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 ABSTRACT  

 Trichodermamide B, isolated from the marine fungus Trichoderma virens in 2003, is a 

potent anti-cancer agent and with complex molecular architecture. It is hypothesized herein that 

this molecule may be derived in nature from phenylalanine via a benzene oxide intermediate. 

Utilizing a bioinspired strategy, synthetic studies towards trichodermamide B have been conducted 

utilizing arene oxide equivalents as key synthetic intermediates. Notable synthetic transformations 

include alkylation with a novel, α–bromo oximoester electrophile and allylic bromination of an 

advanced, spirocyclic intermediate. This strategy has enabled access to advanced intermediates 

and should afford the natural product in far fewer steps than previously reported syntheses of this 

compound. Once complete, this concise synthetic strategy should afford enough material to 

conduct mechanism of action studies to uncover the origin of trichodermamide B’s impressive 

biological activity.   
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Chapter 1: Introduction 

Trichodermamides 

 The trichodermamides constitute a small family of dipeptide, fungal-derived natural 

products. Trichodermamides A and B were first isolated from the marine fungus Trichoderma 

virens in 2003.1 Five years later trichodermamide C was isolated from the terrestrial fungus 

Eupenicillium sp.2 These compounds exhibit significant structural homology, and differ only about 

substitution at two positions (Figure 1).  

Figure 1. The Trichodermamide Family. 

 

At the time of their isolation, trichodermamides A and B were tested for biological activity. 

Trichodermamide B exhibits significant cytotoxicity against HCT-116 human colon carcinoma, 

achieving an IC50 value of 0.32 μg/mL. Additionally, trichodermamide B displayed MIC values of 

ca. 15 μg/mL against amphotericin-resistant C. albicans, methicillin-resistant S. aureus, and 

vancomycin-resistant E. faecium.1 This promising biological activity was not shared by 

trichodermamide A, which was completely inactive in these assays. Thus, it is clear that the 

chloride functional group in trichodermamide B is important for its biological activity.  

Upon isolation trichodermamide C was also tested against HCT-116 human colon 

carcinoma cells due to its structural homology to trichodermamide B, and it displayed an IC50 

value of 0.68 μg/mL.2 This implies that substitution about the amide nitrogen atom may also be 

important for biological activity. Additionally, substitution at the amide nitrogen may enable an 

alternative mechanism of action than is exhibited by trichodermamide B.  
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Neither the mechanism of action of trichodermamide B nor trichodermamide C is known 

at this point. Knowledge of the mechanism of action can assist in the rational design of analogues 

that are more potent, more selective, or less toxic.3,4  Alternatively, understanding of a natural 

product’s mechanism of action can sometimes unveil unanticipated applications.5 Accordingly, 

undertaking such studies of trichodermamide B, the most cytotoxic member of the 

trichodermamide family, could prove fruitful. Unfortunately, no reported synthesis has yet to 

achieve gram quantities of this natural product to enable these studies.  

The key to synthesize large amounts of a particular compound is often to design a synthetic 

strategy which reduces the step count as much as possible. However, attempting to synthesize 

trichodermamide B rapidly represents a significant synthetic undertaking. The most challenging 

feature of this molecule is the 1,2-oxazadecaline core which is substituted with four, contiguous 

stereogenic centers (Figure 2). 

Figure 2. Structural features of trichodermamide B. 

 

In contrast the rest of the molecule can be synthesized in three steps utilizing a known 

procedure and can be appended to the oxazadecaline core in an amide coupling reaction.6 Thus, if 

a concise strategy towards the oxazadecaline core could be developed, perhaps large amounts of 

this natural product could be synthesized to enable mechanism of action studies.  

Biosynthetic Hypothesis 

 Before a retrosythetic strategy was developed, biosynthetic hypotheses of trichodermamide 

B were examined. Although the biosynthesis of trichodermamide B is unknown, an educated 
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biosynthetic proposal may still be valuable as it may suggest how nature is able to synthesize the 

fully substituted oxazadecaline core.   

 It is possible that trichodermamide B is derived from phenylalanine in nature. Oxidation of 

amine 4 would give oxime intermediate 5. Trichodermamide B is a fungal-derived natural product. 

It is known that fungi possess monooxygenases capable of directly epoxidizing aromatic rings.7 

Direct epoxidation of arene 5 could afford arene oxide 6. Subsequent epoxidation utilizing another 

monooxygenase could yield diepoxide 7.  Nucleophilic epoxide opening by the oxime moiety and 

nucleophilic epoxide opening by a chloride ion could furnish the fully substituted oxazadecaline 

core (Figure 3).  

 Figure 3. Biosynthetic hypothesis. 

 

 Nature may be able to synthesize trichodermamide B rapidly because direct epoxidation of 

an aromatic ring gives access to a versatile, arene oxide intermediate which can be converted to 

the fully substituted oxazadecaline core in just a few synthetic manipulations. Unfortunately, 

attempts to copy this exact strategy would likely not succeed. The direct epoxidation of aromatic 

rings remains an elusive if not impossible transformation in the flask. Additionally, attempts to 
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utilize traditional epoxidation conditions on arene oxide 6 would likely result in selective 

epoxidation of the disubstituted olefin in the presence of the trisubstituted olefin. However, 

utilizing similar intermediates and a similar overall strategy may enable an expedited synthesis of 

trichodermamide B.  

Retrosynthetic Analysis 

 A retrosynthetic strategy which takes inspiration from the biosynthetic hypothesis is 

presented. The oxazadecaline core could be derived from arene oxide equivalent diene 9 (Figure 

4).  

Figure 4. Retrosynthetic analysis. 

 

Although traditional epoxidation conditions of this compound would likely result in 

epoxidation of the disubstituted olefin, literature precedent suggests that the overall transformation 

of 9 to 8 may be possible. First a hydroxyl-directed hetero Diels–Alder reaction could give an 

endoperoxide with the displayed facial selectivity.8-10 Subsequent opening of the endoperoxide 

moiety with triphenylphosphine would afford a Zwitter ionic intermediate. SN2’ attack by the 

resulting alkoxide would release triphenylphosphine oxide and afford allylic epoxide intermediate 

8.11,12  In simple systems opening of an endoperoxide by triphenylphosphine has been shown to 

yield desired trisubstituted epoxide preferentially to disubstituted epoxide.13 This may be due to 
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differences in steric environment on each side of the endoperoxide. Nucleophilic epoxide opening 

of 8 by a chloride ion would result in the formation of the fully substituted oxazadecaline core.  

 This strategy would result in rapid formation of the most challenging portion of the natural 

product. If this cascade sequence is synthetically viable, the challenge of synthesizing 

trichodermamide B is reduced to uncovering efficient conditions to synthesize key, arene oxide 

equivalent diene 9. It is this intermediate that will enable the cascade sequence to furnish the fully 

substituted oxazadecaline core with correct relative stereochemistry. Diene 9 could be synthesized 

from 10 by elimination of dibromide and nucleophilic epoxide opening by the oxime (Figure 5).  

 Figure 5. Retrosynthesis of diene 9. 

 

Intermediate 10 could be synthesized from 1,4-cyclohexadiene 11 via alkylation and subsequent 

olefin functionalization reactions.  

 In order to contextualize some of the advantages and disadvantages inherent to arene oxide 

chemistry, a short review on the topic is presented.  
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Chapter 2: Arene Oxides 

Arene oxides, the formal epoxidation product of aromatic rings, are structures with great 

potential for simplifying synthetic endeavors. These structures contain epoxides and olefins, two 

of the most versatile functional groups in organic chemistry. If traditional reactivity of epoxides 

and olefins could be capitalized upon, these substrates could be rapidly converted into a diverse 

array of highly functionalized products. Therefore, the use of substrates of this type has the 

potential to streamline the synthesis of complex products by rapid introduction of functionality 

(Figure 6).  

Figure 6. Potential synthesis of highly functionalized products via arene oxides.  

 

Unfortunately, much of the traditional reactivity of olefins and epoxides is inaccessible to 

arene oxides at this time. Many arene oxides are unstable with half-lives on the order of minutes 

and rapidly undergo the NIH-shift to form the corresponding phenol products.14 In order to 

understand how the NIH-shift might limit applications of arene oxides in synthesis as well as to 

understand arene oxide behavior in biological systems, significant focus has been appropriated 

into understanding the mechanism of the NIH-shift.  

NIH-Shift  

The first clue of the NIH-shift mechanism was unveiled when tritiated naphthalene 1,2-

oxide 2a was isolated as a product of the reaction between 1-T-naphthalene 1a and hepatic 
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monoxygenases. Arene oxide 2a was stable enough to be characterized. Addition of dilute acid 

effected its conversion to 2-T-1-naphthol 5a. During this transformation the tritium had migrated 

from the 1 to the 2 position of the naphthol ring system. From this information it was postulated 

that conversion occurred via first formation of an ionic intermediate followed by collapse to form 

a ketone and an accompanying 1,2-shift. Tautomerization would lead to the observed phenol 

product (Figure 7).14,15  

Figure 7. Proposed mechanism of the NIH-shift.   

 If the proposed mechanism of the NIH-shift is operative, a number of side products 

stemming from this pathway could be imagined. For example, from the carbocation intermediate 

derived from benzene oxide 1a, either an NIH-shift could occur to afford phenol 6a, or 

nucleophilic attack by water could occur from either face to give trans-diol 7a  or cis-diol 8a 

(Figure 8). 

Figure 8. Potential reaction pathways from proposed NIH-shift intermediate.    
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Indeed, these three products were observed under neutral conditions from benzene oxide. 

The product distribution also supported this proposed mechanism. Total conversion was observed 

with 75% phenol product, 18% trans-diol product, and 7% cis-diol product.16 The intramolecular 

NIH-shift product would be expected to dominate both thermodynamically and kinetically. This 

is because the product is aromatic, and the reaction leading to this product is intramolecular as 

opposed to competing intermolecular pathways. Trans-diol 7a was formed preferentially to cis-

diol 8a due to steric considerations.  

Further evidence for this mechanism has been collected in reactions where the migrating 

group is not hydrogen. A methyl group has also been shown to undergo a 1,2-shift in a similar 

manner to afford a ketone product which cannot isomerize to the corresponding phenol.14 

Generally, in these cases more forcing conditions were required to effect the transformation since 

the thermodynamic driving force of aromatization was not present (Figure 9).17 

Figure 9. Alternative migrating group in NIH shift.  

 

Reactivity of Arene Oxides 

Arene oxides have been shown to act as competent electrophiles for several classes of 

nucleophiles. In general nucleophilic attack occurs most efficiently for polarizable nucleophiles; 

however, this is not always the case.  

Methyl lithium reacted with benzene oxide 1a to afford allylic alcohol 11a in good yields. 

Attack in this case occurred in a 1,6 manner and give the chelation controlled cis-product (Figure 

10).18 
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Figure 10. 1,6 – addition of methyllithium onto benzene oxide.  

 

Unfortunately, the nucleophilic attack of organometallic reagents onto arene oxides has not 

proved to be a broadly applicable strategy. No organometallic nucleophiles other than 

methyllithium or dimethylmagnesium had been shown to attack benzene oxide to form alkylated 

products until 2001. At this time it was reported that arene oxides can be opened by use of diethyl 

zinc in the presence of appropriate additives. The selectivity for this reaction is orthogonal to 

methyllithium as the addition led to the formation of anti-addition products (Figure 11).19  

Figure 11. Reaction of diethyl zinc with naphthalene-1,2-oxide.  

 

Polarizable nucleophiles tend to react more efficiently with arene oxides than do non-

polarizable nucleophiles. Accordingly, thiolates have been shown to attack arene oxide substrates 

quite smoothly. Unlike methyllithium, direct SN2 attack at the epoxide operates in these cases 

(Figure 12).20  

Figure 12. SN2 attack on benzene oxide by thiolate.  

 

In contrast to thiolate reactivity with arene oxides, less polarizable species such as 

alkoxides do not readily react with benzene oxide to form nucleophilic substitution product. In 
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nucleophilic substitution reactions of arene oxides, a competition exists between the attack of the 

nucleophile and the NIH-shift pathway. Less polarizable nucleophiles are not as competent as 

polarizable nucleophiles to compete in this process. Thus, alkoxide nucleophiles do not react 

efficiently with arene oxides to form nucleophilic substitution product. However, conditions have 

been established to effect this transformation in low yields. Deprotonation of hydrogen peroxide 

led to the formation of a much more polarizable oxygen nucleophile than hydroxide. Treatment of 

benzene oxide 1a with this species followed by reduction with sodium borohydride generated 

trans-diol 7a in 30% yield (Figure 13).21  

Figure 13. Synthesis of diol 7a.  

 

Many nitrogen nucleophiles are also unreactive towards arene oxides. For example 

treatment of benzene oxide with the non-polarizable sodium amide in liquid ammonia did not 

result in formation of an aminoalcohol product.22 Azides, however, are very polarizable and readily 

react with benzene oxide to form substituted products. For example sodium azide reacted with 

benzene oxide to give 55% yield of the epoxide opened product.14 In an attempt to broaden the 

scope of nucleophiles that can successfully attack arene oxides, Posner showed that reaction of 

less polarizable nucleophiles with arene oxides can be aided by addition of basic alumina. This did 

still result in significant aromatization however (Figure 14).23 

Figure 14. Basic alumina increases nitrogen nucleophilicity towards arene oxides.   
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 Alternatively to NIH-shift pathway, deoxygenation pathways to form the parent aromatic 

species can occur from arene oxides under a variety of conditions. It is known that pyridine, 

thiourea, triphenylphosphine, rhodium catalysts, chromium catalysts, and others are able to 

successfully effect this transformation.14 Deoxygenation in this context is of little synthetic 

significance, however. Destroying such a useful functional handle to afford a product which could 

likely be easily synthesized by other methods is likely not the most efficient synthetic strategy.  

 Arene oxides are known to undergo cycloaddition reactions with activated dienophiles. 

Benzene oxide has been shown to undergo a Diels–Alder reaction with singlet oxygen.24 The 

resulting endoperoxide is crystalline and isolable. Upon dissolving in chloroform and heating to 

45 ˚C, quantitative rearrangement to benzene trioxide was observed. Benzene oxide has also been 

shown to undergo a Diels–Alder reaction with n-phenyl-1,2,4-triazoline-3,5-dione (Figure 15).25  

 Figure 15. Diels–Alder selectivity.  

 

The selectivity of this reaction may be counterintuitive and is in contrast to Diels–Alder 

reactions of other allylic-oxygen-containing dienes. Theoretical considerations can help explain 

the observed selectivity. Ab initio calculations showed that there is no significant difference in π–

density on either side of the ring. Additionally, in the four highest occupied molecular orbitals, not 

much electron density resided on oxygen. Thus, there was not an electronic bias to direct an 

incoming dienophile towards either face of the diene. In contrast, there was a steric bias stemming 

from interactions with the epoxide itself. Thus reaction occurred at the less sterically hindered side 

of the diene. Other examples of Diels–Alder reactions of arene oxides are also known.26-28   
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Synthesis of Arene Oxides 

The syntheses of arene oxides which have found the most widespread application generally 

fall into one of two categories. Either an epoxide is synthesized followed by elimination to form a 

diene, or a diene is synthesized followed by SN2 attack of an alkoxide to form the arene oxide.   

Utilizing the first strategy, elimination of dibromide species or bromolactone species have 

been shown to afford the corresponding arene oxides.29, 30 Dibromide species are typically 

synthesized from the corresponding alkene. Subsequent treatment with base affords the arene 

oxide. Bromolactone species are formed from the corresponding β,γ–unsaturated acid. 

Bromolactonization followed by treatment with base has been shown to work in synthesizing a 

variety of arene oxide (Figure 16).31  

Figure 16. Elimination strategies towards arene oxides.  

 

The second type of strategy relies on formation of the epoxide in the final step. This is 

often achieved from the corresponding bromohydrin or bromohydrin acetate species. Formation 

of the alkoxide under basic conditions followed by SN2 release of the bromide affords the epoxide. 

This strategy has been widely utilized in arene oxide synthesis (Figure 17).32, 33 Alternatively, 1,2-

diols can be used. Tosylation of one of the alcohols followed by SN2 attack leads to the arene oxide 

product.14  
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Figure 17. Synthesis of arene oxide through bromohydrin precursor.  

 

Applications of Arene Oxides in Synthesis 

In 1978, Professor Bruce Ganem’s group was the first to use an arene oxide intermediate 

in the total synthesis of a natural product, senepoxide 36a. Highlights of this synthesis include 

development of new methodology towards generation of arene oxides and a hetero-Diels–Alder 

reaction of an arene oxide intermediate.31 The specifics of this synthesis are detailed as follows.  

A Birch reduction of benzoic acid 26a afforded 1,4-dihydrobenzoic acid 27a. Formation 

of the corresponding dianion with LDA followed by treatment with cracked formaldehyde gave 

access to β–hydroxylacid 28a in good yield. Conversion of the alcohol 28a to carbonate 29a was 

accomplished with benzoyl chloride and pyridine (Figure 18).  

Figure 18. Synthesis of carbonate 29a.  

 

 It was proposed that β,γ–unsaturated acid 29a could function as a precursor to the 

corresponding arene oxide. It was envisioned that this transformation could be accomplished in a 

three-step procedure. Bromolactonization of acid 29a with bromine in a biphasic mixture of 

aqueous sodium bicarbonate and carbon tetrachloride furnished bromolactone 30a in high yields. 

Epoxidation of this substrate, however, was more challenging. Treatment with trifluoroacetic 
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anhydride and 90% hydrogen peroxide furnished epoxide 31a in acceptable yields. A one-pot 

elimination procedure afforded desired arene oxide 32a (Figure 19).  

 Figure 19. Synthesis of arene oxide 32a.  

 The transformation of β,γ–unsaturated acids to the corresponding arene oxides represented 

a new disconnection in organic synthesis and gave a new platform for the synthesis of alkyl-

substituted arene oxides.  

 A Diels–Alder reaction between arene oxide 32a and singlet oxygen generated 

endoperoxide 33a. Cleavage of this endoperoxide with trimethyl phosphite afforded diepoxide 

34a. Selective hydrolysis proceeded in low yields to give diol 35a. Finally, acetate protection 

furnishes Senepoxide 36a (Figure 20). 

 Figure 20. Synthesis of Senepoxide 36a.   

 

 In 1982, Weinreb used arene oxide formation and opening as the key steps in his synthesis 

of Eupolauramine.34 Formation of the arene oxide was effected by direct epoxidation of arene 37a. 

This is possible because of the reduced aromatic character of polyaromatic species. Intramolecular 
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epoxide opening gave access to the lactam intermediate 39a which in just a few synthetic 

manipulations was converted into eurolauramine 40a (Figure 21). 

 Figure 21. Synthesis of eupolauramine 40a.   
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Chapter 3: Previously Reported Syntheses 

 It is notable that the Sarlah group is not the first to begin a synthetic program towards 

trichodermamide B. The synthesis of this molecule has been reported three time in the literature. 

The first reported synthesis was by the Zakarian group at the University of California at Santa 

Barbara in 2008.35 Trichodermamide B was synthesized racemically in twenty-three longest linear 

steps from commercially available starting materials. 

Zakarian Group 

 The synthesis began with the relatively expensive but commercially available 2-methoxy-

1,3-benzenediol 1b. Benzyl protection of one of the phenol groups affords 2b in moderate yield. 

Dearomative functionalization of 2b with (diacetoxyiodo)benzene in methanol generates α,β–

unsaturated ketone 3b (Figure 22). 

 Figure 22. Preparatioin of Diels–Alder Substrate 3b.  

 

 Utilizing conditions established by Liao and coworkers, a Diels–Alder reaction of 3b with 

vinylene carbonate gives bicycle 4b in 64% yield.36, 37 Serendipitously, treatment of 4b with LiOH 

results not only in hydrolysis of the carbonate moiety, but also almost complete inversion of 

stereochemistry at position C7. Zakarian et. al. reasoned that a retro-aldol pathway was operative 

and resulted in the more thermodynamically favorable trans-diol 5b. TBS-protection of diol 5b 

followed by α–deoxygenation with samarium iodide affords ketone 7b in excellent yields (Figure 

23). 
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Figure 23. Synthesis of 7b. 

 

 The key step of this synthesis was envisioned to be an oxaza-Cope rearrangement to furnish 

the oxazadecaline core of trichodermamide B. This reaction was expected to proceed from silyl 

ketene acetal 12b as previous work had shown that direct treatment with the corresponding ester 

failed to give desired reactivity.38 Silyl ketene acetal 12b can be made in a single step from ester 

11b. Conversion of ketone 7b to ester 11b was accomplished in five steps. Wittig olefination of 

ketone 7b and subsequent hydroboration in the presence of hydroxide furnished alcohol 9b. 

Conversion of this alcohol to the corresponding carboxylic acid was accomplished via Swern and 

Pinnick oxidations. Trimethylsilyl-diazomethane was then used to convert this carboxylic acid to 

methyl ester 11b (Figure 24).  

 Figure 24. Synthesis of methyl ester 11b. 
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 Treatment of 11b with LDA and TMSCl affords silyl ketene acetal 12b. This substrate was 

then poised to undergo the key oxaza-Cope rearrangement. Nitrosation of 12b with isopentyl 

nitrate at –78 ˚C in the presence of a Lewis acid afforded intermediate 13b, which underwent 

oxaza-Cope rearrangement to generate cyclized product 14b (Figure 25). Better conversions were 

observed when excess Lewis acid was used for this transformation; however, under these 

conditions partial debenzylation was also observed.   

 Figure 25. Key oxaza-Cope rearrangement. 

 

 With the oxazadecaline core installed, functional group manipulations led to the fully 

substituted core with correct relative stereochemistry. Global TBS-deprotection with HF afforded 

diol 15b. Comparing this intermediate to the natural product, the alcohol and alkene functionalities 

must be transposed. This net transformation is achieved in three steps. First, using DDQ, the benzyl 

group was converted into an acetal protecting group to prevent chemoselectivity issues in further 

steps. Use of Greico’s conditions on allylic alcohol 16b led to formation of transposed product 

18b (Figure 26).  
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Figure 26. Synthesis of allylic alcohol 18b. 

 With allylic alcohol 18b in hand, the oxazadecaline core was only a few steps away from 

completion. However, at this stage it was deemed advantageous to pursue amide coupling on this 

protected intermediate rather than to attempt amide coupling on the fully functionalized core. 

Amide coupling partner 20b can be synthesized in two steps from commercially available aldehyde 

19b (Figure 27).  

 Figure 27. Synthesis of amine 20b. 

 

Protection of allylic alcohol 18b with TBDPSOTf afforded 21b. Hydrolysis of the ester 

with LiOH led to formation of carboxylic acid 20b which was set to undergo the amide coupling 

reaction. EDC coupling conditions with acid 22b and amine 20b afforded amide 23b in acceptable 

yields (Figure 28).  
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Figure 28. Amide coupling gives advanced intermediate 23b.  

 

 The only task remaining was to deprotect the alcohols and to effect a substitution reaction 

to install the chloride moiety. Deprotection of acetal 23b with Zn(OTf)2 and EtSH afforded  

 Figure 29. End game towards trichodermamide B.  

diol 24b. Subsequent treatment with mesyl chloride selectively mesylates the secondary alcohol 
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of 24b in the presence of the tertiary alcohol to afford 25b. Treatment with LiCl effected an SN2 

reaction to afford 26b. Deprotection of the TBDPS group with HF was the last step needed to 

achieve the synthesis of 2, trichodermamide B (Figure 29). 

This seminal synthesis of trichodermamide B impressively used an oxaza-Cope 

rearrangement as a key step. However, this synthesis suffered from a fairly large step count. 

Functional group manipulations and oxidation state changes often took several steps, and this led 

to a relatively low yield of the target compound. This synthesis did not successfully generate 

enough material for further biological study.   

Joullié Group  

Later that same year, the Joullié group at the University of Pennsylvania was able to effect 

the enantioselective synthesis of trichodermamide B in thirty-two longest linear steps from a chiral 

pool starting material.6  

The reported synthetic strategy really began from key diol intermediate 15c which had been 

previously reported by the Joullié group.39 This intermediate was accessed in thirteen steps from 

(–)-quinic acid.  

Protection of (–)-quinic acid 1c with 2,2-dimethoxypropane afforded acetal 2c.  

Figure 30. Synthesis of ester 4c.  
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Esterification followed by selective TBDPS protection of the secondary alcohol furnished ester 4c 

(Figure 30). 

Conversion of α–hydroxyester 4c to the corresponding epoxide was accomplished in a 

three step procedure. First, reduction of 4c with LiBH4 gave the corresponding alcohol 5c. Next, 

selective mesylation of the newly generated primary alcohol was accomplished by treatment with 

mesyl chloride to afford 6c. Intramolecular SN2 displacement of the mesylate by the adjacent 

alcohol was effected upon deprotonation with LHMDS to afford epoxide 7c. From this epoxide, a 

formal, carbonylative ring expansion was accomplished in two steps. First nuclephilic epoxide 

opening by deprotonated acetonitrile afforded 8c. Next, treatment with sodium methoxide in 

anhydrous methanol followed by addition of water effected cyclization and hydrolysis to afford 

lactone 9c (Figure 31). 

 Figure 31. Synthesis of lactone 9c.  

 

 Elimination of the protected alcohol of 9c was accomplished in a three step procedure. 

Deprotection with TBAF, mesylation, and elimination with DBU afforded olefin 12c.  α–

oxygenation of the lactone was accomplished by formation of the corresponding enolate and 
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treatment with MoOPH. Protection of alcohol 13c with TBDPSCl followed by ketal deprotection 

with acetic acid generated intermediate 15c. It is from this intermediate that the Joullié group began 

reporting new steps for their 2008 synthesis (Figure 32).  

 Figure 32. Synthesis of diol 15c. 

 

 Continuing from intermediate 15c, directed epoxidation using trifluoroacetic anhydride 

and 90% H2O2 gave epoxide 16c. Protection of the diol using 2,2-dimethoxypropane afforded 

acetal 17c. From this intermediate, synthesis of the oxazadecaline core could be accomplished via 

cleavage of the lactone, formation of an oxime, and nucleophilic epoxide opening with the oxime. 

In this manner three of the four contiguous stereocenters of the core can be installed with the 

correct absolute stereochemistry. Conditions were discovered to effect these transformations over 

four synthetic steps. A two-step reduction procedure based upon previous work by Wipf et. al. 

effected lactone opening and silyl migration to give intermediate 18c.40 Oxidation of the secondary 

alcohol with Dess–Martin periodinane afforded ketone 19c. Condensation of hydroxylamine and 

nucleophilic epoxide opening furnished the oxazadecaline core (Figure 33). 
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Figure 33. Synthesis of the oxazadecaline core.   

 Although the oxazadecaline core had been synthesized, several important challenges still 

remained. Most notably, to synthesize trichodermamide B a chlorine must be installed in a position 

which in 20c appears to have no functional handle. This issue was tackled by a formal elimination 

of the ketal followed by allylic oxidation.  

 Protection of the free, secondary alcohol of 20c proceeded with TBDPSCl and imidazole 

in excellent yields. Deprotection of ketal 21c with FeCl3• 6 H2O afforded diol 22c. Barton–

McCombie deoxygenation of diol 22c afforded intermediate 23c in 81% yield over two steps. 

Allylic oxidation with chromium trioxide furnished α,β–unsaturated ketone 24c in poor yields. 

Luche reduction generated allylic alcohol 25c which was subsequently acetylated to 26c (Figure 

34). Thus, using this elimination / allylic oxidation strategy, the Joullié group was able to 

synthesize intermediate 26c which was, following oxidation state manipulations, an amide 

coupling and a substitution reaction away from the natural product. 
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Figure 34. Synthesis of 26c. 

 

 The amide coupling partner was prepared in three steps from commercially available 

starting materials. Lewis acid deprotection of 2,3,4-trimethoxybenzaldehyde 27c afforded phenol 

28c. An aldol condensation of aldehyde 28c with methyl-2-nitroacetate gave α–nitro ketone 29c. 

Reduction to the corresponding amine was accomplished with palladium on carbon in the presence 

of a dihydrogen source to complete coupling partner 30c (Figure 35). 

 Figure 35. Synthesis of amide coupling partner 30c.  

 

Intermediate 28c was only a couple functional group manipulations away from being able 

to participate in the coupling reaction. Selective deprotection of the primary alcohol with 
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HF•pyridine followed by oxidation with TEMPO and in situ Pinnick oxidation afforded carboxylic 

acid 32c. EDCI coupling of this acid with amine 30c furnished the amide coupled product 33c 

(Figure 36).  

Figure 36. Amide coupling.  

 

 At this stage deprotection and substitution would afford the natural product. 

Deacetylation with base, mesylation of the resulting alcohol, SN2 attack by chloride, and 

deprotection with HF furnished the natural product, trichodermamide B (Figure 37).  

 Figure 37. Completion of enantioselective synthesis.  
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 This impressive synthesis was able to give access to enantiomerically pure 

trichodermamide B. However, much like the synthesis by the Zakarian group, many steps were 

required to reach this target, and this highlights an important fact. It took established, respected 

synthesis groups well over twenty steps to complete the synthesis of this molecule. Obviously, 

trichodermamide B is a challenging target, and synthesizing this molecule efficiently requires a 

clever strategy. At the time that synthetic studies towards trichodermamide B were initiated in 

Sarlah group, these were the only two syntheses reported in the literature.  

Larionov Group 

However, in 2015 the Larionov group at the University of Texas at San Antonio reported 

the total synthesis of trichodermamide B in fourteen longest linear steps from ethyl pyruvate.41 

This expedited appoach was made possible through efficient synthesis of the oxazadecaline core. 

 Condensation of hydroxylamine onto ethyl pyruvate afforded oxime 2d. Protection of the 

oxime with TBSCl gave 3d (Figure 38).  

 Figure 38. Synthesis of 3d. 

 

The key step of this synthesis was proposed to construct the oxazadecaline core by 

treatment of the corresponding dianion of α–oximoester 3d with benzoquinone. If successful, this 

reaction would furnish the oxazadecline core of trichodermamide B in three steps from ethyl 

pyruvate (Figure 39).  
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Figure 39. Proposed synthesis of oxazadecaline core.  

 

Indeed, conditions were identified to successfully effect this transformation (Figure 40). 

Screening bases revealed that LiTMP was necessary as other bases such as LDA, KHMDS, and 

LHMDS were unsuccessful.   

Figure 40. Conditions for key dianion attack.  

 

 Now with easy access to advanced intermediate 4d, the challenge of synthesizing 

trichodermamide B was reduced to effecting functional group manipulations of the completed 

oxazadecaline core. Luche reduction of α,β–unsaturated ketone 4d using potassium borohydride 

and cerium trichloride afforded allylic alcohol 5d in good yield. Subsequent carbonate protection 

of the secondary allylic alcohol with ethyl chloroformate afforded carbonate 6d. Elimination of 

the carbonate was accomplished by treatment with a Pd(0) species in the presence of N,O-bis-

(trimethylsilyl)acetamide. Under these conditions formation of a π–allyl complex followed by β–

hydride elimination furnished diene 7d (Figure 41). 
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Figure 41. Synthesis of diene 7d.  

 

 The Larionov group next completed the amide coupling reaction to install the other half of 

the molecule.  Amine 8d was synthesized under conditions that had been previously reported by 

the Zakarian group. Following hydrolysis of ester 7d, the coupling between the resulting 

carboxylic acid and amine 8d proceeded smoothly to generate amide 9d. Selective epoxidation of 

the allylic alcohol in presence of the homoallylic alcohol was achieved in excellent yields by 

treatment with peracetic acid to afford epoxide 10d (Figure 42).  

 Figure 42. Synthesis of epoxide 10d.  

 

 From this point the synthesis of trichodermamide B could be completed with only a few 

functional group manipulation reactions. Li2CuBr4 served as a nucleophilic bromide source which 

could open epoxide 10d to form bromohydrin 11d. SN2 attack by phenyl selenium ion afforded 

intermediate 12d. Tosyl protection of the alcohol gave 13d. Treatment with hydrogen peroxide 
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afforded a selenoxide intermediate which underwent a sigmatropic rearrangement to afford allylic 

alcohol 14d. SN2 attack by a chloride ion afforded trichodermamide B (Figure 43). 

 Figure 43. Synthesis of trichodermamide B.    

 

This sequence completed the most efficient synthesis of trichodermamide B to date. 

However, utilizing a biomimetic strategy, it was envisioned that trichodermamide B could be 

synthesized in eight or nine steps and that this short synthesis could enable the first gram-scale 

access of this natural product. This material could then be used to conduct mechanism of action 

studies to help design analogues to capture the biological potential of this chemical scaffold.  
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Chapter 4: Cyclohexadiene Alkylation Strategy 

 The first challenge towards the synthesis of trichodermamide B was to find efficient 

alkylation conditions for cyclohexadiene 11 as discussed previously (Figure 5). It is known that 

organolithium nucleophiles derived from cyclohexadiene can perform SN2 attack on simple alkyl 

halides at –78 ˚C without olefin isomerization.42 Unfortunately, attempts to effect this 

transformation in our system were unsuccessful (Figure 44).  

 Figure 44. Attempted alkylation of 1,4-cyclohexadiene. 

 

The cyclic sulfamidate electrophile used had been precedented to undergo SN2 attack at the 

carbon β to the carbonyl.43 It was envisioned that the resulting sulfamidate could be cleaved to the 

corresponding amine upon acidic workup.44 However, utilization of these conditions did not result 

in formation of the desired product. Attempts to screen lithium bases n-BuLi, sec-BuLi, and t-

BuLi were unsuccessful. Attempts to break up lithium aggregates with addition of 

tetramethylethylenediamine did not improve results. Transmetallation to copper to avoid  

chemoselectivity issues with the ester and carbamate moieties of the electrophile did not allow for 

successful alkylation. Alternatively, aziridine electrophiles have been precedented to undergo SN2 

attack at the terminal position.45 – 47 Unfortunately, this electrophile also did not enable alkylation 

under the reaction conditions. At this point it seemed that an alternative route would be necessary 

to provide access to advanced intermediates.  
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Chapter 5: Claisen Rearrangement Strategy 

 Although the alkylation strategy had run into road blocks, the goal for any strategy devised 

would still be the same. Each route would need to give access to the key, arene oxide equivalent 

diene 9 because this is the intermediate that would enable the cascade sequence to furnish the fully 

substituted oxazadecaline core. An alternative scheme towards this key intermediate is shown 

below (Figure 45).  

 Figure 45. Claisen rearrangement strategy. 

 

 Key diene 9 could be synthesized from bromolactone 14 via first nucleophilic epoxide 

opening by the oxime and second elimination of the bromolactone utilizing Ganem’s conditions.31 

Bromolactone 14 could be synthesized from α–ketoester 15 via condensation of hydroxylamine, 

epoxidation, ester deprotection, and bromolactonization. α–ketoester 15 could be synthesized via 

Claisen rearrangement of α,β–unsaturated ester 16. This intermediate was deemed to be convenient 

because, although unknown in the literature, the corresponding alcohol is known.48 Additionally, 

the corresponding aromatic variant of α,β–unsaturated ester 16 is also known.49 The aromatic 

variant is synthesized from the corresponding phenol. Thus, using a literature precedented strategy, 

intermediate 16 should be easily accessible and should enable access to more advanced 

intermediates along this route. α, β–unsaturated ester 16 was envisioned to be accessible in a few 

steps from benzoic acid.   
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 Utilizing this strategy, many steps experienced immediate success. The steps are shown 

below (Figure 46). 

 Figure 46.  Synthesis of α–ketoester 23. 

 

 Birch reduction of cheap, commercially available benzoic acid 16 yielded 1,4-

dihydrobenzoic acid 17 in 90% yield.50 This reaction has been performed on up to fifteen gram 

scale without reduction in yield. Utilizing Fischer’s esterification conditions afforded methyl ester 

18 in good yields. Epoxidation using meta-chloroperbenzoic acid (mCPBA) followed by 

elimination with triethyl amine afforded known allylic alcohol 20.48  

 An O-H insertion reaction of a rhodium carbene into allylic alcohol 20 afforded 

phosphonate 21 in acceptable yields. A Horner–Wadsworth–Emmons reaction of 21 with cracked 

paraformaldehyde gave α, β–unsaturated ester 22 in poor yields.49 However, at this stage 

optimization was not a priority. The goal was to show the viability of the proposed strategy. 

Heating α,β–unsaturated ester 22 in toluene to 120 ˚C overnight resulted in the formation of α–

ketoester 23.  
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 The ability of this route to afford advanced intermediate had been demonstrated. However, 

in order to push forward with this strategy, an alternative ester protecting group would be needed 

to enable orthogonal deprotection. The ethyltrimethylsilyl protecting group was chosen for its 

facile deprotection conditions. The previously employed, synthetic sequence was scaled up using 

the new, ester protecting group. Using this new protecting group, the O-H insertion reaction 

proceeded at 27% yield. The subsequent Horner–Wadsworth–Emmons reaction no longer gave 

any product. Attempts to optimize the conditions for this transformation were unfruitful.  
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Chapter 6: Enolate Alkylation Strategy 

 At the same time that the Claisen rearrangement route was stalling, other strategies towards 

the ketoester were being pursued. One option that had not previously been considered was the 

direct alkylation of ester 24 with an α–bromo ketoester such as 25 to give desired α–ketoester 26 

(Figure 47). If successful, this would provide the first example of this type of selective SN2 reaction 

with an α–bromo ketoester.  

 Figure 47. Proposed alkylation of ester 24. 

 

 

 Unfortunately, the desired alkylated product 26 was not formed under the reaction 

conditions. It was reasoned that the electrophile was too activated to undergo a selective SN2 

reaction. This gave some hope, however, that if the electrophile could be sufficiently deactivated, 

selective SN2 attack could occur. One way to deactivate this electrophile could be to first 

condense TBS-protected hydroxylamine onto the ketone (Figure 48). 

 Figure 48. Novel α–bromo oximoester electrophile.   

 

 In the event, formation of the lithium enolate of 24 by LHMDS followed by treatment with 

α–bromo oximoester 27 afforded alkylated product 28 in 77% yield (Figure 49).  
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 Figure 49. Expedited synthesis through alkylation 

 

This alkylation afforded an intermediate in one step and high yield that is more advanced 

than the intermediate formed in five steps and very low yields using the Claisen rearrangement 

strategy. At this stage gram quantities of alkylated product 28 were easily accessible, and this 

facilitated advancement of the front line of the synthesis.  

 At this stage it was envisioned that either of two routes could lead to the desired product. 

Either first deprotection and bromolactonization or epoxidation, followed by the other, could lead 

to the desired arene oxide equivalent diene 9 (Figure 50). It was imagined that one of these routes 

would work more effectively than the other and that it would be advantageous to test both. Again,

 Figure 50. Revised strategy towards key intermediate 9. 

 

the ester protecting group had to be switched to enable orthogonal deprotection with other 

functional groups. The trichloroethyl protecting group was chosen for its facile deprotection 

conditions with zinc.  
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Moving forward with the bromolactonization strategy, deprotection of 29 with zinc 

afforded carboxylic acid 33 in good yields.51 Bromolactonization on substrates of this type are 

typically performed utilizing bromine in a 1:1 mixture of aqueous sodium bicarbonate and 

dichloromethane.31 Attempts to use these conditions on carboxylic acid 33 resulted in 37% yield 

of desired bromolactone 30 along with a mixture of bromohydrin side products. Attempts to 

optimize these conditions by lowering the temperature or slowing the addition of bromine were 

unsuccessful.  

 Alternatively, it is known that asymmetric bromolactonization can be conducted with N-

bromosuccinimide at –40 ̊ C with (DHQD)2PHAL in a ligand accelerated manner.52 Utilizing these 

conditions on acid intermediate 33 resulted in 40% yield of desired product with no side  

Figure 51. Synthesis of bromolactone 34 en route to undesired aromatization. 

 

 

products. This was a clear improvement over the previous set of conditions. However, the reaction 

still suffered from relatively low yields. It was reasoned that perhaps if this reaction worked at cold 

temperatures in a ligand accelerated manner, it would be possible to take out the expensive, chiral 
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ligand and run the reaction at room temperature. Gratifyingly, this was successful, and good yields 

were obtained using this procedure (Figure 51). 

Epoxidation of the resulting bromolactone proved challenging. Treating 31 with five 

equivalents of mCPBA and stirring at room temperature overnight resulted in recovered starting 

material. More activated peroxyacids such as trifluoroperoxyacetic acid also did not successfully 

effect this transformation. Use of dimethyldioxirane also did not work. However, the more 

activated methyl(trifluoromethyl)dioxirane afforded the arene oxide equivalent 34 in 

approximately 70% yield in a 3:1 mixture of diastereomers.  

It had been observed by Carrie Levinn in Sarlah Group that deprotection of bromolactone 

34 with TBAF did not afford the desired product. Instead, the deprotected oxime opened the 

strained, four-member lactone to give a bromohydrin product. Since this strategy did not work, an 

alternative strategy was pursued. Perhaps arene oxide equivalent 9 could be synthesized from the 

corresponding arene oxide. Deprotection with TBAF should afford an oxime nucleophile without 

another intramolecular electrophile to compete with the epoxide, so selective attack at the epoxide 

should occur. It had been reported that substituted arene oxides can be much more stable than 

benzene oxide, which has a half-life on the order of minutes at room temperature.14 Certain 

substituted arene oxides were even stable to flash chromatography.31 Unfortunately, treatment of 

bromolactone 34 with DBU formed the corresponding phenol 35, likely through NIH shift of the 

arene oxide.53 Thus, neither proposed strategy from bromolactone 34 successfully afforded the key 

diene 9.  

Alternatively, deprotection of epoxide 31 could possibly afford the 1,2-oxazadecaline core. 

There would not be a strained lactone to act as a competing electrophile in this case. Using 

conditions that had been previously optimized by Carrie Levinn, epoxidation of 29 with mCPBA 



 
 

39 
 

gave a single diastereomer in 94% yield by recovered starting material.  A crystal structure of this 

epoxide was obtained and revealed the oxime stereochemistry (Figure 52). 

Figure 52. Crystal structure of epoxide 30. 

 

Treatment of epoxide 31 with TBAF was expected to afford ring closed product 36.   

Figure 53. Synthesis of spirocycle 37. 

 

However, this was not the observed product. Instead, the oxime attacked the ester to afford 

spirocycle 37 (Figure 53).  

This was discouraging until it was noted that if treated with sodium hydroxide, a 

carboxylate species would be form, releasing a deprotected oxime. This oxime would certainly 
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have no competing electrophile to the epoxide for nucleophilic attack. Utilizing these conditions 

on spirocycle 37 afforded a product whose proton NMR is consistent with diacid 38 (Figure 54). 

Attempts to isolate this compound and to perform a bromolactonization reaction were 

unsuccessful.  

Figure 54. Synthesis of diacid 38. 

 

Distinguishing between ring closed 38 and a ring opened product containing an epoxide 

and an oxime proved to be a challenging task by NMR. Current efforts are attempting to unveil 

efficient crystallization conditions of this compound.  

Diacid 38 would be difficult to use as a synthetic intermediate. It contains two carboxylic 

acids and an alcohol, and extraction of 38 from the aqueous layer was unlikely. In order to avoid 

synthesizing an intermediate so polar, a one-pot procedure was attempted. The goal was to form 

diacid 38 using sodium hydroxide, to quench basicity with sodium bicarbonate, and to add NBS 

to effect bromolactonization and afford bromolactone 39. If successful, the product of this 

sequence would likely be much less polar than diacid 38 and could potentially be extracted from 

the aqueous later. Unfortunately, this procedure did not afford the desired product.  

An alternative strategy to avoid the formation of water soluble intermediate was devised. 

First allylic bromination of spirocycle 37 could afford allylic bromide 40.54, 55 Treatment of this 

compound with sodium hydroxide could effect a decarboxylative debromination reaction to 

directly afford key diene 9 (Figure 55).56  
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Figure 55. Decarboxylative debromination strategy towards 9. 

 

Allylic bromination of spirocycle 37 using NBS and AIBN afforded allylic bromide 40. 

The conditions for this reaction are at present unoptimized. Current efforts are focusing on 

synthesizing large quantities of 40 in order to optimize conditions for the decarboxylative 

debromination step.  
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Chapter 7: Future Directions 

 Future work will focus on identifying conditions to synthesize key diene intermediate 9 

and to effect the cascade sequence to furnish the fully substituted oxazadecaline core. This could 

be done from either of the two advanced intermediates previously synthesized (Figure 56).  

 Figure 56. Strategies towards diene 9. 

 

 

 Additionally, a goal will be to cut out unnecessary steps wherever possible. One way to do 

this may be to use a novel oxime protecting group on the carboxylic acid followed by 

intramolecular alkylation (Figure 57). Epoxidation of this intermediate would yield epoxide 31.  

 Figure 57. Intramolecular alkylation strategy.  

 

 Another strategy to reduce the step count could be to quench the Birch reduction with an 

electrophile instead of a proton source (Figure 58). 

 Figure 58. Alternative Birch reduction procedure 
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Chapter 8: Conclusion 

 A concise strategy affording advanced intermediates en route to the total synthesis of 

trichodermamide B has been presented. This strategy was enabled by the discovery of a novel α–

bromo oximoester electrophile for alkylation. The goal moving forward will be to synthesize the 

key arene oxide equivalent diene 9 which could be accomplished in a single step from allylic 

bromide 40. Once diene 9 is synthesized, a cascade sequence featuring a hetero-Diels–Alder 

reaction with singlet oxygen should furnish the fully substituted oxazadecaline core. Subsequently, 

an amide coupling reaction should furnish the natural product. This strategy will enable access to 

trichodermamide B in far fewer steps than any previously reported synthesis and should afford 

enough material to conduct mechanism of action studies.   
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Appendix 

General Procedures 

 All reactions were performed without rigorous drying of solvents or glassware unless 

otherwise noted. Dry tetrahydrofuran (THF) was obtained by passing commercially available pre-

dried, oxygen-free formulations through activated alumina columns. Yields reported are of 

chromatographically and spectroscopically (1H NMR) homogenous materials. Reagents were 

purchased and used without further purification unless otherwise noted.  

1H NMR and 13C NMR were recorded on a Varian Unity 400/500 MHz (100/125 MHz 

respectively for 13C) or a VXR-500 MHz spectrometer. Spectra were referenced using CDCl3 as 

solvents with the residual solvent peak as the reference (1H NMR: δ 7.26 ppm, 13C NMR: δ 

77.00 ppm for CDCl3). Chemical shifts were reported in parts per million and multiplicities are 

as indicated: s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Coupling constants, 

J, are reported in Hertz and integration is provided.  

High-resolution mass spectra (HRMS) were recorded on a Micromass Q-Tof Ultima 

spectrometer using ESI (electrospray ionization). Infrared (IR) spectra were recorded on an ATR 

FT-IR spectrometer. 

Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. 

Merck silica gel plates (60F-254) using UV light as visualizing agent and a solution of KMnO4, 

and heat as developing agents. E. Merck silica gel (60, particle size 0.040–0.063 mm) was used 

for flash column chromatography. 
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Experimental Procedures and Characterization 

Ester 32: To a 50 mL round – bottom flask was added a stir bar, 1,4 – dihydrobenzoic 

acid 17 (2.00 g), trichloroethanol (20 mL), and H2SO4 (1.0 mL). The round – bottom 

flask was covered with a yellow cap and was sealed with parafilm. This solution was 

stirred at room temperature for 48 hours. The solution was cooled to 0 ˚C and was quenched with 

aqueous NaHCO3. The layers were separated, and the aqueous layer was extracted with DCM (3 

x 10 mL). The combined organics were dried over MgSO4 and filtered. Flash chromatography 

(13:1 Hex/EtOAc) gave the title compound (3.05 g, 74% yield). Rf = 0.4 in 10:1 Hex/EtOAc. FT-

IR (neat) νmax = 1750, 1268, 1143, 1084, 1032, 893, 777, 714, 666, 569. HRMS (ESI-TOF) calcd 

for C9H9O2Cl3 [M + Na]+ = 253.9669, found 253.9659. 1H NMR (CDCl3, 500 MHz) δ = 5.95 (m,  

2 H), 5.87 (m, 2 H), 4.77 (s, 1 H), 3.89 (m, 2 H), 2.72 (m, 2 H). 13C NMR (CDCl3, 125 MHz) δ = 

171.0, 127.3, 121.3, 74.3, 41.6, 26.0. 

Bromide 27: To a 1L round – bottom flask was added a stir bar, ethyl 

bromopyruvate (8.43 mL, 67.0 mmol), DCM (300 mL), and TBS – hydroxylamine 

(9.87 g, 67.0 mmol), pyridinium p – toluenesulfonate (100 mg, 0.40 mmol), and 

4 Å mol sieves (100 mg). The round – bottom flask was covered with a yellow cap, sealed with 

parafilm, and wrapped in aluminum foil. This mixture was allowed to stir for 48 hours. The 

solution was diluted with DCM (200 mL) and filtered over a frit covered with celite and sea sand 

layers. The filtrate was washed with saturated aqueous NaHCO3 (300 mL). The aqueous layer was 

extracted with DCM (3 x 100 mL). The combined organics were washed with brine then dried over 

MgSO4 and filtered. Flash chromatography (20:1 Hex/EtOAc → 10:1 Hex/EtOAc → 5:1 

Hex/EtOAc, ensuring to wet load the compound onto a layer of sand and not directly onto the 

silica gel) gave the title compound (18.24 g, 84%). Rf = 0.7 in 5:1 Hex/EtOAc. FT-IR (neat) νmax 

https://en.wikipedia.org/wiki/%C3%85
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= 1722, 1332, 1253, 1224, 1181, 1013, 987, 833, 785, 686. HRMS (ESI-TOF) calcd for 

C11H23NO3BrSi [M + Na]+ = 324.0631, found 324.0631. 1H NMR (CDCl3, 500 MHz) δ = 4.33 

(q, J = 7.0 Hz, 2 H), 4.23 (s, 2 H), 1.35 (t, J = 7.0 Hz, 3 H), 0.97 (s, 9 H), 0.25 (s, 6 H). 13C NMR 

(CDCl3, 125 MHz) δ = 162.5, 152.5, 62.1, 25.9, 18.2, 16.2, 14.2, – 5.2. 

Alkylated Product 29: To a flame-dried, 200 mL round-bottom flask under 

a nitrogen atmosphere was added THF (50 mL) and HMDS (1.65 mL, 7.86 

mmol). This solution was cooled to -78˚C. n-BuLi (4.53 mL, 7.86 mmol) was 

added dropwise. This was allowed to stir for fifteen minutes. 26 (1.54 g in 2 mL THF, 6.04 mmol) 

was added dropwise, and the resulting solution was allowed to stir for thirty minutes. 23 (1.96 g 

in 2 mL THF, 6.04 mmol) was added dropwise. This solution was allowed to stir for one hour 

before quenching with NH4Cl (sat. aq., 15 mL). The layers were separated, and the aqueous layer 

was extracted with ether (3 x 10 mL). The combined organics were dried over MgSO4 and filtered. 

Flash chromatography (25:1 Hex/EtOAc) gave the title compound (1.58 g, 52% yield). Rf = 0.6 in 

5:1 Hex/EtOAc. FT-IR (neat) νmax = 1747, 1721, 1185, 1138, 992, 967, 837, 781, 715, 686. HRMS 

(ESI-TOF) calcd for C20H30NO5NaSiCl3 [M + Na]+ = 520.0843, found 520.0857. 1H NMR (CDCl3, 

400 MHz) δ = 5.83 (m, 4 H), 4.75 (s, 2 H), 4.23 (q, J = 7.1 Hz, 2 H) 3.24 (s, 2 H), 2.59 (m, 2 H), 

1.30 (t, J = 7.1 Hz, 3 H), 0.95 (s, 9 H), 0.19 (s, 6 H). 13C NMR (CDCl3, 125 MHz) δ = 172.1, 164.8, 

153.8, 126.9, 125.6, 95.1, 74.5, 61.6, 47.9, 33.6, 26.2, 26.0, 18.2, 14.3, – 5.0. 

Epoxide 31: To a 50 mL round – bottom flask was added a stir bar, alkylated 

product 29 (768 mg, 1.40 mmol), and DCM (16 mL). The flask was cooled to 

0 ̊ C. NaHCO3 (647 mg, 7.00 mmol) was added followed by mCPBA (414 mg, 

70% pure, 1.68 mmol). The round – bottom flask was allowed to warm to room temperature, and 

the mixture was stirred for 48 hours. The reaction was quenched with saturated aqueous Na2S2O3 
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(8 mL). Water (15 mL) was added to dissolve the white solid. The layers were separated and the 

aqueous layer was extracted with DCM (3 x 10 mL). The combined organics were dried over 

MgSO4 and filtered. Flash chromatography (20:1 Hex/EtOAc → 8:1 Hex EtOAc) gave the title 

compound (299 mg, 43% yield) and recovered starting material (391 mg, 51%). Rf = 0.5 in 5:1 

Hex/EtOAc. FT-IR (neat) νmax = 1753, 1720, 1253, 1197, 978, 910, 837, 785, 730, 687. HRMS 

(ESI-TOF) calcd for C20H31NO6SiCl3 [M + Na]+ = 514.0986, found 514.0993. 1H NMR (CDCl3, 

500 MHz) δ = 5.71 (m, 1 H), 5.48 (m, 1 H), 4.83 (d, J = 2.2 Hz, 2 H), 4.24 (m, 2 H), 3.67 (m, 1 

H), 3.40 (d, J = 12.5 Hz, 1 H), 3.23 (m, 1 H), 3.16 (d, J = 12.5 Hz, 1 H), 2.51 (m, 1 H), 2.34 (dq, J 

= 19.5, 2.4 Hz, 1 H), 1.31 (t, J = 12.5, 3 H), 0.95 (s, 9 H), 0.20 (d, 6 H). 13C NMR (CDCl3, 125 

MHz) δ = 171.0, 164.3, 152.8, 123.6, 123.3, 94.8, 74.5, 61.7, 55.6, 51.4, 48.3, 30.3, 26.0, 24.7, 

18.2, 14.2, -5.0, -5.1.  

Spirocycle 37: To a 4 mL vial was added a stir bar, epoxide 31 (30 mg, 0.058 

mmol), and DCM (580 μL). To this vial was added TBAF (15 mg, 0.057 mmol) 

in a single portion. This solution was allowed to stir at room temperature for 

thirty minutes. The reaction was quenched by addition of aqueous NH4Cl. The layers were 

separated and the aqueous layer was extracted with DCM (3 x 500 μL). The combined organics 

were dried over MgSO4 and filtered. Flash chromatography (2:1 Hex/EtOAc) gave the title 

compound (9.6 mg, 68%).  Rf = 0.6 in 1:1 Hex/EtOAc. FT-IR (neat) νmax = 1774, 1714, 1281, 1142, 

993, 935, 916, 859, 815, 692. HRMS (ESI-TOF) calcd for C12H14NO5 [M + Na]+ = 252.0872, 

found 252.0861. 1H NMR (CDCl3, 500 MHz) δ = 5.97 (d, J = 9.4 Hz, 1 H), 5.30 (d, J = 9.4 Hz, 1 

H), 4.99 (s, 1 H), 4.36 (q, J = 7.2 Hz, 2 H), 4.00 (d, J = 5.6, 1 H), 2.97 (d, J = 18.6 Hz, 1 H), 2.77 

(d, J = 18.6 Hz, 1 H), 2.65 (d, J = 20.1 Hz, 1 H), 2.55 (d, J = 20.1, 1 H), 1.38 (t, J = 7.2 Hz, 3 H). 
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13C NMR (CDCl3, 125 MHz) δ = 172.3, 162.7, 148.4, 130.8, 123.8, 75.2, 72.0, 62.8, 38.7, 29.7, 

27.0, 14.4. 

Allylic bromide 40: To a 4 mL vial was added spirocycle 37 (45 mg, 0.18 

mmol), dichlorobenzene (1.8 mL), NBS (35 mg, 0.20 mmol), and AIBN (6 

mg, 0.036 mmol). The vial was sealed with a screw cap. This solution was 

heated to 90 ˚C for four hours. The solution was allowed to cool to room temperature. The reaction 

mixture was filtered over a celite covered frit. Flash chromatography (4:1 Hex/EtOAc) gave the 

title compound (6.1 mg, 10% yield). Rf = 0.4 in 3:2 Hex/EtOAc. FT-IR (neat) νmax = 1794, 1717, 

1280, 1258, 1137, 1004, 979, 940, 794, 738. HRMS (ESI-TOF) calcd for C12H13NO5Br [M + Na]+ 

= 329.9977, found 329.9969. 1H NMR (CDCl3, 400 MHz) δ = 6.07 (dt, J = 9.5, 2.3 Hz, 1 H), 5.40 

(dt, J = 9.5, 2.3 Hz, 1 H), 5.11 (dt, J = 5.8, 2.2 Hz, 1 H), 4.96 (q, J = 2.5 Hz, 1 H), 4.36 (q, J = 7.2 

Hz, 2 H), 4.11 (dt, J = 5.8, 1.2 Hz, 1 H), 3.03 (d, J = 18.8 Hz, 1 H), 2.77 (d, J = 18.8 Hz, 1 H), 1.37 

(t, J = 7.1 Hz, 3 H). 13C NMR (CDCl3, 125 MHz) δ = 171.0, 162.4, 148.7, 132.7, 125.4, 77.9, 74.7, 

63.1, 41.6, 38.4, 29.2, 14.3. 
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 Figure 59. NMR Spectra of 32. 
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Figure 60. NMR Spectra of 27. 
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Figure 61. NMR Spectra of 29. 
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Figure 62. NMR Spectra of 31. 
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Figure 63. NMR Spectra of 37. 
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Figure 64. NMR Spectra of 40. 

 

 


