtain values for (c∗, s∗, a∗) that

minimize the model in far less time than a single empirical evaluation of g would take.

Updating the model based on an empirical evaluation at (c∗, s∗, a∗) and iterating would lead

to a so-called model-based optimization algorithm [27].

One of the main benefits of our models is that their simple, algebraic form allows us to

very quickly solve optimization problems involving them. For example, for the model (4.6),

we can obtain algebraic expressions for the first- and second-order derivatives of the model:

∇m =

 β2
1
a
− β5

a
c2s

β3
1
a
− β5

a
cs2

−β2c+β3s+β4
a2

+ β5
cs



∇2m =

 2β5
a
c3s

β5
a

c2s2
−β2
a2
− β5

c2s

β5
a

c2s2
2β5

a
cs3

−β3
a2
− β5

cs2

−β2
a2
− β5

c2s
−β3
a2
− β5

cs2
2β2c+β3s+β4

a3

 .
Given specific values for the constants β and the domain Ω, these derivatives can be used to

quickly obtain minimizers of model. This is in contrast with the models in [26], which may

better capture differences in variability across the decision space, but are significantly more

computationally expensive to evaluate/minimize.

Write time models for multiple file sizes

We now consider models that could be employed in tuning for multiple different file sizes

simultaneously. Consequently we will now have nx = 4 independent variables, x = (c, s, a, f),

and there are 3nx = 81 possible terms in the set (4.3).

Experimentally, we ran tests using VPIC-IO and different file sizes (i.e., different core
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counts) on Hopper. The training set for each of the VPIC-IO experiments and their file sizes

are shown in Table 4.2. For VPIC-IO on 128 cores, the 216 configurations were the ones that

we have seen previously. We have chosen to decrease the size of the training set as the core

counts (and hence file sizes) increase because of the corresponding increase in computational

resources required. The way that these training sets are chosen is done in a systematic and

automatic manner: For example, for the 2048-core experiments for stripe count, out of the

10 values shown in Table 4.1, 3 were chosen to cover the space: [16, 32, 256]. We chose 4

values (in MB) for stripe size, [1, 4, 16, 64], and 5 values for the number of aggregators, [16,

32, 48, 64, 80]. This leads to 60 configurations used for training our model.

# of cores file size (GB) training set size

128 32 216

256 64 120

512 128 72

1024 256 60

2048 512 60

Table 4.2: Breakdown of training set for the parallel I/O model.

Following the approach in Section 4.2.1 on the entire training data set, we obtain a six-

term basis of {1, f, f
a
, a
c
, cs
a
, cf
a
}. However, inspection of this basis shows that any resulting

model is necessarily monotone in s: if the coefficient for cs
a

is positive, the write times are

increasing in s, otherwise the write times are non-increasing in s. Consequently, we made

the decision to include a seventh term. The term with a factor 1
s

that best solved (4.4) given

the other six terms was determined to be a
s
. Therefore, our seven-term model is of the form

m(x) = β1 + β2f + β3
f

a
+ β4

a

c
+ β5

a

s
+ β6

cs

a
+ β7

cf

a
, (4.8)

with a fit to the data yielding

β̂ = [−20.65, 0.11, 4.17, 27.13, 4.50, 0.0038, 0.01] .

We do not perform a detailed validation of this model here. Instead, in the next section

we will analyze in detail this model’s ability to perform space reduction and optimization for

a variety of I/O tuning tasks. Before proceeding to this study, we note that the model (4.8)

includes both actionable parameters (c, s, a) as well as an ancillary parameter (f) determined

from an input. In the context of model-based optimization, we could use this new model in
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a minimization for any file size for which the model is deemed reliable,

m∗(f) ≡ min
(c,s,a)∈Ω

m(c, s, a, f). (4.9)

Before proceeding, we note that both of the applications considered are weak-scaling ap-

plications (i.e., the number of processors used to run the application is directly proportional

to the file size). Therefore, there was no need to use the number of processors (p) as another

parameter in the model. If instead, the file size is fixed as we scale the number of processors,

p should also be an independent variable in the model.

4.3 Integration of Performance Models in Autotuning Framework

In this section, we explain how we use the empirical performance model described earlier

in our parallel I/O autotuning framework. Figure 4.4 shows the flow of the three steps

of the autotuning process: pruning, exploration, and refitting. In the pruning step, for a

given I/O kernel and problem size, the framework takes the sets of all possible values of

tunable parameters and uses the model to predict the I/O cost for all combinations. It

then sorts (by a derivative-based optimization or enumeration) all the configurations based

on the predicted write times and chooses the top k configurations with the least write

times. In the exploration step, the framework executes the I/O kernel with the selected

twenty configurations to determine their empirical (rather than predicted) performance.

The framework can then refit the model with the newly collected write time data included.

The selection of the best performing configurations from the model-predicted write times

and the number of iterations of refitting are controllable by the user of our framework. While

we used the top twenty configurations, which proved to be effective in our tests, if a user

prefers to select a different number of best-predicted configurations or wishes to refit the

model iteratively, the user can configure the framework with simple settings. After train-

ing the model for the search space pruning step, the process of choosing the top twenty

configurations only involves evaluating the model, a task whose computational expense is

made negligible (relative to evaluation of a configuration) for our simple choice of models.

Therefore, using such an approach will only require a single batch evaluation of a few con-

figurations on the platform, decreasing the optimization time significantly. In fact, there is

an added bonus to evaluating configurations with low predicted write times: in our experi-

ments, these top twenty configurations always resulted in low write times and, as opposed

to the previous approach, the system never spent excessive time associated with evaluating
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Figure 4.4: Design of our new autotuning system making use of performance
models.

especially poor configurations. When we used a GA for selecting the best-performing config-

uration [28], which executed populations of I/O kernel configurations numerous times, there

were a large number of inefficient configurations (especially in the early populations) that

led to high write times. As an example, for all the results of this work shown in Section 4.4,

our wall-time request for the sum of running the top twenty configurations was less than two

hours compared to the GA runs.

4.4 Experimental Results

In this section, we present the I/O write time performance results for the VPIC-IO and

VORPAL-IO kernels at different scales. We first compare the performance of our autotuning

framework using the empirical models with that of the previous framework using GAs. In the

subsequent sections we evaluate the effectiveness of the model-based framework on a variety
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of problem settings: for a configuration space relatively similar to that in the training space

(Section 4.4.2); for a configuration space much larger than the training space (Section 4.4.3);

for a different application (Section 4.4.4); and for a larger-scale run not covered by the

training space (Section 4.4.5).

4.4.1 Performance models vs. Genetic algorithms

To develop the model, we ran various training configurations. The number of configurations

for each scale was shown in Table 4.2. The total time to run all the configurations of VPIC-IO

at the specified number of processors was 16.5 hours; the same runs for VORPAL-IO required

28 hours. Note that this training cost is a one-time expense for the performance model. The

resulting model is used for predicting write times across different concurrencies. Once the

model is ready, the incremental time spent in the pruning, exploration, and refitting steps

is minimal. For example, the exploration step of the VPIC-IO kernel using 2048 cores took

31 minutes; that of VORPAL-IO kernel using the same number of cores took 89 minutes.

In contrast, our GA-based tuning process, which tested roughly 400 configurations for the

VPIC-IO and VORPAL-IO kernels (running at 2048 cores), ran for 12 hours.

To summarize, the GA-based approach has a high runtime overhead associated with every

kernel and scale level. The empirical-model-based approach has a one-time cost associated

with fitting a model for a specific kernel, but can thereafter be used to predict times for any

number of processors, with a fractional cost for refitting.

4.4.2 Testing on space similar to training

As expected, we find that tests conducted on a space relatively similar to that used in

the training phase leads to accurate prediction. As an example, for the 512-core VPIC-IO

experiment, we used the 72 configurations in Table 4.2 to train the model. In tuning the

VPIC-IO kernel at the same scale using our autotuning framework, we derived a larger space

of 384 configurations by increasing the number of values for each parameter (by increasing

the granularity of the allowed configuration space). We provided the extended search space

to our framework as input. The framework predicted the write time for all 384 configurations

and pruned the space by selecting the top twenty configurations. In the exploration step,

the framework executed the kernel and obtained the write time for selected configurations.

Figure 4.5 compares the predicted write times (labeled “Predicted”), measured write times

(labeled “Actual”), the default write time of the kernel without any tuning, and the least
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write time observed among the measured performance of the 72 training configurations

(labeled “Training Best”). We use the same labels for all the remaining plots. The top ten

configurations with the best performance are shown in Table 4.3. We also note that the

best configuration achieved 12X speedup over the default configuration.
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Figure 4.5: Comparison of the model-predicted, measured, and default-setting
write times of the top twenty configurations for VPIC-IO running on 512 cores.

Stripe count Stripe size Aggregators Pred. Time(s)

64 64 20 34.88

64 128 20 34.95

128 64 20 35.51

64 32 20 35.89

128 32 20 36.14

128 128 20 36.37

156 64 20 36.88

156 32 20 37.34

156 128 20 38.08

64 16 20 38.51

Table 4.3: Top ten predicted configurations of VPIC-IO on 512 cores. The best-
performing configuration is provided to the user as output of the autotuning
process.

43



4.4.3 Testing on a larger space

In this experiment, we evaluate the framework with a larger space of 640 configurations for

the VPIC-IO kernel running on 512 cores. Figure 4.6 shows the twenty selected configurations

with the least predicted write times for the original space and Table 4.4 shows the top ten

best-performing configurations on the new space. Comparing Tables 4.3 and 4.4, we see

that the autotuning framework found configurations that achieve an approximately 1.4X

speedup of write time performance by using the larger configuration/search space. The new

configurations use larger stripe counts, stripe sizes and numbers of aggregators. In this

512-core VPIC-IO experiment, the number of nodes used is equal to 22 (i.e., 512 divided

by 24 cores per node). It has been suggested by some studies that using one aggregator

per node achieves the best write times. We observe in Table 4.4 that all of the top-ten

configurations use more aggregators than the number of nodes. Further analysis is needed

for understanding the reasons for such behavior.
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Figure 4.6: Comparison of the model-predicted, measured, and default-setting
write times of the top twenty configurations for VPIC-IO on 512 cores.

We tested the autotuning framework to tune VPIC-IO kernel on different concurrencies.

Figure 4.7 and Table 4.5 show the performance comparison of the top twenty selected con-

figurations (from a space of 640 input configurations) and the best ten configurations after

the refitting process, respectively. Comparing the configurations in Tables 4.4 and 4.5, we

see that the tuned parameters values differ for I/O kernels running at different number of

processors. Among the configurations, the number of aggregators is again larger than the

number of nodes (85 for the 2048-core test) in many cases. Although the accuracy of pre-
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Stripe count Stripe size Aggregators Pred. Time(s)

128 128 32 25.08

128 64 32 25.24

156 64 32 25.35

156 128 32 25.41

128 32 32 27.00

156 32 32 27.01

128 64 28 27.36

128 128 28 27.49

156 64 28 27.82

156 128 28 28.19

Table 4.4: Top ten predicted configurations of VPIC-IO on 512 cores selected
by the autotuning framework.

dicted write times is lower than the 512-core experiment, the best configuration achieves

27X speedup over the default configuration.
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Figure 4.7: Comparison of the model-predicted, measured, and default-setting
write times of the top twenty configurations for VPIC-IO on 2048 cores.

4.4.4 Testing on a different application: VORPAL-IO

We now evaluate the model based on the VPIC-IO training configurations to tune a different

I/O kernel. We first ran the VORPAL-IO kernel with the same training configurations as

shown in Table 4.2. We observed minor differences in the coefficient values (i.e., the βi
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Stripe count Stripe size Aggregators Pred. Time(s)

156 128 128 85.94

128 128 128 89.59

156 64 128 90.15

128 64 128 93.84

128 128 64 96.06

156 128 64 96.08

156 64 64 97.73

128 64 64 97.82

156 32 128 99.00

156 128 256 100.95

Table 4.5: Best ten predicted configurations selected by the framework for VPIC-
IO on 2048 cores.

values) for the VORPAL-IO kernel, the model being

m(x) = β1 + β2f + β3
f

a
+ β4

a

c
+ β5

a

s
+ β6

cs

a
+ β7

cf

a
, (4.10)

with

β̂ = [27.47, 0.57, 3.42, 9.89, 11.94, 0.0013, −0.0054] .

Using the new coefficients and the same model form, we performed the same tests for

VORPAL-IO as we did for VPIC-IO in the previous subsection. Figures 4.8 and 4.9 compare

the predicted, measured, and default write times for the VORPAL-IO kernel running on 512

and 2048 cores, respectively. Table 4.6 shows the best ten predicted configurations selected

by the framework for the 512-core VORPAL-IO run. Note that the time predicted by the

model for this application is larger than the corresponding prediction time for the VPIC-IO

application, while the size of the generated files are comparable. The increased write time

is due to the complex write pattern of VORPAL-IO. Additionally, it is clear that the model

tends to choose larger stripe counts and stripe sizes for VORPAL-IO. Overall, the tuned

configurations achieve a speedup of 6X and 13X for VORPAL-IO running on 512 and 2048

cores, respectively.

4.4.5 Testing on larger scale

We now evaluate the model developed using the training configurations at lower number

scale (see Table 4.2) to tune the two I/O kernels running at 8192 cores. Note that we did

not use any configurations from the 8192-core runs in training the model. The 8192-core runs
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Figure 4.8: Comparison of the model-predicted, measured, and default-setting
write times of the top twenty configurations for VORPAL-IO on 512 cores.
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Figure 4.9: Comparison of the model-predicted, measured, and default-setting
write times of the top twenty configurations for VORPAL-IO on 2048 cores.
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Stripe count Stripe size Aggregators Pred. Time(s)

156 64 32 131.25

128 64 32 131.59

128 128 32 132.14

64 128 32 132.59

156 128 32 132.57

64 64 32 133.81

156 32 32 135.07

128 32 32 135.79

32 128 32 136.53

32 64 32 138.63

Table 4.6: Best ten predicted configurations for VORPAL-IO on 512 cores.

use 342 nodes of Hopper and produce roughly 2TB of data. We used a configuration/search

space of 1080 configurations for both kernels.

For each application, Figures 4.10 and 4.11 show the selected top twenty configurations

after the pruning and exploration steps. We observe significant performance improvement

for both applications. The speedups over the default I/O configurations on Hopper at a

concurrency of 8192 cores are 54X and 35X for the VPIC-IO and VORPAL-IO kernels,

respectively.

Table 4.8 summarizes the achieved speedups for both I/O kernels running at different

concurrencies. The table also shows the size of the data written to the file system and the

I/O bandwidth achieved. Overall, the tuned configurations achieve speedups ranging from

3.5X to 50X, which are consistent with exploring the search space using GAs. The time to

traverse the search space after training was reduced from 12 hours to a maximum of two

hours. In most cases, exploring the top twenty configurations took one hour, resulting in

significant improvements to overall parallel I/O performance.

4.4.6 Large-scale results

In this section, we first present the I/O performance results for the three I/O kernels at differ-

ent scales on the three platforms. The achieved I/O bandwidth and the overall improvement

compared to the default I/O settings are presented. We then analyze the interdependencies

of the I/O parameters by taking a closer look at these results.
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Figure 4.10: Comparison of the model-predicted, measured, and default-setting
write times of the top twenty configurations for VPIC-IO on 8192 cores.
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Figure 4.11: Comparison of the model-predicted, measured, and default-setting
write times of the top twenty configurations for VORPAL-IO on 8192 cores.
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# cores I/O Kernel
File Size

(GB)
Actual B.W.

(MB/s)
Default B.W.

(MB/s)
Speedup

128
VPIC 32 2074.65 471.75 4.40

VORPAL 35.156 1501.87 427.6 3.51

512
VPIC 128 5185.4 408.6 12.69

VORPAL 140.625 3035.99 453.89 6.69

1024
VPIC 256 6181.75 336.6 18.37

VORPAL 281.25 2707.63 429.56 6.30

2048
VPIC 512 11422.28 412.19 27.71

VORPAL 562.5 4917.61 378.35 13.00

8192
VPIC 2048 18857.3 345.27 54.62

VORPAL 2250 7442.58 207.25 35.91

Table 4.7: Highest bandwidth achieved for the two applications by selecting
the best-performing configuration suggested by our autotuning framework on
Hopper.

4.4.7 Overall improvement

The best I/O bandwidth results we have obtained for each of the applications on different

platforms are summarized below. For each experiment, this is the best performing configu-

ration among the top 20 configurations predicted by the model. Figure 4.16 shows the I/O

bandwidth grouped by the number of cores from 4K to 16K. For all these experiments we

have used the training phase experiments without a refitting phase. As can be observed, the

I/O bandwidths of the kernels are in the range of 5-30 GB/s, which is efficient performance

for writing to one shared file on these platforms at their respective scales. We also show the

default I/O performance of the applications for their respective scales at 4096 and 8192 on

Hopper platform. Compared to the default performance, our tuned configurations perform

6X-94X better. We expect the default performance and our speedup to be at the same level

for the other platforms. Note that for the Stampede platform, we have scaled our runs only

up to 4K cores due to queue policies in running large scale tests.

Table 4.8 summarizes the achieved I/O bandwidths for the three I/O kernels running at

different concurrencies on the three platforms. The table also shows the size of the data

written to the file system. The time to traverse the search space after training was at most

three hours. In most cases, exploring the top twenty configurations took less than one hour,

resulting in significant improvements to overall parallel I/O performance.
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#
cores

I/O Kernel
File Size

(GB)
Edison
(GB/s)

Hopper
(GB/s)

Stampede
(GB/s)

Hopper
Default
(GB/s)

512
VPIC 128 8.19 3.00 9.30 0.39

VORPAL 140.625 3.24 2.67 7.76 0.44

GCRM 166.4 9.78 5.27 11.62 -

1K
VPIC 256 14.24 5.09 14.71 0.32

VORPAL 281.25 9.91 2.34 9.10 0.41

GCRM 166.4 14.63 6.70 13.28 -

2K
VPIC 512 19.72 8.18 14.75 0.40

VORPAL 562.5 17.81 4.63 12.67 0.36

GCRM 665.6 23.96 6.82 21.05 0.24

4K
VPIC 1024 20.57 12.57 29.20 0.34

VORPAL 1197 10.26 4.50 15.35 0.31

GCRM 2600 16.64 10.59 26.99 0.41

8K
VPIC 2048 24.32 18.93 - 0.20

VORPAL 2250 12.77 7.26 - 0.33

GCRM 10400 28.60 22.09 - -

16K
VPIC 512 23.21 21.96 - -

VORPAL 4394 15.20 9.45 - -

GCRM 10400 24.58 19.73 - -

Table 4.8: Highest bandwidth achieved for the three applications by selecting
the best-performing configuration suggested by our proposed framework.

4.4.8 Analysis of the interdependencies

In this subsection we analyze some of the interdependencies of the parallel I/O tunable

parameters by looking at the results of the experiments we conducted.

We first analyze the impact of individual tuning parameters (stripe count, number of

aggregators, and stripe size) on performance, and then discuss the combined impact of

stripe count and aggregators, stripe size and aggregators.

In order to see the effect of Lustre’s stripe count parameter on I/O performance of an

application we look at the three different scales for which we ran VPIC-IO on Stampede.

Figure 4.17 shows the box plots for these experiments, where each of the plots contain all

the training set configurations for that scale. We can see that as the stripe count increases

the I/O performance improves; especially at higher scales of VPIC-IO application since the

amount of data to be written is large. This behavior is exactly reflected in the model since

it tries to use all available OSTs for VPIC-IO.

Figure 4.12 shows the variation of the number of aggregators on VPIC-IO’s training set

on Stampede. Similar to Lustre’s stripe count, increasing the number of aggregators helps
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Figure 4.12: Effect of MPI-IO aggregators on training set of VPIC-IO on Stam-
pede

in improving the I/O performance for VPIC-IO. Therefore, the model has taken this into

account and tries to maximize the number of aggregators for the larger-scale testing sets.

Figure 4.13 shows the same box plots for the stripe size of VPIC-IO on Stampede. As

the plot shows, Lustre’s stripe size does not have the same behavior as the stripe count and

each of the values chosen in the training set for the stripe size has shown both good and bad

I/O performance depending on the values of other I/O parameters. As we show next, the

model’s behavior for this value is interesting.

Now that the variations and the performance of individual parameters are observed, we

analyze the top twenty configurations predicted by the model for a larger-scale VPIC-IO

experiment on Stampede. Table 4.9 contains the configurations proposed by the model as

the top performing configurations for VPIC-IO on 4K cores of Stampede, which leads to an

output file of size 1024 GB. As noted before, the number of aggregators is chosen to be the

maximum of 1024 and the stripe counts are varying from 156 (maximum in the testing set)

to 64. Since there is no strong correlation in stripe size and I/O performance in the training

sets, all the stripe sizes in the testing sets are chosen by the model to be tested. Looking at

this table, we can see that for experiment (exp id 6), the highest I/O bandwidth of approx

30 GB/s is achieved with a stripe size of 64MB.

Another interesting behavior we found in the results of the training sets experiments

is a relationship between the number of aggregators and the stripe count. We analyze

this relationship using the “ratio of the number of aggregators to the stripe count”. This
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Figure 4.13: Effect of Lustre stripe size on training set of VPIC-IO on Stampede

relationship makes sense from the parallel I/O perspective as the number of aggregators each

OST handles has an impact on concurrency of Lustre and the communication between an

aggregator and an OST.

Figure 4.18 shows the impact of the ratio of aggregators to the stripe count for various

I/O kernels running on Hopper at a concurrency of 2K. We can observe that for both VPIC-

IO and VORPAL-IO, the impact of the ratio is similar, while GCRM-IO shows a different

behavior. It is not surprising to see that the higher ends of the spectrum are not performing

well for all kernels as they are related to those experiments with lower stripe count. There

is a peak in the middle of this plot where we can see the best I/O performance for VPIC-

IO and VORPAL-IO. This is where both stripe count and aggregators are large enough to

get the most parallelism, but not too large so that the overhead causes the performance to

drop. This is different for GCRM because stripe count should be large but the number of

aggregators should not be that large.

Analyzing the top twenty results predicted by our model once we ran them on the platforms

provides insight as well. Here we show some of the insights that we think are important for

the scientific community to achieve efficient parallel I/O performance.

The first insight we gained is the role of Lustre’s stripe size. Figure 4.14 compares the

performance of the top twenty configurations proposed by the model for VPIC-IO on 4K

cores of Edison. The stripe count for all these configurations are fixed to 96 thus it is easy

to compare the impact of stripe size in one plot. The three bars in different colors show the

numbers for three different sets of aggregators chosen by the model and the X-axis shows
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exp id c s a f (GB) time (s)
bandwidth

(GB/s)

0 156 1 1024 1024 58.87 17.39

1 156 2 1024 1024 49.84 20.54

2 156 4 1024 1024 47.06 21.75

3 156 8 1024 1024 42.11 24.31

4 156 16 1024 1024 38.99 26.25

5 156 32 1024 1024 40.28 25.41

6 156 64 1024 1024 35.06 29.20

7 156 128 1024 1024 44.96 22.77

8 128 1 1024 1024 61.33 16.69

9 128 2 1024 1024 65.87 15.54

10 128 4 1024 1024 58.94 17.37

11 128 8 1024 1024 54.72 18.71

12 128 16 1024 1024 68.53 14.94

13 128 32 1024 1024 61.76 16.57

14 128 64 1024 1024 49.47 20.69

15 128 128 1024 1024 57.31 17.86

16 64 1 1024 1024 104.13 9.83

17 64 2 1024 1024 95.14 10.76

18 64 4 1024 1024 129.01 7.93

19 64 8 1024 1024 78.20 13.09

Table 4.9: The top twenty configurations predicted by our model and their
respective I/O bandwidth for VPIC-IO on 4K cores of Stampede generating a 1
TB file size

different values for stripe size in MB. We can observe the difference between poor performing

and best performing configurations is almost two-fold. This behavior is similar to what we

observed in Table 4.9, which is the same application at the same concurrency on Stampede;

However, on Edison, the best I/O performance was gained when stripe size is equal to 16

while on Stampede that is 64. This shows that depending on the platform, the values of

these parameters are different. This also emphasizes that the selection of stripe size has an

impact on I/O performance contrary to a recent study [29] that downplays this impact.

Another insight we gained from the results is that unlike Lustre’s stripe count, where

increasing the number of OSTs gives better performance, the number of aggregators have

a sweet spot depending on the I/O pattern of an application. Figure 4.15 demonstrates

this impact for VORPAL application on 16K cores of Edison. 14 configurations out of the

top twenty proposed by our model for this experiment have stripe count equal to 96 and

therefore we can compare the effect of aggregators for each stripe size value. Based on the

plot, one can conclude that having too many aggregators does not provide good performance
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Figure 4.14: Effect of Lustre stripe size on performance of the Top 20 VPIC-IO
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(most likely because of high overhead). On the other hand, having too few aggregators is

suboptimal because nodes are not able to saturate the I/O bandwidth. We can conclude

from the plot that the value of stripe size has a role in choosing the number of aggregators

as well proving the existence of the interdependency among various I/O parameters.

In summary, we list the following findings from our analysis of I/O performance:

• As we increase the size of a file, increasing Lustre’s stripe count, irrespective of the

platform, causes more parallelism and therefore results in an improvement in the I/O

bandwidth.

• Lustre’s stripe size is an important factor in tuning I/O performance. It can have a

dramatic impact on I/O performance and its values depends on the I/O operations

and the other I/O parameters (e.g. aggregators) and the HPC platform.

• The number of MPI-IO aggregators should be specified carefully and not blindly min-

imized or maximized. This parameter also depends on the I/O operations, other I/O

parameters, the platform, and the amount of communication happening in the appli-

cation, i.e., the I/O pattern of the application.

4.5 I/O Interference

As described earlier, one of our initial goals in this work was to characterize interference

(“noise”). This characterization would allow us to take noise into account as a source of

error in the model and/or in posing the tuning objectives (e.g., maximizing ideal performance

or worst-case performance). The problem of interference is well-known in high-performance

storage systems, mostly due to the storage system being a shared resource (see, e.g., [30]).

Depending on the activity on the network and storage system, one can observe different I/O

performance for identical I/O configurations.

In order to estimate this noise accurately, one approach is to run experiments multiple

times under the system states one wishes to capture (e.g., on different days of a week

or in the presence of different rates of utilization of the I/O subsystem). However, this

approach may be difficult to implement (e.g., because of the challenges associated with

producing/controlling exact system states) and impractical to execute (e.g., because of the

large number of runs that would need to be conducted to obtain data under the desired

states).
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Figure 4.16: Summary of the best I/O performance obtained in the Top-20
configurations for each I/O benchmark running on (a) 4K cores, (b) 8K cores,
(c) 16K cores – Note that (a) and (b) are log-scale plots.

An alternative approach is to monitor the amounts of data read from and written to each

OST while a configuration is being evaluated. These read/write amounts could be captured

along with the experimental data (OSTs involved and time recorded from the evaluation),

and then used as a proxy for the uncertainty associated with the time. For example, when

the OSTs associated with a run have external read/write amounts above a threshold, this

run could be flagged as a potentially “noisy” experiment.

As a first step towards investigating the potential of the latter approach, we attempted to

use data gathered through the Lustre Monitoring Toolkit (LMT) [31], which is stored on a

daily basis on Hopper. The original version of LMT keeps track of the bytes read/written

by sampling this information on each OST every 5 seconds. We extracted the total amount

of bytes read/written to all of the OSTs on the file-system during program execution (corre-
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sponding to aggregate I/O). Unfortunately, no meaningful correlation was observed between

the write times across multiple runs and the the aggregate I/O activity. We then attempted

to examine the LMT data from only those OSTs that our application was using; but we

unable to find a correlation between I/O times and aggregate activity. Richer network and

storage system monitoring data will become available in the coming years; we expect signifi-

cant opportunities to leverage such information to resolve the fidelity of both the underlying

empirical data and the predictions from the models in our framework.

4.6 Conclusions

This chapter has presented an important development in our work on autotuning parallel

I/O. We have dramatically reduced the run time for our framework from 12 hours to 2 hours

by incorporating an empirical performance model. The model accounts for major parameters

pertaining to parallel I/O operations on a production supercomputing platform. We fit the

model with a relatively small training set of application runs. The model was then used

to predict configurations with high levels of I/O performance on two applications and at

varying levels of concurrency.
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(a) 512 cores (b) 1K cores

(c) 2K cores

Figure 4.17: Effect of Lustre stripe count at three different scales of VPIC-IO
on Stampede (a) 512 cores, (b) 1K cores, (c) 2K cores
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(a) VPIC-IO (b) VORPAL-IO

(c) GCRM-IO

Figure 4.18: Ratio of MPI-IO’s aggregators and Lustre’s stripe count on three
different applications on 2K cores of Hopper (a) VPIC-IO, (b) VORPAL-IO, (c)
GCRM-IO
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CHAPTER 5

A MULTI-LEVEL APPROACH FOR
UNDERSTANDING I/O ACTIVITY IN HPC
APPLICATIONS

In a hierarchical I/O stack, the layers provide bridges between the data representations of

adjacent levels and offer essential abstractions to users. The layers help hide complex im-

plementation details and employ optimization techniques designed to improve performance.

Unfortunately, since each layer is normally treated as a black box, optimizations are sel-

dom coordinated across layers and the source of performance bottlenecks can be extremely

difficult to determine. A multi-level I/O tracing and trace data analysis tool that presents

a view of the function call flow through the entire I/O stack can expose cause and effect

relationships across layers and make the origin of performance bottlenecks more apparent.

To the best of our knowledge, while there are several tracing facilities for the MPI-IO

and POSIX I/O levels, none of the currently available tracing tools work with higher-level

I/O libraries such as HDF5. We believe that tracing I/O functions at higher levels in the

stack is important because events closer to the application better reflect inherent application

characteristics and are more intuitive to analyze. In addition, insights into all levels of the

I/O stack are necessary in order to get a full picture of interactions between layers and to

identify sources of performance bottlenecks.

In this chapter, we argue that a multi-level I/O tracing and trace data analysis tool can

help end users understand the behavior of their application and I/O subsystem, and can

provide insights into the source of I/O performance bottlenecks. We make the following

contributions:

• We implement a multi-level I/O tracing framework, called Recorder, that can capture

I/O function calls at multiple levels of the I/O stack, including HDF5, MPI-IO, and

POSIX I/O. Recorder requires no modification or recompilation of the application and

users can control what levels are traced.

• We demonstrate the effectiveness of Recorder as an aid to understanding the I/O

activity of applications and identifying a performance bottleneck in HDF5’s current

implementation of metadata read.

The remainder of this chapter is organized as follows: We describe our framework in
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Feature Recorder
Parallel file system compatibility Yes
Ease of installation and use 1 (V. Easy)
Anonymization 3 (Medium)
Event Types System calls and Library calls
Control of trace granularity Moderate
Replayable trace generation Planned
Trace replay fidelity N/A
Reveals dependencies No
Intrusive vs. Passive 1 (V. Passive)
Analysis tools Planned
Trace data format Binary and Human Readable
Accounts for time skew and drift No
Elapsed time overhead Under investigation

Table 5.1: Features of Recorder Framework

Section 5.1. In Section 5.2, we evaluate the effectiveness of our framework. Finally, we

summarize our current efforts in Section 5.3, discuss open issues, and outline future work.

5.1 Framework

The features of Recorder based on the taxonomy proposed in [32] are summarized in Table

5.1 and briefly described here. Recorder is designed to work with parallel file systems and

does not require any modifications to application or I/O library source code. It provides a

medium level of anonymization to protect sensitive data by, for example, recording only the

size of a message and not its value. Recorder can capture I/O functions at the HDF5, MPI

I/O, and POSIX I/O layers, and users can specify the layers to be traced when Recorder is

compiled, providing some control over trace granularity. Recorder provides a passive method

of tracing events through the use of dynamic library preloading. Development of analysis

tools is future work, while direct inspection of the trace files is possible now as both binary

and human readable formats are supported. Initial experiments showed an acceptable level

of elapsed time overhead, but attempts to measure and compare runtimes with and without

tracing yielded noisy results. We are currently exploring better ways to collect time overhead

measurements.

We chose to build Recorder as a shared library so that it does not require modification

or recompilation of the application. Recorder uses function interpositioning to prioritize

itself over standard functions, as shown in Figure 5.1. Once Recorder is specified as the
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HDF5 Library (Unmodified)

Application: H5Fcreate("sample_dataset.h5", 
H5F_ACC_TRUNC, H5P_DEFAULT, plist_id )

Recorder
1. Obtain the address of H5Fcreate using dlsym()
2. Record timestamp, function name and it's arguments.
3. Call real_H5Fcreate(name, flags, create_id, 
new_access_id)

High-Level I/O Library: hid_t H5Fcreate(const char 
*name, unsigned flags, hid_t create_id, hid_t 

access_id )

MPI I/O Library: int MPI_File_open(MPI_Comm 
comm, char *filename, int amode, MPI_Info 

info, MPI_File *fh)
Recorder

...

POSIX Library: int open(const char *pathname, int 
flags, mode_t mode)

Recorder
...

MPI-IO Library (Unmodified)

C POSIX Library (Unmodified)

Figure 5.1: Dynamic instrumentation of the I/O stack by Recorder

preloading library, it intercepts HDF5 function calls issued by the application and reroutes

them to the tracing implementation where the timestamp, function name, and function

parameters are recorded. The original HDF5 function is called after this recording process.

The mechanism is the same for the MPI and POSIX layers. Figures 5.3, 5.4, and 5.5 show

sample trace output. This tracing approach is transparent to the user because alterations

are made without change to application or library source code.

5.2 Evaluation

We evaluated the effectiveness of our tracing framework using two parallel I/O benchmarks

running on Stampede [33], a Dell PowerEdge C8220 cluster at the Texas Advanced Comput-

ing Center. Stampede has 6,400 nodes, each with 32 GB memory and 16 cores. The peak

I/O bandwidth is 159 GB/s.

5.2.1 VPIC-IO Benchmark

In our first case study, we used I/O traces from Recorder to investigate how I/O parameter

settings change the underlying behavior of an HPC I/O benchmark in runs with default and

tuned parameters.

Table 5.2 summarizes the parameters, their default and tuned values, and the measured
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Description Default Parameters Tuned Parameters
Lustre stripe count 2 48
Lustre stripe size 1 MB 2 MB
Collective buffering nodes chosen by ROMIO 16
Collective buffer size 1 MB 2 MB
HDF5 alignment none (0,4KB)
I/O bandwidth 394 MB/s 2329 MB/s

Table 5.2: VPIC-IO parameters and I/O bandwidth

I/O bandwidth for VPIC-IO experiments run on 128 cores of Stampede.

Since I/O trace size can be a metric of I/O activity, we first compared the sizes of the

per-process I/O trace files for the default and tuned VPIC-IO experiments, as shown in

Figure 5.2. In the default case, there are two spikes in the trace file size, both at about 1.7

MB. In the tuned case, we see eight smaller peaks at around 280 KB.

After noting the patterns in the trace file sizes, we looked at the trace files in more detail

to understand the source of the observed patterns. Figures 5.3, 5.4, and 5.5 show lines from

the trace files produced by Recorder during runs of VPIC-IO. Comparing figures 5.3 and

5.4, corresponding to ranks 0 and 1 using default I/O parameters, the trace for rank 0 shows

POSIX write operations to the file sample dataset.h5, while the trace for rank 1 does not.

This difference may come as a surprise to an application developer with little experience in

parallel I/O, as the HDF5 calls are identical.

Recognizing that the actual POSIX write operations were happening on the processors

with the larger trace files, we next sought to understand how the number of spikes was

related to the I/O parameter settings. One of the tuned parameters was the number of

collective buffering nodes, also referred to as aggregators. In the tuned version, an MPI-IO

hint was used to set the number of aggregators to 16. However, the MPI-IO library will

not assign more than one aggregator per node. Since Stampede has 16 cores per node, a

128-process run resides on 8 nodes, and ROMIO uses no more than eight aggregators. This

is why we see 8 spikes in the trace file size plot for the tuned run instead of 16. The default

case did not explicitly specify the number of aggregators and ROMIO chose two. Without

the trace file output, these patterns of I/O behavior are difficult to anticipate from just the

application source and specified parameter settings.

Looking more closely at figures 5.3 and 5.5 (and even more apparent in the full trace files),

we see the POSIX write operations never transfer more than 1 MB of data in the default

case while in the tuned case each operation can transfer up to 2 MBs. For the collective

buffer size, the observed behavior agrees with the expected behavior based on the parameter
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Figure 5.2: Trace file sizes for VPIC-IO process ranks

settings specified.

Although not shown in detail, the Recorder trace output can also be used to investigate the

effects of the HDF5 alignment parameters on the I/O patterns throughout the stack. Since

the traces do not go lower than the POSIX I/O level, they do not give direct insights into the

behavior of the Lustre file system with different stripe count and stripe size parameters. In

general, the traces do provide a valuable resource for understanding how an identical HDF5

call in the application can be instantiated very differently at lower levels of the I/O stack

depending on process rank and the parameter settings chosen.

5.2.2 Simple HDF5 Benchmark

A simple HDF5 benchmark was developed for the purpose of testing the Recorder framework.

In the first phase, the benchmark creates an HDF5 file on the parallel file system and writes

five large global attributes to the file. Each rank then writes 1 GB of data to a rank-based

offset in a single HDF5 dataset, and the file is closed. In the second phase, the file is re-

65



1378057484.0000 H5Dwrite(83886080,50331690,67108866,67108868,167772178)
1378057484.00000 MPI_File_set_view(fh=30077080, disp=2184, 
etype=MPI_BYTE, filetype=, datarep=native, info=469762048)
1378057484.00000 MPI_File_write_at_all(fh=30077080, offset=0, buf=*buf, 
count=33554432, datatype=MPI_BYTE, status=-680384912)
1378057484.00000 write(uverbs0, void *buf, 48)
1378057484.00000 write(sample_dataset.h5, void *buf, 1046392)
1378057484.00000 write(uverbs0, void *buf, 48)
1378057484.00000 write(sample_dataset.h5, void *buf, 1048576)

...

Figure 5.3: VPIC-IO write operations, rank 0, default parameters

1378057484.0000 H5Dwrite(83886080,50331690,67108866,67108868,167772178)
1378057484.00000 MPI_File_set_view(fh=15792648, disp=2184, 
etype=MPI_BYTE, filetype=, datarep=native, info=469762048) 
1378057484.00000 MPI_File_write_at_all(fh=15792648, offset=0, buf=*buf, 
count=33554432, datatype=MPI_BYTE, status=-1274399632) 
1378057484.00000 write(/dev/infiniband/uverbs0, void *buf, 88) 
1378057484.00000 write(/dev/infiniband/uverbs0, void *buf, 120)
1378057484.00000 write(/dev/infiniband/uverbs0, void *buf, 120) 

...

Figure 5.4: VPIC-IO write operations, rank 1, default parameters

opened and each rank reads the global attributes. Each rank then reads its portion of the

dataset, compares the values read to those written in the first phase, and closes the file.

I/O performance characterization tools such as Darshan can provide helpful information

about the MPI-IO calls issued when an application executes. Table 5.3 shows the values

of six important Darshan MPI-IO counters for an experimental run of the simple HDF5

benchmark on eight cores of Stampede. Since the experiment was made with a collective

version of the benchmark, the 16 collective opens are expected–one open per rank for each

phase of the benchmark. The 8 collective writes and 8 collective reads are also expected,

and correspond to the dataset writes and reads by the eight processes.

The 72 independent reads and 7 independent writes are more difficult to understand;

they do not correlate with the benchmark’s writes and reads of the global attributes. I/O

characterization tools do not provide the level of detail needed to investigate further, but the

traces from Recorder did allow us to identify the HDF5 calls that resulted in these puzzling

independent reads and writes. We will focus our discussion on the reads.

As can be seen in figure 5.6, an HDF5 dataset open triggered each process to perform
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1378057875.0000 H5Dwrite(83886080,50331690,67108866,67108868,167772178)
1378057875.00000 MPI_File_set_view(fh=40052760, disp=262144, 
etype=MPI_BYTE, filetype=, datarep=native, info=-603979774)
1378057875.00000 write(uverbs0, void *buf, 48)
1378057875.00000 MPI_File_write_at_all(fh=40052760, offset=0, buf=*buf, 
count=33554432, datatype=MPI_BYTE, status=-172795264)
1378057875.00000 write(uverbs0, void *buf, 48)

...
1378057875.00000 write(sample_dataset.h5, void *buf, 1835008)
1378057875.00000 write(uverbs0, void *buf, 48)

...
1378057875.00000 write(sample_dataset.h5, void *buf, 2097152)

...

Figure 5.5: VPIC-IO write operations, rank 0, tuned parameters

Darshan counter Value
Number of independent opens 0
Number of independent reads 72
Number of independent writes 7

Number of collective opens 16
Number of collective reads 8
Number of collective writes 8

Table 5.3: Darshan MPI-IO counters for simple HDF5 benchmark on eight cores

multiple small independent read operations that were not expected. Looking at other parts

of the trace files, we became aware of a performance bottleneck in the current HDF5 library

that was confirmed by The HDF Group.

The majority of the 72 independent read operations were due to HDF5 metadata opera-

tions, such as reading the file’s superblock, getting the root group’s object header, B-tree,

and local heap, retrieving information for the dataset, and so on. While accessing this

metadata is necessary, the current implementation introduces a performance bottleneck as

the number of ranks increases because all processes in the application perform the same

metadata read operations when they are operating collectively. The HDF Group is working

on a feature called collective metadata reads which allows an application to eliminate this

duplication of operations by indicating that the metadata reads can be performed by one

process and the results shared with other processes.

This case study demonstrates the value of Recorder traces to end users, as they provide the

details needed to understand how a simple call at the HDF5 level may result in numerous

I/O accesses at lower levels of the stack. Without this understanding, especially when
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1379881178.00000 H5Dopen2(16777216,DS1,0)
1379881178.00000 MPI_File_read_at(fh=34945416, offset=680, buf=*buf, 
count=512, datatype=MPI_BYTE, status=1330219344) 
1379881178.00000 read(20, buf, 512) 
1379881178.00000 MPI_File_read_at(fh=34945416, offset=136, buf=*buf, 
count=544, datatype=MPI_BYTE, status=1330219856) 
1379881178.00000 read(20, buf, 544) 
1379881178.00000 MPI_File_read_at(fh=34945416, offset=42416, buf=*buf, 
count=328, datatype=MPI_BYTE, status=1330219232) 
1379881178.00000 read(20, buf, 328) 
1379881178.00000 MPI_File_read_at(fh=34945416, offset=42144, buf=*buf, 
count=512, datatype=MPI_BYTE, status=1330221072) 
1379881178.00000 read(20, buf, 512) 
1379881178.00000 H5Dget_space(83886080)
1379881178.00000 H5Sget_simple_extent_dims(67108866,1330223856,0)

Figure 5.6: Independent MPI-IO read operations issued by all processes to read
HDF5 metadata

performance is not as expected, it is almost impossible to identify the source of problems.

Armed with this understanding, application developers can see the importance of tuning

I/O across all the levels of the stack.

5.3 Conclusions

This chapter presents our first steps toward a full-featured multi-level I/O tracing framework

that we believe will help end users and library developers diagnose bottlenecks and optimize

performance throughout the parallel I/O stack. Recorder is built as a dynamic library so

it does not require any modification or recompilation of the application. Early case studies

have shown it to be very useful in performing in-depth analyses of I/O activity at the HDF5,

MPI-IO, and POSIX levels of the parallel I/O stack. In one case, output from Recorder made

a bottleneck in the current HDF5 library’s implementation of metadata reads apparent to

an end user who was previously unaware of the implementation details.
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CHAPTER 6

AUTOMATIC GENERATION OF I/O KERNELS
FOR HPC APPLICATIONS

Efforts conducted towards increasing the I/O performance of current HPC platforms with

their large amount of parallelism can be categorized into different categories: algorithms such

as data sieving and collective I/O [5]; manual optimizations of these systems based on I/O

expertise [34]; and autotuning and systematically searching for good I/O configurations [28].

All of these techniques can be helped by I/O profiling and tracing.

I/O kernels are typically built manually, which is a time-consuming and error-prone pro-

cess. An alternative is to record a trace of the I/O operations and “replay” the trace.

Existing systems capture traces mostly at the level of POSIX I/O and MPI-IO calls [35–37].

Ganger [38] explains the limitations of this approach.

In the previous chapeter, we implemented a multi-level I/O tracing framework, called

Recorder [39]. It captures parallel I/O function calls at multiple levels of the parallel I/O

stack, including HDF5, MPI-IO, and POSIX I/O. Having such tracing framework enabled

us to compare and contrast the abilities to replay and/or generate I/O kernels from the

traces at every level. We have concluded that tracing the HDF5 library eases significantly

the process of creating an standalone parallel I/O kernel. Every object in HDF5 such as files,

dataspaces, datasets, attributes, groups, etc. have a unique integer identifier. Therefore, it

is easy to keep track of them in the generated code. Additionally, most of the HDF5 I/O

operations are called collectively. This eases the process of merging traces across the ranks.

Since the HDF5 calls determine the calls at the lower levels, capturing only these calls causes

no loss of information.

This chapter is focused on automating the creation of an I/O skeleton code: A code that

generates the same (HDF5) I/O calls as the original program, while shedding details of the

computation. Furthermore, we wish to do so without requiring access to the program’s

source. This, because, in many situations, we can run the program, but have access only to

binaries.

We start with trace files generated by an instrumented HDF5 library at each process; the

traces are merged into one file; the order of the I/O operations is preserved by merging these

traces correctly. The skeleton program is generated from this merged trace file.
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A naive application of this algorithm would yield a kernel program of length proportional

to the total length of the trace files. However, simple pattern matching based compression

techniques can be used to reduce the size of the kernel code: It is often possible to generate

a kernel code of length proportional to the number of HDF5 calls in the original code.

The remainder of this chapter is organized as follows: We discuss related work in the

next section and discuss our framework in Section 6.1. Section 6.2 presents the results of

experiments and Section 6.3 provides conclusions and discussions future work.

6.1 Framework

Figure 6.1: Flow of the Framework

This section introduces our framework for automatically generating I/O kernels from HPC

applications. Figure 6.1 shows the overall flow of this framework. An HPC application is

first linked to our recorder library. The recorder library stores traces for all the I/O calls

into a separate trace file for each MPI rank. Therefore, after running the application, n

trace files are generated, where n is the number of MPI processes. These n trace files are

fed into another tool of our framework in order to be merged together. Once these traces

are merged into a single trace file, the code generator tool of our application generates an

SPMD MPI-based application for it. Each of these three steps are explained in detail in the

following subsections.

6.1.1 I/O Tracing: Recorder

Figure 6.2 shows the process of intercepting an HDF5 function call (H5Fcreate(), used

for creating an HDF5 file). Once Recorder is used, it intercepts HDF5 function calls issued

by the application and reroutes them to the tracing implementation where the timestamp,
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function name, function parameters, return values, and the duration of the call are recorded.

The original HDF5 function is called after this recording process. This tracing approach

is transparent to the user because alterations are made without change to application or

library source code. Recorder can be built as a shared library and linked to the application

at runtime so that it does not require modification or recompilation of the application. It

also can be built statically using -wrap functionality.

HDF5 Library (Unmodified)

Application
H5Fcreate("sample_dataset.h5", 

H5F_ACC_TRUNC, H5P_DEFAULT, plist_id ) Recorder
1. Record timestamp, function name and it's arguments.
2. Call real_H5Fcreate(name, flags, create_id, 
new_access_id)Rest of the application

.

.

.

Figure 6.2: Method of intercepting HDF5 calls by the Recorder

6.1.2 Trace Merging

The output of the recorder is n log files, where n is the number of MPI processes. Before

executing the merging process, these files get coded into a uniform format that is easier

to process. The merger takes as input these log files, and outputs one file containing the

merged traces. We expect that many HDF5 calls are collective, therefore, the merge process

attempts to identify tuples of records, one from each file, that have the same “signature”

(we discuss how to match signature later). We assume that matching records will appear

at roughly the same location in the different files (i.e., that the I/O operations executed by

different processes are similar). Therefore we keep, within each trace file, a fixed-size window

of records under consideration for merge. Note that incomplete matching affects the size of

the merged trace, but not its correctness.

We keep track of our position in each file ti using pointers pi. If all the records we are

currently pointing at have the same signature, we merge them. If not, we pick from the

current tuple of records the record that has the farthest matches in the other files and move

it to the merged file. The intuition behind this heuristic is that we would like to merge

traces in a greedy manner, merging the largest number of records at each time. Hence, if a

71



record has a match in another file that is close by, we prefer to keep it until we can merge

it with its matches. This case is illustrated in Figure 6.3.

Figure 6.3: Illustrating three consecutive merging operations

In order to quickly find the matches of a given record, a hash table keeps track of all

the records from all the files within a windows of m records consecutive records. During

our experiment we fixed this value at a constant as 200. In order to understand our data

structure, we define the following terms:

• Let n be the number of MPI processes.

• Let e be a record in a trace file. It has the function name, arguments and other

recorded information.

• The signature of a record e is defined by a function k(e). Signatures are chosen so that

records have the same signature if and only if they match and can be merged. Matching

records have the same function name and same values for significant parameters. The

set of significant parameters is different from function to function and are tagged at

a trace preprocessing step. An example of a significant argument is the MPI commu-

nicator since the difference in the communicator clearly indicates the two traces come

from different MPI calls. An example of non-significant argument is pointer addresses

since they are always different from function to function.

• Let δ(e) be the smallest distance to a matching record of e in another file.

The hash table uses a hash of k(e) to store records. For each value of k(e), we maintain

a linked list of records with that signature within the window for each MPI process. The
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records in the linked list are ordered in an order consistent with their order in the trace files.

We also store, with each record, the value of δ which represents the current value of δ(e)

within the window. Assuming adding, removing or searching for an entry from the hash

table is constant time, we could keep update the δ when an entry is added or removed from

the table in constant time. Similarly whenever we need δ(e), we query δ in the hash table

of k(e), and thus it is constant time.

The algorithm considers the current records on each file and decides to merge only if they

are all matching each other. Otherwise, we pick the record e with the largest value δ(e) and

move it to the merged file.

Algorithm 1 shows the high level pseudocode of the merging algorithm. First, we initialize

all the pointers pis to zero referring to the first entry of each log file. Then, we insert the

first m entries of each processors into our hash table h. While we did not reach the end

of all the trace files, we keep repeating the merging process which executes the two cases

previously explained.

Input: Trace files to be merged
Output: File containing the merged trace (OF)
Variables:
pi= current position in the ith trace file
m = maximum depth
n = total number of trace files
ti = ith trace file, 0<i≤n
HT = the hashtable data structure
Pseudo Code:
Initialize all pi s to zero.
Insert the first m entries of each ti to h.
while ∃pi! = ti.size() do

if all events pointed to by pis are matched then
MergeEvents(epi for any i).

else
∀pi, δi = GetDistance(epi)
δmax = max(δi)
MergeEvents(epj for j corresponding to δmax).

end if
end while

Algorithm 1: Merging Algorithm

Recall that each event is added into or removed from the data structure once in constant

time. While choosing the candidate at each step to emit, each event is accessed to find its δ

distance value until it is finally merged and emitted. In case there is no match for its in the
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Input: Trace event e
Pseudo Code:
h2 = h(k(e)).h2
Pop all events ej at head of h2.list[j] and recompute h2.δ
Merge ej to an entry and output to OF.
Increment all pis by 1.
Insert new entries from tis to h

Algorithm 2: MergeEvent method

current window, it will be immediately emitted since the distance is infinite, otherwise the

number of accesses to such event is bound by the constant size of the windows. Since each

access takes constant time as well, the run-time complexity of our algorithm is linear to the

number of events in all processors. In practice since the number of I/O functions is small an

event will quickly find its matches and is merged before the size of the window is reached.

6.1.3 Code Generation

Once the merged trace is created by the merger, a code generator will generate a compilable

Single-Program, Multiple Data (SPMD) code for it. The merged records which are called

collectively by all the processors are easily generated in the I/O trace generator application.

For the not-merged functions, there are number of ways one can take care of differentiating

what each processors are doing:

1. Using conditions: The most straightforward solution to this problem is to use an

if - else statement and put each of the rank operations in their corresponding

if clause. The problem with this approach is that code length is proportional to the

number of processes, so that for large-scale experiments the generated code will be

very large.

2. Using memory: The second solution is to trade constant memory for code size. The

way this works is that for every number or array which is different for different ranks, a

new dimension is added corresponding to the rank of the MPI processes. This solution

Input: Trace event e at (pi)
Output: Distance value δ(e)
Pseudo Code:
return h2 = h(k(e)).δ

Algorithm 3: GetDistance method
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will decrease the size of generated code significantly, but still has some downsides such

as requiring extra memory and a need to replicate this data on the memory of each

MPI process.

3. Identifying the relationship with MPI rank: In most of the cases, there is a

simple relationship between the offsets of the file a process is accessing and the rank

of that process. Therefore, the code generator can try to identify this pattern and

find a relationship between these numbers. A math symbolic library can be used for

this purpose. Currently, our code generator first checks for such a relationship. More

specifically, it tries to check for this relationship for each of the dimensions of each of

the different arguments of the functions that the merger has specified. In case it can

not, it will fall back to the second solution and uses memory in order to differentiate

different values for different processes.

6.2 Setup and Evaluation Results

In this section we discuss the way that our framework performs for different applications at

different scales. All the traces are gathered on the Stampede Dell cluster at Texas Advanced

Computing Center (TACC).

Three different I/O kernels described previously are used for this purpose. For each I/O

kernel, we used our framework to generate an I/O trace gnerator and compared it to the

original kernel. An advantage of these experiments is that it enables a fair comparison of I/O

calls of the original I/O kernel with the generated I/O kernel using our framework. We ran

all the three benchmarks on 2048 cores of Stampede each generating about 500 GB output

file.

6.2.1 Correctness of the framework

Figure 6.4(a) shows the comparison of some POSIX I/O counters of the original and gen-

erated VPIC-IO kernel. These counters are derived using Darshan [40]. As it can be seen,

these numbers are exactly the same for the two kernels. The output files generated by the

framework are also exactly correct, both in terms of size and also using h5dump utility.

Figure 6.4(b) and 6.4(c) show the same comparison for the VORPAL-IO and GCRM-IO

kernels respectively. In these case the framework has also been able to generate the same

output file as the original VORPAL-IO and GCRM-IO applications both in terms of size
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Figure 6.4: Comparison of Darshan POSIX I/O counters of original application
and the generated one by the framework (a) VPIC-IO, (b) VORPAL-IO, (c)
GCRM-IO

and HDF5 file format.

6.2.2 Quality of the generated code

The previous subsection showed the correctness of the framework for the three benchmarks;

In this subsection we will look at the quality of the generated code represented by its size.

Table 6.1 compares the size of the original I/O benchmark source codes with the generated

source code by our framework. As it can be seen VPIC-IO and GCRM-IO have generated

code of size proportional to the original code (Original GCRM-IO code has more options

causing the original code to be larger than the generated I/O benchmark). VORPAL-

IO however has much larger generated source code. The reason for this is the complex
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relationship between the starting addresses of the 3D blocks assigned to the processes and

their MPI ranks. The code generator was not able to find this relationship and had to fall

back to using memory (solution #2) in order to generate correct code (since 2048 cores

were used for these experiments, the code for initializing this array causes the large size of

the source code). It is very easy for the program developer to put this relationship in the

generated code and reduce the size though.

I/O Benchmark Original Code Generated Code with user’s help
VPIC-IO 8 KB 8 KB 8 KB

VORPAL-IO 12 KB 616 KB 36 KB
GCRM-IO 36 KB 12 KB 12 KB

Table 6.1: Comparison of the code size of original and generated benchmarks

6.3 Conclusions

The use of I/O kernels is getting more popular in the HPC community. High-level I/O

libraries with their higher productivity are also getting more popular as they show higher

performance and simplify coding. There has been several efforts to automatically trace and

replay I/O operations of applications but they mostly focused on the lower-level layers of the

I/O stack which is much more complex. In this work, we show that it is easier to trace and

generate I/O kernels from a full application at the higher-level I/O libraries such as HDF5.

This framework consists of a recorder library to trace the higher-level I/O operations, a

merger tool which merges traces recorded on each process, and a code generator generating

the I/O skeleton application out of the merged I/O trace. We have shown the applicability

of this framework for four I/O kernels with very different I/O patterns.
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CHAPTER 7

PATTERN-DRIVEN PARALLEL I/O TUNING

In the prior chapters, we have shown the effectiveness of I/O tuning at multiple layers of

tunable parameters using genetic algorithms. We have improved the configuration search

process significantly by developing an empirical performance prediction model for a selection

of I/O kernels derived from real scientific simulations. Despite these efforts, the challenge

of tuning an arbitrary I/O phase at runtime in a simulation remains an open issue. For

instance, when a simulation needs to perform a large write operation, an I/O autotuning

framework is required to identify the characteristics of the write operation, to find optimal

tunable parameters, and to apply them at runtime without the need to stop the simulation

for recompiling the simulation code with the optimal configurations.

In this chapter, we address the requirements of an autotuning framework mentioned above.

We first define high-level I/O patterns to characterize write operations. We use our tracing

library to collect high-level I/O calls, such as HDF5 data model definition and write calls.

This library uses binary instrumentation to redirect a set of HDF5 calls to collect the required

information. We analyze these traces to obtain the I/O pattern information of a simulation’s

I/O phase. We then match the patterns with previously tuned I/O kernels for obtaining

their optimal configurations. We provide a runtime library to apply the selected optimal

configuration without the need for recompiling the code. If a matching previously tuned

pattern was not available, we use our empirical prediction model to find tuning parameters

at offline and store them in the database for future use.

Overall, this chapter has the following contributions:

• We provide a new representation for I/O patterns based on the traces of high-level I/O

libraries, such as HDF5. This definition contains the global view of I/O accesses from

all MPI processes in parallel applications.

• We develop a trace analysis tool for identifying I/O patterns of an application auto-

matically.

• We show that using our runtime library, users can achieve significant portion of the

peak I/O performance for arbitrary I/O patterns.
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The remainder of the chapter is structured as follows: In Section 7.1, we introduce our

auto-tuning framework and present the functions of various components in the framework.

We describe our experimental setup to test the framework and to evaluate performance

improvement in Section 7.2. We finally conclude the discussion in Section 7.3.

7.1 I/O Autotuning Framework

Figure 7.1 illustrates an overview of our proposed I/O auto-tuning framework. It consists of

two phases: The first phase is the tuning phase, which performs extraction of the I/O pattern

of an application. Once a pattern is extracted, there is a look-up phase in which the pattern

is queried in a database of patterns and corresponding tuned configurations for the best I/O

performance. If the pattern is found in this database, then the model associated with the

pattern are stored in an XML file. In the adoption phase, the application is dynamically

linked with our H5Tuner library for setting the selected tuning parameters in the XML file

at runtime.

Tuning	  
Phase	  

Adop0on	  
Phase	  

Applica0on	  
Extract	  I/O	  
Kernel	  and	  
Pa;ern	  

Lookup	  for	  
Tuned	  

Parameters	  

Pairs	  of	  pa;erns	  and	  tuned	  
parameters	  

Tuned	  
parameter	  
set	  (XML	  
file)	  

Tuned	  
parameter	  
set	  (XML	  
file)	  

Applica0on	  

H5Tuner	  
Dynamic	  
Library	  

HPC	  
System	  

HDF5	  
File	  

Model-‐based	  
tuning	  

Pa;ern	  
previously	  
tuned?	  

Yes	  

No	  

Figure 7.1: An overview of our I/O autotuning framework

Our previous work [28, 41] describe the adoption phase in detail. This paper describes

the tuning phase of the framework, on detecting I/O pattern and matching a detected
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pattern with the history of tuned parameter. In order to have a simpler description of these

components, we use a sample parallel HDF5 application distributed along with the HDF5

source code, called pH5Example. The code creates two two-dimensional HDF5 datasets

and writes them to a file.

7.1.1 I/O Traces

To be able to automatically extract the I/O activities of an application, we need to first

extract the characteristics of I/O operations it is conducting. The I/O trace of an application

is used towards this end. In our previous work, we have developed a multi-level I/O tracer

tool, called Recorder [39]; It uses dynamic library pre-loading and intercepting I/O functions

at different levels of the I/O stack. We observe that the best level of the I/O stack to define

I/O patterns is at the higher-level I/O libraries such as HDF5. Therefore, we made use

of the Recorder to capture all the HDF5 I/O operations of an application. At the end

of one run of the application on P processes, P trace files are generated by the Recorder

library. Figure 7.2 shows the trace file for process 0 of a four-process run of pH5example

code. There are different function calls traced, causing to first create a HDF5 file (named

"ParaEg0.h5"), then create two datasets (named "Data1" and "Data2"), then each

process selects a hyperslab of these datasets, they write the data to them and close the file.

The following subsection discusses how we make use of the information in the trace files

to come up with the I/O pattern of the application.

7.1.2 Extraction and Identification of High-level I/O Patterns

For performing automatic tuning of writing large datasets, we first need to identify the I/O

pattern of the write operation. We define these patterns from observing the high-level I/O

library calls, i.e., HDF5 calls.

As mentioned previously, high-level I/O libraries give us much more information in order

to define and distinguish the way different applications conduct the I/O operations. One

example and probably the main one is the concept of selection in HDF5. Selection is an

important and a very powerful feature of HDF5 library that lets the developers select different

parts of a file and different parts of memory in order to conduct I/O operations. It also is

the main mechanism for the processes to choose different parts of the file in a parallel I/O

application. Therefore, we base our definition of I/O patterns on the concept of selection.

In summary, we will define the I/O pattern of an application as a coverage of the datasets
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1396296304.23583 H5Pcreate (H5P_FILE_ACCESS) 167772177 0.00003
1396296304.23587 H5Pset_fapl_mpio (167772177,MPI_COMM_WORLD,
469762048) 0 0.00025
1396296304.23613 H5Fcreate (output/ParaEg0.h5,2,0,167772177) 16777216 
0.00069
1396296304.23683 H5Pclose (167772177) 0 0.00002
1396296304.23685 H5Screate_simple (2,{24;24},NULL) 67108866 0.00002
1396296304.23688 H5Dcreate2 (16777216,Data1,H5T_STD_I32LE,
67108866,0,0,0) 83886080 0.00012
1396296304.23702 H5Dcreate2 (16777216,Data2,H5T_STD_I32LE,
67108866,0,0,0) 83886081 0.00003
1396296304.23707 H5Dget_space (83886080) 67108867 0.00001
1396296304.23708 H5Sselect_hyperslab (67108867,0,{0;0},{1;1},
{6;24},NULL) 0 0.00002
1396296304.23710 H5Screate_simple (2,{6;24},NULL) 67108868 0.00001
1396296304.23710 H5Dwrite (83886080,50331660,67108868,67108867,0) 0 
0.00009
1396296304.23721 H5Dwrite (83886081,50331660,67108868,67108867,0) 0 
0.00002
1396296304.23724 H5Sclose (67108867) 0 0.00000
1396296304.23724 H5Dclose (83886080) 0 0.00001
1396296304.23726 H5Dclose (83886081) 0 0.00001
1396296304.23727 H5Sclose (67108866) 0 0.00000
1396296304.23728 H5Fclose (16777216) 0 0.00043

Figure 7.2: A sample I/O trace generated by the Recorder for a simple parallel
application called pH5Example

based on the selections they make.

In HDF5 terminology, hyperslabs are portions of datasets, either a logically contiguous

collection of points in a dataspace, or a regular pattern of points or blocks in a dataspace.

In a parallel HDF5 program, once each process defines both the memory and file hyper-

slabs they execute a partial read/write [42]. In HDF5, the hyperslabs are selected using

H5Sselect hyperslab function. The four parameters that can be passed to this func-

tion are start, stride, count, and block: The start array is used by each process

to specify the starting location for the hyperslab; The stride array specifies the distance

between two consecutive selected elements or blocks. The count array for specifying the

number of the elements/blocks to select; Finally, the block array specifies the size of the

block selected from the dataspace.

In order to be concrete, we illustrate the definition of I/O patterns with an example

application we have used in this paper. Figure 7.3 shows the four hyperslab selection of a

parallel four-process run of pH5Example.

81



H5Sselect_hyperslab (...,H5S_SELECT_SET,{0;0},{1;1},{6;24},NULL) 0

H5Sselect_hyperslab (...,H5S_SELECT_SET,{6;0},{1;1},{6;24},NULL) 0 

H5Sselect_hyperslab (...,H5S_SELECT_SET,{12;0},{1;1},{6;24},NULL) 0 

H5Sselect_hyperslab (...,H5S_SELECT_SET,{18;0},{1;1},{6;24},NULL) 0 

Rank 0:

Rank 1:

Rank 2:

Rank 3:

herr_t H5Sselect hyperslab(hid_t space_id, H5S_seloper_t op, const 
hsize_t *start, const hsize_t *stride, const hsize_t *count, const 
hsize_t *block)

Function Signature:

Figure 7.3: The four HDF5 hyperslab selection function calls across different
ranks of a parallel four-process run of pH5Example

As it can be seen, all the processes are calling the same function with the same arguments

except for start. The values of these start arrays are {0, 0}, {6, 0}, {12, 0}, and {18,

0}. The values of count arrays on all the ranks are {6, 24}. The call specifies that the

2D dataset is decomposed in the first dimension, with each process accessing a distinct

horizontal slice.

In order to abstract these patterns, we make use of array distribution notation that was

also used in High Performance Fortran (HPF) [43]. High Performance Fortran uses data

distribution directives to help the programmer to distribute data between processes. Among

these directives, DISTRIBUTE directive is used to specify the partitioning of the array

data on to an abstract processor array. The basic distributions are BLOCK, CYCLIC, and

DEGENERATE. A different distribution can be used for each dimension. Below is a short

description of each of these distributions:

1. Block Distribution: In a block distribution, each process gets a single contiguous

block of the array.

2. Cyclic Distribution: In a cyclic distribution, array elements are distributed in a

round-robin manner. This means that the first element is on the first process, the

second element on the second process and so on.

3. Degenerate Distribution: Degenerate distribution, represented by *, is basically

no distribution or serial distribution. It means that all the elements of this dimension
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is assigned to one processor.

Using this terminology for the pH5Example application is straightforward. First, there is

one HDF5 dataspace in the whole application created by the use of H5Screate simple()

function. It is a 2D dataspace of size 24 × 24. Then there are two datasets created on

this dataspace named Data1 and Data2. Then each of the ranks are selecting their own

decomposition of the space and create two datasets of the size of the selected set as their

memory dataset. Finally there are two H5Dwrite() function calls to write to Data1 and

Data2. Using HPF terminology we can abstract pH5Example as the following:

• pH5Example:

<2D, (BLOCK, *), (6, 24)>

<2D, (BLOCK, *), (6, 24)>

The advantage of this representation is that it is succinct enough in order to be stored in

a key-value store as the I/O pattern repository. Currently, we are using text files to store

the patterns without requiring a global database. However, as the number of patterns grow,

in order to store the patterns associated with their I/O performance model, we can use a

key-value store database. The schema of this database should include the dimensions of the

patterns, their decompositions, their sizes, and the corresponding I/O performance model.

7.2 Setup and Evaluation Results

We have conducted all the experiments presented in this chapter on two platforms, Edison

and Hopper.

We chose different I/O benchmarks and kernels. The four I/O kernels we have looked at

are: Vector Particle-In-Cell (VPIC-IO), VORPAL-IO, and Global Cloud Resolving Model

(GCRM-IO) and FLASH-IO. Below is a brief description of these I/O benchmarks.

Figures 7.4(a)-7.4(c) show the I/O accesses of the three applications we are considering

in this work. These I/O accesses are the range of accesses based on the four parameters

of the hyperslab selection. It can be observed that VPIC-IO is a 1-dimensional application

and VORPAL-IO and GCRM-IO have 3-dimensional I/O accesses. We can also see how

each processes are writing the same amount of data by having the same count arrays. The

processes access different parts of the file in parallel by having different values for the start

array.

Each process is writing a contiguous amount of data with 8 MB of size one after the other

in the VPIC-IO benchmark. This is a very common and simple I/O pattern and we will see
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P0 = [ {0}, {1}, {8 M}, {0} ]
P1 = [ {8 M}, {1}, {8 M}, {0} ]
P2 = [ {16 M}, {1}, {8 M}, {0} ]

...

[start, stride, count, block]

P0 P1 P2 ... Pn

0 8 M 16 M 24 M

(a) VPIC-IO

P0 = [ {0,0,0}, {1,1,1}, {1,26,327680}, {0,0,0} ]
P1 = [ {0,0,327680}, {1,1,1}, {1,26,327680}, {0,0,0} ]
P2 = [ {0,0,655360}, {1,1,1}, {1,26,327680}, {0,0,0} ]

...
.
.

[start, stride, count, block]

(b) GCRM-IO

P0 = [ {0,0,0}, {1,1,1}, {60,100,300}, {0,0,0} ]
P1 = [ {0,0,300}, {1,1,1}, {60,100,300}, {0,0,0} ]
P2 = [ {0,100,0}, {1,1,1}, {60,100,300}, {0,0,0} ]

...
.
.

[start, stride, count, block]

(c) VORPAL-IO

Figure 7.4: I/O patterns of (a) VPIC-IO (b) GCRM-IO (c) VORPAL-IO bench-
mark

how it is abstracted. A more complex I/O access is GCRM-IO’s. It is a 3-dimensional I/O

benchmark decomposed only along one dimension as Figure 7.4(b) shows. Since only one

dimension is decomposed in GCRM, we can see that the size of the whole dimension is used

in the count array for the other two dimensions and the value of the start is 0.

The last I/O benchmark with the most complex I/O pattern is VORPAL-IO. It writes a

3-dimensional grid with a 3-dimensional decomposition along each of the dimensions. The

size of the block that each process is writing is fixed and therefore the count array is the

same for each of the processes. However, each of the processes have different values along

the 3 dimensions of the start array.

Using the notation described in Section 7.1, we can represent our three applications as

below:

• VPIC-IO:

<1D,BLOCK,8388608>
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<1D,BLOCK,8388608>

... (5 more times) ...

<1D,BLOCK,8388608>

• GCRM-IO:

<3D,(*,*,BLOCK), (1,1,327680)>

<3D,(*,*,BLOCK), (1,1,327680)>

... (7 more times) ...

<3D,(*,*,BLOCK), (1,1,327680)>

• VORPAL-IO:

<3D,(BLOCK,BLOCK,BLOCK),(60,100,300)>

<3D,(BLOCK,BLOCK,BLOCK),(60,100,300)>

... (17 more times) ...

<3D,(BLOCK,BLOCK,BLOCK),(60,100,300)>

We now show our results in four subsections. Note that for the results of this paper, we

use all the developed models in our previous paper [41]. Therefore, there was no tuning

for any application for this work and we have used the models developed for them in our

previous work.

7.2.1 An application with the same I/O pattern

In order to have IOR issue write patterns similar to VPIC-IO, we configured it to use its

HDF5 interface. Since VPIC-IO writes 8 datasets, we need to configure IOR accordingly.

This is done by using 8 MB segments (-s 8), writeFile (-w), 32 MB blockSize (-b 32m)

and transfer size of 32 MB (-t 32m).

Figure 7.5(a) shows the performance of the autotuned configuration which was proposed

for IOR, as it has the same pattern as VPIC-IO, on 512 and 4096 cores of Hopper, and

Edison in [41]. As mentioned before, there was no modeling effort done for this application

and yet we can see that we are able to get up to 4.21 GB/s and 15.01 GB/s on 512 and 4096

cores of Hopper. On Edison these numbers are 9.34 GB/s, 16.70 GB/s.

7.2.2 An application with similar I/O pattern

Resemble-VORPAL-IO is a synthetic benchmark generated by Record-and-Replay frame-

work [44]. It has very similar I/O pattern to VORPAL-IO benchmark but with different
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(c) FLASH-IO

Figure 7.5: The I/O performance of the autotuned (a) IOR (b) Resemble-
VORPAL-IO (c) FLASH-IO application on Hopper and Edison compared the
default configuration.

block sizes of 64 × 128 × 256 instead of 60 × 100 × 300 of VORPAL-IO. The purpose of

these experiments is two-fold: (a) To show that applications with similar I/O patterns with

slight differences only in block sizes can use the same I/O configuration to obtain good I/O

performance. (b) Requiring a threshold for the similarity between I/O patterns can save

dramatic I/O tuning time.

Figure 7.5(b) shows the performance of the autotuned configuration which was proposed

for Resemble-VORPAL-IO on 512 and 4096 cores of Hopper and Edison in [41]. Similar

to the previous experiment, there was no modeling effort done for this application and yet

we can see that we are able to get up to 3.32 GB/s and 7.89 GB/s on 512 and 4096 cores

of Hopper respectively. On Edison the highest bandwidth achieved by this mechanism was

8.75 GB/s and 13.07 GB/s on the same number of cores.
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7.2.3 A new application

The last experiment is designed to test an arbitrary application that has not been tuned

before. For this experiment, we chose to test a well-known I/O kernel called FLASH-IO

because it is popular in the HPC I/O community and also hard to tune. The same as

previous experiment, we ran FLASH-IO at two scales, 512 and 4096 cores of Hopper and

Edison. The way that we calculate the bandwidth for this application is a little bit different

than the other ones as it produces three files. The definition of bandwidth here is basically

just the sum of all the output sizes divided by the runtime of the whole I/O benchmark

which is a conservative way of defining the I/O bandwidth of an application.

FLASH-IO is different from the other applications we have looked at mainly because

it writes many datasets with different I/O patterns. In order to overcome this problem

the framework considers the largest datasets in size and looks up for those patterns in the

database. Based on the output of H5Analyze tool, FLASH-IO has 34 datasets, out of which

24 of them have the same size as the largest size of the file. On 4096 cores, this is about

40GB for each dataset. These datasets are 4D and their pattern of these dataset are also

the same: <BLOCK, DEGENERATE, DEGENERATE, DEGENERATE>. Although the exact

same pattern does not exist for this pattern, GCRM-IO has the most similar pattern to this

application and therefore the framework uses the proposed configurations for GCRM-IO.

Figure 7.5(c) shows the performance of the autotuned configurations which was proposed

for FLASH-IO based on GCRM-IO model, on 512 and 4096 cores of Hopper, and Edison by

our framework. Similar to the previous experiment, there was no modeling effort done for

this application and yet we can see that we are able to get up to 2.09 GB/s and 5.95 GB/s

on 512 and 4096 cores of Hopper respectively. On Edison the highest bandwidth achieved

by this mechanism was 3.34 GB/s and 8.23 GB/s on the same number of cores.

7.3 Conclusions

Poorly tuned Parallel I/O becomes a major performance bottleneck in HPC applications that

need to write or read data. This is not due to incapability of I/O subsystems, but mainly

due to the complexity of its tuning. In this chapter, we propose a pattern-driven autotuning

framework to solve this problem. The framework consists of components to extract I/O

patterns, tune configuration for the detected patterns, store them in a database of patterns

associated with their I/O model, and finally map an arbitrary I/O pattern to a previously

tuned model in order to improve its I/O performance. We show that using these patterns,

one can tune different sets of applications ranging from the ones which have tuned before

87



the ones which are similar to the ones before, and totally new ones.
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CHAPTER 8

RELATED WORK

8.1 Autotuning

Autotuning in computer science is a prevalent term for improving performance of compu-

tational kernels. There has been extensive research in developing optimized linear algebra

libraries and matrix operation kernels using autotuning [45–51]. The search space in these

efforts involves optimization of CPU cache and DRAM parameters along with code changes.

All these autotuning techniques search various data structure and code transformations us-

ing performance models of processor architectures, computation kernels, and compilers. Our

study focuses on autotuning the I/O subsystem for writing and reading data to a parallel

file system in contrast to tuning computational kernels.

There are a few key challenges unique to the I/O autotuning problem. Each function

evaluation for the I/O case takes on the order of minutes, as opposed to milli-seconds for

computational kernels. Thus, an exhaustive search through the parameter space is infeasible

and a heuristic based search approach is needed. I/O runs also face dynamic variability and

system noise while linear algebra tuning assumes a clean and isolated single node system.

The interaction between various I/O parameters and how they impact performance are not

very well studied, making interpreting tuned results a complex task.

We use genetic algorithms as a parameter space searching strategy. Heuristics and meta-

heuristics have been studied extensively for combinatorial optimization problems as well

as code optimization [52] and parameter optimization [53] problems similar to the one we

addressed. Of the heuristic approaches, genetic algorithms seem to be particularly well

suited for real parameter optimization problems, and a variety of literature exists detailing

the efficacy of the approach [54–56]. A few recent studies have used genetic algorithms [57]

and a combination of approximation algorithm with search space reduction techniques [58].

Both of these are again targeted to auto-tune compiler options for linear algebra kernels. We

chose to implement a genetic algorithm to attempt to intelligently traverse the sample space

for each test case; we found our approach produced well-performing configurations after a
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suitably small number of test runs.

Various optimization strategies have been proposed to tune parallel I/O performance for

a specific application or an I/O kernel. However, they are not designed for automatic

tuning of any given application and require manual selection of optimization strategies.

Our autotuning framework is designed towards tuning an arbitrary parallel I/O application.

Hence, we do not discuss the exhaustive list of research efforts. We focus on comparing our

research with automatic performance tuning efforts.

There are a few research efforts to auto-tune and optimize resource provisioning and system

design for storage system [59–61]. In contrast, our study focuses on tuning the parallel I/O

stack on top of a working storage system.

Autotuning of parallel I/O has not been studied at the same level as the tuning for

computation kernels. The Panda project [62,63] studied automatic performance optimization

for collective I/O operations where all the processes used by an application to synchronize

I/O operations such as reading and writing an array. The Panda project searched for disk

layout and disk buffer size parameters using a combination of a rule-based strategy and

randomized search-based algorithms. The rule-based strategy is used when the optimal

settings are understood and simulated annealing is used otherwise. The simulated annealing

problem is solved as a general minimization problem, where the I/O cost is minimized.

The Panda project also used genetic algorithms to search for tuning parameters [64]. The

optimization approach proposed in this project were applicable to the Panda I/O library,

which existed before MPI-IO and HDF5. The Panda I/O is not in use now and the Panda

optimization strategy was not designed for current parallel file systems.

Yu et al. [65] characterize, tune, and optimize parallel I/O performance on the Lustre file

system of Jaguar, a Cray XT supercomputer at Oak Ridge National Laboratory (ORNL).

The authors tuned data sieving buffer size, I/O aggregator buffer size, and the number of I/O

aggregator processes. This study did not propose an autotuning framework but manually

ran a selected set of codes several times with different parameters. Howison et al. [21] also

perform manual tuning of various benchmarks that select parameters for HDF5 (chunk size),

MPI-IO (collective buffer size and the number of aggregator nodes), and Lustre parameters

(stripe size and stripe count) on the Hopper supercomputer at NERSC. These two studies

prove that tuning parallel I/O parameters can achieve better performance. In our study we

develop an autotuning framework that can select tuning parameters.

You et al. [23] proposed an autotuning framework for the Lustre file system on the Cray

XT5 systems at ORNL. They search for file system stripe count, stripe size, I/O transfer size,

and the number of I/O processes. This study uses mathematical models based on queuing

models. The autotuning framework first develops a model in a training phase that is close to
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the real system. The framework then searches for optimal parameters using search heuristics

such as simulated annealing, genetic algorithms, etc. Developing a mathematical model for

different systems based on queuing theory can be farther from the real system and may

produce inaccurate performance results. In contrast, our framework searches for parameters

on real system using search heuristics. A preliminary version of our autotuning framework

appears in earlier work [66], where we primarily study the performance of our system at a

small scale. In this work, we do a more thorough analysis of the system on diverse platforms,

applications, and concurrencies, and conduct an in-depth analysis of resulting configurations.

8.2 I/O Modeling

Tuning the I/O subsystem has unique challenges. Although the computation kernels run for

a few milliseconds, evaluation of I/O functions can take minutes. Due to the complexity and

interdependency among multiple layers of the I/O system, searching for tuned parameters

is a cumbersome process. Our previous work [28] used a heuristic-based search with a GA

in order to achieve substantial performance improvements. However, this heuristic search

process has a prohibitive runtime. In this work, we took the performance modeling approach

to filter the number of combinations to a small number and then to search within the smaller

space. We now review works that address autotuning of parallel I/O as well as works that

seek to reduce the parameter search space.

autotuning of parallel I/O has been studied by relatively few projects. The Panda project

[62,63] studied automatic optimization of collective I/O operations, where all the processes

of an application perform I/O operations synchronously. The Panda project used GAs to

search for tuning parameters [64], which we found introduces a large overhead. Moreover,

the optimizations developed in this project were applied in the Panda I/O library, which

existed before MPI-IO and HDF5. You et al. [23] proposed an autotuning framework for the

Lustre file system on Cray XT5 systems at ORNL. The authors use mathematical models

based on queuing theory to develop a prediction model that is close to the real system. The

framework then searches for optimal parameters of Lustre file system and those of other I/O

layers using search heuristics. In contrast to the queuing theory-based models, we develop

empirical models based on a training phase of real execution times from writing data to the

file system.

There have been several efforts in predicting parallel I/O performance [23–25, 67–70].

Shan et al. [24] use the IOR benchmark to match the I/O patterns of an application and

predict I/O performance. Meswani et al. [68] use a similar strategy by running the I/O
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operations of an application on a reference system and calibrate the performance of the

reference system with a target system. Smirni et al. [25] use a queuing network model

to predict the performance of RAID-3 disks. Song et al. [69] propose an analytical model

to predict the cost of read operations for accessing data organized in different layouts on

the file system. Kumar et al. [70] use various machine-learning algorithms for improving

performance of I/O in a PIDX file format library; their prediction focuses on network and

I/O performance while keeping the stripe settings fixed. While many of these efforts seek to

predict I/O performance accurately, our work uses the models to identify fruitful parameter

values and then iterates in the executing and refitting stages by searching among this smaller

set of parameter values. Using this approach, we have shown that our technique is fast and

effective in achieving good I/O performance.

8.3 I/O Recording

Existing profiling and tracing tools have demonstrated the value of multi-level views of I/O

activity and paved the way for Recorder.

Darshan [71] is a powerful profiling library that characterizes application I/O via statis-

tics and cumulative information. The information recorded by Darshan includes counters

for MPI-IO and POSIX I/O operations, counters for MPI-IO datatypes and access patterns,

cumulative information about amount of bytes read or written or time spent in operations,

etc. Darshan’s lightweight design allows it to be deployed full time for workload character-

ization of large systems [40] [72], but the compact nature of stored information limits its

usefulness in understanding detailed I/O behavior of applications or libraries.

IOPin [73] is another profiling tool that instruments the MPI library and PVFS file system.

IOPin gathers information such as rank, mpi call id, pvfs call id, I/O type (read/write), and

latency, and stores it in a database. One distinguising feature of IOPin is its ability to gather

and correlate function calls at the MPI-IO and file system levels. As opposed to our approach

(dynamic library preloading), IOPin makes use of runtime binary instrumentation.

The RIOT I/O tracing toolkit [74] intercepts MPI-IO and POSIX I/O function calls and

records timestamp, data size, and file offset details. The toolkit also includes a post-processor

to create statistical and graphical reports showing application I/O activity. RIOT has been

used to discover performance inefficiencies, demonstrating the value of tracing toolkits in

I/O performance analysis and tuning. We share the same vision as the RIOT authors, and

with Recorder provide a framework that also captures the I/O activity of the high-level I/O

library.
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Earlier versions of the HDF5 library (1.4.x) included tools developed by the Pablo Research

Group [75] to log and analyze entry and exit from HDF5, MPI-IO, and POSIX I/O functions.

While this capability proved useful, it required source code modification to enable tracing

and is no longer available.

//TRACE [35] and ScalaHTrace [37] include both trace capture and replay capabilities.

//TRACE emphasizes accurate replay and can introduce considerable overhead during trace

capture as inter-node data dependencies are discovered. ScalaHTrace captures both com-

munication and I/O activity, using a novel compression technique to keep trace files at near

constant size for different problem scales. Its replay engine uses a distributed approach to

deterministically replay traces without decompressing them. Since //TRACE and ScalaH-

Trace primarily focus on trace replay rather than on diagnosis and correction of performance

issues, their traces mainly contain timing information and offer little assistance in identifying

sources of performance degradation.

In [32], Konwinski et al. propose a taxonomy for cataloging features of I/O tracing

frameworks based on their survey of three existing packages (LANL-TRACE [76], Tracefs

[36], and //TRACE). We found the proposed taxonomy very useful in considering and

describing the features of Recorder.

8.4 I/O Replaying

Tracefs [36] is a low-overhead and flexible tracing file system that intercepts operations at

the VFS level. The traces are recorded and useful for security and debugging.

//Trace [35] provides a detailed framework on POSIX-Level I/O recording and replaying.

It puts more emphasis on the average replay accuracy of the parallel replayer, which can

mimic the behavior of the traced application. Inter-node data dependencies and computing

times are discovered in order to create more representative workloads for storage systems

evaluation.

Scala-HTrace [37] focuses on the recording and compression of MPI-I/O level traces. It

utilizes histograms based on a user-specified merge precision level, which replays statistical

histogram traces without decompressing the original trace file.

Our work is distinct in that it traces I/O at the level of the HDF5 application calls. Since

MPI-IO and file system activities result from the HDF5 calls, tracing at the highest possible

level provides a complete view of I/O activities. In addition, we focus on lossless compression

of the traces, so that no information is lost.

Skel [77] is probably the closest work to this work. They both have the same target,
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but with very different approaches. Skel creates I/O skeletal applications by utilizing the

ADIOS [78] framework. ADIOS users configure the I/O of the applications by creating an

external XML file. Skel makes use of this XML configuration and an additional XML file

for the test parameters to create skeletal I/O application. In our work, we do not need any

configuration file and running the application is enough to get the traces and generate the

I/O kernel. Additionally, our approach replays all the HDF5 I/O calls of an application

leading to the exact same I/O behavior of the original applications.

8.5 I/O Patterns

I/O Signature is a notation proposed by Byna et al [79] consisting of five dimensions of I/O

operations: opetaion, spatial offset, request size, repetitive behavior, and temporal intervals.

These are then gathered by a framework for each application and stored persistentlly for

later look up in order to help prefetching.

Statistical models such as Markov models, etc have been proposed for a long time for being

able to produce and predict I/O operations and file system performance. [80,81]. These are

then more used in the context of prefetching, caching or scheduling.

Omnisc’IO [82] is a grammar-based I/O model in the hope of capturing and predicting I/O

operations of an application. At its heart, it uses an algorithm based on Sequitur algorithm

which given a sequence of symbols, builds a grammar for text compression. It supports both

spatial and temporal patterns in this regard. In order to be more general, the authors use

the program’s stack trace as the symbols of the grammar. One strength of their approach

is that it does real-time prediction as the grammar is being updated in the algorithm. This

is similar to what we called ”real-time tuning” in the paper.

He et al. [83] correctly argue that a lot of information gets lost in a typcail I/O stack as

the data flows between its layers. Although high-level I/O libraries contain rich information

about the data structures, eventually they get down into simple offset and length pairs in

the storage system. Their solution to this problem is to ”rediscover these structures in

unstructured I/O” using gray-box technique. Our approach however is not to lose these

data by intercepting them at the higher-levels. In terms of framework design there are some

similiraties such as the way the pattern detection engine works. However, since it is at

POSIX level, it has a local pattern structure and a global one. For the local one, a modified

algorithm based on LZ77 is presented and for the global patterns, these local patterns are

sorted in order to check for a pattern between them. These are not necessary in our work.
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CHAPTER 9

CONCLUDING REMARKS

Parallel I/O is an integral part of modern HPC; However, it remains challenging to obtain

maximum performance from I/O subsystems. This is mainly due to inter-dependencies

among multiple layers of the parallel I/O stack. The values for the parameters at each layer

of this stack are critical to the I/O performance and they vary across applications, platforms,

and the concurrency of the application.

In this dissertation, we proposed an end-to-end solution to HPC I/O problem. Starting

from an autotuning framework using Genetic Algorithms (GA), optimizing it with I/O per-

formance modeling, and finally explaining how I/O patterns can be exploited to form an

intelligent runtime system for parallel I/O tuning. This intelligent runtime system along

with profiling tools such as Recorder and I/O kernel generators such as Replayer can hide

the parallel I/O complexity from scientists and HPC users.

9.1 Comparison of the approaches

Table 9.1 shows a comparison of the three approaches for I/O tuning discussed in this chapter.

With default configuration without any I/O tuning, each application will take more than

3 hours. With Genetic Algorithms, for each application and scale, a cost of more than 10

hours is paid for tuning. With current approach, the cost of training is paid once and then

for each application applying the model takes less than an hour with fast application run

time.

9.2 Contributions

This dissertation makes the following contributions:

• The design and implemention of an autotuning system that hides the complexity of

tuning the Parallel I/O stack. This framework is covered in Chapter 3.
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Table 9.1: A comparison of GA, modeling and default configuration.

Method
Training

Phase
Applying
the Model

Per App. &
Scale Tuning

App. Runtime
(VPIC-8192
on Hopper)

GA N/A N/A > 10 hours 118 seconds

Model
Fitting

> 10 hours
(can reuse)

< 1 minute
(automatic)

< 1 hour 100 seconds

Default
Config.

none none none > 3 hours

• Demonstration of performance portability of the autotuning system across diverse HPC

platforms.

• Demonstration of the applicability of the system to multiple scientific application

benchmarks.

• Demonstration of I/O performance tuning at different scales (both concurrency and

dataset size).

• Development of an approach to construct automatically an I/O performance model.

This model and its development is explained in Chapter 4.

• Usage of the model thus constructed to reduce the search space for good I/O configu-

rations.

• Demonstration of the applicability of the autotuning framework exploiting the perfor-

mance model to scientific I/O kernels with different write patterns and various problem

sizes.

• An implementation of a multi-level I/O tracing framework, called Recorder, that can

capture I/O function calls at multiple levels of the I/O stack, including HDF5, MPI-IO,

and POSIX I/O. Recorder is discussed in Chapter 5.

• Demonstration of the effectiveness of Recorder as an aid to understanding the I/O

activity of applications and identifying a performance bottleneck in HDF5’s current

implementation of metadata read.

• The design and implemention of a framework for generating I/O kernels from a full

HPC application called Replayer. Replayer is presented in Chapter 6.

• Usage of the Replayer to generate correct I/O kernels for various HPC applications.
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• A new representation for I/O patterns based on the traces of high-level I/O libraries.

• Design and development of a trace analysis tool for identifying I/O patterns of an

application automatically.

• Being able to achieve significant portion of the peak I/O performance for arbitrary

I/O patterns using this method.

9.3 Future Research Directions

This is a list of some ideas derived from the contributions in this dissertation:

• IBM GPFS [84] file system is another main file system used on HPC production sys-

tems. We did not have a chance to test our modeling efforts on it and therefore, one

way to extend this work is to check the modeling work on a system equipped with IBM

GPFS.

• Runtime noise and dynamic interference from other users is a fact of life in production

HPC facilities. While our autotuning framework has presented compelling results, we

are assuming that the user will encounter a runtime workload which is comparable to

the one encountered during the autotuning process. We believe that measuring noise

and interference during the tuning process and deriving models for projecting their

effect at runtime will be key in tackling this hard problem.

• Although we used statistical non-linear regression models, one can look into machine

learning based approaches (such as Gaussian Processes) to intelligently sample the

search space, and further reduce the runtime.

• Our current approach of determining a training set is based on a batch execution

model. Namely, we pre-compute a training set with a space-filling design in advance,

and evaluate the training set in a single batch job. We could have opted for an adaptive,

“sequential design of experiments” approach (see, e.g., [85]), where each configuration

is based on the results of the previous runs. This has the potential to further reduce

the size of the training set.

• Given the considerable variation in the performance of I/O subsystems on HPC plat-

forms, it is difficult to obtain reliable measurements of tracing overhead by comparing

the execution times of traced and untraced runs. One can investiage an alternate
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method of computing overhead by measuring the cumulative time spent in Recorder’s

logging functions and comparing that to the overall runtime.

• In order to support effective cross-level trace analysis, we need to correlate lower-level

functions with the higher-level function where they originated. The correlation will

be essential for multi-threaded applications and those with asynchronous I/O, because

one cannot simply use the order of events in the trace file to infer which operation

caused another under those circumstances.

• A trace analysis and visualization tool that can help identify I/O bottlenecks or auto-

matically draw useful conclusions from large-scale runs. A good tool should be usable

by, and useful to, end users without extensive experience in parallel I/O.

• Improving the pattern matching capabilities of our framework, in order to be able to

detect and compress more general control structures. While this “reverse engineering”

of the control structure of the original program is not tractable, in general, we con-

jecture that the I/O of most scientific codes has simple control structures that can be

detected by our methods.

• Our work has focused on generating an I/O skeleton for a fixed problem size and

fixed number of processes. However, the same pattern matching techniques we use to

compress traces can be used to detect dependencies on the number of processors or

key input parameters. This will require multiple runs with different input sizes and

different process counts.

• Although we have only shown that this framework works for the HPC applications

using HDF5 library, the tools and the operations in this work are all applicable to

other high-level I/O libraries such as PnetCDF. This is also another future work that

is considered, since adding such a capability will be very useful.

• Last but not least, this framework can be used for different HPC applications in order

to build a repository of I/O kernels that represent different HPC applications. This

repository can be used for different purposes such as storage systems evaluation, system

procurement, I/O performance analysis, etc.
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[9] S. Byna, J. Chou, O. Rübel, Prabhat, and et al., “Parallel I/O, analysis, and
visualization of a trillion particle simulation,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, ser.
SC ’12, 2012. [Online]. Available: http://dl.acm.org/citation.cfm?id=2388996.2389077
pp. 59:1–59:12.

99

http://www.hdfgroup.org/HDF5
docs.cray.com/books/S-0013-10//S-0013-10.pdf
docs.cray.com/books/S-0013-10//S-0013-10.pdf
http://dl.acm.org/citation.cfm?id=2388996.2389077


[10] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock, “I/O performance
challenges at leadership scale,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09. New York, NY, USA:
ACM, 2009. [Online]. Available: http://doi.acm.org/10.1145/1654059.1654100 pp.
40:1–40:12.

[11] K. Schulz, “Experiences from the Deployment of TACC’s Stampede System,” March
2013 2013. [Online]. Available: http://www.hpcadvisorycouncil.com/events/2013/
Switzerland-Workshop/Presentations/Day 1/7 TACC.pdf

[12] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan, “Ultrahigh
performance three-dimensional electromagnetic relativistic kinetic plasma simulation,”
Physics of Plasmas, vol. 15, no. 5, p. 7, 2008.

[13] C. Nieter and J. R. Cary, “VORPAL: a versatile plasma simulation code,” Journal of
Computational Physics, vol. 196, pp. 448–472, 2004.

[14] D. Randall, M. Khairoutdinov, A. Arakawa, and W. Grabowski, “Breaking the Cloud
Parameterization Deadlock,” Bull. Amer. Meteor. Soc., vol. 84, no. 11, pp. 1547–1564,
Nov. 2003. [Online]. Available: http://dx.doi.org/10.1175/bams-84-11-1547

[15] E. W. Bethel, J. M. Shalf, C. Siegerist, K. Stockinger, A. Adelmann, A. Gsell,
B. Oswald, and T. Schietinger, “Progress on H5Part: A Portable High Performance
Parallel Data Interface for Electromagnetics Simulations,” in Proceedings of the 2007
IEEE Particle Accelerator Conference (PAC 07). 25-29 Jun 2007, Albuquerque, New
Mexico. 22nd IEEE Particle Accelerator Conference, p.3396, 2007. [Online]. Available:
http://adsabs.harvard.edu/cgi-bin/nph-bib query?bibcode=2007pac..conf.3396B

[16] E. W. Bethel, J. M. Shalf, C. Siegerist, K. Stockinger, A. Adelmann, A. Gsell, B. Os-
wald, and T. Schietinger, “Progress on H5Part: A portable high performance parallel
data interface for electromagnetics simulations,” in Proceedings of the 2007 IEEE Par-
ticle Accelerator Conference, ser. PAC 07, 2007.

[17] L. B. N. Laboratory, “H5Part: a portable high performance parallel data interface to
HDF5.” [Online]. Available: http://vis.lbl.gov/Research/H5Part/

[18] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[19] C. S. Perone, “Pyevolve: a Python open-source framework for genetic algorithms,”
SIGEVOlution, vol. 4, no. 1, pp. 12–20, 2009. [Online]. Available: http:
//dx.doi.org/10.1145/1656395.1656397

[20] M. Sweet, “Mini-XML, a small XML parsing library,” 2003-2011. [Online]. Available:
http://www.easysw.com/mike/mxml

[21] M. Howison, Q. Koziol, D. Knaak, J. Mainzer, and J. Shalf, “Tuning HDF5 for Lustre
File Systems,” in Proceedings of 2010 Workshop on Interfaces and Abstractions for
Scientific Data Storage (IASDS10), Heraklion, Crete, Greece, Sep. 2010, lBNL-4803E.

100

http://doi.acm.org/10.1145/1654059.1654100
http://www.hpcadvisorycouncil.com/events/2013/Switzerland-Workshop/Presentations/Day_1/7_TACC.pdf
http://www.hpcadvisorycouncil.com/events/2013/Switzerland-Workshop/Presentations/Day_1/7_TACC.pdf
http://dx.doi.org/10.1175/bams-84-11-1547
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2007pac..conf.3396B
http://vis.lbl.gov/Research/H5Part/
http://dx.doi.org/10.1145/1656395.1656397
http://dx.doi.org/10.1145/1656395.1656397
http://www.easysw.com/ mike/mxml


[22] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective I/O in ROMIO,”
in Proceedings of the The 7th Symposium on the Frontiers of Massively Parallel
Computation, ser. FRONTIERS ’99. Washington, DC, USA: IEEE Computer Society,
1999. [Online]. Available: http://dl.acm.org/citation.cfm?id=795668.796733 pp. 182–.

[23] H. You, Q. Liu, Z. Li, and S. Moore, “The design of an auto-tuning I/O framework on
Cray XT5 system,” in Cray Users Group Conference (CUG’11) (Best Paper Finalist),
Fairbanks, Alaska, may 2011, performance.

[24] H. Shan, J. Shalf, and K. Antypas, “Characterizing and predicting the I/O performance
of HPC applications using a parameterized synthetic benchmark,” in SC’ 08. Austin,
TX: ACM/IEEE, 2008.

[25] E. Smirni, C. L. Elford, D. A. Reed, and A. A. Chien, “Performance modeling of a
parallel I/O system: An application driven approach,” in PPSC. SIAM, 1997.

[26] P. Balaprakash, R. Gramacy, and S. M. Wild, “Active-learning-based surrogate models
for empirical performance tuning,” in Proceedings of IEEE International Conference on
Cluster Computing, ser. CLUSTER ’13, September 2013, pp. 1–8.

[27] P. Balaprakash, S. M. Wild, and P. D. Hovland, “An experimental study of global
and local search algorithms in empirical performance tuning,” in High Performance
Computing for Computational Science - VECPAR 2012, 10th International Conference,
Kobe, Japan, July 17-20, 2012, Revised Selected Papers, ser. Lecture Notes in Computer
Science. Springer, 2013, pp. 261–269.

[28] B. Behzad, L. Huong Vu Thanh, J. Huchette, S. Byna, Prabhat, R. Aydt, Q. Koziol,
and M. Snir, “Taming parallel I/O complexity with auto-tuning,” in Proceedings of
2013 International Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’13, 2013.

[29] R. McLay, D. James, S. Liu, J. Cazes, and W. Barth, “A user-friendly approach for
tuning parallel file operations,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’14). Piscataway, NJ,
USA: IEEE Press, 2014, pp. 229–236.

[30] J. Dennis and R. Loft, “Optimizing high-resolution climate variability experiments on
the Cray XT4 and XT5 systems at NICS and NERSC,” in Proceedings of the 51st Cray
User Group Conference (CUG), 2009.

[31] C. M. Herb Wartens, Jim Garlick, “LMT - The Lustre Monitoring Tool,”
https://github.com/chaos/lmt/wiki/, developed at Lawrence Livermore National Lab.

[32] A. Konwinski, J. Bent, J. Nunez, and M. Quist, “Towards an I/O Tracing Framework
Taxonomy,” in Proceedings of the 2nd International Workshop on Petascale data
storage: held in conjunction with Supercomputing ’07, ser. PDSW ’07. New York, NY,
USA: ACM, 2007. [Online]. Available: http://doi.acm.org/10.1145/1374596.1374610
pp. 56–62.

101

http://dl.acm.org/citation.cfm?id=795668.796733
http://doi.acm.org/10.1145/1374596.1374610


[33] “Stampede supercomputer,” http://www.tacc.utexas.edu/resources/hpc/stampede.

[34] M. Howison, Q. Koziol, D. Knaak, J. Mainzer, and J. Shalf, “Tuning HDF5 for Lustre
File Systems,” in Proceedings of 2010 Workshop on Interfaces and Abstractions for
Scientific Data Storage (IASDS10), Heraklion, Crete, Greece, Sep. 2010, lBNL-4803E.

[35] M. P. Mesnier, M. Wachs, R. R. Sambasivan, J. Lpez, J. Hendricks, G. R. Ganger, and
D. O’Hallaron, “//TRACE: Parallel Trace Replay with Approximate Causal Events,”
in FAST. USENIX, 2007, pp. 153–167.

[36] A. Aranya, C. P. Wright, and E. Zadok, “Tracefs: A File System to Trace Them All,”
in Proceedings of the 3rd USENIX Conference on File and Storage Technologies, ser.
FAST ’04. Berkeley, CA, USA: USENIX Association, 2004, pp. 129–145.

[37] X. Wu, K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth, “Probabilistic Communi-
cation and I/O Tracing with Deterministic Replay at Scale,” in ICPP. IEEE, 2011,
pp. 196–205.

[38] G. R. Ganger, “Generating representative synthetic workloads: An unsolved problem,”
in in Proceedings of the Computer Measurement Group (CMG) Conference, 1995, pp.
1263–1269.

[39] H. Luu, B. Behzad, R. Aydt, and M. Winslett, “A multi-level approach for understand-
ing i/o activity in hpc applications,” in Cluster Computing (CLUSTER), 2013 IEEE
International Conference on, 2013, pp. 1–5.

[40] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and R. Ross, “Un-
derstanding and Improving Computational Science Storage Access through Continuous
Characterization,” in Mass Storage Systems and Technologies (MSST), 2011 IEEE 27th
Symposium on, 2011.

[41] B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and M. Snir, “Improving Parallel I/O
Autotuning with Performance Modeling,” in Proceedings of the 23rd International Sym-
posium on High-performance Parallel and Distributed Computing, ser. HPDC ’14, 2014.

[42] “HDF5 Tutorial - Parallel Topics http://www.hdfgroup.org/HDF5/Tutor/parallel.
html,” Feb. 2011.

[43] H. Richardson, “High Performance Fortran: history, overview and current develop-
ments,” 1.4 TMC-261, Thinking Machines Corporation, Tech. Rep., 1996.

[44] B. Behzad, H.-V. Dang, F. Hariri, W. Zhang, and M. Snir, “Automatic generation
of i/o kernels for hpc applications,” in Proceedings of the 9th Parallel Data Storage
Workshop, ser. PDSW ’14. Piscataway, NJ, USA: IEEE Press, 2014. [Online].
Available: http://dx.doi.org/10.1109/PDSW.2014.6 pp. 31–36.

[45] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical optimization of
software and the ATLAS project,” Parallel Computing, vol. 27, no. 1–2, pp. 3–35, 2001.

102

http://www.tacc.utexas.edu/resources/hpc/stampede
http://www.hdfgroup.org/HDF5/Tutor/parallel.html
http://www.hdfgroup.org/HDF5/Tutor/parallel.html
http://dx.doi.org/10.1109/PDSW.2014.6


[46] Frigo, Matteo, Johnson, and Steven, “FFTW: An adaptive software architecture for the
FFT,” in Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing, vol. 3.
IEEE, 1998, pp. 1381–1384.

[47] B. Jeff, A. Krste, C. Chee-Whye, and D. Jim, “Optimizing matrix multiply using
PHiPAC: a portable, high-performance, ANSI C coding methodology,” in Proceedings
of the 11th international conference on Supercomputing, ser. ICS ’97, 1997. [Online].
Available: http://doi.acm.org/10.1145/263580.263662 pp. 340–347.

[48] R. Vuduc, J. Demmel, and K. Yelick, “OSKI: A library of automatically tuned sparse
matrix kernels,” in Proceedings of SciDAC 2005, Journal of Physics: Conference Series,
2005.

[49] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel, “Optimization of
sparse matrix-vector multiplication on emerging multicore platforms,” in Proceedings
of the 2007 ACM/IEEE conference on Supercomputing, ser. SC ’07, 2007. [Online].
Available: http://doi.acm.org/10.1145/1362622.1362674 pp. 38:1–38:12.

[50] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick, “Stencil Computation Optimization and Auto-tuning on
state-of-the-art Multicore Architectures,” in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, ser. SC ’08, 2008. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1413370.1413375 pp. 4:1–4:12.

[51] S. Williams, K. Datta, J. Carter, L. Oliker, J. Shalf, K. A. Yelick, and D. Bailey, “PERI:
Autotuning memory intensive kernels for multicore,” in Journal of Physics, SciDAC PI
Conference: Conference Series: 123012001, 2008.

[52] K. Seymour, H. You, and J. Dongarra, “A comparison of search heuristics for empirical
code optimization,” in Cluster Computing, 2008 IEEE International Conference on, 29
2008-oct. 1 2008, pp. 421 –429.

[53] H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand, “Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments,” in Proceedings of the 9th
Heterogeneous Computing Workshop, ser. HCW ’00. Washington, DC, USA: IEEE
Computer Society, 2000. [Online]. Available: http://dl.acm.org/citation.cfm?id=
795691.797922 pp. 349–.

[54] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms for parameter
optimization,” Evol. Comput., vol. 1, no. 1, pp. 1–23, Mar. 1993. [Online]. Available:
http://dx.doi.org/10.1162/evco.1993.1.1.1

[55] K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolutionary algorithm
for real-parameter optimization,” Evol. Comput., vol. 10, no. 4, pp. 371–395, Dec.
2002. [Online]. Available: http://dx.doi.org/10.1162/106365602760972767

[56] A. H. Wright, “Genetic Algorithms for Real Parameter Optimization,” in Foundations
of Genetic Algorithms. Morgan Kaufmann, 1991, pp. 205–218.

103

http://doi.acm.org/10.1145/263580.263662
http://doi.acm.org/10.1145/1362622.1362674
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dl.acm.org/citation.cfm?id=795691.797922
http://dl.acm.org/citation.cfm?id=795691.797922
http://dx.doi.org/10.1162/evco.1993.1.1.1
http://dx.doi.org/10.1162/106365602760972767


[57] A. Tiwari and J. K. Hollingsworth, “Online Adaptive Code Generation and Tuning,”
in Proceedings of the 2011 IEEE International Parallel & Distributed Processing
Symposium, ser. IPDPS ’11. Washington, DC, USA: IEEE Computer Society, 2011.
[Online]. Available: http://dx.doi.org/10.1109/IPDPS.2011.86 pp. 879–892.

[58] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini, P. Gschwandtner, T. Fahringer,
and H. Moritsch, “A Multi-Objective Auto-tuning Framework for Parallel Codes,”
in Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2388996.2389010 pp. 10:1–10:12.

[59] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-Szendy, R. Golding,
A. Merchant, M. Spasojevic, A. Veitch, and J. Wilkes, “Minerva: An
Automated Resource Provisioning Tool for Large-scale Storage Systems,” ACM
Trans. Comput. Syst., vol. 19, no. 4, pp. 483–518, Nov. 2001. [Online]. Available:
http://doi.acm.org/10.1145/502912.502915

[60] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch,
“Hippodrome: Running Circles Around Storage Administration,” in Proceedings
of the 1st USENIX Conference on File and Storage Technologies, ser. FAST
’02. Berkeley, CA, USA: USENIX Association, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1083323.1083341

[61] J. Strunk, E. Thereska, C. Faloutsos, and G. R. Ganger, “Using utility to provision
storage systems,” in Proceedings of the 6th USENIX Conference on File and
Storage Technologies, ser. FAST’08. USENIX Association, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1364813.1364834 pp. 21:1–21:16.

[62] Y. Chen, M. Winslett, S.-w. Kuo, Y. Cho, M. Subramaniam, and K. Seamons,
“Performance modeling for the panda array I/O library,” in Proceedings of the 1996
ACM/IEEE conference on Supercomputing (CDROM), ser. Supercomputing ’96, 1996.
[Online]. Available: http://dx.doi.org/10.1145/369028.369122

[63] Y. Chen, M. Winslett, Y. Cho, S. Kuo, and C. Y. Chen, “Automatic Parallel I/O Perfor-
mance Optimization in Panda,” in In Proceedings of the 10th Annual ACM Symposium
on Parallel Algorithms and Architectures, 1998, pp. 108–118.

[64] Y. Chen, M. Winslett, Y. Cho, and S. Kuo, “Automatic parallel I/O performance
optimization using genetic algorithms,” in High Performance Distributed Computing,
1998. Proceedings. The Seventh International Symposium on, jul 1998, pp. 155 –162.

[65] W. Yu, J. Vetter, and H. Oral, “Performance characterization and optimization of
parallel I/O on the Cray XT,” in Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on, april 2008, pp. 1 –11.

104

http://dx.doi.org/10.1109/IPDPS.2011.86
http://dl.acm.org/citation.cfm?id=2388996.2389010
http://dl.acm.org/citation.cfm?id=2388996.2389010
http://doi.acm.org/10.1145/502912.502915
http://dl.acm.org/citation.cfm?id=1083323.1083341
http://dl.acm.org/citation.cfm?id=1364813.1364834
http://dx.doi.org/10.1145/369028.369122


[66] B. Behzad, J. Huchette, H. V. T. Luu, R. Aydt, S. Byna, Y. Yao, Q. Koziol,
and Prabhat, “A framework for auto-tuning HDF5 applications,” in Proceedings
of the 22nd international symposium on High-performance parallel and distributed
computing, ser. HPDC ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2462902.2462931 pp. 127–128.

[67] J. Oly and D. A. Reed, “Markov model prediction of I/O requests for scientific appli-
cations,” in Proceedings of the 16th International Conference on Supercomputing, ser.
ICS ’02, 2002, pp. 147–155.

[68] M. Meswani, M. Laurenzano, L. Carrington, and A. Snavely, “Modeling and predicting
disk I/O time of HPC applications,” in High Performance Computing Modernization
Program Users Group Conference, ser. HPCMP-UGC, 2010, pp. 478–486.

[69] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, “Cost-intelligent application-specific data
layout optimization for parallel file systems,” Cluster Computing, vol. 16, no. 2, pp.
285–298, June 2013.

[70] S. Kumar, A. Saha, V. Vishwanath, P. Carns, J. A. Schmidt, G. Scorzelli, H. Kolla,
R. Grout, R. Latham, R. Ross, M. E. Papkafa, J. Chen, and V. Pascucci, “Characteriza-
tion and modeling of PIDX parallel I/O for performance optimization,” in Proceedings
of the International Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’13, 2013, pp. 67:1–67:12.

[71] P. Carns, K. Harms, W. Allcock, C. Bacon, R. Latham, S. Lang, and R. Ross, “Un-
derstanding and Improving Computational Science Storage Access through Continuous
Characterization,” in In Proceedings of 27th IEEE Conference on Mass Storage Systems
and Technologies, 2011.

[72] P. Carns, Y. Yao, K. Harms, R. Latham, R. Ross, and K. Antypas, “Production I/O
Characterization on the Cray XE6,” in Proceedings of the Cray User Group meeting
2013 (CUG 2013), May 2013.

[73] S. J. Kim, S. W. Son, W.-k. Liao, M. Kandemir, R. Thakur, and A. Choudhary,
“IOPin: Runtime Profiling of Parallel I/O in HPC Systems,” in SC Companion.
IEEE Computer Society, 2012. [Online]. Available: http://dblp.uni-trier.de/db/conf/
sc/sc2012c.html#KimSLKTC12 pp. 18–23.

[74] S. A. Wright, S. D. Hammond, S. J. Pennycook, R. F. Bird, J. A. Herdman, I. Miller,
A. Vadgama, A. Bhalerao, and S. A. Jarvis, “Parallel File System Analysis Through
Application I/O Tracing.” Comput. J., vol. 56, no. 2, pp. 141–155, 2013.

[75] “Pablo Research Group,”
http://www.renci.org/focus-areas/project-archive/pablo#.

[76] “Lanl-trace,” http://institute.lanl.gov/data/software/#lanl-trace.

105

http://doi.acm.org/10.1145/2462902.2462931
http://dblp.uni-trier.de/db/conf/sc/sc2012c.html#KimSLKTC12
http://dblp.uni-trier.de/db/conf/sc/sc2012c.html#KimSLKTC12
http://www.renci.org/focus-areas/project-archive/pablo#
http://institute.lanl.gov/data/software/#lanl-trace


[77] J. Logan, S. Klasky, J. Lofstead, H. Abbasi, S. Ethier, R. Grout, S.-H. Ku,
Q. Liu, X. Ma, M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “Skel:
Generative software for producing skeletal i/o applications,” in Proceedings of the 2011
IEEE Seventh International Conference on e-Science Workshops, ser. ESCIENCEW
’11. Washington, DC, USA: IEEE Computer Society, 2011. [Online]. Available:
http://dx.doi.org/10.1109/eScienceW.2011.26 pp. 191–198.

[78] ADIOS 1.5 user’s manual, “http://users.nccs.gov/ pnorbert/adios-usersmanual-
1.5.0.pdf.”

[79] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel I/O Prefetching
Using MPI File Caching and I/O Signatures,” in Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, ser. SC ’08. Piscataway, NJ, USA: IEEE Press,
2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=1413370.1413415 pp.
44:1–44:12.

[80] E. Smirni and D. A. Reed, “Lessons from Characterizing Input/Output Bahavior of Par-
allel Scientific Applications,” International Journal on Performance Evaluation, vol. 33,
pp. 27–44, 1998.

[81] H. Simitci and D. A. Reed, “A Comparison of Logical and Physical Parallel I/O Pat-
terns,” International Journal of High Performance Computing Applications, vol. 12, pp.
364–380, 1998.

[82] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’IO: A Grammar-based
Approach to Spatial and Temporal I/O Patterns Prediction,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014. [Online]. Available:
http://dx.doi.org/10.1109/SC.2014.56 pp. 623–634.

[83] J. He, J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, and X.-H.
Sun, “I/O Acceleration with Pattern Detection,” in Proceedings of the 22Nd
International Symposium on High-performance Parallel and Distributed Computing,
ser. HPDC ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2462902.2462909 pp. 25–36.

[84] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for Large Computing
Clusters,” in Proceedings of the 1st USENIX Conference on File and Storage
Technologies, ser. FAST ’02. Berkeley, CA, USA: USENIX Association, 2002. [Online].
Available: http://dl.acm.org/citation.cfm?id=1083323.1083349

[85] R. B. Gramacy and H. K. H. Lee, “Adaptive design and analysis of supercomputer
experiments,” Technometrics, vol. 51, no. 2, pp. 130–145, 2009.

106

http://dx.doi.org/10.1109/eScienceW.2011.26
http://dl.acm.org/citation.cfm?id=1413370.1413415
http://dx.doi.org/10.1109/SC.2014.56
http://doi.acm.org/10.1145/2462902.2462909
http://dl.acm.org/citation.cfm?id=1083323.1083349

	List of Figures
	List of Tables
	List of Algorithms
	CHAPTER 1 Introduction
	Dissertation Organization

	CHAPTER 2 Background
	Parallel I/O
	HPC Platforms
	Application I/O Kernels

	CHAPTER 3 Taming Parallel I/O Complexity with Autotuning
	Autotuning Framework
	H5Evolve: Sampling the search space
	H5Tuner: Setting I/O parameters at runtime

	Experimental Setup
	Scale and dataset sizes
	Parameter space

	Results
	Tuned I/O performance results
	Tuned configurations
	Tuned I/O performance across platforms
	Tuned I/O for different benchmarks
	Tuned I/O at different scales

	Conclusions

	CHAPTER 4 Improving Parallel I/O Autotuning with Performance Modeling
	Experimental Setup
	Empirical Performance Models
	Nonlinear regression model preliminaries
	Development of I/O performance models

	Integration of Performance Models in Autotuning Framework
	Experimental Results
	Performance models vs. Genetic algorithms
	Testing on space similar to training
	Testing on a larger space
	Testing on a different application: VORPAL-IO
	Testing on larger scale
	Large-scale results
	Overall improvement
	Analysis of the interdependencies

	I/O Interference
	Conclusions

	CHAPTER 5 A Multi-Level Approach for Understanding I/O Activity in HPC Applications
	Framework
	Evaluation
	VPIC-IO Benchmark
	Simple HDF5 Benchmark

	Conclusions

	CHAPTER 6 Automatic Generation of I/O Kernels for HPC Applications
	Framework
	I/O Tracing: Recorder
	Trace Merging
	Code Generation

	Setup and Evaluation Results
	Correctness of the framework
	Quality of the generated code

	Conclusions

	CHAPTER 7 Pattern-driven Parallel I/O Tuning
	I/O Autotuning Framework
	I/O Traces
	Extraction and Identification of High-level I/O Patterns

	Setup and Evaluation Results
	An application with the same I/O pattern
	An application with similar I/O pattern
	A new application

	Conclusions

	CHAPTER 8 Related Work
	Autotuning
	I/O Modeling
	I/O Recording
	I/O Replaying
	I/O Patterns

	CHAPTER 9 Concluding Remarks
	Comparison of the approaches
	Contributions
	Future Research Directions

	REFERENCES

