
© 2015 Zhenhuan Gao

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158312244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


OMNIDIRECTIONAL VIEW AND MULTI-MODAL STREAMING IN 3D
TELE-IMMERSION SYSTEM

BY

ZHENHUAN GAO

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor Klara Nahrstedt



ABSTRACT

3D Tele-immersion (3DTI) technology allows full-body, multi-modal content

delivery among geographically dispersed users. In 3DTI, user’s 3D model

will be captured by multiple RGB-D (color plus depth) cameras surround-

ing user’s body. In addition, various sensors (e.g., motion sensors, medical

sensors, wearable gaming consoles, etc.) specified by the application will be

included to deliver a multi-modal experience.

In a traditional 2D live video streaming system, the interactivity of end

users, choosing a specified viewpoint, has been crippled by the fact that they

can only choose to see the physical scene captured by a physical camera,

but not between two physical cameras. However, 3DTI system makes it

possible rendering a 3D space where the viewers can view physical scene

from arbitrary viewpoint.

In this thesis, we present systematic solutions of omnidirectional view in 3D

tele-immersion system in a real-time manner and in an on-demand streaming

manner, called FreeViewer and OmniViewer, respectively. we provide a com-

plete multi-modal 3D video streaming/rendering solution, which achieves the

feature of omnidirectional view in monoscopic 3D systems.

ii



To my mother, for her love and support.

iii



ACKNOWLEDGMENTS

First and foremost, I would like to express my appreciation to my adviser

Prof. Klara Nahrstedt, without whose constant guidance and support, this

work would not have been possible. She is an extremely motivating and

helpful mentor in multimedia research. Under her guidance, I have the op-

portunity to be introduced to the multimedia research and successfully finish

the thesis.

I am also grateful for the support from all the MONET group members. I

really enjoyed all the conversations with them in the past three years, includ-

ing Shannon Chen, Haiming Jin, Hongyang Li, Siting Chang, Wenyu Ren,

Rauol Rivas, Ahsan Arefin, Rehana Tabassum, Scott Huang, and Phuong V.

Nguyen.

Above all, I would also like to thank my mother, whose love and blessings

have enabled me to come this far in life. She has always been supportive on

every decision I made.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 2 BACKGROUND AND RELATED WORKS . . . . . . 7
2.1 Dynamic Adaptive Streaming over HTTP (DASH) . . . . . . 7
2.2 NoSQL Database . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 3DTI System . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

CHAPTER 3 REAL-TIME 3D RENDERING SYSTEM . . . . . . . 14
3.1 3D View Tracking Service . . . . . . . . . . . . . . . . . . . . 15
3.2 Capturing Service . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 3D Point Cloud Processing Service . . . . . . . . . . . . . . . 17
3.4 Rendering Service . . . . . . . . . . . . . . . . . . . . . . . . . 18

CHAPTER 4 ON-DEMAND MULTI-MODAL 3D STREAMING
SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Multi-modal 3D Content Recording . . . . . . . . . . . . . . . 20
4.2 DASH-compliant Data Representation . . . . . . . . . . . . . 23
4.3 Multi-modal 3D DASH Content Storage . . . . . . . . . . . . 24
4.4 Multi-modal 3D DASH Player . . . . . . . . . . . . . . . . . . 31
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . 38

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



LIST OF TABLES

2.1 Most popular NoSQL databases . . . . . . . . . . . . . . . . . 10

vi



LIST OF FIGURES

2.1 Media presentation description data model . . . . . . . . . . . 7

3.1 The bird view of FreeViewer deployment . . . . . . . . . . . . 15
3.2 Screen shot of our Google Glass view tracking app . . . . . . . 16
3.3 FreeViewer architecture . . . . . . . . . . . . . . . . . . . . . . 17
3.4 A comparison between fixed view and omnidirectional view . . 18

4.1 The architecture of Omniviewer 3D DASH system . . . . . . . 20
4.2 The deployment of OmniViewer recording site . . . . . . . . . 21
4.3 MPD file and the Multi-modal 3D DASH Player . . . . . . . . 24
4.4 RESTful API endpoints structure example . . . . . . . . . . . 29
4.5 Influence of H.264 and VP8 compression on depth data . . . . 35
4.6 The screenshot of Omniviewer player . . . . . . . . . . . . . . 37

vii



LIST OF ABBREVIATIONS

HTTP HyperText Transfer Protocol

DASH Dynamic Adaptive Streaming over HTTP

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

XML eXtensible Mark-up Language

REST REpresentational state transfer

API Application Program Interface

GUI Graphical User Interface

3DTI 3D Tele-Immersion

RTP Real-time Transport Protocol

RTSP Real-Time Streaming Protocol

SQL Structured Query Language

RDBMS Relational DataBase Management System

ACID Atomicity, Consistency, Isolation, Durability

viii



CHAPTER 1

INTRODUCTION

During the past decade, the potential of 3D tele-immersion (3DTI) appli-

cations has gained the attention from both academia and industry. While

most commercial 3D systems are specialized for sole purpose (e.g., Oculus),

the development of 3DTI system is currently aiming at multi-purpose, multi-

sites, and multi-modal platform in order to enable a variety of user activities

including e-learning, remote therapy, and interactive gaming. However, there

are still a lot of unsolved challenges in the domain of 3DTI system including

omnidirectional view and multi-modal 3D video streaming. In this chapter,

section 1.1 gives an overview of the current 3DTI and relevant 3D systems.

Besides, current video streaming technologies are also summarized in sec-

tion 1.1. Section 1.2 refines the initial motivation and focuses our research

questions on omnidirectional view specifically in 3DTI systems. Section 1.3

summarizes the approaces to address the problems in both real-time ren-

dering and on-demand streaming manner in sections 3 and 4. The main

contributions of this master thesis are summarized in section 1.4. Section 1.5

gives the organization of this master thesis.

1.1 Overview

3DTI system enables remote users to view the local scene and even to interact

with local users in a virtual 3D space, which has promoted lots of potential

applications such as remote therapy [1]. In general, a 3DTI system consists of

several sites distributed at different physical locations. All the sites transmit

the 3D data captured by multiple 3D cameras over either a dedicated network

or a shared network such as Internet. After each site gathers the data from

all the other sites, it render everything in a common virtual space.

Also, video streaming has become very popular and it takes up the majority

1



of the Internet traffic. Different multimedia transport protocols are developed

and are used. Previously, people tended to rely on RTP/RTSP protocols on

top of UDP to sacrifice data integrity for low latency because retransmission

of TCP could cause longer delay. With the networking technology advances

and the advantages of HTTP transport, many content providers have re-

sorted to HTTP on top of TCP to deliver multimedia service for multiple

reasons. The use of HTTP could leverage the off-the-shelf web servers for

video delivery by reusing existing HTTP cache infrastructures on the Inter-

net. The idea of using HTTP protocol to stream video content plus the need

of adaptation leads to the idea of splicing the video into small segments with

different qualities, concatenated for playback. The family of methods using

this idea is called “Dynamic Adaptive Streaming over HTTP”, which has

been standardized by MPEG [2].

Recently, the 3D system has seized the attention of the public. Users are

expecting to consume A/V services as part of multi-modal media services

with additional content such as artificial graphics, textual meta-data or even

haptic information. 3DTI is one example of current 3D systems. Similarly,

a multi-modal 3D streaming system shares many commonalities with 3DTI.

To the best of our knowledge, there is no monoscopic 3D streaming standard

which can fit the streaming and rendering part of 3D systems like 3DTI, not

to mention multi-modal 3D.

1.2 Problem Statement

Though there are lots of related works on 3DTI systems, along with the pop-

ularity of 3D systems, there are still some key problems unsolved. We believe

the following questions are increasingly attractive and are worth investiga-

tion:

1. In a traditional 2D video system, the interactivity of the end users

choosing a specified viewpoint has been crippled by the fact that they

can only choose to see the scene captured by which camera, but not the

scene between two physical cameras. However, essentially 3D system

doesn’t have this one-view limitation which means 3D system should

achieve omnidirectional view. Therefore, how to achieve omnidirec-

tional view in 3DTI system seamlessly?

2



2. Multi-site 3DTI technology requires full-body, multi-modal content de-

livery among geographically dispersed users. Nevertheless, for 3D tech-

nologies, there is no standard for 3D video format or codec, not to

mention multi-modal 3D video content. We are wondering, how to

efficiently stream multi-modal 3D data still with high quality?

3. Many applications such as physiotherapy necessitate on-demand 3D

video streaming. The on-demand streaming requires persistent data

storage compared to the real-time streaming. Due to the complexity

of multi-modality, how to manage, store and retrieve multi-modal 3D

data in an efficient way?

1.3 Our Approach

To answer these questions, we designed two systems: FreeViewer and Om-

niViewer, targeting mainly on omnidirectional view problem and multi-modal

3D video streaming problem, respectively.

Through depth estimation and interpolation among multiple 3D video

streams captured from different angles, 3D system makes it possible that

rendering a 3D space where the viewers can view from arbitrary viewpoint

as if there existed a virtual camera at that viewpoint with the same view

angle.

One possible solution to realize omnidirectional viewing of a physical scene

is to create a complete 3D model by aggregating the 3D streams from the

cameras all of which can cover 360°view. The viewing user is then able to

choose arbitrary viewpoint to see any side of this complete 3D model. How-

ever, creation and delivery of such a complete 3D object makes bandwidth

and computation requirements inevitably high. Hence, we need to look for

alternative solutions to decrease the computational and networking require-

ments. For example, in 3DTI system, the back side of the model, which is

invisible to the viewer, is redundant. The computation related to the data

of the back could be avoided to reduce latency. We found that a viewer can

only see one side of the object which is covered by at most two 3D cameras.

This means to render the scene from any viewpoint at any time, our system

only needs the streams from two cameras. Thus, in our FreeViewer system,

3



we choose at most two camera streams to render the final scene to viewer to

save computation power and bandwidth usage. The detailed system design

is presented in chapter 3.

After the omnidirectional viewing problem, we stills need a complete end-

to-end multi-modal 3D content streaming solution to realize 3D content de-

livery from server to user in an on-demand manner. We tackle this problem

by dividing the problem into recording, storing and streaming, and leverag-

ing 2D codec and current DASH standard to solve the problem within 3D

context.

1.4 Contributions

In summary, the contributions of this thesis are as follows.

• Achieves omnidirectional view conducted by wearable device or user in-

put when streaming. Through our FreeViewer system, we tackle the

omnidirectional viewing problem and show the attractiveness of view-

changing capabilities for a user via her wearable device such as the

Google Glass in multi-camera 3DTI environment. Compared to com-

plete 3D model reconstruction, FreeViewer/OmniViewer can achieve

the same omnidirectional viewing and the same 3D video quality with

less computation and network bandwidth, which is highly favorable un-

der resource-limited scenarios. Also, Omniviewer offers omnidirectional

view when streaming from any view at any time via proper GUI.

• Leverages 2D video en-/decoding technique to store and retrieve 3D

video segments (color and depth). Since there is no standard 3D video

format and 3D video codec, we leverage 2D video codec to compress

3D video in the form of a bundle of multiple RGB and Depth frame

pairs. Different from 3D mesh compression, we compress the 3D video

into 2D frames with a substantial compression ratio the codec of which

is also compatible with DASH standard.

• Proposes a comprehensive solution for multi-modal 3D content storage

with NoSQL database. In DASH, multi-modal data are partitioned

into multiple file segments and delivered to a client via HTTP. To sup-

port on-demand multi-modal 3D video streaming via DASH, the large

4



amount data should be properly stored for fast retrieval and manage-

ment. We propose a NoSQL-based solution to store the huge amount

of small files in each 3D video session and efficiently retrieve these data

from NoSQL database as a dynamic file server.

• Realizes Adaptively multi-modal 3D streaming. In data-intensive 3D ap-

plications, such as telediagnosis, remote physiotherapy and e-learning,

the data are always multi-modal and highly synchronized. Our system

extends current DASH standard to support synchronized multi-modal

data streaming besides audio and video.

1.5 Outline

The remainder of this thesis is organized as follows.

Section 2 introduces the fundamentals and related work of DASH1, NoSQL

database and 3DTI systems. Section 2.1 explains various important concepts

in DASH such as streaming mechanism and MPD file. Section 2.2 presents

the appearance and development of NoSQL database. Section 2.3 mainly

introduces related work about 3DTI system with emphasis on the delivery

part.

Chapter 3 aims to present the design and architecture of a real-time 3D

rendering system supporting omnidirectional view, FreeViewer [3]. Section

3.1 to section 3.4 explain different module of the whole system, respectively.

Chapter 4 introduces OmniViewer [4], an on-demand multi-modal 3D video

streaming system. we discuss what is missing in current DASH implemen-

tation to support multi-modal 3D streaming and how OmniViewer fills the

hole to achieve a completely functional 3D DASH framework. Section 4.1

explains the recording procedure. Section 4.2 describes how we change the

standard MPD file to make it fitting with multi-modal 3D DASH. Section 4.3

explains why we choose MongoDB as our storage database and presents the

design of multi-modal 3D DASH dynamic file server. Section 4.4 introduces

the design of multi-modal 3D DASH player. Section 4.5 and 4.6 present the

a basic evaluation of proposed 3D encoding method and a proof-of-concept

implementation of the OmniViewer system, respectively.

1In the following, we refer to MPEG DASH when we use DASH, unless otherwise
expressed.

5



Chapter 5 concludes the entire master thesis with the highlights of our

work and potential future scope of this work.

6



CHAPTER 2

BACKGROUND AND RELATED WORKS

2.1 Dynamic Adaptive Streaming over HTTP (DASH)

DASH is an adaptive bit rate streaming technology where a multimedia file

is partitioned into one or more segments and delivered to a client using

HTTP protocol. It needs a Media Presentation Description (MPD) file used

by the server to tell the clients segment information (timing, URL, media

characteristics) to help them fetch the right media content. The MPD syntax

is defined in XML. Typically before the start of streaming, the MPD file has

to be downloaded using HTTP to acquire all the media information.

Period, start=0s

…

Period, start=100s

…

Period, start=200s

…

MPD

Period,
start=100s
baseURL=http://3d.org

Adaptation Set 1
video

Adaptation Set 2
audio

Adaptation Set 3
subtitle

…

Representation 1,
Bandwidth=200kbps
width=640, height=480

Segment List

… Initialization segment

URL=video_0.m4s

segment 1

URL=video_1.m4s

Segment N

URL=video_N.m4s

…

…

Representation 2,
Bandwidth=500kbps
width=640, height=480
…

…

Figure 2.1: Media presentation description data model

The layout of MPD file shown in Figure 2.1 illustrates the data model of

DASH. The MPD layout is composed of three layers, Periods, Adaptation

Sets and Representations. MPD defines the video sequence with one or more

7



consecutive periods that break up the video from start to finish. Each period

contains one or more adaptation sets that contain the content of one-modality

data, video, audio, etc. Each adaptation set contains multiple representa-

tions, which represent the media streams with different qualities in terms

of bit rates, frame rates or video resolutions. Finally, each representation

contains a series of consecutive media segments with HTTP URLs. Those

URLs are either explicitly described in a Segment List or described through

a URL template from which the client can derive a series of valid segments

URLs. Although the specification provides specific guidance and formats for

use with two types of containers: ISO base media file format (e.g, MP4 file

format) or MPEG-2 TS, segments can contain any media data only if the

client knows how to decode the media data from the segments.

There has been some previous work on improving DASH across multiple

dimensions. Mok et al. [5] introduced Quality of Experience into DASH

system to modify the adaptation logic. Andelin et al. [6] examine the impact

of Scalable Video Coding on the client’s quality selection policy. Hartung et

al. [7] extend the current DASH standard to incorporate content protection

techniques. Concolato et al. [8] prove the possibility of using DASH to

serve as real-time media-synchronized service such as multi-modal content

streaming, since DASH is codec agnostic.

2.2 NoSQL Database

The need of data management automation leads to the invention of relational

database, based on the relational data model emerged with E.F.Codds 1970

paper [9], which makes data modeling and application programming much

easier than in the past. Traditional tasks like recording transactions in busi-

ness, science, and commerce, can be efficiently automated by the help of

programming and relational database. Moreover, the relational model is

well-suited to client-server programming and have proved to be the domi-

nant database technology for storing massive structured data in almost any

application. Nowadays, many organizations including companies and insti-

tutes collect tremendous amounts of customer, scientific, sales, and other

forms of data. In current web application trend, the big data storage has to

fulfil many requirements including high volume, high scalability, high avail-

8



ability, fast access and so on. In the late 90s, large web companies emerged

with dramatic increases in scale on many dimensions. Such as:

• The population of users skyrocketed because applications became ac-

cessible via the web and mobile technologies.

• The amount of data collected and processed soared with the increasing

users and ways to collect multi-modal data through crowd-sourcing,

and it became easier and increasingly valuable to capture all kinds of

data.

• The amount of unstructured data exploded.

Traditionally, most of these organizations have stored data with structured

data model in relational databases for subsequent access and analysis, which

seems to be the only and right choice. However, the high demand of current

data storage system pushes a growing number of developers and users to

turn to various types of non-relational databases, which now frequently called

NoSQL databases. The term NoSQL was first coined in 1998 by Carlo Strozzi

for his relational database management system (RDBMS), Strozzi NoSQL

[10]. However, Strozzi made up the term simply to distinguish his solution,

which still adheres to relational data model from other RDMBSs solutions

which utilize SQL. The term NoSQL just emphasizes that the SQL interface

is not necessary, but optional. Recently, the term NoSQL (meaning not

only SQL) has come to describe a large class of databases which does not

have properties of traditional relational databases and which are generally

not queried with SQL (structured query language). Non-relational databases

include hierarchical, graph, and object-oriented databases, which have been

around since the late 1960s. However, new types of NoSQL databases are

being developed. And only now they are beginning to gain market traction.

Different NoSQL databases take different approaches. What they have in

common is that they are not relational. Besides, they are easier to work with

for the many developers not familiar with the structured query language.

There are a few reasons why people looked for alternate solutions for

RDBMS. The rich feature set and the ACID properties implemented by

RDBMS might be too complex to support particular applications and use

cases in an efficient way. They are good, but when it comes to a specified use

9



case, the database system could be optimized instead of serving general pur-

pose. Currently, the principal problem of RDBMS is the trade-off between

the fast growing data volume and the very expensive cost associated with

scaling of the RDBMS.

In contrast, most NoSQL data stores are designed to scale well horizon-

tally so users could thus scale a single database by running on multiple virtual

servers in the cloud rather than by having to run it on a single powerful ma-

chine. Also, the one-size-fits-all notion does not fit the need of database of

current application scenarios and it is better to build systems based on the

nature of the application and its load. And, the need is constantly chang-

ing. The RDBMS were designed in 1980s for large high-end machines and

centralized architecture. However, today’s cloud technology tends to make

everything distributed in case of single point of failure and lower the cost by

using commodity hardware in a distributed environment. Also, today’s data

is not rigidly structured and does not require dynamic queries.

Numerous companies and organizations have developed NoSQL databases.

Table 2.1 summarizes the most popular NoSQL databases under different

categories. The most influential champions are primarily Web 2.0 com-

panies with huge, growing data and infrastructure needs such as Amazon

and Google. They developed the Dynamo [11] and Big Table [12] NoSQL

databases, which have inspired many of today’s NoSQL applications. It is

certain that the NoSQL databases are one of the byproducts of the Web

2.0 era, which were really used only at the time when the designers of web

services with very large number of users discovered that the traditional re-

lational database management system are fit either for small but frequent

read/write transactions or for large batch transactions with rare write trans-

actions, and not for heavy read/write workloads, which is often the case for

these large scale web services, such as Google, Amazon, Facebook and so on.

Table 2.1: Most popular NoSQL databases

Types Examples
Document databases MongoDB, CouchDB

Key-Value Stores Redis, MemCache, Dynamo
Graph stores Neo4j, InfiniteGraph

Wide-column stores Cassandra, Hbase, Bigtable

10



It seems that some of the major relational database management system

producers are learning something from this evolution. Therefore, most of

them have taken actions to develop the NoSQL databases. For example,

Amazon introduced its Dynamo distributed NoSQL system for internal use.

Amazon was one of the first major companies to store much of its impor-

tant corporate data in a non-relational database; Microsoft introduced some

NoSQL type features such as snapshot isolation, although used at a single

table level, into its newer relational database management system product

in Cloud Azure.

In general, compared to RDBMS, NoSQL has many advantages in the

following aspects:

• High concurrent and high speed I/O. NoSQL database were de-

signed to meet the needs of high concurrent reading and writing with

low latency, at the same time, which is not easy for RDBMS.

• Efficient big data storage and access requirements. Large appli-

cations such as social networking site (SNS) and search engines require

a database system capable of storing PB-level data storage with fast

access time.

• High scalability and high availability. With the increasing amount

of data, the database needs to be able to scale horizontally easily, and

ensure rapid uninterrupted service.

• Lower costs. With the dramatic increase in data volume, hardware

costs, software costs and maintainence costs, have all increased. The

better scalability of NoSQL database greatly lowers the database cost.

2.3 3DTI System

2.3.1 Cyber Collaborations through 3DTI

3DTI systems aim towards multi-purpose, multi-sites, and multi-modality to

enable a wide variety of user activities [13][14][15]. In [16] 3DTI is proposed

to be the medium for training and simulation in critical/hazard domains like

military training and emergency healthcare. Educational 3DTI application

11



like archeology is also proposed in [17]. In [18], 3DTI platform for perfor-

mance broadcasting is proposed. The authors envision performer crew to be

physically dispersed and interact remotely in the virtual world.

2.3.2 3DTI Content Archiving

Due to the high bitrate of 3DTI, various archiving schemes for compres-

sion and content analysis were proposed. In [17], compression module based

on frame synthesis is proposed to lowers the bitrate of 3DTI systems. In

[17], the module is paired with activity recognition to achieve dynamic bi-

trate adaptation. Other compression schemes for mesh-based 3DTI content

are proposed in [19], which concentrate on independent 3D image compres-

sion without inter-frame coding. Analysis on 3DTI data using metadata is

proposed in [20]. The authors achieve high activity detection accuracy via

metadata analysis to avoid computationally expensive deep content analysis.

2.3.3 3DTI Content Delivery

Delivery of 3DTI content is not trivial due to its bandwidth consumption and

soft-real-time requirement. There are two categories in 3D visual technology.

Monoscopic 3D (M3D), used in traditional 3D computer graphics, creates

images based on a 3D coordinate system and then displays these images

onto a flat 2D device. Stereoscopic 3D (S3D), with two views of the visual

scene from which the human brain extracts the depth information to perceive

a stereoscopic view in 3D. There are some previous works on S3D video

streaming. In [17], the authors propose a prioritization scheme for 3DTI

in bandwidth limited environment. Streams are prioritized based on their

shooting angles and viewers preferences. However, the authors focus on the

architecture design and do not propose a streaming or delivery protocol.

Pehlivan et al. [21] design an end-to-end stereoscopic video streaming system

that selects transmission of mono or stereo video adaptively. Diab et al. focus

on optimizing the storage in S3D streaming systems. Anahita [22] provides

automatic depth adjustments to customize 3D videos and maximizes their

perceived quality. In [23], a DASH-based offline streaming for 3D streams

is proposed. The authors develop adaptation mechanism based on quality

12



balancing between two requested streams and allocate bandwidth to their

delivery accordingly to achieve a better quality if experience. There are also

other existing multi-view client-server systems (e.g.,[24]), where a scene can

be displayed from different viewpoints, which is not supported in S3D but

supported by M3D. Furthermore, Venkatraman et al. [25] propose a new

protocol, MPEG Media Transport (MMT), for 3DTI system specially, but

not compatible with current protocols.

In summary, there has been significant interest from the academia and

industry in streaming S3D videos. However, the research about M3D video

streaming is still not well understood.

13



CHAPTER 3

REAL-TIME 3D RENDERING SYSTEM

FreeViewer is a 3DTI rendering system that supports omnidirectional view

with low requirement of computation power and bandwidth, which is suitable

for real-time p2p system such as 3DTI system on local rendering. Figure 3.1

illustrates an example of the deployment of FreeViewer. There are 4 Kinect

cameras deployed in the area with the same angular difference and the same

distance from the center of the capturing area. Kinect camera captures

640x480 RGB frames with D (depth) frames of the same resolution. Each

pixel in the depth frame represents a depth value (distance between camera

and the object) in the range between 0.4 and 4.5 m. Thus, we capture RGB

and D streams as two separated but synchronized videos. A performer stays

in the capturing area with a varying orientation. The objective of FreeViewer

is that no matter which direction the performer is facing, it always renders

the scene of the performer’s front side as if there were a virtual camera faced

by the performer. In fact, the scene “captured” by the virtual camera is the

result of interpolation and merging of the 3D streams from 2 neighbouring

cameras. FreeViewer architecture (3.3) includes several important functional

services:

• 3D View Tracking Service takes the viewing direction from user through

a specific user interface (Google glass in our case) via a wireless channel

and appropriate frequency which determines the final rendering frame

rate.

• Capturing Service takes the viewing direction and choose to collect 3D

data from which two cameras and begin the capturing process.

• 3D Point Cloud Processing Service performs calibration and merging

of the 3D data collect from two neighboring cameras by coordinate

transformation.

14



C
a
m

e
ra

 !"
°#

Camera (90°)

C
a
m

e
ra

 (
1

8
0
°
)

Virt
ua

l C
am

er
a 

(1
35
°)

Camera (270°)

Capture Area

Figure 3.1: The bird view of FreeViewer deployment

• Rendering Service takes the merged 3D point cloud and viewing direc-

tion to perform the final rendering process by projecting the 3D scene

onto a 2D display.

3.1 3D View Tracking Service

3D View Tracking is an advanced service that performs cooperation between

wearable device and orientation monitoring module to capture user’s head

direction.

Traditional user interaction solutions for 3DTI systems are often naive

and simply relying on standard input devices(mouse, keyboard) to control

visual devices and receive visual feedback. We present a user interaction

solution based on wearable devices. That is, we use Google Glass as the

input interaction device to enable tracking the rotational movement of the

user’s head. The tracking service allows users to interact with the system in

15



(a) Current facing direction (b) Connecting to server

Figure 3.2: Screen shot of our Google Glass view tracking app

a natural way without any additional manual operation such as “press some

keys” or “drag the mouse”. We choose Google Glass because of its portability

and easiness to estimate the facing orientation compared to smartphones,

with the help of the software-based rotation vector sensor which derives its

data from hardware sensors via internal processing procedure. The rotation

vector represents the orientation of Google Glass from which we can derive

the position and view angle of the virtual camera conveniently.

3D View Tracking Service also maintains a socket connection with Google

Glass to receive the most recent sensor data and then feeds them to capturing

service and rendering service.

We developed an orientation tracking app on Google Glass which can show

current facing direction in terms of different toward North. Users are able to

see current facing direction as well as to connect to the tracking service on

Freeviewer server through a TCP connection. Figure 3.2a and 3.2b show the

screen shot of our Google Glass view tracking app by mapping the screen to

an android smart phone via Bluetooth.

3.2 Capturing Service

As previously stated, in a 3D virtual space at a specified viewpoint, a viewer

can only see one side of an object which can be covered by at most two

3D cameras. It means in order to render the scene from any viewpoint at

any time, the streams from two cameras are enough. Given the orientation

returned by the Google Glass, the capturing module determines the streams

from which cameras to acquire according to the known physical deployment

of the cameras. For example, if the current facing direction is 45°, then we

16



FreeViewer

Capturing 

Service

Display Device
(e.g., monitor)

3D Cameras (e.g., Kinect)

3D PointCloud
Processing

Service

Rendering

Service

3D View

Tracking

Service

Wearable Device
(e.g., Google 

Glass)

Figure 3.3: FreeViewer architecture

can choose Kinect(0°) and Kinect(90°). Then capturing service synchronizes

the color and depth streams from both of the chosen cameras and send the

frames to the processing service to create a partial 3D model.

In fact, our deployment of 4 cameras like figure 3.1 not only reduces the

bandwidth consumption of bandwidth resources but also practically relieve

the interference effect [26] caused when multiple structured light depth cam-

eras (e.g., Kinect) point at the same part of a scene.

3.3 3D Point Cloud Processing Service

The 3D cloud point processing service aims to use the color stream and the

depth streams from the 3D cameras to generate two 3D model (Point Clouds

[27]) and to merge them in to a complete model so that the intersecting

areas between them could overlap perfectly. The problem of such consistent

alignment of various 3D point cloud data views is known as registration.

However, the most famous registration algorithm, iterative closet point

algorithm which finds matching pairs between point clouds and creates a

rigid body transformation that minimizes the distance between them until

convergence, is too slow to support real-time processing. Since it is an iter-

ative algorithm with multiple rounds until convergence, it is much suitable

for offline data processing which doesn’t have a strict delay constraint. For-

17



(a) Fixed View (b) Omnidirectional view

Figure 3.4: A comparison between fixed view and omnidirectional view

tunately, in our deployment, we have already known the physical positions

and orientations of all the camera and they are all fixed during the system

running. So the calibration parameters themselves already provides fairly

precisely the necessary transformation to refer all points in one frame.

Thus, we adopt the preconfiguration and calibration techniques to ob-

tain the coordinate transformation relationship between a main camera and

the other cameras. Then after the system starts to run, the processing

service first performs transformation computation to convert each pixel on

color/depth frame to a 3D point with color (R,G,B) and coordinate (x, y, z)

in 3D space and then transforms both the 3D point clouds from the camera-

based coordinate system to a global coordinate system, where the two point

clouds align with each other properly.

Finally, this module delivers the merged point cloud, which is also a partial

3D model, to the rendering service.

3.4 Rendering Service

The rendering service takes two inputs, the performers current orientation,

coming from the 3D view-tracking service, and the correspondent partial

3D model in terms of merged point cloud. Based on the users orientation

and the geometric relationship between the deployed cameras, the rendering

service calculates the virtual cameras viewpoint and view angle. Then it uses

standard OpenGL API to render the synthesized scene on the display device

by drawing all the points in the scene and projecting the whole 3D scene

onto the final 2D view (monoscopic 3D rendering). Also, in order to provide

truly immersive visual feedback, the display device does not have to be a

18



standard monitor. It can be a head-mounted display or even another Google

Glass with OpenGL ES support. Figures 3.4a and 3.4b show a comparison

between fixed view and Omnidirectional view in FreeViewer, where we can

find that with FreeViewer, we always are able to view the front side of the

target.

19



CHAPTER 4

ON-DEMAND MULTI-MODAL 3D
STREAMING SYSTEM

In Section 2, we gave an overview of the standard 2D DASH and current

research of 3D video streaming. Now we discuss the overall architecture of

the OmniViewer system that has modifications needed for the support of

multi-modal 3D DASH. As illustrated in Figure 4.1, the architecture consists

of three main parts: a 3D content recording subsystem to prepare 3D media

data, a 3D content storage/web server to serve the MPD file and the data,

and the OmniViewer 3D DASH player to process the 3D content segments

delivered and to playback the multi-modal 3D content (3D video, audio,

other sensory data). We will give more details of each part in the following

subsections.

3D Content 
Recording

3D Content Storage 
(3D DASH Server)

Multi-modal and 
Multi-view 3D 

player

DASHMPD Generation

Multi-modal 3D

Content

Preparation

Figure 4.1: The architecture of Omniviewer 3D DASH system

The deployment of OmniViewer is similar to FreeViewer except that Om-

niViewer has to collect multi-modal data including video, audio, skeleton

and maybe other sensor data such as EMG data. Skeleton stream contains

3D positions of users joints (i.e., shoulder, knee, hip, etc.) at every time

instance. This information is extracted from RGB-D frames by Kinect API.

4.1 Multi-modal 3D Content Recording

Compared to 2D video, a main challenge of 3D video is the existing form

of 3D video. To the best of our knowledge, there is no mature M3D video

format, which can be regarded as a series of 3D objects with timestamps, let

20



Color Frame Depth Frame

s
tre

a
m

 1
 !"
°#

stream 2 (90°)

s
tr

e
a
m

 3
 (
1

8
0
°
)

stream 4 (270°)

Capturing
Area

Macro Frame

Figure 4.2: The deployment of OmniViewer recording site

alone en-/decoding techniques. Furthermore, the way to capture 3D object

continously in the form of 3D video to cover omni-directional view is another

challenge.

In order to solve these challenges, we propose the following scheme to

record multi-modal 3D contents. As illustrated in Figure 4.2, we adopt four

3D cameras (Kinects), deployed in the area with the same angular difference

(90°) and the same distance from the center of the capturing area to cover

an omnidirectional view and to minimize the interference effect [26] between

different 3D cameras. Also, since it is hard to manually place the camera

with a perfect orientation and at an accurate location, an offline calibration

is needed and the resulting calibration matrix (Mcal) should be recorded for

the OmniViewer player to use and to merge point clouds later. In order to

21



use DASH as the streaming standard, the recording part prepares media data

for DASH-compliant representation. We represent each 3D camera video as

a 2D video, where each 2D frame consists of a pair of color (RGB) and depth

(Gray) frames with the same resolution, stitched together horizontally to

be a uniform macro frame (RGB-D). Considering we only need the target

object, human body in our case, we extract human body from both color and

depth frames by filling the background with a sentinel color, e.g., green and

white, to reduce the encoding complexity. The macro frame in Figure 4.2

shows that the gray color will turn dark when the performer gets closer to

the camera. We compress the four 2D videos using standard 2D video codec,

eg., H.264, with different bitrates. As a result, our multi-view 3D video is

represented as a combination of 4 2D RGB-D videos. Because popular codecs

mostly are lossy, the encoding of depth frame degrades the accuracy of depth

information. Thus, the higher bitrate each 2D RGB-D video has, the better

quality of 3D model we can achieve. We will discuss the influence of depth

frame quality on the generated point cloud in section 4.5. For audio, we only

need one stream and record the audio data from microphone array of one 3D

camera.

For multi-modal sensor data recording, we use skeleton and heartbeat data

as examples, which are acquired by 3D camera itself and onbody heartbeat

sensor, respectively. Since DASH is en-/decoder agnostic, we can choose

any codec or format to convey these multi-modal sensor data. We choose

JSON (JavaScript Object Notation), a lightweight data-interchange format

prevailing on the Web application, as the multi-modal media file format to

represent the other sensor data except audio and video. An example of the

JSON file, encoding skeleton data, is as follows:

{

"type": "skeleton",

"rate": 24,

"data": [[0.034, 0.122, 2.354],...]

}

All multi-modal 3D content is tightly synchronized by connecting sensors to

the same PC through wired or local wireless channels, and RGB-D, skeleton,

and audio are captured by devices connected to the same PC, synchronization

between them is done by standard buffering and alignment.

22



4.2 DASH-compliant Data Representation

As introduced in section 2, DASH needs a MPD file to describe multi-modal

content at the content server. The multi-modal content can be represented

as a multiplexed MPEG-2 TS or ISO Base Media File, usually containing

both video and audio tracks, or can be a single-modality file, for example

containing only video or only audio in a specific language. An adaptation

set is a set of multiple representations. At any time, the DASH player is

suppposed to play at most one presentations from each adaptation set. In

this paper, we manipulate a multi-modal 3D DASH MPD file containing only

single-modality representation since the tight coupling in multiplexed media

file fails to offer the flexibility pertaining to track selection. A MPD file of

multi-modal 3D DASH is important, since we need to work with four video

streams, one audio stream, and other sensory streams.

The major difference between multi-modal 3D DASH and traditional 2D

DASH is the inclusion of multiple 2D video tracks and other multi-modal

data streams. In MPD, each adaptation set contains the content of some

single-modality data, video, audio, etc. Thus, we have to configure the MPD

file with at least four adaptation sets, all of which contain video streams, i.e.,

videos recorded by the 4 3D cameras. Plus, audio or other media data are

assigned to an individual adaptation set. We label the first four adaptation

sets with identifiers 1, 2, 3 and 4 for the four video tracks, and the rest of

adaptation sets for audio or other media data is labeled with identifiers 5

or more. The OmniViewer DASH player is able to recognize media type

by examining the mimeType property of each presentation. For example,

“video/mp4” for video, “audio/mpeg” for audio, or as presented in this work,

“application/json” for multi-modal sensor data, such as skeleton or hearbeat

sensor data.

Another challenge is synchronization. The multi-modal 3D data provider

knows the frame rate of the 3D video. However, the sampling rate of different

sensors may be different. Thus, we segment each media into continuous

segments with the same duration, but possibly with different rates. Finally,

we generate the same number of segments for each media, the order of which

match each other in the SegmentList tags in the MPD file. When playback

starts, the player is able to play different media data at the rate denoted

in the segment. For example, if the “rate” is set as 24 in the JSON file,

23



bitrate 1

bitrate 2
bitrate 3

Adaptation Set 4

bitrate 1

bitrate 2
bitrate 3

Adaptation Set 3

bitrate 1

bitrate 2
bitrate 3

Adaptation Set 1

bitrate 1

MPD file

Bandwidth
Monitor

Adaptation 
logic

HTTP GET

4 video segment

1 audio segment

1 skeleton segment

1 heartbeat segment

3D DASH Player

bitrate 1

bitrate 2
bitrate 3

Adaptation Set 2

Adaptation Set 5

Adaptation Set 6 bitrate 1

Adaptation Set 7 bitrate 1

skeleton

heartbeat
JSON 

decoder

A/V 
decoder

MPD
Parser

Media
Coordinator

Display

Speaker

4 macro 
frames

audio data

Point Cloud 
Generator

UI

TransmissionStorage/Web

Figure 4.3: MPD file and the Multi-modal 3D DASH Player

the player will play the data of one frame every 1/24 second. Then all the

data would be synchronized at the player side. It should be noticed that

due to variable GOP (group of pictures) size, introduced by the encoder,

sometimes the video or audio segments can not be segmented with perfectly

same duration. It would not be a problem only if the player knows the

playback rate of each media because if the buffer of one media is empty, the

player will try to download the next one and the playback will pause if not

all the media data is available.

Therefore, in our example, there will be seven adaptation sets, four for

video, one for audio, one for skeleton data and one for heartbeat sensor data.

The OmniViewer player knows how to decode these data, respectively. An

example of MPD file structure is illustrated in Figure 4.3. For each stream,

it can have multiple sets of data with different bitrates.

4.3 Multi-modal 3D DASH Content Storage

Like MPEG-DASH, OmniViewer works by splitting the data into a sequence

of small HTTP-based file chunks, each segment containing a short interval of

playback time of single-modal content. all the segments of different content

represents a fixed interval of playback of the whole multimedia work, such

as a patient session in remote physiotherapy. for each file chunks of each

modality, there are a variery of different chunks with different qualities, i.e.,

alternative chunks with different bitrates are also available. When the session

is played by our OmniViewer player, according to current network conditions,

24



the player should automatically selects from the alternatives the next session

chunks to download and playback to achieve the best quality of exprience

of users. Hence, the player is able to stream the 3D video seamlessly and

adaptively without stalls.

In the OmniViewer system, 3D DASH content are stored as a lot of small

chunked files for video and audio, or json files for sensor data. For one session,

we usually have one mpd file, and thousands of these small file segments,

which are hard to maintain and even query. In the standard MPEG-DASH,

all the chunk files are served in a standard static HTTP server. Since each

one of the media segments and the init segments are each stored in separate

files and the MPD refers to relative URLs for those files. The player always

first downloads the MPD file and then chooses to download the segments

based on the URLs provided by the MPD file. Also, care should be taken to

configure the static file HTTP server to return the correct Content-Type for

the MPD file and segment files.

When the amount of sessions recorded increases, the organization and

management of so many small files becomes a challenging problem. In this

section, we primarily deal with 3 questions:

• How to upload 3D video session simply and efficiently?

• How to query 3D video session content faster and easier?

• How to retrieve 3D data in a dynamic way?

To answer the questions above, we propose a dynamic DASH server pow-

ered by Node.js with MongoDB as backend database to store all the 3D

multi-modal video content. The dynamic DASH server has the following

features:

• Supporting RESTful API to upload 3D data through HTTP post re-

quest.

• All the data are stored in NoSQL database (MongoDB) with other

metadata for single or batched query and delete operations.

• All the files are served not as a static file but binary data retrieved

from database dynamically.

25



4.3.1 3D DASH Database Selection

After the recording of multi-modal 3D data, we have to find an elegant

method to upload these data to the cloud or data server where the data can

be safe and secured with redundancy in case of loss and damage. Usually,

people just place all the segment files manually in appropriate server folders,

and then feed the player with a link to look up files specifying the name

and relative URL of these folders. Usually different folders contain data of

different sessions.

For small DASH servers, such a solution is acceptable. But for a complete

multi-modal 3D system includes recording, storage and playback, we require

every procedure can be executed efficiently and automatically. Manual data

transfer is acceptable for rare uploads. However, if the data uploads happen

frequently, this solution is not acceptable since it requires a lot of human

labor and is not scalable. Since the data size is soaring while the hard disk

size of a specific web server is limited. When the hard disk is full, there will

be no place to hold additional data.

In our use case, we observe two facts.

1. we have to store and a lot of files and retrieve them frequently.

2. These files are all very small (under 16MB).

For data storage, the first solution arises in our head is database. As we

discussed the background, compared to the RMDBS, in our use case, the

database system could be optimized instead of serving general purpose. In

3D DASH, our requirement includes efficient storage and retrieval of a large

amount of small files and scalability. NoSQL data stores are designed to

scale well horizontally so users could thus scale a single database by running

on multiple virtual servers in the cloud rather than by having to run it on a

single powerful machine. Also, it is simple to support particular operation of

one special use case in an efficient way. As we stated, there are mainly three

categories of NoSQL database: Key-value Databases, Document Databases

and Column Family Databases. Among these three categories, in order to

have more freedom in how we query the data and optimize for read-heavy

work (our 3D DASH has more read operations than write operations), we

choose MongoDB, a popular NoSQL document database as our 3D content

storage database.

26



MongoDB (from “humongous”) is an open-source document database. The

main abstraction and data structure in MongoDB is a document. Documents

consist of named fields that have a id and multiple values. The field values can

be scalar (string, numeric, or Boolean) or compound (a document or array).

While relational databases are designed for structured and interdependent

data; key-/value-stores operate on uninterpreted, isolated key-/value-pairs;

document stores like MongoDB are designed for data (contained in docu-

ments) which correspond to schema-free document and only have some flex-

ible structure known to applications as well as the database itself. The flexi-

bility here means the schema has to be known by application by defining it at

the application level which is ignorant to the database. but some part of the

schema could be optional other than all the fields are necessary. The advan-

tages of this approach are that first schema migrations are unnecessary, which

introduces a lot of overhead in the relational databases; secondly, compared

to key-/value-stores data can be evaluated and queried more sophisticatedly.

So, collections comprise the only schema in MongoDB, and secondary indexes

must be explicitly created on fields in collections. MongoDB also provided

indexes on collections and supports map-reduce for complex aggregations

across documents. MongoDB supports dynamic queries with automatic use

of indices, like RDBMSs. MongoDB allows specifying indexes on document

fields of a collection. The information gathered about these fields is stored

in B-Trees and utilized by the query optimizing component to to quickly

sort through and order the documents in a collection thereby enhancing read

performance.

MongoDB does automatic sharding, the process of storing data records

across multiple machines, to meet the demands of data growth. As the size

of the data increases, a single machine may not be sufficient to store the data

nor provides an acceptable read and write throughput. Sharding solves the

problem with horizontal scaling with automatic fail over and load balancing.

With sharding, you add more machines to support data growth and the

demands of read and write operations.

MongoDB uses asynchronous replication for redundancy and fail over. A

replica set is a group of mongod (the primary daemon process for the Mon-

goDB system) instances that host the same data set. One mongod, the

primary, receives all write operations. All other instances, secondaries, ap-

ply operations from the primary so that they have the same data set. The

27



primary accepts all write operations from clients. A replica set can have

only one primary. To support replication, the primary records all changes

to its data sets in its operations log. The secondaries replicate the primary

operations log and apply the operations to their data sets such that the sec-

ondaries data sets can be consistent with the primary data set. If the primary

fails, the replica set will elect a secondary to be primary. It does not provide

the global consistency of a traditional DBMS, but a local consistency on the

up-to-date primary copy of a document.

MongoDB provides also atomic updates on fields that helps concurrent

access to the same document.

4.3.2 3D DASH Content Upload and Download

A record in MongoDB is a document, a data structure consisting of multiple

field and value pairs which are similar to JSON formats. The document

can be nested that value part can be other document, array or arrays of

documents. For 3D DASH, each file is stored as a document in MongoDB.

The structure looks like as follows:

{

"_id": ObjectId("563a2acdadf55ee91f6c39a2"),

"size": 63031,

"name": "seg_macro_2_500k40.m4s",

"user_id": 4,

"session_id": 10,

"content_type": "application/octet-stream",

"data": <Binary Data>,

"date_created": ISODate("2015-11-04T15:57:01.093Z")

}

The structure of 3D DASH file document is really simple and concise. Mon-

goDB uses BSON, a binary serialization format used to store documents

and make remote procedure calls in MongoDB. BSON supports a lot of data

types as values in documents, including Double, String, Date and even Binary

data. It is worth noting that the maximum BSON document size is 16MB.

The maximum document size helps ensure that a single document cannot

use excessive amount of RAM or, during transmission, excessive amount of

28



bandwidth. To store documents larger than the maximum size, MongoDB

provides GridFS, a specification for storing and retrieving files that exceed

the BSON-document size limit. However, in 3D DASH, even with high bi-

trate, a video segment is much smaller than 16MB, not to mention MPD file.

So a single document is enough for a single file storage. GridFS is beyond

the scope of this thesis, so we will not discuss it here.

The id field defines the unique identifier for each document that act as a

primary key. size and name shows the size of the file stored in this document.

Both user id and session id indicate which user and which session of this file

belongs to and we assign them with unique numerical identifiers. The real

binary data of this file are kept in data field. Also, it includes the timestamp

when this document is created and the Content-Type of the file. If it is a

MPD file, the Content-Type should be “application/xml”.

On the server side, we design a RESTful API to process both upload and

download requests. REST (REpresentational State Transfer) is an architec-

tural style, and an approach to communications that is often used in the

development of Web services. RESTful API has many advantages includ-

ing firewall traversal and client ignorance. The REST style emphasizes that

interactions between clients and services is enhanced by having a limited

number of operations. Flexibility is provided by assigning resources their

own unique URLs. Because each verb has a specific meaning (GET, POST,

PUT and DELETE), RESTful API avoids ambiguity.

In 3D DASH, an example of our RESTful endpoint structure for upload

and download are illustrated in figure 4.4:

http://3d-dash.net/user_4/session_16/seg_macro_2_500k40.m4s/

domain user session file

Figure 4.4: RESTful API endpoints structure example

Figure 4.4 illustrate the endpoint structure of download, split by slash.

Actually the upload endpoint is similar but does not have the file part, i.e.

only domain, user and session parts.

Domain gives the base URL of the server, which can be either the public IP

address or human-readable domain name with appropriate port number

(if applicable).

29



User identifies which user this request is targeting.

Session identifies for a specific user designated in user part, which session

this request is aiming at.

File is only used in download request, indicating the file name of the file

that the HTTP GET request is requesting.

When a user wants to upload a file, she will send a HTTP POST request

with a multi-part encoded file and its file name to the endpoint. The server

receives this POST request with corresponding file name and also knows

the user ID and session ID by parsing the endpoint route parameters. For

example, in figure 4.4, the server could parse the second and third part of the

endpoint URL to know the request is for user with ID 4 and her session with

ID 16. When the server gets all the data, it will analyze the file, generate a

document for this file including all the fields we stated before and save the

document into our MongoDB database for persistent storage.

When a user or player tries to download a file, though the behaviour of our

3D DASH server looks like a normal static file server. The principle behind

it is totally different. Actually our 3D DASH server is able to be seen as a

dynamic file server since it doesn’t store any file by itself. All the files are

stored in our MongoDB database in the form of document with additional

metadata such as size and name. The download request is a normal HTTP

GET request aiming at a file identified with a file name in the endpoint URL.

When the server get this GET request, it will go through the following steps:

1. Parse the URL to get all the parameters required, user ID, session ID,

and file name.

2. Query the MongoDB database with these three parameters.

3. If the file is not found, return a response with status 404 (not found).

Otherwise, create a buffer to hold the binary data of the file stored in

the document found, and then stream the data as the response back to

the user.

In such a way, the server can reads any file from database as requested

and stream it to the user dynamically. The server itself is similar to a file

broker between database and user. As the data grows, the database easily

scales with the sharding technique as we introduced before.

30



4.4 Multi-modal 3D DASH Player

Different from 2D DASH, 3D DASH player shown in Figure 4.3, has to render

the video in a 3D environment created in an OpenGL [28] context. When

playback begins, the player first downloads the 3D DASH MPD file and

parses it to get the information of all the periods, adaptation sets and rep-

resentations. As we agreed, the first four adaptation sets with the video

content are for 3D video rendering, the adaptation sets left contain other

media data except for video. Also, the player has at least two decoders, one

for A/V content, one for the other sensory data.

The player opens one media coordinator for 3D video to manage four

video streams and one for each other modality. The video session manager

will download all segments of the current sequence before downloading the

segments of the next sequence in case of bandwidth hogging. For example,

the media coordinator will not begin to download any one of the second

segments of the four video streams until the first segments of all the 4 video

streams have been downloaded already.

When all multi-modal data for the current frame are available, it is time

to render. The primary task for the player it to transform 4 macro frames

decoded by A/V decoder into a full 3D model (point cloud). The process

mainly has three steps.

1. Frame selection. In a 3D virtual space at a specified view angle, a

viewer can only see one side of the performer which can be covered by

at most two 3D cameras. This means in order to render the scene from

any view angle at any time in OmniViewer, OmniViewer player only

needs the macro frames from two cameras that depend on the view

angle, set by the viewer.

2. Conversion from 2D pixel to 3D point. The advantage of 3D

over 2D is the free view, so we need the conversion from 2D videos

to 3D video at the receiver side to render the M3D video from any

view angle designated by user. Once the player gets a macro frame

decoded, it can convert the pixels in 2D macro frame, representing the

captured human body, into a partial point cloud, combining the RGB

data from the left-half frame and the corresponding depth value from

the right-half frame. As we stated before, the depth value represents

31



the distance d of the point constructed by that pixel. However, if we

denote the 2D coordinate of the pixel as (i, j), where the coordinate of

the pixel at the top left corner is (0, 0), we need to find a way to convert

the 2D matrix coordinate (i, j) and depth value d to the camera-view

coordinate (xv, yv, zv). Since we are using Kinect as our 3D camera,

we use the following formula which comes from the official Kinect SDK

[29] to perform the conversion:xvyv
zv

 =

 (j − w
2
)320

w
αd

−(i− h
2
)240

h
αd

−d

 (4.1)

where h and w are the height and width of color/depth frame (480 and

640 in our case) and constant α = 3.501 × 10−3. Then we get the 3D

point coordinate in the camera-view coordinate system with camera at

the origin shooting towards +z axis.

3. Coordinate transformation. It should be noted that each camera

has its own camera-view coordinates, based on their perspective and

position. In order to merge the point clouds of all the cameras together

by their geometric relationship, we have to do coordinate transforma-

tion of each point in every camera-view coordinate system into the

uniform world coordinate system, where the center of capture area is

at the origin, camera 0°is at (0, 0, R) and camera 90°is at (R, 0, 0), etc.

Then according to the camera position, we can transform the coordi-

nates of each point to the world coordinate (x, y, z) as follows:
x

y

z

1

 =


cos θ 0 sin θ R sin θ

0 1 0 0

− sin θ 0 cos θ R cos θ

0 0 0 1

Mcal


xv

yv

zv

1

 (4.2)

where R denotes the distance between the center of capture area and

any camera and θ denotes the shooting angle of each camera (0°, 90°,
180°, 270°) illustrated in Figure 4.2. Mcal represents the fixed calibra-

tion matrix of each camera.

After the final transformation, the OmniViewer player will use standard

32



OpenGL functions to render the final monoscopic view from the view angle

set by the user. Plus, the audio of current frame will be decoded and played

with the audio output device. The other sensor data will be decoded by the

JSON decoder and presented through proper user interface (an example will

be given in the next section).

As a 3D DASH player, another important module of OmniViewer player is

bandwidth adaptation. This module has to measure current available band-

width and according to the adaptation logic, chooses the intended segments

to download. The basic adaptation logic for video is to keep the bitrates of

the four video streams consistent and maximize them while guaranteeing the

maximum bitrates1 of other modal data.

4.5 Evaluation

In section 4.1, we proposed to use the H.264 2D video codec to compress

macro frames. The algorithms behind the codec are based on small blocks

similarity between a sequence of images, which results in lossy compression.

For color frame, it is acceptable since only the color is modified. However,

the gray scale of the pixels of the depth frame is more sensitive than color,

because it is closely related to the distance of the corresponding points in

the 3D space. The change of their values would modify the generated point

cloud.

The influence of compression on the conversion from 2D frame to 3D point

cloud stems from 3 aspects. 1) As previously stated, the colors of the points

in the color frame can be distorted. 2) The gray scale of the pixels that

stands for the distance value in the depth frame can be distorted too, so the

resulting point cloud may get deformed. 3) We use a sentinel gray scale to

represent an invalid pixel meaning transparency. The compression can lead

to the change of the sentinel gray scale, which finally produces additional

noisy points that should not exist.

Any lossy 2D video compression codec causes variations in color. However,

the human eye is not very sensitive to subtle variations in color. Thus, we

mainly focus on the variation in gray scale in the depth frame and the increase

of the number noisy points.

1Usually other modal data except for video only has one representation.

33



We use our recording deployment and four Kinect cameras to record four

videos consisting of proposed macro frames for 60 seconds. Then we compress

these videos using H.264 codec with 20 different bitrates, from 100kbps to

2000kbps with a step length of 100kbps. Each color frame or depth frame has

a resolution of 640 × 480 and the resolution of the resulting macro frame is

1280×480. For the depth frame, we use 8-bit grayscale 1 to 250 to represent

a distance of 2 meter to 3 meters and use 255 as the sentinal value. After

the compression, if the grayscale of a pixel is equal or below 250, we regard

it as a valid point and perform the conversion from 2D pixel to 3D point.

Otherwise, we ignore it.

We choose 1000 consecutive frames synchronized from each video and an-

alyze the average ratio of grayscale distortion and that of noisy points under

different bitrates compared to the raw data. The result is illustrated in Figure

4.5a. From the figure, we can see that the average ratio of depth distortion

caused by lossy compression is always below 1% and doesn’t change much as

the bitrate goes up. In contrast, the ratio of the number of generated noisy

points to the number of valid points can be as high as 9.36% when the bitrate

is 100kbps. With the increase of bitrate, the ratio of noisy points decreases

quickly and then flattens out. When the bitrate is over 800kbps, the ratio

of noisy points falls below 1%. We also applied the same configuration using

VP8, a popular video compression format for web use, the result of which

is shown in Figure 4.5b. When the encoding bitrate is 200kbps, the ratio of

noisy points is 4.45%, better than 5.92% with H.264 under 200kbps. Overall,

the two figures are similar with subtle differences.

Therefore, it is feasible to use 2D video codec to compress depth value, but

too bad quality may induce too much noise in the point cloud and futhermore

degrade user experience.

We use a PC with 8-core 3.40GHz CPU and 8GB RAM to encode these

4 RGB-D video with 1000 consecutive frames with 30 FPS each and it costs

359 seconds.

4.6 Implementation

We are concerned with multi-modal 3D DASH media generation, 3D DASH

server and playback.

34



Bitrate/kbps

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ra
ti
o
/%

0

1

2

3

4

5

6

7

8

9

10

depth distortion

noisy points

(a) H.264 codec compression

Bitrate/kbps

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ra
ti
o
/%

0

1

2

3

4

5

6

7

8

9

10

depth distortion

noisy points

(b) VP8 codec compression

Figure 4.5: Influence of H.264 and VP8 compression on depth data

35



We compress four videos from macro frames using H.264 codec with dif-

ferent bitrates and slice them into 1s DASH segments using MP4Box [30].

For audio, we only need one stream and apply similar operation. For other

media data, in our case we incorporate skeleton and heartbeat data, encod-

ing them in separate JSON files, one file per segment including the data for

each frame.

All the generated segments and customized MPD file are upload ed to and

stored in a MongoDB database maintained by Mongolab [31] through a client

develop in python with requests library [32]. The server acts as a dynamic

file server implemented with Express, a web application framework based on

Node.js [33] web framework and Mongoose [34], an elegant MongoDB object

modeling for Node.js.

We have implemented OmniViewer player based on the open-source sam-

ple player that comes with libdash [35], an open-source C++ library which

implements the full MPEG-DASH standard defined in [2]. We test our imple-

mentation on another laptop installing ubuntu 14.04, which has 4GB RAM

and 4-core 2.60GHz CPU. The average time (1000 3D frames) of the conver-

sion from two 2D macro frames to a merged 3D point cloud is 40.5 millisec-

onds, which could be improved by a more powerful machine. Under a local

100Mbps wireless network, the initial delay from the first request to playback

is about 400 milliseconds with the same machine.

A screen shot of OmniViewer player on Ubuntu 14.04 is shown in Figure

4.6. The GUI uses a dial to let viewer set the preferred view angle. It also

has three check boxes to help viewer watch the 3D point cloud, skeleton and

sensor data. The 3D point cloud and skeleton are rendered in OpenGL, while

the sensor data is shown in a textbox.

36



Figure 4.6: The screenshot of Omniviewer player

37



CHAPTER 5

CONCLUSION

In this thesis, we explore omnidirectional view problem and multi-modal

streaming in 3D Tele-immersion system in two parts: real-time rendering

system and on-demand streaming system.

For real-time rendering system, we propose FreeViewer that allows viewers

to see arbitrary side of the performer by intelligently choosing the streams of

a subset of cameras and changing viewpoint in a 3D virtual space. It shows

the attractiveness of view-changing capabilities for a user via her wearable

device such as the Google Glass in multi-camera immersive environment. The

view-tracking technique is based on the sensor data from wearable devices.

Compared to complete 3D model reconstruction, FreeViewer can achieve the

same omnidirectional view and the same 3D video quality with less computa-

tion and network bandwidth, which is highly favorable under resource-limited

scenarios.

For on-demand streaming system, we propose OmniViewer, a multi-modal

3D DASH system, that supports omnidirectional view, adaptive, multi-modal

3D content streaming based on MPEG DASH. OmniViewer does not require

change in DASH standard and proposes to use multiple 2D videos to represent

one 3D video. Also, OmniViewer gives an example to include multi-modal

data into DASH. OmniViewer combines DASH, 3D and multi-modal data

together, which expands the current scope of both DASH and 3D systems.

Besides recording and delivery, we propose a new way to store and serve

multi-modal 3D DASH content, which is also suitable for other read-heavy

file system that has a lot of small files to be stored. We leverage document-

based NoSQL and RESTful API to realize a dynamic file server with all the

file stored in NoSQL database, which also provides fast query and retrieval.

The design of the 3D DASH server makes OmniViewer more scalable. The

versatility and flexibility of OmniViewer can be leveraged to fit many use

cases, such as remote physiotherapy, entertainment and other 3D activities.

38



For the future work, we may research other related but challenging prob-

lems such as skeleton merging and view rendering offloading for mobile device

at the server side.

39



REFERENCES

[1] K. Nahrstedt, “3d teleimmersion for remote injury assessment,” in
Proceedings of the 2012 International Workshop on Socially-aware
Multimedia, ser. SAM ’12. New York, NY, USA: ACM, 2012. [Online].
Available: http://doi.acm.org/10.1145/2390876.2390884 pp. 21–24.

[2] “Information technology - dynamic adaptive streaming over http (dash)
- part 1: Media presentation description and segment formats,” Inter-
national Organization for Standardization, Geneva, Switzerland, Tech.
Rep. ISO/IEC DIS 23009-1, 2012.

[3] Z. Gao, S. Chen, and K. Nahrstedt, “FreeViewer: An Intelligent Director
for 3D Tele-Immersion System,” in Proceedings of the ACM International
Conference on Multimedia, ser. MM ’14. New York, NY, USA: ACM,
2014. [Online]. Available: http://doi.acm.org/10.1145/2647868.2654873
pp. 755–756.

[4] Z. Gao, S. Chen, and K. Nahrstedt, “Omniviewer: Enabling
multi-modal 3d dash,” in Proceedings of the 23rd ACM International
Conference on Multimedia, ser. MM ’15. New York, NY, USA: ACM,
2015. [Online]. Available: http://doi.acm.org/10.1145/2733373.2807971
pp. 801–802.

[5] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang, “Qdash:
A qoe-aware dash system,” in Proceedings of the 3rd Multimedia
Systems Conference, ser. MMSys ’12. New York, NY, USA: ACM,
2012. [Online]. Available: http://doi.acm.org/10.1145/2155555.2155558
pp. 11–22.

[6] T. Andelin, V. Chetty, D. Harbaugh, S. Warnick, and D. Zappala,
“Quality selection for dynamic adaptive streaming over http with
scalable video coding,” in Proceedings of the 3rd Multimedia Systems
Conference, ser. MMSys ’12. New York, NY, USA: ACM, 2012.
[Online]. Available: http://doi.acm.org/10.1145/2155555.2155580 pp.
149–154.

40



[7] F. Hartung, S. Kesici, and D. Catrein, “Drm protected dynamic adaptive
http streaming,” in Proceedings of the Second Annual ACM Conference
on Multimedia Systems, ser. MMSys ’11. New York, NY, USA: ACM,
2011. [Online]. Available: http://doi.acm.org/10.1145/1943552.1943589
pp. 277–282.

[8] C. Concolato, J. Le Feuvre, and R. Bouqueau, “Usages of dash for rich
media services,” in Proceedings of the Second Annual ACM Conference
on Multimedia Systems, ser. MMSys ’11. New York, NY, USA: ACM,
2011. [Online]. Available: http://doi.acm.org/10.1145/1943552.1943587
pp. 265–270.

[9] E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, no. 6, pp. 377–387, June 1970. [Online].
Available: http://doi.acm.org/10.1145/362384.362685

[10] “Nosql: a non-sql rdbms,” http://www.strozzi.it/cgi-
bin/CSA/tw7/I/en US/nosql/.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, ser.
SOSP ’07. New York, NY, USA: ACM, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1294261.1294281 pp. 205–220.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” in Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume
7, ser. OSDI ’06. Berkeley, CA, USA: USENIX Association, 2006. [On-
line]. Available: http://dl.acm.org/citation.cfm?id=1267308.1267323
pp. 15–15.

[13] G. Kurillo and R. Bajcsy, “3d teleimmersion for collaboration
and interaction of geographically distributed users,” Virtual Re-
ality, vol. 17, no. 1, pp. 29–43, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10055-012-0217-2

[14] S. Schulte, S. Chen, and K. Nahrstedt, “Stevens’ power law in 3d
tele-immersion: Towards subjective modeling of multimodal cyber
interaction,” in Proceedings of the 22Nd ACM International Conference
on Multimedia, ser. MM ’14. New York, NY, USA: ACM, 2014.
[Online]. Available: http://doi.acm.org/10.1145/2647868.2654998 pp.
1133–1136.

41



[15] H. Fuchs, A. State, and J.-C. Bazin, “Immersive 3d telepresence,” Com-
puter, vol. 47, no. 7, pp. 46–52, 2014.

[16] A. Sadagic, M. Klsch, G. Welch, C. Basu, C. Darken, J. P.
Wachs, H. Fuchs, H. Towles, N. Rowe, J.-M. Frahm, L. Guan,
R. Kumar, and H. Cheng, “Smart instrumented training ranges:
bringing automated system solutions to support critical do-
main needs,” The Journal of Defense Modeling and Simulation:
Applications, Methodology, Technology, 2013. [Online]. Available:
http://dms.sagepub.com/content/early/2013/01/25/1548512912472942

[17] S. Chen and K. Nahrstedt, “Activity-based synthesized frame generation
in 3dti video,” in Multimedia and Expo (ICME), 2013 IEEE Interna-
tional Conference on, July 2013, pp. 1–6.

[18] S. Chen, Z. Gao, K. Nahrstedt, and I. Gupta, “3dti amphitheater:
Towards 3dti broadcasting,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 11, no. 2s, pp. 47:1–47:22, Feb. 2015. [Online].
Available: http://doi.acm.org/10.1145/2700297

[19] R. Mekuria, M. Sanna, S. Asioli, E. Izquierdo, D. C. A. Bulterman,
and P. Cesar, “A 3d tele-immersion system based on live captured
mesh geometry,” in Proceedings of the 4th ACM Multimedia Systems
Conference, ser. MMSys ’13. New York, NY, USA: ACM, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2483977.2483980 pp.
24–35.

[20] A. Jain, A. Arefin, R. Rivas, C.-n. Chen, and K. Nahrstedt,
“3d teleimmersive activity classification based on application-system
metadata,” in Proceedings of the 21st ACM International Conference on
Multimedia, ser. MM ’13. New York, NY, USA: ACM, 2013. [Online].
Available: http://doi.acm.org/10.1145/2502081.2502194 pp. 745–748.

[21] S. Pehlivan, A. Aksay, C. Bilen, G. Akar, and M. Civanlar, “End-to-end
stereoscopic video streaming system,” in Signal Processing and Commu-
nications Applications, 2006 IEEE 14th, April 2006, pp. 1–4.

[22] K. Calagari, K. Templin, T. Elgamal, K. Diab, P. Didyk, W. Matusik,
and M. Hefeeda, “Anahita: A system for 3d video streaming with depth
customization,” in Proceedings of the ACM International Conference on
Multimedia, ser. MM ’14. New York, NY, USA: ACM, 2014. [Online].
Available: http://doi.acm.org/10.1145/2647868.2654899 pp. 337–346.

[23] A. Hamza and M. Hefeeda, “A dash-based free viewpoint video
streaming system,” in Proceedings of Network and Operating System
Support on Digital Audio and Video Workshop, ser. NOSSDAV
’14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2578260.2578276 pp. 55:55–55:60.

42



[24] J.-G. Lou, H. Cai, and J. Li, “A real-time interactive
multi-view video system,” in Proceedings of the 13th Annual
ACM International Conference on Multimedia, ser. MULTIME-
DIA ’05. New York, NY, USA: ACM, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1101149.1101173 pp. 161–170.

[25] K. Venkatraman, S. Vellingiri, B. Prabhakaran, and N. Nguyen, “Mpeg
media transport (mmt) for 3d tele-immersion systems,” in Multimedia
(ISM), 2014 IEEE International Symposium on, Dec 2014, pp. 279–282.

[26] D. A. Butler, S. Izadi, O. Hilliges, D. Molyneaux, S. Hodges,
and D. Kim, “Shake’n’sense: Reducing interference for overlapping
structured light depth cameras,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI
’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2207676.2208335 pp. 1933–1936.

[27] “Point cloud library,” http://pointclouds.org/.

[28] “Opengl (open graphics library),” http://www.opengl.org/.

[29] “Kinect for Windows SDK,” http://msdn.microsoft.com/en-
us/library/hh855347.aspx.

[30] “MP4Box,” http://gpac.wp.mines-telecom.fr/mp4box/.

[31] “mongolab,” http://mongolab.com/.

[32] “Requests: Http for humans,” http://docs.python-requests.org/.

[33] “Node.js,” http://nodejs.org/.

[34] “mongoose,” http://mongoosejs.com/.

[35] “Libdash,” http://github.com/bitmovin/libdash.

43


