
© 2015 by Saurabh S. Sawant. All rights reserved.

DEVELOPMENT OF AN AMR OCTREE DSMC APPROACH

FOR SHOCK DOMINATED FLOWS

BY

SAURABH S. SAWANT

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Aerospace Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor Deborah Levin

Abstract

Key strategies used in the development of a scalable, three-dimensional direct simulation Monte Carlo

(DSMC) program are described. The code employs an Octree based adaptive mesh refinement (AMR) that

gives flexibility in capturing multi-scale physics. It is coupled with a robust cut-cell algorithm to incorpo-

rate complex triangulated geometries. With the use of distributed memory systems and Message-Passing-

Interface (MPI) for communication, the code is potentially scalable. However, to simulate continuum-like

conditions involving multi-scale physics, better scalability that has yet been achieved is desirable. The thesis

identifies two main performance bottlenecks in simulating at continuum-like conditions, first, improving the

scalability of the code for more than 128 processors by reducing the communication and evenly balancing

the computational load, and second, improve the algorithmic performance of the code by eliminating the

expensive recursive tree traversal inherent in Octree based mesh structure. In order to resolve the first

issue sophisticated graph-partitioners have been used, however, without success. The thesis also explains

the special considerations required for embedded geometries in a parallel computational environment. An

efficient algorithm is discussed that allows for the checking of particle-surface interaction only if they are

close enough to the geometry. The code calculates various surface coefficients and employs the Borgnakke-

Larsen continuous relaxation model to simulate inelastic collisions of diatomic molecules. Finally, these

strategies and models are validated by simulating hypersonic flows of argon and nitrogen over a hemisphere

and double-wedge configuration and the solutions are compared with the results obtained from an older

DSMC code known as SMILE.

ii

“When you have eliminated the impossible, whatever remains, however improbable, must be the truth.”

-Sir Arthur Conan Doyle

iii

Acknowledgments

I have had the distinct privilege to work with my adviser Professor Deborah Levin and would like to

express my sincere gratitude for giving me this opportunity, her wise guidance, and valuable lessons she

taught me during the course of this work. I am greatly indebted to my colleague Burak Korkut for his

mentorship, encouragement, and motivation since my first day in the lab. The material of this work has

benefited from immense help and valuable comments from my colleagues Ozgur, Burak, and Dr. Zheng Li.

I would like to express my gratitude towards my friends and lab mates Revathi, Neil, and Tong for all the

intellectual and fun discussions.

I will be forever grateful for having a mother who always believed in me, a father who supported me

through thick and thin, a sister and aunt who motivated me in tough times, and my loving late grandmother

who was very proud of my achievements.

Finally, I would like to acknowledge the sponsor, Air Force Office of Scientific Research, and Blue Waters

sustained-petascale computing facility, which is supported by the National Science Foundation (awards OCI-

0725070 and ACI-1238993) and the state of Illinois, for providing us with valuable resources.

iv

Table of Contents

List of Tables . vii

List of Figures . viii

List of Abbreviations . ix

List of Symbols . x

Chapter 1 Introduction . 1
1.1 Introduction . 1
1.2 Thesis Outline . 3

Chapter 2 Development Strategies . 4
2.1 Adaptive Mesh Refinement . 4
2.2 Parallelization and Scalability . 6

2.2.1 Scalability study I . 6
2.2.2 Scalability study II . 7
2.2.3 Profiling using CPMAT . 8

2.3 Graph Partitioning for Potentially Improved Load Balancing 11
2.3.1 Brief Introduction of the Load Balancing Problem . 11
2.3.2 Preliminary Tests Using the Zoltan Framework . 12

2.4 Scalability Study Using Zoltan . 18
2.4.1 Flow Over a Double Wedge Using Scotch . 18
2.4.2 Flow Over a Hemisphere Using Scotch . 26

2.5 Algorithmic Assessment of SUGAR Code . 30
2.6 Prediction of the time required to run the experimental case 32
2.7 Robust Cutcell Algorithm . 34

2.7.1 Geometric Sorting . 34
2.7.2 Volume Computation . 35

2.8 Reflection in MPI Parallelized Domain and Its Optimization 37
2.9 Computation of Surface Coefficients in MPI Parallelized Domain 41
2.10 Collision Models . 42

Chapter 3 Verification and Validation . 45
3.1 Hypersonic Flow Simulation Using Argon . 45
3.2 CASE I: Flow of Argon at Knudsen Number 0.0277 Over a Hemisphere 45
3.3 CASE II: Flow of Argon at Knudsen Number 0.02 Over a Double-Wedge 49
3.4 Hypersonic Flow Simulation Using Diatomic Gases . 54
3.5 CASE III: Rotational Relaxation Using Heat Bath of a Simple Gas 54
3.6 CASE IV: Flow of Nitrogen at Knudsen Number 0.277 Over a Hemisphere 55
3.7 Case-V: Flow of Nitrogen at Knudsen Number 0.02 Over a Double Wedge 59

Chapter 4 Conclusion and Future Work . 63

v

Appendix Surface Parameters . 66

References . 68

vi

List of Tables

2.1 Graph Partitioning Methods Available in Zoltan. 12
2.2 Zoltan Parameters. 14
2.3 Results of the 5x5 graph problem. 16
2.4 Results of the 16x16x16 graph problem. 17
2.5 Comparison study using weight formula A. weight = int(6− Yi) and B. weight = int(5− Yi) 18
2.6 Scalability comparison using 2D blocking and Scotch for a flow over a double wedge 20
2.7 Effect of different weighting factors on the sampling time. 24
2.8 Percentage increase in time with the use of Scotch over a 2-D blocking algorithm. 26
2.9 Scalability comparison using a 2D blocking algorithm and Scotch for a flow over a hemisphere 28
2.10 Comparison of the percentage time taken by major DSMC procedures*. 31
2.11 Basic experimental input conditions. 32
2.12 Time comparison. 33

3.1 Numerical parameters for the flow of argon over a hemisphere. 46
3.2 Numerical parameters for the flow of argon over a double-wedge. 50
3.3 Numerical parameters for the heat bath of a simple diatomic gas. 55
3.4 Numerical parameters for the flow of nitrogen over a hemisphere. 56
3.5 Numerical parameters for the flow of nitrogen over a double-wedge. 60

vii

List of Figures

2.1 Computational mesh and corresponding Octree structure. 5
2.2 Performance study of the SUGAR code using the double wedge case. 6
2.3 Speed-up plot for the flow over Hemisphere (Case-IV). 7
2.4 Percent time spent in various processes. 8
2.5 Activity plot for 512 processors. 10
2.6 2D decomposition problem. 13
2.7 Output of 2D decomposition problem. 16
2.8 Weighting factor distribution based on the number of computational particles. 19
2.9 Speed-up comparison using Scotch for the double wedge. 21
2.10 Leaf cell distribution on Octree cells. 22
2.11 Velocity contour. 22
2.12 Weighting factor distribution on Octree cells based on the number of leaves. 23
2.13 Weighting factor on Octree cells based on the number density. 24
2.14 Weighting scheme for a flow over a hemisphere. 27
2.15 Leaf cell distribution for a flow over a hemisphere. 27
2.16 C-Mesh for a hypersonic flow over a hemisphere. 29
2.17 Speed-up comparison using Scotch for hemisphere. 30
2.18 Split cell and its visualization. 36
2.19 Cut-cell and AMR representation for an embedded double-wedge. 36
2.20 Neighbors of a cut Root-cell. 37
2.21 Region of cells in which the particle-surface interaction procedure is performed. 38
2.22 Multiple Reflection in a single time step across different processors. 40
2.23 Calculation of Surface Coefficients. 41
2.24 Demonstration of continuous rotational relaxation algorithm. 43

3.1 Comparison of contours for the flow of argon over a hemisphere. 47
3.2 Comparison of macroparameters for the flow of argon over a hemisphere. 48
3.3 Schematic of the double-wedge. 49
3.4 Comparison of contours for the flow of argon over a double-wedge. 51
3.5 3-D effects for the flow of Argon over a double-wedge in SUGAR. 51
3.6 Collision mesh comparison for SUGAR and SMILE. 52
3.7 Comparison of macroparameters for the flow of argon over a double-wedge. 53
3.8 Rotational relaxation in a heat bath of a simple diatomic gas. 55
3.9 Comparison of contours for the flow of nitrogen over a hemisphere. 57
3.10 Comparison of macroparameters for the flow of nitrogen over a hemisphere. 58
3.11 Comparison of macroparameters for the flow of nitrogen over a double-wedge. 61
3.12 Comparison of macroparameters for the flow of nitrogen over a double-wedge. 62
3.13 Comparison of surface coefficients for the flow of nitrogen over a double-wedge. 62

viii

List of Abbreviations

SUGAR Scalable Unstructured Gasdynamic Adaptive mesh Refinement.

DSMC Direct Simulation Monte Carlo.

AMR Adaptive Mesh Refinement.

MPI Message-Passing-Interface.

OOP Object Oriented Programming.

C-Mesh Collision Mesh.

V-Mesh Visualization Mesh.

ix

List of Symbols

FNUM Number of molecules represented by one simulated molecule

ρ Mass density

εr Rotational energy of a particle

εv Vibrational energy of a particle

m Molecule mass

mr Reduced mass

ω Temperature exponent of the coefficient of viscosity

α ω − 0.5, accommodation coefficient

ζ Number of internal degrees of freedom

ζ total number of modes (translational and rotational) that are participating in the distribution.

Cr Relative speed of two particles selected for collision

ZC
r Rotational number to used in continuum methods

Zr Rotational number to used in DSMC method

Zr,∞ Constant used in Parker’s formula

T ∗ Constant used in Parker’s formula

Rf Uniformly distributed random number between zero and one

Nhit Number of collisions of particles with the surface

Sp Surface area of the panel

»np Surface normal of the panel

Θ Angle between the velocity vector and the normal to the surface

#»

V Velocity of particle incident onto the surface

αt Tangential accommodation coefficient

αe Energy accommodation coefficient

∆T Time used to collect the information about collisions normal to the surface

δT Time step

x

Indices used in collision models

i Parameter referring to the pre-collisional state of the particle

p Parameter referring to the post-collisional state of the particle

Indices used in surface coefficient calculation

i Parameters of the particle incident onto the panel

r Parameters of the particle reflected from the panel

xyz Projection of the corresponding particle axis

∞ Free-stream parameters

xi

Chapter 1

Introduction

1.1 Introduction

The steep gradients of macroscopic variables that characterize the hypersonic flows question the validity

of the assumptions made in the formulation of the Navier-Stokes equations. On the other hand, the Boltz-

mann Equation of Transport provides a generic mathematical model which can be applicable to the entire

range of Knudsen number. The Direct Simulation Monte Carlo (DSMC) method is a widely used particle

based probabilistic approach that is derived based on the same physical reasoning as the Boltzmann transport

equations [1]. Applications of this approach range from flows in the space environment to vacuum processes

where the characteristic length of the flow is of the same order as the mean free path of the molecules. In

this method, deliberate attention must be paid to key factors such as the ratio of the number of simulated

molecules to real molecules which should be sufficient to reduce statistical scatter, cell size which should be

approximately one third of the mean free path, and time step which should be approximately one fifth of the

mean collision time so as to justify the decoupling of molecular movement and collision processes. Following

all of these criteria everywhere in the domain is the key to obtaining an accurate as well as computationally

efficient solution. However, many rarefied flows of practical interest exhibit orders-of-magnitude variation in

density as a result of the high flow velocities involved, which necessitates the need for efficient computational

grids that can resolve such multi-scale physics efficiently.

Existing DSMC codes employ a variety of meshing concepts. The SMILE [2] (Statistical Modeling In

Low-Density Environment) system uses a two level Cartesian grid, meaning that each level one cell can be

refined into any number of level two Cartesian cells in each direction, given the number of level of refinement

before starting the simulation. It employs a cut-cell method for simulating flows over geometries. NASA’s

DSMC Analysis Code (DAC) [3] similarly uses a two-level rectilinear grid which can be adapted based on

the solution at a previous time step. It also employs a cut-cell method that enables it to employ arbitrary

triangulated surface mesh. The Molecular Gas Dynamics Simulator [4] (MGDS) code uses an adaptive mesh

refinement (AMR) to refine up to three levels of Cartesian grid and employs the same cut-cell method imple-

1

mented in DAC. The MONACO code [5] uses unstructured body-fitted quadrilateral or tetrahedral meshes.

A very recent open-source implementation of the DSMC method known as dsmcFOAM in OpenFOAM

system can handle unstructured polyhedral meshes. The present work describes the algorithms and strate-

gies used in creation of a new DSMC implementation called Scalable Unstructured Gas-dynamics Adaptive

Refinement (SUGAR) [6], which builds upon the aforementioned implementations by inclusion of multiple

Octree based AMR meshes and a new generation of hybrid parallelization strategies applicable to hetero-

geneous computer systems. The Cartesian grid has been chosen over tetrahedral meshes because it takes

substantially less memory to store the cell structure information. Fully automated AMR allows flexibility for

capturing high gradients in hypersonic flows without excess grid refinement of the entire domain. It employs

a robust cut-cell method that allows simulation over complex geometries. The SUGAR code makes efficient

use of distributed systems and will be shown in this thesis to scale linearly up to 128 processors. For 512

processors, a maximum speed up of 335 was achieved for a case of hypersonic flow over a double-wedge and

358 for hemisphere. When geometries are embedded in a MPI parallelized code, the DSMC methods such as

particle reflection over the surface and heat flux calculation need careful consideration. The thesis describes

efficient ways to deal with these problems. In addition to that, the code also employs Borgnakke-Larsen

(BL) model for simulating inelastic collisions of diatomic species such as nitrogen.

The SUGAR code has been applied to the study of three dimensional simulation of ion thruster plumes

by Korkut et al. [6] In this work, we modify it to simulate hypersonic flows involving argon and nitrogen

over a hemisphere and double-wedge configurations for a series of Knudsen numbers and compare with the

results obtained from the SMILE code by Mr. Ozgur Tumuklu. After successful validation of thermal non-

equilibrium models for flow over a sphere, the goal was to apply it to a case involving the study of laminar,

shock-shock interactions from hypersonic flows about a double-wedge configuration in a continuum-like

environment.

The latter has been a challenging problem because of the multiple shock-shock and shock-boundary

layer interaction, separated flows near the hinge, sheer layer, and three-dimensional effects. Experiments

done by Swantek et al. [7] have been simulated and compared using the SMILE code by Patil et al. [8]

on a two dimensional wedge geometry and efforts to simulate three dimensional results using the SMILE

code have been reported by Tumuklu et al. [9]. Yet the problem is extremely difficult and multi-scale when

the Knudsen number is 0.0002. In order to resolve the circulation region near the hinge and capture the

boundary layer, billions of particles are needed in the simulation. Therefore, driven by the purpose of having

a highly scalable and efficient DSMC code the development of the SUGAR code was undertaken and this

work describes various strategies that have been implemented so far by careful verification with the existing

2

SMILE code. The final ability to numerically simulate these complexities would greatly reduce the efforts in

analyzing the aerothermodynamics of such flows by accurately predicting the pressure loads, heat transfer

rate, and skin friction in the design of future hypersonic vehicles. The work of this thesis has been presented

as an AIAA conference paper. [10]

Although the code uses sophisticated techniques and gives a speed up of approximately 350 for 512

processors, it needs to be made more scalable and computationally efficient in order to tackle the main

problem. Therefore, the code was profiled using the Cray Performance Measurement and Analysis Tools

(CPMAT) [11] on the BlueWaters peta-scale facility. It was revealed that one of the main bottlenecks while

using thousands of processors is communication between the processors and imbalance in the amount of

computation performed by each processor. The use of graph partitioners such as PARMETIS or SCOTCH

to get a better distribution of load while minimizing the communication was attempted, but, there was no

improvement in performance. The algorithmic performance of the SUGAR code was also compared on a

single processor and based on these results the time required to run the actual case is predicted.

1.2 Thesis Outline

The thesis is organized as follows: Chapter II describes the AMR strategy, the parallelization strategies

and an extensive discussion of performance capabilities of the SUGAR code, preliminary scalability tests,

a profiling study, the results of using graph partitioners, algorithmic assessment of the SUGAR code, a

robust cut-cell algorithm, re-consideration of the reflection subroutine in an MPI parallelized domain and its

optimization, surface flux computation, and the continuous rotational relaxation model. In Chapter III, the

results for a nitrogen heat bath case and 3-D simulations of hypersonic flows of argon and nitrogen over a

hemisphere, and the double-wedge configuration are presented and compared with the SMILE DSMC code.

Chapter IV reports the conclusions drawn from the simulations and explains the future efforts in brief.

3

Chapter 2

Development Strategies

2.1 Adaptive Mesh Refinement

The SUGAR code uses a grid approach known as Adapive Mesh Refinement (AMR) combined with

the Octree method which has unique capabilities for obtaining efficient solutions for problems that have

multi-scale properties and large gradients in their computational domain. This approach is being widely

used in many diverse scientific branches from astrophysics [12] to biology [13] following the pioneer by

Berger [14]. In addition, there is a recent interest in the use of AMR within DSMC context for aerospace

applications. [15, 16]

The motivation of using the Octree storage in hexahedral (i.e. polyhedron with six faces) meshes for

cell connectivity lies in its efficient data storing as well as straight-forward adaptive refinement capabilities.

In tree structures, of which Octrees are a subset, each node has 2d children where d represents the number

of dimensions present in the problem and for this reason binary, quad, and Octree algorithms are analogous

to each other. For three dimensional cases, a node is divided into eight children nodes. Describing the

terminology briefly, every node that has children is called a parent. It is apparent that in this tree structure

a node can simultaneously be a parent and a child. A node without any parent is called a root and a node

without any child is called a leaf. A schematic description for a level two AMR grid is summarized in Fig. 2.1.

Initially, a computational cell is at a root position. If it violates the given refinement criterion which could

be that the maximum number of particles cannot exceed more than eighty, then it gets divided in eight parts

along its center point. If any of its children violate the criterion then they are subdivided further. In this

figure, the fifth child has been subdivided. When this recursive process stops, we get the final mesh which

is composed of cells of different sizes. These cells are the leaves of the Octree in which the DSMC procedure

is performed. Although shown in three separate stages, the parent and its children occupy the same space

in the computational domain, so flags are introduced for each node to distinguish if it is active or inactive.

This guarantees that the computational domain is taken up by unique nodes which only share boundaries

or surfaces with each other.

4

Root

1 2 3 4 5

1 2 3 4 5 6 7 8

6 7 8

ACTIVE CELL

INACTIVE CELL

PARENT-CHILD CONNECTIVITY

ACTIVE CELL LIST (Left to Right)

Figure 2.1: Computational mesh and corresponding Octree structure.

Previous work focusing on the modeling of ion thruster plumes [6] included the usage of a single AMR

mesh to carry out the computations related to collisions, electric field, and visualization. Now, the SUGAR

code employs a more realistic approach that separates this single AMR mesh into three individual meshes.

The current work, only required two of these meshes since the species are all neutral. The use of object

oriented approach makes it easy to switch on or off any of these meshes and each mesh is allowed to be

adapted individually based on the given refinement criteria. The first of these meshes is named the collision

mesh (C-Mesh) where computational particles are mapped to cells to model the collisions occurring in the

flow using the DSMC method. The second mesh, called the visualization mesh (V-Mesh), is used to sample

the flow field parameters such as density, velocity, etc. over time and visualize it. Both of these meshes are

independent of each other.

The criteria of refinement is important for these meshes. For accurate simulation using the DSMC

method, it is necessary that the cells in which collisions are performed be smaller than the local mean-free-

path. Thus, the refinement criterion for the C-Mesh is that the local Knudsen number cannot exceed one

and the number of particles cannot be less than four to simulate a binary collision. If chemical reactions

are present then the number of particles per collision cells should be significantly higher. For the V-Mesh

there is no physically enforced criteria as such but, the only criterion is to have enough particles per cell to

correctly represent the macroparameters with small statistical scatter. For this reason, the V-Mesh cells are

coarser than C-Mesh cells. [15, 2] In this work, the criterion for subdivision was such that each cell would

have 30-40 computational particles in each V-Mesh cell which gave a smooth profile for flow field variables.

5

2.2 Parallelization and Scalability

The SUGAR code uses Message Passing Interface (MPI) to harness the computational power of modern

computing architectures for parallel computing. It is developed in C++ to fully make use object oriented

programming (OOP) paradigms in order to minimize the effort needed to develop, maintain and extend

the capabilities for a large scale effort. The parallelization is achieved by using domain decomposition

for the computational domain and using MPI for communication between the processors. The domain is

decomposed across the underlying coarser Cartesian grid. These Cartesian cells are the roots of the Octree

and are referred to as the Root-cells. For the current work 2-D blocking algorithm has been used to partition

the domain, although, testing was performed using graph partitioners, as will be discussed in Sec. 2.2.4.

2.2.1 Scalability study I

60 100 200 500
Number of MPI ranks

30

60

100

200

500

Sp
ee

d-
up

Ideal
SUGAR
SMILE

(a) Speed-up comparison.

0 100 200 300 400 500 600
Number of MPI ranks

0

100

200

300

400

500
T

im
e

[m
in

]
SUGAR
SMILE

(b) Time comparison.

Figure 2.2: Performance study of the SUGAR code using the double wedge case.

To test the scalability of the SUGAR code, the case of argon flow over a wedge was chosen which will

be described further in Chap. IV as Case-II. The flow properties are the same as detailed in Table 3.2 except

for the FNUM which is taken as 5.0x1010 to give around 25 million particles in the domain. Figure 2.2(a)

shows the comparison of speed-up for the SUGAR code using a 2-D blocking algorithm. It can be seen

that for up to 128 processors the SUGAR code generates linear scalability. For 256 and 512 processors, a

deficiency is observed due to the fact that the computational load for each processor becomes uneven in

terms of the number of computational particles and AMR cells. It can be seen that the maximum speed up

obtained for 512 processors is 335. On the other hand, the SMILE code does not scale beyond 64 processors

which is a major disadvantage when the task is computationally expensive. Because of the lack of scalability

6

of the SMILE code, the time taken by 256 and 512 processors is in fact higher than that was taken by 64

processors. The main conclusion from this study is that the SUGAR code is potentially scalable which would

be helpful for problems that demand high computational resources.

Figure 2.2(b) shows the time taken using different number of processors. The main reason that the

SUGAR code to takes more time is the high level of refinement of the C-Mesh. The way particles are located

on the mesh is by a method called mapping where a particle is sorted recursively into a leaf cell starting from

its root. This procedure has to be performed at each time step for each particle in the domain. Thus, higher

level of refinement entails more computational time per time step. Figure 3.6 shows the C-Mesh mesh where

it is observed that the Octree cells after the shock are very refined and the depth of refinement increases in

the vicinity of the surface where the number density is high. Thus high number of particles are mapped on

the finer mesh.

2.2.2 Scalability study II

128 256 512 1024
Number of MPI ranks

128

256

512

1024

Sp
ee

d-
up

Ideal
SUGAR

Figure 2.3: Speed-up plot for the flow over Hemisphere (Case-IV).

Another speed-up study was performed after the implementation of computations that includes surface

flux coefficients and rotational relaxation. This study was performed for a hypersonic flow of nitrogen over

a hemisphere as will be described in Chap. IV as Case-IV by incrementing the number of processors from

128 to 1024. It was assumed that the code gives linear speed-up up to 128 processors which is a reasonable

observation based on the previous study. Examinations of Fig. 2.3 reveals that for more than 128 processors,

7

the speed-up is again less than ideal because of the load imbalance, giving the maximum speed-up of 358

for 512 processors. Speed up for this case is a bit better because a relatively smaller portion of the domain

is highly refined as compared to the double-wedge case thus causing less load imbalance. Beyond 512

processors, the speed-up profile flattens and it is clear that the 2-D blocking algorithm is not suitable for

high number of processors. In order to understand this behavior and locate the cause of poor performance,

a preliminary profiling study was performed over a double wedge case using 512 processors with the Cray

Performance Measurement and Analysis Tools (CPMAT) [11] profiler.

2.2.3 Profiling using CPMAT

Figure 2.4: Percent time spent in various processes.

The profiling was done using Automatic Performance Analysis (APA) [11] strategy which traces all the

subroutines in the code and gives a primary estimate of the time consuming functions in the code that take

the most amount of time. Then the code is run again by specifically tracing those subroutines for an accurate

estimation of the overall time consumed. Figure 2.4 shows the percent time taken by the time consuming

routines. It was found that the calls to MPI routines are computationally more expensive. The MPI Barrier

function takes 68.8% of the time which is used to synchronize all the MPI processes after putting the particles

8

in their respective cells. Next to that is ‘MPI Gather’ which is used by the root processor to gather the

information from other processors during communication stage. Among user defined functions sampling of

macroparameters takes the most time as expected.

Figure 2.5 shows percent time (Y-axis) spent by each processor, denoted on the X-axis, in performing

various activities. Yellow color denotes percent time spent in performing user defined functions which varies

a lot from processor to processor. The processors that show a spike in the yellow color are sitting idle

while other processors perform their task. In summary, this plot shows the wide disparity between the time

spent by each processor which ideally should be equal. The main reason for these differences is multi-scale

nature of the problem where the density in different regions of the domain varies by orders of magnitude.

This problem is worsened by the inclusion of the surface geometry where the processors occupying regions

inside the geometry have very few or no particles and they sit idle until those having the most number of

particles finish their task. Therefore, equal division of workload is one of the important tasks in order to

make the code computationally efficient. Furthermore, for particle based methods this division should be

such that each processor should get the Octree cells that are connected to each other at boundaries in order

to reduce the inter-processor communication. A manual way of assigning all the processors that lie inside

the geometry to a single processor was tested but it has many limitations and did not guarantee good load

balance. Therefore, sophisticated graph partioning tools were investigated as a possible approach to solve

this problem.

9

Figure 2.5: Activity plot for 512 processors.

10

2.3 Graph Partitioning for Potentially Improved Load Balancing

2.3.1 Brief Introduction of the Load Balancing Problem

A parallel program is composed of many processes, each of which performs a number of tasks defined

in the program. A task is the smallest unit of concurrency that a parallel program can exploit. A process

is an abstract entity that executes its assigned tasks on a processor. [17] First, the tasks are divided among

processes and processes execute the tasks on processors. By definition, this step of decomposing the tasks

and assigning it to processes is called partitioning and the step of assigning processes to processors is

called mapping. The objective of partioning is to divide the tasks equally among processes and reduce the

interprocesses communication whereas that of mapping is to balance the workload of processors and minimize

inter-processor communication. The number of processes may not be equal to the processors. Therefore, a

processor can sit idle or be loaded with processes. For many problems including the one in hand, the load

balancing problem is viewed by the process-processor model. [17]

The load balancing algorithms are categorized into static and dynamic. In static load balancing,

processes are mapped to processors at compile time, therefore, they need to be provided with a priori

estimated knowledge of execution time of processes and interprocess communication. However, dynamic load

balancing aims at distributing the workload among processors and minimizing inter-processor communication

costs at run time. Therefore, they are also called remapping algorithms.

To formulate our DSMC method in terms of a load balancing problem, consider each portion of the

domain divided among a certain number of processes which can be thought of as root level Octree cells.

Since, particles move during the simulation, the workload of these processes changes. Therefore, the program

behavior is dynamic and cannot be predicted a priori. Furthermore, these processes have to be synchronized

at many instances in a time step, and an imbalance in their workload increases the idle time for some

processes and consequently, the processors that occupy them. In order to improve the efficiency of the code,

the workload of all processors have to be redistributed during the run-time. This can be done by using a

dynamic load balancing algorithm that distributes the Octree cells among processors in such a way that

each processor has nearly equal amount of computation to perform and each processor contains contiguous

blocks of cells such that the inter-processor communication is minimal. To assess the amount of workload

of each processor, there should be a load imbalance index that quantifies the workload of each processor

relative to others. It is computed using the weighting factor for each Octree cell which essentially represents

its computational load. Weighting factor could be a function of the number of particles or the number

of children cells in an Octree. The Octree cells having the highest number of children cells would have

11

higher weighting factors which suggest that these processes are computationally expensive. In addition to

the weight assigned to an Octree cell, information such as the number of neighbors of that Octree, the IDs

of those neighbors, and coordinate location would be provided to the load balancing algorithm which would

then output a better distribution of these processes among available processors.

Devising a load balancing algorithm is a separate area of research altogether, however, there are well

established libraries such as Parmetis [18] and Scotch [19] that make use of state-of-the-art load balancing

algorithms such as diffusion algorithm or multilevel Kernighan-Lin partitioning. The Zoltan library [20],

developed at Sandia National Laboratory, is an extensive toolkit of such algorithms to solve problems such

as dynamic partitioning, graph coloring and ordering. The specialty of Zoltan is that it links with Parmetis

and Scotch and with minimal modifications in the Zoltan parameters, one can test a variety of algorithms and

use the one that gives better results. Furthermore, it is not only limited to graph problems but also includes

some geometric and hypergraph partitioning methods. Among these, the geometric partitioning methods

could be particularly useful which are based on geometric locality such that objects that are physically close

to each other are assigned to the same processor. These methods are faster than graph partioning methods

but the quality of the outputted graph is not as good as the latter. Therefore, it could be used where

frequent load balancing is necessary and a high level of accuracy is not an issue such as the cases where we

have unsteady simulations. Table 2.1 summarizes the methods in Zoltan.

Table 2.1: Graph Partitioning Methods Available in Zoltan.

Geometric (Coordinate-based) Graph Partitioners Hypergraph Partitioners

Recursive Coordinate Bisection (RCB) PHG* PHG*

Recursive Intertial Bisection (RIB) Scotch (RBISECT) PaToH

Space Filling Curves (Hilbert**) ParMETIS (5 Various Methods)

Refinement Tree based partitioning

* PHG is a Parallel Hypergraph Partitioner available in Zoltan which can also be used for graph partitioning.

** By some modification in the source code it can be applied to any Space filling curve, eg. Morton-Z. [21]

2.3.2 Preliminary Tests Using the Zoltan Framework

Zoltan distribution comes with some sample problems. [21, 22] In order to understand the functionality

of Zoltan, one of such problems was modified by changing various Zoltan functions and parameters and

12

(a) Initial Processor Distribution. (b) Weight Distribution.

Figure 2.6: 2D decomposition problem.

applied to a problem involving a square domain divided into five cells in each direction, respectively. In

an Octree DSMC simulation, these cells would represent the Octree cells. Initially these cells are randomly

assigned to the given number of processors as shown in the Fig. 2.6(a). In all, 25 nodes are divided into

four processors having processor IDs 0, 1, 2, and 3. The cells having the same color belong to the same

processor. Since the cells are randomly assigned to processors, a processor contains cells from different

regions. This is unfavorable in the DSMC simulation since when particles move from one cell to other, that

particle data has to be communicated to the processor which contains the destination cell. Theoretically,

a favorable distribution is the one where the same colored nodes are closer to each other. Furthermore,

in multi-scale problems, the distribution of number of particles varies across the domain and the amount

of computation is not uniform across the Octree cells. Therefore, the complexity of this toy problem is

increased by assigning to each cell a specific weight which can be considered as a relative representation of

the amount of computation. In the current problem, weights are assigned using the following formula,

weight = int(6− Yi) (2.1)

Yi is the Y-coordinate of the center of the ith node and the int function gives the integer part of the

argument. The weight distribution is shown in the Fig. 2.6(b). In the DSMC method, the weight for each

Octree would be a function of the number of children cells in it. Now in addition to the aforementioned

favorable distribution, the partitioner must make sure that each processor gets equal amount of weight.

In order to reassign the cells to processors, each processor has to provide the IDs of its cells, the IDs

13

of the neighbors of those cells, and the weights on those cells to Zoltan functions and specify parameters

listed in Table 2.2 to specify the conditions of partitioning. The rest all parameters are kept to its default

value and one should refer to the Zoltan manual [21] for more information. The best output from the graph

partitioning algorithm would be the one where the cells are reassigned to the given processors in such a

way that all processors get approximately equal amount of weight and the inter-processor communication is

minimum. When two adjacent cells belong to different processors, they form a cut edge, which represents

a communication link between the two processors. Thus, the job of a partitioner is to reduce the number

of these cut edges in order to reduce the communication. In this work, three methods have been applied to

the 5x5 problem described above: 1. PartKWay method based on multilevel Kernighan-Lin Partitioning, 2.

PartGeomKWay method which fuses PartKWay and PartGeom method, which is a geometric partitioning

method that prioritizes the locality of nodes, and 3. Scotch using recursive bisection to compute k-way

partitioning. The final output from these methods is shown in the Fig. 2.7.

Table 2.2: Zoltan Parameters.

Zoltan Parameters Value

LB METHOD GRAPH

LB PARTITION PARTITION

NUM GID ENTRIES 1

NUM LID ENTRIES 1

GRAPH PACKAGE SCOTCH or PARMETIS

PARMETIS METHOD (only for Parmetis) PARTKWAY or PARTGEOMKWAY

OBJ WEIGHT DIM* 1

EDGE WEIGHT DIM 1

ADD OBJ WEIGHT† PINS

GRAPH SYM WEIGHT ADD

* If the weight dimension is one but weights are not specified then equal weight is

assumed for each object.

† For Scotch ADD OBJ WEIGHT=NONE.

It is clearly seen in Fig. 2.7(c) that the output from the Recursive Bisection method in Scotch very

well satisfies our first criterion where each processor has contiguous blocks of cells thus having minimum

communication links. The output of PartKWay as well as PartGeomKWay methods in Parmetis do have

14

separated regions of domain occupied by the same processor as shown in Fig. 2.7(a) and Fig. 2.7(b), respec-

tively, which does not guarantee geometric locality. These results are quantified in terms of the number of

cut edges in Table 2.3. Initial random distribution gives 40 number of edges which is reduced to 11 by using

Scotch. Moreover, to quantify the measure of equal weight distribution, a load imbalance index is used to

calculate the imbalance of each processor using the following formula,

Load Imbalance for ith Processor =
Total Number of Processors ∗ Weight of ith Processor

Total Weight
(2.2)

An imbalance index of one means that there is no imbalance, ie., the load is perfectly balanced. An index

higher than one would mean that the load distribution is non-uniform and some of the processors would

have to sit idle until those having more computation finish their work. For the 5x5 graph problem, the

total number of nodes are 25, and total weight count is 75. Using these values, the load imbalance index is

calculated for each processor, and the worst index is listed in Table 2.3. Nearly equal values show that each

method assigns nearly equal amount of work load to each processor.

15

(a) Parmetis PartKWay Method. (b) Parmetis PartGeomKWay Method.

(c) Scotch Recursive Bisection method.

Figure 2.7: Output of 2D decomposition problem.

Table 2.3: Results of the 5x5 graph problem.

Method Worst load imbalance index Cut edges

Parmetis (PartKWay) 1.01 18

Parmetis (PartGeomKWay) 1.03 19

Scotch 1.06 11

Next the problem is extended to three dimensions and the procedure is repeated for a cube of 16 cells

using 256 processors having the same weight distribution formula 2.1. For this problem, the total number

16

of nodes are 4096, the total weight count is 34,816 and before partitioning the number of cut edges are

7680. The output is quantified in the Table 2.4 which shows that the load imbalance index is nearly equal

meaning that all three methods distribute the work load nearly equally among 256 processors. To make an

estimation of benefits of these algorithms over the current 2-D blocking algorithm, this graph problem was

also solved using 2-D blocking strategy. Note that this algorithm does not take into account the weights

of the cells and hence, performs poorly if the amount of work load of each Octree cell differs significantly.

A 2-D blocking algorithm gave the number of cut edges equal to 7680 and minimum and maximum load

imbalance indexes were 0.11 and 1.88. First, looking at the number of cut edges and comparing with the

values listed in Table 2.4, it is observed that each method gives output that would require less amount of

computation. Especially, Scotch would require 36.4% less communication. Also as compared to Parmetis,

Scotch gives approximately 32% reduction in communication links. Second, comparing the maximum load

imbalance index of graph partitioning algorithms and a 2-D blocking algorithm, the former methods assign

the work load that is close to idea. By these observation, one can make an estimate of the potential reduction

in computational time if a DSMC problem is constructed with the same 16 cube Octree domain and run

with 256 processors. Assume that the MPI ranks would have to synchronize just once which contributes

to 68% of a time step and there is just one instance of communication which contributes to 16% of a time

step. Also for this simple problem using Scotch would result in just (68/0.88) ∗ 0.06 = 4.63% of a time step

spent in synchronization and (16/7680) ∗ 4883 = 10.17% of a time step spent in communication. In all, at

least 70% reduction in overall time is expected. Thus, the use of graph partitioners for the SUGAR code

might seem promising. In fact, the user has access to any of the aforementioned and some more partitioning

methods accessible through the Zoltan framework.

Table 2.4: Results of the 16x16x16 graph problem.

Method Worst load imbalance index Cut edges

Parmetis (PartKWay) 1.04 5782

Parmetis (PartGeomKWay) 1.03 5890

Scotch 1.05 4883

An important observation made during these tests is that if the weight is assigned such that,

weight = int(Yi) (2.3)

where Yi is the Y-coordinate index of the ith node, the quality of the load balance degrades. Note that

17

this new formula does not change the relative weights of different nodes but it does assign zero weight to

some of the nodes. It was found that these partitioners do not handle such cases well. The quality of the

weight distribution degrades significantly in the case of Scotch and the number of cut edges increases using

Parmetis. The minimum weight should therefore be kept as 1.0. Table 2.5 compares the quality of imbalance

for the five nodal cube problem for which the total number of nodes are 125, total weight count is 250 and

before partitioning the number of cut edges are 300. Also, note that if no weights are assigned to any of

the Octree cells, the number of cut edges is very close for Scotch and Parmetis, which suggests that for

some problems, the PartKWay method in Parmetis does give as good results as Recursive Bisection method

in Scotch. However, this does not cause a problem if no weight is assigned to any of the nodes and the

parameter OBJ WEIGHT DIM is kept at zero, in which case the partitioner solves a problem to satisfy only

the communication constraint.

Table 2.5: Comparison study using weight formula A. weight = int(6 − Yi) and B. weight =

int(5− Yi)

Method WLII* (A) WLII* (B) Cut edges (A) Cut edges (B)

Parmetis (PartKWay) 0.98 0.97 59 75

Scotch 0.96 0.12 58 62

* WLII refers to Worst load imbalance index.

2.4 Scalability Study Using Zoltan

2.4.1 Flow Over a Double Wedge Using Scotch

The SUGAR code was coupled with the Zoltan framework to use graph partitioners and a speed-up

study was repeated for the hypersonic flow of nitrogen over a double-wedge as described in Sec. 2.2.1. Since

Scotch showed better performance than Parmetis, Scotch was used for domain decomposition. The domain

size was 0.08x0.12x0.08 m3 which was occupied by 32, 48, and 32 Octree cells in the X, Y, and Z directions,

respectively. The overall number of particles in the domain was approximately 25.6 million. For this study

the refinement criterion for the C-Mesh was the same as the old study where it was primarily guided by

the number of particles per cell. Technically, the criterion for refinement of the C-mesh should be based

on the local mean-free-path, however, for the current study it was based on the number of particles so as

to compare the effect of using Scotch with the older results described in Sec. 2.2.1. The code starts with

domain decomposition using a 2-D blocking algorithm, and before the start of the sampling step and after

18

the final adaptive mesh refinement, the topology of the processors is given to Scotch through the Zoltan

framework which then outputs a new topology which is used to partition the domain. Topology refers to

the information of Octree cell IDs occupied by each processor. In DSMC, the amount of computation in

Octree cells is a function of the number of particles in each Octree cell. [23] For specifying the weights on

each Octree cell, a criterion based on the number of particles is used as shown in the following listing. 2.1

Table 2.6 shows the comparison between the two algorithms. The Sampling time is shown in minutes for

12,000 samples. Figure 2.8 shows the weighting factor on each Octree cell in the XZ plane passing through

the center of the double wedge.

Listing 2.1: Weighting Factor Based on the Number of Computational Particles

/∗ NPar = Number o f p a r t i c l e s in an Octree ∗/

i f (Npar > 1200) { Weight = 5 }

else i f (Npar > 1000) {Weight = 4}

else i f (Npar > 500) {Weight = 3}

else i f (Npar > 100) {Weight = 2}

else {Weight = 1}

Figure 2.8: Weighting factor distribution based on the number of computational particles.

19

Table 2.6: Scalability comparison using 2D blocking and Scotch for a flow over a double wedge

Processors

Cut edges

(2-D

Blocking)

Cut edges

(Scotch)

WLII*

(2-D

Blocking)

WLII*

(Scotch)

Time

in min

(2-D Blocking)

Time

in min

(Scotch)

64 50124 79996 1.24 1.07 481 843

128 52355 85201 1.28 1.05 275 627

256 56758 91246 1.29 1.06 160 375

512 65601 97135 1.28 1.07 93 252

1024 83250 104628 1.42 1.10 78 162

* WLII refers to Worst load imbalance index.

Table 2.6 shows the effect of implementing Scotch. A uniform weight of one was provided to each edge

in the domain. Comparing the number of cut edges, it is observed that their number increases with the use

of Scotch. It means that the amount of communication has increased with the use of new topology. The

Zoltan parameter IMBALANCE TOL was set to 1.1, i.e., the new topology was such that the imbalance

should not exceed this value. Comparing the load imbalance index, it is seen that the index was not far

from one for this problem, therefore, the computational time is dominated by the number of communication

links. Nevertheless, Scotch does try to bring the imbalance index very close to one. Relaxing the imbalance

tolerance to 1.2 did not improve the results. Scotch always try to keep the imbalance index as close to one

as possible.

The time taken for sampling for the two algorithms was plotted and overlaid on the results obtained in

the earlier parallelization study as shown in Fig. 2.9. The time for the 2-D blocking algorithm has increased

from the earlier results since the new code also computes the surface flux properties and writes a restart file,

periodically. However, the increase in time with the use of Scotch is unacceptable.

In order to understand why it gives such unfavourable results for this particular case, it was suspected

that the criterion by which the weight on Octree cells is determined could be inaccurate and different criteria

were implemented. At first, the leaf cell distribution in each Octree cell was studied. Figure 2.10 shows the

leaf cell distribution in each Octree cell in two orthogonal planes (a YZ plane and the centered XZ plane)

for better understanding. The number of leaf cells increase after the shock. To understand the reason, one

can see Fig. 2.11 which shows the velocity contour and the basic shock structure. The velocity decreases and

the number density increases after the shock, which causes a reduction in mean free path and consequently

20

high refinement of the Octree cells. Therefore, a weighting criterion was selected to imitate such a weight

distribution which was a function of number of leaf cells. Listing 2.2 shows the C++ code fragment for

the new weighting criterion. Fig. 2.12 shows the weighting factor distribution in the centered XZ plane

which closely imitates the leaf cell distribution. However, implementation of this new weighting factor did

not make any significant reduction in the available time as shown in Table. 2.7. The previous refinement

criterion based on the number of particles appears to have been equally suitable for this study.

0 200 400 600 800 1000
Number of MPI ranks

0

100

200

300

400

500

600

700

800

900

T
im

e
 [

m
in

]

SUGAR (Scotch)
SUGAR (2D Blocking old run)
SMILE (old run)
SUGAR (2D Blocking new run)

Figure 2.9: Speed-up comparison using Scotch for the double wedge.

Listing 2.2: Weighting Factor Based on Number of leaves

i f (Nleaves > 4) {

Weight = (int) l og2 (Nleaves /2) }

else { Weight = 1 }

21

(a) Leaf Cell distribution in the centered XZ plane. (b) 3-D representation of the leaf cell distribution.

Figure 2.10: Leaf cell distribution on Octree cells.

Figure 2.11: Velocity contour.

22

Figure 2.12: Weighting factor distribution on Octree cells based on the number of leaves.

Another weighting factor that was implemented is shown in the listing 2.3 which is also a function of

the local number density. However, this factor increased the amount of time even more. Figure 2.13 shows

the weighting factor distribution in the centered XZ plane. Table 2.7 lists the timing taken by the use of all

three formulas for weighting factor for the double wedge case.

Listing 2.3: Weighting Factor Based on Number Density

i f (Npar > 1 && Nleaves > 4) {

Weight = (int) log10 (Nden ∗ l og2 (Nleaves /2)) }

/∗ NLeaves = Number o f l e av e s in an Octree

Nden = Local number den s i t y o f an Octree ∗/

else { Weight = 1 }

23

Figure 2.13: Weighting factor on Octree cells based on the number density.

Table 2.7: Effect of different weighting factors on the sampling

time.

Weighting Factor Formula

Percentage* Increase in

Sampling Time

(Using 512 Processors)

Based on Number of Particles 171%

Based on Number of Leaves 170%

Based on Number Density

and Number of Leaves
415%

* The percentage is calculated with respect to the time taken

by a 2-D blocking algorithm for a case with 512 processors

as shown in Table 2.6.

The reason for the increase in time could be explained by the work of Abou-Rjeili et al. [24], which

shows that having high sum of weights on the two vertices of the edge decreases the effectiveness of the

24

bisection algorithms since it prevents them from cutting across such edges because such a move leads to a

highly unbalanced bisection. Therefore, the domain is partitioned by cutting those edges which have smaller

sum of vertex weights. The use of number density criterion increases the sum of vertex weights in stream

wise direction and the range of weights varies from one to 23. By many trials, it was observed that the graph

partitioners work well if the weight index variation across the domain is less than 10 and is gradual. In fact,

the reason for dividing the number of leaves by a factor of two in the formula shown in the listing 2.3 is that

it reduces the range of weighting factor in the domain and causes a reduction in time. If instead of division,

it is multiplied by two, then the time of the simulation increases. The conclusion of all these tests related

to changing the weighting criteria was that the criterion of number of particles and the number of leaves

both gave equal results, however, the determination of the optimum weighting criterion is very difficult and

it may vary from case to case.

However, the aforementioned results did not explain the reason for the bad performance of graph

partitioners for the case of the double wedge. It was suspected that it could be due to the fraction of the

domain that has leaf nodes higher than eight which is the highly refined region after the shock. It was

computed for the case having the entire double wedge and a case using a symmetry plane. In both these

cases, only 24% of the volume is occupied by the Octree cells where the refinement is more than one which

shows that the load balancing problem is highly non-uniform. Therefore, it was expected that the increase

in the number of processors would make the task of graph partitioning more difficult. As the number of

processors increase, there would be less flexibility to partition the 24% volume of the domain having Octree

cells with higher weights. Consequently, as the number of processors increase, one would see an increase

in the percentage increase in time taken for the sampling stage by the use of Scotch. Table 2.8 shows the

percentage increase in time by the use of Scotch with the increase in the number of processors. However,

this number reduces for 1024 processors because even a 2-D blocking algorithm is very inefficient at those

many number of processors.

25

Table 2.8: Percentage increase in time with the use

of Scotch over a 2-D blocking algorithm.

Processors Percentage Increase in Time

64 75

128 128

256 134

512 171

1024 106

2.4.2 Flow Over a Hemisphere Using Scotch

A similar study was repeated for the hypersonic flow of nitrogen over a hemisphere at a Knudsen

number 0.20 as described in Sec. 2.2.2. For the former study the adaptive mesh refinement criterion for the

collision mesh was primarily guided by the number of particles and if that criterion was satisfied then the

mesh was further refined based on the local Knudsen number. However, for the current study the criterion

was changed to strictly depend on the local Knudsen number in such a way that the cells keep refining unless

this number is greater than or equal to one. Therefore, the level of refinement in the current run is very

high. The domain size is 0.09x0.09x0.09 m3 which is occupied by 32 Octree cells in each direction. The

overall number of particles in the domain is approximately 22.3 million. Using the results of the previous

section, for this case a weighting factor based on the number of particles was chosen for each Octree cell as

shown in the following listing 2.4. The criterion based on the number of leaves was also tried, however, the

following formula based on the number of particles gave the best possible results and hence, is documented

here. Figure 2.14 shows the weights assigned to each Octree cell and Fig. 2.15 presents the leaf cells in each

Octree cell. Since, the maximum level of refinement in the domain is five, the number of leaves is very high.

Listing 2.4: Weighting Factor Based on the Number of Computational Particles

/∗ NPar = Number o f p a r t i c l e s in an Octree ∗/

else i f (Npar > 1500) {Weight = 9}

else i f (Npar > 1000) {Weight = 6}

else i f (Npar > 100) {Weight = 3}

else {Weight = 1}

The study was done for 128, 256, 512, 1024, and 2048 processors however, for 64 processors, the memory

available per processor on Bluewaters node was exceeded and the job could not be run. Table 2.9 shows the

26

comparison using both the algorithms. Sampling time was noted for 4000 samples and shown in minutes.

Figure 2.14: Weighting scheme for a flow over a hemisphere.

Figure 2.15: Leaf cell distribution for a flow over a hemisphere.

27

Table 2.9: Scalability comparison using a 2D blocking algorithm and Scotch for a flow over a hemisphere

Processors

Cut edges

(2-D

Blocking)

Cut edges

(Scotch)

WLII*

(2-D

Blocking)

WLII*

(Scotch)

Time

in min

(2-D Blocking)

Time

in min

(Scotch)

128 34816 20835 1.44 1.01 200 245

256 38912 25125 1.49 1.03 145 155

512 47104 30051 1.49 1.05 85 104

1024 63488 36002 1.52 1.06 58 71

2048 64512 43656 1.55 1.09 48 71

* WLII refers to Worst load imbalance index.

Table 2.9 shows a reduction in the number of cut edges which should translate to reduction in the

communication links. Only 0.4% of the domain volume lies inside the geometry. From Fig. 2.16, which

shows the size of cells in the C-Mesh in X-direction, it is clear that even though the mesh in the vicinity

of the geometry has five to six levels of refinement, most of the free stream region in the domain has four

levels of refinement. Therefore, the change in the weighting factor of Octree cells is gradual and the graph

partitioner has more flexibility than the double wedge case in partitioning the domain which results in a

reduced number of edges. The load imbalance index based on the given weighing scheme is reduced and

brought very close to one as seen in column five. Based on these facts, it is expected that the overall sampling

time should be reduced, however, contrary to these expectations, the performance using Scotch remained

nearly the same for all number of processors. The speed-up plot comparison shown in the Fig. 2.17 does not

seem to improve as compared to the 2D-blocking algorithm for more than 512 processors.

28

Figure 2.16: C-Mesh for a hypersonic flow over a hemisphere.

29

128 256 512 1024
Number of MPI ranks

128

256

512

1024

S
p

e
e
d

-u
p

Ideal
SUGAR (2D Blocking)
SUGAR (Scotch)

Figure 2.17: Speed-up comparison using Scotch for hemisphere.

2.5 Algorithmic Assessment of SUGAR Code

As explained in the section 2.1 the SUGAR code employs an Octree grid on an underlying coarser

Cartesian grid. Each Octree cell is refined based on a refinement criterion and hence any two Octree cells

could have different levels of refinement. On this unstructured mesh used to obtain the smallest leaf cells for

performing DSMC procedure, the SUGAR code employs a pointer based technique which requires traversal

of the entire Octree from the root to its leaf cells. In each time step such traversal has to be performed

six times-once to perform collisions, once to collect macroparameter values, and four times during mapping.

Four times traversal is required in every step of mapping for deallocating old particle arrays per Octree

cell, determination of the new particle array size, then dynamic allocation of new particle arrays and finally,

putting particles in their destination cells. The number of traversals also increases when the results are

outputted, however, the values are written once in 4,000 time steps therefore this extra traversal time can

be neglected. If the mesh size is very fine, however, then this cost could be a bottleneck.

30

This could be avoided using a sophisticated technique to store the leaf cells in a linear fashion in an array

using the Morton-Z encoding method which essentially maps multidimensional data to a single dimension

while preserving the locality of leaf cells. This method would avoid the unnecessary traversal of the Octree

cells and give significant time improvement. In order to understand whether the performance of the SUGAR

code would improve by replacing the present pointer based system with Morton-Z encoding, it was compared

with the SMILE code both ran on a single processor and a serial Octree code, CHAOS, written by a colleague,

Ms. Revathi Jambhunathan, which incorporates Morton Z-encoding. The SUGAR code was profiled using

CPMAT and the other two codes were profiled using the TAU profiler for 2000 samples. CPMAT slows

down the code significantly since it uses accurate subroutine tracing method whereas TAU does not cause

significant overhead. However, although the absolute times of the code obtained during profiling study could

be unreliable for comparison, the main goal was to determine the percentage of time taken by the major

DSMC methods such as moving and mapping of particles, sampling, and collisions.

Table 2.10: Comparison of the percentage time taken by major

DSMC procedures*.

DSMC Procedure SUGAR SMILE CHAOS Serial

Move and Map 70 54 73

Sampling 25 17 2

Collision 5 25 23

* Absolute time taken by the SUGAR code without profiling is

16000 s, SMILE is 6000 s, and CHAOS is 5076 s for 2000 sam-

ples.

Table 2.10 shows the percentage time taken by all three codes. The SUGAR code takes a comparable

fraction of the time taken by CHAOS during particle moving and mapping. However, considering the

absolute time without profiling the absolute time taken during mapping and moving combined is more than

three times higher in SUGAR. In the current implementation of the SUGAR code, sampling does involve

traversal of the Octree to access the leaf cells. Approximately 16% of the sampling time is spent in accessing

the required leaf cells. The time taken to access collision cells is included in mapping and hence, the collision

time shows just the time spent in performing binary inelastic and elastic collisions. Based on these numbers

it can be concluded that the main reason for the SUGAR code to be slower is the pointer based tracking

of the leaf nodes. In addition, the code could be significantly improved by the implementation of a space

31

filling curve by saving all the leaf nodes in an array and accessing them by their binary IDs as is done using

the Morton-Z curve. [25, 26] The Zoltan framework has an option of geometric partitioning using a Hilbert

space filling curve. However, major changes would need to be made in the current data structure of the code

to implement such strategies.

2.6 Prediction of the time required to run the experimental case

Based on the above study a simple prediction can be made of the time required to run at the desired

continuum-like experimental conditions. Table 2.11 shows the basic input conditions for the main case. For

this assessment, FNUM was taken to be 4.0x1013, therefore, the number of particles are 1000 times lower

than the actual case. The case is physically not correct since the Knudsen number is not satisfied everywhere,

however, the main focus is to predict the approximate time taken by the actual case based on the number

of particles. The time taken by the SMILE and SUGAR code is shown in the Table 2.12. Based on these

numbers the projected time for the actual case with 1000 times smaller FNUM is computed for both the

codes by multiplying the sampling time by 1000 as shown in Table 2.12.

Table 2.11: Basic experimental input condi-

tions.

Parameters SUGAR

Number Density [#/m3] 7.9E22

FNUM 4.0E10

Freestream Temperature [K] 200

Freestream Velocity [m/s] 3812

Time Step [s] 1.0E-09

αt & αe 1

Surface Temperature [K] 298.5

Elastic Collision Model VHS

Viscosity Index 0.81

Number of Samples 200,000

32

Table 2.12: Time comparison.

Parameters SUGAR SMILE

Number of Samples 200,000 200,000

Sampling Time [min] 180 20

Projected Sampling Time for the actual Case 5 months 2 weeks

Projected Sampling Time per Time Step

for the actual Case [min/time step]
0.9 0.1

As shown in the previous section the SUGAR code is dominated by the recursive pointer based traversal

of the Octree cells. The computational time complexity of this algorithm can be assessed in terms of inputs

using asymptotic analysis. It is a measure of how slow a program will be if the inputs are increased. For

example, the asymptotic behavior of a function F (n) such as F (n) = c∗n2+d∗n, where c and d are constants,

is O(n2). The slower the asymptotic growth rate, the better the algorithm. The asymptotic complexity of

the current DSMC method per time step per Octree cell can be written as O(N log8 M)+O(5 log8 M)+O(N)

where N is the number of particles, and M is the number of leaf cells in that Octree. The first term refers to

the cost of the mapping procedure where each particle is put into its destination leaf cell. The second term

refers to the complexity involved in traversing the leaves for five times one by one before the collision step,

the sampling step, and during some part of the mapping procedure. The last term denotes the complexity

during other DSMC subroutines such as moving particles and performing collisions. The first term dominates

in the asymptotic limit as the number of particles in a root cell increases. On the other hand the complexity

of a lineared Octree using Morton-Z space filling curve would be O(N) because the leaf cells are arranged

and accessed in a linear fashion based on their binary IDs and the code time only depends on the number of

particles. That means even if the mesh is refined, for a steady flow, the run time would simply be a function

of the number of particles.

By ignoring the first two terms in the complexity expression of the SUGAR code and assuming that

the time taken by the SUGAR code does not depend on the level of mesh refinement, it could be predicted

that for 1000 times more number particles it would take about five months to run this case where as SMILE

just takes two weeks. Based on this estimate one can calculate the time taken per time step for the actual

case and looking at the numbers this time per time step requires significant reduction.

Referring to Table 2.10 in the previous section it is noted that the time taken during collisions by the

SUGAR code is 5% of the overall time. Table 2.12 shows that the projected sampling time per time step for

33

the main case would be 0.9 min. Assuming the same 5% of the time spent in collisions, the main case would

require 0.045 min/time step for collisions. However, this absolute time corresponds to 22% of the overall

time for a code with Morton-Z implementation provided the same mesh. Based on this number the overall

absolute time taken by the code with the Morton-Z encoding would require approximately 0.19 min/time

step. This number is comparable to the one required by the SMILE code as shown in Table 2.10. Therefore,

it could be safely assumed that the performance of the SUGAR code would be significantly improved by

shifting to linear Octree storing techniques.

2.7 Robust Cutcell Algorithm

The SUGAR code has a provision to simulates complex embedded geometries using robust cut-cell

algorithm. The geometry information should be provided in the form of triangular elements with its normal

pointed outward using the STL format. This format is chosen since it is available on any CAD software and

one can create any type of geometry using triangular elements. At first, the code reads in the geometry in the

STL format using STLA IO library [27] and sends the information of the triangular panels to each processor.

Although the domain is divided among the given processors, the geometry is not divided but broadcasted to

each processor. This approach avoids the need for re-triangulation of the triangles that might be cut at the

boundary of a processor’s domain. The robust cut-cell algorithm involves two main functions-1. geometric

sorting, and 2. volume calculation of cut-cells.

2.7.1 Geometric Sorting

Geometric sorting refers to organizing the list of triangular panels of the surface into the computational

cells (leaves of Octree) such that a cell possesses the IDs of the triangles that are intersected by the cell or

those that fall inside the cell. Checking each cell with each triangle for possible intersections is computation-

ally very expensive and the cost is O(M*N) where, M is the number of cells and N is the number of triangular

panels. [28] However, since we are only interested in the leaves of the Octree, we can take advantage of the

inherent recursion involved in accessing these leaves. Initially, the intersection check is performed on all

Root-cells, using the signed tetrahedral volume [28] approach, and two linked-lists are formed. One contains

the IDs of the triangles intersecting the cell and the other contains the IDs of the triangles lying inside the

cell. Then the communication step is performed, so that each processor knows the occupied triangles by

each Root-cell. This step is not needed for the volume calculation, but it plays a large role in increasing the

efficiency by modifying the reflection subroutine, as explained in next section. Now, in a given Root-cell,

34

when the code checks for the possible intersection of its children with the panels, it loops over only those

panels that belong to its parent, thus reducing the computational cost.

2.7.2 Volume Computation

Once all triangles are sorted into the appropriate leaves of the Octree, the volume of each of these

cut-cells is computed using the direct method implemented in the DAC and MGDS codes. [29] Accurate

volume computation of the cut-cells is a critical part of AMR/Octree meshing because the calculation of

local number density depends on the local cell volume which may affect the local mean free path calculation

and thus the refinement criteria for the C-Mesh. Furthermore, the cell volume appears in the calculation of

collision frequency which makes it an essential variable that may change the gas-surface interaction. The

idea behind this algorithm is to form a polyhedron from the part of the cut-cell that lies outside in the

flow domain. This polyhedron has its faces comprised of the face-polygons and the base formed by the

triangle-polygons. Face-polygons are the outer lying parts of the six faces of the original Cartesian cut-cell

and the triangle-polygons are composed of the triangular panels that are in the two linked-lists of the cell.

The intersecting triangles only contribute their part of the triangles that lie in the cell and the remainder

is cut off using the Sutherland-Hodgman polygon clipping algorithm [30]. The inner lying part needs to be

re-triangulated if it does not form a triangle which is done using the Ear Clipping Method [31]. Once this

polyhedron is formed, its accurate volume can be computed. This approach is particularly chosen because

of its capability to calculate the volume of the split cell, i.e., the cell where the Cartesian cell is split into

many different flow volumes with substantially different properties. 2-dimensional representation of such

a case is shown in Fig. 2.18(a). The split cell can have multiple polyhedrons (in the 2-D case, polygons)

and thus multiple volumes. Accurate representation of split cells on the V-Mesh is difficult since the data

is written as cell-centered data. However, this is possible using the VTK-polygon class [32] in ParaView.

Another easier way is just to use one more refinement criterion for the V-Mesh and divide the cell until each

cell has only one polyhedron, as shown in Fig. 2.18(b).

Figure 2.19 represents an embedded double-wedge triangulated geometry in an AMR grid with a hy-

personic flow in the X direction. The flow is stagnated as it approaches the wedge which results in high

number of computational particles near the front surface. As a result, a fourth level of refinement is observed

near the surface as shown in the zoomed portion near the hinge. The green cells in the picture represent

the cut-cells that are completely divided between two portions, one lying in the flow domain and the other

inside the geometry. The red cells are the cut-cells that have one or more of the triangular edges passing

through their faces. The blue cells are the cells that are not cut-cells or cells that are co-planer with the

35

Pl
at
e

N ′

N

Volume 1

Volume 2

GRID

Cell

(a) Case describing a split cell.

Pl
at
e

GRID

Cell

Refined Cells

(b) Refinement in case of a split cell.

Figure 2.18: Split cell and its visualization.

triangular panels without having any of the triangular edge passing through their faces. The volume of the

red and the blue cells is the complete cell volume and the volume of the green cells is the volume of the

portion of those cells lying outside in the flow domain.

Figure 2.19: Cut-cell and AMR representation for an embedded double-wedge.

36

2.8 Reflection in MPI Parallelized Domain and Its Optimization

The particles are reflected from the geometry based on the momentum accommodation coefficient. [33]

The reflection is specular, if the coefficient is 0, diffuse, if coefficient is one, and partially diffuse if it lies

between zero and one. The SUGAR code employs Maxwell’s model for diffuse reflection [33].

The particles are moved without keeping track of the cells they cross during the movement. This strategy

saves computational effort which would otherwise have to be spent in ray-tracing in which a particle detects

which cell it is moving through by checking the intersection of its direction vector with six faces of the

Cartesian cells. Note, however, that as opposed to the ray-tracing method, the detection of the geometry

has to be checked separately after the movement of the particle. In a very crude algorithm, one would have

to check each particle with each triangle of the geometry and the computational cost would be O(N*P)

where, N is a number of particles and P is the number of triangular panels. This is extremely inefficient.

GRID of Root-Cells

Cell has 8 Neighbors in 2D

Double Wedge

Figure 2.20: Neighbors of a cut Root-cell.

The SUGAR code employs an efficient algorithm to deal with this problem. In a usual DSMC simulation

the Root-cells are refined near the geometry due to the decrease in the local mean free path and increase

in the number of particles. Hence, the leaves are much smaller than the Root-cells. If the time step is

sufficiently small (i.e., the DSMC criteria is accurately followed) then it is impossible for the particle to cross

more than two Root-cells in any direction. Hence, it makes sense to check for reflection of those particles

that are located in Root-cells that are cut by the geometry and their immediate neighbors. As explained in

37

the previous section, the Root-cells that are cut by the geometry are already known. Let us create a new

flag named NearTheGeometry which is one (true) for these cells. Furthermore, each of their 26 neighbors

are flagged as one. The particles have the information of which Root-cell they belong to at a particular time

step, since assigned to them when they are sorted into the processors’ Root-cells. Thus, each particle can be

detected if it is close enough to the geometry by checking if its Root-cell has NearTheGeometry flag equal

to one or zero.

The efficiency can be further increased if the particles are checked for intersection with only those

panels that are in the linked-lists of the Root-cell and its neighbors. Usually, the number of such triangles

is orders of magnitude less than the total number of all the panels of an intricate geometry. One important

consideration to be noted is that when the domain is divided into different processors, it may happen

that the neighboring Root-cell would belong to another processor. In this case, the information of its

corresponding panel intersection list is at the neighboring processor. Hence, it is necessary to communicate

the panel intersection lists to each processor using the function MPI AllGatherv so that each processor gets

the information of each Root-cell. This does not create any overhead since it is performed only once in the

entire run. The strategy is summarized in Fig. 2.20.

Figure 2.21: Region of cells in which the particle-surface interaction procedure is performed.

38

Figure 2.21 shows a triangulated hemisphere geometry embedded in an unrefined Octree grid. The flow

is in the X direction and the X-Z plane at the centered Y location is shown. The Root-cells marked in red

show the region of interest in which if the particle lies, it goes through the gas-surface interaction routine.

These cells are composed of cut-cells and their neighboring cells. Moreover, a closer look reveals that each

Octree cut-cell occupies not more than ten surface panels. Hence, instead of checking a particle for each of

the 1400 surface triangles of the geometry, only less than 50 triangles are checked for a possible intersection.

For a case of 1.3 million particles in a domain containing the hemisphere this algorithm gave considerable

reduction in overall wall-clock time. Moreover, the SUGAR code took 134 s for 5000 samples as opposed to

SMILE which took 256 s. Note that the case is very simple where the particle-surface interactions dominate.

However, for high number of particles the trend may not be the same since major bottleneck would be

mapping of particles to the highly refined grid.

39

P
la
te

1

Plate 2

GRID

Processor 1

Processor 2

Particle’s Initial Pos

Figure 2.22: Multiple Reflection in a single time step across different processors.

The same idea can be extended to the implementation of a symmetry plane in the domain. Only the

Root-cells that are in contact with the symmetry plane and its neighbors can be tagged for performing

reflection checks. In this case, a cell may have 15, 11, or 7 neighbors based on whether the cell is in contact

with only one domain boundary, two boundaries, or three boundaries (a corner cell), respectively.

In case of intricate geometries, a particle may go through multiple reflections during single time step.

It is also possible that after first reflection it might bounce off to a region occupied by another processor.

To clarify, Fig. 2.22, shows an exaggerated scenario where the particle starts in processor two, goes to the

domain that belongs to processor one, and again reflects back to processor two, all in single time step. If the

geometry were also divided among the processors then the particle would need to be communicated two times

during the reflection step itself. However, in SUGAR, since each processor has all the geometry information

and the particle moves for the full time step regardless of how many cells are crossed, the particle’s final

position and velocity can be computed for the entire time step and only then is it communicated if its final

position is in the region of another processor. In the case shown in Fig. 2.22, no communication is necessary

during or after the reflection since the particle lands up on the same processor.

40

2.9 Computation of Surface Coefficients in MPI Parallelized

Domain

Lower Wedge

Upper Wedge

Top

Processor 1

Processor 2

Hinge

Shared Triangles

Top View of Double Wedge

a

c

e

g

i

b

d

f

h

j 0.0

0.0

0.0

0.0

f1

e1

d1

c1

b1

a1

Proc 1 Array

Eg., a1= Coeff. of panel ’a’ calculated by processor 1

+

j2

i2

h2

g2

f2

e2

0.0

0.0

0.0

0.0

Proc 2 Array

=

j2

i2

h2

g2

f1+f2

e1+e2

d1

c1

b1

a1

Final Array

Figure 2.23: Calculation of Surface Coefficients.

The SUGAR code has the facility to calculate surface coefficients such as heat flux, friction, pressure,

etc. and fluxes of mass, kinetic energy, and rotational energy over the triangular panels of the geometry.

The formula to calculate these in the code is given in the Appendix. Calculation of these parameters in a

parallel code is simplified because each processor holds the information of the entire geometry. However,

the Cartesian domain is divided among different processors and hence, a processor can only update the

portion of the geometry that belongs to it. Since, the edges of the triangular panels of the geometry are

not necessarily lying on the processor boundaries, it is possible that a triangular panel is shared by multiple

processors and all of those processors would then try to update the heat flux of that panel.

Such a case and its remedy is explained in Fig. 2.23 which shows the top view of the double wedge on

the left hand side. Triangles f and e, that are the part of the upper wedge, are shared by two processors.

Initially each processor obtains a 1-D array of size equal to the number of surface panels to store the values

of different surface coefficients. At the beginning of the simulation its values are initialized to zero. During

the calculation of the coefficient each processor loops over all the panels, but only the value of those panels

that fall into the boundaries of that particular processor are updated. As shown, both the processors update

the value of the f and g triangle in their respective arrays. For the shared triangle, the surface coefficient

41

should be the sum of the values calculated by each processor. Hence, a final array is created by summing

the corresponding indexes of all the arrays. The actual surface panels for a double-wedge configuration were

shown in Fig. 2.19. The panels that are intersected with the green cells are used for computing the heat flux

data over the surface and compared with the experiments at the locations of the thermocouples.

2.10 Collision Models

Modeling the interactions of molecules is the most important aspect of the DSMC method. The

phenomenological collision models are being implemented in the SUGAR code, but efforts are on going

to improve and implement new models that are more accurate.

To describe elastic collisions, the Variable Hard Sphere (VHS) [1], and Variable Soft Sphere [34] (VSS)

model has been implemented. For rotational relaxation, the Borgnakke-Larsen (BL) model [35] has been

implemented with translational-rotational (TR) energy transfer applicable for continuous energy levels. Vi-

brational model has not been implemented. SUGAR code employs two implementations of the BL models.

One algorithm is based on the hierarchical application of the BL model as explained by Bird [1] which has

been proved to follow the equipartition theorem and is summarized in Fig. 2.24(a). In a collision step, one

step decides whether the rotational energy of either or both of the molecules is to be adjusted. The probabil-

ity with which the rotation energy of a molecule is to be changed is determined by taking the inverse of the

rotational collision number which can be taken as a constant or as temperature dependent. The temperature

dependence is based on Parker’s model, [36]

ZC
r (T) =

Zr,∞

1 + π3/2

2
(T

∗

Te
)
2
+ (π

2

4
+ π)T

∗

Te

(2.4)

where Te is the effective temperature computed from the relative translational energy of the colliding

molecules sampled over the collisions in each cell at each time step. The values of constants Zr,∞ and

T ∗ for nitrogen is 18.5 and 91, respectively. As described by Lumpkin et al. [37], Zr is corrected by the

following factor before use in DSMC,

Zr =
ζt

ζt + ζR
ZC
r (2.5)

where, ζt = 4 − 2α, is the number of relative translational degrees of freedom and ζR is the number of

rotational degrees of freedom of the participating molecules. The energy to be distributed, which is referred

to as the available energy Ec, is the summation of the relative translational and rotational energies of the

participating molecules. In the Hierarchical model shown in Fig. 2.24(a), the post-collisional rotational

42

Ei
t = 0.5mrC

2
r

Ec = Ei
t; Ei

r = 0; Ep
r = 0

Ξ = 2.5 - ω

i=0; j=0; Relax=0; Relaxi=0

Evaluate Rotational
Probability (Pr)

Pr > Rf

Ec += εi
r1

Ei
r += εi

r1

Ξ += 0.5 * ζi

Relax = 1; Relaxi = 1

i < 2

Relax == 1Exit

Relaxj == 1

Ξ -= 0.5 * ζi

Calculate δ

εp
r,i = δ * Ec

Ec -= εp
r,i

Ep
r += εp

r,i

j < 2

Ep
t = Ei

t + Ei
r - Ep

r

A =
√

2 ∗ Ep
t/mr

VHS

C = A

VSS

Cr = Cr*A/C & C = A

Yes

No

Yes; i+=1

No
No

Yes

Yes

No

Yes; j+=1

No

(a) Hierarchical BL Model.

Evaluate Rotational
Probability (Pr)

Pr > RfExit

Evaluate P/Pmax
with R1= Rf

Rf > P/Pmax

Ep
t = Ec * R1

Ep
r = Ec - Ep

t

Evaluate P/Pmaxr

with R2=Rf

Rf > P/Pmaxr

εp
r1 = Ep

r * R2

εp
r2 = Ep

r - εp
r1

A =
√

2 ∗ Ep
t/mr

VHS

C = A

VSS

Cr = Cr*A/C & C = A

No

No

Yes

No

Yes

(b) Serial BL Model.

Figure 2.24: Demonstration of continuous rotational relaxation algorithm.

43

energy of the participating molecule is of the fraction δ of the available energy where δ is the ratio of the

new rotational energy to available energy and is a function of the total number of modes (translational

and rotational) that are participating in the relaxation. For two internal degrees of freedom it is given as,

δ = 1−R
1/Ξ

f . For three internal degrees of freedom one should refer to the book by Bird [1]. The particles

are selected one by one for energy redistribution and should both are subject to selection, the available

energy for molecule two is reduced by the new rotational energy of molecule one.

According to Bird, the end result is the same as if the total available energy is first distributed between

the translational and total internal energy, and the total internal energy is then distributed between the

internal energies of two molecules. The latter approach was originally described by Borgnakke and Larsen [35]

and has been implemented in SMILE [2]. For verification even the second algorithm is implemented in

SUGAR and no difference was observed between the results by two algorithms. This approach is summarized

in Fig. 2.24(b). One important point to note is that for the latter algorithm the value of ζR in the formula 2.5

for the binary collision of nitrogen would be four whereas for the former it should be taken as two since

the probability of inelastic collision for each particle is evaluated one after other. This model assumes local

thermodynamic equilibrium and a fraction of Et/Ec is sampled with the acceptance-rejection method using

Eq. 2.6 that calculates the probability of total energy redistribution into translational and internal modes.

P

Pmaxtot
=

{ζ + 1/2 − ω
3/2 − ω

(
Ep

t

Ec
)
}3/2−ω{ζ + 1/2 − ω

ζ − 1
(1−

Ep
t

Ec
)
}ζ−1

(2.6)

Once the post-collision translational energy of the system of colliding molecules is assigned, the remaining

energy is the new total rotational energy. This total rotational energy is further distributed between the

two particles with the acceptance-rejection method using Eq. 2.7 which calculates the probability of internal

energy redistribution normalized with its maximum value.

P

Pmaxr
= 2ζ−2

(εpr,1
Ep

r

)ζ/2−1(

1−
εpr,1
Ep

r

)ζ/2−1

(2.7)

Once, the exchange of energies is completed, the relative speed is calculated using the post-collision relative

translation energy as described in Fig. 2.24.

44

Chapter 3

Verification and Validation

The research problem in hand is to apply the SUGAR code to study shock-shock and shock-boundary

interactions from hypersonic flows about a double-wedge configuration. These phenomena have a significant

effect on the flow features resulting in a separation zone near the hinge of the wedge and shear layer. In the

design system process, the accurate prediction of these effects on the macroparameters is crucial to avoid

extreme heating and pressure loads in the vicinity of the interaction points. Because of the complexity of

the problem, for the present work we have chosen relatively simpler cases of the flows over a hemisphere and

double-wedge configuration at a larger Knudsen number than the experimental conditions for the validation

of the code and the implementation of relaxation model. The results are compared with the 3-D version of

the SMILE code written in Fortran-77 [2].

3.1 Hypersonic Flow Simulation Using Argon

Initially a nonreactive gas is chosen so that the relaxation model can be switched off. These cases

are chosen for the validation of the DSMC procedure, elastic collision models, and the applicability of the

cut-cell algorithm to different geometries.

3.2 CASE I: Flow of Argon at Knudsen Number 0.0277 Over a

Hemisphere

The hemisphere, as shown in Fig. 2.21, is of radius 0.025 m with its center located at the Cartesian

coordinate (0.09,0.045,0.045) m in the domain of dimension 0.09x0.09x0.09 m3. For line plots, values of the

macroparameters along the stagnation line (0.0-0.065, 0.045, 0.045) m have been extracted from the V-Mesh.

The simulation conditions are shown in Table 3.1.

45

Table 3.1: Numerical parameters for the flow of

argon over a hemisphere.

Parameters SUGAR

Number Density [#/m3] 9.33E20

FNUM 0.5E11

Freestream Temperature [K] 200

Freestream Velocity [m/s] 4200

Time Step [s] 5.0E-08

αt & αe 1

Surface Temperature [K] 200

Elastic Collision Model VHS

Viscosity Index 0.81

Number of Samples 12000

Smallest Cell Size on the V-Mesh 7.0132E-04

Number of Particles 12,709,000

Number of Processors Used 256

Time Required for sampling [min] 262

For the SMILE run the number of particles are

17,608,704, the cell size on the V-Mesh is 9.0E-

04, and the time required for sampling is 66 min.

The simulation conditions are kept the same in both codes except for the time step at which the

simulation is started. In the SUGAR code, the particles fill up the domain by entering through the inlet

boundary. After a sufficient amount of time, the adaptation and collision routines start. This time is

generally taken to be three times the time required by the particles to traverse the domain in the stream-

wise direction. Adaptation takes place at a predefined interval until the steady state is reached since we

want to obtain a mesh that is well adapted to the steady flow conditions. After this step the sampling stage

begins. The SMILE code initializes the particles in the domain at the start of the simulation, thus allowing

the collisions to start relatively early. Because of this difference, the SUGAR code takes more time to reach

to steady state and starts sampling at a later time step. The manner of initialization is not so important

for the current work as the majority of computational effort is taken during the sampling stage.

46

The Mach 14 flow encounters a bow shock ahead of the hemisphere. At such a high Mach number there

is a sharp increase in the number density and temperature. Since argon is a monoatomic gas which has only

three translational degrees of freedom, the rise in translational temperature is very high. Figure 3.1 shows

the comparison of the temperature and velocity contours over the V-Mesh using the SUGAR and SMILE

code. Since the flow is symmetric, the upper half of the plot shows contours obtained using SUGAR and

lower half by SMILE. The contour plane is passing through the peak of the hemisphere. As observed from

Fig. 3.1, the shock stand-off distance is 0.015 m. In front of the shock, sudden increase in the number density

results in more computational particles thus refining the V-Mesh. A third level of refinement is enough to

resolve a sudden change in macroproperties in front of the shock. Very close to the geometry even a fourth

level of refinement is observed where the velocity in x-direction comes to rest because of the geometry and

the flow deflects away.

(a) Translational temperature. (b) Velocity in X-direction.

Figure 3.1: Comparison of contours for the flow of argon over a hemisphere.

Note that the SMILE contours look smooth because they are interpolated over the uniform grid in

the visualization software. AMR grid can also be interpolated during the post-processing phase, however,

47

it is of no importance as long as the contours correctly represent the cell-centered data outputted by the

DSMC method. For the contour plots in the next sections, the interpolation for the SMILE results have

been switched off. It can be observed that the cell centered data points before the shock are fewer in

number for SUGAR which is a major advantage over a uniform grid implemented in SMILE since it reduces

the number of cells over which macroparameters are calculated. Better refinement can be obtained for

SUGAR by reducing the threshold of number of particles exceeding which cells in V-Mesh are refined. Since

the geometry is simple, this case does not heighten the advantages of AMR, however, in case of complex

geometries the adapted grid would save significant computational efforts.

0.04 0.045 0.05 0.055 0.06 0.065
X [m]

1e+21

1e+22

n
[#

/m
3]

SUGAR
SMILE

(a) Number density.

0.04 0.045 0.05 0.055 0.06 0.065
X[m]

0

1000

2000

3000

4000

5000

 u
 [

m
/s

]

SUGAR
SMILE

(b) Velocity in X-direction.

0.04 0.045 0.05 0.055 0.06 0.065
X [m]

0

5000

10000

15000

 T
tr
 [

K
]

SUGAR
SMILE

(c) Translational temperature.

Figure 3.2: Comparison of macroparameters for the flow of argon over a hemisphere.

Figure 3.2 shows the comparison of the macroparameters obtained along the stagnation line. The

number density increases to 1.0x1022 m−3 after encountered by the bow shock, resulting in slowing down

of the velocity in X-direction and rise in translational temperature to 14200 K. The results are in exact

agreement with SMILE for velocity, temperature, and number density, thus validating the DSMC procedure

48

and elastic collision model.

3.3 CASE II: Flow of Argon at Knudsen Number 0.02 Over a

Double-Wedge

(0.0100, 0.0000)

(0.05399, 0.02540)

(0.06857, 0.04620)

(0.07939, 0.0000)

(0.00, 0.04) (0.064,
0.040)

30o

55o

DOMAIN

(0.08,0.08)

(0,0)

F
L
O
W

B
O
U
N
D
A
R
Y

x

z

y-plane=0.06
(centered)

Wedge Thickness=0.1016

(all coordinates are in meter)

data-line

Figure 3.3: Schematic of the double-wedge.

After achieving a good agreement for the hemisphere geometry, the flow over a double-wedge config-

uration is presented to show the capability of the SUGAR for simulating complex three-dimensional flows.

This geometry, shown in Fig. 3.3, has been used in the experiments conducted by Swantek and Austin [7] to

analyze the impact of the thermochemical effects on shock wave boundary layer interactions by changing the

chemical composition nitrogen to air at different stagnation enthalpies. The ultimate goal is to be able to

simulate the complex flow features caused by the hypersonic flow over this configuration. At continuum-like

conditions Edney type of shock-shock interactions are observed which include the attached oblique shock

formed by the first wedge, detached bow shock caused by the upper wedge, separation and reattachment

shocks resulting from their interactions at the triple point, separation of the boundary layer near the hinge,

and three-dimensional effects [9]. However, for this preliminary case the chosen number density for the simu-

lation is too low to observe the Edney type of shock interactions. Table 3.2 shows the Numerical parameters

used in this study.

49

Table 3.2: Numerical parameters for the flow of argon

over a double-wedge.

Parameters SUGAR

Number Density [#/m3] 9.33E20

FNUM 0.25E11

Freestream Temperature [K] 200

Freestream Velocity [m/s] 4200

Mach Number 14

Time Step [s] 5.0E-08

αt & αe 1

Surface Temperature [K] 200

Elastic Collision Model VHS

Viscosity Index 0.81

Number of Samples 12000

Smallest Cell Size on the V-Mesh [m] 6.25E-04

Number of Particles 51,990,000

Number of Processors Used 256

Time Required for sampling 330

For the SMILE run the number of particles are

59,850,000, smallest cell size on the V-Mesh is

8.0E-04, and time required for sampling is 93 min.

Figure 3.4 shows the spatial distribution of translational temperature and the velocity field in the plane

passing through the center of the wedge on the V-Mesh for the SUGAR and SMILE codes. Because of the

differences in the orientation of the axes used for both codes, the center plane of the wedge in the SUGAR

code is at y=0.060 m as shown and for the SMILE code it is at z=0.0 m. Looking at these contour plots

and the streamlines plotted in Fig. 3.5(b), only the primary features of the oblique and bow shocks can be

recognized. Highest temperature is obtained after the bow shock. 3-D effects play major role in flow over a

double-wedge. Since the streamlines are directed in the span-wise direction, the shock thickness and hence,

the highest temperature obtained after the bow shock decreases along the span as seen in Fig. 3.5(a).

50

(a) Translational temperature. (b) Velocity in X-direction.

Figure 3.4: Comparison of contours for the flow of argon over a double-wedge.

(a) Temperature reduction in span-wise direction. (b) Streamlines over the double-wedge.

Figure 3.5: 3-D effects for the flow of Argon over a double-wedge in SUGAR.

51

Figure 3.6: Collision mesh comparison for SUGAR and SMILE.

Figure 3.6 shows the collision mesh formed in this simulation at a steady state. For SUGAR mesh,

the zoomed section near the surface reveals a fourth level of refinement. Such a high level of refinement

would help capture the separation near the hinge, shear layer, and shock-boundary layer interactions for

the continuum-like Knudsen number which is our ultimate goal. Note that the SMILE code can achieve

two levels of refinement. Therefore, to obtain a similar level of refinement using the SMILE code in the

vicinity of the surface, the uniform grid must be created with a cell size equal to that of the third level

cell in the SUGAR code. This approach is computationally disadvantages because of the additional efforts

52

spent in refining the domain that does not need such a high level of refinement. Also, the grid needs to be

set considering the lowest resolution, which is hard to predict in such simulations. Thus, the SUGAR code

stands out in such extreme cases where multi-scale phenomena need to be captured efficiently.

To compare the results more closely, the data is extracted along the dashed red line shown in Fig. 3.3.

Figure 3.7 shows the number density, velocity in the x-direction, and translational temperatures for both

codes. The number density and velocity profiles are in a good agreement. Small discrepancies are observed

in the translational temperature profile which is likely due to the small differences in the sampling cell sizes

and the number of particles per cell. Moreover, both the codes predict the highest temperature value of

around 13,400 K achieved after the bow shock in the center plane of the wedge.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
X [m]

1e+21

1e+22

n
[#

/m
3]

SUGAR
SMILE

(a) Number density.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
X [m]

0

1000

2000

3000

4000

5000

u
[m

/s
]

SUGAR
SMILE

(b) Velocity in X-direction.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
X [m]

0

5000

10000

15000

T
tr
 [

K
]

SUGAR
SMILE

(c) Translational temperature.

Figure 3.7: Comparison of macroparameters for the flow of argon over a double-wedge.

In future, the SUGAR code will be used for simulating the experimental conditions and compared with

the SMILE code. The recent study has been reported by Tumuklu et al. [9] that discusses the application

53

of the SMILE code for such continuum-like cases using argon, nitrogen, and the air.

3.4 Hypersonic Flow Simulation Using Diatomic Gases

After the aforementioned validation, rotational relaxation is modeled to simulate diatomic gases (having

two rotational degrees of freedom). The temperature is kept low so that the vibrational modes are inactive

for the cases considered here.

3.5 CASE III: Rotational Relaxation Using Heat Bath of a

Simple Gas

To test the inelastic collision model based on the BL implementation, a simple case of a homogeneous

gas [1] was simulated using the majorant frequency scheme. If the initial translational and rotational

temperature are 500 and 0 K, respectively, then the gas should relax to an overall temperature of 300 K.

The analytical expressions are,

Ttr = 300 + 200 exp
{

−

νt

Zr

}

Trot = 300
{

1− exp
(

−

νt

Zr

)}

The simulation conditions are described in Table 3.3. The results obtained using DSMC for the relaxation

process are compared with the predictions of analytical expressions in Fig. 3.8. It shows that the relaxation

rates obtained with the BL implementation match with the rates predicted by the analytical expressions.

The collision frequency ν in the expression is calculated for each cell at each time step using the majorant

frequency scheme.

54

0 10 20 30 40 50
ν t

0

100

200

300

400

500

T
 [

K
]

T
tr
 - Theory

T
tr
 - DSMC

T
rot

 - Theory
T

rot
 - DSMC

Figure 3.8: Rotational relaxation in a heat bath of a

simple diatomic gas.

Table 3.3: Numerical parameters for the heat

bath of a simple diatomic gas.

Parameters SUGAR

Number Density [#/m3] 1.0E20

FNUM 1.0E15

Time Step [s] 2.0E-05

Mass [Kg] 5.0E-26

Species Diameter [m] 3.5E-10

Rotational Degrees of Freedom 2

Viscosity Index (for VHS) 0.75

Rotational Number (Constant) 5

Time Steps for the Relaxation 100

Sampling Start 100

Sampling End 1000

Simulation Domain [m] 1 x 1 x 1

3.6 CASE IV: Flow of Nitrogen at Knudsen Number 0.277 Over

a Hemisphere

A case with a high Knudsen number is chosen because the degree of non-equilibrium is high, thus,

giving a clear indication of any possible differences in the relaxation model. The number density is ten times

smaller than the previous cases. The hemisphere geometry used for the this case is the same as used earlier.

The input conditions are tabulated in Table 3.4.

55

Table 3.4: Numerical parameters for the flow of

nitrogen over a hemisphere.

Parameters SUGAR

Number Density [#/m3] 9.33E19

FNUM 4.0E09

Freestream Temperature [K] 200

Freestream Velocity [m/s] 4200

Time step [s] 1.0E-07

Surface Temperature [K] 200

αt & αe 1

Elastic Collision Model VHS

Viscosity Index 0.74

Number of Samples 22000

Smallest Cell Size on the V-Mesh 7.0132E-04

Number of Particles 22,066,000

Number of Processors Used 256

Time Required for sampling [min] 493

For the SMILE run the number of particles are

23,754,496, smallest cell size on the V-Mesh

is 9.0E-04, and time required for sampling is

56 min with 256 processors.

Figure 3.9 shows the comparison of contour plots obtained using the SUGAR and SMILE code for this

case. The physical phenomenon is same as explained for the argon case. However, since nitrogen also has

two rotational degrees of freedom, the reduced kinetic energy is shared between translational and rotational

modes. The flow exhibits translational as well as rotational non-equilibrium after encountering the bow

shock. The highest translational temperature achieved is lower than the previous case of argon flow. Since,

the number density is low, the computational particles are fewer in number after the shock as compared to

previous cases. This results in fewer collisions that causes increased shock stand-off distance of 0.022 m.

In this case, particle-surface interactions dominate over particle-particle interactions because the flow is

rarefied. A fourth level of refinement is observed as a result of the increase in the number density near the

56

surface.

(a) Translational temperature. (b) Rotational temperature.

(c) Velocity in X-direction.

Figure 3.9: Comparison of contours for the flow of nitrogen over a hemisphere.

57

0.01 0.02 0.03 0.04 0.05 0.06
X [m]

0

2000

4000

6000

8000
T

tr
 [

K
]

SUGAR
SMILE

(a) Translational temperature.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
X [m]

0

200

400

600

800

1000

T
ro

t [
K

]

SUGAR
SMILE

(b) Rotational temperature.

0 0.01 0.02 0.03 0.04 0.05 0.06
X [m]

0

1000

2000

3000

4000

5000

u
[m

/s
]

SUGAR
SMILE

(c) Velocity in X-direction.

Figure 3.10: Comparison of macroparameters for the flow of nitrogen over a hemisphere.

Line plots obtained along the stagnation line are shown in Fig. 3.10. The change in macroparameters

is relatively gradual as compared to previous cases. The results are in good agreement for translational

temperature and velocity, however, the temperature slip predicted by the SUGAR code at the wall is lower

than the SMILE code by 44.44% lower in case of translational temperature and 48% lower in case of rotational

temperature. This is because the AMR allows higher levels of refinement thus capturing the temperature

near the wall more accurately.

58

3.7 Case-V: Flow of Nitrogen at Knudsen Number 0.02 Over a

Double Wedge

After the successful verification of the flow of nitrogen over a hemisphere at high non-equilibrium

conditions, the code was applied to the double-wedge configuration shown in Fig. 3.3 at a lower Knudsen

number of 0.02. Note that the Knudsen number for the actual experimental case is 100 times lower than

this. Therefore, before jumping directly to a case where the shock-shock interactions and separations are

involved, the Knudsen number was lowered gradually and results were compared. The input conditions are

listed in Table 3.5. Figure 3.11 shows the comparison of rotational temperature and velocity in a stream

wise direction for the SUGAR and SMILE code which is in exact agreement. The detailed comparisons

were made by extracting the values of macroparameters along the dashed red line that passes through the

plane of symmetry as shown in Fig. 3.12. Observations show that the number density, velocity, rotational

temperature are in exact agreement with the results obtained from SMILE. Furthermore, this case was run

after the implementation of various surface coefficients such as heat transfer and friction coefficient which

were then plotted in Fig. 3.13 by extracting the values along the data line that passes through the plane

Y = 0.025 m over the lower and upper wedge surface. These plots are in fairly good agreement with small

discrepancies on the upper wedge which can be attributed to the accurate cut-cell volume calculation in the

SUGAR code.

As mentioned in Table 3.5, the level of refinement for this case is seven for the C-Mesh. This is because

the refinement criterion for the C-Mesh is kept such that the collision cells stop refining only when the cell

size is less than half of the mean-free-path. However, it may cause the region very close to the geometry to

be refined to an extent that the cells end up with no particles. In such a case, one has no choice but to restart

the simulation by increasing the number of particles by reducing the FNUM. However, once an Octree cell

refines, it forms eight children. Therefore, in order to put twice the number of particles in the smallest cell,

we need to put eight times more particles in the simulation domain everywhere. Apart from that, since the

cell size is reduced, particles need to be moved slowly, i.e., the time step has to be halved, in order to keep

the local mean collision time higher. Therefore, theoretically, the computational time increases by a factor

of 24 with each additional level of refinement. This factor can be reduced by noting that the gradient does

not vary much in the span-wise direction for the wedge case. Therefore, if the cells in this direction are

elongated by twice the original length, then the above factor would be reduced by two. This strategy has

been implemented in the current run and instead of keeping FNUM at 2.0x1010, it is kept at 4.0x1010 and

it is ensured that the simulation satisfies all the DSMC criteria. Note that there are some limitations to the

59

amount by which the cells can be elongated. First, because of the Octree structure, the maximum possible

elongation obtained is given by, log2S, where S is the number of Octree cells in the span-wise direction such

that the Octree cells are cubic. For example, if originally there are 12 Octree cells in the span-wise direction,

then theoretically it can be elongated just 3.5 times the original length. However, for MPI communication

functions to work, it is necessary to have cells in the span-wise direction to be divisible by two. Therefore,

in the above example, one can only reduce the number of Octree cells in the span-wise direction to six,

achieving the elongation by a factor of two.

Table 3.5: Numerical parameters for the flow of nitrogen over

a double-wedge.

Parameters SUGAR

Number Density [#/m3] 9.33E20

FNUM 4.0E10

Freestream Temperature [K] 710

Freestream Velocity [m/s] 4200

Time step [s] 2.0E-07

Rotational Number 15

αt&αe 1

Surface Temperature [K] 298.5

Elastic Collision Model VHS

Viscosity Index 0.74

Sampling Start 4000

Sampling End 22000

Smallest Cell Size [m] 7.8125E-05 (7th level)

Number of Particles 15,851,960

Number of Processors Used 512

Time Required for sampling [min] 165

For the SMILE run the number of cells in X, Y, and Z

direction are 180, 135, and 180, respectively, the number

of particles are 16,370,000 and time taken for sampling is

40 min using 640 processors.

60

(a) Velocity in X-direction. (b) Rotational temperature.

Figure 3.11: Comparison of macroparameters for the flow of nitrogen over a double-wedge.

61

0.03 0.04 0.05 0.06
X [m]

0

5e+21

1e+22

1.5e+22

2e+22

2.5e+22

3e+22
n

[#
/m

3]

SMILE
SUGAR

(a) Number density.

0.01 0.02 0.03 0.04 0.05 0.06
X [m]

0

1000

2000

3000

4000

5000

u
[m

/s
]

SMILE
SUGAR

(b) Velocity in X-direction.

0.03 0.04 0.05 0.06
X [m]

0

1000

2000

3000

4000

5000

6000

T
ro

t [
K

]

SMILE
SUGAR

(c) Rotational temperature.

Figure 3.12: Comparison of macroparameters for the flow of nitrogen over a double-wedge.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
X [m]

0.1

0.15

0.2

0.25

0.3

C
h

SMILE
SUGAR

(a) Heat transfer coefficient.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
X [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
f

SMILE
SUGAR

(b) Friction coefficient

Figure 3.13: Comparison of surface coefficients for the flow of nitrogen over a double-wedge.

62

Chapter 4

Conclusion and Future Work

The presented work describes in detail the development strategies used for an Octree based DSMC

approach such as the AMR implementation emphasizing octal structure for capturing multi-scale physics,

scalability and performance study without and with graph partitioners (through the Zoltan framework), a

cut-cell algorithm, an algorithm for improving particle-surface interaction, heat flux computation, and the

BL rotational relaxation model for simulating diatomic molecules. In the preliminary performance study

described in Sec. 2.2, the major reasons for the SUGAR code being slower than SMILE were the high

level of refinement obtained over a major portion of the domain and expensive pointer based tree traversal.

Maximum scalability of 335 and 350 was obtained using a 2-D blocking algorithm for a flow over a double-

wedge and a hemisphere, respectively. These studies showed that the SUGAR code is potentially scalable,

however, in order to simulate continuum-like conditions, it needs to scale to thousands of processors for which

a 2-D blocking algorithm does not give improvement in speed-up. The primary obstacle in achieving more

scalability was the multi-scale nature of the problem, where a high degree of load imbalance is observed.

Further, the dynamic movement of particles in the DSMC method demands frequent communication between

processors. Therefore, state-of-the-art graph partitioners such as Parmetis and Scotch were tested to improve

the scalability of the SUGAR for more than 256 processors. Preliminary study using these partitioners was

performed on a 2-D and 3-D sample problems. The results revealed that Parmetis and Scotch both distribute

the computational load among available processors equally well, however, Scotch gave approximately 32%

reduction in communication links as compared to Parmetis algorithms for a 16 nodal cubic Cartesian mesh

with varying weights on cells using 256 processors. Based on these studies Scotch was implemented in the

SUGAR code through Zoltan library. However, it gave no improved performance for a double wedge problem

with a Knudsen number of 0.020. While using these partitioners, it is necessary to correctly represent the

computational load of each Octree cell in terms of some weight that could be a function of the number of

particles and leaf cells. Three different formulas were tested for assigning weights to the Octree cells, however,

all of them increased the computational time as compared to a 2-D blocking algorithm. It was observed that

a fraction of 0.24 of the volume of the domain contains high levels of refinement which gives less flexibility to

63

a graph partitioner to effectively partition the domain. Furthermore, in order to improve the performance of

the code, the SUGAR code was compared to the performance of the SMILE and in-house CHAOS code by

profiling it on a single processor. It was observed that the main drawback of the SUGAR code being slower

than SMILE is the way the Octree is being traversed in a pointer based manner. An equivalent Octree DSMC

code with a linearized representation of Octree cells using the Morton-Z space filling curve, implemented

by a colleague, Revathi Jambunathan, gave better performance than SMILE. Based on these comparisons,

Sec. 2.6 detailed the comparison of projected time taken by the SUGAR code for the experimental case

based on a simplified assumption that the computational time is just a function of the number of particles.

It also described that if the Morton-Z based linearized Octree structure is implemented, the projected time

for the target case would be comparable to the SMILE code, whereas the improved SUGAR code would

have an additional advantage of being more scalable than the SMILE code. Therefore, based on Sec. 2.5

and 2.6, it was concluded that the Morton-Z based Octree structure would give significant reduction in the

computational time.

As described in Sec. 2.7, the SUGAR code is equipped with a sophisticated cut-cell algorithm that can

handle any intricate geometry. It accurately calculates the volume of the cells cut by the geometry which

is essential for correctly capturing the physics near the geometry. Moreover, Sec. 2.8 described the efforts

made to improve the efficiency of the gas-surface interaction routine. Particles make use of the geometric

locality to find the target surface panel thus, checking only a limited amount of surface panels for possible

intersection. It was also noted that there are advantages of broadcasting the geometry information to each

processor such as reduction in the communication during multiple reflections and ease in surface coefficient

computation. Section 2.9 detailed the computation of surface coefficients in an MPI parallelized domain and

Sec. 2.10 explained the correct implementation of BL model for simulating rotational relaxation in inelastic

collisions.

The SUGAR code has been verified for the important elements of the DSMC procedure such as, an

elastic collision model, and a cut-cell algorithm by comparing the results for a case of argon flow at a Knudsen

number of 0.0277 over a hemisphere with the 3-D version of the SMILE code. Followed by this study, a

relatively easy case with a Knudsen number of 0.02 was simulated over a double-wedge. Although the

flow physics did not involve separation, sheer layer, or the Edney type of shock interactions, the basic flow

features such as oblique and bow shock interaction can be seen in the solutions. Successful results from this

study is the first step towards the complex problem of simulating flow over a double-wedge at continuum-like

conditions. This case demonstrated the ability of the SUGAR code to refine the grid in the region closer

to the surface, which would be advantageous in simulating difficult cases that involve complex shock-shock

64

interactions and flow separation. Furthermore, the code was extended to allow for the simulation of diatomic

species. The preliminary case of heat bath showed exact agreement with the analytical expressions, thus

verifying the majorant frequency implementation and the hierarchical BL model. The relaxation algorithms

were further verified by simulating the case for a flow over a hemisphere for a Knudsen number of 0.277 by

using nitrogen which gave a good overall agreement for macroparameters. The SUGAR results predicted

more temperature slip in the region near the surface which was attributed to a high level of refinement

of an Octree mesh. Finally, a high density case having a Knudsen number of 0.02 was simulated using a

flow of nitrogen over a double-wedge and plots for comparing macroparameters as well as distribution of

surface coefficients were shown to be in exact agreement. For this case, a rigorous refinement criterion of

mean-free-path was used over the C-Mesh which resulted in a seventh level of refinement near the geometry.

To simulate the experimental case having 100 times lower Knudsen number, very high levels of refine-

ment are expected in the vicinity of the wedge, and to satisfy the DSMC criteria in the finest cells, particles

in the entire domain are to be increased which renders the DSMC simulation computationally impossible

with current pointer based tree traversal. Based on aforementioned conclusions of the studies in Sec. 2.4,

2.5 and 2.6, Morton-Z based linear Octree structure is currently being implemented in the SUGAR code. To

further increase the performance, a spatially varying time step will be employed in the future. This would

allow the time step to not be limited by the mean collision time of the smallest leaf cell, but be based on each

individual cell. Therefore, particles would be able to move faster in larger cells, achieving an accelerated

simulation time. After these changes, the current MPI parallelized code structure will be extended using

CUDA to make use of heterogeneous GPU architectures.

65

Appendix

Surface Parameters

Heat transfer coefficient:

Qi =
FNUM

∆T

(m

2

Nhit
∑

j=1

»

Vj
2 +

Nhit
∑

j=1

(εrj + εvj)
)

i

Qr =
FNUM

∆T

(m

2

Nhit
∑

j=1

»

Vj
2 +

Nhit
∑

j=1

(εrj + εvj)
)

r

Q = Qi −Qr

ch =
Q

1

2
ρ∞V 3

∞
Sp

Pressure coefficient:

pi =
FNUM m

Sp∆T

(

Nhit
∑

j=1

(
»

VjcosΘj)i

pr =
FNUM m

Sp∆T

(

Nhit
∑

j=1

(
»

VjcosΘj)r

p = pi − pr

cp =
p

1

2
ρ∞V 2

∞

Skin friction coefficient in X-direction:

fxi =
FNUM m

Sp∆T

(

Nhit
∑

j=1

»

Vji −
»np

((

Nhit
∑

j=1

»

Vji

)

·
»np

))

x

fxr =
FNUM m

Sp∆T

(

Nhit
∑

j=1

»

Vjr −
»np

((

Nhit
∑

j=1

»

Vji

)

·
»np

))

x

fx = fxi + fxr

cfx =
fx

1

2
ρ∞V 2

∞

66

Skin friction coefficient in Y-direction:

fyi =
FNUM m

Sp∆T

(

Nhit
∑

j=1

»

Vji −
»np

((

Nhit
∑

j=1

»

Vji

)

·
»np

))

y

fyr =
FNUM m

Sp∆T

(

Nhit
∑

j=1

»

Vjr −
»np

((

Nhit
∑

j=1

»

Vji

)

·
»np

))

y

fy = fyi + fyr

cfy =
fy

1

2
ρ∞V 2

∞

Skin friction coefficient in Z-direction:

fzi =
FNUM m

Sp∆T

(

Nhit
∑

j=1

»

Vji −
»np

((

Nhit
∑

j=1

»

Vji

)

·
»np

))

z

fzr =
FNUM m

Sp∆T

(

Nhit
∑

j=1

»

Vjr −
»np

((

Nhit
∑

j=1

»

Vji

)

·
»np

))

z

fz = fzi + fzr

cfz =
fz

1

2
ρ∞V 2

∞

Friction coefficient:

cp = (c2fx + c2fy + c2fz)
1/2

Mass flux:

J =
FNUM Nhitm

Sp∆T

Kinetic energy flux:

Jti =
FNUM m

2Sp∆T

Nhit
∑

j=1

»

Vji
2

Jtr =
FNUM m

2Sp∆T

Nhit
∑

j=1

»

Vjr
2

Internal energy flux:

Jti =
FNUM

2Sp∆T

Nhit
∑

j=1

(εrj + εvj)i

Jtr =
FNUM

2Sp∆T

Nhit
∑

j=1

(εrj + εvj)r

67

References

[1] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press,
Oxford, 2nd ed., June 1994.

[2] M. S. Ivanov, A. V. Kashkovsky, S. F. Gimelshein, G. N. Markelov, A. A. Alexeenko, Y. A. Bondar,
G. A. Zhukova, S. B. Nikiforov, and P. V. Vaschenkov, “Smile system for 2d/3d dsmc computations,”
in Proceedings of the 25th International Symposium on Rarefied Gas Dynamics, St. Petersburg, Russia,
edited by M. S. Ivanov and A. K. Rebrov, pp. 539–544, Publishing House of Siberian Branch of the
Russian Academy of Science, Novosibirsk, 2007, July 2006.

[3] G. J. Lebeau and I. F. E. Lumpkin, “Application highlights of the dsmc analysis code (dac) software
for simulating rarefied flows,” Computer Methods in Applied Mechanics and Engineering, vol. 191,
pp. 595–609, December 2001.

[4] D. Gao, C. Zhang, and T. E. Schwartzentruber, “Particle simulations of planetary probe flows employing
automated mesh refinement,” Journal of Spacecraft and Rockets, vol. 48, pp. 397–405, May-June 2011.

[5] S. Dietrich and I. D. Boyd, “Scalar and parallel optimized implementation of the direct simulation
monte carlo method,” Journal of Computational Physics, vol. 126, pp. 328–342, July 1996.

[6] B. Korkut, P. Wang, Z. Li, and D. A. Levin, “Three dimensional simulation of ion thruster plumes with
amr and parallelization strategies,” tech. rep., San Jose, CA, July 2013.

[7] A. B. Swantek and J. M. Austin, “Heat transfer on a double wedge geometry in hypervelocity air and
nitrogen flows,” tech. rep., Nashville, Tennessee, January 2012.

[8] V. N. Patil, D. A. Levin, S. G. Gimelshein, and J. M. Austin, “Study of shock-shock interactions for
the het facility double wedge configuration using the dsmc approach,” tech. rep., Red Hook, NY, June
2013.

[9] O. Tumuklu, D. A. Levin, S. G. Gimelshein, and J. M. Austin, “Shock-shock interactions for double
wedge configuration in different gases,” tech. rep., Kissimmee, Florida, January 2015. presented in
current conference.

[10] S. S. Sawant, B. Korkut, O. Tumuklu, and D. A. Levin, “Development of an amr octree dsmc approach
for shock dominated flows,” tech. rep., Kissimmiee, FL, January 2015.

[11] “Cray Performance Measurement and Analysis Tools (CPMAT).”
https://bluewaters.ncsa.illinois.edu/cpmat.

[12] R. Klein, “Star formation with 3-D adaptive mesh refinement: the collapse and fragmentation of molec-
ular clouds,” Journal of Computational and Applied Mathematics, vol. 109, pp. 123–152, 1999.

[13] L. Botti, M. Piccinelli, B. Iordache, A. Remuzzi, and L. Antiga, “An adaptive mesh refinement solver for
large-scale simulation of biological flows,” International Journal for Numerical Methods in Biomedical
Engineering, vol. 26, pp. 86–100, 2009.

68

https://bluewaters.ncsa.illinois.edu/cpmat

[14] M. Berger and P. Colella, “Local adaptive mesh refinement for shock hydrodynamics,” Journal of
Computational Physics, vol. 82, pp. 64–84, 1989.

[15] I. Nompelis and T. Schwartzentruber, “A parallel implementation strategy for multi-level cartesian grid
based DSMC codes,” AIAA Paper 2013-1204, 2013.

[16] R. Arslanbekov, V. Kolobov, J. Burt, and E. Josyula, “Direct simulation monte carlo with octree
cartesian mesh,” AIAA Paper 2012-2990, 2012.

[17] C. Xu and F. C. Lau, Load balancing in parallel computers: theory and practice. Springer Science &
Business Media, 1997.

[18] G. Karypis and V. Kumar, “MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering
System, Version 4.0.” http://www.cs.umn.edu/~metis, 2009.

[19] F. Pellegrini, “Scotch and libscotch 5.1 user’s guide.” http://www.labri.fr/perso/pelegrin/scotch/,
2008.

[20] E. Boman, K. Devine, L. A. Fisk, R. Heaphy, B. Hendrickson, V. Leung, C. Vaughan, U. Catalyurek,
D. Bozdag, and W. Mitchell, “Zoltan home page.” http://www.cs.sandia.gov/Zoltan, 1999.

[21] E. Boman, K. Devine, L. A. Fisk, R. Heaphy, B. Hendrickson, C. Vaughan, U. Catalyurek, D. Bozdag,
W. Mitchell, and J. Teresco, Zoltan 3.0: Parallel Partitioning, Load-balancing, and Data Manage-
ment Services; User’s Guide. Sandia National Laboratories, Albuquerque, NM, 2007. Tech. Report
SAND2007-4748W http://www.cs.sandia.gov/Zoltan/ug_html/ug.html.

[22] K. Devine, E. Boman, L. Riesen, U. Catalyurek, and C. Chevalier, “Getting started with zoltan: A
short tutorial,” in Proc. of 2009 Dagstuhl Seminar on Combinatorial Scientific Computing, 2009. Also
available as Sandia National Labs Tech Report SAND2009-0578C.

[23] J. Wu, K. Tseng, et al., “Concurrent dsmc method using dynamic domain decomposition,” in AIP
CONFERENCE PROCEEDINGS, pp. 406–416, IOP INSTITUTE OF PHYSICS PUBLISHING LTD,
2003.

[24] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for partitioning power-law graphs,” in Parallel
and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, pp. 10–pp, IEEE, 2006.

[25] R. Jambunathan and D. A. Levin, “A hybrid cpu-gpu parallel octree direct simulation monte carlo
approach,” in 22nd AIAA Computational Fluid Dynamics Conference, p. 3057, 2015.

[26] S. Zabelok, R. Arslanbekov, and V. Kolobov, “Adaptive kinetic-fluid solvers for heterogeneous comput-
ing architectures,” arXiv preprint arXiv:1503.00707, 2015.

[27] J. Burkardt, “Stereolithography Interface Specification.” http://people.sc.fsu.edu/~jburkardt/cpp_src/stla_io,
1989.

[28] M. J. Aftosmis, M. J. Berger, and J. E. Melton, “Robust and efficient cartesian mesh generation for
component-based geometry,” AIAA Journal, vol. 36, pp. 952–960, June 1998.

[29] C. Zhang and T. E. Schwartzentruber, “Robust cut-cell algorithms for dsmc implementations employing
multi-level cartesian grids,” Journal of Computers and Fluids, vol. 69, pp. 122–135, October 2012.

[30] I. E. Sutherland and G. W. Hodgman, “Reentrant polygon clipping,” Communications of the ACM,
vol. 17, pp. 32–42, January 1974.

[31] J. O’Rourke, Computational Geometry in C. Cambridge University Press, 1993.

[32] W. Schroeder, “The Visualization Toolkit.” http://www.vtk.org, 2003.

[33] C. Cercignani, Rarefied gas dynamics: from basic concepts to actual calculations, vol. 21. Cambridge
University Press, 2000.

69

http://www.cs.umn.edu/~metis
http://www.labri.fr/perso/pelegrin/scotch/
http://www.cs.sandia.gov/Zoltan
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html
http://people.sc.fsu.edu/~jburkardt/cpp_src/stla_io
http://www.vtk.org

[34] K. Koura and H. Matsumoto, “Variable soft sphere molecular model for inverse-power-law or lennard-
jones potential,” Physics of Fluids A: Fluid Dynamics (1989-1993), vol. 3, no. 10, pp. 2459–2465, 1991.

[35] C. Borgnakke and P. S. Larsen, “Statistical collision model for monte carlo simulation of polyatomic
gas mixture,” Journal of computational Physics, vol. 18, no. 4, pp. 405–420, 1975.

[36] J. Parker, “Rotational and vibrational relaxation in diatomic gases,” Physics of Fluids (1958-1988),
vol. 2, no. 4, pp. 449–462, 1959.

[37] F. E. Lumpkin III, B. L. Haas, and I. D. Boyd, “Resolution of differences between collision number
definitions in particle and continuum simulations,” Physics of Fluids A: Fluid Dynamics (1989-1993),
vol. 3, no. 9, pp. 2282–2284, 1991.

70

	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Chapter 1 Introduction
	Introduction
	Thesis Outline

	Chapter 2 Development Strategies
	Adaptive Mesh Refinement
	Parallelization and Scalability
	Scalability study I
	Scalability study II
	Profiling using CPMAT

	Graph Partitioning for Potentially Improved Load Balancing
	Brief Introduction of the Load Balancing Problem
	Preliminary Tests Using the Zoltan Framework

	Scalability Study Using Zoltan
	Flow Over a Double Wedge Using Scotch
	Flow Over a Hemisphere Using Scotch

	Algorithmic Assessment of SUGAR Code
	Prediction of the time required to run the experimental case
	Robust Cutcell Algorithm
	Geometric Sorting
	Volume Computation

	Reflection in MPI Parallelized Domain and Its Optimization
	Computation of Surface Coefficients in MPI Parallelized Domain
	Collision Models

	Chapter 3 Verification and Validation
	Hypersonic Flow Simulation Using Argon
	CASE I: Flow of Argon at Knudsen Number 0.0277 Over a Hemisphere
	CASE II: Flow of Argon at Knudsen Number 0.02 Over a Double-Wedge
	Hypersonic Flow Simulation Using Diatomic Gases
	CASE III: Rotational Relaxation Using Heat Bath of a Simple Gas
	CASE IV: Flow of Nitrogen at Knudsen Number 0.277 Over a Hemisphere
	Case-V: Flow of Nitrogen at Knudsen Number 0.02 Over a Double Wedge

	Chapter 4 Conclusion and Future Work
	Appendix Surface Parameters
	References

