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ABSTRACT

The rise of urban environments has created issues with localized flooding and water quality
due to changes in runoff caused by increasing impervious area. Green infrastructure offers an
alternative method of runoff reduction, by using natural processes to infiltrate, store, and treat
runoff at its source. In particular, green roofs can promise multiple benefits in terms of runoff
reduction, air quality improvement, and mitigation of the urban heat island effect, while taking
up little additional land. However, few consistent standards exist to help designers and planners
decide whether or not a green roof is performing as expected. This research provides a reliability
analysis-based methodology that can be used to evaluate green roof runoff reduction. Green roof
failure is characterized using a visual aid typically used in earthquake engineering: fragility
curves. The 2D distributed surface water-groundwater coupled program MIKE SHE was used to
model the runoff from a simple intensive green roof located on the University of Illinois at
Urbana-Champaign (UIUC) campus under different storm scenarios. The results from these runs
were then input into the reliability analysis software FERUM in order to calculate the probability
of failure under the first order reliability method (FORM), second order reliability method
(SORM), and Monte Carlo analyses. The fragility curves generated show the efficiency in runoff
reduction provided by a green roof compared to a conventional roof under different storm
scenarios. The use of reliability analysis as a part of green roof design code can help test for
weaknesses and areas for improvement pertaining to peak runoff reduction. It can also help to

support the design of code that is more resilient and testable for failure than current standards.
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CHAPTER 1: Introduction

The issue of urban stormwater has become increasingly pertinent in the developed
world, with major cities across the globe seeking technological ‘silver bullets’ to the twin
threats of flooding and water contamination. Urbanization has led to a rapid increase in the
area of impermeable surface within watersheds. The excess runoff generated by additional
impermeable surface can cause extensive flooding and erosion due to the high velocity of the
water channeled off roads and rooftops. Urban stormwater also generates non-point source
pollution issues, ranging from sediment overloading in rivers and streams to contamination
from antifreeze, oil, and heavy metal particulates washed off roads (CWEP, 2015). Older
cities such as Chicago present additional challenges: because of their combined sewer
systems, excess stormwater can lead to combined sewer overflows (CSOs), which wash

untreated sewage into watercourses such as the Chicago River (MWRD, 2014).

Green infrastructure has been touted as an effective solution to the problems created
by increased stormwater runoff. In particular, it has been suggested as a feasible alternative
to traditional ‘gray infrastructure’ (engineered) treatment. Green infrastructure makes use of
natural processes provided by vegetation and soil to filter and store excess water (CNT,
2010). For older, more established cities, the development of green belts or rain gardens at
ground level might not be a feasible alternative, particularly in areas that already have
significant infrastructure in place. Green roofs provide an attractive alternative for highly
urbanized areas by making use of an under-utilized and highly impervious area of residential
and industrial buildings: the roof. From Chicago to Zurich, from Hong Kong to London,
green roofs are anticipated to help provide an inexpensive solution to many of the pollution

and environmental degradation issues facing large cities (Klinkenborg, 2009).

However, the efficiency of green roofs in reducing peak hydrograph flow is
characterized by wide variability and uncertainty. In their review paper, Li and Babcock
(2014) indicated that green roofs reduce peak flow rates by between 22 and 93%, indicating

deep uncertainty in green roof performance. Among other factors, green roof runoff



reduction is affected by vegetation type, planting medium depth and type, antecedent
moisture conditions, and the intensity and duration of storm events. Literature reporting
which factors are most important for smaller storms versus larger ones, or how sensitive
existing model parameters are to change, is sparse. Because of the nascent nature of green
infrastructure as a method for regulating peak discharge, there are few national codes that
specify threshold efficiency for green roofs. While the Municipal Water Reclamation District
of Greater Chicago (MWRDGC) has defined some guidelines for green infrastructure design,
these guidelines are based off volumetric detention rather than peak runoff (State of Illinois
v. MWRDGC, 2014). The Illinois Environmental Protection Agency (IL-EPA) (2010) report
on green infrastructure efficiency compiled suggested recommendations at the county level
in an attempt to create a coherent set of standards for Illinois as a whole (Jaffe et al., 2010).
The recommendations for peak discharge generally suggest a maximum allowable runoff of
0.04 cubic feet per second (cfs)/acre for the 2-year, 24-hour storm and 0.1 cfs/acre for the

100-year, 24-hour storm.

These recommendations, however, are static in time; they do not allow a comparative
approach to green roof evaluation in the context of different design storms. According to
studies conducted by Holmann-Dodds et al. (2003), green infrastructure is most effective for
smaller-scale storms that mostly produce runoff from impervious areas with minimal runoff
from pervious areas. Studies have been conducted in the field investigating the reduction of
runoff, improvement in water quality, and increase in storage created by different types of
green infrastructure under different storms (Davis, 2008; Dietz and Clausen, 2005).
However, a probabilistic analysis of green infrastructure ‘failure’ independent of storm

intensity has not yet been attempted, to the author’s knowledge.

An alternative analysis framework is suggested, which makes use of reliability
analysis tools to create fragility curves, which create a visual reference of the probability of
failure of a system or component under different forcing intensities. Bai et al. (2009)
investigated the use of fragility curves in comparing the probability of failure of a building
under different damage criteria (ranging from insignificant to critical damage) and different
earthquake intensities. In this work, a similar approach is suggested in investigating the

efficiency of green roofs in reducing peak runoff compared to storms of different return



periods. This work presents a quantitative reliability analysis-based assessment of green roof
failure under different storm scenarios. As such, it aims to answer the following motivating

research question:

How might we quantify the efficiency in peak runoff reduction of green roofs?

In answering this research question, this thesis is organized as follows: Chapter 2
presents background on green infrastructure and green roofs in particular; Chapter 3
describes materials and methods for quantifying peak runoff from green roofs; Chapter 4
describes details of reliability analysis; Chapter 5 presents results of green roof modeling
efforts and fragility curves; Chapter 6 provides policy implications and broader context; and

Chapter 7 summarizes high-level conclusions.



CHAPTER 2: Background

The traditional approach to runoff management and control has been to consider
stormwater as a resource that has no value, “is environmentally benign, and adds little to the
amenity... of an urban environment” (Wong, 2006). This attitude has created a system of
highly efficient engineered drainage systems to collect and rapidly remove stormwater. The
increased runoff rates and ‘flashy’ hydrographs created by urban development have created
issues with flooding, erosion, and water quality. In contrast, green infrastructure aims to
foster “an interconnected network of natural areas... that conserves ecosystem values and
functions, sustains clean air and water, and provides a wide array of benefits to people and
wildlife” (Benedict and McMahon, 2006). In other words, the main focus of green
infrastructure is the integration of natural elements that help to provide key ecosystem
services (The Conservation Fund, 2011). The umbrella title of ‘green infrastructure’
encompasses a wide range of engineered and non-engineered practices including rain

gardens, bioswales, permeable pavements, and green roofs.

Multiple studies indicate that a combination of green and gray (traditional) infrastructure
is critical to expanding existing sewer services at a reasonable cost without creating adverse
environmental impacts. In particular, Wang et al (2013) suggest that implementing a
combined green infrastructure approach before the construction of gray alternatives (such as
separated sewers) leads to better overall local water quality. However, they also note that
increased imperviousness and higher local rainfall intensity can seriously constrain the
effectiveness of green infrastructure. The changes imposed by climate change and increasing
urbanization mean that a combination of green and gray infrastructure changes is likely
needed for sustainable urban development. Just as importantly, an understanding of the long-
term reliability of different green infrastructure components is also required to better
integrate them into existing sewer designs. Real-life monitoring studies conducted in New
York City indicate that green infrastructure can play a significant role in reducing stormwater
runoff and improving water quality in a highly urbanized environment (City of New York

DEP, 2015).



According to the Center for Neighborhood Technologies (CNT) 2010 Guide to Green
Infrastructure, a green roof is “a rooftop that is partially or completely covered with a
growing medium and vegetation planted over a waterproofing membrane”. Green roofs
typically also include root barriers, drainage, and irrigation features, as illustrated in Figure 1.
There are two main types of green roofs, as characterized by the depth of the planting media:
extensive (two — six inches), and intensive (over six inches) (Oberndorfer et al., 2007). Plant
species selected for green roofs are typically native to the local environment, and can have
additional beneficial properties such as drought resistance. Species are typically chosen to
avoid the need for irrigation (Dunnett and Kinsbury, 2008). Sedums and other succulents are
typical choices for extensive green roofs due to their drought-resistance, ability to store
moisture, and shallow taproots (Dunnett and Nolan, 2004; Getter and Rowe, 2008).
However, researchers are investigating the viability of over 100 native and non-native plant
species for extensive, semi-intensive, and intensive green roofs at the Chicago City Hall
green roof. This increased variety in rooftop plants is desirable as a source of increased
biodiversity and an attraction to pollinators such as bees (Yocca, 2002). Evidence shows that
improved biodiversity does somewhat improve the survival of plant species besides grasses

and forbs (Nagase and Dunnett, 2010).
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Figure 1. This diagram of the University of Illinois Business Instructional Facility green roof
shows the layout of a typical green roof (based on Hanna Holloway et al., 2009).



Green roofs have been repeatedly proven to have multiple useful benefits in terms of
ecological function, air and water quality, temperature control, roof maintenance, and runoff
reduction (Oberndorfer et al., 2007). Up to 32% of the horizontal surface of a typical built-up
area can be rooftops, making green roofs a potentially valuable addition to a properly
managed urban environment (Frazer, 2005). Vegetation helps to eliminate air-borne
pollutants through the uptake of chemical compounds through their stomata, interception of
particulates with their leaves, and the breakdown of organics in plant tissue. In fact, it is
estimated that nitrous acid — a form of dissolved nitrogen — can be reduced by as much as
21% above a green roof (Rowe, 2011). Air quality is also improved by the decrease in
building temperatures that occurs around green roofs, enabling better air flow and mixing in
the surrounding areas (Baik et al., 2012). The impact of green roofs on the urban head island
effect can be significant, helping to decrease ambient air temperatures on a large scale
(Gagliano et al., 2015; Santamouris, 2015). Green roofs have also been proven to help reduce
building energy costs by reducing cooling requirements within the building during peak

summer conditions (Niachou et al., 2001; Virk et al., 2015).

Green roofs are particularly valuable in densely populated urban environments because
they do not require the large amounts of space needed for traditional gray infrastructure, such
as storage reservoirs and ponds (Mentens et al., 2005). Green roofs capture stormwater
during rainfall events within their porous soil planting medium. Extensive green roofs have
been shown to effectively act like storage reservoirs, capturing water until the soil was
saturated, and then releasing water in a manner similar to a traditional roof (Carter and
Rasmussen, 2006). Green roofs can retain anywhere between 40 to 80% of annual
precipitation (CNT, 2010). Indeed, research on experimental plots in Atlanta, Georgia,
indicates that green roofs effectively capture the majority of runoff from smaller storms
(Carter and Rasmussen, 2006). Green roofs also help to decrease net runoff volume by
storing and releasing water to the atmosphere via plant evapotranspiration. During the
summer, up to 15 cm evapotranspiration has been observed from green roof experimental
research stations (Marasco et al., 2014). Besides simply increasing overall storage capacity
and reducing runoff volume, green roofs help to delay peak storm runoff, significantly

reducing the risk of overloading existing stormwater conveyance facilities (Mentens et al.,



2005; Moran et al., 2005; Getter and Rowe, 2006). Green roofs can delay peaks from
between 1.5 to 4 hours, compared to roofs with no vegetation. Reducing and delaying the

stormwater peak also helps to reduce overall flows off the roof, sometimes by as much as

87% (Getter and Rowe, 2006).

Various theoretical studies indicate that green roofs can effectively help to mitigate the
negative impacts of increasing impervious area due to urbanization. Carter and Jackson
(2007) created a simple hydrologic model using experimental data collected from real green
roofs. This model was used to study the impact of multiple green roofs in and urban
environment. At the basin scale, runoff reduction can approach 35% when all available
surfaces are converted into green roofs. Consequently, green roofs can be a significant
supplement to the storage capacity of traditional gray infrastructure. Deutsch et al. (2005)
concluded that if 20% of the suitable buildings in Washington D.C. hosted a green roof, the

city would increase its stormwater storage capacity by almost 71 million L.

However, these stormwater benefits can vary widely. According to Getter and Rowe
(2006), green roofs can effectively reduce runoff by 60 to 100%. Li and Babcock (2014) state
that lab and field experiments have shown that green roofs can reduce runoff volume by 30 to
86% and reduce peak flow rate by 22 to 93%. The large amount of variability in green roof
efficiency is caused by a variety of factors. Analyses conducted by Holman-Dodds et al.
(2003) show that both the impact of urbanization and the mitigating potential of low impact
developments (LIDs) are dependent on the underlying soil texture. In addition, they conclude
that mitigation is strongly dependent on storm size. LIDs typically show the greatest
mitigating ability for smaller storms with shorter return periods (Holmann-Dodds et al.,
2003; Carter and Rasmussen, 2006; Davis, 2008). LIDs can completely compensate for
development in areas with highly infiltrative soils for events that deposit less than 1 inch of
rainfall. However, LID capabilities are greatly reduced during high intensity events.
Antecedent soil moisture conditions and inter-storm duration also play important roles in

green roof runoff reduction (Carter and Rasmussen, 2006; Davis, 2008).

A series of experiments carried out by Davis (2008) on bioretention cells support
these conclusions. In almost one-fifth of the observed cases, the storm events were small

enough that the entire inflow volume was captured. In other events, typical flow peak
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reductions of up to 63% were noted. However, the same impacts of soil type and storm size
were noted. The antecedent conditions of the bioretention cell were also found to have an
impact on hydrological performance. While the effect for larger storms was minimal,
antecedent moisture conditions had a significant effect for smaller storms. Similarly, Wilson
et al. (2015) noted that large reductions in peak flow in a green-gray combined system could
be the result of a significantly over-designed system, coupled with highly permeable local

soils.

Roof slope and media depth also have significant impacts on the efficiency of green
roofs in particular (VanWoert et al., 2005). Decreasing roof slope helps to increase the
amount of water retained on the roof surface, thus helping to reduce peak runoff volume.
Similarly, deeper media green roofs create a larger retention area for water, helping to reduce
the hydrograph peak. Experimental studies also indicate that the addition of vegetation both
reduces the total amount of stormwater runoff and extends hydrograph duration. However,
the impact of the vegetation itself is fairly small compared to the effects of the growing

media depth and type (VanWoert et al., 2005).

Drought stress can also impact green roof efficiency. Indeed, some predictions show
green roof runoff increasing by as much as 50% in the future as a result of vegetation stress
induced by climate change, although certain plant species will likely be more affected than
others (Vanuytrecht et al, 2013). Vanuytrecht et al. (2013) investigated the drought stress and
runoff from green roofs containing grass-herb and sedum-moss vegetation under different
current and predicted climate scenarios. Overall, drought stress of the herb-grass roofs was
more than twice that of the sedum-moss roofs. However, stormwater runoff reduction was
higher on grass-herb roofs than on sedum-moss roofs, demonstrating a tradeoff between
drought resilience and runoff reduction. Vanuytrecht et al. (2013) concluded that this tradeoff

should be considered in the choice of plants for green roofs.

Because of variations in climate, vegetation, and soils, green infrastructure is not
easily implemented using a ‘one-size-fits-all” methodology developed for the entire country.
Gallo et al (2012) suggest that although LIDs are effective to some extent in all areas of the
country at managing small events, their relative impacts can vary widely. Furthermore, the

ability of LIDs to manage large return-period events changes drastically from one part of the
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country to the next. For instance, Portland, Oregon, has both smaller and less intense storms
than most cities, making LIDs more effective in managing the city’s largest storm events.
However, changing the designed infiltration rate of the soil mix could significantly impact

the ability of different regions to manage storms.

Multiple computer modeling studies have been created to analyze the ability of green
roofs to manage stormwater. Models run the range from simple water-balance analyses to 1-
D modeling studies to 2-D integrated flow mapping (Jarrett et al, 2007; Hilten et al., 2008;
Jaber and Shukla, 2012; Obeid, 2014; William and Schmidt, 2015). Researchers at
Pennsylvania State University used a simple spreadsheet approach to model the retention of
stormwater on a green roof at an annual time-step, investigating the impact of the planting
medium thickness on annual stormwater retention (Jarrett et al., 2007). Several studies have
used the 1-D modeling program HYDRUS to accurately simulate green roof performance.
Hilten et al. (2008) used HYDRUS to test the performance of a single modular green roof to
simulate runoff based on climatic data collected from Athens, Georgia. The study confirmed
that the rainfall depth strongly influences the performance of green roofs, although a rigorous
reliability analysis was not conducted based on the results. Similarly, Obeid (2014) used
outputs from a HYDRUS 1-D model calibrated using data from Champaign, Illinois, to

understand the impact of green roofs on runoff processes at a watershed scale.

The more complex 2-D distributed coupled surface water-groundwater model MIKE
SHE has been used to inform several studies in the fields of water resources and
sustainability (Jaber and Shukla, 2012; Choi and Schmidt, 2013; William and Schmidt,
2015). More directly, MIKE SHE can be used to incorporate spatial elements into the
modeling of green infrastructure on a larger scale. Christensen (2006) used MIKE SHE and
its associated river routing program, MIKE 11, to analyze the impact of sizing and
distribution of rain gardens within an urban environment. Similarly, Trinh and Chui (2012)
used MIKE SHE to simulate the impact of urban restoration on peak runoff and runoff
magnitude. This analysis employs MIKE SHE to model a single green roof in a modular
fashion that can be integrated into a larger network analysis framework. Using techniques

from reliability analysis to generate fragility curves creates the opportunity to better



understand the effects of green roof variability on runoff mitigation, as well as to focus on

how green roof designs can be improved.
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CHAPTER 3: Material and methods

3.1 General methodology

To create the fragility curves for a single green roof, data from a green roof located on
the University of Illinois at Urbana-Champaign (UIUC) campus was used as a model input.
Data on vegetation and soil characteristics, weather, and runoff were input into the modeling
software MIKE SHE. The MIKE SHE model was then calibrated using data taken from high
intensity short duration storms, and from low intensity long duration storms. The calibration
was based on matching the hydrograph peak and the rising limb of the hydrograph rather
than the tails, since peak runoff was the focus of the analysis. The calibrated model was then
used to generate output hydrographs for 26 different variable scenarios under different storm
events. Regression analysis was used to create an algebraic expression relating the runoff
from the green roof to the different variables being considered for each storm (the
“demand”). At the same time, a version of the MIKE SHE model with parameters similar to
impervious cover was used to simulate the runoff that would occur on the conventional roof
(the “capacity”). Finally, the demand function, capacity, and variable uncertainty analysis
were input to the MATLAB-based reliability analysis model FERUM to calculate the
probability of failure using FORM, SORM and Monte Carlo simulation. Figure 2 shows a
diagram of the general methodology. It is important to note that this method is flexible: it can
be adapted for different types of green infrastructure and use different models to simulate
green infrastructure. Although MIKE SHE was chosen in this case, other models could also
be used. MIKE SHE was employed in this case because the program is easily scalable to

larger scenarios.
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Figure 2. The modeling effort combined hydrologic data with vegetation parameters to
model demand (runoff from the green roof). Reliability analysis combined the modeled
demand functions with analysis of capacity (runoff from a simulated conventional roof) to
determine the probability of failure.

3.2 Study location and monitoring system

Located on the south side of the UIUC campus, the Business Instructional Facility
(BIF) prides itself on being one of the first LEED platinum certified buildings on campus.
One component of the building’s green vision was the development and implementation of a
green roof on the east side of the building, as shown in Figure 3. Commissioned in late 2008,
the roof is comprised of four monolithic vegetated beds that cover a total of 4000 ft*. Each of
the beds contains nine species of sedums, herbaceous plants, and native grasses as shown in
Table 1. The roof was intended to both count towards the building’s LEED accreditation and
allow for the continued monitoring and scientific study of the roof over time (Hanna
Holloway, 2009; Hanna Holloway et al., 2009; Obeid, 2014). For this reason, the roof was

12



equipped with a range of sensors to measure temperatures, water quality, soil moisture, and

radiation.

Table 1. Many plant species are found on the Business Instructional Facility green roof at the

University of Illinois at Urbana-Champaign.

Name Common Name Plant type

Allium Cernuum Nodding wild onion Grass

Buchloe Dactyloides ‘Sharps Improved’ Buffalo grass Grass
Dianthus Deltoides Maiden pink Herbaceous perennial

Koeleria Glauca Prairie June grass Grass

Sedum Acre Goldmoss stonecrop Sedum

Sedum Kamtschaticum Stonecrop Sedum

Sedum Spurium ‘Bailey’s Gold’ Bailey’s gold stonecrop Sedum

Sedum ‘Ruby Glow’ Ruby glow stonecrop Sedum
Thymus Serphyllum ‘Coccineus’ Creeping thyme Herbaceous perennial

13
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Figure 3. This plan view diagram of the Business Instructional Facility green roof shows the
locations of sensors (reproduced from Holloway, 2009) [courtesy of UIUC campus Facilities
and Services].
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The planting medium depth is 20 cm (8 inches), meaning the roof is classified as
intensive. However, the monolithic structure and lower maintenance needed for this roof
causes it to be further classified as simple intensive. The planting medium is engineered
LiteTop™ media with specifications as shown in Table 2. Sensors on the green roof measure
air temperature, humidity, wind speed, rainfall, incoming and reflected radiation, and
volumetric moisture content. An additional conventional roof is located 4.3 m above the
green roof and hosts an additional weather station, water-quality sampler, and temperature
probes, as well as pressure transducers for measuring runoff. Further details of the placement

and calibration of the sensors can be found in Hanna Holloway et al. (2009).

Table 2. The green roof planting medium LiteTop™ has a range of physical properties [data

courtesy of American Hydrotech, Inc.].

Grain Size Distribution

clay fraction <1%
passing #200 sieve 1-3 %
passing #60 sieve 5-25%
passing #18 sieve 20-50 %
passing 1/8-inch sieve 55-95 %
passing 3/8-inch sieve 90-100 %
Density

Application Density 0.6-1.1 g/em’
Saturated Density 0.9 - 1.4 g/em’
Dry Density 0.5-1.0 g/cm’
Water & Air Management (% vol.)

saturated water capacity >30 %
saturated air content >10 %
Saturated Hydraulic Conductivity >(.6 mm/min
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3.3 Data processing

3.3.1 Precipitation

On the BIF green roof, precipitation is measured using a tipping bucket gage. As a
result, the one-minute interval data collected by the precipitation gage on the green roof
essentially measure the amount of time it takes to collect 0.1 inches of rainfall. However, the
intensity, or precipitation rate, is the required input to MIKE SHE. To calculate the intensity
(7), a simple conversion can be used as shown in Equation 1, where 4P is the change in

precipitation collected over a given time A¢.

_ A_P PP Equation 1
At t,—t

i

3.3.2 Evapotranspiration

Reference evapotranspiration (ET) was calculated using the Food and Agriculture
Organization (FAO) approximation of the Penman-Monteith equation (FAO, 2015) as shown

in Equation 2.

0.408A(R,, — G) + y%uz (e —e,) Equation 2

A+y(1+ 0.34u,)

ETO =

where ET) is reference evapotranspiration [mm/day]; R, is net radiation at the crop surface
[MJ/rnzday]; G is the soil heat flux density [MJ/rnzday]; T is the air temperature [°C]; u> is
the wind speed at 2 m height [m/s]; e; is the saturation vapor pressure [kPa]; A is the vapor
pressure curve slope [kPa/°C]; and y is the psychrometric constant [kPa/°C].
Evapotranspiration calculations using the mean flux profile, eddy covariance, or Bowen ratio
method are in general more accurate than the Penman-Monteith equation in Equation 2,
especially for surfaces that are not well-watered (e.g., completely wet). However, the FAO
Penman-Monteith method allows for greater flexibility in gap-filling missing data without
loss of overall accuracy. Overall, American Society of Civil Engineers (ASCE) and European
studies have indicated that the FAO Penman-Monteith method is relatively accurate and

consistent in both arid and humid environments (FAO, 2015). Although the equation best

16



describes evapotranspiration from a uniform well-watered grassy surface, it is considered
acceptable for the purpose of calculating reference ET as an input for the MIKE SHE model.
The reference ET is then used in conjunction with information about vegetation rooting

depths and leaf area index (LAI) to compute the true ET, as discussed in Section 3.4.1.

The soil heat flux (G) can be calculated for each time-step from data collected from
the soil temperature probes on the BIF green roof as described in Equation 3. The saturated
vapor pressure (ey) is calculated as a function of air temperature as described in Equation 4.
As described in the FAO guidelines, the actual vapor pressure can be calculated as shown in
Equation 5. Finally, the relationship between windspeed at a given measured height (/) and
u,1is given in Equation 6. Data taken from the Champaign 9 SW Station within the National
Oceanic and Atmospheric Administration (NOAA) Quality Controlled Local Climatic Data
database (NCDC, 2014) were used to gap-fill missing windspeed data.

pcdAT Equation 3
6="x

where p is the soil density;
c is the specific heat capacity;
d is the soil depth;

AT is the difference in soil temperature within time At

e, = 0.6108e " /T+2373 Equation 4

where T is the air temperature in °C

€s Equation 5
= RH
Ca 100

where RH is the percent relative humidity

i 4.87uy Equation 6
> In(67.8h — 5.42)

where uy, is the windspeed at height h above the

ground
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3.4 Modeling in MIKE SHE

MIKE SHE is a 2D distributed surface water-groundwater coupled modeling program.
Modeling inputs are required to accurately model evapotranspiration (E7), infiltration and
percolation, root uptake, subsurface flow, and drainage. Precipitation can be input as a
uniform or spatially distributed time series by the user. ET inputs include net radiation (Rn),
wind speed (u), vegetation leaf area index (LAI) and rooting depth (RD), soil and air
temperature (7), and relative humidity (RH). The horizontal and vertical hydraulic
conductivities of the LiteTop™ (kzierop), gravel (kgraver), and water retention panel (k) are
needed for infiltration and subsurface flow. Finally, the initial water table height (related to
soil moisture content) (%), the drainage elevation, and the drainage constant (Cg ) are
required for the model to accurately model outflow from the system. Figure 4 shows a

diagram of MIKE SHE inputs.

I — ET:

Ra, U,LAL R4, T,RH

Infiltration and

percolation:

ksoit,d, h

> =)

Horizontalflow: keet, Cénin h Outflow: ke, Cérsia, h

Figure 4. Inputs to the MIKE SHE model include evapotranspiration variables and soil and
vegetation parameters.
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While MIKE SHE has been used for both large scale (William and Schmidt, 2015) and
small scale (Choi and Schmidt, 2013) modeling of diverse watersheds, it is not appropriate
for analyzing small scale pore processes. In characterizing the coupling between surface

water and groundwater in a green roof, MIKE SHE remains a useful and appropriate tool.

3.4.1 Evapotranspiration

To model evapotranspiration (ET) in MIKE SHE, the reference evapotranspiration,
leaf area index (LAI) and plant rooting depth (RD) must be known. Plant-based ET is
modeled using an empirical formula developed by Kristensen and Jensen (1975), which has
been shown to work especially well in modeling evapotranspiration in temperate climates.
The two-layer UZ/ET formulation developed by Yan and Smith in 1994 is used to divide the
soil into a root-uptake zone and an infiltration zone. Because the temperatures used in this
analysis occur above 0°C, only evapotranspiration due to canopy interception and

evaporation from the canopy, plant transpiration, and soil evaporation are considered.

In modeling the BIF green roof, it was assumed that plant roots would penetrate as deep
as possible in order to obtain water. This assumption is validated by the fact that companies
that install green roofs typically install a root barrier beneath the water retention and drainage
mats to protect the underlying roof from damage. Thus, RD is directly correlated with the
total depth of the planting medium. The LA/ should change over the course of the year;
although some of the species installed at the study site are evergreen, at least five of them die
or are cut back during the winter. These plant growth and maintenance cycles significantly
decrease the amount of plant cover. However, since the storms used during calibration of the
MIKE SHE model occur during the time of year when most of the vegetation will have
regenerated, this change in plant cover with growth cycle was not a concern during
calibration. Additionally, LAl was input into FERUM as a random variable during the
reliability analysis, allowing its importance to be investigated. The vegetation is assumed to
be uniformly distributed across each of the four beds, with no vegetation in the intervening

gravel.
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3.4.2 Infiltration and subsurface flow

Although green roofs make use of natural processes to reduce runoff, they are still highly
engineered structures. As a result, some simplifications were made regarding the processes
governing water flow into and through the LiteTop™ media, gravel, water retention panel,
and water drainage mat. The LiteTop™ media and gravel were modeled in both the
unsaturated and saturated modules of MIKE SHE, since they can act within both regimes.
Within the unsaturated zone, the media was discretized into 0.01 m deep cell sizes, and each
medium had its own soil moisture retention curve and saturated hydraulic conductivity, as
described below. Within the saturated zone, the medium was assumed to have the same
vertical and horizontal hydraulic conductivity, although these parameters were distinct
between the gravel and the LiteTop™. However, the specific yield (n—6;) was considered

the same for both the gravel and the LiteTop™, for the sake of modeling simplicity.

In practice, the water retention and water drainage mats are only a few mm to a few cm
thick. Modeling these thicknesses in MIKE SHE could cause severe computational
difficulties due the small scales required to discretize and categorize the saturated and
unsaturated zones in the model. Consequently, the water retention panel and water drainage
mat were modeled as a single combined layer within the unsaturated zone. This layer was
one of the most significant areas for calibration, since it was modeling a highly engineered
surface, which has both a high hydraulic conductivity and a fairly high specific yield.
Because of the nature of water movement through the drainage mat, the mat layer was
assumed to be anisotropic, and the horizontal and vertical conductivities calibrated

separately.

The modeling of infiltration and flow in the unsaturated zone is governed by the
Richards equation (as shown in Equation 7):

) oY Equation 7
5 = 50 (5 1)

Richard’s equation relates the change in soil moisture content with time (66/0t) to the soil
hydraulic conductivity (k) and the change of pressure head with depth (dy/0z). The Richards
equation inputs for MIKE SHE include the saturated hydraulic conductivity of the soil and a
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soil water retention curve. For this particular model, the requisite water retention curve was
established using the van Genutchen approximation (1980). The van Genutchen
approximation requires user input of soil suction pressure, saturated water content, and
residual water content. The saturated water content and saturated hydraulic conductivity of
the LiteTop™ were established from estimates given by the manufacturer. Similarly,

estimates for the same parameters were obtained from available literature for gravel.
3.4.3 Drainage

The subsurface drainage module in MIKE SHE was used to simulate natural and
artificial drainage systems that cannot be modeled by the typical MIKE 11 river modeling
program. MIKE SHE contains two different simulation options, which can be used to solve
for saturated zone flow and drainage: Preconditioned Conjugate Gradient (PCG) and
Successive Over-relaxation Package (SOR). Since SOR is typically used in modeling the
flow of groundwater in highly sloped terrain, such as a hillside, PCG was selected as the
more appropriate model. The PCG drainage model includes options to specify drain level,
routing, and a ‘drainage constant’, which essentially tells the program how quickly to remove
water from the saturated zone with respect to height. The drainage constant is representative
of the density and permeability of materials around the drainage basin. Drainage flow occurs
in the layer of the saturated zone where the drain is located (in this case the water retention
and drainage panel). The rate of drainage is dependent upon both the drainage constant and
the height of water above the drain; the drain is treated as a linear reservoir as shown in

Equation 8.

q = (h — Zgrain) Carain Equation 8
q is the flow through the drain;
A is the head in the saturated zone;
Zarqin 18 the drain elevation;

Crain1s the MIKE SHE drainage constant

Typically, the value of Cyin, the drainage constant, is on the order of 1x10° 57! (DHI

Software, 2007). In the green roof model, the calibrated value was closer to 1x10% s since

21



the hydrograph was otherwise too stretched over time. The difference between suggested and
actual drainage constants was likely due to relatively small size of the saturated zone. The
small difference between the head in the saturated zone and the drainage level must be
compensated by a larger drainage constant in order to maintain a reasonable drainage flow.
The drain height, Z;.,;,, was defined as the lowest point in the saturated zone: -0.28 m. This
selection was made to ensure that (4-Z;») Was maximized, as well as to imitate the drain

placement on the actual green roof.

3.5 Calibration and validation

Four storms were chosen from the 2011-2013 data cycle for use in calibration and
three storms were selected for validation. The storms were chosen as a representative sample
of the types of storm systems observed in central Illinois. Both localized summer convective
thunderstorms (high intensity short duration) and longer frontal events (lower intensity long
duration) are fairly common over the course of the year (ISWS, 2006). Using a framework
similar to the one adopted by Obeid (2014), a “high intensity” storm is defined as one with
over 0.0254 cm/min of precipitation, and a “long duration” storm is defined as one that lasts
for over 5 hours. Two of the four calibration storms selected were high intensity short
duration (HISD) with the remaining two being low intensity long duration (LILD). The

validation storms include two HISD storms and one LILD storm.

3.5.1 Warm up analysis

Like many other coupled surface water-groundwater models, MIKE SHE is sensitive to
initial conditions. However, the further back in time before the rainfall event the model is
initiated, the less impact that the initial conditions will have on the runoff outputs from
MIKE SHE that are caused by the storm event. Warm up analysis was used to establish a
tradeoff between model dependence on initial conditions, and the excess computational time

needed for extremely long scenario runs.

The impact of changing simulation duration on peak saturated drainage flow following
the rainstorm event was studied to determine the required warm up period. The time when
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the warm up period appears to be most productive is at 2.5 hours. With a 20% error factor,

the estimated run time was about 3 hours.
3.5.2 Calibration

The two most important calibration parameters involved saturated hydraulic conductivity
and drainage. The MIKE SHE model characterized the highly engineered systems of a green
roof within a natural infiltration and flow framework. Thus, the saturated hydraulic
conductivity for the water retention and drainage panel in particular was a ‘catch-all’
parameter, capturing the interactions of the engineered systems with the soil. The drainage
constant similarly was used to parameterize the overflow drain setup on the actual green roof.
Although other parameters such as the saturated hydraulic conductivity of the LiteTop™ and
gravel were also used in calibration, they were less important than the saturated hydraulic
conductivity and the drainage constant. Both the soil and retention panel layers were assumed
to be anisotropic, with greater vertical conductivity in the soil layer, and greater horizontal

conductivity in the retention panel layer.

Calibration was conducted using runoff data captured from the green roof during a
specific calibration storm. In particular, the calibration focused on the following parameters
affiliated with the runoff: 1) lag between peak rainfall and peak hydrograph; and 2) peak
hydrograph discharge. These calibration parameters are similar to parameters selected by
Obeid (2014), but were adapted in this analysis to better evaluate the rising limb of the
hydrograph rather than the tail. A time series for drainage flow from each of the drains can be
exported from the model. This time series was then compared to the actual observed time
series from the BIF green roof using the Nash-Sutcliffe error (NSE) function (Equation 9).
Another important calibration factor was the ratio between the root mean squared error and
the standard deviation of the observed hydrograph (RSR) (Equation 10). According to
Moriasi et al (2007), model simulations for hydrological processes can be judged effective if

NSE > 0.5 and RSR <0.7.
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N .
Zt:l(qt,model - qt,observed)2 Equation 9

N _ 2
t=1 (.uobserved Qt,observed)

NSE =1-—

q1.mode 1S the modeled flow at time ¢
Q1.0bservea 18 the observed flow at time ¢,

Uobservea 18 the mean of the observed flows over the entire time series

Equation 10
RMSE \/Z?’:l(qt,model - qt,obserwed)2

~ STDEV

\/Z{y:l (.uobserved - qt,observed)2

The May 20, 2012, HISD storm had an NSE of 0.83 and an RSR of 0.64, meaning that it
met acceptable calibration standards. Similarly, the November 7, 2011, LILD storm had an
NSE of 0.76 and an RSR of 0.66. These goodness-of-fit parameters show that the calibrated
model can satisfactorily simulate both HISD and LILD storms. The calibrated parameters

selected for the MIKE SHE BIF model are shown in Table 3.

Table 3. Soil and drainage parameters were used for model calibration.

Parameter Calibrated value
kiitetop 0.11 m/s
kgravel 0.15 m/s
ko retention layer (vertical) 0.00055 m/s
k.o retention layer (horizontal) 0.00957 m/s
Drainage constant 0.015 /s
Initial head -0.115 m
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CHAPTER 4: Reliability analysis

Reliability is defined as the probability that capacity is greater than demand for a
given component or system. In other words, reliability determines whether a system or
module is ‘in failure’. The boundary at which the capacity (C) and the demand (D) are equal
is known as the limit state function (G). In mathematical form, the limit state function can be
defined as a closed expression using the safety margin formulation in the form shown in

Equation 11, where x are all input random variables.
G(x) = C(x) - D(x) Equation 11

The failure domain is defined as the set of all points where G(x) < (. In the context of
green roof runoff, capacity (C) can be defined as a given fraction of the peak runoff produced
by a conventional roof of similar area. Demand (D) is defined by the peak runoff produced
by the modeled green roof. By this definition, a green roof is ‘failing’ if it does not reduce
peak runoff below a certain percentage threshold of the runoff peak from a similarly sized
conventional roof for the same storm. Other potential metrics for green infrastructure failure
can be substituted for peak runoff; the same framework presented here would remain
applicable. A sketch representing the concept of reliability analysis and the failure domain in

x-space is shown in Figure 5.
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T x(X)

FORM approximation

Figure 5. The FORM approximation of the limit state function G(x) is a linear representation
of the relationship between variables.

Different methodologies are used to estimate the probability of failure (Pf) of a
component. The first order reliability method (FORM) uses a plane tangent to G(u) at the
closest point to the origin on G(u) in the standard normal space (u) to estimate the probability
of failure. In FORM, the Hassofer Lind —Rackwitz Fiessler (HL-RF) algorithm is used to
find the point on G(u) that lies closest to the origin in standard normal space. This point is
known as the design point (u*); the distance between u#* and the origin is known as the
reliability index (f). The probability of failure (Pf’) can then be calculated as shown in
Equation 12. For more information on the HL-RF algorithm itself, see Rackwitz and Fiessler

(1978).
Pf=(-p) Equation 12

FORM is typically a good approximation due to the properties of the standard normal
space, and can be used to generate estimations of random variable importance and parameter
sensitivity. However, FORM does not work for limit state functions with unusual shapes in
the standard normal space. In these cases, the second order reliability method (SORM) or

Monte Carlo simulations are better alternatives (Hasofer and Lind, 1974).
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In this analysis, FERUM, a MATLAB-based reliability analysis engine, was used to
compute the probability of failure of the BIF green roof given a certain design storm. FORM
analysis was used to determine an initial estimate of Pf, importance, and sensitivity. SORM
and Monte Carlo analysis were used to confirm estimates generated by FORM and ensure
that the estimate was accurate. Design storms of different durations, return periods, and

seasonality were used to create fragility curves under different peak reduction efficiencies.

4.1 Uncertainty analysis

Data taken from the green roof were analyzed to create probability distribution
functions for climatic, vegetation, and soil-related properties. Table 4 itemizes the variables
analyzed over the course of this analysis. The rooting depths for the plants on the green roof
were assumed to be equal to the depth of the soil media, d. This assumption was based on the
concept that tree roots will continue to grow until impeded by soil barriers, including
“mechanical effects impeding root entry or survival” (Store and Kalisz, 1991). In the case of
green roofs, the barrier is an artificial root stop placed below the soil media to prevent the
penetration of the roots into the roof. The initial water table height (WTH) is a required input
parameter for MIKE SHE, which can act as a substitute for initial soil water content. Thus, a

high water table would imply saturated soil conditions.

27



Table 4. Several random variables were used to in the MIKE SHE model to

complete the reliability analysis.

Random variable Symbol Impact on model
Total precipitation (mm) P Climate
Leaf area index LAI Vegetation
Depth of LiteTop (m) d Soil- unsaturated zone
Initial water table height (m) WTH Soil- unsaturated zone
Saturated hydraulic conductivity kiiteTop Soil — unsaturated zone
for LiteTop (m/s)
Saturated hydraulic conductivity kgravel Soil — unsaturated zone
for pea gravel (m/s)

Reference evapotranspiration (E7)) was not considered a random variable during this
analysis since the ET estimation was based on empirical data. An average ET) was estimated
for the two different seasons that experience the largest amount of precipitation: ‘summer’
(April-July) and ‘winter’ (November). The two seasons were determined by analyzing the
precipitation normal amounts for Urbana, Illinois; months with over 3.6 inches of
precipitation and over 10 days with precipitation were selected for the analysis. An inter-
storm average ET) was then calculated for each of these seasons using the Urbana, Illinois,
climatic normal values for temperature (ISWS, 2010); monthly average wind speed for
[linois (ISWS, 2009); and monthly average relative humidity and solar radiation for Peoria,
linois (RREDC, 1990). The normal temperature values were based on data taken from
1981-2010. Wind speed averages were based on data from 1991-2000 taken from the Illinois
Climate Network. Relative humidity and solar radiation were based on data collected from

1961-1990.
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Forty-five years of NOAA daily rainfall records for Central Illinois were analyzed to
select the maximum annual event for each water year (NCDC, 2014). The events were
ranked and the event probability characterized using Weibull ranking. A frequentist
regression analysis was then conducted between the observed rainfall and model probability
distribution functions (PDFs) created using the Weibull, Log Pearson III, Gumbell, and
lognormal distributions. The Log Pearson III distribution was selected as the model that
minimized the sum of square errors, as well as providing the closest estimation to the log
sample mean and standard deviation. Figure 6 shows a linearized plot of the Log Pearson III
k value against the log of the observed precipitation. Once the total amount of precipitation
for each design storm was calculated, triangular hyetographs were generated for 2-hour and

24-hour duration storms following the methodology described by Yen and Chow (1980).
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Figure 6. The linearized plot showing log Pearson III £ value versus log precipitation
reveals a suitable fit.

A similar procedure was used in determining the PDFs for the LAI vegetation
parameters. Data from the Oak Ridge National Laboratory (ORNL) global leaf area index
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suggest an average LAI for grasslands of 1.98 with a standard deviation of 1.46 (ORNL,
2000). Data were taken from 28 different sites, and the standard deviation of the sample
mean and variance taken using the frequentist approach. The best fit distribution was a
gamma distribution with parameters  of 1.71 and S of 1.06. Figure 7 shows a plot of the

cumulative distribution of observed and calculated LAL
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Figure 7. Observed and calculated values of the cumulative distribution of LAI show close
agreement.

Very little data exist for variables relating to the soil properties other than the mean
values provided by the LiteTop™ manufacturer. Engineering judgment was used to assume
upper bounds for the variables, and the standard deviation derived by taking the difference
between the mean and the upper bound and dividing by three. The number of samples (»)
taken in determining the mean was assumed to be very large, since the product is designed by
a large-scale manufacturing firm (American Hydrotech, Inc.). Hence, using the frequentist
approach, the relationship o),=0/n holds, such that o, can be approximated as very small.
The frequentist approach was used instead of maximum likelihood estimation or Bayesian
inference due to the lack of data outside the parameters provided by the manufacturer.
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Finding the variance of the standard deviation is slightly more challenging, since the

frequentist estimation of variance of the unbiased sample variance (Var[s’]) is related to the

fourth central moment of the distribution, x,. The equations used to estimate Var[s’] and u

for the different distributions used in the model are stated in Equation 13. Once again, the n-

value in the denominator leads to a very small variance as the number of samples becomes

large. Table 5 summarizes the mean, standard deviation, standard deviation of the sample

mean, variance of the sample variance, and distribution type for each of the random

variables.

1
Varls®] = —[ua

Var(s?]

n—3

_ 2
M2 _1]

n

Uy = e4M+2Var(eVar _ 1)2(e4Var + 2e3Var + 3eZVar _ 3)

Uy = 3k2 +6k

Equation 13(a).General form

Equation 13(b). Normal form

Equation 13(c). Lognormal form

Equation 13(d). Gamma form

Table 5. Different random variable distributions and sample distribution variance values

were used to complete the reliability analysis.

Variable y om o Var[s’] Distribution
type
LAI 1.90 0.56 1.46 0.09 Gamma
d 0.2 0.001 0.017 0.001 Lognormal
WTH 0.15 0.003 0.01 0.003 Lognormal
KeiteTop 0.0011 3x10° 0.00003 3x10° Lognormal
Kgraver 0.15 6x107 0.05 6x107 Lognormal
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4.2 Generating the capacity and demand functions (C and D)

The capacity function (C) was created using the MIKE SHE land surface and overland
flow features to simulate impervious cover (effectively paving) throughout the entire
modeled surface except for the drain locations. Runoff observed from the actual conventional
roof was then scaled up to match the size of the green roof, and used to calibrate the
impervious (paved) conventional roof model. Peak runoff values from the conventional roof
model were then measured for each of the design storms. Figure 8 illustrates the peak runoff

values for 2-hour duration storms of different return periods for the conventional roof model.
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Figure 8. Peak runoff from the convention roof model varies for the 2-hour and 24-hour

storms.

Hydrograph outputs from the MIKE SHE green roof model were used to generate the
demand function (D). Twenty-six different runs were conducted for each of the design
storms, using different variable parameters. Regression analysis was then used to create a
synthetic demand model that could be input directly into the limit state function used in
FERUM. The demand model was set up in the form shown in Equation 14. The sum of

square errors for the twenty-six runs was minimized to determine the value of each of the
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parameters C;. The mean and standard deviation of the optimized model parameters could

then be calculated using the data from the 26 runs.

Drmagetea™ = Co+ i (LAI + Gy

d +0.08 — WTH)" i ( kice )x e Equation 14
d 3

kgravel

Box-Cox transformations have been widely adopted as one of the standard simplest
and most functional transformations to remove heteroscedasticity from a regression model
(Sakia, 1992). In order to conserve the homoscedasticity of the model error parameter o,
different Box-Cox transformations were tested by varying the value of x from -2 to 2. The
transformation In(D) was used instead of x=0. The heteroscedasticity of o was tested using
both a visual check and the Spearman rank correlation test. The value of ¢ was calculated
using Equation 15; the value of x was chosen to minimize ¢ whilst preserving a constant ¢ for

all values of D.

Equation 15

_ J (sum of square errors)
n
As mentioned previously, the calculation of the HL-RF reliability index f is a pre-requisite
for the calculation of the probability of failure, such that Pf'= @(-f). For this analysis, the
calculated value of f was made using a frequentist point estimate for the mean of the model
parameters as shown in Equation 16 (a). The error bounds of the probability of failure can be
constructed by estimating the variance of § in terms of the parameters as shown in Equation
16 (b), where Xyg is the covariance matrix of the model parameters, and Vyf is the gradient
of the reliability index with respect to the model parameters (in other words, the sensitivity).
Defining the bounds on S as E[#(6)] = \Var[$(6)] gives an 86% confidence interval in the

value of £.

E[B(0)] ~ B(us) Equation 16 (a)

Var[B(8)] = VI gBZeoVeP Equation 16 (b)
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CHAPTER 5: Results

5.1 Fragility curves

Failure in the context of this analysis is defined as the inability of a green roof to reduce
peak runoff below a certain standard. This standard is defined as a percentage reduction from
the peak runoff measured from a similar conventional roof under the same storm conditions.
Reliability analysis was conducted using the MATLAB-based software FERUM, and used to
compare fragility curves created from both 2-hour and 24-hour duration storms. Figures 9
and 10 show the fragility curves from the 2-hour and 24-hour duration storms respectively.
The four different curves show different standards of reduction, with the >0% reduction
being the lowest standard, and the >90% reduction being the highest standard. The >0%
reduction standard represents any peak runoff reduction from a green roof, while the >90%
reduction standard requires that the green roof reduce peak runoff by at least 90%. The
shaded areas depict the 86% confidence interval for each curve, based on the reliability
analysis described in Chapter 4. As expected, the lower green roof performance standards
typically show lower probabilities of failure than the higher standards. In addition, higher
return period storms (representing lower probabilities of occurrence in any given year)

typically show higher probabilities of failure for the same peak reduction standard.

During the sensitivity analysis, evapotranspiration variables were shown to be more
important for the long duration storm than for the short duration storm. Consequently,
fragility curves were also created for long duration winter storms, since evapotranspiration is
much lower in the winter season. Fragility curves were produced using winter
evapotranspiration data, as described in Section 4.1. In addition, because the majority of the
plants on the green roof go dormant, are cut back, or die during the winter, the LAI and RD
for the MIKE SHE model were reduced to zero. Figure 11 shows the fragility curves from

the winter storms.
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Figure 9. Fragility curves for different standards of reduction for summer 2-hour duration
storms show different behavior based on peak reduction standard, with green roof

performance dominated by infiltration processes.
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Figure 10. Fragility curves for different standards of reduction for summer 24-hour duration

storms show different behavior based on peak reduction standard, with green roof

performance dominated by evapotranspiration and saturation processes at low return periods.
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Figure 11. Fragility curves for different standards of reduction for winter 24-hour duration
storms show different behavior based on peak reduction standard, with green roof

performance dominated by a combination of different processes.

Some important features can be observed from the short duration storm fragility curves.
The probability that this green roof will show some improvement over a conventional roof is
quite high, especially for storms with low return periods. For instance, a 1-year storm with a
2-hour duration has a 5% probability of failure at the lowest standard of reduction (>0%
reduction). Even for storms with a high return period, there is a high probability that the
green roof will at least slightly decrease the runoff peak; the probability of failure remains
relatively constant at around 10%. If the standard is increased even slightly, to 20% or
greater peak reduction, the probability of failure increases dramatically. The probability of
failure for the 1-year storm doubles to 10%, and the probability of failure of the 25-year

storm is almost 40%. In other words, for the larger (lower probability) storm event, around
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one in two events will fail to meet the runoff reduction criterion. In the case of the 2-hour
duration storms, although the probability of failure remains consistently low for the 1-year,
1.25-year and 1.5-year storms, it spikes dramatically by the 2-year return period storm. This
rapid increase in the probability of failure indicates that for short duration storms, green roofs
are most effective at reducing runoff for storms that have a less than a 2-year return period

(i.e., more than 50% chance of occurring any given year).

Comparing the 2-hour and 24-hour fragility curves in Figures 9 and 10, respectively, the
green roof is most likely to fail for the long duration storms under the current criteria for low
return period events. This modeled failure is likely because the capacities (a given fraction of
the peak runoff produced by a conventional roof of similar area) for the 24-hour storms are
much lower than the 2-hour storms. Hence, the likelihood that the demand will equal the
capacity for the 24-hour storms is higher. The mechanisms that produce runoff in both cases
might also be responsible: runoff in the short duration storm is infiltration dominated, but
runoff in the long duration storm is mostly saturation dominated. The shape of the fragility
curves for the 24-hour storms is much flatter sloped than the fragility curves for the 2-hour
storms. In other words, there is no consistently sharp inflection point in the probability of
failure when comparing short duration and long duration storms. However, there is a clear
increase in the uncertainty associated with the probability of failure around the 2-year return
period storm. While a similar increase can be observed in both sets of fragility curves, the
increase in uncertainty is less pronounced in the 2-hour (short duration) storms than in the

24-hour (long duration) storms.

The high amount of uncertainty in the probability of failure is concentrated in the low
return periods of the curves for both storm durations, and decreases dramatically as the
fragility curves approach 100%. This trend in uncertainty implies that the point at which the
green roof becomes completely impractical for different storms can be identified easily. For
instance, a green roof undergoing a 2-hour duration storm will almost always fail (probability
of failure >99%) to meet the 60% reduction standard by the 6-year return period event. In
contrast, a green roof undergoing a 24-hour duration storm will almost always fail to meet
the 60% reduction standard at the 20-year event. In other words, the probability of failure for

the lower return period storms is higher for the 24-hour (long duration) storm, but the
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probability of failure is lower during long duration storms for the higher return period storms.
This shift in the relative probabilities of failure is due to the relative steepness of the two sets
of fragility curves: while the 2-hour duration curves initially display low probabilities of
failure, the probabilities increase steeply towards an asymptotic value. Interestingly, the
probability of failure for the green roof is typically lower for the longer duration storm curves

than it is for the shorter duration storms, but only for the higher standards.

The long duration winter storm curves show many similarities to the short duration
summer storm curves. The highest standard curves show a similar shape to the curves for the
short duration summer storms, with a rapid increase to an asymptotic value. However, the
two lower standards show much slower rates of increase, similar to those associated with the
summer long duration storm curves. The winter storms typically have lower probabilities of
failure than the long duration summer storms. For the most part, the uncertainty in the
probability of failure for the winter storms is much smaller than for most of the other storms,

although the uncertainty does increase for larger storm return periods.

As expected, green roofs behave differently under different storm scenarios. In general,
the best performance is observed for low duration, low return period storms as compared
with higher return period storms. However, green roofs perform better in higher return period
storms if they are of longer duration. These observations are consistent with findings in
existing literature (Carter and Rasmussen, 2006; Davis, 2008), but expand on previously
published results to reveal more quantitative information about peak runoff reduction

performance.

5.2 Comparing results from FORM, SORM and Monte Carlo

In general, results of reliability analysis for FORM, SORM, and Monte Carlo analysis
are fairly consistent across storms. The one notable exception to this rule occurs in the case
of the 2-year return period storms for both long and short duration summer storms. In both
cases, the 2-year storm is one of the few non-linear regression fits used to describe the MIKE
SHE outputs. As discussed in Section 4.2, a Box-Cox transformation was used to reduce the

heteroscedasticity of the fit where needed. However, for the 2-year storm, this transformation
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produces a mismatch between the Monte Carlo simulation results and those produced by
FORM. This inconsistency indicates that the linear approximation used by FORM is not a
good fit for calculating the probability of failure within this probability space for expressions
of the form used to describe the 2-year storm. This poor fit might be due to the curvature of
the limit state function G(x) at the design point. However, FORM provides an accurate result
for most storms, indicating that the importance and sensitivity analysis produced for this

model are dependable.

5.3 Importance and sensitivity analysis

Importance and sensitivity analyses provide important insights into the mechanisms that
have the largest impact on peak runoff reduction. Importance analysis focuses on the effect
that the random variables themselves have on S, whereas sensitivity analysis quantifies the
impact of distribution parameters (such as x and ¢) and model parameters (the multipliers and
constants in the demand regression model, and the capacity, C). Mathematically, importance
can be expressed as V8, whereas sensitivity can be expressed as Vg ¢ for distribution
parameters and Vg, for model parameters. To ensure that the sensitivities are comparing
meaningful changes rather than ‘unit’ changes, the distribution parameter sensitivity matrices
must then be multiplied by the standard deviation of the variables. The resulting vectors are
known as 0 when used to describe the sensitivity of § to the means, and # when used to

describe the sensitivity of f to the standard deviations (Gardoni, 2014).

Observing the difference in sensitivities and importance vectors for low versus high
return periods and long versus short duration storms reveals interesting conclusions. To
ensure that the sensitivity analyses provided by FORM were accurate, storms were chosen
for each of these categories that minimized the difference in results between the outputs for
FORM and Monte Carlo. The four summer storms, which were chosen as representative for
sensitivity analyses, were: 1) the 1-year 2-hour storm, 2) the 20-year 2-hour storm, 3) the
1.25-year 2-hour storm, and 4) the 25-year 2-hour storm. Figure 12 summarizes the

importance analysis results for the four different categories of storms.
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Figure 12. The importance analysis of variables for different types of summer storms reveals
varying levels of importance for random variables of leaf area index (LA/), planting medium
depth (d