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ABSTRACT

Head Mounted Displays (HMDs) allow users to experience Virtual Reality

(VR) with a great level of immersion. Advancements in hardware technolo-

gies have led to a reduction in cost of producing good quality VR HMDs

bringing them out from research labs to consumer markets. However, the

current generation of HMDs suffer from a few fundamental problems that

can deter their widespread adoption. For this thesis, we explored two tech-

niques to overcome some of the challenges of experiencing VR when using

HMDs.

When experiencing VR with HMDs strapped to your head, even simple

physical tasks like drinking a beverage can be difficult and awkward. We ex-

plored mixed reality renderings that selectively incorporate the physical world

into the virtual world for interactions with physical objects. We conducted

a user study comparing four rendering techniques that balance immersion in

the virtual world with ease of interaction with the physical world.

Users of VR systems often experience vection, the perception of self-motion

in the absence of any physical movement. While vection helps to improve

presence in VR, it often leads to a form of motion sickness called cyber-

sickness. Prior work has discovered that changing vection (changing the

perceived speed or moving direction) causes more severe cybersickness than

steady vection (walking at a constant speed or in a constant direction). Based

on this idea, we tried to reduce cybersickness caused by character movements

in a First Person Shooter (FPS) game in VR. We propose Rotation Blurring

(RB), uniformly blurring the screen during rotational movements to reduce

cybersickness. We performed a user study to evaluate the impact of RB

in reducing cybersickness and found that RB led to an overall reduction in

sickness levels of the participants and delayed its onset. Participants who

experienced acute levels of cybersickness benefited significantly from this

technique.
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CHAPTER 1

INTRODUCTION

Virtual Reality (VR) can be defined as generation of a simulated environment

by a combination of software and hardware that can successfully manipulate

human senses to feel present in the simulated environment. Ivan Suther-

land is credited to have created the first VR Head Mounted Display in 1968

[1]. Although early VR systems existed around the mid-20th century, Jaron

Lanier popularized the term in 1980s and later founded VPL Research, the

first company to sell VR products. During early 90s, VR gathered public

interest with the launch of VR headsets and arcades. Although these devices

piqued consumer interest, lack of sufficient hardware, limited technology,

poor ergonomics and high cost impeded their adoption by consumers. Past

two decades have seen major developments in gaming and mobile industry to

create powerful graphics hardware, high resolution screens, mobile graphics

and mobile sensors. Availability of advanced hardware has enabled produc-

tion of good quality, yet cheap VR devices leading to a wave of resurgence

of VR.

While multiple devices have been used to display VR environments, Cave

Automatic Virtual Environment (CAVE) and Head Mounted Displays (HMDs)

are most popular. CAVE systems create VR environments by projecting on

walls of a room-sized cube. CAVE systems successively project a pair of

images (one for each eye) on each wall of the cube to create a virtual scene.

Users can see 3D rendering of the virtual scene by seeing these projections

through synchronized stereo shutter glasses. Motion capture systems are

used in CAVEs to record real time position of users to enable perspective

rendering. Although CAVEs are popular in research labs and training facil-

ities for simulation and training applications, elaborate setup requirements

and high cost make them prohibitive for general use.

HMDs are stereoscopic display devices worn on a user’s head. Stereoscopic

display, which when seen through a pair of lenses, creates 3D virtual envi-
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ronments with a large field of view. Along with the stereoscopic display, they

also have Inertial Measurement Units (IMUs), magnetometer and gyroscope

to accurately track user’s head movements. Their ergonomic design and low

cost of production make them ideal for consumer use. Next year is going to

see public launch of HMDs like Oculus Rift, HTC Vive and PlayStation VR

hopefully starting a new wave of popularity for VR.

While being highly immersive, HMDs occlude the real world, making phys-

ical and social interactions difficult and awkward. Currently, users have two

choices: keep the HMD on and blindly interact with the world, or take the

HMD off and break their immersion in the virtual world. Such context switch-

ing between worlds is expensive: it takes time to be immersed in a virtual

environment [2], and frequent switching between worlds can be disorienting.

While exploring virtual environments using HMDs, users often experience

a sensation called vection. Vection is the perception of self-motion elicited by

a moving visual stimulus in the absence of any real motion. A common real

life example of vection is the illusion of motion when sitting in a stationary

train while watching an adjacent train move.

Users of VR devices commonly experience vection when they move in the

virtual environment while remaining stationary in the real world. Although

experiencing motion in a virtual environment adds to the sense of presence

in the virtual environment [3], it often leads to a form of motion sickness

called cybersickness.

Cybersickness is a form of motion sickness that often accompanies vection.

Symptoms for cybersickness include dizziness, fatigue, cold sweat, oculomo-

tor disturbances, disorientation, nausea and (rarely) vomiting. Although the

symptoms closely match those of motion sickness, oculomotor disturbances

and disorientation are more common with cybersickness than motion sick-

ness [4]. Prior work indicates that long exposures to VR exacerbates cyber-

sickness, while repeated exposures to VR reduces the severity and incidence

of cybersickness [5].
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CHAPTER 2

RELATED WORK

2.1 Mixed Reality

VR’s long and rich history began with Ivan Sutherland’s pioneering work on

HMDs in the early 60s [1]. The recent commercial availability of low-cost

HMDs have made VR experiences generally accessible to a wide audience.

Since its inception, a large body of VR work has explored approaches for

incorporating static and dynamic avatars into virtual environments, typically

requiring users to wear motion capture markers or data input gloves (e.g.,

[6]).

There are many approaches that merge the physical and virtual worlds

[7]. Augmented Reality (AR) superimposes virtual objects into the physical

world, and has a rich history of use in mobile phones and HMDs (e.g., [8]).

In contrast, Augmented Virtuality (AV) enhances virtual reality with parts

of the physical world. Previous work in AV has focused on collaborative

applications including displaying real world video on virtual office windows [9]

or displaying group communication around a virtual table [10].

Researchers have traditionally used gloves [11], fiducial markers [12] or

motion capture systems [13] to track and show a virtual rendering of users’

hands in virtual reality. Some techniques ( [14], [15]) have used computer

vision algorithms on 2D RGB images to track users’ bare hands and use them

as an interface for interaction in mixed reality applications. More recent work

(WeARHand [16] and I’m in VR! [17]) has used RGBD sensors to bring user’s

bare hands into the virtual world and use it as an interaction medium.
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2.2 Cybersickness

A number of theories exist to explain the relationship between cybersick-

ness and vection. One of the most prominent theories is based on the idea

of sensory conflict during vection. According to this theory, a mismatch of

information from the visual sensory system and the vestibular system (hu-

man sensory system sensitive to motion, equilibrium and spatial orientation)

about motion during vection leads to cybersickness [18]. Another theory that

explains cybersickness is based on the idea of postural stability. It posits that

changes in stability of the human balance mechanism causes cybersickness

[19]. Work by Hettinger et al. [20] is one of the early works to understand the

relation between vection and SS. They exposed users to a fixed-based flight

simulator and measured both vection and SS simultaneously. Later, work by

Kennedy et al. introduced Simulator Sickness Questionnaire (a modification

of Motion Sickness Questionnaire) to systematically measure the simulator

sickness response of a virtual reality simulator [21]. Recent work by Ke-

shavarz et al. [22] provides an in-depth review of the past work exploring

this area.

Cybersickness is a major deterrent to large scale adoption of VR devices.

Past research has explored several methods to reduce the cybersickness re-

sponse in VR. Work by Dorado and Figueroa proposes that ramps induce less

cybersickness when compared to stairs in VR [23]. Domeyer et al. studied

the effects of giving breaks between consecutive driving simulator sessions on

reducing SS for older drivers [24]. Jeng-Weei Lin et al. discovered that pro-

viding motion prediction cues in driving simulators help to reduce SS while

not affecting presence [25]. Another work by the same group discovered that

adding a virtual guiding avatar that provides motion cues helps to reduce

SS in driving simulators [26]. They also found out that adding the virtual

guiding avatar enhances a user’s sense of presence in the virtual environment.

Research work in the past has explored using blurring to reduce cybersick-

ness in VR. Carnegie et al. in their work [27] try to reduce visual discomfort

by adding depth of field blur to the virtual scene. Work by Leroy et al. [28]

proposes an algorithm for implementing a real-time adaptive blur to remove

irritating high frequency content in high horizontal disparity zones of stereo-

scopic displays. The proposed algorithm helps to reduce eye strain caused by

stereoscopic displays. Work by Jung et al. [29] proposes a selective depth of
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focus blur technique that is applied only to regions that induce high visual

discomfort but are less important visually. Blum et al. investigated the effec-

tiveness of adding artificial out of focus blur on visual discomfort to increase

fusion limits of double vision occurring in stereoscopic displays [30].
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CHAPTER 3

PERIPHERAL REAL WORLD
INTERACTIONS WHEN USING HMDS

In this work, we explored a design space of renderings that enabled users

wearing an HMD to interact with the physical environment. The goal was

to make interactions with the physical world more seamless, while keeping

the user immersed in the virtual world. Unlike previous work in augmented

reality [31, 32] that explored using stereo cameras to show physical world in

HMD, we overlayed the physical world on top of virtual environment (i.e.

augmented virtuality [7]). Users can see their hands in the virtual environ-

ment, peripheral objects like a cup, or colocated players (see Figure 3.1).

We evaluated this design space of mixed reality renderings with a user

study comparing different renderings of varying visual fidelity across different

virtual experiences (a movie, a first person shooter, and a racing game). The

results show that users prefer renderings which selectively blend virtual and

physical, while maintaining a one-to-one scaling of the physical environment.

The highest rated rendering allows users to see their hands, objects of interest

and salient edges of the surrounding environment.

3.1 Design Space

When users are immersed in an HMD focusing on a virtual experience, includ-

ing information from the physical environment can distract from the virtual

experience. However, if too little information of the physical environment is

included, then physical interactions are difficult. Therefore, we explore four

rendering options (see Figure 3.3) using different amounts of information

about the physical environment in the virtual experience. We envision these

renderings could be activated by the user via a button on the game controller

/ keyboard, enabling the user to switch on the physical environment when

needed.
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a

c

b

Figure 3.1: Performing real world, peripheral tasks while using VR HMDs
can be frustrating and messy (a). Our system, comprised of 2 inexpensive
webcams and novel augmented virtuality methods (b), allows users to
achieve peripheral tasks, such as grabbing a drink, while still being
immersed in the HMD experience (c) without knocking over your drink.

These renderings are enabled by a system combining an HMD with stereo

cameras and simple vision processing. We use the Oculus Rift DK1, aug-

mented with 2 Logitech C310 webcams to provide a stereoscopic view of the

real world. The lenses of the cameras were replaced with 1.8mm lenses 1 to

provide a wider FOV of approximately 120 degrees, and then mounted in a

3D printed mount 2 (see Figure 3.2). Users also wore headphones to create

a fully immersive experience.

1http://www.thingiverse.com/thing:305355
2http://www.thingiverse.com/thing:323913
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Figure 3.2: The HMD augmented with a stereo camera set.

OH OHC RWW PPIP

Figure 3.3: All the different renderings. (a) Object and Hands, (b) Object,
Hands and Context, (c) Real World Windowed, (d) Physical Picture In
Picture

3.1.1 Renderings

In order to guide our selection of renderings, we performed a pilot study

to understand the minimum amount of information needed to perform basic

grasping interactions with the physical world. We discovered that users prefer

to see, at the very least, their hands and the object of interest. Showing the

object of interest allows users to spatially locate the object, and seeing their

hands increases proprioception accuracy[33]. We experimented with showing

only the object of interest, but it was universally disconcerting to users. With

this information, we designed the following renderings:
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Object & Hands (OH)

The first rendering shows the bare minimum information, only the object

of interest and the user’s hands. The supporting table and other physical

objects were not shown in the virtual world. This rendering enables the user

to focus on the virtual experience, at the expense of limited knowledge of the

physical environment.

Object, Hands & Context (OHC)

The second rendering shows the object of interest, the user’s hands and

an abstract depiction of the surrounding physical objects, showing only the

edges of surrounding objects. This rendering provides additional context at

the expense of potential distraction from the virtual experience.

Real World Windowed (RWW)

The third rendering provides a windowed view of the physical world, with

the virtual world still shown in the user’s peripheral vision. The real world

is rendered in a fully opaque window at the center of the user’s visual field.

This rendering allows the user to focus on their interactions in the physical

world, while still maintaining peripheral cues about the virtual environment.

Physical Picture in Picture (PPIP)

The fourth rendering shows the physical world as a picture in picture render-

ing in the lower right hand corner of the screen. This mimics the behavior

of picture-in-picture televisions. It is interesting to note that this method is

the exact opposite of see-through wearable devices like Google Glass, which

enable users to see a large version of the real world with the virtual world in

a small picture in picture. This rendering allows users to interact with the

physical world, without taking up as much screen real-estate as RWW.

In this paper, we focus on the user experience of each visualization, and

less on the specific implementation of the rendering approach. We envision

a future of natural user interaction systems which can easily track a user’s

hands [32], and detect and track physical objects (perhaps with the aide of
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embedded markers). For the user study, selective rendering was accomplished

via color based segmentation in OpenCV 3, segmenting the users hands and

a known object of interest (an orange cup). Future work can explore more

complex object detection, recognition and tracking schemes to support these

renderings.

3.2 User Study

The purpose of this study was to elicit qualitative feedback about the design

space of renderings in the context of different genres of VR experiences. We

specifically wanted to find if our renderings allow users to remain immersed

in the virtual reality experience while seeing parts of their physical environ-

ment. We also wanted to evaluate how our renderings compare to the status

quo (baseline) solution for interacting with the physical environment while

wearing an HMD, namely to remove the HMD entirely. We hypothesize that

(1) the preferred rendering will depend on the virtual content, changing with

varying levels of user engagement, and (2) that users will prefer OH since it

provides a balance between visual information of the physical world, without

being overly distracting.

To select the VR experiences used in the study, we tested a variety of VR

applications. We wanted to use rich visual experiences that are representative

of real-world use cases in VR, and that require differing levels of user attention

and user input.

3.2.1 Virtual Scenarios

To select the VR experiences used in the study, we tested a variety of VR

applications. We wanted to use rich visual experiences that are representative

of real-world use cases in VR, and that require differing levels of user attention

and user input. We created the following experiences in Unity3D 4: (1)

watching a movie 5 in a movie theater, (2) a First Person Shooter (FPS)

modified from Unity3D’s 3rd person AngryBots sample, and (3) a racing

3http://opencv.org/
4http://unity3d.com
5http://sintel.org
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Figure 3.4: The three different VR scenarios that we used for the user
study, Movie, FPS and Car.

game modified from Unity3D’s Car Tutorial (Figure 3.4).

The movie is a passive experience with no user input that uses a limited

field of view of the user and requires minimal head movement. The FPS is a

fast paced experience that requires both mouse and keyboard input with lots

of head motion, but still contains natural pauses in game play for the user

to interact with the physical environment. The racing game is a continuous

attention task, where the user must constantly steer their car or risk crashing,

with only keyboard input needed leaving one hand free to interact with the

physical environment.

3.2.2 Participants

We recruited 16 subjects (13 male), ages 18-24 years with some PC gaming

experience and corrected to normal vision. Of our 16 participants, 6 were

excluded from the study due to significant simulator sickness (even with

brief pauses between conditions). Incidence rates of simulator sickness are

very high with current HMDs [34]. As a result, 10 participants completed the

study, producing a total of 300 grasping trials. We expect that improvements

in display latency, resolution and refresh rate will decrease simulator sickness

in the near future.
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3.2.3 Tasks and Procedure

We conducted a within subjects user study, where subjects interacted with

3 VR experiences in a randomized ordering using a PC keyboard and mouse

while seated at a table. While engaged in the virtual experience, subjects

were externally prompted every 45-60 seconds to pick up a physical cup of

water, drink the water, and place the cup back on the table. This physical

task was repeated twice for each of the 4 rendering methods and the baseline

method, in a randomized ordering with 5 minutes of rest between renderings.

Subjects were instructed to focus on their performance in the VR experience

and remain highly engaged in the game/movie. Physical distractor objects

were included on the table as well (a mobile phone, speakers and pieces of

paper). After each physical interaction with the cup, the experimenter moved

the cup to simulate the user loosing track of the physical environment during

more realistic long term play scenarios. In total there were 30 trials per

subject, 3 VR experiences x 2 repetitions x (4 renderings + baseline).

Between each rendering, subjects completed a questionnaire inspired by the

core modules of [35], where they rated their overall satisfaction, immersion,

level of distraction, ease of play etc. (see Figure 3.5). At the end of the

study, subjects ranked the rendering methods along various dimensions (see

Figure 3.6), with visual mnemonics to remind the users of each condition.

Finally, we conducted a semi-structured interview with think-aloud subject

feedback. We also recorded video, which we analyzed for apparent ease of

interaction with the physical world.

3.2.4 Results

The intra rendering results (see Figure 3.5) show an overwhelming support

for OHC, which was rated as the most preferred method by participants

across all VR scenarios (meanMovie = 3.7, meanFPS = 3.7, meanCar = 3.7).

Using a Kruskal Wallis non-parametric test, we found significant differences

between visual renderings. A post-hoc Bonferroni-corrected Wilcoxon test

on the OHC performed significantly better than RWW and PPIP, both in

Car (Z = -2.713, p <0.01, Z = -2.56, p <0.01) and FPS (Z = -1.732, p <0.01,

Z = -1.99, p <0.01).

This result was further validated in the mean rankings analysis where par-
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Figure 3.5: Mean ratings for each method evaluated in the user study.
Participants rated ’overall satisfaction’ and 8 other factors on a 5 point
Likert scale. The errorbars represent standard deviations. OHC is highly
rated for overall satisfaction in all 3 VR environments (meanMovie = 3.7,
meanFPS = 3.7, meanCar = 3.7).

ticipants consistently ranked OHC highest in overall satisfaction across all

VR scenarios and also for each individual VR scenario (Figure 3.6). In all

cases, the baseline condition of removing the HMD was always the least pre-

ferred approach. However, Figure 3.5 illustrates a substantial pattern where

Lift HMD, RWW and PPIP were more acceptable to participants in Movie,

eventually becoming less tolerable in the higher engagement scenarios (FPS

& Car). Contrary to our expectation of OH being ranked the best method,

OH was consistently ranked second in overall satisfaction, immersion, pres-

ence and distraction with high variance across users (meanMovie = 1.174,

meanFPS = 1.247, meanCar = 1.033).

Figure 3.6: Post user study mean rankings. (left to right) Overall
satisfaction across all VR experiences, overall satisfaction for each VR
experience (Movie, FPS, Car), overall distraction, ease of play and presence
across all VR experiences.
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On the whole, participants’ qualitative feedback reflected our empirical

findings. With OHC, users described how the additional contextual infor-

mation of their surroundings aided them in finding the cup. As one user

described, “The extra lines helped me find the cup and put it back, and it

wasn’t distracting, it didn’t break my concentration on the game.” However,

some participants liked the minimal nature of OH, with one user commenting

“even though I could not see the cup...I got used to the surroundings and the

table and had a fair idea of where to look for the cup.” In contrast, one user

who favored OHC noted for OH,“I felt lost and had to feel the physical space

around me to look for the cup.”

The Lift HMD approach was disliked across VR scenarios with one partic-

ipant commenting, “removing the goggles is immersion breaking, with [OH]

and [OHC], I still felt pretty much in the game. [RWW] and [PPIP] are a

little more immersion breaking.” With RWW, one user commented, “you

are kind of in limbo when you’re doing [RWW], you might as well lift and

do it quickly. I don’t feel like I am part of the virtual world but I don’t feel

like I am in the real world.” When asked if participants would prefer any

other location for rendering the preview window in PPIP, one user noted, “it

wouldn’t make any significant difference since you still have to concentrate

on a corner which takes away your focus from the game.”

3.3 Discussion & Future Work

The clear winner among our selection of visual renderings was to show users

the object of interests and their hands while using edges to visualize the

supporting surfaces. OHC allowed users to quickly re-acclimate themselves to

the physical environment, particularly when significant head/body motions

disconnected users from their physical surroundings. Some users suggested

that pausing the game would be preferred, however this is only possible

with non-multiplayer games. Future work could explore various methods

for pausing the game experience via audio input, touch input on the HMD,

controller input or even automatically detecting a user’s reaching motion.

Designers looking to visualize aspects of the physical world should consider

balancing the scale of the rendered objects with its placement in the virtual

world. We found that users felt naturally comfortable seeing a version of
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the cup that was close in size to the actual physical cup and from their

own ego-centric viewpoint. This was not the case with the PPIP technique

which forced users to switch between seeing the game and the window while

requiring additional time to acclimate to the small sized view of the physical

world. Furthermore, visual rendering techniques could be designed in the

future to take advantage of unused pixels in the virtual environment. For

example, users frequently thought that the dashboard of the virtual car could

be used to show parts of the physical world where it would otherwise provide

little to no information in the virtual experience.

In the future, virtual reality experiences could be augmented to react to

physical objects. For instance, new physical toys could be designed to act

as controllers to the game (e.g., guns, wands, etc.). Designers could also

leverage existing objects as weapons, or enable physical interactions with the

environment to affect the game. For example, drinking a glass of water can

be used to recharge a user’s health in an FPS game.
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CHAPTER 4

USE OF ARTIFICIAL BLURRING TO
REDUCE CYBERSICKNESS IN VR FIRST

PERSON SHOOTERS

For this project, the objective was to reduce cybersickness experienced in VR

gaming to make gaming in VR a comfortable and enjoyable experience. Past

research has shown that changing vection (changing the perceived speed or

moving direction) induces more severe Simulator Sickness (SS) than steady

vection (walking at a constant speed or in a constant direction) [36]. SS is

another form of motion sickness experienced when using driving or flight sim-

ulators. Although minor differences exist between cybersickness and SS [37],

they are closely related. Work by Trutoiu et al. [38] suggests that among

all forms of movement, rotation causes the maximum amount of SS. Given

these findings, we focused our attention towards reducing cybersickness dur-

ing rotations. Work by Riecke et al. [39] indicates that photorealistic looking

virtual environments enhance the amount of vection users experience when

compared to the scrambled version of the same virtual environment.

We propose a novel navigation technique for VR games called Rotation

Blurring (RB) which can help to reduce cybersickness. As the name sug-

gests, the technique blurs the rotational movements triggered by an external

controller in the virtual world. We hypothesize that blurring the rotations

will make the parts that cause the most cybersickness look less photorealis-

tic, thereby suppressing the overall level of cybersickness induced by those

movements. We performed a user study to evaluate this hypothesis. For the

user study, we chose to test our technique in a First Person Shooter (FPS)

game. The high action gameplay of the FPS requiring continuous navigation

makes it an ideal environment to test our technique.
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NRB

RB

Figure 4.1: Screenshots of 2 versions of the game. One with Rotation
Blurring disabled (NRB) and one with Rotation Blurring enabled (RB).
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Figure 4.2: Blur size with respect to magnitude of acceleration of mouse.
The blurring activates only when continuous rotation is detected and the
mouse acceleration is greater than the value threshold

4.1 Blurring Technique Description

Rotation Blurring (RB) was implemented using shaders in Unity3D, a pop-

ular game engine that supports VR headsets. Typically for FPS games,

character rotations are controlled by the mouse. Therefore, the movement of

the mouse controller was the primary input signal to trigger and control RB.

Whenever the mouse is used to rotate the game character by a user, a uni-

form Gaussian blur is applied to the screen. The amount of blur (standard

deviation of the Gaussian function) was directly proportional to the magni-

tude of acceleration of the mouse movement. This proportionality ensured a

smooth transition from a non-blurred to a blurred screen (and vice versa) as

opposed to discrete jarring jumps between non-blurred and blurred screen.

Figure 4.2 shows a comparison of the response curve of RB with respect to

movement of the mouse controller.

For this research, we used an Oculus Rift DK2 HMD which tracks the

orientation and position of the user’s head. Any changes in the view point
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caused by user’s real world head movements were not blurred.

RB was applied such that it only activates for rotations when navigating

the game environment and not during other small movements like aiming

the gun or dodging enemy fire. This was ensured by a combination of two

rules (fig 4.2). First, the blurring would only activate when the magnitude of

acceleration of the mouse is over a certain minimum threshold value. Second,

the blurring would only activate if a continuous mouse motion is detected for

a time threshold of 5 frames.

4.2 User Study

In order to understand the effects of RB on cybersickness, we conducted

a within subjects user study where participants played a VR FPS game

which was modified to enable RB. For comparison, participants also played

another version of the game with RB disabled. We hypothesized that adding

RB to the game will significantly reduce cybersickness experienced by the

participants.

For this study, we used an Oculus Rift DK2 HMD connected to a Windows

PC. To gauge the sickness levels of participants, we used the standard 16

question Simulator Sickness Questionnaire (SSQ) [21] where each question

could be answered on a Likert scale of 0-3.

4.2.1 Virtual Scene Description

Figure 4.3: Screenshots of the Virtual Reality First Person Shooter game
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We created the FPS shooter game using an open source Unity3D project

called AngryBots. The game is set in an industrial setting and features

many enemy bots spread across the arena (Figure 4.3). For the study, the

objective was to explore the game arena and destroy as many enemy bots as

possible in 10 minutes. Participants used keyboard and mouse to control the

character (using standard FPS controller layout). We created two versions

of the game - with and without RB. We refer to these as RB and NRB

respectively (Figure 4.1).

In the game, the view vector of the character was coupled with the aim

vector of the gun. Participants controlled the aim vector of the gun using

the mouse. The coupling ensured that users did not have to move their head

in conjunction with the mouse movement in order to see the gun’s pointer.

However, user’s head movements could still independently control the viewing

vector of the character. Doing this ensured that users did not have to move

their head in the game all the time and suffer from the resulting neck sprain.

In order to reduce cybersickness from other types of movements except

rotation, some modifications were made to the character controls. Rotational

movements with the mouse were only restricted in the horizontal plane. This

was done since past research claims that frequent rotations with two degrees

of freedom cause significantly more SS than rotations with one degree of

freedom [40]. The aim vector was fixed to be parallel to the ground and the

game was modified to ensure all the enemy bots could be destroyed without

any vertical rotations. Work by Trutoiu et al. [38] suggests that strafing

(linear movement in left/right direction) is the most unconvincing form of

movement in VR and also the second most SS causing form of movement

after rotation. Hence, strafing movements in the game were disabled. In

order to minimize cybersickness from linear walking, the character moved at

a constant speed [36].

4.2.2 Procedure

The study was conducted over two sessions on consecutive days. During

each session, participants were tasked to play either the RB version or the

NRB version of the game. The ordering of the tasks was determined ran-

domly. We avoided performing both tasks on the same day to avoid the
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Figure 4.4: User study setup

cumulative nature of nausea from biasing the amount of cybersickness expe-

rienced by participants in the latter task. Before each task, participants were

pre-screened for good health by measuring their Total Sickness (TS) score

determined from a SSQ filled before each session. Any user with a TS score

of over 7.48 was rejected for the study as recommended in [41]. This en-

sured that participants were in an equally healthy mental state before both

sessions. All participants had normal or corrected to normal vision. Any

participant who used glasses were given the option to use them inside the

headset. Figure 4.4 shows the user study setup.

In each session, users played the game for 10 minutes with the objective of

destroying most number of bots. Users were visually reminded of their score

and the high score every two minutes in the game. The challenge of beating

the high score kept users engaged with the game. During the game, after

every 2 minutes, participants were shown a sickness scale from 0-6 and were

asked to verbally report their level of motion sickness symptoms. We used

the motion sickness rating scale used in [42] (which is a minor modification

of the scale from [43]). We advise readers to refer to figure 4.7 for a detailed

description of each rating level.

At the end of the task, users were asked to fill the SSQ to gauge their

post-task sickness levels. This was followed by a post study questionnaire

and an interview.

We received 18 responses from interested individuals for the study (14

males, 4 females) from an age group of 18 to 26 years. Users were required
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to have some past experience of playing FPS games. 1 user was rejected

during pre-screening process as his/her pre-study TS score was higher than

acceptable limit. 2 other users got very sick within first 2 minutes of the

study and could not continue. In the end, we had 15 participants (12 males,

3 females) successfully complete the study.

4.2.3 Results
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Figure 4.5: Boxplots of (a) Total Sickness (NRB - mean = 51.36 SD =
34.67 RB - mean = 42.14 SD = 27.61), (b) Nausea (NRB - mean = 57.24
SD = 35.51 RB - mean = 47.06 SD = 41.34), (c) Oculomotor (NRB - mean
= 29.81 SD = 23.88 RB - mean = 25.77 SD = 15.11) and (d)
Disorientation (NRB - mean = 52.90 SD = 47.70 RB - mean = 40.83 SD =
29.98), obtained from SSQ responses.

Participants were asked to fill a SSQ before and after each task. The pre-

task SSQ response was used for pre-screening participants for good health

before the start of a task. After each session, participants’ post task question-

naire responses were used to derive their TS score for the task. Figure 4.5(a)

shows the aggregated TS results for the NRB (mean = 51.36, SD = 34.67)

and RB (mean = 42.14, SD = 27.61) conditions. The mean TS response

went down from 51.36 to 42.14 when RB was enabled. We performed a

Wilcoxon signed-rank test on TS results to establish whether this decrease

was statistically significant. The tests indicate that results are not statisti-

cally significant (p = 0.19). Observing the TS levels of individual participants

gives an insight to this. Figure 4.6 shows the TS results for each individual

participant for both NRB and RB conditions. It can be observed that 2

participants (User 4 and 10) saw a significant increase in TS from RB. Some
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Figure 4.6: Individual TS scores of participants for NRB and RB versions

other participants experienced slight increase in TS on introducing blurring.

All other participants (especially the ones who experienced acute levels of

TS) reported a significant drop in SS with the blurring technique.

Figures 4.5 (b), (c) and (d) show box plots for the three discomfort symp-

toms: Nausea (N), Oculomotor (O) and Disorientation (D). These were cal-

culated from the post task SSQ responses. We observed a decrease in the

mean sickness measure for each of the three discomfort categories. Mean N

decreased from 57.24 to 47.06, mean O decreased from 29.81 to 25.77 and

mean D decreased from 52.90 to 40.83.

Participants were instructed to report their level of motion sickness symp-

toms on a scale of 0-6 after every 2 mins of gameplay. Figure 4.7 shows a plot

of mean nausea levels at 2 minute intervals in both the NRB and RB versions

of the game. Fig 4.7 indicates that blurring helped delay the onset of SS.

At the end of the study, participants filled out a post study questionnaire to

rate awareness of RB, distraction caused from RB and presence in VR, with

and without RB, on a 5 point Likert scale. Figure 4.8 shows a summary of

those responses. As the figure indicates, participants were highly aware of

RB. They did not find RB very distracting. RB did not significantly decrease

their level of presence in VR.

The subjective opinions of participants recorded during the interview about

RB showed a lot of variation. Lot of participants found blurring to be helpful

and it did not bother them. One participant said ”I think blur helped. It was

jarring at first but I got used to it. I do think it helped”’ Another participant

responded ”Movement being blurred made it much easier. My eyes didn’t

22



NRB
RB

Time (in minutes)

M
ot

io
n 

Si
ck

ne
ss

 L
ev

el

0 2

2

1

4

4

5

3

6

6

8 10

Figure 4.7: Plot of mean motion sickness levels vs time on a scale of 0-6. 0 -
no symptoms, 1 - any unpleasant symptoms, 2 - mild unpleasant
symptoms, 3 - mild nausea, 4 - mild to moderate nausea, 5 - moderate
nausea but can continue and 6 - moderate nausea, want to stop

get dizzy this time. I was scared last time to make quick turns (NRB). I

feel I could go on for 2 more hours!”. Some users disliked blurring. One

participant commented ”blurring distracted me from gameplay”. Another

participant commenting about the amount of blur said ”lot of blur was not

pleasant”.

4.3 Discussion and Future Work

The results from the user study show that RB helped in decreasing the overall

cybersickness experienced by the participants. While it did not help some

of the participants, it significantly helped those who experienced acute level

of cybersickness. Post study interview comments about preference for RB

also show this bipolar trend. While some participants felt that RB greatly

benefited them in reducing nausea and would like it to be present in VR

games, others felt that it distracted them from the game and made them

more nauseous. The results also show the positive impact of RB on delaying

the onset of nausea. All participants saw a gentler growth in nausea level

over time when RB was enabled. The reduced nausea level, enabled by RB,
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could help users play FPS VR games for longer periods of time.

Before the start of the study, we asked users to report their past experi-

ence of playing FPS games to ensure that they had some past FPS gaming

experience. It was interesting to note that users who experienced low levels

of cybersickness also reported lot of experience of playing traditional FPS

games. The same set of participants also saw an increase in cybersickness

when RB was enabled. We believe that a significant exposure to navigation

in FPS games desensitizes them to experiencing vection and hence cybersick-

ness. While this was an interesting observation, no conclusions can be drawn

about it from the the current data. A thorough study in the future can help

to validate or invalidate this theory.

The current results open up the opportunity to conduct further research in

exploring other ways of applying blur to cybersickness inducing movements in

VR. Since users are more perceptive to optical flow in the peripheral regions

of the eye, future work can explore the effect of applying only peripheral blur

during rotations to reduce cybersickness.

Since some participants found the blurring to be ineffective and disrup-

tive, future Just-Noticeable Differences (JND) studies can find the optimal

response curve of blurring relative to movement in the game and the opti-

mal amount of blur to add to the game which minimizes cybersickness while

avoiding discomfort.

Before the study we assumed that RB would cause a significant impact
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on presence in VR. Preliminary results indicate minimal impact on presence.

Since the blur is present only for very short durations during rotational move-

ments, its minimal impact on presence is understandable. While these results

look promising, future work needs to explore this in an in-depth manner us-

ing the presence questionnaire to get a better understanding of the impact

of RB on presence in VR.
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CHAPTER 5

CONCLUSION

In this research, we explored different techniques that tackle two major prob-

lems of using HMDs, complete unawareness of the real world and cybersick-

ness.

We explored a design space of bringing physical real world objects into a

virtual reality experience. We selected four renderings from this design space

and compared them through an empirical evaluation to understand which

approach maximizes utility while reinforcing immersion. We also provide

critical considerations necessary for the design of renderings of real world

objects in virtual reality.

We tested a novel navigation technique for VR FPS games called Rotation

Blurring which uniformly blurs the screen during rotational movements in

the game. We evaluated its impact in reducing cybersickness and found that

it helped majority of users who are sensitive to cybersickness in VR. We

also found that while it benefited most users in reducing cybersickness, it

had an adverse effect on some users. Given these bipolar results, we advice

game developers to provide RB as an optional setting in their games. Users

sensitive to cybersickness can significantly benefit from enabling Rotation

Blurring.

It is worthwhile to note that all the techniques discussed in this thesis can

be implemented at the SDK level by HMD developers. Supporting these

techniques at the SDK level could allow VR games and applications to lever-

age the benefits of these techniques without making any changes in the source

code.
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