
c© 2015 Jianxiong Gao

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158312245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTO GRADING TOOL FOR INTRODUCTORY PROGRAMMING
COURSES

BY

JIANXIONG GAO

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Associate Professor Steven S. Lumetta

ABSTRACT

Using automated grading tools to provide feedback to students is common in

Computer Science education. The first step of automated grading is to find

defects in the student program. However, finding bugs in code has never been

easy. Current automated grading tools do not focus on identifying defects

inside student code. Comparing computation results using a fixed set of test

cases is still the most common way to determine correctness among current

automated grading tools. It takes time and effort to design a good set of test

cases that can test the student code thoroughly. In practice, tests used for

grading are often insufficient for accurate diagnosis.

Meanwhile, automated testing tools have been developing for some time.

Even though it still takes some effort to apply automated testing tools to

real software development, we believe that automated testing tools are ready

for automated feedback generation in the classroom. The reason is that

for classroom assignments, the code is relatively simple. A well understood

reference implementation provided by the instructor also makes automated

testing tools more effective.

In this thesis, we present our utilization of industrial automated testing

on student assignments in an introductory programming course. We imple-

mented a framework to collect student codes and apply industrial automated

testing to their codes. Then we interpret the results obtained from testing in

a way that students can understand easily. Furthermore, we use the test re-

sults to classify erroneous student codes into different categories. Instructors

can use the category information to address the most common conceptual

errors efficiently.

We deployed our framework on five different introductory C programming

assignments here at the University of Illinois at Urbana-Champaign. The re-

sults show that the automated feedback generation framework can discover

more errors inside student submissions and can provide timely and useful

ii

feedback to both instructors and students. A total of 142 missed bugs are

found within 446 submissions. More than 50% of students receive their feed-

back within 3 minutes of submission. By doing grouping on one of the assign-

ments with 91 submissions, two groups of student submissions of 15 and 6

are identified to have the same type of error. The average grading code setup

time is estimated to be less than 8 hours for each assignment. We believe

that based on the current automated testing tools, an automated feedback

framework for the classroom can benefit both students and instructors, thus

improving Computer Science education.

iii

To my parents, for their love and support.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Prof. Steven Lumetta,

for the useful comments, remarks and support through the learning process

of this master’s thesis.

Furthermore I would like to thank Prof. Sayan Mitra for his guidance and

support on both theory and application of this thesis.

Also I would like to thank Andy Gong and Bei Pang for their collaboration

and discussion, as well as for their work.

Last but not least, I would like to thank my family and loved ones, who

have supported me throughout the entire process, both by keeping me posi-

tive and by helping me put pieces together. I will be grateful forever for your

love.

v

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 5
2.1 Why Teaching Programming Is Difficult 5
2.2 Previous Work . 6
2.3 Recent Automated Assessment Tools 7
2.4 Concolic Testing . 8

CHAPTER 3 DESIGN . 10
3.1 Frontend . 10
3.2 Backend System: Klee . 12
3.3 Clustering Tool . 18

CHAPTER 4 EXPERIMENTS . 21
4.1 Overview . 21
4.2 Code Breaker . 23
4.3 Image Editor . 27
4.4 Sudoku Game . 29
4.5 2048 Game . 31
4.6 Maze Solver . 34

CHAPTER 5 RESULTS . 37
5.1 Bug Identification . 37
5.2 Feedback Effect . 46
5.3 Grading Script Production . 47
5.4 Processing Time . 48
5.5 Student Grouping . 52
5.6 Discussion . 53

CHAPTER 6 CONCLUSION . 59

REFERENCES . 60

vi

LIST OF TABLES

3.1 Total Number Of Tests For All Students 19

5.1 Example for Code Breaker . 40
5.2 Student Code with Defects Passing Traditional Grading 46
5.3 Correct Rate Volunteer Student vs. Rest of Students Cor-

rection Rate Based on Traditional Grade 46
5.4 Fractions of Fully Correct Solutions for Student Partici-

pants Compared with those of Non-Participants 47
5.5 Reported Work Hours . 48
5.6 Signature Test Cases Generated for Code Breaker 52

vii

LIST OF FIGURES

3.1 Collect Student Code/Generate Feedback: We implemented
tool scripts to check student commits. When there are new
commits we generate tests and send these tests back to students. 11

3.2 Workflow: Main function (contribution of thesis) and stu-
dent function are compiled into LLVM byte code. The
Klee is applied to generate tests that can cover the most
execution paths. 13

3.3 Sample Program . 14
3.4 Symbolic Variable Marked . 15
3.5 Result of Klee . 15
3.6 klee assume . 15
3.7 Correctness Checking . 16

4.1 Student Function . 35
4.2 Example Input Maze File & Solution 36

5.1 Example Code for Sudoku Game 1 43
5.2 Example Code for Sudoku Game 2 44
5.3 Processing Time Distribution for Code Breaker [Unit:Seconds] 48
5.4 Processing Time Distribution for Image Editor [Unit:Seconds] 49
5.5 Processing Time Distribution for Sudoku Game [Unit:Seconds] 49
5.6 Processing Time Distribution for 2048 Game [Unit:Seconds] . 50
5.7 Processing Time Distribution for Maze Solver [Unit: Seconds] 50
5.8 Average Feedback Generation Time 51
5.9 Median Feedback Generation Time 51
5.10 Code of Student A . 56
5.11 Code of Student B . 56
5.12 Erroneous Result . 57

viii

CHAPTER 1

INTRODUCTION

In this thesis we present an automated feedback framework for introductory

level programming classes. We believe that by providing high quality and

timely feedback to both students and instructors, we can improve the quality

of computer science education.

The ability to program is increasingly important in recent years, with

application in a broad range of careers. As a result, interest among university

students in learning how to program has also risen, and more people are

trying to learn programming on their own in order to gain an edge in their

careers. Becoming a good programmer requires both practice and feedback.

The rate at which a novice programmer makes progress depends heavily

on how much instructive feedback the programmer receives from qualified

instructors. However, skilled programmers who can provide such feedback

are a limited resource.

In practice, the most common way of assessing student programs is basic

input-output testing. Student programs are examined with a set of test

inputs, and the results are compared with correct outputs. Each output

correctly generated by the student program earns a certain number of points.

Students may also be given a subset of these test inputs and encouraged to

test their own programs, or given access to a compiled version of the correct

solution.

However, it takes time and effort to design an adequate set of test cases.

Designing test cases that can cover most of the possible bugs is hard, es-

pecially for introductory level programming classes. Novice programmers

are not as predictable as experienced programmers. The behavior of their

produced code is even more unpredictable. Thus the task of designing test

cases is never as trivial as it sounds. For all the programming assignments

examined in this thesis, there exist unexposed bugs inside student code that

were not caught by the normal grading procedure.

1

Furthermore, with only failed test cases it is hard to tell what actually

causes the student code to fail. There are different reasons for a student

code to fail a test case; for example, a bug may be caused by a typo or by

conceptual errors. Current grading procedure lacks the ability to differentiate

different types of bugs inside student code. It takes too much human effort

to look at each failed student code and identify the bugs. If students cannot

learn from their mistakes, there is no point for them to do their assignments.

It is also unfair to assign points according to failed test cases. A typo in

student code may cause it to fail all the test cases while a conceptual error

inside student code may only fail a few of the test cases. Assigning points

according to the type of bugs inside student code is much more fair than the

current scheme.

This thesis describes a framework that uses automated testing tools to

detect defects in student code and to provide feedback on those defects in

the form of specific examples of incorrect behavior. During the development

process, a student can submit their code for review by the framework. Tests

are automatically generated for the student’s code. After being examined

by these automatically generated test cases, if the execution of student code

does not match the desired behavior, the framework generates a test case

that exposes the defective code to students. The whole feedback generation

process are done within minutes of student code submission. Our framework

tries actively to find bugs inside the student code. In particular, our frame-

work explores all the execution paths and checks if any of them leads to an

error.

In addition to providing the test case back to students, we also try to

cluster students’ codes with similar errors into groups. Students can get

additional information about the quality of their code based on the clustering

information. The clustering is done by doing cross testing. All generated

tests for different students are collected and then run against every student

code. The whole set of generated tests is then reduced to a smaller set of

core tests. The reduction is done by removing the tests that are “contained”

in other tests. Test A contains Test B is defined by the following: if all

the student codes that fail Test B also fail Test A, then Test B is contained

in Test A. After doing the reduction, all the core tests are NOT contained

in each other. For any student code, the fail/pass information for all these

core tests forms a signature vector. Any two student codes with the same

2

signature vector are then clustered into the same group. By doing clustering,

our framework reduces the effort needed from instructors to analyze student

code and provide human feedback as well. Instead of reading each and every

student code and providing feedback, instructors now can do analysis on

several student codes in each group, and it is likely that all student codes in

the same group have similar errors. With our experiment, out of 91 student

submissions, 15 are clustered into one group and 6 into another. After human

inspection of both groups of student submissions, every student submission

in each group has the same type of error.

The technique that our framework uses to identify defects in student code

is called concolic testing [1]. Concolic testing executes a program both con-

cretely and symbolically. The aim of the test is to maximize code coverage.

In other words, to create tests that execute all parts of a program. The result

of concolic testing is a set of inputs that cover different parts of the code.

Concolic testing has been successfully commercialized and adopted by the

software industry. For example, Microsoft utilizes concolic testing heavily in

its Sage tool [2].

We deployed our framework as an automatic feedback generation tool in

ECE220, one of the introductory programming courses at the University of

Illinois at Urbana-Champaign. All ECE students take this course, which

thus has roughly 300 students every semester. Our results show that we can

identify more defects in student code than traditional automated grading.

Students can learn from the failed test cases generated and can improve

their code. Experiments show that the average processing time for a recursive

maze solver is 260 seconds, meaning that one can scale this solution to provide

directed and specific feedback based on a particular student’s code within a

few minutes.

Compared to current tools, the automated grading tool proposed in this

thesis has several benefits:

• Improved ability to identify code defects.

• Generates test cases leading to defects as feedback.

• Improved grading fairness.

• Short processing time: scalable and quick feedback.

3

We provide an overview of the chapters of this thesis. Chapter 2 gives ad-

ditional detail on our motivation for deploying industrial tools in computer

science education. Chapter 3 gives background information on concolic test-

ing. Chapter 4 describes our framework and workflow for applying concolic

testing to automated grading. Chapter 5 describes our experiment with a

student assignment and discusses the results. We conclude in Chapter 6.

4

CHAPTER 2

BACKGROUND

2.1 Why Teaching Programming Is Difficult

Teaching programming is hard. Both students and instructors are struggling

to do a good job. The dropout rate of introductory programming courses

can be as high as 50% [3]. Because more students tend to take an intro-

ductory programming class, the number of students enrolled in introductory

programming courses has been growing in recent years. Outside universities,

people are also enrolled in massive online open courses (MOOC) to learn pro-

gramming. Due to the large number of enrolled students, these introductory

programming courses are usually taught in a lecture+laboratory structure

[4]. Lectures are important for students to learn concepts, language defini-

tions, and common mistakes. However the most important part of learning

engineering is to practice. Atkins et al. [5] indicate that British science and

engineering students spend 50 to 70 percent of their time in laboratory work.

These laboratories can help students to build up their problem solving skills,

which prepare them for their future jobs.

For programming courses, these labs are usually done as programming

assignments. There may exist laboratories done in a form of group meeting

session led by an instructor; however, because the instructor’s time is limited,

the chances for students to interact with instructors are limited. For MOOC

platforms, there may be no interactions at all between the instructor and

the students. The opportunities for students to get direct feedback from

instructors are limited.

When students finish their programming assignments, they need to know if

their programs are correct. However the correctness of a computer program

is hard to determine. In 2002, Newman estimated that software bugs have

cost $59.5 billion annually [6]. Stamat and Humphries further concluded that

5

in 2006 over 8000 vulnerabilities were cataloged by the Computer Emergency

Response Team [7]. While producing correct programs for experienced pro-

grammers remains a hard task, students who are novice programmers are

more likely to produce buggy code. It is the responsibility of the instructors

to help students identify bugs in their code, and to learn from these bugs.

Identifying defects in code is not an easy task. Even experienced program-

mers in industry produce programs that have bugs in them. In industry,

code review helps programmers to get feedback about their work. In pro-

gramming courses students are supposed to get feedback about their work

from instructors. Human inspection is yet still heavily used as a way of code

review. Ganssle [8] and Kemerer and Pavik [9] reported that an ideal rate of

150-200 lines per hour is most effective for manual inspection. For student

code, the efficiency may be even less. However, manual inspection can only

be done by experienced programmers. With large class sizes it is expensive

for instructors to manually review each and every student’s code. The pro-

cess requires hiring more teaching assistants, who costs less than instructors,

but are more variable in the quality of their code review.

After identifying bugs in student programs, explanations are also needed

to help students understand what mistakes they have made. Providing these

explanations is sometimes easy if the bug is obvious, for example typos or

off-by-1 errors. Bugs caused by misunderstanding concepts may be hidden

deeply inside the student code. Explaining these bugs to students requires

time and effort from instructors, who have limited resources. The increasing

number of students learning programming and the limited time of instructors

are causing problems in programming education.

2.2 Previous Work

For programming courses, students are usually given assignments that spec-

ify the goal they need to reach. Along with the assignment, students usually

also get some references that provide feedback to them. In most cases, the

references consist of test cases and desired outputs. The only feedback pro-

duced is a pass or fail notification. This kind of feedback provides limited

information to students. Code reviews require too much human effort and

do not provide timely feedback. Other methods like discussion boards lack

6

consistent and timely feedback information. Significant effort in both re-

search and practice has focused on automatically assessing student work. In

order to provide quick and accurate feedback, automatic tools are needed.

Tools have been proposed to assess several aspects of student submitted pro-

grams. Some automated tools help to regulate the programming style of

students [10] and are more objective than manual grading. Srikant and Ag-

garwal developed a tool to grade based on machine learning on a number of

keywords [11]. Other tools focus more on assessing functionality. Pears et al.

[12] point out that for tools that assess functionality of student programs,

the grading is typically done by comparing a student’s output with results

provided by the teacher’s model solution program. For any given set of in-

puts, the teacher’s model solution program generates a model set of output.

Student programs take the same input set to generate corresponding output,

which is then compared with the modeled output.

However, how to generate a set of test inputs that cover all the possible

defects in student program is challenging. Yet most of the automated tools

today rely on the instructor to provide sets of test inputs. Instructors may

fail to provide a full set of tests that can cover every part of the student

code. Without a test case that covers the defective part of student code,

current grading tools may leave bugs in student programs undetected. De-

fective code passing tests can deprive the student of knowing that they have

made mistakes. What is more dangerous, the student may believe that the

implementation is correct, which encourages him or her to make the same

mistake in the future.

2.3 Recent Automated Assessment Tools

Amelung et al. [13] implemented a system that separates all concerns of man-

aging students, assignments, and submissions from the actual testing. The

system consists of two parts. The frontend manages storage of assignments

and solutions, proper treatment of submission periods and re-submissions,

communication of results to students, grading of the results, and statistics

for individual students and whole cohorts. The backend tests the functional-

ity of the student submitted code. The submitted code is executed and the

output of a student solution can be compared to that of a model solution for

7

a set of test data, or the assignment can be tested for properties which must

be fulfilled by correct programs.

Marmoset [14] is a system that hides some of the instructor-provided test

cases from students. Students are encouraged to write their own test cases

before they submit their work. When student code fails to pass multiple test

cases, only a portion of the failed test cases are revealed to students.

Web-CAT [15] is a framework for automated testing. It requires students

to submit their own tests along with their solutions. The instructor has an

implementation of model solution on the server side. Feedback is generated

based on execution of student code on student tests, and execution of student

tests is based on the instructor-provided model solution. The model solution

is instrumented with statement as well as branch coverage information to ar-

rive at a concrete measure of the breadth of the executed test cases. Edwards

and Perez-Quinones [16] further added per-assertion diagnostic messages to

the Webcat framework to provide better feedback to students.

Easyaccept [17] uses scripting language to define tests and expected results.

Easyaccept provides an easier way for instructors to write tests for students.

AWAT [18] is an automated web application testing system. AWAT pro-

vides an interface for instructors to write tests that simulate the actions of

human testers to extract information from web pages, and verify expected

outcome based on the test case specification.

Naudé et al. [19] and Wang et al. [20] both use graph similarity to assess

student programs. Student programs are first analyzed and transformed into

system dependence graphs. The assessment is done by a graph similarity

measure against a pool of model system dependence graphs.

2.4 Concolic Testing

Concolic testing [21] is a software verification technique that combines sym-

bolic execution with concrete values. The goal of concolic testing is to gen-

erate test cases that can achieve high code coverage. Concolic testing starts

with a set of variables that are marked as symbolic. Then a set of random

concrete values are generated for these variables. With this set of concrete

values the program executes with the execution path recorded. The code ex-

ecuted is marked as having been covered. To cover other parts, one symbolic

8

constraint in the path is negated and solved using SMT solvers. A new set

of concrete values is thus generated that directs the program into a different

execution path. The process continues until no more execution paths can be

explored.

Concolic testing combines random testing and symbolic execution. Con-

crete values are used to overcome some limitations of symbolic execution,

while symbolic execution is used to generate better coverage than random

testing.

There are several limitations of concolic testing:

Complicated Programs

Theoretically, given a powerful constraint solver, concolic testing can

generate test cases that can cover all reachable statements or branches [22].

Even though such a constraint solver does not exist, high coverage can

still be achieved given that the code under test is not too complicated.

Concolic testing has been successfully employed with reasonably-sized

and heavily-tested software packages. Because student assignments for

introductory programming courses are much simpler programs, concolic

testing is effective in practice.

Float/Double Data Type

Another limitation of concolic testing is that float/double type variables

are not fully supported. The reason is because most constraint solvers

do not support these data types. However we can always avoid these

data types when applying concolic testing to student programs. Using

these data types in student assignments is usually not an essential part

of the assignment.

Native Call

Concolic testing cannot handle calls to code for which source code is

unavailable. However, the concolic testing tool Klee [23] has integrated

support for UClibc [24], a subset of the standard C library. This kind

of support is sufficient for an introductory level programming course.

9

CHAPTER 3

DESIGN

The implementation of this thesis consists of two main parts. The frontend

collects student submitted code, initiates the grading process on the backend,

distributes graded code back to students and notifies students. The backend

first compiles student code into LLVM byte code, then executes the student

code using a modified version of Klee [23]. If there is any defect inside student

code, a test case leading to that defect is generated. In addition to these two

main parts, a separate clustering tool is used to do analysis on generated test

cases. Defective student codes are clustered into different groups according

to the test cases generated. The clustering tool runs separately with the

main tool, and can be invoked at any time.

3.1 Frontend

The system implemented for students to submit their code for feedback re-

volves around the flow diagram in Figure 3.1.

3.1.1 Original System

The original system was set up using Subversion, a software versioning and

revision control system. Programmers use Subversion to maintain current

and historical versions of files. Students can work on their assignments fol-

lowing the instructions. Each time they make progress towards completion,

they can commit their work to the Subversion server. Students can test

their own work with released test cases from the instructor on their local

development environment. Students can modify their work and commit

to the Subversion server anytime before the deadline. After the deadline,

all of the latest committed student submissions are assessed by instructor-

10

Figure 3.1: Collect Student Code/Generate Feedback: We implemented
tool scripts to check student commits. When there are new commits we
generate tests and send these tests back to students.

provided scripts. These scripts execute the student program with several sets

of instructor-provided inputs, and compare these results with the instructor-

provided model solution. A score is given based on the comparison result.

3.1.2 Frontend System

This thesis implements a system that assesses the student code and dis-

tributes feedback to students. The system checks for a new submission from

students every minute. When new submissions are detected, the system pulls

the latest commit of student work from the Subversion server. The student

work is passed to the backend for assessment. The backend assesses student

work and generates test input sets. After test inputs are generated, we col-

lect the test input sets that lead to errors in student code. If there exist any

such test inputs, we add them to the corresponding Subversion repository.

After the grading process is finished, we generate an email to the student

no matter whether the submission is correct or not. Students receiving the

email can check their Subversion directory to collect generated input sets.

The whole frontend system is written in Ruby.

11

3.2 Backend System: Klee

The work flow of the backend system is shown in Figure 3.2. The backend

system takes two inputs: a student solution and a wrapper main function.

Both input files are compiled into LLVM byte code. This LLVM code is then

passed to the modified version of Klee for assessment.

Klee [23] is a concolic testing framework. As a concolic testing tool, Klee

tries to maximize code coverage for the tested code. An initial set of values

for the symbolic variables is generated randomly. An interpreter is used

to execute the program. An execution path with the initial set of random

values is recorded. After each execution, the information about coverage of

execution path is generated for the SMT solver. If there exists any new set

of values for the symbolic variables that can increase the coverage, the new

set of values is recorded and a new execution generated.

However, Klee was designed for experienced programmers. The informa-

tion generated by Klee is hard to understand for novice programmers. It also

takes some setup work for Klee to work properly. Thus in our framework,

Klee is hidden from students in order not to confuse them. The setup work is

handled by the main function for grading provided by the instructor. After

Klee finishes execution, the result is interpreted into simple feedback as test

cases that are useful and understandable for students.

3.2.1 Setup

In order for Klee to work, some setup work needs to be done. The setup

work is divided into two parts: mark symbolic variables and check functional

correctness. Symbolic variables are used to generate test inputs and are also

the key to achieve maximum coverage. To check functional correctness we

need to verify that the program can achieve the desired goal. Klee by itself

only tries to achieve high code coverage. The testing of functional correctness

of the program is not the aim of Klee, but is supported by our wrappers and

checking code.

12

Figure 3.2: Workflow: Main function (contribution of thesis) and student
function are compiled into LLVM byte code. The Klee is applied to
generate tests that can cover the most execution paths.

13

1 #include "stdio.h"

#include "assert.h"

3 int main(){

int a,b;

5 char operator;

if(scanf("%d" ,&a)==1){

7 if(scanf(" %c",&operator)){

if(scanf("%d",&b)){

9 if(operator ==’+’){

return a+b;

11 }

else if(operator ==’-’){

13 return a-b;

}

15 }

}

17 }

assert (0);

19 // execution should not reach this point

return 0;

21 }

Figure 3.3: Sample Program

Selecting Symbolic Variable

The symbolic variables are usually chosen from inputs to the student pro-

gram. For example, for a calculator program, the input can be two numbers

and an operand. A sample program is in Figure 3.3. To use Klee to find max-

imal coverage we need to mark a,b and operator as symbolic. Marking these

variables as symbolic can be done through a function call klee make symbolic.

The resulting program is in Figure 3.4. All the initialization of a,b and oper-

ator through stdin is now done by Klee. Executing the program using Klee

produces the result in Figure 3.5.

Setting a variable as symbolic is easy. However, these variables can take

any value that Klee assigns to them. Sometimes the input to the program

needs to have some desired properties. For example we may require that one

variable be positive. We can use the klee assume function (see Figure 3.6) to

describe such constraints to Klee. The predicate passed to klee assume call is

always evaluated by the SMT solver. The SMT solver then tries to return a

set of concrete values for the symbolic variables that evaluates the predicate

14

1 #include "stdio.h"

#include "assert.h"

3 int main(){

int a,b;

5 char operator;

klee_make_symbolic (&a,sizeof(a),"a");

7 klee_make_symbolic (&operator , sizeof(operator),"operator");

klee_make_symbolic (&b,sizeof(b),"b");

9 if(operator ==’+’){

return a+b;

11 }

else if(operator ==’-’){

13 return a-b;

}

15 assert (0);

return 0;

17 }

Figure 3.4: Symbolic Variable Marked

1 KLEE: done: total instructions = 2052

KLEE: done: completed paths = 3

3 KLEE: done: generated tests = 3

Figure 3.5: Result of Klee

1 klee_assume(a>0);

Figure 3.6: klee assume

15

1 #include "stdio.h"

#include "assert.h"

3 int main(){

int a,b;

5 char operator;

klee_make_symbolic (&a,sizeof(a),"a");

7 klee_make_symbolic (&operator , sizeof(operator),"operator");

klee_make_symbolic (&b,sizeof(b),"b");

9 if(stu_calculate(a,b,operator) != gold_calculate(a,b,

operator)){

assert("Student Calculate Function Error.\n");

11 }

return 0;

13 }

Figure 3.7: Correctness Checking

to be true. In another sense, klee assume can help us to define preconditions

[25] for the whole program. It is safe to assume that the precondition is true

after the klee assume call.

Functional Correctness Checking

Klee was designed to achieve high code coverage, so by default Klee does not

check functional correctness. All Klee does is to generate test cases that can

cover most of the code. Thus, in order to verify that the program under test

has the designated behavior, we add post-condition checking, which is done

with the assert function. A predicate that checks the result of the student

function can be used. An assert function can be done on the predicate. Klee

will try to a find path that leads to an assert failure. In Figure 3.7, the

return value of student function stu calculate is checked against the return

value from the reference implementation gold calculate. Because Klee uses

SMT solver to find new execution paths, the SMT solver tries to solve for

a set of values that can lead the execution to the assert function. These

assertions are effectively branches under the execution of Klee. To maximize

code coverage, SMT solvers try to solve for a set of inputs that can lead to

the false part of a branch. If any execution path that leads to an assertion

failure exists, the student program has functionality bugs. Assertions are

16

usually added at the end of the wrapper code after the execution of student

code.

3.2.2 Execution

The execution of Klee is an iterative process of trying to achieve higher code

coverage. Klee first generates an initial set of random concrete values for

marked symbolic variables. An execution path with these concrete values

is recorded. Klee picks a part of the code that was not covered. The code

must begin at some sort of branch from code that was covered. Klee uses

the branch condition for that decision along with other constraints needed

to reach that branch and packages the constraint set for solution by the

SMT solver. If a solution can be found, that solution will cause execution

of the previously uncovered code. All sets of concrete values are recorded

as generated tests. When there is no more path to explore, Klee finishes

execution.

When generating feedback using Klee, some execution parameters need

to be set in order to generate the right number of test cases. By default

Klee outputs every set of concrete values as a test input. This behavior

generates lots of redundant test cases. In order to limit the number of test

cases generated, we have Klee execute with the −only − output − states −
covering − new parameter set. In this way, each test case generated covers

a different execution path inside the program.

Because student code may include standard library code, Klee provides a

C library, using uClibc [24]. Any function call supported by uClibc can be

supported by Klee. Common function calls such as printf and assert are all

supported.

For execution paths that have errors in them, Klee generates an error

report indicating what error has occurred, and at which line. The type of

error includes memory accesses out of bound, division by zero, assertion

failures and so forth. With this information, we can easily detect if there are

potential bugs inside the student code.

17

3.2.3 Extensions To Klee

While using Klee as the grading engine for the framework, we found that

Klee was not optimized for some of the heavily utilized functions, partic-

ularly the I/O functions. Klee by itself depends on a third party library,

uClibc [24], which does not support the c99 standard scanf functions. It is

also complicated to set up symbolic files for the uClibc library. Thus an I/O

extension for Klee is implemented.

The I/O extension includes support for the following functions: fopen,

fclose, fscanf , fprintf , fputc, fread, fwrite, sscanf .

In addition to these functions, a new helper function klee make IO buffer

is also implemented.

In order to use the extension, the “–symbolicFileIO” flag has to be set for

Klee at execution. Inside the main function, a char array needs to be allo-

cated. The char array and a file name are then passed to the klee make IO buffer

function. The char array works just as a file. Any fopen function call to the

same file name opens the char array, and any operation done to the opened

file is reflected in the char array. Like any other array, the char array can be

set as symbolic.

The implementation is done by adding new special function handlers to

Klee. LLVM byte code with support for symbolic variables is used to support

the I/O functions. With the native usage of LLVM byte code instead of

compiling uClibc C code to LLVM byte code, the extension also achieves

10× speedup and 100× less memory usage.

The functionality correctness of these functions is tested with sample code

collected from 20 students during the Summer 2015 semester. The sscanf

function is also tested with 91 student submissions from the Fall 2015 semester.

No error has been caused by these I/O functions.

3.3 Clustering Tool

The clustering tool is used to gather student submissions into groups. The

goal of the tool is that each group of student submissions contains similar

bugs. There are several benefits: first of all, it reduces the work load for

instructors. With student programs clustered into groups, instructors can

identify conceptual errors for multiple students without looking at all the

18

Table 3.1: Total Number Of Tests For All Students

Assignment Total Tests
Code Breaker 48697
Sudoku Game 682

2048 Game 492
Maze Solver 855

students’ codes. Secondly, students can get more accurate feedback. By uti-

lizing existing group information, if a student submission can be categorized

into any of the existing groups, this particular submission is also very likely

to contain similar bugs as other submissions in this group. Instructors can

provide more information to students depending on which group the student

submission can be clustered into.

The clustering of student programs takes two steps: signature tests iden-

tification and student submission categorization.

3.3.1 Signature Tests Identification

Because for each student program there is usually more than one test gen-

erated, it takes too much computational power if all the generated tests are

used to group student submissions. Table 3.1 shows the total number of tests

generated for the final submissions from 91 students. The goal of signature

tests identification is to reduce the number of tests that are used to identify

the type of bugs inside student submissions. Among all the generated tests,

there are tests that expose bugs inside student submissions and tests that

do not. The first step of clustering is to collect all the test cases that expose

bugs inside student submissions. However, as the number of student submis-

sions increases, the number of test cases in the collection increases as well.

Thus another step is taken to further reduce the number of signature tests.

For the second step, all the collected test cases are used to test all the

student submissions, and the results are recorded. The results include the

student submission that fails to pass the test, and the bug type information

if possible. After all the results are collected, the results of all test cases are

compared against each other using a superset/subset algorithm. A test case

A is considered to be the superset of a test case B if all the test cases failed

by test B are also failed by test A. If any test case is a subset of the other,

19

the subset test case is removed from the signature test set.

After the second step, the signature test set is guaranteed to expose each

and every known bug inside student submissions, while maintaining a rea-

sonable size.

3.3.2 Student Submission Categorization

After the generation of signature tests, all student submission test results

obtained using the signature test set are used to categorize the student sub-

mission. For each student submission, the pass or fail information for each

signature test is used as a signature vector. Any two student submissions

having the same signature vector are considered to have similar bugs, and

thus are placed in the same group of student submissions.

20

CHAPTER 4

EXPERIMENTS

4.1 Overview

The automated feedback framework has been applied to five different as-

signments as an experiment here at the University of Illinois at Urbana-

Champaign. All five assignments are for an introductory level programming

class, ECE220. The framework has successfully done the job of providing

quick and accurate feedback to students. Here in this section, some back-

ground information about the assignments and the feedback framework is

provided.

4.1.1 Design of Assignments

These programming assignments are designed by the instructors of the course

without considering any aspect of our framework. Thus these assignments

are not designed specially for the automated feedback framework. The au-

tomated feedback framework also works in parallel with the normal grading

process, which forms the basis that we compare the results to. Student grades

are not affected by the feedback and are solely decided by the normal grading

procedure. Even if additional bugs are identified inside student code, this

information is reported to the student only, but not to the instructors.

Also the normal grading procedure is mostly kept unknown to us. The

only access we have is to the test cases released to students. Any additional

grading test cases used at the time of final grading are not released.

4.1.2 Assignments

There are 5 different assignments in total, each will be explained in detail:

21

Code Breaker

Detailed description in Section 4.2. Learning objectives: basic logic,

function call. Typical code length: 100 lines.

Image Editor

Detailed description in Section 4.3. Learning objectives: for loop, array.

Typical code length: 100 lines.

Sudoku Game

Detailed description in Section 4.4. Learning objectives: recursion.

Typical code length: 150 lines.

2048 Game

Detailed description in Section 4.5. Learning objectives: memory op-

erations. Typical code length: 200 lines.

Maze Solver

Detailed description in Section 4.6. Learning objectives: recursion.

Typical code length: 250 lines.

Automated feedback generation for Maze Solver was applied in both Spring

and Fall semesters of 2015, while the rest were applied to the Fall 2015

semester only. There are various forms of feedback generated as well. For

Maze Solver, Code Breaker and Sudoku Game, test cases that expose bugs

inside student code are generated. For the other two assignments, either the

information about which rule from the specification is violated or the name

of erroneous function is generated for students. The choice of what kind of

feedback information is generated depends on the type of assignment. Maze

Solver and Sudoku Game are assignments on recursion, thus it is hard for

students to construct a test case that specifically exposes the bug found

by the framework. For the other assignments, students should be able to

produce their own test cases given the error message. However, the choice

of the type of feedback generated is decided by the designer of the feedback

script.

4.1.3 Student Participants

For both semesters, students were asked to volunteer to allow us to generate

real-time feedback depending on their code. The process is totally voluntar-

ily and does not affect the normal grading procedure at all. Participating

22

students do not need to do any extra work. As stated in Chapter 3, we

collect student submissions directly from the Subversion server. For Spring

2015 semester, 82 out of 349 students volunteered; for Fall 2015, 91 out of

393 students volunteered to participate the experiment.

4.2 Code Breaker

4.2.1 Problem Description

The Code Breaker assignment requires students to implement the logic for

a code-breaking game. A code sequence of four numbers from 1 to 8 is first

chosen at random. These four numbers are solution code, and are also re-

ferred to as pegs. The player guesses a sequence of four numbers and is given

feedback on each guess, including the number of correct values that appear

in the same place in the solution code (these are called perfect matches). The

user is also told the number of values that appear somewhere in the solution

code but in a different place in the solution code (these are called misplaced

matches). Values guessed are matched pairwise with the solution, so a given

guess value can count either as a perfect match or as a single mismatch, but

cannot count as both types, nor as multiple mismatches. Similarly, a given

solution value can only count as one match of one type. If the player man-

ages to guess the correct sequence in 12 or fewer guesses, they win the game.

Otherwise, they lose.

Some Example Guesses:

8 2 4 5: Solution Peg

1 6 3 8: Guess 1, one misplaced match

8 6 5 4: Guess 2, one perfect match, two misplaced matches

8 2 5 4: Guess 3, two perfect matches, two misplaced matches

8 2 4 5: Guess 3, solution found!

The objective for this assignment is for students to gain some experi-

ence with basic I/O, implement code using multiple functions, practice using

pointers, and solve a problem that requires moderately sophisticated reason-

ing and control logic.

Students are required to implement three different functions:

23

int32 t set seed (const char* seed str)

The function receives a string (a pointer to a character) as its input

and produces a 32-bit signed integer as output. Students need to verify

that the string specifies exactly one integer. The integer is then used

to seed the pseudo-random number generator. The return value from

the function set seed indicates whether the input string did in fact

correspond to a number. When the string represents an integer number

(and only a number), the function returns 1. Otherwise, the function

returns 0 and does not set the random seed, instead printing “set seed:

invalid seed”. Students are instructed to use the srand, rand and

sscanf functions. There is a lab section where instructors demonstrate

how to write this function to students.

int32 t start game (int32 t* one, int32 t* two, int32 t* three,

int32 t* four)

The start game routine selects the solution peg at random, a set of

four numbers from 1 to 8. The rand() function is used to generate a

solution peg. In order to maintain the consistency between the normal

grading procedure and the student code, the order of assigning results

from the rand function to solution code is fixed.

int t make guess (const char* guess str, int32 t* one, int32 t* two,

int32 t* three, int32 t* four)

The make guess routine compares a player’s guess with the solution

peg. The inputs to this routine include a string (the player’s input) and

four pointers to integers. The routine must validate the string in the

same way as the set seed function. A valid string contains exactly four

numbers (and no extra garbage at the end). All four numbers in the

string must be between 1 and 8. Student code must check these cases,

using sscanf and other logic as necessary. If the string is invalid, the

routine must print an error message “make guess: invalid guess”, return

0. For a valid string, the student must store a copy of the guessed code

in order in the four addresses provided as input parameters (one, two,

three, four). The routine must then compare the guessed code with the

solution code (which should be stored in static variables, peg1, peg2,

peg3, and peg4 done in the start game function) to count the number

of perfect and misplaced matches, then print a message informing the

player of the results.

24

4.2.2 Grading Script Design

C Wrapper

The grading script consists of two parts. The first part is the C wrapper file,

which consists of around 250 lines of code, of which 150 lines are reference

model code. In order to set the solution code as symbolic, the rand function

call is substituted with the grading version. In order to catch the result

produced by the student function, the printf function is also substituted

with the grading version.

rand

The grading version of rand function returns symbolic solution codes

in order, thus the same solution codes are set for both student code

and the reference model code.

printf

The parameters passed to the grading printf function are extracted

and used to compare with the result from the reference model code.

In addition to these two substitution functions written in C, the sscanf

function is directly supported with the modified version of Klee as stated in

Chapter 3.

Because the set seed function is both too simple to test and taught directly

in the discussion section, it is assumed to be correct for the student code.

No specific grading script is written for testing the set seed function.

The testing for both start game and make guess is combined because

these two functions are closely related with each other. Student versions

of the start game function and the make guess function are executed in

sequence with the set of symbolic variables. The same set of symbolic vari-

ables is used for the execution of reference model code. Finally, if any of

the results from the student implementation differ from the reference model

implementation, an assertion is fired. The following values from the student

code are tested for equality with those produced by the model code.

• Return value of the make guess function

• Number of perfect matches

• Number of misplaced matches

25

• Each of the guess variable written according to the input string

• Turn number

Feedback Generation

The second part of the grading script is used for compiling student code, link-

ing with the c wrapper code, executing with Klee, and generating feedback

information for students.

Most of the script is the same across different assignments. The only part

specific to each individual assignment is the part that generates feedback

information for students. Depending on the assertion result generated by

Klee, either a test case leading to an erroneous result is generated, or the

actual type of error is generated as feedback to students.

For the error of the number of perfect and misplaced matches, a test case

is generated. The reason to generate a test case instead of simply giving

students the type of error is that, by only knowing the type of error, it is

hard for students to produce a test case that leads to erroneous code. In other

words, bugs are hidden inside the student code and can only be exposed by

specific test cases. Thus, the feedback provides the test case to students to

avoid confusion and to help students better understand the problem. The

test case is extracted from the results produced by Klee.

For the other three errors, students should be able to identify the bug

inside their code easily, and they are input independent. Thus only the type

of error is generated as feedback to students.

4.2.3 Normal Grading Procedure

Three test inputs are provided to students, each consisting of a sequence of

sets of inputs to the program and the desired output from the program. For

final grading, three similar test inputs are used, and some additional testing

for each individual student function is used as well. However, no detailed

information about all these tests is released.

26

4.3 Image Editor

4.3.1 Problem Description

In this assignment, one image is represented as four 1-D arrays, one for each

channel (Red Green Blue and Alpha). Each array has the same number

of elements as there are pixels in the image. In student functions these

arrays are passed as pointers (for example uint8 t *inRed,uint8 t *inBlue,

uint8 t *inGreen, uint8 t *inAlpha). Students are required to implement 5

functions:

calculateCosineFilter

This function takes an empty filter and a radius value, then changes

the value of the filter according to the radius.

invertImage

This function inverts the colors of the input image and stores the result

in a separate output image.

convolveImage

This function performs convolution on the RGB channels of the input

image. The result is written to a separate output image. The Alpha

channel should remain the same.

convertToGray

This function generates a grayscale version of the input image and

stores it in a separate output image.

colorThreshold

This function creates an output image which contains only the pixels

of the input image which exceed the color threshold. All other pixels

are set to black.

One important aspect of this assignment is that floating point operations

are involved. In particular, the Cosine Filter in the calculateCosineFilter

function, the grayscale weights in the convertToGray function and the filter

in the convolveImage function are all arrays of type double.

27

4.3.2 Grading Script Design

C Wrapper

As stated in the Chapter 2, Klee does not support symbolic representation

of floating point values. All such values must thus be chosen as concrete

values for testing. Because there is a floating point type of variable in this

assignment, any floating point type variables have to be prevented from being

set to symbolic, or appear in the control flow. Thus all the floating point

type variables are set as concrete values for this assignment.

Furthermore, when checking the functional correctness of the student func-

tion, instead of comparing two floating point type variables directly, the val-

ues are first converted to integers, and the difference between the resulting

integers (which should be 0) is used to decide correctness.

The first step of grading Image Editor is the initialization (120 lines) of

the input images. In order to compare the student output and that of the

model code, the initialization step allocates two identical images that have

the same set of symbolic RGB pixel values. The image processing functions

all manipulate the pixel value and store the result to output image channel

pointers which are parameters passed into the image processing function.

Therefore, output images are also allocated and used to catch the outputs of

both student and reference model functions. After comparing the outputs,

the correctness of student code can be determined.

To reduce the computation time, small images are used: 8 pixels wide and

6 pixels high. After the initialization, the student and the reference model

implementation are executed with their own symbolic input. The student

result is checked against the model result. The image processing functions

are tested separately. Only one function is tested in each Klee run.

The following two functions are used to compare the student and reference

model result:

bool checkImage(Image *stud,Image *sol)

checkImage() compares two Images by comparing the pixels at the

same position of both images. If any of the pixel pairs are not the

same, the student code contains error.

bool imageError(Image *stud,Image *sol, int error rate)

imageError() function calculates the difference between student and

28

model results. Because floating point is not supported well for Klee, one

threshold integer err range is used. The condition is thus: err range ∗
(
∑

(student val−gold val))2 < (
∑

(gold val))2. If the condition holds,

the student function is determined to be correct. Note that there is a

floating point variable inside the condition, which results in the con-

cretization of symbolic values. However, the concretization is allowed

here because, this is the final step of the grading procedure, thus no

more paths need to be explored.

Feedback Generation

The script code handles the compilation of the main wrapper function and

student function, as well as multiple executions of Klee. Feedback is gener-

ated based on which function fails to pass the test. The failure type infor-

mation generated by Klee is also used to generate feedback. In particular,

the memory out of bound pointer error is used to determine that the student

code has a bug affecting array accesses, which is common for this assignment.

4.3.3 Normal Grading Procedure

Only one input image is provided to students as test input. For the final

grading multiple images may be used, but no detailed information is released.

4.4 Sudoku Game

4.4.1 Problem Description

The Sudoku assignment is to implement a C program that solves the Sudoku

puzzle using recursive backtracking. A standard Sudoku puzzle contains 81

cells, in a 9 by 9 grid, and has 9 zones. Each zone is the intersection of 3 rows

and 3 columns (i.e. size 3x3). Each cell may contain a number from 1 to 9

and each number can only occur once in each 3x3 zone, row, and column of

the grid. At the beginning of the game, several cells begin with numbers, and

the goal is to fill in the remaining cells with numbers satisfying the puzzle

rule.

29

There are five different functions students need to implement:

int is val in row(const int val, const int i, const int sudoku[9][9])

Checks if the given number val can be filled in row i.

int is val in col(const int val, const int j, const int sudoku[9][9])

Checks if the given number val can be filled in col j.

int is val in 3x3 zone(const int val, const int i, const int j, const int

sudoku[9][9])

Checks if the given number can be filled in the 3x3 zone corresponding

to the cell (i, j).

int is val valid(const int val, const int i, const int j, const int su-

doku[9][9])

Checks if the given number val can be filled in position (i,j).

int solve sudoku(int sudoku[9][9])

main recursive function to solve the Sudoku.

There is also a challenge question for this assignment. In addition to the

constraint that each number can only occur once in each row, column, and

3x3 zone, the challenge implementation imposes another rule that each num-

ber can appear exactly once in each of the two diagonal lines of the matrix.

Students should directly modify their code in the function solve sudoku such

that the solution returned satisfies the diagonal constraint as well as the reg-

ular constraints. Note that a valid solution for the challenge implementation

also infers a valid solution for the non-challenge implementation.

4.4.2 Grading Script Design

C Wrapper

To explore as many execution paths as possible, a symbolic Sudoku game

board is needed. However, because this assignment is an assignment on

recursion, it is impossible to set the whole game board as symbolic, which

causes Klee to never finish execution. For the backtracking algorithm in this

assignment, it requires a large number of recursive calls.

There is no need to generate the whole Sudoku game board every time.

Instead, 1 initial Sudoku game board with exactly 1 solution is used, and 9

30

additional symbolic numbers are set to be mutually unequal with each other.

These symbolic values can only take values between 1 and 9, which generates

a set of symbolic values that can represent the input domain of the Sudoku

game. By mapping symbolic values to the hard-coded Sudoku game board

one by one, 9! different Sudoku game boards that are guaranteed to have an

unique solution can be generated. However, 9! different Sudoku game boards

are still too many for Klee to handle. With some experiments the number of

symbolic numbers is reduced to 5, such that 120 different game boards are

generated.

For the check valid function, the only thing that matters is the return

value. Therefore, the script compares the result of student and reference

model code with same input parameters. The function checks are in a sequen-

tial order: is val in row, is val in col, is val in 3x3 zone, and is val valid.

Assertion is fired at the first function with return value different from that

of the model code.

For the solve sudoku function, because the generated game board has only

one solution, it is enough to check if the student-solved game board is ex-

actly the same as the reference solution game board. The student result

game board is first re-mapped back to the original game board according to

the symbolic variables, and then compared with the hard coded reference

solution.

4.4.3 Normal Grading Procedure

Three sample Sudoku game boards are supplied as tests to students. The

final grading uses a single game board that has multiple solutions to test the

student code. Student code is determined to pass the challenge question if

the resulting game board passes the restriction of the challenge question.

4.5 2048 Game

4.5.1 Problem Description

The game 2048 is played on a 4×4 grid, with numbered tiles that slide

smoothly when a player moves them using the four arrow keys. Every turn,

31

a new tile will randomly appear in an empty spot on the board with a value

of either 2 or 4. Tiles slide as far as possible in the chosen direction until

they are stopped by either another tile or the edge of the grid. If two tiles

of the same number collide while moving, they will merge into a tile with

the total value of the two tiles that collided. The resulting tile cannot merge

with another tile again in the same move.

For this MP, students are implementing the same game on a variably sized

grid. The game is controlled using the keys w, a, s, d, with n to restart the

game and q to quit. The key w causes the tiles to slide up, a to the left,

s down, and d right. Each turn, the program waits for a keyboard input.

When the program receives a directional input (w, a, s, d), it will slide the

tiles in the corresponding direction. If this causes no change, the turn is over

and the program waits for the next input. If the input causes at least one tile

to slide, a new random tile is added and the game is printed to the terminal

before the turn ends and the program waits for a new input. The key n will

recreate the game board with new dimensions, setting all cells to zero, and

randomly adding one tile. The key q will quit the program.

Each turn, the program will ask for one keyboard press as an input. The

code for inputs n and q are already done for students. A directional input

will call one of the move functions. These functions modify the game board

and update the score. When two tiles merge, the score increases by the new

value. For example, two 4 tiles will merge into an 8, so the score should be

incremented by 8.

Students are required to implement the following 9 functions:

game * make game(int rows, int cols)

Generates a new game board with dimension rows * cols.

void destroy game(game * cur game)

Frees up all the memory allocated.

cell * get cell(game * cur game, int row, int col)

Returns the value in cell(row,col).

int move w(game * cur game)

Performs a upward move for the game board.

int move s(game * cur game)

Performs a downward move for the game board.

32

int move a(game * cur game)

Performs a leftward move for the game board.

int move d(game * cur game)

Performs a rightward move for the game board.

int legal move check(game * cur game)

Checks if the game is over.

void remake game(game** cur game ptr, int new rows, int

new cols)

Cleans up the current game and regenerate a new game board.

4.5.2 Grading Script Design

The intention of this assignment is to teach students about memory alloca-

tion. However, because Klee is not designed to detect memory leaks, and

there are already tools such as Valgrind to test memory allocation and de-

allocation, the target of the automated feedback framework is focused on the

logic of four move functions.

C Wrapper

First of all, it is noticed that for each move operation, rows (or columns)

are independent of each other. Thus, instead of making a game board of

arbitrary size, a symbolic board of size 5 * 1 is used to test row operations,

and a symbolic board of size 1 * 5 is used to test column operations. The

element in each cell of the game board is a symbolic variable. The symbolic

variable can take its value from the set {-1, 2, 4, 6, 8, 16}.
The choice of size 5 for the game board is a balance of execution time and

test completeness. After some experiments with the assignment, it is clear

that a game board of size 5 can cover most of the situations in a real game.

Increasing the size lengthens the execution time by too much with little gain

in functionality checking.

For each student function, two game boards consisting of the same symbolic

variables are created. One gameboard is a duplicate of the other. Cells in

each board with the same coordinates have the same symbolic variable, and

thus are mapped to the same value. One game board is passed to the student

33

function and the other is passed to the reference model implementation. The

return value of the function, the updated game board and the updated score

are checked for correctness, and the checking process stops when a bug is

found. To reduce execution time, students can always fix the error and

resubmit for more feedback.

Feedback Generation

The feedback generated for this assignment is failure information about the

move functions.

• Return value does not match for Move

• Incorrect score update for Move

• Board not same for Move

More detailed information about exactly what game board can cause the

error can be generated. However, because for the student code the map

generation is random and the map generation code is provided, it is still

hard for students to utilize the game board information. Thus only the

failure information is provided.

4.5.3 Normal Grading Procedure

For functionality of the student function, the normal grading procedure tests

each student function with several fixed game boards, and compares the

results with a reference solution. However, there is no check for invalid

moves for the move functions. For memory allocation and de-allocation,

the normal grading procedure utilizes Valgrind to test.

4.6 Maze Solver

4.6.1 Problem Description

Students are required to find a solution for a maze game. An acyclic map

of the maze is given to them. The starting location is marked as S, and

34

1 //maze is a 2-d array of

//size width * height

3

// Student is supposed to find "S" symbol ,

5 // return its coordinate back in x and y

void findStart(char ** maze , int width , int height , int * x,

int * y);

7

void printMaze(char ** maze , int width , int height);

9

//Solve the maze with starting location

11 //xPos and yPos.

//If unsolvable return 0, otherwise 1.

13 int solveMazeDFS(char ** maze , int width , int height , int

xPos , int yPos);

15 //Check if the solution is valid.

// Return 1 if solution is correct ,

17 // otherwise 0.

int checkMaze(char ** maze , int width , int height , int x, int

y);

Figure 4.1: Student Function

the ending location is marked as E. Students are required to implement four

different functions, as shown in Figure 4.1. Initially only the test for the

solveMazeDFS function was implemented. After receiving positive feedback

from students using our system, feedback for the findStart and checkMaze

functions was added. The feedback generation for different functions is based

on two separate runs of the backend, one for solveMazeDFS and one for both

findStart and checkMaze. An example maze is shown in Figure 4.2.

If the maze is solvable, any point along the solution path has to be marked

as “.”. Other locations that have been searched but are not on the solution

path have to be marked as “∼”. The starting and ending location symbols

“S” and “E” cannot be overwritten. An example of a correct solution is

shown in Figure 4.2.

35

Input File: Solution:

2 5 5

%%%%% %%%%%

4 S % S..~%

%% %% %%.%%

6 % E % ..E

%%%%% %%%%%

Figure 4.2: Example Input Maze File & Solution

4.6.2 Grading Script Design

C Wrapper

A fixed acyclic map size of 6×6 is generated without Start and End symbols.

The locations of starting and ending points are marked as symbolic variables

for Klee. The student function is tested by calling solveMazeDFS on the

generated map.

The return value and returned map are checked for correctness. An as-

sertion will be raised if either of them is not correct. Then the findStart

function is tested in the same way as solveMazeDFS. The maze is then

solved with a referenced model implementation and the checkMaze function

is tested with the solved map.

Feedback

For feedback generation, only test cases leading to failure are provided as

feedback to students. Even though more detailed information about at which

line of code the error occurs is available, this information is hidden from

students.

36

CHAPTER 5

RESULTS

Students submit their programs to the automated feedback framework for

feedback. In this chapter, the quality of the generated feedback is discussed.

Because students are allowed to use the automated feedback framework mul-

tiple times before the deadline, multiple versions of feedback may exist. Only

the last submission, which is also the version that is actually graded, is con-

sidered in this chapter. The reason to only consider the last submission is

that earlier submissions may not reflect the real quality of student code, as

students may submit to test certain functionalities before finishing the whole

program, or simply try to save their progress. There is also no normal grade

to compare with except for the last submission.

5.1 Bug Identification

Functional correctness is the most important aspect of a program. Missed

bugs inside student code may leave students with misunderstood concepts.

Hence it is important that every bug inside student code is identified. The

automated feedback framework aims at identifying every bug inside student

code. Even though successfully finding all the bugs is not guaranteed, the

results show that the automated feedback framework does a better job than

the original grading procedure in the following aspects.

• Discovers more defects of student submissions.

• Reports fewer false positives.

• Categorizes more accurately the type of defect.

This section presents the comparison between the normal grading procedure

and the automated feedback framework.

37

5.1.1 Code Breaker

For the Code Breaker assignment, every student submission with defects

reported is human inspected to assess the quality of auto-generated feedback.

Among 91 total submissions, three pairs of duplicate codes were found, thus

only 1 copy of these 3 pairs is considered in the discussion.

Failed to Generate Feedback

The framework failed to generate feedback for 5 out of the 88 valid submis-

sions. Following is a list of failure reasons:

Over time

To limit the processing time for each student submission, there is a

time limit of 3 minutes for the framework to generate feedback. Two

student submissions went over time, thus no feedback was generated.

Human inspection of these submissions showed that both were func-

tionally correct but used unnecessarily complex algorithms. When the

time limit was removed, the framework generated feedback for both

submissions in less than 3.5 minutes.

Printf

To access the functionality of the student submission, the grading script

catches the parameters passed to the printf function. However, 1

student submission only printed under a certain condition (when the

guesses are correct). Failing to catch parameters passed to the printf

function resulted in the failure of evaluation of the student submission.

The same student submission earned 0 points for functionality with the

normal grading procedure as well.

Another student split one printf call into multiple printf calls, which

caused the grading script to catch partial parameters, which led to fail-

ure of accessing the student submission. The same student submission

passed the normal grading procedure, but the use of multiple printf

function calls instead of one should be discouraged. The synchroniza-

tion wrappers on the C library guarantee that each printf is routed

automatically to an output stream, whereas multiple printfs can be in-

terleaved with other threads’ output to the same stream. So the habit

may hurt students in the future.

38

Set Seed

In order to set the solution peg values as symbolic variables, the rand

function has been modified to return symbolic values in a fixed or-

der. One student submission called the set seed function and the rand

function multiple times, causing the rand function to return erroneous

results that were not symbolic, which caused the failure of evaluation

of the student submission. The same student submission passed the

normal grading procedure, but the actual implementation should be

prohibited.

In addition to these 5 students, one more student, STUDENT 7, had

an error in the set seed function, which the automated grading framework

assumed to be correct and did not test. The error in the set seed function

caused the program to fail the normal grading procedure completely. How-

ever, the rest of the implementation is correct according to the framework.

Bugs Missed by Normal Grading

The normal grading procedure failed to identify several different types of

bugs. A single student submission often contains multiple bugs. For several

student submissions, the normal grading procedure caught some but not

all of the bugs inside the student submissions. Because of the difficulty

of distinguishing which bug the normal grading procedure caught, here in

this section only “completely correct student submissions”, as determined

by the normal grading procedure, are considered as candidates for missed

bugs. Sixteen student submissions containing bugs passed all the tests in

the normal grading procedure. The bugs in these 16 student submissions

are listed below. Please note that there may be other bugs in these student

submissions, but only the most common bug in each student submission is

listed here.
Multiple Mismatch Peg

The bug appears with the resulting missed match value larger than it

should be. As shown in Table 5.1, the correct output should be 0

perfect match and 1 missed match. With multiple mismatch peg bug

the missed match is calculated as 2.

The cause of the bug is that when student submissions matched the

input guess to the solution peg, the solution peg was not marked when

39

Table 5.1: Example for Code Breaker

solution peg 1 2 3 4
guesses 1 1 5 6

pairing with one of the input guesses. In the example, the 1 in solution

peg did not get marked when pairing with any of the 1s in the guesses,

so the other guess could be matched with the same solution peg, which

resulted in 2 mismatches instead of 1.

The multiple mismatch peg is the most commonly missed bug. Ten stu-

dent submissions had this bug in their code, yet all these submissions

had passed the normal grading procedure. Six more student submis-

sions with this bug inside were caught because of other bugs, while this

bug was never exposed by the normal grading procedure.

Similarly, because the solution pegs and guesses are symmetric, solution

pegs matched with guesses should get the same result. Some students

failed to mark guess pegs, a bug similar to the multiple mismatch peg

bug. The framework can catch both type of bugs. However, the normal

grading procedure is also capable of detecting this kind of error. Thus

there are no missed bugs in this category.

Guess Not Set

The make guess function requires students to use the sscanf function

to read guesses from the input string to four different guess pointers.

However, 2 student submissions failed to write the read values back to

the guess pointers, and 1 additional student submission only wrote the

read values when they all matched the solution peg. All three student

submissions passed the normal grading procedure.

Out of Bound Pointer

One student submission used arrays but accessed locations outside of

the array size. The normal grading procedure failed to detect this error,

while the framework caught it.

Negative Value

One student implementation failed to check that inputs were in the

range 1 to 8 and accepted negative values. The normal grading proce-

dure failed to identify this bug.

40

Unitialized Value

Two student submissions failed to initialize some of the flag variables,

thus causing the logic to be wrong. The normal grading procedure

failed to identify this bug, possibly because stack-allocated values often

happen to be 0 early in a program’s execution.

5.1.2 Image Editor

Because the image editor assignment is designed to help students understand

the concept of arrays, the input data does not affect the control flow. Thus

for most submissions, there was only one execution path, so only one test

was generated by Klee. However, the limitation on execution path explo-

ration did not affect the effectiveness of the automated feedback framework.

In particular, Klee as an interpreter checks all the array accesses. Among all

the student submissions that were determined to be correct by the normal

grading procedure, the checking of array accesses alone identified 30 errors.

Seventeen student submissions had erroneous memory accesses in one func-

tion, mostly in the calculateCosF ilter function. Two student submissions

had errors in 4 different functions, and 1 student submission had errors in

all 5 functions tested. The functionality of these student submissions were

correct; however, students should know that there were hidden bugs in their

code and that their concepts of array were wrong. The normal grading pro-

cedure only compared the end result, which led to the failure to detect this

kind of bug.

Beside memory access error, 1 student submission was determined to be

correct in functionality with the automated feedback framework, while it

was determined to be wrong by the normal grading procedure. Upon human

inspection, it is determined that the student’s algorithm computed the result

in a different order than the reference gold implementation, which caused a

difference in the computation result because of lack of associativity with

floating-point arithmetic. The difference accumulated with the size of the

input image. Because the automated grading framework used a small input

to test, the difference was not significant, while the normal grading procedure

used a large input image, which caused the error. Because students were not

being tested for knowledge of numeric stability, the student’s answer should

receive full credit for this introductory class.

41

5.1.3 Sudoku Game

Compile Failure

Five student submissions failed to compile, of which 1 failed to compile with

the normal grading procedure as well. The main reason for compilation

failure is compiler difference. The normal grading procedure used g++ as

the default compiler, while the auto-grading framework used llvm-gcc.

Upon human inspection of the failed student submissions, it was found that

1 student used a type of cast syntax that llvm-gcc does not support; 1 student

used pass-by-reference in the function declaration, which is not supported by

llvm-gcc, as a C compiler; and 2 students used the goto command in their

code which caused the compilation error.

Time Limit

Because the Sudoku game assignment is a recursion assignment, the number

of execution paths may become extremely large with erroneous student sub-

missions. Thus the execution time limit set for the assignment was 5 minutes

to avoid spending too much time on erroneous or complex student submis-

sions. Seventeen student submissions failed to finish within the 5 minute

deadline. However, for 4 of the timed-out submissions, bugs were identified

within the student code. These bugs were identified from the execution paths

that Klee explored before time-out.

Bugs Missed by Normal Grading

The most missed-bug for the Sudoku game assignment was the implementa-

tion of the challenge problem. In the specification, it is clearly stated that

the check for number uniqueness on diagonals should only be done outside

the is val valid function. However 37 student submissions had the diag-

onal check included inside the is val valid function. Thus when a diago-

nally invalid, but otherwise valid, Sudoku game board was passed to the

student’s is val valid function, the game board was determined to be in-

valid. The result was detected by the automated feedback framework and the

is val valid function was determined to be incorrect. However, the normal

42

1 {

for(...;...;...){

3 if(...){

return 1;

5 return 0;

}

7 }

}

Figure 5.1: Example Code for Sudoku Game 1

grading procedure did not test if the diagonal check was implemented outside

the is val valid function. There was no individual test for the is val valid

function at all. Thus all these student submissions were determined to be

correct.

Another two missed bugs were related to the problem of default return

value of the compiler. The example skeleton codes are in Figure 5.1 and 5.2.

It is easy to tell that in the first student code example, the return statement

is misplaced, possibly by a typo. However, if the default return value is 0,

the functionality of the function is still correct. It is assumed that the normal

grading procedure used a compiler that defaults the return value to 0, as the

student submission passed the test.

For the second example, if the execution path does not enter any of the

two inner if statements, then the return value of the function is also not de-

fined. Clearly student had a conceptual error. However, the normal grading

procedure did not detect this bug, and thus the student submission passed

the test.

5.1.4 2048 game

Compile Failure

There were two compilation failures; both student submissions failed the

original grading procedure as well.

43

{

2 if(...){

do{

4 if(...){

return 1;

6 }

}while(...);

8 }

else if(...){

10 do{

if(...){

12 return 1;

}

14 }while(...);

}

16 else{

return 0;

18 }

}

Figure 5.2: Example Code for Sudoku Game 2

Out of Time

There were 28 student submissions that ran out of time for automated feed-

back. Of these 18 were determined to have errors by the normal grading

procedure. With human inspection, all the 10 correct student submissions

had complex algorithms for the move functions. Most of them traverse the

game board multiple times to determine if it is a valid move, which resulted

in multiple nested for loops that caused the time-out. After the submission

deadline, part of the 28 submissions are tested again without time limit.

However the tests for them all reached a memory cap, thus halting the exe-

cution of Klee.

Bugs Missed by Normal Grading

The most obvious missed bug was the missing test case for invalid moves.

When the move is invalid, the move functions should return 0. By default,

the move functions return 1 as given code. Missing test cases on invalid

moves caused two students, with their move w function empty except the

“return 1” statement, to pass the return value test for normal grading pro-

44

cedure. One more student submission, which was checked for invalid moves

but failed to return 0, passed the normal grading procedure.

Two more student submissions containing logic errors were found to pass

the normal grading procedure. The test cases from the normal grading pro-

cedure simply failed to discover the logic error.

In addition to standard feedback information about failure of the move

functions, 14 student submissions were determined to have out of bound

pointer errors. These out of bound pointer errors are bugs themselves, and

may lead to the failure of the functionality test as well, but were not detected

by the normal grading procedure.

5.1.5 Maze Solver

The automated feedback framework tested solveMazeDFS and findStart

successfully. However for checkMaze, even though most of the defects were

identified, some bugs were still missed. By inspection, the reason that these

bugs were missed is that the precondition was set to valid solution only.

In other words, Klee only generates correct maps to test student functions.

A correct map is not enough to identify all the defects in the checkMaze

function. To identify all the defects, a map with both correct and incorrect

solutions needs to be generated. Simply providing a correct solution with

different starting and ending points is not adequate for finding all the bugs.

However, the precondition setting prevents Klee from generating wrong so-

lutions. A better solution is to mark all the spaces in the maze as symbolic

variables.

Defects

With 82 students volunteering, a total of 241 submissions were graded, 141

of which contained test cases generated, which indicates that 141 of the

submissions have defects. Only 16 students have no generated test cases for

all of their submitted code. More than 80% of the students had defects in

their submissions. After we provided feedback to them, 50 out of 82 students

passed our grading tool, a 42% increase in correction rate.

The grading result is then compared with the normal grading procedure.

For this assignment all 349 students are graded in the traditional way. Fixed

45

sets of 3 test cases were generated by the instructor. Then the grading script

tried to compare the results of the student- and instructor-provided functions.

For the final submission, 32 volunteering students failed the automated

feedback framework. After manual inspection, we found that 15 of them had

their defects detected by the normal grading procedure, while 17 passed the

normal grading procedure without their defects caught. More than half of

the student submissions with defects received full points from the normal

grading procedure.

After the Spring 2015 semester, a full test on all 320 student submissions for

the Maze Solver was done. Table 5.2 shows the number of student functions

containing defects that passed the normal grading procedure.

Table 5.2: Student Code with Defects Passing Traditional Grading

Missed
checkMaze 55

solveMazeDFS 118
findStart 11

5.2 Feedback Effect

After the grade from the normal grading procedure is available, a comparison

between volunteer students and the rest of the students is done. The correc-

tion rate here is calculated based on the traditional grade. Each functionality

of a submission is only considered correct when it passes all three test cases

provided by the traditional grading. The results are listed in Table 5.3.

For each function tested, students with feedback get better understanding

of the problem as they get a higher correct rate than students who do not

have feedback.

Table 5.3: Correct Rate Volunteer Student vs. Rest of Students
Correction Rate Based on Traditional Grade

Volunteer Students Rest of Students
checkMaze 45.12 29.83

solveMazeDFS 74.39 58.82
findStart 91.46 86.55

46

Table 5.4: Fractions of Fully Correct Solutions for Student Participants
Compared with those of Non-Participants

Volunteer Students Rest of Students
checkMaze 67.07 35.71

solveMazeDFS 56.10 20.59
findStart 90.24 84.45

The correction rate based on the automated assessment tool is also pre-

sented in Table 5.4. For each function, students receiving feedback still do

better than those who do not. However, except for the checkMaze function,

the correction rate is lower compared to the normal grading process. The

reason is because with concolic testing, the automated assessment tool can

identify more defects in student code.

5.3 Grading Script Production

In order for the automated feedback framework to work correctly, a grading

script is needed. The grading script is generated by a graduate student

and an senior undergraduate student as assistant. Because instructors gave

new assignments or made changes to existing assignments, we received the

released assignments at the same time with students. Thus it is important

that the grading script can be generated in time. The time it takes to produce

the grading script depends on the assignment. However, no grading script

took more than two days to be produced. A rough estimation of time taken

to produce the grading script is made based on the hourly payment recorded

for the undergraduate assistant. Table 5.5 shows the reported work hours

from the undergraduate assistant. The Code Breaker assignment was handed

out in week 5, the Image Editor assignment was handed out in week 7, the

Sudoku Game assignment was handed out in week 8 and the 2048 game

assignment was handed out in week 9. The biweekly hours shown indicate

that the undergraduate assistant worked around 10 hours each week, in which

around 8 hours are estimated to be grading script production time.

47

Table 5.5: Reported Work Hours

Hours
Week 4 & 5 19.3
Week 6 & 7 15.0
Week 8 & 9 21.2

Week 10 & 11 23.7

Figure 5.3: Processing Time Distribution for Code Breaker [Unit:Seconds]

5.4 Processing Time

The processing time calculated here is the time difference between student

commit time and the generated test case commit time from the subversion

server log. For the Fall 2015 semester assignments, the automated feedback

framework was executed on a server with Xeon ES-2420 CPU and 96 GB

memory. For the Maze Solver assignment which is done in Spring 2015

semester, the automated feedback framework is executed on a desktop, with

Intel i5-3470 CPU and 8 GB memory. It is worth noticing that because we

are running the grading process on a single machine, only one grading is

being done at each time. When two commits happen within two minutes of

each other, the latter one is queued up.

Figures 5.3, 5.4, 5.5, 5.6 and 5.7 show the CDF of processing time for each

assignment. Figures 5.8 and 5.9 show the average processing time and median

processing time for each assignment. Clearly the feedback generation times

48

Figure 5.4: Processing Time Distribution for Image Editor [Unit:Seconds]

Figure 5.5: Processing Time Distribution for Sudoku Game [Unit:Seconds]

49

Figure 5.6: Processing Time Distribution for 2048 Game [Unit:Seconds]

Figure 5.7: Processing Time Distribution for Maze Solver [Unit: Seconds]

50

Figure 5.8: Average Feedback Generation Time

Figure 5.9: Median Feedback Generation Time

51

Table 5.6: Signature Test Cases Generated for Code Breaker

Sol 1 Sol 2 Sol 3 Sol 4 Input 1 Input 2 Input 3 Input 4
Test 1 1 1 1 3 1 1 8 1
Test 2 3 1 1 8 1 1 1 3
Test 3 8 8 8 8 8 8 8 8
Test 4 1 1 1 2 2 1 3 1
Test 5 3 1 2 3 1 3 3 1
Test 6 3 1 1 1 1 1 3 3

for different assignments are different. The feedback generation time depends

not only on the difficulty of the assignment, but also on the submission

pattern of students. When multiple students submit their assignments at the

same time, the queuing delay adds up. In addition to the queuing delay, the

framework only checks for new submissions every minute, in order to reduce

the workload on the Subversion server. However, for all the assignments,

more than half of the students can receive their feedback within 3 minutes.

5.5 Student Grouping

Student grouping is done for the Code Breaker assignment. After applying

the method described in Chapter 3, two large groups of students failed the

same group of signature test cases. One group of 15 students failed because

of the Multiple Misplaced Match error described earlier. Another group of 6

students failed to set the Guess variables.

With 91 student submissions, the initial collection of test cases generated

38 different test cases. Applying reduction on these 38 test cases resulted in

6 signature test cases, shown in Table 5.6.

Human examination was done for each student submission. Students who

failed signature test cases 5 and 6 were determined to have the same Multiple

Misplaced Match error. Students who failed signature test cases 1, 2, 3, 4,

5, 6 were determined to have not set the Guess variables.

52

5.6 Discussion

5.6.1 Grading Code Design

When doing assessment of a student program, the input to the program

under test needs to be marked as symbolic values. However, which variables

are marked as symbolic values needs special consideration. Then we need to

have Klee generate the right amount of test cases. We would like to identify

as many bugs as possible while avoiding duplication of tests for a single bug.

Symbolic Variable Choice

Klee works based on symbolic values, without which it is merely an inter-

preter. Choosing which variables to be marked as symbolic is not easy. These

variables are passed to constraint solvers; thus, the number must be limited

to avoid the solver running out of memory or timing out, causing the whole

grading process to fail. Usually preventing constraint solvers from failure

can be done by limiting the number of variables chosen. Too many variables

can lead easily to state explosion. On the other hand, the variation in the

value of the chosen variables must also lead to covering different parts of the

student-written functions. The balance of these two requirements is the key

point of making Klee a successful automatic feedback generation tool. For

different programming assignments, different strategies need to be applied to

the choice of symbolic variables.

Precondition

The precondition of inputs to a program can be complicated. For example,

the Maze Solver assignment requires an input map that is acyclic. Defining

an acyclic map using predicate functions can be hard. One way of doing so

is to generate an acyclic map using depth first search, and substitute the

random generator with klee make symbolic call. In other words, let Klee

control the generation of the acyclic map. However, using symbolic variables

in a recursive function causes the SMT solver to require huge memory space

and execution time.

53

When the precondition is complicated such that there is no easy way to

generate valid inputs for the program, it may not be necessary to generate

the whole set of inputs. The goal of using symbolic variables is to achieve

high code coverage. If variation in part of the input suffices for full coverage

of student code, we can mark that part of the input as symbolic. For the

example of an acyclic map, varying the starting and ending location suffices

if the map is constructed carefully.

Though choosing correct symbolic variables requires some insight into the

program, it is still easier than creating a complete test set, which requires

the instructor to prepare a test case for every possible student code failure.

While students are novice programmers, preparing test cases to cover all

possible failures is not an easy task. On the other hand, reasoning about the

input to the program and finding the key variables that can lead to enough

variations to the input require no knowledge about how the student code

may fail. Under the limitation of hardware resources, the more variation in

input we can create, the better. Only when the hardware resources cannot

cover all the possible execution paths do we need to decrease the symbolic

space by either reducing the number of symbolic variables or limiting the

value range of symbolic variables. The process of decreasing the symbolic

space requires knowledge about the assignment. For example in the 2048

Game assignment, even though student submissions are supposed to support

an arbitrarily sized game board, the limit of row and column size is set to

5 because the game with the larger game board is based on the game with

smaller game board; student submissions passing the test of size 5 are most

likely to be correct submissions.

The results presented show that most symbolic variable setups were cor-

rect. The only exception is the solution map generation for the Maze Solver

problem. The setup failed to generate an invalid solution map to test the

checkMaze function, and thus failed to prepare an adequate input space.

However, the problem of preparing symbolic variables that can cover ade-

quate input space is similar to the problem of selecting an adequate set of

test cases with the normal grading procedure. In general the automated

feedback framework is more complete than the normal grading procedure.

54

5.6.2 Bugs Missed by Normal Grading

The traditional way of grading relies on the set of test inputs. When the

test inputs do not cover defective code, the grade given can be wrong. For

all of the five assignments tested, student submissions, with bugs that the

normal grading tests did not cover, have been identified. A list of the most

important missed bugs follows:

Code Breaker

Multiple Misplaced Matches not detected.

Image Editor

Out of Bound Array Accesses not detected.

Sudoku Game

Return Value not set error not detected.

2048 Game

General logic error not detected.

Maze Game

Starting location right next to Ending location error not detected.

The execution path for Image Editor assignment does not depend on the

input data, thus the normal grading procedure covered every bug. However,

for all the assignments, there were errors in student code that were covered

by the normal test cases, but not detected. In particular, the access of the

out of bound array pointer error was not detected. With the normal grading

procedure the array accesses are not checked and thus it is hard to discover

the access of the out of bound array pointer error.

Last but not least, the normal grading procedure failed to test some aspects

of the student submissions according to the specification.

Code Breaker

Write the scanned value back to the Guess variables.

Sudoku Game

Diagonal test should be implemented outside the is val valid function.

Maze Solver

Maze map with no outside wall.

55

1 if(maze[yPos][xPos]!=’ ’ && maze[yPos][xPos]!=’S’){

return 0;

3 }

5 if(maze[yPos][xPos]!=’S’ && maze[yPos][xPos]!=’E’){

maze[yPos][xPos]=’.’;

7 }

Figure 5.10: Code of Student A

1 if(currentChar == ’ ’ || currentChar == ’S’) // Check if the

current space is a valid location

{

3 if(currentChar == ’ ’) // Check to make sure to not

overwrite the start , S

maze[yPos][xPos] = ’.’;

5 /* Recursively call this function at the adjacent spaces

If a recursive call returns one , then a solution was

7 found , and this function can return 1

*/

9 ...

}

Figure 5.11: Code of Student B

5.6.3 Fairness

Several of the students had the same type of bug in their code; however, some

of them got penalized and some not. For the Image Editor, an example has

been shown in Section 5.1.1. For the Maze Solver assignment, two student

submissions A and B differ only at their orders of recursive calls. The student

submissions A and B are listed in Figure 5.10 and 5.11 respectively. They

both made the same mistake that multiple recursive calls are made to the

starting point. Because the starting point is not overwritten as checked (by

marking as “.”), all the neighboring cells can recursively call on the start-

ing location. Figure 5.12 is the test case generated by Klee indicating that

they both fail. However, because their orders of recursive calls to different

directions are different, student A passed the traditional grading tool while

student B was penalized.

56

Start of maze at (4, 2)

2 % ...%

%.%.

4 %.%S%

%.%.

6 %E%~%

%~~

The “.” under the “S” symbol shoule be “˜” because it is not on the solution path.

Figure 5.12: Erroneous Result

5.6.4 Limitations

There are several limitations of using concolic testing for automated assess-

ment as well.

Wrapper Code

As discussed in Section 3.2.1, to successfully assess a student function, some

setup work needs to be done. Because of the complexity of Klee, the wrapper

is hidden from students. In order for students to test their program when

they are developing, a normal main function has to be provided to the stu-

dents. However, if the target student function is inside the same file as the

main function, to include the target student function in the wrapper requires

extracting student code from the main file. The easiest solution is to pro-

vide separate skeleton files to students. One file contains the main function

that students do not need to touch, while all the student functions are in

a separate file. However, for introductory level programming courses, some

students may be confused by the multiple-file configuration.

Floating Point

Because concolic testing tools do not support floating point operations, any

assignment with floating point operations is not suitable for automated as-

sessment with concolic testing. However, the floating point itself is not a re-

quirement for most of the assignments. Furthermore, because floating point

operations inevitably lose information, they introduce difficulty in grading

57

assignments even with the normal grading procedure. When floating point

operations are involved in an assignment, it is normal to give the result from

student function an error range. The reason is because the different order

of the floating point operations may result in slightly different answers; for

example, the result of a × b × c is not necessarily the same as the result of

a × c × b. In some cases, even an error range is not enough. In one of the

assignments given to students from ECE220, because of a floor function used

on two different values between “4.99999999” and “5.00000000”, the student

answer is judged as wrong while it is actually the correct implementation. So

while we should avoid floating point operations in student assignments when

possible, not being able to support floating point operations is acceptable.

Library Calls

Concolic testing supports only limited library calls. For Klee, it uses uClibc

which is only a partial implementation of the standard C library. If library

calls outside the uClibc library range are made, the automated assessment

may fail. However, because concolic testing is based on an interpreter, in-

structors can implement or even replace library calls. For example when

teaching about I/O functions, standard library calls such as fscanf and fprintf

can be replaced with an instructor version, which instead of reading/writing

from/to a file, reads/writes from/to a buffer. Functional correctness checking

can also be done to this internal buffer instead. Hints can also be generated

when these function calls are not in the correct format.

58

CHAPTER 6

CONCLUSION

The use of industrial automatic testing tools on automated grading has been

limited. With the implemented framework that utilizes concolic testing tools

to identify defects in student code, and that generates feedback to students,

students get a better understanding of the course material. The result shows

that industrial automated testing tools can identify defects in student code.

With the framework, students can get timely feedback on their submission.

The average processing times for five assignments in an introductory course

are all under 5 minutes. There is also more coverage of student submissions

than with the traditional automated grading tool. Results show that more

than half of defective student code submissions passed the traditional au-

tomated grading tool. Thus, further exploration into the application of an

industrial automated testing tool in computer science education should be

conducted.

In the future, it would be beneficial to tune these tools toward a better

fit for automated assessment. For example, including functional correctness

checking against a reference solution inside Klee is a feasible option. Also, be-

cause concolic testing is based on an interpreter, some of the common library

calls can be replaced with an instructor-provided version. The implementa-

tion of IO extension is the first step in this direction. More implementations

for system calls such as malloc and free are desired in the future.

59

REFERENCES

[1] K. Sen and G. Agha, “Cute and jcute: Concolic unit testing and explicit
path model-checking tools,” in Computer Aided Verification. Springer,
2006, pp. 419–423.

[2] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing for
security testing,” Queue, vol. 10, no. 1, p. 20, 2012.

[3] A. Yadin, “Reducing the dropout rate in an introductory programming
course,” ACM Inroads, vol. 2, no. 4, pp. 71–76, Dec. 2011. [Online].
Available: http://doi.acm.org/10.1145/2038876.2038894

[4] I. Huet, O. R. Pacheco, J. Tavares, and G. Weir, “New challenges in
teaching introductory programming courses: a case study,” in Frontiers
in Education, 2004. FIE 2004. 34th Annual. IEEE, 2004, pp. T2H–5.

[5] M. Atkins, G. A. Brown, and G. Brown, Effective Teaching in Higher
Education. Routledge, 2002.

[6] M. Newman, “Software errors cost us economy $59.5 billion annually,”
NIST Assesses Technical Needs of Industry to Improve Software-Testing,
2002.

[7] M. L. Stamat and J. W. Humphries, “Training & Education: Putting
secure software engineering back in the classroom,” in Proceedings of
the 14th Western Canadian Conference on Computing Education, ser.
WCCCE ’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1536274.1536308 pp. 116–123.

[8] J. G. Ganssle, “A guide to code inspections,” 2001.
[Online]. Available: http://www2.cs.uni-paderborn.de/cs/ag-
schaefer/Lehre/Lehrveranstaltungen/Vorlesungen/ SoftwareQualityAs-
surance/WS0405/material/Inspections.pdf

[9] C. F. Kemerer and M. C. Paulk, “The impact of design and code reviews
on software quality: An empirical study based on PSP data,” Software
Engineering, IEEE Transactions on, vol. 35, no. 4, pp. 534–550, 2009.

60

[10] M. Blumenstein, S. Green, S. Fogelman, A. Nguyen, and
V. Muthukkumarasamy, “Performance analysis of GAME: A
generic automated marking environment,” Computers & Educa-
tion, vol. 50, no. 4, pp. 1203–1216, May 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.compedu.2006.11.006

[11] S. Srikant and V. Aggarwal, “Automatic grading of computer programs:
A machine learning approach,” in Machine Learning and Applications
(ICMLA), 2013 12th International Conference on, vol. 1. IEEE, 2013,
pp. 85–92.

[12] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen,
M. Devlin, and J. Paterson, “A survey of literature on the teaching of
introductory programming,” ACM SIGCSE Bulletin, vol. 39, no. 4, pp.
204–223, 2007.

[13] M. Amelung, P. Forbrig, and D. Rösner, “Towards generic
and flexible web services for e-assessment,” SIGCSE Bull.,
vol. 40, no. 3, pp. 219–224, June 2008. [Online]. Available:
http://doi.acm.org/10.1145/1597849.1384330

[14] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K. Hollingsworth, and
N. Padua-Perez, “Experiences with marmoset: Designing and using
an advanced submission and testing system for programming courses,”
SIGCSE Bull., vol. 38, no. 3, pp. 13–17, June 2006. [Online]. Available:
http://doi.acm.org/10.1145/1140123.1140131

[15] A. Shah, “Web-cat: A web-based center for automated testing,” Ph.D.
dissertation, Virginia Tech, Citeseer, 2003.

[16] S. H. Edwards and M. A. Pérez-Quiñones, “Experiences using
test-driven development with an automated grader,” J. Comput. Sci.
Coll., vol. 22, no. 3, pp. 44–50, Jan. 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1181849.1181855

[17] J. P. Sauvé and O. L. Abath Neto, “Teaching software development with
atdd and easyaccept,” SIGCSE Bull., vol. 40, no. 1, pp. 542–546, Mar.
2008. [Online]. Available: http://doi.acm.org/10.1145/1352322.1352317

[18] M. Sztipanovits, K. Qian, and X. Fu, “The automated web application
testing (awat) system,” in Proceedings of the 46th Annual Southeast
Regional Conference, ser. ACM-SE 46. New York, NY, USA: ACM,
2008. [Online]. Available: http://doi.acm.org/10.1145/1593105.1593128
pp. 88–93.

[19] K. A. Naudé, J. H. Greyling, and D. Vogts, “Marking student programs
using graph similarity,” Computers & Education, vol. 54, no. 2, pp. 545–
561, 2010.

61

[20] T. Wang, X. Su, Y. Wang, and P. Ma, “Semantic similarity-based grad-
ing of student programs,” Information and Software Technology, vol. 49,
no. 2, pp. 99–107, 2007.

[21] K. Sen, “Concolic testing,” in Proceedings of the twenty-second
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2007, pp. 571–572.

[22] X. Qu and B. Robinson, “A case study of concolic testing tools and
their limitations,” in Empirical Software Engineering and Measurement
(ESEM), 2011 International Symposium on. IEEE, 2011, pp. 117–126.

[23] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs.”
in OSDI, vol. 8, 2008, pp. 209–224.

[24] E. Andersen, “Uclibc,” 2010. [Online]. Available: http://www. uclibc.
org

[25] B. Meyer, Object-oriented Software Construction (2nd Ed.). Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1997.

62

