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Abstract

Event Coreference is an important module in the event extraction task, which has been shown to be difficult

to solve. The goal is to link mentions talking about the same event together so that the information could

be aggregated. This task could further be split into two slightly different subtasks: Within-Doc Event

Coreference and Cross-Doc Event Coreference. Most of the related publications tried to solve the problem

of Event Coreference in a two-step manner: Train or design a similarity metric for event mention pairs, then

apply some clustering algorithm to the event mention space using the similarity metric as distance.

In this work, we identify two major problems people have neglected: One is that coreference does

not imply full event mention similarity due to the fact that event mentions tend to contain partial and

even complementary information. The other problem is that the order to compare event mentions pair

could be important, because instead of comparing event mentions pairs that have incomplete and trustless

information, comparing those who have complete and trustworthy information first could prune the error

rate. We propose Core Similarity, a new argument-based similarity metric, to solve the first problem, and

two information-based clustering algorithms for the second problem - Informative-First Clustering (IFC)

for within-doc situation and Topic-Side Event Clustering (TSEC) for cross-doc situation. These clustering

algorithms are based on the idea of Event Information which is defined in this work. Finally, the EVCO

system is delivered with all of these details implemented.
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Chapter 1

Introduction

We are living in a Big Data era where information flows all around us. Most of the information is commu-

nicated and stored in the form of text. Thus, it is increasingly more necessary to be able to automatically

extract information from extremely large amounts of text.

Event Extraction technique is one of the responses to this problem. Typically, Event Extraction models

will take a piece of text (news articles, communication logs, etc.) as input, then output the events contained

within the text. People will no longer need to read the full article to understand what is happenning, but

just look at the processed results to know everything about the event. Specifically, an event could typically

be defined with these event components: time, location, subject, and zero to two objects depending on

different types of events.

Event Coreference could be seen as one of the final steps in the Event Extraction pipeline, which mainly

tries to aggragate and deduplicate information related to events. There always exist several event mentions

within a piece of text that are talking about the same event. The task of Event Coreference is to put these

mentions together. This is not an easy task. Even human beings could not do it well - the interagreement

between annotators on event related data is low (which could be considered as a fuzzy ceiling of automatic

event coreference performance). Additionally, there is little literature on Event Coreference.

Taking a closer look, the problem could be divided into Within-Doc Event Coreference and Cross-Doc

Event Coreference. Normally, coreferencing event mentions within the same document tend to contain

insufficient but complementary information. Thus, by doing event coreference within document, we are

actually aggregating information for a certain event so that we can get a complete summary of it. After

that, we are able to do Cross-Doc Event Coreference by comparing the complete summaries. We can expect

that, Within-Doc Event Coreference is step-by-step chaining event mentions together according to certain

anchors (e.g. triggers, arguments, etc.), while Cross-Doc Event Coreference is simpler clustering algorithm

provided complete information of events. Another way to see this concept: Within-Doc Event Coreference is

clustering semantically-related (not necessarily similar) event mentions, while Cross-Doc Event Coreference

is clustering semantically-similar events, which is merging similar clusters. We will have formal description

1



about differences between these tasks after a survey of all related works and data.

Before going into details, we need to agree on some terms used throughout this thesis. We use ”event

mention” to refer to an actual surface string containing event(s) in the text, while using ”event” to refer to

the aggregation and summarization of coreferred event mentions.

In Chapter 2, we present a literature review on most publications on the topic of Event Coreference.

After understanding the related literatures, we give a formal problem definition for Event Coreference and

discuss typical solutions and their drawbacks in Chapter 3, which is concluded with the main proposed

solution in this thesis. In Chapter 4, we introduce an important definition of Event Information to our

thesis. In Chapter 5, we talk about the similarity metric used in our system, which is a little different

from typical similarity metrics. In Chapter 6 and 7, we discuss the clustering algorithms proposed to solve

both Within-Doc Event Coreference and Cross-Doc Event Coreference. Our working system is described in

Chapter 8. Chapter 9 shows the experiments and the results. Chapter 10 discusses possible future works.

Finally, Chapter 11 concludes this thesis.
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Chapter 2

Survey

The problem of event coreference could be divided into two directions: within-document event coreference

and cross-document event coreference. There are not sufficient work presented for the task of event coref-

erence because it is not an easy task. We will go through all the present works in the following sections.

After the literature reviews, we will go over different existing data for event coreference task, both within-

document and cross-document. Further data analysis is carried out leading to interesting observations. We

concludes this section after literature review and data analysis, which helps give a solid task definition and

inspire new ideas tackling the problem of event coreference.

We will follow the definition of terms as described in Chapter 1, which might be different from some

papers’ term usage. Whenever that happens, we will note it before going into details.

2.1 Literature Review

2.1.1 Within-document Event Coreference

We will start our survey from Within-document Event Coreference, because most of the work for event

coreference currently either focuses on Within-document Event Coreference only, or works for both this and

Cross-document Event Coreference. It is also a nature step to do Within-document Event Coreference before

the cross-document one.

The first paper addressing the problem of Event Coreference is [32]. This paper focuses on Within-

document Event Coreference only. It is a simple extension of their Entity Coreference [25]. The key idea is

to describe the world as a hierarchical ontology implemented with the XI knowledge representation language

as described in [24], then instantiate a discourse knowledge graph by trying to fit every event mention into

this world model frame. The ontology contains entities (referred as ”object” in the original paper) with sub-

entities, events with sub-events, and attributes associated to each entity or event node. Event Coreference

happens as the incremental step during the knowledge graph building process. When each event mention is

being translated to predicate-argument representation and added into the knowledge graph, it is compared
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with a set of events that are already in the graph to decide if it should be either merged to an existing event

and update it, or added as a new event. The similarity score is simply derived from the combination of event

type distance and event attribute similarities. They only evaluated their system indirectly by switching on

and off the event coreference module in their MUC system, showing some improvement. They also noted

some good observations. One is that while some events are addressed as single simple events in the text,

some events might otherwise be composed by several sub-events. Another observation is that events are

referred to in various surface forms, like verb phrases, nominalised forms, or infinitival forms. They could

also appear in main clauses, relative clauses, or subordinate clauses.

[22] analyzed event coreference between two sentences in a more linguistic way. They mainly claimed that

two sentence could be event coreference only if either these two sentences have a so called ”particulariza-

tion relation” (one sentence contains additional information compared to the other one) or ”generalization

relation” (one sentence does not have additional information but is more general than the other one).

After a couple of years, people started to work on the problem of Within-document Event Coreference

again. [17] and [15] described a simple pairwise clustering model to be applied to the task of Within-

document Event Coreference, with trained distance function using Maximum Entropy model on ACE2005

data. Features used are focusing on distance, argument, attribute, and other basic features. The attribute

mentioned here refers to polarity, modality, genericity, and tense that are annotated in ACE2005 data for

events. They claimed that these attributes had been ignored in event coreference community and we should

pay more attension to them. They used three metrics to evaluate: MUC F-Measure [45], B-Cubed F-Measure

[3], and ECM F-Measure [36]. Their evaluation showed that attribute features helped a lot when using gold

event mentions in the Event Coreference task. But they are not effective when using system predicted event

mentions.

[16] is another paper they proposed at the same time. They apply the spectral graph clustering algorithm

mentioned in [43] into the event mention space. In this space, each event mention is a node, and there are

undirected weighted edges representing the confidence of pairs of event mentions being coreferred. Each type

forms a graph. They proposed two methods to generate the confidence. One is simply trained maximum

entropy model, another one is hand designed confidence function based on several trigger and argument

statistics in the training data. Their results showed significant improvement from two very basic baselines

(cluster regarding types, or all singletons). Also, the maximum entropy method is a little bit better than

the other one.

[5], [7] and [8] are using nonparametric bayesian models to do unsupervised event coreference. It works for

both within-document and cross-document coreference. They proposed two nonparametric bayesian models,
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one finite feature model and one infinite feature model, to tackle this problem. The experiments were done

on ACE2005 and also EventCorefBank(ECB) which was annotated by themselves as described in [9]. They

evaluated with B-Cubed F-Measure [3], CEAF F-Measure [36], and pairwise F1. They showed significant

improvement from two trivial baselines on both ECB and ACE2005 data. Meanwhile, when comparing to

the supervised method described in [17] which is using gold event mentions to get 92.2 percent B-Cubed

F-Measure score, they achieved 83.8 percent with no supervision and only system generated event mentions

[6].

[11] formalize a method to do event pronoun resolution. [10] was another paper they proposed at the same

time using same technique but applied to event noun phrase resolution to events instead. They researched on

various lexical and positional features that were used in normal pronoun resolution, and tried them in event

pronoun resolution. Syntactic features were also added via tree kernels. SVM was used to do the supervised

classification. One trick they used to modify SVM was to use development data to get a best classification

threshold instead of 0. Twin-Candidate framwork was applied - namely, a ranking SVM to compare a pair

of candidates and choose the one that was preferable. Their experiments showed several things. One was

that their SVM threshold tuning trick was effective. Also, twin-cadidate framework was shown to be useful

compared to single-candidate framework.

[13] presents a unified model for event coreference. They integrated seven resolvers including both event

coreference and object coreference resolvers. The framework was still the typical two-step strategy: mention

pair detection and coreference chain formation. SVM with tree kernel and flat kernel was used for mention

pair detection, and both best-link and graph-partition clustering algorithms were tried for coreference chain

formation. Several tricks were applied in order to improve the performance. One was that object coreference

could be used to highly reduce false positive cases for event coreference. A revised training instances selection

strategy was shown to be effective.

[37] represents event to be a tuple of time, location, and event description. Then calculate three similarity

scores from them, and use a simple dynamically weighting method to weight and generate final similarity

score from these three. To be more specific, event description similarity score is given more weights when

this score is either really high or really low. Vector space model, tf-idf, and cosine similarity techniques are

used for event description similarity score generation. Improvement is shown that the dynamical weighting

is better than linear weighting.

[28] proposed a new representation that works for both Within-Document Event Coreference and Cross-

Document Event Coreference. It extends Ditributional Semantic Model (DSM) to so called Structured

Distributional Semantic Model (SDSM) by generating context word vector for each possible syntactic relation
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anchored on the word, which becomes a matrix representation for each word. After the word representation,

they proposed a simple method composing words’ matrixes to a phrase’s matrix. Then, event coreference is

simply reduced to comparing the matrix representations of two event mentions. In their experiment, they

generated different granularities of representations for event mentions, then varies different distance metrics

and score normalization techniques, and finally got 159 different similarity values. Using these feature vectors

they trained a final classifier to make the coreference decision. Their method was shown to beat the DSM

approach and the SENNA embedding approach [19] on the ECB data and their mannually annotated dataset

so called IC Event Coreference Corpus [28]. Notice that they only evaluated using F1 over coreferencing

decisions instead of clustering performance. Namely they did not explicitly do the clustering.

[23] is an ongoing work bring up the question of how to handle implicit arguments in Within-document

Event Coreference. Another issue they mentioned is event relations - some related events, although not the

same type, are decided to be coreferencing. These two problems showed the complexity of event coreference

problem, and possibly hinted that this problem is somehow ill-defined. These also proved that event coref-

erence should be considered in a discourse level. They implemented a text understanding system including

an event coreference module which implements a set of heuristics. Since it was an ongoing work, they did

not show statistics as evaluation results.

[27] addressed Within-document Event Coreference and Cross-document Event Coreference using the

same technique. Besides the proposed simple typical event coreference model (rul-based argument extraction,

then simple classification on pairs), it pointed out the issue of missing arguments and argument ambiguity.

For their task, they annotated their own data from NewsBrief service of the European Media Monitor. Their

result proved their claim that contextual feature is important in order to improve the performance.

[14] proposed a new way to generate event mention chains within documents. They formalize the problem

of Within-document Event Coreference into two steps. First step is to generate mention pairs. Second step

is to generate event mention chains given these pairs. When generating mention pairs, they built several

resolvers for different situations. To be more specific, there are objectNP-NP, objectNP-pronoun, eventNP-

NP, verb-NP, verb-verb, verb-pronoun, and eventNP-pronoun seven types of resolvers, used in corresponding

situations. Then the chain formation step is performed using a modified random walk algorithm. Instead

of the termination step, they cared more about the walk path, seeing it as the coreference chain. They

claimed that their algorithm could easily incorporate linguistic constraints and preferences. Also, pronoun

coreference information and object graph information are incorporated.

[35] proposed a simple supervised pairwise model to do Within-document Event Coreference. The new

aspect they added into the procedure is information propagation, trying to do something like joint learning
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of event coreference and missing argument completion. Experiment showed some improvement by this

information propagation idea when using Pairwise, MUC and BLANC to evaluate, but no improvement,

or even drop a bit, when evaluate using B-Cubed and CEAF. Another contribution they made is to point

out the fact that event coreference is still not well defined, in the sense that works within event coreference

community were using different definitions so that they are not comparable for most of them.

2.1.2 Cross-document Event Coreference

Some of the literatures have already been mentioned above. [5] and [7] reduced Cross-document Event Coref-

erence to Within-document Event Coreference by simply creating a meta-document aggregating documents

on the same topic, and then run on the meta-document in the way described in last section. [28] naturally

works better in Cross-document Event Coreference if compared to Within-document Event Coreference, even

though they did not separatedly take care of these two situations. [37], [27] also address the cross-document

version in the same way as within-document.

[4] is one of the earliest paper addressing the Cross-document Event Coreference problem. They define

Cross-document Event Coreference to be document deduplication. Their approach is simply extending

their existing entity coreference system to events across documents. To be specific, they first do Within-

document Event Coreference by using their entity coreference system over verbs or nomination forms of the

event they are interested about. A coreference chain would be generated for each document. They would

extract sentences according to the coreference chains so that they could summarize the chains to Vector Space

Model representations in order to compare across documents, and finally generate cross-document coreference

chains. In order to utilize the existing evaluation algorithms for Within-document Event Coreference, which

is MUC, they used the trick of generating a meta-document by concatenating all the documents in a same

topic cluster, and took the coreference chains we got and evaluate as if dealing with within-document

situation. They used their own data set. Another observation they made is the interannotator agreement

on annotating their data is 95 percent F score, which showed that cross-document coreference as document

deduplication is a doable task.

[44] proposed a simple method to do cross-doc event coreference on plot summaries. The main idea was

to match events’ attribute instead of event words themselves. They showed simple preliminary results.

[34] was focusing on the task of cross-docuement event fusion, which has cross-document event coreference

as an important sub-process. Their method was also applying the popular two-step framework - mention

pair similarity identification to mention pair clustering. They added a third phase, event fusion, after the

clustering step. They used flat features and structure features to do mention pair identification with tree
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kernel. Hierarchical clustering algorithms were further applied.

[33] proposed a method learning Cross-document Event Coreference and Entity Coreference jointly. The

main idea is to put events and entities in the same space and iteratively cluster and regenerate features

from them. The regeneration of features based on current clustering allows the information to flow between

entities and events so that they would improve each other. For example, some semantic role feature based

on newer event clustering may result in different role feature for some other entities leading to better entity

clustering. This kind of feedback should also work in the opposite direction. Note that they chose not to

treat entity and event separately, but seperates verbal and nominal expressions. They were doing careful

babystep clustering in each iteration, only merging the most possible pair of clusters. The algorithm ends

when no merging brings benefits. They score each merge using a trained linear regressor, which is trained

iteratively with algorithmatically selected training data and then linearly interpolated. In order to try to

avoid local maximum as all hill-climbing algorithms do, they initialized their training model with hints

from the deterministic sieves. A trick in their algorithm is that they first used nonparametric methods

to do document clustering, and then appied their high precision deterministic sieves for entity coreference

to reduce the search space. To evaluate their algorithm effectively, they extended ECB dataset, and used

different metrics to evaluate, including MUC, B-Cubed, CEAF, BLANC [41], and CoNLL F1 [39]. The

results showed significant improvement over strong entity coreference and event coreference baselines.

[20] implements the idea of comparing time, location and participants of events with soft matching.

Here, by soft matching, they refered to different partial coreference in location, time range, participants.

To be more specific, they mentioned the scriptal relation, is-a relation, and membership relation. They

deliberately chose not to use machine learning techniques because they claimed to identify the contribution

of the soft matching. Instead, they used simple similarity measure to score the partial matching using

different available NLP tools like WordNet and Lemmatizer etc. The experiment was carried out on ECB

dataset. Cross-document Event Coreference was performed on previously clustered topic document sets.

They showed slight improvement in precision over a simple lemma-based baseline.

[2] More interesting than the algorithm they proposed, the explicitly defined three-layer event ontology

clearly helped disambiguate some terms that have been used inside the community of event coreference. The

three layers are Formalism, Realization, and Text. In our own words, we could see them as event types, event

instances, and event mentions. Formalism layer (event types) defines the general frame of each event type.

Relations among events, like sub-event, should be addressed in this layer. Realization layer (event instances)

represents concrete events with the event frame defined in Formalism layer filled. Event coreference should

happen on this layer, comparing similarity of arguments. There are one-to-many links from Formalism layer
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to Realization layer. Text layer (event mentions) is original text span mentioning events. Many-to-many

links between Realization layer and Text layer exist, due to the fact that sometimes a mention could mention

two events or more. Note that people also address clustering of event mentions into event instances as event

coreference. The algorithm they proposed is standard: partition corpus first (instead of topic, they partition

according to time window), event mention identification, event type classification (using WordNet), then do

incremental clustering of mentions (compare mention against existing clusters based on participants). They

annotated AQUAINT TimeML corpus.

2.1.3 Other Event Coreference Paper

[29] is a paper deeply analyzing the NP4E corpus for event coreference. They made two important observa-

tions. One is that 70 percent of coreferencing events’ corresponding argument slots are filled with entities

that have indirect anaphoric relationship (e.g. part-of, set-member, subset, etc.) which is not a coreference

relationship. Another is that lots of events do not have all of their argument slots filled.

[26] describes an annotation system they designed in order to annotate both entities and events for cross

coreference at the same time. This system asks annotators to create an event template for a certain event,

and then put all the related event mentions under it and also try to fill the template. They allowed entities

and events to be linked to Wikipedia or DBpedia.

[30] claimed that event coreference is more complicated than the way we used to treat them. The

proposed the idea of quasi-identity so that we could further define full coreference, partial coreference and

non coreference. Two mentions are full coreferring when they have lexical identity, or are synonym, or

one is synonym of wide-reading of the other one, or are paraphrase relation or one is another’s pronoun.

Two mentions are partial coreferring when they have member-of relation, or sub-event relation, or part-of

relation. Moreover, they claimed that communication events should be treated differently since there could

be inconsistent information. Their contribution is the two datasets further annotated under this proposal -

Intelligence Community Corpus (IC) and the Biography Corpus (Bio).

[1] proposes an idea how to construct subevent relations among within-document event mentions. which

is expected to help improve Within-document Event Coreference since it put aside those mentions related to

each other as subevents instead of full event coreference. Their proposed method contains two stages. The

first stage is a logistic regression model classifying mention pairs into four types of links: full coreference,

subevent parent-child, subevent sister, or no coreference. Then a voting strategy is used to finally construct

the subevent relations based onn subevent sister relations we got from stage 1 (because this relation seems

to be much more precise compared to other relations as they observed in experiments).
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[31] proposes evaluation methods for partial event coreference - here including sub-event relation and

membership relation. Besides the evaluation method itself, they noted the importance of distinguishing full

coreference and partial coreference, which is pretty interesting.

[21] released the ECB+ corpus, an extension of the ECB corpus that has been broadly used in event

coreference community.

2.2 Conclusions and Observations

From the survey we can see that, all of the proposed solutions from related publications, for both within-doc

and cross-doc situations, decompose this problem to two parts: the similarity metric and the clustering

algorithm.

For the clustering problem, most of the solutions choose to use incremental pairwise clustering on event

mentions. Besides these solutions, [16], [13] choose to use spectral graph clustering algorithm. [5], [7] and

[8] use non-parametric bayesian model to do the clustering. [33] uses linear regressor to do the merging. [34]

tries to use hierarchical clustering to solve the problem.

The distance measures in different clustering algorithms are typically carefully trained similarity metrics.

Besides that, [28], [4] and [37] use euclidean distance and cosine distance in its clustering algorithm instead

of trained similarity metrics.

Besides the details in algorithms, we can also learn about the typical experiment settings. To be more

specific, experiment data used are usually ACE2005 and ECB. There are also related works using OntoNote,

IC Event Coreference Corpus, Extended ECB, and AQUAINT TimeML, where some of them are annotated

by researchers themselves. The most popular evaluation methods used to score the clustering algorithms’

performance are MUC, B3, CEAF and BLANC.
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Chapter 3

The Event Coreference Problem

3.1 Event Coreference and Typical Solution

The Event Coreference problem is the task to cluster all event mentions discussing the same event. Each

event mention contains at least one event trigger, typically a verb or its nominalization, and some of the

event arguments. An event usually have these event arguments: event time, event location, event subject,

and some event objects depending on different types of events. An event mention is not guaranteed to

contain all the event arguments. Actually, event arguments are rather likely to be spread to different event

mentions throughout an article. Therefore the Within-Doc Event Coreference aims to aggregate these event

mentions so the event arguments information about the same event could be put together. The Cross-Doc

Event Coreference is a similar task, where the only difference is that Cross-Doc Event Coreference operates

on event mentions across different documents.

Typical ways to solve this problem mostly involve two crucial components. One is the similarity metric

between event mentions. Normally it is carefully designed and trained to give similarity scores to event

mention pairs. Another is the clustering algorithm using the similarity metric as the distance, which tries

to maximize the overall similarity.

3.2 Problem of Typical Solution

There might be problems in both the similarity metric and clustering algorithm parts of the typical formal-

ization.

3.2.1 Coreference Does Not Imply Mention Similarity

As typical coreference models are formalized to optimize the total links similarity score, we noticed that this

might not quite apply in the event coreference case.

The key observation is that two event mentions that do not look similar to each other might actually be
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ID Example

em1 Word comes from People magazine and other celebrity news outlets that Tara
Reid has entered the Promises Treatment Center in Malibu.

em2 The original trainwreck Tara Reid’s publicist confirmed that the actress Reid
was admitted into Promises Treatment Center in Los Angeles, California.

em3 Reid checked herself in on Tuesday, December 9, 2008.
em4 In opening statements Tuesday, public defender Peter Lynch said then-15-year-

old Timmons was at the scene of the shooting and had a gun.
em5 The mother of a 10-year-old girl killed by a stray bullet on an Albany street

last year said she heard a loud sound before her daughter cried.

Table 3.1: Examples from ECB

coreferent. As we have mentioned before, an event contains several components: event time, event location,

event subject, event object, and other optional event participants. But there is no guarantee that one event

mention will contain all of these informaiton. In fact, it is common that one event mention contains part of

the event components, while the other mentions containing the rest. In this case, these mentions will not

look very similar to each other, but they should still be clustered together since they have different pieces

of information and could be put together into a single event containing complete information.

For example in Table 3.1, the two bolded event mentions in em2 and em3 are actually coreferent to each

other. However, it is not likely to be scored highly by most trained similarity metrics, since em2 contains

an event object information that em3 does not have, while em3 contains the event time information which

em2 does not have.

It might not be easy to train a mention-based similarity metric to capture these kind of cases, which which

occurs frequently in texts due to people’s tendency to convey complicated information through out multiple

sentences while avoiding duplicated information. This suggests that we should use a deeper representation

and a more complicated metric that goes further from the simple similarity metric.

3.2.2 Linking Order Does Matter

Ideally, most of the clustering algorithms used in the typical formalization should think about the balance

between accuracy and efficiency. On the one hand, to guarantee efficiency, it might seem acceptable to do

O(n2) comparisons between every pair of event mention once. Some might even do less comparisons to reach

similar accuracy.

However, the accuracy of certain cases might not be guaranteed. For example, if three coreferent mentions

separately contain information “ABD” “BCD” “CA”. The similarity metric is “if contains two or more

common letters then coreferent”. Since we only do every comparison once, if we try to link “CA” with any
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other mentions, then “CA” will never be merged with other mentions.

One solution is to re-order the comparisons. Link “ABD” and “BCD” before “CA” will solve this problem

without extra run time. This is also the solution we will go for in our proposed algorithm. The key is to use

event mentions’ semantic level information to guide the linking order.

Most clustering algorithms applied to the event coreference problem does not use semantic level infor-

mation contained within event mentions to guide the order they link, or not even care about the order at

all. For those who ignore the order at all, the false assumption is that all data points to be clustered are

independent, which – in our case – is far from true.

3.3 Proposed Solution

To solve the problems mentioned above, We propose a similarity metric that depends more on event ar-

guments, and two clustering algorithms based on the idea of ranking the clusters with the amount of in-

formation they convey. The Informative-First Clustering algorithm (IFC) clearly explains this idea, and is

used in within-document event coreference tasks. The Topic-Side Event Clustering algorithm (TSEC) is an

extension of IFC, meaning the main idea is still appliable in cross-document event coreference cases. The

amount of information conveyed by an event mention cluster is denoted as “Event Information”. which we

will see how to estimate in the next chapter.

The main idea is to add another step to the typical solution: aside from a similarity metric and the

clustering algorithm itself, we also need a metric to evaluate the amount of information conveyed in an event

mention cluster. Based on this value, our new clustering algorithm will be guided so that it always compares

the pair of clusters that have the highest information amount first.

In the following chapters, we will separately discuss about these components. In Chapter 4, we will

discuss how to calculate the event information value of a cluster. In Chapter 5, we will talk about the

similarity metric – it should be a bit different than commonly used similarity metrics due to nature of our

algorithms. In Chapter 6 and 7, IFC and TSEC will be discussed. In Chapter 8 we will show a running

system (EVCO) using these algorithms.
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Chapter 4

Event Information

4.1 Overview

Event Information is the key idea introduced in this thesis. All of the algorithms proposed use it to decide

clusters merging order and also the similarity threshold.

Each cluster should have an Event Information score, indicating whether the information about an event

conveyed by this cluster is sufficient. To be specific, a cluster having all the components of the event where

all of the components have high trustworthiness should be given a high Event Information score. Namely,

we value the completness and trustworthiness of the event information contained within a cluster.

4.2 Representation

Figure 4.1 shows how we represent an event, or a cluster that we use in our algorithms. Basically, an event

has a trigger, which connects all the sufficient and neccessary event components identifying an event - event

time, event location, event subject, and possibly two event objects. For each component, we keep a list of

candidate mentions with scores indicating the trustworthiness of corresponding event component mention.

The list of candidate mentions are sorted by the scores, and the one with highest score is treated as a

representative of the event component.

Note that a single event mention could be treated as a singleton cluster. Whenever we see an event

mention, we identify the trigger, then extract event components from this event mention, with confidence

scores. After that, we have enough knowledge to create the representation we described above, with each

component’s candidate list having only one or zero candidate.

Then, when we want to merge two clusters in this representation (we will make sure that it only hap-

pens when there are no conflicts in event trigger and event components), we simply merge corresponding

component list while maintaining the sorted order.
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Figure 4.1: Event Representation

4.3 Calculation

Based on this proposed representation, we can invent a reasonable metric to calculate the Event Information

score for an event cluster. As shown in equation 4.1 below, the Event Information is the weighted sum

of all event components’ trustworthiness. To be more specific, Φ is the set of event component, wi is the

information weight for the corresponding event component i. Lastly, T (ei) represents the trustworthiness of

component i in event cluster e.

I(e) =
∑
i∈Φ

wiT (ei) (4.1)

where ∀i, T (ei) ∈ [0, 1], wi ∈ [0, 1];
∑

i wi = 1; Φ = {time, location, subject, object1, object2}

The trustworthiness could be calculated as described in equation 4.2. The figure 4.2 gives a graphical

explanation of the component trustworthiness calculation.

T (l) =


0 [n = 0]

l[0] [n = 1]

T (l[0, n− 2]) + l[n− 1](1− T (l[0, n− 2])) [n ≥ 2]

(4.2)

where n is the length of the input list l.
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Figure 4.2: Component trustworthiness calculation example

As one may notice from the equation, an event cluster that contains all event components where each

event component has high trustworthiness will finally receive a high event information score. Those who

miss some necessary event components or has low components trustworthiness will finally receive a relatively

low event information score. The weights for different event components could be dfferent based on different

event types, which could be specified by user or some frames.

The score for each candidate event component mention could be the confidence of predicting such mention

is the corresponding component of the event mention.

4.4 Event Arguments Extraction and Normalization

As one may see from last chapter, event arguments are important in order to solve this problem correctly.

Specifically, these five arguments are crucial: time, location, subject, object1, and object2. We will do

similar things when building extractors for each of these five arguments.

To obtain all of the necessary event arguments, we use the Illinois SRL tool to get Semantic Role Labeling

annotation on the event mention sentence. Then we align the event trigger with the predicates identified by

the SRL annotator. After the predicate alignment, we can align these arguments: “AM-TMP” as event time,

“AM-LOC” as event location, “A0” as event subject, “A1” as event object1, and “A2” as event object2.
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Then we need to get trustworthiness scores for all the extracted event arguments. The confidence score

of predicting each event argument could satisfy this role. However, due to the fact that illinois SRL tool

makes a final decision by global inference so it will not provide a meaningful confidence score, we will train

classifiers to get the confidence score instead. Specifically, we will train binary classifiers using ACE2005’s

event mention argument information. These binary classifiers is able to decide how likely an event argument

mention is to be the event time/location/subject/object1/object2. Then, the confidence score generated

with these classifiers will be used as the trustworthiness score of an event argument mention.

Lastly, it is important to normalize these event argument in order to the further comparison when

generating the similarity will be more accurate. The illinois time tool would be used to normalize the time

arguments. Unfortunately, for the data we are experimenting on, the ECB data, does not have document

creation date for reference. We also use illinois entity coreference tool to resolve pronouns and other entity

mentions by preprocess the documents.

17



Chapter 5

Core Similarity

5.1 Overview

In this chapter, we will discuss about an new idea of the similarity metric, which takes into consideration

the missing event arguments in an event mention.

Although an event is uniquely identified with the trigger along with the spatiotemporal arguments and

participant arguments, it is likely that a single event mention will not contain all of these information at

once, especially for the within-doc case, due to the nature how people write articles. Actually, this is also

why we want to do event coreference - we want to aggregate information about the same event from different

event mentions.

For example, in table 5.1, we can see that the first event mention em1 has “fired” as its trigger, with

subject “Timothy”, object1 “a shot”, and object2 “them”. Meanwhile, the second event mention em2 has

the location information, but no information about who Tim fired at. Both mentions are missing some of

the necessary event arguments to identify an event.

There are even more extreme cases where two mentions of a same event have no overlapping event

arguments, but linked together only with the trigger. For example, em3 and em4 are annotated as coreferent

in ECB data set. However, they only have overlaps in their triggers. Specifically, em3 has the subject and

object1 of the event, while em4 only contains the object2 argument. In cases like this, the two sentences

might look totally different so that even a well designed sentence-level similarity metric will assign low score

ID Example

em1 Timothy fired a shot at them.
em2 Tim fired the deadly shot from an intersection down the street.
em3 Hewlett-Packard is rolling the dice on a 13.2 billion acquisition of technology

services provider Electronic Data Systems.
em4 The deal, when completed, will give it about 7 percent of the technology

services market.

Table 5.1: Examples from ECB
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to this pair. However, if the similarity metric could notice the fact that, one main reason that these two

sentences look so different is because they do not have any event arguments overlapped, it could punish the

pair of mentions less thus generates a reasonable score.

This kind of situations could be taken care of with our proposed similarity metric. Our clustering

algorithms discussed in following chapters also try to further handle these cases well.

5.2 Proposed Solution

5.2.1 Scoring Function

When we try to merge two clusters in the representation described in previous chapters, we will need to use

the similarity metric described here. The goal is to ensure if we decide to merge two clusters, their overlapping

event arguments agree with each other to certain degree. To be specific, we will need to compare the event

trigger, event time, event location, event subject, and the event object1 and event object2 separately.

S(C1,C2) = (1− warg)S(C1.mention,C2.mention) + warg min
i∈Φ1∩Φ2

S(C1.i,C2.i) (5.1)

where Φk represents Ck’s valid event arguments set. ∀k,Φk ⊂ {time, location, subject, object1, object2}

The equation 5.1 describes the similarity metric that we propose. The main difference it has when

compared to other learned similarity metric is that it not only check the similarity between event mentions,

but also check the similarity between all the overlapping event arguments of these two event mentions, and

include these similarity results into the overall similarity score as a regularization. Specifically, we see the

lowest argument similarity score as the “argument agreement score”. If the “argument agreement score”

is high, it means all of the overlapping event arguments have high similarity. On the other hand, if the

“argument agreement score” is low, it means that at least one of the overlapping event argument pairs

has low similarity, making these two event mentions less likely to be from the same event mention cluster.

Notice that we ignore those event arguments that only exist in one or none of the event mention clusters

being compared. This is due to the nature of missing event arguments we discussed about in previous

chapters. When one event mention cluster is missing a certain event argument, this event argument should

not contribute to the “argument agreement score”, since it brings no conflicts.
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Feature Explanation
ExactMatch If the two mentions are exactly the same, set to 1. Other-

wise 0.
SubStringMatch If the two mentions contain overlapping words, set to 1.

Otherwise 0.
LemmaMatch If the two mentions’ lemma matches, set to 1. Otherwise 0.
SubStringLemmaMatch If the two mentions contain overlapping lemmatized words,

set to 1. Otherwise 0.
NESim The similarity score of these mentions in NESim.
WNSim The similarity score of these mentions in WNSim.
LLM The similarity score generated by LLM similarity.
InSameSentence If two mentions are from the same sentence, set to 1. Oth-

erwise 0.

Table 5.2: Preliminary features used to train event component pair similarity classifiers

5.2.2 Preprocessing and Feature Engineering

Before passing the event mention cluster pairs into this similarity scorer, there are also some preprocessing

need to be done. First of all, as is mentioned before, the event arguments are extracted using SRL - we run

SRL on the sentence that contains the annotated event mention trigger, then try to align the event mention

trigger with one of the predicates of SRL. After aligning it, we treat the SRL-annotated arguments of the

predicate as our extracted arguments. Specifically, AM-TMP is the time argument, AM-LOC is the location

argument, AM0 is the subject, AM1 is the object1 and AM2 is the object2. We use illinois SRL annotation

tool [40] for this job.

Another preprocessing we do is to run illinois entity coreference tool [12] [38] over the input documents.

After SRL alignment, we try to align our extracted entity arguments, including location, subject, object1

and object2, to the entity coreference results in order to resolve a normalized entity mention as our event

argument so that our similarity metric could score more accurately. This step is important because people

always try to use different mentions to refer to the same entity when they write an article. Variations include

pronouns, paraphrases, abbreviations etc. We also observe a lot of such cases appearing in our ECB data

set. Since our similarity metrics look at event argument mentions directly instead of the full document, these

variations will be difficult instances for our similarity scorer to understand. Resolving the entity coreference

as a preprocessing step is the most reasonable solution that tackles all these problem at once. We see this

as a normalization step.

Another preprocessing that should be done is time normalization. Basically, what this means is to

resolve relative time mentions (e.g. tomorrow, last year, ten days ago, etc.) to a normalized date or time

(e.g. 2015/12/08). With these normalized time mentions, we could compare and score them much more
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easily. Illinois time tool woould be a perfect fit for this task [46]. Unfortunately, there is no document

creation date for our ECB data set, so that there is no reference date that we could use.

We use ACE2005 to train all the trigger and argument similarity classifiers used above. Specifically, we

will train the trigger similarity classifier, time similarity classifier for time argument comparison, location

similarity classifier for location argument comparison, and entity similarity classifier for subject and other

objects. The LBJava tool [42] from UIUC is used to train all of these similarity classifiers. Different pairwise

features are used to train these classifiers as shown in table 5.2. These are basically syntactic and semantic

level features. All of the required annotations are generated via UIUC’s Curator [18]. Currently we only

have this small set of features for experiment use. Better feature engineering should be carried out in the

future.
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Chapter 6

Within-Doc Event Coreference:
Informative-First Clustering (IFC)

6.1 Overview

We choose to still follow the typical formalization; But we also propose a new type of clustering algorithms -

the Informative-First Clustering (IFC), to solve the problems presented previously. We will start with within-

document event coreference task when describing the algorithm. The cross-document event coreference

version of this algorthm is described in the following TSEC algorithm chapter.

Algorithm 1 Informative-First Clustering (IFC)

Input: MD (the set of detected event mentions within document D)
Output: ΓD (the final clustering of event mentions in D)
ΓD = ∅
for ∀m ∈MD do

C = {m}
C.info = calInfoScore(C)
ΓD.add(C)

end for
ΓD.sortByInfo() . // Clustering initialized with sorted singleton clusters.
while !ΓD.finalized() do

C1,C2 = ΓD.getNextUntouchedMaxInfoPair()
if calCoreSimilarity(C1,C2) ≥ θ(C1,C2) then

C = merge(C1,C2)
C.info = calInfoScore(C)
ΓD.insertByInfo(C)
ΓD.remove(C1)
ΓD.remove(C2)

end if
end while . // Loop until every cluster pairs compared.

In general, the Algorithm 1 describes IFC for within-document event coreference. We will go into details

in the following sections. Basically, what this algorithm does is to first initialize the clustering with a list

of singleton clusters sorted by the calculated event information score, in which each cluster contains one

detected event mention within this document. Then we will start with the top two clusters (because they

have the highest information sum), compare their core similarity (if the trigger and shared event arguments
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align with each other then they are similar). Once we decide to merge them, we will take out the original

clusters and merge into one large cluster, calculate the event information score for the new cluster, then put

it back to the clustering respecting the sorted order. We will find the next pair of clusters that have the

highest event information sum and are not yet compared, apply the same operations on this pair. Keep on

doing this until no cluster pair available for comparison. The clustering will be the final output.

The section below will cover the details in how to do the clustering efficiently provided with the calculated

event information score of every cluster. Specifically, the finalized() function, the getNextUntouched-

MaxInfoPair() function, the merge(), the sortByInfo() and the insertByInfo() functions will be ex-

plained.

6.2 Algorithm Details

To ensure this algorithm runs efficiently, we need to pay attention to two things: the sorting and the

updating. The final time complexity of IFC is O(n4logn).

6.2.1 Sorting

The X+Y Sorting algorithm will be used consistently throughout this thesis.

After initializing the singleton clusters in order (with the function sortByInfo() which determines that

it keeps the order of event information), what we are really doing is an X+Y sorting problem. Namely, we

sort all possible pairs of clusters according to their event information sum.

The X+Y sorting problem currently remains an open problem. It is agreed that current best algorithm

reaches the run time of O(n2logn). Actually, just by running merge sort or quick sort over alll possible

cluster pairs could acheive this time complexity. Moreover, with a clever design, the space complexity could

be constrainted to O(n). Since merge sort would require O(n4) space and quick sort would have the worst

run time of O(n4), we would like to use the cleverer algorithm which always runs in O(n2logn) time and

O(n) space.

Figure 6.1 shows an example run of the algorithm we use for this sorting problem. The X+Y sorting

problem is to traverse the universe of pairs using the sum of numbers as a guide, going from high sum to

low sum. We keep a priority queue to keep track of the max sum next cell. In the figure, this means that

whenever we mark a cell black, we will enqueue the gray cells into the priority queue (the one below the

black cell, and the one on its right, if they are still white cells). We start from the highest sum pair - in

the example, it is the cell in the up left corner, and enqueue it. Then we keep dequeueing and mark the
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Figure 6.1: Best algorithm currently for X+Y sorting algorithm.

popped cell black (which possibly triggers more enqueues of gray cells). The algorithm finalizes when there

are nothing to dequeue.

This algorithm goes through all O(n2) cells once. Each time it will do constant times of O(logn) enqueues

and dequeues. Therefore, the time complexity is O(n2logn). The space complexity is bounded by the max

size of the priority queue. Since the priority queue always keeps the cell that are on the boundary between

marked and unmarked cells, and the boundary length is O(n), the space complexity is thus O(n).

This sorting algorithm is applied in the IFC algorithm described previously. The finalized() function

returns true if there is nothing to dequeue in the priority queue. The getNextUntouchedMaxInfoPair()

is simply dequeue the priority queue which returns the current max sum cell on the boundary.

6.2.2 Updating

Each time we choose to merge() two clusters, we need to update the clustering accordingly. Basically these

two clusters should be merged and a new cluster will be generated. After calculating the event information of

the new cluster, we will drop the two original clusters and put the new cluster into the clustering. The order

should still be kept. Then we will run the X+Y sorting algorithm mentioned above on the new clustering

from the beginning cell until the next merge. In order to skip those pairs that we have already processed,

we will cache the results and always check if cache hit or not before actually calculating the similarity.

The maximum number of merges is O(n2). Namely, we might run the O(n2logn) algorithm for O(n2)

times. Thus, in total it will take n4logn time for the whole IFC algorithm.
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6.2.3 Threshold

For the threshold we use to decide if two events are similar or not, we can base it on the total event

information value. The less information they contain, the higher similarity score they should achieve in

order to pass the decision boundary. This idea will also be applied in TSEC algorithm.
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Chapter 7

Cross-Doc Event Coreference:
Topic-Side Event Clustering (TSEC)

7.1 Overview

The IFC algorithm introduced in the previous chapter fits well for the within-document event coreference

task due to the nature of it – number of event mentions contained within one document is positively related

to length of document, which typically will not be too long. Therefore, the O(n4logn) algorithm will still run

in reasonable time. However, for the cross-document event coreference case, there might not be a limitation

on the number of documents being processed at one run. Thus, a linearly scalable algorithm for this task is

necessary. That is why we introduce the following algorithm.

The Topic-Side Event Clustering algorithm (TSEC) is an extention of the IFC algorithm. The main

difference is that it is based on the assumption that each document contains one main topic event. The

document might also have mentions talking about other related events, but the total amount of information

conveyed is significantly less than the main topic event. Also, we assume that clusters from the same docu-

ment will not be coreferent to each other. Implementing these heuristics, we can have a good approximation

of IFC with a good run time and accuracy performance.

Throughout this thesis, we will denote the topic event of a document to be the event mention cluster

that has the highest event information score. All other event mention clusters within this document are

called side events.

7.2 Algorithm

The TSEC algorithm could be split into three steps. First, we will try to compare all topic events in the same

order as in IFC. When a pair of clusters coreferent each other, we will somehow merge these two documents.

When no more topic events could be coreferent, we move on to the second step. The second step is to try

connect every topic event to any side events that are not from the same document. The order is still the

same as in IFC. Lastly, we will attempt to link every side event pairs that are not from the same document.
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Figure 7.1: TSEC step 1: Topic Event and Topic Event

This is almost the same as IFC. We will explain the algorithm in detail below.

7.2.1 Topic Event and Topic Event

The first step in TSEC is attempt to make links among topic events. This is because topic events contained

within documents contain the most event information. Thus, trying to link them first will bring us more

reliability.

The input to TSEC is the list of documents with all the within-document event mentions being clustered

using IFC. The first step starts in an IFC-like manner, which orders the topic events according to their event

information amount. Then choose pairs of topic events to compare in the same way as in IFC. When the

core similarity metric decides that two topic events should be coreferent, the two corresponding documents

will be merged. Specifically, the two topic events will be merged into one, then the side events in two

documents will be compared in informative-first order, and merged when necessary. This step makes sense
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Algorithm 2 Topic-Side Event Clustering (TSEC) - Step 1: Topic & Topic

Input: Γ0 = {ΓD}D∈∆ (IFC-generated clusterings for all documents in data ∆)
Output: Γ1 (clusterings for merged documents)
Γ1 = Γ0.sortByTopicInfo()
while !Γ1.finalized() do

ΓD1
,ΓD2

= Γ1.getNextUntouchedMaxTopicInfoDocPair()
if calCoreSimilarity(ΓD1

.Ctopic,ΓD2
.Ctopic) ≥ θ(ΓD1

.Ctopic,ΓD2
.Ctopic) then

ΓDmerged
.Ctopic = merge(ΓD1

.Ctopic,ΓD2
.Ctopic)

ΓDmerged
.Ctopic.info = calInfoScore(ΓDmerged

.Ctopic)
ΓDmerged

.mergeSideEvents(ΓD1 ,ΓD2) . //X+Y sorting, 1-1 bipartite match
Γ1.insertByTopicInfo(ΓDmerged

)
Γ1.remove(ΓD1

)
Γ1.remove(ΓD2

)
end if

end while

because two documents talking about the same topic event are likely to talk about similar side events too.

When can choose to allow or forbid side events from the same document to link each other, depending on

the trade off between how much we trust our within-document coreference results and how much efficiency

we want to gain - if we trust the within-document event coreference result generated with IFC, then we can

ban the side events from same document from linking each other, so that it becomes a one-to-one bipartite

graph. Otherwise, if we allow side events from the same document to be merged in this step, we are actually

allowing cross-document event coreference information to help improve within-document event coreference

result, which could be interesting. In a graphical view, this instead generates a many-to-many bipartite

graph.

The idea of document merge is shown in Figure 7.1. Each rectangle represents a document. Each circle

inside a document represents an event mention cluster. The dark one is the topic event for the document -

namely, the cluster that has the highest amount of event information.

The pseudocode is explained in Algorithm 2. You may notice that it looks like IFC algorithm a lot. We

use X+Y sorting to decide the order of choosing document pairs, where X and Y are both the topic list.

The mergeSideEvents() function needs some more explanation: Basically, we still want to try to link pair

of side event clusters from different document in informative-first order, which could be achieved by using

another X+Y sorting where we set one document’s side event list to be X and the other’s to be Y. Because

we want to maintain an one-to-one bipartite matching so that no side events from the same document will

be merged, whenever we choose to merge a pair of side events, we will take them out so that they will not

be merged to any other side events in this step.
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7.2.2 Topic Event and Side Event

The second step in TSEC is attempt to link side events to topic events. For each topic event, we will compare

it to all side events that are not in the same document. We will order the pairs in the order of their event

information sum. Update the pair list to keep the order whenever a side event merged into a topic event.

Obviously, this is again following the IFC idea. Notice that we may use a higher base threshold to decide if

coreferent or not, because this step has less reliability compared to step 1.

Algorithm 3 Topic-Side Event Clustering (TSEC) - Step 2: Topic & Side

Input: Γ1 (clusterings for merged documents from Step 1)
Output: Γ2 (clusterings after side events merged into topic events)
Γ2 = Γ1

Γ2.sortTopicEvents()
Γ2.sortSideEvents()
while !Γ2.finalized() do

Ctopic,Cside = Γ2.getNextUntouchedMaxInfoTopicSidePair()
if calCoreSimilarity(Ctopic,Cside) ≥ θ(Ctopic,Cside) then

if CtopicCside from different documents then
Ctopic.merge(Cside)

end if
end if
Ctopic.info = calInfoScore(Ctopic)
Γ2.reOrder(Ctopic)
Γ2.remove(Cside)

end while

The algorithm is described in Algorithm 3. The key is to, again, use X+Y sorting to decide the order,

where X is set to the list of topic events, and Y is set to the list of side events. A slight change is to avoid

topic and side events that are from the same document. After each merge, the lists will be updated and

X+Y sorting will be reset. This process is again similar to IFC.

7.2.3 Side Event and Side Event

The third step in TSEC attempts to make links among side events. This is the last step of TSEC algorithm.

Hopefully, most of important links have already been caught by previous two steps. We can choose to

use highest base threshold among the three steps since this step is the least reliable one. Most of clusters

compared in this step have lower event information.

The algorithm is described in Algorithm 4. You may notice that it looks a lot like IFC, with the addition

constraint that both clusters should not contain event mentions from the same document.
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Algorithm 4 Topic-Side Event Clustering (TSEC) - Step 3: Side & Side

Input: Γ2 (clustering generated from step 2)
Output: Γ3 (final clustering)
Γ3 = Γ2

Γ3.sideEvents.sortByInfo()
while !Γ3.finalized() do

C1,C2 = Γ3.getNextUntouchedMaxInfoSidePair()
if calCoreSimilarity(C1,C2) ≥ θ(C1,C2) then

if noSharedDocs(C1,C2) then
C = merge(C1,C2)
C.info = calInfoScore(C)
Γ3.sideEvents.insertByInfo(C)
Γ3.sideEvents.remove(C1)
Γ3.sideEvents.remove(C2)

end if
end if

end while
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Chapter 8

EVCO System

8.1 Overall Design

The EVCO (EVent COreference) system contains both the baseline system and the system implementing

the main idea in this thesis. The system could be split into five core modules as shown in figure 8.1. Both

event coreference systems share the same data reader, preprocessor, and evaluators.

8.2 Details

8.2.1 Information-based Event Coreference

The figure 8.2 is an overview of the informantion-based event coreference’s algorithm part of the EVCO

System’s implementation.

This algorithm could still be divided into two crucial parts: SimilarityEVCO and ClusteringEVCO.

SimilarityEVCO implements the Core Similarity idea mentioned in previous chapter. There are four static

classifiers contained within this object, each of which is in charge of scoring the similarity for one or several

kinds of event components. A trained SimilarityEVCO is used as distance metrics in ClusteringEVCO and

the IFC and TSEC contained within it.

The ClusteringEVCO, which contains several IFC and one final TSEC, implements the main logic of

the algorithm. Due to the fact that both IFC and TSEC use the X+Y Sorting as their backbones, we

implemented a general purpose class called SortedMerge for the sorting, and pass in different commands for

slightly different purpose required in IFC and TSEC.

The clustering algorithm operates on a list of ClusterEVCOs, which contains the representative event

arguments and the trigger. It has the ability to perform cluster merge and also to calculate the event

information score of the cluster. It also has a list of MentionEVCOs as its member. The MentionEVCO is in

charge of storing information about an event mention, and also extracting the event arguments and assigning

trustworthiness score to each argument. Thus, it also contains five classifiers as its static members to do
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Figure 8.1: The main structure in EVCO System.

the scoring. The argument extraction is done by aligning the trigger with the illinois SRL’s annotations’

predicate, and then get the “AM-TMP”, “AM-LOC”,“A0”,“A1” and “A2” arguments to align.

8.2.2 Other Core Modules

The data reader module is written to read the raw ECB data into Corpus data structure, which further stores

all the data into Topics, Documents and descendent data structures until Mention level. The user is allowed

to tell the program, via the configuration file, if it needs to annotate the full corpus with CachedCurator

which utilizes illnois curator package to get all the annotation. The user is also allowed to specify what kind

of annotations are wanted. The full corpus, along with all the annotations, could be cached for much faster

data reading phase in further experiments.

The preprocessor module controls how a user uses the data. It is allowed to specify how to divide up the

data to training, developing, and testing portions. The program also allows user to control how skewed the

training/testing data is, by asking the user to specify the postive/negative instance ratio. This module is

also in charge of transforming the data in Corpus data structure, which keeps all the information available

in raw data, into instances so that classifiers defined with LBJava could directly read and use them.

The baseline system implements a simple event coreference system. The similarity metric used could be
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Figure 8.2: Algorithm implementation in EVCO System.
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chosen from either LLM or a trained classifier. The clustering algorithm used is BestLink, which is usually

in Entity Coreference tasks.

The evaluator module implements four different popular evaluation algorithms in event coreference field

- MUC, B3, BLANC, and CEAF. The implementations strictly follow the original paper of these evaluation

algorithms and have been carefully tested.

All of the classifiers used within this system is written and learned with the LBJava programming

language, which allows for easy feature engineering and algorithm tuning.
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Chapter 9

Experiment

9.1 Data

The main data used in our experiment is ECB, which is popular for both within-document event coreference

and cross-document event coreference. For this data set, event mention triggers have been annotated to

indicate existence of event mentions. Also, the data set’s documents are clustered into topics. But we do

not use this topic clustering information within our experiment. The details about this dataset is described

in table 9.1.

Table 9.1: ECB Data Analysis

Total Topic Count 43

Total Document Count 482

Total Annotated Mention Count 1744

Average Annotated Mentions Per Document 3.62

Total Within-Doc Coreference Mention Pair Count 861

Total Within-Doc Mention Pair Count 4340

Average Within-Doc Coreference Per Document 1.79

Another data set that plays a role in these experiments is the ACE2005, another data set that is typically

used in event coreference tasks. Unfortunately, ACE2005 does not come with cross document event coref-

erence annotations. We use ACE2005 to train the event argument mention pair binary classifiers, which

serve as similarity metrics for event arguments. The data is preprocessed into event argument mention

pairs containing both coreference and non-coreference instances. We also use this data to train classifiers to

estimate event arguments’ trustworthiness scores.
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9.2 Experiment

9.2.1 Core Similarity Event Argument Pairwise Classifier Performance

Our proposed Core Similarity metric contains four different event argument similarity comparators as its

components. The trigger comparator is in charge of comparing trigger mentions, time comparator for time

pairs, location comparator for location pairs, and entity comparator for subject pairs and object pairs. These

comparators are all trained on ACE2005’s within document event argument annotations.

The comparators’ performance is shown in table 9.2.

Table 9.2: Event Argument Similarity Comparator Performance (ACE2005)

Comparator Coreference Non-Coreference Total

Precision Recall F1 Precision Recall F1 Acurracy
Trigger 92.732 46.015 61.508 64.100 96.393 76.998 71.204
Entity 72.954 38.104 50.061 58.113 85.874 69.317 61.989
Time 95.000 47.500 63.333 65.000 97.500 78.000 72.500

Location 83.333 26.316 40.000 56.250 94.737 70.588 60.526

The comparators’ performance is relatively bad. We identify several main reasons after inspecting the

data and predictions. One main reason is that, since we are mainly dealing with within-doc event argument

annotations while training with ACE2005, there are a lot of pronouns and other kinds of references, which

makes the direct comparison of event argument mentions much harder. And in fact, most of the error is

triggered by this. Thus we need a better normalization of entities for both the entity comparator and the

location comparator. Namely, a good entity coreference tool should be included into our system to preprocess

the documents, which the current version does not have yet. Also, a better feature engineering could always

help improve the performance in the future. Lastly, we need to notice the property of event related tasks

itself, which is in fact very ambiguous so that even interannotator agreement could be pretty low in event

data sets like ACE2005.

On the other hand, we do not expect the performance of these classifiers to be too high in the risk of

overfitting the ACE2005 dataset, since what we will evaluate on in the end is the ECB data.

9.2.2 Similarity Metric Comparison

In this experiment, we compare the similarity metrics between a baseline similarity and the similarity we

described in this thesis. The way we set it up is using the same clustering algorithm, here we use the EVCO
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system’s information based algorithms (IFC and TSEC), and separately apply the baseline similarity metric

and the proposed Core Similarity metric as the distance metric, and see the difference in performance. The

data we experiment on is the ECB, which has been preprocessed to split into training data and evaluation

data. The baseline similarity is trained with this ECB training data, while the Core Similarity metric is

trained on both this ECB training data (for trigger pair comparator), and ACE2005 (for argument pair

comparators). Also, due to the fact that we do not have high performance argument comparators yet, we

choose not to give a high weight to their predictions, but use them more like a regularization.

We compare these two similarity metrics in both within-doc situation and cross-doc situation. The within-

doc situation is evaluated over each document that was not used for training. Evaluations are generated

for each document, and we calculate the average to be the final within-doc evaluations. For the cross-doc

situation, we only generate one set of evaluations for the whole input data set. We randomly choose a subset

of the evaluation data to be the input data due to efficiency issue.

The result is shown in table 9.3:

Table 9.3: Similarity Metric Comparison

Model MUC B3 CEAF BLANC

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
Baseline(within) 0.129 0.106 0.110 0.994 0.940 0.958 0.918 0.961 0.933 0.888 0.889 0.883
EVCO(within) 0.154 0.135 0.139 0.973 0.948 0.951 0.920 0.940 0.923 0.880 0.876 0.873
Baseline(cross) 0.714 0.345 0.465 0.862 0.419 0.564 0.309 0.665 0.422 0.674 0.551 0.561
EVCO(cross) 0.591 0.448 0.510 0.678 0.447 0.539 0.363 0.558 0.440 0.553 0.543 0.547

The first thing we notice about the result is that the MUC scores are low. This is not so strange since the

ECB data set’s within-doc coreference rate is not that high, while MUC is a link based clustering evaluation

method. That means, possibly in one ECB document, there are only two out of eight event mentions

are coreferent to each other. Therefore, if the clustering algorithm missed this pair of event mentions

unfortunately, MUC will punish this error heavily.

According to the results, The Core Similarity brings a little bit improvement over the baseline in MUC

evaluation in the within-doc situation. It might indicate that more coreferent event mention pairs that were

not picked up by baseline similarity metric, are chosen by our Core Similarity metric. In the cross-doc

situation, we see significant improvement in the MUC evaluation. This is reasonable because, in cross-

doc situation, event mention clusters tend to have complete information about event arguments, so that

comparing based on event arguments is more reliable. More coreferent event mention clusters are detected,

thus the MUC score goes up. We can also see that our Core Similarity metric gains some improvement in
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CEAF score.

9.2.3 Clustering Algorithm Comparison

The next experiment we carry out is comparing the clustering algorithms. We compare our Information-

Based clustering algorithms (IFC and TSEC) to Bestlink, the popularly used algorithm in coreference tasks.

For both algorithms, we use the baseline similarity metric as the distance metric for simplicity. The results

are shown in table 9.4.

Table 9.4: Clustering Algorithm Comparison

Model MUC B3 CEAF BLANC

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
BestLink(within) 0.127 0.105 0.110 0.994 0.940 0.959 0.919 0.961 0.934 0.889 0.890 0.884
EVCO(within) 0.129 0.106 0.110 0.994 0.940 0.958 0.918 0.961 0.933 0.888 0.889 0.883
BestLink(cross) 0.714 0.345 0.465 0.862 0.419 0.564 0.309 0.665 0.422 0.674 0.551 0.561
EVCO(cross) 0.714 0.345 0.465 0.862 0.419 0.564 0.309 0.665 0.422 0.674 0.551 0.561

Apparently, the results are almost the same. Before saying that this result means that the comparing

order does not matter, we would like to point out several other possible causes. The most possible cause could

be the fact that our baseline similarity metric does not heavily base on the event arguments, but focuses

more on the event trigger. The other possibility is due to the data set we are using. Our algorithm will

gain more when there are more missing argument situations. Namely, within-doc event coreference would

be benefit more with our algorithm presumably. But the ECB data set, as has been mentioned before, is

“sparse” in the sense of within-doc event coreference. We need to mention that, our algortihm is much

slower than the BestLink algorithm. This could be the tradeoff for the possible gain in within-doc event

coreference.

9.2.4 Overall System Comparison

Lastly, we compare the overall systems’ performance. The baseline system is the BestLink algorithm using the

baseline similarity metric as distance, while our EVCO system is using IFC and TSEC clustering algorithms

separately for within-doc and cross-doc situations, and the Core Similarity metric as the distance. The data

we use is still the evaluation data from ECB. The baseline system will simply run the algorithm over the full

event mention space, while our EVCO system goes in a two-step style - doing within-doc event coreference

first with IFC on each document, and use TSEC for cross-doc situation over the IFC outputs.

The results are shown in table 9.5.
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Table 9.5: System Comparison

Model MUC B3 CEAF BLANC

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
Baseline 0.714 0.345 0.465 0.862 0.419 0.564 0.309 0.665 0.422 0.674 0.551 0.561
EVCO 0.545 0.414 0.471 0.672 0.433 0.527 0.365 0.561 0.442 0.545 0.533 0.536

As we may expect after seeing previous experiments, the EVCO system gains some improvement in MUC

evaluation and CEAF evaluation. This might not be seen as significant performance gain though, because

B3 and BLANC evaluation dropped correpondingly.

As a simple conclusion for these experiments, we may say that these experiments show that our proposed

system gains some improvement in some aspects, but the overall improvement is not significant. But this

may not be sufficient to reject our two assumption - comparing order matters, and taking missing argument

into consideration is important. Better feature engineering and data preprocessing (normalization) on a data

that suits this system, might give us different performance results.
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Chapter 10

Future Work

According to the experiments, this work is still not mature enough. However, there are a few reasonable

ways to improve it.

One of the most important things might be improving each event argument’s similarity metric, since it is

obvious that good similarity metrics directly affect the performance of clustering. More reasonable features

should be added, and better tuning of parameters on each classfier should also be helpful. By looking at the

results, it appears that normalization of event arguments is also important. For example, a normalized time

argument could be easier to be compared. Pronouns also need to be resolved in order to identify the real

entity they are referring to. The Illinois time normalization package should be used. However, notice that

the data we are playing with, the ECB, does not have a Document Creation Time, so there is not reference

date, which might give the time normalizer a difficult time to do the job.

Another possible improvement could be loosening the constraints applied on the similarity metric. Cur-

rently what we do when comparing two event mention clusters is select the event argument mentions that

have the most event information score to represent a cluster, and then apply similarity metric on these

representatives to get an estimate of similarity on cluster pairs. It might be a better choice to take into

consideration all of the other event argument mentions that have been merged into this cluster. Therefore,

instead of basing it on a pair of representatives, we can design a similarity metric that takes the pair of

distributions of event argument mentions as input and generate a similarity score out of them. The simi-

larity metric might also be able to update the candidate distributions. This also looks like a way to feed

the event coreference predictions back to the event argument extractors to help inference the extractors’

prediction event arguments. This possibly provides a way to mutually improve both event coreference and

event argument extraction’s results.

Another contraint that could be loosened is, instead of strictly preventing clusters from the same doc-

ument chain to merge with each other when doing cross-document event coreference, we allow them to be

merged, but with a much higher similarity threshold. Hopefully, this could improve the recall of within-

document event coreference without losing precision so that the final accuracy goes up. By allowing for
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this, idealy the cross-document event coreference could also be mutually improved. If this idea is applied,

then within-dcoument coreference should be tuned so that it has high precision (using a higher similarity

threshold), since the recall would be caught up during the cross-document event coreference step.

There are also some other small ideas to improve the model. For example, aside from the Document

Creation Date we mentioned above, other meta data of the document like the document headline could

also help. Especially when using TSEC, the document headline could serve well as a seed to collect all of

the event mentions belonging to the topic event, since it typically contains most of the event arguments,

especially in political news articles. Unfortunately we also do not have document title in ECB.

Also, different event types might not have the same structure. This mainly differs in the number of event

related objects. When adapting into specific fields, we might have the information of what types of events

we want to extract. In that case, we can modify the event representation so that it adapts to different event

types.

We are currently sorting based on the sum of event information of both clusters before merge. But it

might make more sense if we sort according to the possible event information after merge, or the “event

information gain” after a merge.

Besides this, notice that the current event information updating strategy is purely based on arguments

of each event cluster, but does not take the similarities between clusters into account, which should also be

considered as an important part of the event information definition. However, we might need to be clever

when defining this. Because it is easy that a design considering the similarity issues will make the event

information calculation operation not transitive.

Last but not least, topic modeling techniques can certainly help, especially in the case of cross-document

event coreference.
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Chapter 11

Conclusion

In conclusion, we propose a clustering algorithm that takes the order of merging event mention pairs into

account, along with a similarity metric that takes care of the situation when event mentions are missing

some event arguments. An event coreference system is built with these algorithms implemented. There are

many possible improvements that could be done based on this preliminary work.
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