
c© 2015 Yogatheesan Varatharajah



PREDICTION OF CANINE EPILEPSY

BY

YOGATHEESAN VARATHARAJAH

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Advisers:

Professor Ravishankar K. Iyer
Professor Zbigniew T. Kalbarczyk



ABSTRACT

Seizure prediction is a problem in biomedical science which now is possible

to solve with machine learning methods. A seizure prediction system has

the power to assist those affected by epilepsy in better managing their med-

ication, daily activities and improving the quality of life. Usage of machine

learning algorithms and the availability of long term Intracranial Electroen-

cephalographic (iEEG) recordings have tremendously reduced the compli-

cations involved in the challenging seizure prediction problem. Data, in the

form of iEEG was collected from canines with naturally occurring epilepsy for

the analysis and a seizure prediction system consisting of a machine learning

based pipeline was implemented to generate seizure warnings when potential

preictal activity is observed in the iEEG recording. A comparison between

the different extracted features, dimensionality reduction techniques, and

machine learning techniques was performed to investigate the relative effec-

tiveness of the different techniques in the application of seizure prediction.

The machine learning protocol performed significantly better than a chance

prediction algorithm in all the analyzed subjects. Moreover, the analysis re-

vealed subject-specific neurophysiological changes in the extracted features

prior to lead seizures suggesting the existence of a distinct, identifiable pre-

ictal state.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Approximately 0.5-1% of the world’s population are affected by epilepsy [1]

and World Health Organization (WHO) reports that epilepsy accounts for

nearly 1% of the entire global burden of diseases [2]. Regardless of the phar-

macotheraphy using anti-epileptic drugs, 20-40% of the people affected by

epilepsy continue to suffer from seizures [3]. The uncertainty in the occur-

rence of seizures is seen as the most significant cause of epilepsy related

disability [4, 5, 6]. Consistent anxiety about when the next seizure will occur

has been expressed by even patients with infrequent seizures [6]. Individu-

alized epilepsy treatment could be made possible by the ability to predict

seizures in a timely manner so that the patients could be warned and take

medications only when required. Seizure forecasting has become a major

research interest due to the potential clinical impacts [7].

Machine learning based approaches of seizure forecasting have the following

steps [8, 9, 10, 11]. Measurements from the brain are taken in some form

(different measurements include scalp EEG, iEEG, FMRI, etc.). Since raw

measurements are usually very noisy and less revealing, they are transformed

into features which summarize the important changes in the raw signals. A

machine learning algorithm incorporating these features is then used to make

predictions on seizure occurrence. The features to which the raw signals are

converted are usually chosen in such a way that the features are active in

seizure related activity. However, what these selected works fail to consider is

the fact that the features can be subject dependent. A feature which is found

to contribute to seizure related activity of one subject may not contribute to

that of another. In this thesis, the possibility of these features being subject

dependent has been considered and a framework to analyze which features
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contribute in seizure related activities was devised.

1.2 Approach

In this study, iEEG recordings obtained from canine subjects were analyzed.

Five dogs with naturally occurring epilepsy were instrumented with an im-

planted device recording 16 channels of continuous iEEG. Spontaneously oc-

curring seizures were automatically detected and visually verified to create

accurate long-term seizure catalogs. Long-term, continuous, iEEG records

(ranging from 6.5 to 15 months) containing multiple seizures were evaluated

(data freely available on the iEEG portal [12, 13]). Three features, namely

powers in frequency bands (PIB), time domain correlation between channels

(TMCO) and spectral coherence (SPCO) between selected pairs of channels

were extracted from iEEG. Dimensionality reduction was used to extract a

small number of useful correlates from each of these features. These corre-

lates were then visualized around the seizures to identify preictal signatures.

As a second step, machine learning was used to map the extracted features,

including the signatures to predict the onset of future seizures. Predictions

of the machine learning classifiers were statistically analyzed and compared

using standard metrics such as Area Under the Curve (AUC, [14]) and p-

value test. In the visual analysis, different features were found to be active in

seizure related activities of different subjects. Machine learning based anal-

ysis provided better outcomes (in terms of AUC metric) when the subject

specific features were used in developing the predictor. This result confirms

that the features which are active in seizure related activities are subject

dependent.

1.3 Contributions/Results

1. An analytic technique to visually identify preictal signatures: A subset

of the features, PIB, TMCO and SPCO showed preictal changes in all

the subjects analyzed. Although, the specific features which showed

preictal signatures as well as the signatures are different for each sub-

ject.
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2. A machine learning based pipeline for analyzing different features and

forecasting seizures: The framework contains isolated blocks yielding

the ability to apply different techniques in each block. The pipeline

produced predictions which were significantly better than a chance (50-

50) predicting algorithm for all the subjects analyzed.

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 provides a back-

ground on epilepsy, seizures and EEG. Chapter 3 describes previous works

on seizure prediction and explains how the objectives of this work were drawn

from those. Chapter 4 describes the subjects used in this study and the data

collection methods. Chapter 5 explains the technical and implementation

details behind the development of the seizure prediction pipeline. Chap-

ter 6 explains the approach used to evaluate the performance of the seizure

prediction pipeline. Chapter 7 describes the results obtained using the exper-

iments and compares the performance of the different techniques used in the

pipeline. Chapter 7 also discusses the observations in the obtained results

suggesting distinct preictal states. Chapter 8 presents the conclusions drawn

from the thesis and discusses the future directions for this work.
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CHAPTER 2

BACKGROUND

2.1 Epilepsy1

Epilepsy has been considered as a superficial mental disorder for centuries.

However, today, epilepsy is identified as a neurological disorder of the central

nervous system. The underlying physiological phenomena that cause epilepsy

still remain unknown. However, it is widely observed that epilepsy is com-

mon among those who had undergone brain related injuries or diseases. In

children and young adults, genetic disorders, congenital abnormalities, and

birth trauma affecting the brain are commonly considered as the causes of

epileptic symptoms. On the other hand, in mature adults and the elderly,

strokes, tumors, and cerebrovascular disease are considered the causes.

Although epilepsy is an increasingly worsening disorder (i.e., each seizure

damages the brain), those affected by epilepsy are capable of a standard

career and family lives. However, they are not advised to engage in activities

such as driving, swimming, etc., during which the occurrence of a seizure

episode could lead to death. Apart from these, the side effects of anti-epileptic

medication, recurring episodes of loss of consciousness and motor control, and

the general misconception about the disorder create clinical and psychological

barriers.

2.2 Seizures

A seizure can be described as a combination of unintentional changes in be-

havior, movement, sensation and consciousness as a result of abnormal brain

activity. Seizures can be epileptic seizures or non-epileptic seizures. Epilep-

1Adapted from [15].
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Figure 2.1: Different types of seizures

tic seizures occur as a result of an abnormal brain activity characterized by

synchronized abnormal and excessive electrical activity. On the other hand,

non-epileptic seizures occur in response to an external disturbance to the

central nervous system such as alcohol withdrawal, drug abuse, acute illness,

sleep deprivation or in the context of psychological trauma.

Different types of seizures are listed in Figure 2.1. Different treatments

are needed for each type of seizure and thus the ability to distinguish among

them is crucial. Two major types of seizures are partial seizures and gen-

eralized seizures. While partial seizures are localized to a part of the brain,

generalized seizures involve the entire brain.

2.2.1 Partial Seizures

In a partial seizure, epileptic activity is contained in one part of the brain.

Partial seizures that do not affect consciousness are classified as simple partial

seizures, while those that do are classified as complex partial seizures. A

simple partial seizure that originates in the somatosensory area of the brain

is called a simple partial sensory seizure, while one that originates from the

motor cortex is called a simple partial motor seizure.
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2.2.2 Generalized Seizures

In a generalized seizure, epileptic activity involves the entire brain from the

onset. Generalized seizures which lead to irregular muscular movements are

classified as generalized convulsive seizures, while those that do not, are

classified as generalized nonconvulsive seizures. Depending on the state of

consciousness after the seizure, we can further categorize convulsive seizures

into the myoclonic, clonic, tonic, and tonic-clonic types.

Nonconclusive seizures that result in the loss of consciousness, eye blink-

ing, staring, and other minor facial movements are called absence seizures.

Generalized nonconclusive seizures that do not lead to a loss of consciousness

are called atonic seizures.

2.2.3 Treatment of Epilepsy

Epilepsy affects individuals with variable degrees of severity. Between 70-80%

of epilepsy patients suffer from seizures whose severity and frequency can be

limited with the use of antiepileptic drugs, each of which essentially limits

the capacity of neurons to fire at excessive rates. The correct classification of

these patients’ seizures is crucial since different seizure types require specific

drug regiments. In fact, the use of the wrong antiepileptic drug may exac-

erbate certain types of seizures. The remaining 20-30% of epilepsy patients

suffer from seizures that are refractory to medication. These patients seek

alternative treatment options that include surgery, vagus nerve stimulation,

and ketogenic diets.

2.3 Electrocorticography (ECoG)/Intracranial

Electroencephalography (iEEG)2

The electro-physiological monitoring which uses electrodes directly implanted

on the exposed region of the brain to record electrical activity from the cere-

bral cortex, is called Electrocorticography (ECoG), or Intracranial Electroen-

cephalography (iEEG). Conventional Electroencephalogram (EEG) on the

2Adapted from [16, 17].
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other hand, monitors this activity from outside the skull. ECoG can be per-

formed in two ways, (1) in the operating room during surgery or (2) outside

of surgery. ECoG is an invasive procedure as it requires a surgical incision

into the skull. ECoG/iEEG possesses a clear advantage over neuro imaging

methods because of its high spatial and temporal resolution. Further, the

contaminations due to muscle movement, eye blinks which regularly impair

the quality of scalp EEG, is minimal in ECoG/iEEG. However, the typical

characteristics of EEG and ECoG/iEEG are comparable, i.e. the typical

constituents of an EEG recording can also be observed in ECoG/iEEG.

2.4 Normal EEG Brain Rhythms

A typical EEG recording contains the following different rhythms.

• Alpha rhythm - EEG activity with frequency between 8-13 Hz that is

prominent in the occipital regions of normal, relaxed adults whose eyes

are closed

• Beta rhythm - EEG activity with frequency exceeding 13 Hz that is

most prominently observed in the frontal and central regions in adults,

but may also be generalized

• Theta rhythm - EEG activity with frequency between 4-7 Hz; this

activity is abnormal in awake adults, but commonly observed in sleep

and children below the age of 13 years

• Delta rhythm - The delta rhythm exhibits a frequency below 3 Hz and

amplitudes that exceed those of all other rhythms; it is most prominent

frontally in adults and posteriorly in children in the third and fourth

stages of sleep

• Mu rhythm - The mu rhythm refers to EEG activity with frequency be-

tween 7-11 Hz that is most prominently observed in the central region;

mu activity is suppressed by movement (fist clenching), imagined move-

ment, or tactile stimulation; in contrast, it is enhanced by immobility

and heightened attention
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• Lambda waves - Transient sharp waves lasting for a duration of ap-

proximately 0.25 seconds that occur in the occipital region whenever

an adult scans a visual field with horizontal eye movement

• Sleep-spindles, K-complexes, and vertex Waves - These are unique

waveforms observed only during the different stages of sleep

2.5 Abnormal EEG Brain Rhythms

Abnormal EEG activity is any activity that is prevalent in the EEG of groups

of people with neurological or other disease complaints, and absent from that

of normal individuals. Abnormal EEG may be an unusual waveform as well

as the absence or deviation of normal EEG from well-documented limits on

frequency, amplitude, morphology, localization, and reactivity. The following

can be considered as the constituents of an abnormal EEG.

• Spike and sharp waves - Spike waves are transients with pointed peaks

exhibiting durations between 20-70 milliseconds; sharp waves are simi-

lar to spike waves, but exhibit longer durations typically between 70-200

milliseconds

• Periodic discharges - Periodic discharges refer to time-limited bursts

that are repeated at a certain rate; bursts may exhibit a variety of

durations, frequencies, amplitudes, morphologies, and localizations

• Rhythmic hyper synchrony - Rhythmic hyper synchrony refers to rhyth-

mic activity emerging from a quiescent background and exhibiting un-

usual frequency, amplitude, morphology and localization of any degree;

rhythmic activity may either be continuous or intermittent

• Electro cerebral inactivity - Electro cerebral inactivity refers to a vari-

able length period not caused by instrumental or physiological artifacts

that exhibits extreme attenuation of the EEG relative to a patient-

specific baseline
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CHAPTER 3

RELATED WORK

With the availability of well established signal processing and statistical

methods, techniques used on seizure prediction vary broadly. Understand-

ably, features which characterize the changes in EEG are being given the most

importance from the very beginning of seizure prediction research. These fea-

tures could be linear, non-linear, univariate (single channel) or multivariate

(multiple channels) and the changes in these features could be characterized

using thresholding or machine learning.

Early work on seizure prediction dating back to the 1970s was performed

based on surface EEG recordings in the absence of seizures using linear ap-

proaches to extract seizure precursors [18]. Rogowski et al. [19] and Salant

et al. [20] have used an autoregressive modeling to identify preictal changes

within 6 s prior to seizure onset. Siegel et al. [21] identified characteristic

changes between the one-minute periods prior to a seizure and similar base-

line periods for individual patients. In this study, statistical confidence of

the findings was assessed and the influence of different vigilance states was

discussed.

Spike occurrence rate in the EEG was evaluated as potential preictal

change in a few studies. While Lange et al. [22] identified a decreased focal

spiking rate and an increased rate of bilateral spikes prior to seizures; other

studies showed no visible changes in spike rates before seizures [23, 24, 25].

Advances in the mathematical theories of non-linear systems in the 1980s

opened up a lot of new approaches in modeling dynamically changing complex

systems. Time series analytics became applicable in seizure prediction with

the availability of long term EEG recordings. In the early 1990s, Iasemidis

et al. [26] found that the largest Lyapunov exponent could be a seizure pre-

cursor as its behavior was observed to change during the preictal stages of

intracranial EEG recordings. Martinerie et al. [27] reported decrease in the

correlation density before the seizures preictally. They also developed a mea-

9



sure called dynamic similarity index which quantified changes in dynamics

relative to a constant preictal reference window. Their works identified de-

creased dynamic similarity in preictal regions of intracranial and scalp EEG

recordings [28, 29, 30]. However, these studies focused only on the preictal

regions of the recordings and neglected the baseline characteristics on the

identified measures. Therefore the evaluation of the investigated measures’

applicability in seizure prediction was incomplete due to the unknown speci-

ficities.

Later works analyzed the specificities by comparing the measures in both

interictal and preictal regions. Navarro et al. [31] observed that in selected

examples of their subjects, the similarity measures showed more frequent

drops before seizures than during interictal regions. Phase synchronization

between different areas in brain was evaluated as a seizure precursor by Mor-

mann et al. [32].These results were confirmed by two works of Le Van Quyen

et al. [33, 34] on neocortical epilepsy. Chavez et al. [35] reported that

preictal changes in phase synchronization occur predominantly in beta band

based on their analysis after bandpass filtering of EEG.

Several measures including the correlation dimension [36, 37] (as a mea-

sure for dynamical complexity), dynamical entrainment [38] (defined as the

convergence of largest Lyapunov exponents in certain selected channels), ac-

cumulated signal energy [39, 40], simulated neuronal cell models [41] or phase

synchronization [42] were shown to be suitable for differentiating interictal

from preictal data.

A number of studies published starting from 2003 raised skepticism in

seizure prediction as the earlier optimistic studies could not be reproduced.

De Clercq et al. [43] and Winterhalder et al. [44] questioned the opti-

mistic results obtained using similarity index [30]. Correlation dimension

was reevaluated in [45, 46] and the previous work on it [37] was challenged.

Similarly, the work on accumulated energy [39] could not be reproduced in

[47, 48]. Studies by Lai et al. [49, 50] raised doubts about the suitability of

the Lyapunov exponent [51] for seizure prediction.

McSharry et al. [52] questioned the performances of nonlinear features

like correlation density [27]. Upon reevaluation, the studies showed that this

measure was more or less a reflection of the variance in EEG signals. As

a suggestion for further studies on nonlinear measures, the authors pointed

out that usage of nonlinear or complicated features should not be taken into

10



account unless it can be shown that these measures indeed outperform simple

linear measures.

Starting from 2004, machine learning algorithms were being used for gen-

eration of seizure warnings instead of manual labeling. Machine learning

methods are able to map the complex relationships between the features

extracted from the EEG recordings to seizure annotations. This ability of

machine learning techniques remarkably increased the prediction capability

when used with the features which showed preictal changes in earlier studies.

Table 3.1 and Table 3.2 list the different attempts on seizure prediction start-

ing from 2004. Features used in each study, characteristics of the prediction

method and its validation and some comments on the work are summarized

in the tables.

Feature engineering has been explored multiple times from the very begin-

ning of seizure prediction research. Many linear, non-linear features and their

combinations have been tried as bio-markers for epilepsy with no specific at-

tempt providing extraordinary results. Therefore, we believe that the basic

assumption of a single or combination of features being the bio-markers for

all individuals is wrong. Also, usage of machine learning for warning gener-

ation is very important to achieve the best trade-off between sensitivity and

specificity. Therefore, in this work, we have used a machine learning based

approach to identify patient specific bio-markers and used them for seizure

prediction to achieve best results. In doing that, we also performed a preictal

analysis to assert that the bio-markers identified from the machine learning

based analysis do indeed show preictal changes leading to seizures.
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CHAPTER 4

SUBJECTS AND DATA COLLECTION

4.1 Subjects

The NeuroVista seizure advisory system [67, 68] was implanted in canine

subjects with naturally occurring epilepsy and spontaneous seizures. The

dogs were housed in the University of Minnesota canine epilepsy monitoring

unit and the University of Pennsylvania canine epilepsy monitoring unit. The

subjects were continuously monitored (24 hours/day) with iEEG and video.

Anti-epileptic medications were provided to the dogs during this study. Five

dogs had an adequate number of seizures and prolonged interictal recordings

suitable for analysis. Table 4.1 lists the different subjects and the number of

seizures recorded on those subjects.1

4.2 Device

An implantable acquisition system (Figure 4.1) was utilized to record and

store long-term, continuous iEEG recordings [67, 68]. This system consists

of three components: (1) Implantable Lead Assembly (ILA); (2) Implantable

Telemetry Unit (ITU); and (3) External Personal Advisory Device (PAD).

Intracranial EEG signals are recorded in sixteen channels using the ILA

Table 4.1: Subjects and recorded seizures

Subject 1 2 3 4 5
Seizures 23 105 29 132 22

1Approval of the Institutional Animal Care and Use Committee (IACUC) at Mayo
Clinic, the University of Minnesota, and University of Pennsylvania was obtained for
acquisition of the data analyzed in this work.
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Figure 4.1: NeuroVista seizure advisory system

contacts. The ITU filters, amplifies, digitizes and wirelessly transmits the

recordings to the external PAD. Approximately 1-hour is spent everyday

on charging ITU using an external power supply. The PAD, which collects

the iEEG data wirelessly from ITU, was fixed on the subject’s back using

a harness. The PAD was equipped with high accuracy seizure detection

mechanisms [69] and alarming capabilities.

The recordings stored on the PAD were uploaded to a data center weekly.

All detected seizures were verified via expert annotations and correlation with

continuous video. Canine data recorded for this study are publicly available

on the IEEG-portal [13].

4.3 Data

Continuous iEEG was recorded in each canine subject using 16 electrodes

sampling at 400 Hz. Each subject’s iEEG was recorded for different periods.

Table 4.2 displays the time durations for which iEEG was recorded on each

subject.

Due to reasons such as providing medication, disconnections between the

different devices, human intervention, etc. a considerable part of the collected
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Table 4.2: Summary of collected iEEG data

Subject
Data

Total (days) Discontinuous (%) Effective (days)
Subject 1 475.7 27.99% 342.5
Subject 2 451.8 52.77% 213.4
Subject 3 460 22.21% 357.8
Subject 4 287.4 41.47% 168.2
Subject 5 294.1 72.48% 80.9

data is discontinuous. Figure 4.2 shows a typical recording with discontinu-

ities and seizures. The seizures tend to occur in clusters, i.e. a lead seizure

followed by a number of follow-up seizures. C1, C2, C3 and C4 are such

clustered seizures. Table 4.2 also displays the percentage of data which is

discontinuous and the effective recording days for each subject.

Figure 4.2: iEEG recording with discontinuities and clustered seizures

As the first step, discontinuous regions were eliminated from the record-

ings. Since there were too many small discontinuities, only the discontinuities

which were longer than 20 seconds were eliminated. Smaller discontinuities

were kept in the data assuming that the effect of them will be negligible in the

analysis. The rest of the iEEG recording after eliminating the long discon-

tinuities was used for analysis. The entire iEEG recording with seizures can

be divided in to five different periods. The period where there is no seizure

related activity is called the interictal period. The period before the seizure

is called the preictal period. The duration of preictal effects is still unknown

and can be varying. The period of seizure is called the ictal period. The pe-

riod after the seizure is called the postictal period. The duration of postictal

effects is also unknown. The period between interictal period and perictal
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period is not of interest to us. The interictal activities are usually observed

very far from the seizures, typically a week away from the seizure. Figure 4.3

explains the four important periods pictorially. There is hardly any differ-

ence between the iEEG of the preictal period beyond the 5-minute horizon

of seizure and the iEEG of the interictal period. In order to distinguish pre-

ictal iEEG from interictal iEEG further analysis is required. The ability to

distinguish preictal iEEG from interictal iEEG will enable the seizure warn-

ing system to generate seizure warnings when the transitions from interictal

activity to preictal activity occurs.
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CHAPTER 5

THE PREDICTION PIPELINE

For the purpose of analyzing the iEEG data in a sequential and structured

fashion, we developed a pipeline consisting of different functionalities in each

of its stages. The pipeline consists of four isolated components: feature

extraction, dimensionality reduction, machine learning classifier and fore-

casting and assessment. The four components are individually isolated from

each other so that different techniques can be employed on each component

without altering the other components. Figure 5.1 shows the different com-

ponents in the pipeline.

Following subsections explain each component in the pipeline in detail.

5.1 Feature Extraction

From Figure 4.3 we understand that characterizing the changes in the raw

iEEG signals alone is not enough to identify the preictal signatures. There-

fore, a transformation of the raw iEEG into some features is necessary. As

seen from Chapter 3, researchers have used a large number of features to de-

scribe the changes in the EEG recordings. However, with the increasing usage

of machine learning techniques for decision making, the quest for identifying

complex feature descriptors have become less important. Machine learning

techniques are capable of expressing the complex relationships between the

Figure 5.1: Predictive pipeline: Top-level flow diagram
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simple features which can be extracted very easily. For that reason, we have

opted to use simple features in our approach. For the purpose of comparing

the capabilities of different features, we have extracted three simple features.

Worrell et al. [70] found that high-frequency activity is prominently ob-

served in iEEG at seizure onsets. In the same work, they also found that

there is significant correlation in the iEEG of some channels (electrodes) dur-

ing seizure onsets, depending on the seizure origin. Since these features are

significant in the seizure onset zones, we believe that there must be significant

changes in these features in the preictal time of the same seizures as well.

Therefore, we have decided to extract these features in the iEEG of the data

segments that were extracted around the lead seizures. To account for the

possible high-frequency activity, we have extracted powers in bands (PIB) as

features. To account for the signal correlation between different channels, we

extracted time domain correlations (TMCO) and spectral coherence (SPCO)

between different pairs of channels.

5.1.1 Power in Bands (PIB)

PIB features were calculated for each channel, as power in each frequency

in 0-50 Hz (51 PIB), power in 5 Hz bands in 50 - 100 Hz (10 PIB) and

power in 10 Hz bands in 100 - 180 Hz (8 PIB). The higher resolution used in

calculating the powers in the lower part of the spectrum reflects the power

law in EEG [71]. Power of the signal was calculated from the Discrete Fourier

Transform (DFT) obtained by FFT. If the time domain signal of length N is

represented as x, DFT of x, X is obtained from Equation 5.1. Power of the

signal within a frequency range [f1− f2], Pr is obtained from Equation 5.2.

X(k) =
N−1∑
n=0

x(n)e
−jkn2π

N (5.1)

Pr =
1

N

f2∑
i=f1

X(i)2 (5.2)

This produces 69 PIB features for a channel and therefore 16 * 69 = 1104

PIB features for a one-minute clip.
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5.1.2 Time Domain Correlation (TMCO)

TMCO features were calculated as the linear absolute correlation coefficient

between different pairs of channels in a one-minute clip. The correlation

coefficient r between two channels x and y is calculated from Equation 5.3,

where µ and s represent the sample mean and sample standard deviation

respectively.

Pr =
1

N − 1

N∑
i=1

xi − µx

sx

yi − µy

sy
(5.3)

TMCO features were calculated for each distinct pair of the 16 channels,

i.e. 120 pairs. This produces 120 TMCO features for a one-minute clip.

5.1.3 Spectral Coherence

SPCO features were calculated as the magnitude squared coherence between

different pairs of channels in a one-minute clip. The coherence function (at

frequency w) of two signals x and y is given by Equation 5.4.

Cxy(w) =
Pxy(w)√

Pxx(w)Pyy(w)
(5.4)

where Pxx, Pyy are power spectral densities of x, y and Pxy is the cross power

spectral density of x and y.

Power spectral density (PSD) of x is given by Equation 5.5, where X is

the DFT of x and X∗ is the complex conjugate of X. Cross power spectral

density of x and y is calculated by simple replacing one of the X’s by Y

where Y is the DFT of y.

Pxx = XX∗ (5.5)

For an FFT length of N , since we only consider real frequencies (which is

just half of the spectra) and DC (0Hz), we will get a PSD of length N
2

+ 1.

Since PSDs are of length N
2

+1, spectral coherence will also be of length N
2

+1.

Magnitude squared coherences of pairs of channels at each real frequency is

taken as the SPCO features.

In this thesis, we have used an FFT length of 128, which produces 65

SPCO features per channel pair. If the spectral coherences of every pairs of
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Figure 5.2: Electrode positions as implanted

channels are considered, there will be 120 * 65 = 7800 SPCO features per

one-minute clip, which is too much to handle. For this reason, we considered

selected pairs of channels to extract SPCO features. Figure 5.2 describes

the electrode placement in the brains of canine subjects. We considered the

adjacent pairs (12), vertical pairs (8) and left-right pairs (8) to calculate

SPCO features according to this map. This produces 28 potential pairs and

therefore 28 * 65 = 1820 SPCO features.

5.2 Dimensionality Reduction

Since analyzing all the features in the predictive pipeline seemed infeasible

due to the size of the dataset, applying dimensionality reduction on these

features was considered. To account for the differences in the dimensionality

reduction techniques, we used two dimensionality reduction techniques, one

unsupervised and one supervised technique. Principal component analysis

(PCA) is an unsupervised dimensionality reduction technique used exten-

sively in many applications [72]. On the other hand, partial least squares

(PLS) regression is a supervised dimensionality reduction technique, which

finds those constituents in the features which largely contribute to the dis-

criminability of the different classes in the dataset [73].

PLSR and PCA are both methods to model a response variable when there

are a large number of predictor variables, and those predictors are highly cor-

related or even collinear. Both methods construct new predictor variables,

known as components, as linear combinations of the original predictor vari-

ables, but they construct those components in different ways. PCA creates

components to explain the observed variability in the predictor variables,
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without considering the response variable at all. On the other hand, PLSR

does take the response variable into account, and therefore often leads to

models that are able to fit the response variable with fewer components.

Whether or not that ultimately translates into a more parsimonious model,

in terms of its practical use, depends on the context.

5.2.1 Principal Component Analysis (PCA)

In summary, PCA reduces the dimension of the data by finding a few orthog-

onal linear combinations (the Principal Components or PCs) of the original

variables accounting for the largest variance. Consider a unit vector u and

a point x. The length of the projection of x onto u is given by xTu, i.e.,

when x(i) is a point in our experimental dataset, its projection onto the di-

rection vector u is distance xTu from the origin. Thus, the unit vector u

which maximizes the variance of the projections of all x(i)’s, is obtained by

maximizing:

1

n

n∑
i=1

(x(i)
T

u)2 =
1

n

n∑
i=1

uTx(i)x(i)
T

u

= uT (
1

n

n∑
i=1

x(i)x(i)
T

)u

It is easily identifiable that maximizing this criteria subject to ‖ u ‖2 =

1 gives the principal eigenvector of Σ = 1
n

n∑
i=1

x(i)x(i)
T
, which is just the

empirical covariance matrix of the experimental data.

To summarize, we have found that the one-dimensional approximation of

the data could be obtained by choosing u to be the principal eigenvector of

Σ. More generally, a q-dimensional (q < p) approximation of the data could

be obtained by choosing a q-dimensional subspace spanned by u1, · · · , uq to

be the top q eigenvectors of Σ. The uis now form a new, orthogonal basis for

the approximated data.

Then, the representation of x(i) in this basis is obtained as y(i)s by,
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y(i) =


uT1 x

(i)

uT2 x
(i)

...

uTq x
(i)

 ∈ Rq (5.6)

Thus, whereas x(i) ∈ Rp, the vector y(i) now gives a lower, q-dimensional,

approximation/representation for x(i).

5.2.2 Partial Least Squares (PLS) regression1

Notations

The observations are denoted by YI×K , which contains I independent ob-

servations each of K variables. The matrix XI×J contains the values of J

predictors collected on these I observations.

Goal

The objective here is to predict Y from X and to be able to describe how

they are related. The very common case is when Y is a vector and X is

a full rank matrix. In that case, an ordinary multivariate regression will

suffice. However, when the number predictors (J) is larger than the number

of observations (I), X will very likely be singular and therefore the previous

solution is not feasible. There can be several solutions to this problem. The

very obvious solution is to eliminate some predictors using a stepwise method.

Another solution could be to perform PCA on the matrix X and then use

small number of principal components as regressors. Although the second

approach looks feasible, the decision on the optimum number of predictors

has to be made. It is possible to keep the first n principal components,

however they are chosen so that they explain X rather than Y and they may

not be relevant for Y .

In contrast, PLS regression identifies components from X that are relevant

to Y as linear combinations of the predictors. Specifically, PLS regression

performs a simultaneous decomposition of X and Y with the requirement

1Adapted from [74].
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that the components explain the covariance between X and Y as much as

possible. This is followed by a regression step where this decomposition is

used to predict Y .

Simultaneous decomposition of predictors and dependent variables

In PLS regression, both X and Y are decomposed as a product of common

orthogonal factors and specific loadings. Thus, the independent variables

are decomposed as X = TP ′ with T consisted of orthogonal set of vectors

(i.e. T ′ × T = I, some variations of the technique do not require T to have

unit norms). In PCA, the corresponding T is called the score matrix, and

P the loading matrix (in PLS regression the loadings are not orthogonal).

Likewise, Y is estimated as Ŷ = TBC ′ where B is a diagonal matrix with

the “regression weights” as diagonal elements (see below for more details on

these weights). The columns of T are the latent vectors. When their number

is equal to the rank of X, they perform an exact decomposition of X. Note,

however, that they only estimate Y (i.e., in general Ŷ is not equal to Y ).

PLS regression and covariance

The latent vectors could be chosen in a variety of ways. According to the pre-

vious formulation, any set of orthogonal vectors spanning the column space

of X could be used to play the role of T . In order to specify T , additional

conditions are required. For PLS regression this amounts to finding two sets

of weights w and c in order to create (respectively) a linear combination of

the columns of X and Y such that their covariance is maximum. Specifi-

cally, the goal is to obtain a first pair of vectors t = Xw and u = Y c with

the constraints that w′w = 1, t′t = 1 and t′u be maximal. When the first

latent vector is found, it is subtracted from both X and Y and the procedure

is re-iterated until X becomes a null matrix.

A PLS regression algorithm

Here, we provide a sketch of the PLS regression algorithm. Two matrices E =

X and F = Y are initially created. These matrices are then column centered

and normalized. SSX and SSY denote the sum of squares of these matrices.
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Initially, the vector u is initialized with random values. (In what follows the

symbol := means “assign and normalize the result of the operation”.)

1. w := E ′u (estimate X weights).

2. t := Ew (estimate X factor scores).

3. c := F ′t (estimate Y weights).

4. u := Fc (estimate Y scores).

Upon convergence of t, the value of b is computed as b = t′u and then b

is used to predict Y . The factor loadings for X are calculated as p = E ′t.

Further, the effect of t is subtracted out from E and S as E = E − tp′

and F = F − btc′. The vectors t, u, w, c, and p are then stored in the

corresponding matrices, and the scalar b is stored as a diagonal element of

B. The sum of squares of X (respectively Y ) explained by the latent vector is

computed as p′p (respectively b2), and the proportion of variance explained is

obtained by dividing the explained sum of squares by the corresponding total

sum of squares (i.e., SSX and SSY ). The stopping criterion is met when E

is a null matrix, in which case the whole set of latent vectors has been found.

Otherwise the procedure is reiterated from step 1 until the stopping criterion

is met.

5.3 Machine Learning

For the purpose of comparing the performance of the different classifiers, this

block was implemented using three different Machine Learning (ML) classi-

fiers: Support Vector Machines (SVM), Artificial Neural Networks (ANN)

and Random Forests Classifier (RFC). The decision to use these three clas-

sifiers for analysis was influenced by existing literature and the results of the

Kaggle seizure prediction challenge [75].

5.3.1 Support Vector Machines2

Let us assume that our dataset is (x1, y1), . . . , (xn, yn), with given labels

yi ∈ {1,−1}. Our goal is to find the hyperplane wTx+ b = 0 (where x is any

2Based on Machine Learning course notes from SUNY at Stony Brook [76].
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of (x1, . . . , xn)), characterized by parameters (w, b), which separates the two

classes in the dataset. This hyperplane should satisfy the conditions below:

1. mini≤n |wTxi + b| = 1

2. yi(w
Txi + b) ≥ 0 for all i ≤ n

3. |w|2 is minimum

It is possible that there is no hyperplane that separates the two classes in

the dataset. However, for simplicity, let us assume that the dataset is linearly

separable. Combining conditions 1 and 2 results in

yi(w
Txi + b) ≥ 1 for all i ≤ n

Hence the problem can be formulated as

minimize
1

2
|w|2

over all w ∈ Rd and b ∈ R subject to the conditions

yi(w
Txi + b)− 1 ≥ 0 for all i ≤ n

This turns out to be a simple quadratic programming problem and there

are algorithms of complexity O(n3) that can be used for solving this problem.

However, when n and d are large even the best QP methods will fail. The

SVM solution is obtained by applying KKT optimality conditions to the dual

of the above QP problem.

KKT conditions for SVM

Lagrangean of the SVM optimization problem is given by

L(w, b, λ) =
1

2

d∑
i=1

w2
i −

n∑
j=1

λj
{
yj(w

Txj + b)− 1
}

And the KKT-conditions for optimality are
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∇wL = 0, i.e., w =
n∑

j=1

λjyjxj

∇bL = 0, i.e.,
n∑

j=1

λjyj = 0

λj
{
yj(w

Txj + b)− 1
}

= 0, for all j ≤ n

These conditions completely characterize the optimal plane. The first con-

dition asserts that w must be a linear combination of the observed vectors

xj. The second condition asserts that, the coefficients of this linear combina-

tion must add up to 0. The complementary condition asserts that the only

non-zero Lagrange multipliers λj are those associated to the vectors xj right

on the margin, i.e.

yj(w
Txj + b) = 1

The corresponding xj are called support vectors and they are the only ones

needed because

w =
∑
j∈J0

λjyjxj

where J0 = {j : xj is a support vector}.
The support vectors also satisfy that their distance from the separating plane

is ρ = 1/|w|. Typically, the number n of such vectors is very small compared

to the size of the dataset.

The dual problem

According to the definition of duals, maximizing W (λ), subject to the con-

straint that λ ≥ 0, where

W (λ) = min
x
L(x, λ)

is equivalent to minimizing f(x) subject to the gj(x) ≥ 0.
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SVM solution

The λ (which are the Lagrange multipliers), which minimizes L(w, b, λ) w.r.t.

(w, b), must satisfy the condition that w is a linear combination of the xj’s

with coefficients λjyj that must add up to zero. Thus, the dual formulation

is obtained by replacing the conditions into L(w, b, λ) as,

maximize W (λ)

where

W (λ) =
n∑

j=1

λj −
1

2

∑
i,j

λiλjyiyj(x
T
i xj)

and the λ ≥ 0 satisfying
n∑

j=1

λjyj = 0

With the optimal λ, w can be obtained as linear combination of xj as

given above. b can be obtained by using the fact that the plane must be in

canonical position.

min
i≤n

yi(w
Txi + b) = 1 = yj(w

Txj + b) for all j ∈ J0

which results in

b = yj− < w, xj >

Multiplying this by λj and adding j yields

b =
−
∑

i,j λiλjyiyj < xi, xj >∑
j λj

5.3.2 Random Forests3

Random forests is a classification approach that is especially well suited for

problems with many classes when large datasets are available for training.

The random forests classifier is obtained by randomly creating a number of

decision trees and deriving an ensemble decision from those decision trees.

A pictorial depiction of this is showed in Figure 5.3.

3Based on Machine Learning course slides from University of British Columbia, [77].

29



Figure 5.3: Random forests classifier obtained as an ensemble of decision
trees

Suppose that we have a dataset X1, X2, ......., XN and corresponding labels

Y1, Y2, ......., YN . Each Xi has p attributes and each Yi is one of q different

classes. A decision tree is made of a root node and several decision nodes

(split points), where each node splits the dataset into a number of subtrees.

The number of subtrees is typically the number of classes in the output labels.

Further, the height of the decision tree is typically the number of attributes

in the input dataset. At each node the splitting of the dataset is done using

one of the attributes. The attribute that is used for splitting at a node is

determined by the maximum information gain property. The information

gain obtained by splitting using an attribute j is calculated using Equation

5.7.

Ij = H(Sj)−
∑
i∈1...q

|Si
j|
|Sj|

H(Si
j) (5.7)

where H(X) is the entropy of the random variable X.

Random forest is built by using multiples of such decision trees accommo-

dating randomness two different ways, (a) in the data used to build the trees

and (b) in the attributes used for splitting. Following is the textual descrip-

tion of the random forest algorithm. Suppose that we want to generate B

number of random decision trees.

1. For b = 1 : B
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(a) Draw a bootstrap sample Z∗ of size N from training data.

(b) Grow a random decision tree Tb to the bootstrapped data, by

recursively repeating the following steps for each terminal node of

the tree until the minimum node size is reached.

i. Select m attributes at random from the p attributes.

ii. Pick the best attribute/split-point among them.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B.

When a new data sample arrives, a decision on its class will be made by

all the decision trees in the random forest. The likelihood probability for

that data sample belonging to an output class is obtained by averaging the

likelihood probabilities of the individual decision trees. The average can be

obtained by taking the arithmetic or geometric mean.

5.3.3 Artificial Neural Networks4

Preliminaries

A complex system could be decomposed into simple elements for better un-

derstanding. Also simple elements could be merged to produce a complex

system. Networks could be used for this purpose. The networks are typically

characterized by the following components: a set of nodes, and connections

between nodes.

The nodes operate computational units. They receive inputs, and process

them to produce an output. This processing might be very simple (such

as summing the inputs), or quite complex (a node might contain another

network). The connections determine the information flow between nodes.

They can be unidirectional, when the information flows only in one sense,

and bidirectional, when the information flows in either sense.

One type of network sees the nodes as “artificial neurons”. These are called

Artificial Neural Networks (ANNs). An artificial neuron is a computational

model inspired in the natural neurons (Figure 5.4). Natural neurons receive

4Adapted from [78] and Machine Learning course notes from Stanford University [79].
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signals through synapses located on the dendrites or membrane of the neuron.

When the signals received are strong enough (surpass a certain threshold),

the neuron is activated and emits a signal though the axon. This signal might

be sent to another synapse, and might activate other neurons.

Figure 5.4: Natural neurons

Suppose that we have a set of labeled training examples (x(i), y(i)) and we

want to train a supervised learning algorithm to predict y using x. Neural

networks can be used model the complex relationship using a non-linear

hypothesis hW,b(x) with parameters W, b. Let’s consider the simplest possible

neural network, which only contains a single “neuron” (Figure 5.5).

Figure 5.5: Single neuron neural network

This neuron is a computational unit which takes x1, x2, x3 and a +1 bias

term as inputs and outputs hW,b(x) = f(W Tx) = f(
3∑

i=1

Wixi + b), where

function f is called the activation function. Sigmoid (Equation 5.8) and

hyperbolic tangent (tanh, Equation 5.9) functions are typically used as acti-

vation functions.

f(z) =
1

1 + e−z
(5.8)
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f(z) = tanh(z) =
ez − e−z

ez + e−z
(5.9)

A neural network is built using many simple neurons such that the output

of a neuron can be the input of another neuron. For instance, Figure 5.6

shows a sample neural network.

Figure 5.6: A 3-layer neural network

In Figure 5.6, circles denote inputs to the network. The leftmost, right-

most and the middle layers are called input layer, output layer and hidden

layer respectively. There can be many hidden layers in a neural network.

This neural network is called a three-layer, three-input, single output neural

network.

Notation:

• nl - Number of layers in the network.

• Ll - Layer l.

• W (l)
ij - Weight associated with the connection between unit j in layer l

and unit i in layer l + 1.

• W (l) - The matrix of weights connecting layer l and layer l + 1.

• b(l) - Bias terms at layer l, sl - number of units in layer l.

In general, a computational unit performs a weighted sum of all the inputs

to that particular unit using the connecting weights and applies the activation

function on this value to obtain the output value. This output value is passed

to all the computational nodes in the next layer for their computation. If we
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let the vector z(l+1) denote the weighted sums of all inputs to layer l+1 from

layer l, and a(l+1) denote value of the activation function applied on z(l+1),

the two quantities can be iteratively calculated from what is often called as

the feed-forward propagation.

z(l+1) = W (l)a(l) + b(l) (5.10)

a(l+1) = f(z(l+1)) (5.11)

Training the neural network

Suppose we have a training set (x(1), y(1)), ..., (x(m), y(m)) of m training exam-

ples. Training of the network is done by minimizing a cost function based

on the training labels and the outputs of the neural network. A typical cost

function is the squared-error cost function, given by Equation 5.12

J(W, b) =
1

2
‖hW,b(x)− y‖2 (5.12)

Our objective is to minimize J(W, b) as a function of W and b. The back-

propagation algorithm [80] with a batch gradient descent optimization is

typically used for this purpose. The backpropagation algorithm performs a

feed-forward pass, backward error propagation pass and gradient descent up-

dates iteratively to reach the optimum configuration of the neural network.

The backpropagation algorithm is as follows:

1. Perform a feed-forward pass using Equations 5.10 and 5.11.

2. For each output unit i in Ll, an intermediate quantity δ
(nl)
i is calculated

as

δ
(nl)
i =

∂

∂z
(nl)
i

1

2
‖hW,b(x)− y‖2 = −(yi − anli ).f ′(z

(nl)
i ) (5.13)

3. Similar quantities for each lower layers are calculated as

δ
(nl)
i = (

sl+1∑
j=1

W
(l)
ij δ

(l+1)
j f ′(z

(nl)
i )) (5.14)
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4. Partial derivatives for the gradient descent algorithm are calculated as

∂

∂W
(l)
ij

J(W, b) = a
(l)
j δ

(l+1)
i

∂

∂b
(l)
i

J(W, b) = δ
(l+1)
i

5. Finally the gradient updates are performed as

W
(l)
ij = W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b)

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J(W, b)

where α is the learning rate.

This algorithm is repeated several times until the change in the gradient

update becomes negligible (very close to zero). Once the algorithm has con-

verged, the weights and the bias terms obtained at the last iteration will be

the optimal weights and bias terms.

5.4 Forecasting and Assessment

The assessment block employs a forecasting algorithm to generate the warn-

ings and generates fitness metrics to quantify the correctness of prediction.

The triggering of the seizure prediction algorithm depends on the classifier’s

output, i.e. the likelihood probability of a data sample exceeding a predefined

threshold. This threshold is chosen such that the total time spent on warning

is maintained under the tolerance levels. The warning is kept for a period

of 90 minutes once it is triggered. The warnings which occur within this 90

minute period are combined and the warning time is extended accordingly.

The warning period essentially means that, seizures could occur at any time

within this period with high probability.

A 5-minute seizure horizon was used to make sure that the prediction

method is not simply a detection method. The warning is considered valid

only if the warning occurs before the 5-minute horizon. If one or more seizures

occurred during the warning, then it was considered as a true positive. If
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seizures do not occur during a warning period, then that warning was con-

sidered as a false positive. If a seizure occurred during a period where there

was no warning triggered, then it was considered a false negative. If seizures

didn’t occur during a period and no warnings were triggered during that

period, then it was considered as a true negative. Based on this, the Re-

ceiver Operating Characteristics (ROC) curve was also plotted to evaluate

the performance of the pipeline.

To evaluate the ability of the seizure forecasting mechanism, it was com-

pared to a chance seizure prediction algorithm previously proposed by Snyder

et al. [81]. A candidate seizure prediction algorithm must perform signifi-

cantly (p < 0.05) better than the chance seizure prediction method in order

to be considered for a potential seizure predictor.

5.4.1 Receiver Operating Characteristics (ROC) Curve5

An ROC curve is typically used to visualize, organize and select classifiers

based on their performances. Let us consider a classification problem with

two classes. Therefore, each test data point is mapped to one of the labels in

set p, n of positive and negative labels. The labels are usually provided based

on thresholding. For each data point x, the classifier generally generates a

likelihood probability between 0 and 1. A threshold between 0 and 1 is

used to assign the data point to a particular. For instance, if the likelihood

probability is 0.7 and the threshold is 0.6, then this data point will be assigned

to class 1 (positive).

When the data point has a true label and a predicted label, there are four

possibilities. If the instance is positive and it is classified as positive, it is

counted as a true positive; if it is classified as negative, it is counted as a

false negative. If the instance is negative and it is classified as negative, it

is counted as a true negative; if it is classified as positive, it is counted as a

false positive. This is explained in Figure 5.7.

Denoting the total number of true positives as TP, positives as P, false

positives as FP and negatives as N, True Positive Rate (TPR) and False

5Adapted from [14].
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Figure 5.7: Confusion matrix

Positive Rate (FPR) can be calculated as follows

TPR =
TP

P

FPR =
FP

N

TPR and FPR are calculated for a particular threshold. The threshold

can be varied between 0 and 1 to generate multiple TPR and FPR values for

that particular classifier. These multiple values of TPR and FPR are plotted

against each other to generate the ROC curve. Figure 5.8 shows two sample

ROC curves.

Figure 5.8: Receiver Operating Characteristics (ROC) curve

Area under the ROC curve (AUC) is considered as a measure for the
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predictive capability of a classifier. AUC should be close to 1 for the classifier

to be considered as a good predictor. When the AUC is close to 0.5, the

classifier is as good as a predictor which predicts the label for a data point

randomly (50-50 chance). It is practically impossible to achieve a perfect

AUC value, i.e. 1. However, AUC values very close to 1 could be achieved

and those classifiers are considered as good predictors.

5.5 Execution of the Prediction Pipeline

Data samples representing different classes are required to train the machine

learning classifier. So we extracted data samples representing interictal ac-

tivity and preictal activity. We considered the entire recording of a subject

and excluded discontinuous regions as explained in Chapter 4. Annotated

seizures were used to mark the interictal and preictal activities. Interictal

periods were very conservatively marked as any part of the recording that is

at least one week away from a seizure. Preictal periods were marked five to

ninety-five minutes before a seizure, accounting for the possibilities of pre-

ictal signatures persisting for different durations before the seizure. Preictal

and interictal regions were extracted from the raw recordings, and were di-

vided into non-overlapping one-minute clips. These one-minute clips were

extracted from the raw data prior to the execution of the pipeline and saved

in storage to expedite further processing. Table 5.1 lists the number of in-

terictal and preictal clips extracted for each subject.

Table 5.1: Summary of extracted 1-min clips

Subject Interictal clips Preictal clips
Subject 1 166170 328
Subject 2 159808 345
Subject 3 145788 606
Subject 4 286 261
Subject 5 33649 264

Here, we explain how the pipeline would operate with a combination of the

techniques employed in each block of the pipeline. The feature extraction

block takes the saved one-minute clips as input and extracts the features ex-

plained in Section 5.1. The extracted features are fed to the dimensionality
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reduction block for reduction of dimensionality. The dimensionality reduc-

tion block takes the extracted features and reduces the dimensionality by

using one of the two methods described in Section 5.2. The method in which

the dimensionality is reduced can be specified as an input. The dimensional-

ity of the output can also be specified as an input to this block. At this point

in the pipeline, the feature set of each one-minute clip is assigned a label de-

pending on whether that one-minute clip was in the interictal region or in the

preictal region. Then the dataset and the corresponding labels are divided

into two parts, training and testing sets. Machine learning block takes a set

of training features, corresponding labels and a set of test features as input.

It trains one of the classifiers explained in Section 5.3 (which can be specified

as an input to the block) and produces the labels and likelihood probabili-

ties for the given test features suing the trained classifier. The assessment

block takes the true labels, predicted labels and the likelihood probabilities

of the test dataset as input and produces goodness of fit metrics for the com-

bination of techniques used in the pipeline. Chapter 6 further explains the

execution of the pipeline using the cross validation method to account for

the randomness in different executions.
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CHAPTER 6

EVALUATION

A top-level software wrapper was implemented to execute the individual

blocks varying the technique employed in each block. A flow diagram of the

top-level wrapper is shown in Figure 6.1.

The wrapper selects a test subject and extracts all the features for the

interictal and preictal one-minute clips of that test subject. For the pur-

pose of testing the whole iEEG recording of the subject, the entire recording

is divided into one-minute clips and the features for each one-minute clip

are also extracted. One of PIB, TMCO and SPCO is selected from the ex-

tracted features of that subject. The selected features for all the one-minute

clips (training and test sets) are provided to the dimensionality reduction

block as input. The top-level wrapper then selects the dimensionality re-

duction method as one of PCA and PLS and selects the dimensionality of

the output. Then it performs dimensionality reduction on the input features

and provides the features with reduced dimensionality as input to the cross-

validation block. The cross-validation block contains both machine learning

and forecasting and assessment blocks. The machine learning block takes the

dimensionality reduced features as input. The features are first shuffled to

distribute the preictal and interictal features evenly. Two-thirds of the fea-

tures are chosen as train features and one of SVM, RFC and ANN is chosen

as the classifier and is trained using the train data.

Box constraint, misclassification costs for SVM, number of neurons, num-

ber of layers, misclassification costs for ANN and input fraction used for train-

ing, misclassification costs for RFC were chosen by trial and error method,

achieving the best classifier performance for each subject.

The classifier which was trained using the training set is called the predic-

tor. Predictor is used to predict the labels and likelihood probabilities of the

labels for the testing set. Predicted labels, likelihood probabilities and the

actual labels for the testing set are passed to the forecasting and assessment
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block as inputs. To test the trained classifier, dimensionality reduced fea-

tures of the whole dataset are used as the test dataset. The machine learning

block then uses the trained classifier (i.e. the predictor) to produce the labels

and the corresponding likelihood probabilities for the test dataset. Predicted

labels, likelihood probabilities and actual labels for the test dataset are fed

into the forecasting and assessment block. Forecasting and assessment block

generates the warnings and goodness of fit metrics for the classifier. The

process of training the classifier using the training dataset, testing the pre-

dictor using testing dataset and generating goodness of fit metrics using the

forecasting and assessment block is repeated five times to account for the

randomness in the training of machine learning classifier and the bias in the

selection of training data. The goodness of fit metrics (Area Under the ROC

Curve (AUC) and p-value obtained by comparing the classifier with a ran-

dom predictor) generated in the five runs of the cross-validation stage are

averaged to produce the average performance metrics of the classifier.
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CHAPTER 7

RESULTS AND DISCUSSION

Each canine subject was evaluated separately by using all the different com-

binations of features and techniques. Table 7.1 shows the different features

and techniques employed in each block.

Table 7.1: Breakdown of the techniques

Feature Extraction Dimensionality Reduction ML Classifier
Power in Bands (PIB) Principal Component

Analysis (PCA)
Support Vector Machine
(SVM)

Time Correlation (TMCO) Partial Least Squares
(PLS) regression

Random Forests Classifier
(RF)

Spectral Coherence (SPCO) Artificial Neural Networks
(ANN)

Based on this, there are 18 combinations of features and techniques possible

for each subject. Each combination of the features and techniques was cross-

validated five times to ensure that the results are generalizable. The AUC

values of the 18 combinations were compared to obtain the best performing

combination and corresponding AUC value for a particular subject. Table 7.2

shows the best performing combinations and the corresponding AUC values

for each subject. Figure 7.1 shows the ROC curves that resulted in the best

AUC value for each subject.

Table 7.2: Best performing combinations of techniques for each subject and
the corresponding AUC values

Subject Feature DR ML AUC
1 SPCO PLS SVM 0.8341
2 PIB PCA SVM 0.7795
3 SPCO PLS SVM 0.9246
4 PIB PLS RF 0.7349
5 PIB PCA SVM 0.8899
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Figure 7.1: ROC curves which resulted in best AUC values

Based on the best AUC achieved for each subject, seizures on Subjects 1,

3 and 5 (AUC > 0.8) could be predicted relatively better than Subjects 2

and 4.

To evaluate the different techniques used in the individual blocks, many

trials were performed varying the technique employed in each block. A com-

bination of the different techniques was used for the blocks feature extraction,

dimensionality reduction and machine learning in each of the eighteen pos-

sible trials. For each trial, the average AUC metrics and p-values generated

from the forecasting and assessment block were recorded. Table 7.3 shows

the forecasting results using different features and analytical methods. AUC

metrics recorded for each combination of techniques were averaged over all

the canines to produce the means (µ) and standard errors (SE) listed in the

table. The number of canines for which a given combination of features and
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Table 7.3: Mean forecasting results for the different combinations of the
techniques

Feature Dimensionality
Reduction

Machine
Learning

AUC - mean (SE) Number of
Canines with
p-value < 0.05

PIB PCA SVM 0.7943 (0.0373) 4
RF 0.7740 (0.0396) 5
ANN 0.7402 (0.0481) 3

PLS SVM 0.7520 (0.0595) 4
RF 0.7552 (0.0339) 4
ANN 0.6285 (0.0335) 1

TMCO PCA SVM 0.6968 (0.0378) 4
RF 0.7524 (0.0312) 5
ANN 0.6926 (0.0468) 3

PLS SVM 0.7559 (0.0333) 4
RF 0.7559 (0.0304) 5
ANN 0.6498 (0.0331) 2

SPCO PCA SVM 0.6735 (0.0455) 3
RF 0.7442 (0.0326) 5
ANN 0.6921 (0.0457) 3

PLS SVM 0.7730 (0.0510) 4
RF 0.7287 (0.0327) 5
ANN 0.5954 (0.0184) 1

methods generated a forecasting method with p < 0.05 is reported in the

final column.

7.1 Forecasting Results

The best performing features in this dataset appear to be the PIB with the

PCA dimensionality reduction, as all machine learning methods achieved

mean AUC greater than 0.74. While the SVM algorithm with PIB features

and PCA had the highest mean AUC, the RF algorithm may have generalized

better, achieving forecasting greater than a chance predictor in all five canines

studied. The ANN learning algorithm did not perform as well as the SVM

and RF algorithms in any trial, suggesting it may not be as accurate or robust

as the other methods. Good performance was obtained in some capacity

for all feature sets studied, suggesting preictal changes may be present and

identifiable in all three feature sets.

We also analyzed the effectiveness of the different features extracted on

individual subjects. Out of the eighteen cross-validated trials of a subject,

a feature (one of PIB, TMCO and SPCO) was used in six trials. The AUC

metrics for these six trials were averaged to obtain the mean prediction per-

formance of that feature for a particular subject. The bar plots in Figure 7.2

45



show the mean performance of each feature on different subjects. The confi-

dence intervals of the mean AUC were obtained by calculating the standard

errors (SE).
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Figure 7.2: Mean prediction performances of the features on individual
subjects

It is clearly observable from Figure 7.2 that the features show difference

in their prediction capabilities depending on the subject. Table 7.4 lists the

prediction capabilities of the features based on the subjects, with 1 being

the highest prediction capability and 3 being the lowest. The ordering of

features based on the mean prediction performance is done individually for

each subject. We also provide a general classification of the prediction perfor-

mance of a feature by classifying feature’s performance into three categories,

i.e. AUC > 0.8 being characterized as “Excellent”, 0.8 > AUC > 0.7 being

characterized as “Good” and 0.7 > AUC > 0.6 being characterized as “Aver-

age”. Table 7.4 also lists the general classification of the feature’s predictive
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Table 7.4: Mean prediction performances of the features

Subject PIB TMCO SPCO
Subject 1 3 (Average) 2 (Average) 1 (Good)
Subject 2 1 (Good) 2 (Average) 3 (Average)
Subject 3 1 (Excellent) 3 (Good) 2 (Good)
Subject 4 1 (Average) 3 (Average) 2 (Average)
Subject 5 2 (Excellent) 1 (Excellent) 3 (Good)

performance based on the mean AUC obtained.

Although the differences between the mean AUCs of different features are

small (i.e. in the range of 0 - 0.1), these differences are significant for the

following reasons. An AUC value can only be in the range 0 - 1. Further,

a prediction mechanism should achieve AUC > 0.5 to be considered better

than a chance (50-50) prediction algorithm. Therefore, a standard prediction

algorithm will have AUC values between 0.5 and 1. Moreover, the closer

the AUC value is to 1, the harder it becomes to further improve the AUC.

Therefore, provided that all the mean AUC values are greater than 0.6 and

these values can only be within 0.5 and 1, the small differences we observe

here are indeed significant. Further, the small changes in the AUC values in

fact correspond to larger changes in the true positive and false negative rates.

Depending on the size of the testing dataset, these small improvements in

AUC can considerably, improve the number of true positives and reduce the

number of false positives.

This finding is important in the way that it opens up the possibility of per-

sonalizing the seizure prediction algorithm based on the feature that shows

most predictive ability for that particular subject. For instance, for Sub-

ject 1 (based on row 1 of Table 7.4), the feature SPCO should be used for

the seizure prediction algorithm. Although these results being the average

results across all the trials with different machine learning and dimensional-

ity reduction techniques is a reinforcement, the randomness involved in the

machine learning algorithms requires further evidence for this claim. Since

these results suggest that machine learning algorithms can identify subtle

changes in iEEG-derived features preceding seizures, it may be possible to

analyze and derive specifically what changes are occurring prior to a seizure

for each subject, and this information could help us better understand the

physiological changes underlying ictogenesis.

47



7.2 Preictal Changes

Identifying the changes in the iEEG data during the transition from the

interictal baseline to a preictal, seizure-permissive state is complicated by

the fact that the exact timing of this transition is unknown. Prior seizure

forecasting studies have analyzed data between 30 and 90 minutes preceding

seizure onset. In this context, the analysis in this work was begun 120 min-

utes before the seizure to ensure adequate coverage of the preictal period.

Similarly, the duration of postictal effects following seizure termination is

variable, and subtle effects may persist beyond visible changes in the iEEG.

Two hours post seizure was also analyzed, as this extends beyond published

postictal studies.

A data segment containing the two hour period prior to the seizure, the

seizure and the two hour period after the seizure was extracted for each

lead seizure of each subject. These data segments were divided into non-

overlapping one minute clips. Each of these clips contains one minute record-

ing of iEEG over sixteen channels. For each one-minute clip, the features

PIB, TMCO and SPCO were extracted as explained in Section 3.2. For each

one-minute clips 1109 PIB features, 120 TMCO features and 1820 SPCO

features, the two dimensionality reduction techniques were applied and 10

PCs of PIB, 10 PCs of TMCO and 10 PCs of SPCO were extracted. Like-

wise, 10 PCs of each feature was extracted for all the one-minute clips in

the data segments extracted around lead seizures. To quantify the 10 PCs

as a single numerical value, squared L2 norm of the 10 PCs was calculated.

So, each one-minute clip was assigned six numerical measures, which are the

L2 norms of the 10 PCs of the three different features extracted using two

different dimensionality reduction techniques. The means and variances of

the six numerical measures of a one-minute clip were calculated considering

all the lead seizure data segments extracted on the specific subject. Figures

7.3-7.7 show the changes that occurred in these features around lead seizures

by means of the mean values and variances of those features.

In Figure 7.2 (Subject 1), we can see that except for the time of seizure,

there are no noticeable differences in the means and variances of the features

PIB ((i), (ii)) and TMCO ((iii), (iv)). However, there is a noticeable differ-

ence in the variances of SPCO in (v) and (vi). The variance is small in the

preictal region (entire 2 hour period) and large in the postictal region. This
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Figure 7.3: Preictal changes oberved in Subject 1

change in the variance of SPCO reinforces the observation from Figure 7.2

(Subject 1), explaining the “Good” performance by SPCO features. How-

ever, these plots do not reveal enough to make any conclusions about the

difference in the performances of PIB and TMCO features.

Similarly, in Figure 7.2 (Subject 2), we can observe preictal changes in PIB

and TMCO. The variances of PIB ((i), (ii)) show a decrease almost 50 (on

average) minutes before the seizures and the variances of TMCO ((iii), (iv))

show an increase from 50 minutes (on average) before the seizures. However,

there are no noticeable changes observed in SPCO preictally. These obser-

vations explain the difference in the performances of the features in Figure

7.2 (Subject 2). In Figure 7.2 (Subject 2), we observe that although only

PIB features provided “Good” performance, both PIB and TMCO provided

significantly better predictions than SPCO. However, the difference between

the performances of PIB and TMCO in Figure 7.2 (Subject 2) cannot be

explained using the preictal analysis in Figure 7.4.

In Figure 7.5, we can observe preictal changes in all three features about

10-15 minutes (on average) before the seizures. These are very significant

49



Figure 7.4: Preictal changes observed in Subject 2

changes because unlike other cases, we can see significant changes in the

means of all the features 10-15 minutes before the seizures and settling to

the respective interictal means about 40 minutes (roughly) after the seizures.

This observation explains all three features providing performances better

than “Average” in Figure 7.2 (Subject 3). However, the reason for PIB

features providing the best performance among all the features is not clear

from the preictal analysis in Figure 7.5.

In Figure 7.6, we can observe preictal changes in PIB ((i) and (ii)) and

TMCO ((iv)). SPCO features do not show any preictal changes. The changes

in PIB features are very significant because the variance becomes very small

in (i) and almost zero in (ii). We can also observe a noticeable change in the

variance of TMCO features in (iv). The significant changes of PIB features

are resembled in Figure 7.6, where PIB features provided comparatively bet-

ter performance than other features. However, the preictal change observed

in TMCO features in (iv) is not resembled in Figure 7.2 (Subject 4).

In Figure 7.7, we can observe changes in TMCO ((iv)) and SPCO ((v)

and (vi)). The change in (iv) is very prominent, i.e. the variance is much
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Figure 7.5: Preictal changes observed in Subject 3

larger preictally. Although the changes in (v) and (vi) are important in the

way that they show a rise in the mean, they do not occur well before the

seizures. This could be a limiting factor for the ability of SPCO features in

predicting seizures. The changes in PIB features are very noisy, and it is

not possible to derive any conclusions from (i) and (ii). If we look at Figure

7.2 (Subject 5), TMCO features, as expected provided the best performance.

While SPCO provided a reasonable prediction performance, PIB features

performed better, even though it was not clearly evident from the preictal

analysis in Figure 7.7.

Further, the preictal changes observed persisted for different time dura-

tions in different subjects. However, the duration of a preictal changes on

the different features (which showed preictal changes) of the same subject

were very similar. In Figure 7.3 only SPCO features ((v), (vi)) showed pre-

ictal changes and the duration was 120 minutes (possibly longer than that).

In Figure 7.4, both PIB ((i), (ii)) and TMCO ((iii), (iv)) showed preictal

changes roughly around 50 minutes before the seizures. In Figure 7.5, all

three features showed preictal changes approximately 10-15 minutes before
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Figure 7.6: Preictal changes observed in Subject 4

the seizures. In Figure 7.6, PIB ((i), (ii)) and TMCO ((iv)) showed preictal

changes around 40 minutes before the seizures. In Figure 7.7, only TMCO

((iv)) showed significant preictal changes which persisted for 2 hours (pos-

sibly longer) before the seizures. This observation suggests that durations

of preictal changes are different for different individuals and preictal changes

on the different features (which showed preictal changes) of the same subject

are very similar.

These observations suggest that different features show different preictal

changes and it is not wise to assume that there exists a common feature

which shows similar preictal changes in all the subjects. Due to the dynamics

in brain activity and the individual differences between subjects, it is highly

unlikely that there exists a common bio-marker for epilepsy. By performing a

preictal analysis as shown here, we can get a fair idea about the features which

might be worth considering in developing a machine learning based seizure

prediction algorithm. Also, it is evident from the analysis that the features

which showed preictal changes were able to provide better predictions than
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Figure 7.7: Preictal changes observed in Subject 5

other features for a particular subject. Therefore, this analysis could also be

useful in individualizing a seizure prediction algorithm.
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CHAPTER 8

CONCLUSION

In this thesis, we developed a machine learning based seizure prediction

pipeline, which we used to evaluate different combinations of features, di-

mensionality reduction techniques and machine learning methods and their

applicability in seizure prediction. The results demonstrate that all sets of

features, dimensionality reduction, and machine learning techniques investi-

gated showed some capability to forecast seizures, but SVM and RF machine

learning classifiers performed consistently better than ANN. All feature sets

tested produced forecasting results greater than chance in all five canines

studied with some combination of dimensionality reduction and machine

learning algorithms. These results also demonstrate changes in a number

of iEEG features prior to seizures and support the concept of a distinct,

measurable, preictal state that has an increased probability of seizure oc-

currence. Preictal changes in mean and variance PIB, TMCO, and SPCO

metrics were observed in multiple canines and occurred as early as 40 min-

utes before seizures. These results may provide insight into the timing and

duration of the underlying physiological changes that lead to seizures.

8.1 Future Directions

The ultimate objective of this thesis is to design a device with implanted

electrodes which can predict seizures in a real-time manner. This work stands

as a strong foundation to the design of the device as it demonstrates the

suitability of a machine learning based approach and as it shows directions

for how to choose the features with predictive capability which will provide

better predictions. There are further research problems that need to be solved

in order to successfully develop such a device. These include the following:

• Decision on how much time should be spent on training the machine
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learning based framework.

• Development of a mathematical strategy to optimize the algorithm on-

line while new data is arriving.

• Automation of the device to operate independently of human interven-

tion.

• Understand where human input both clinically and technically, is re-

quired.

• Design of a minimally invasive hardware and taking measures to ac-

count for the convenience of the user.

• Efficient design of the software so as to minimally consume power and

elongate battery life.

• Use of a fault tolerance strategy to deal with occasional failures that

might occur in the hardware and software.

Provided that these problems are solved, a device could be realized which

can predict seizures (with few false positives and few false negatives) provid-

ing warnings to epilepsy patients in a timely manner giving them an ample

amount of time to prepare for the seizures.
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