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Abstract

Traditionally, much of the research in the field of optimization algorithms has assumed that problem pa-

rameters are correctly specified. Recent efforts under the robust optimization framework have relaxed this

assumption by allowing unknown parameters to vary in a prescribed uncertainty set and by subsequently

solving for a worst-case solution. This dissertation considers a rather different approach in which the un-

known or misspecified parameter is a solution to a suitably defined (stochastic) learning problem based on

having access to a set of samples. Practical approaches in resolving such a set of coupled problems have been

either sequential or direct variational approaches. In the case of the former, this entails the following steps:

(i) a solution to the learning problem for parameters is first obtained; and (ii) a solution is obtained to the

associated parametrized computational problem by using (i). Such avenues prove difficult to adopt partic-

ularly since the learning process has to be terminated finitely and consequently, in large-scale or stochastic

instances, sequential approaches may often be corrupted by error. On the other hand, a variational ap-

proach requires that the problem may be recast as a possibly non-monotone stochastic variational inequality

problem; but there are no known first-order (stochastic) schemes currently available for the solution of such

problems. Motivated by these challenges, this thesis focuses on studying joint schemes of optimization and

learning in three settings: (i) misspecified stochastic optimization and variational inequality problems, (ii)

misspecified stochastic Nash games, (iii) misspecified Markov decision processes.

In the first part of this thesis, we present a coupled stochastic approximation scheme which simultaneously

solves both the optimization and the learning problems. The obtained schemes are shown to be equipped

with almost sure convergence properties in regimes when the function f is either strongly convex as well

as merely convex. Importantly, the scheme displays the optimal rate for strongly convex problems while in

merely convex regimes, through an averaging approach, we quantify the degradation associated with learning

by noting that the error in function value after K steps is O
(√

ln(K)/K
)

, rather than O
(√

1/K
)

when

θ∗ is available. Notably, when the averaging window is modified suitably, it can be see that the original rate

of O
(√

1/K
)

is recovered. Additionally, we consider an online counterpart of the misspecified optimization

problem and provide a non-asymptotic bound on the average regret with respect to an offline counterpart.
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We also extend these statements to a class of stochastic variational inequality problems, an object that

unifies stochastic convex optimization problems and a range of stochastic equilibrium problems. Analogous

almost-sure convergence statements are provided in strongly monotone and merely monotone regimes, the

latter facilitated by using an iterative Tikhonov regularization. In the merely monotone regime, under a

weak-sharpness requirement, we quantify the degradation associated with learning and show that expected

error associated with dist(xk, X
∗) is O

(√
ln(K)/K

)
.

In the second part of this thesis, we present schemes for computing equilibria to two classes of convex

stochastic Nash games complicated by a parametric misspecification, a natural concern in the control of large-

scale networked engineered system. In both schemes, players learn the equilibrium strategy while resolving

the misspecification: (1) Stochastic Nash games: We present a set of coupled stochastic approximation

distributed schemes distributed across agents in which the first scheme updates each agent’s strategy via

a projected (stochastic) gradient step while the second scheme updates every agent’s belief regarding its

misspecified parameter using an independently specified learning problem. We proceed to show that the

produced sequences converge to the true equilibrium strategy and the true parameter in an almost sure

sense. Surprisingly, convergence in the equilibrium strategy achieves the optimal rate of convergence in a

mean-squared sense with a quantifiable degradation in the rate constant; (2) Stochastic Nash-Cournot

games with unobservable aggregate output: We refine (1) to a Cournot setting where we assume that

the tuple of strategies is unobservable while payoff functions and strategy sets are public knowledge through

a common knowledge assumption. By utilizing observations of noise-corrupted prices, iterative fixed-point

schemes are developed, allowing for simultaneously learning the equilibrium strategies and the misspecified

parameter in an almost-sure sense.

In the third part of this thesis, we consider the solution of a finite-state infinite horizon Markov Deci-

sion Process (MDP) in which both the transition matrix and the cost function are misspecified, the latter

in a parametric sense. We consider a data-driven regime in which the learning problem is a stochastic

convex optimization problem that resolves misspecification. Via such a framework, we make the following

contributions: (1) We first show that a misspecified value iteration scheme converges almost surely to its

true counterpart and the mean-squared error after K iterations is O(1/
√
K); (2) An analogous asymptotic

almost-sure convergence statement is provided for misspecified policy iteration; and (3) Finally, we present

a constant steplength misspecified Q-learning scheme and show that a suitable error metric is O(1/
√
K) +

O(
√
δ) after K iterations where δ is a bound on the steplength.
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Chapter 1

Introduction

Increasingly, optimization and game-theoretic problems need to be solved in uncertain and networked regimes

complicated by parametric misspecification. One approach relies on estimation of these parameters through

a separate learning process that necessitates aggregating data in an offline fashion. Historically, this offline

avenue can be formalized by a two-step, and in effect, a serial approach: (i) The first step requires the

learning of such parameters by possibly fitting a model to a set of samples, a problem that falls within the

purview of statistical learning [1]; (ii) Given an estimate of such parameters, optimization algorithms can be

subsequently applied. Unfortunately, in many dynamic settings complicated by streaming data and the need

for online decision-making, one cannot impose such a separation in these processes and both optimization and

learning need to be carried out simultaneously, particularly when exact solutions to the statistical learning

problem can only be obtained in the limit. An alternate approach can be constructed in settings where an

offline aggregation of data cannot be managed. Instead, in this setting, the observations are a function of the

computational decisions. In this context, we consider an online avenue that is customized to the problem of

interest (for instance stochastic Nash-Cournot games). Accordingly, in this dissertation, we consider three

problem settings corrupted by misspecification in Chapters 2–4:

(i) Static stochastic convex optimization and monotone variational inequality problems;

(ii) Static stochastic Nash games;

(iii) Markov decision processes.

Before proceeding, we provide a short motivation and discussion of the contributions in each of these chap-

ters.
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1.1 Misspecified stochastic optimization and variational

inequality problems

Convex optimization has proven to be a useful model for resolving a broad class of problems (cf. [2]). In

settings where equilibria and competition assume relevance, variational inequality problems have gained im-

mensely in relevance. Yet, in both contexts, it is assumed that the functions (in the context of optimization)

and the maps (in the variational inequality setting) are prescribed precisely. However, as problems grow in

intricacy and complexity, this assumption cannot be expected to hold. For instance, convex optimization

models have found utility in portfolio optimization; however, covariance matrices in such setting rely esti-

mation. Similarly, variational inequality formulations have allowed for capturing imperfectly competitive

equilibrium problems; again, the parametrization of the utility functions may not always be available. In

short, there is an increasing need to develop algorithms that can resolve misspecification while solving the

correctly misspecified problem.

When one considers the joint problem of learning the misspecified parameter and optimizing the system,

two approaches may be utilized: (i) The first of these is a sequential approach, i.e. specifying the model

and/or parameters based on statistical learning and then solving the resulting optimization problems of

interest. Any practically implemented sequential scheme has to terminate the learning problem after finite

time. This results in an estimator of the learning problem corrupted by error and this error propagates

into the solution of the optimization problem; (ii) A second approach uses the variational avenue and relies

on converting the joint learning and optimization problem into a higher dimensional variational inequality

problem. However, unless rather strong assumptions are imposed, the mapping associated with the varia-

tional inequality problem is not necessarily monotone, which prevents us to use recently developed stochastic

approximation schemes for solving monotone stochastic variational inequality problems.

Motivated by the lack of available simultaneous approaches, we propose coupled stochastic approximation

schemes in Chapter 2 that allows for solving misspecified stochastic optimization and variational inequality

problems. For the misspecified optimization problem, we consider the cases when the function is either

strongly convex or merely convex. Almost sure convergence properties can be shown in both cases. When

the function is strongly convex, the scheme displays the same optimal rate as the true parameter is available,

i.e. O
(√

1/K
)

after K steps. While in merely convex regimes, we can quantify the degradation associated

with learning by using an averaging method, and the error in function value after K steps is O
(√

ln(K)/K
)

,

rather than O
(√

1/K
)

when parameter information is available. To recover the original rate of O
(√

1/K
)

,

we modify the averaging window and get the desired result. In addition, we consider an online counterpart

of the misspecified optimization problem and provide a non-asymptotic bound on the average regret. All of

2



these results can be extended to a class of misspecified stochastic variational inequality problems, which are

general cases for stochastic convex optimization and a range of stochastic equilibrium problems. A major

difference lies in the merely monotone regimes. We need to use an iterative Tikhonov regularization to get

almost-sure convergence results in that case. Also, under merely monotone assumptions, we can quantify the

degradation associated with learning and show that the expected distance between the iterate and optimal

set is O
(√

ln(K)/K
)

.

1.2 Misspecified stochastic Nash games

While convex Nash games can be compactly captured by a variational inequality problem, the contributions

of the prior section cannot adequately address the intricacies that are presented by Nash games. For instance,

a key concern in the computation of equilibria is the need for developing distributed protocols that abide

by privacy concerns. This motivates the next chapter of this dissertation. In particular, when designing

protocols for Nash games, particularly in the absence of a centralized controller, the goal lies computing

Nash equilibria when the utility functions are misspecified and rely on agent-specific information that can

only be learnt through a set of offline observations. In many regimes, this set of observations may not be

available. Consider, for instance, a Nash-Cournot game in which each player decides its own production

level of a common commodity while the price of the commodity is based on the aggregate sales. In this

regime, players may have a correct model for the price function but an incorrect estimate of its parameters.

In this setting, our intent lies in developing an online scheme which relies on observing true prices that

allows for learning the misspecified price function parameter. This avenue does not necessitate accumulating

observations.

Motivated by these challenges, in Chapter 3, we propose schemes for computing equilibria to misspecified

stochastic Nash games. In the proposed schemes, players learn the equilibrium strategy while resolving

the misspecification. We consider two settings: (1) general stochastic Nash games with observable aggregate

output; (2) stochastic Nash-Cournot games with unobservable aggregate output. In the first case, we propose

coupled stochastic approximation distributed schemes across agents. Each agent updates its strategy through

a gradient step while updating its belief regarding misspecified parameters through a learning step. Both

the true equilibrium strategy and the true parameter can be shown to be achieved in an almost sure sense.

The scheme displays the same optimal rate of convergence in the equilibrium strategy in a mean-squared

sense as the true parameter is available. In the second case, we consider a special type of Nash games,

i.e. Nash-Cournot game, and assume that the aggregate output is unavailable. In addition, we impose a

common knowledge assumption: payoff functions and strategy sets are public knowledge. This is a common

3



assumption for analyzing Nash-Cournot games without information of aggregate output. By using the

difference between the observed true price and estimated price, we propose iterative fixed-point schemes

which can learn the equilibrium strategies and the misspecified parameter simultaneously in an almost-sure

sense. Furthermore, we can extend the result to nonlinear price functions.

1.3 Misspecified Markov decision processes

While the previous two sections have considered static problems, a natural extension lies in sequential

decision-making problems. In particular, we consider the Markov decision-making problems (MDPs). Such

problems assume relevance in a range of settings (cf. [3, 4]). Yet, in such sense, the transition matrices

and the cost functions may be misspecified. Several avenues have been adopted when transition matrices

are not known precisely including robust optimization and Q-learning. Yet, there is little available when

cost functions are misspecified and in the presence of streaming data, traditional schemes cannot be directly

employed. In fact, there is little by way of asymptotics and error analysis for resolving such MDPs with

streaming data. Similarly as in misspecified stochastic optimization problems, sequential approaches can, at

best, provide approximate solutions.

Motivated by these challenges, we propose a simultaneous scheme for learning and computation in Chap-

ter 4 to solve a finite-state infinite horizon MDP in which the transition matrix and the parametrization

of the cost function are unavailable. We consider a data-driven regime in which the learning problem is

a stochastic convex optimization problem that resolves misspecification. Three types of schemes are con-

sidered: (1) misspecified value iteration scheme; (2) misspecified policy iteration scheme; (3) misspecified

Q-learning scheme. The misspecified value iteration scheme can be shown to converge almost surely to its

true counterpart and the associated mean-squared error of convergence is provided based on the presence of

learning. When the steplength is constant, we can also get an optimized error bound for the value funtion

in terms of the number of iteration steps. In the context of misspecified policy iteration scheme, we can

provide an analogous asymptotic almost-sure convergence statement and error analysis as in the case with

information of the transition matrix and cost function. Finally, we present a constant steplength misspecified

Q-learning scheme and provide a suitable error bound based on iteration steps and steplength.

1.4 Notation

Throughout the paper, we use ‖x‖ to denote the Euclidean norm of a vector x, i.e., ‖x‖ =
√
xTx. We use

ΠK to denote the Euclidean projection operator onto a set K, i.e., ΠK(x) , argminy∈K ‖x − y‖. A square

4



matrix H is said to be a P-matrix if every principal minor of H is positive. Similarly, H is a P0-matrix if

every principal minor of H is nonnegative.

5



Chapter 2

Misspecified Stochastic Optimization
and Variational Inequality Problems

2.1 Introduction

In the last two decades, robust optimization [5, 6] approaches have grown in relevance when decision-makers

are faced with optimization problems with uncertain parameters. Succinctly, in such an approach, given an

uncertainty set that captures the realizations assumed by such a parameter, the robust solution represents

the worst-case over this set of realizations. Naturally, an appropriate choice of such an uncertainty set is

crucial and as the availability of data reaches levels hitherto unseen, there is growing interest in data-driven

approaches [7] for constructing such sets. Our interest is in closely related yet distinct settings driven by data

in which the point estimate of a parameter may be obtained through a learning problem, suitably defined

through the aggregation of data. We provide two instances of such problems:

(i) Portfolio optimization Portfolio optimization problems prescribe the optimal constructions of port-

folios over a set of assets, for which the mean and covariance of returns are not necessarily known. Traditional

approaches have assumed that such returns are available while more recent robust optimization models have

utilized factor-based models in constructing uncertainty sets [8, 9, 10]. An alternate, and possibly less con-

servative, data-driven model of such a problem that employs a point estimate of the mean and covariance

matrix requires the solution of two coupled problems: (1) A portfolio optimization problem parametrized by

(θ∗,Σ∗) representing the mean and covariance matrix of returns; and (2) A learning problem that utilizes

data to obtain the best (θ∗,Σ∗).

(ii) Power systems operation The operation of power grids relies on the solution of hourly (or more

frequent) commitment and dispatch problems, each of which is reliant on a range of parameters that are often

uncertain. These parameters include supply-side information regarding capacity of wind-power as well as

load forecasts. Recently robust optimization approaches have proved to be exceedingly popular [11, 12, 13].

An alternate formulation is given by the following two coupled problems: (1) An economic dispatch problem

parametrized by θ∗, a vector that captures the unknown supply and demand side parameters; and (2) A

6



learning problem that computes θ∗ through the accumulation of data.

We believe that such coupled formulations have broad applicability beyond merely the settings mentioned

above in (i) and (ii). They may also find application in inventory control problems with stochastic demand [14,

15, 16, 17], robust network design [18], robust routing in communication networks [19], amongst others. To

recap the difference between the two problem frameworks, it can be seen that (R-Opt), a robust optimization

framework, minimizes the worst-case of the optimal value f(x; θ) over the uncertainty set Uθ while (L-Opt)

considers the joint solution of an optimization problem in x, parametrized by θ∗, where θ∗ is a solution to a

learning problem with a metric g(θ). The following formulations may provide a clearer comparison:

R-Opt minimize max
θ∈Uθ

f(x; θ)

subject to x ∈ X.

L-Opt minimize
x∈X

f(x; θ∗)

minimize
θ∈Θ

g(θ)

We consider regimes where the function f(x; θ) is a convex expected-value function and the resulting problem

is given by the following:

min
x∈X

E[f(x; θ∗, ξ(ω))], (Pox(θ∗))

where X ⊆ Rn is a closed and convex set, ξ : Ω→ Rd is a d−dimensional random variable defined on a prob-

ability space (Ω,Fx,Px), f : X ×Rd×Rm → R is a real-valued function, and θ∗ denotes an m−dimensional

vector of parameters. Estimating such parameters often requires the resolution of a suitably defined learning

problem, given by a stochastic optimization problem (Lθ), and defined next:

min
θ∈Θ

g(θ) , E[g(θ; η)], (Lθ)

where Θ ⊆ Rm is a closed and convex set, η : Λ → Rp is a random variable defined on a probability space

(Λ,Fθ,Pθ), and g : Θ× Λ→ R is a real-valued function. When one considers the joint problem of learning

and optimization, then there are at least two obvious approaches that immediately emerge as possibilities:

(a) Sequential approach: Consider an inherently serial process wherein the first stage incorporates a

model/parameter specification phase based on statistical learning while the second stage leverages these

findings in developing and solving the actual optimization problem of interest. Such an ordering relies on

the learning problems being relatively small and tractable compared to the optimization problems, ensuring

that accurate solutions are available within a reasonable time period. Strictly speaking, if one terminates

the learning process prematurely with an estimator θ̂, the resulting estimator is essentially corrupted by
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error in that θ̂ 6= θ∗. This error propagates into the solution x̂ of the computational problem, denoted by

Pox(θ̂) and the associated gap might be quite significant. Note that unless the learning problem is solvable

via a finite termination algorithm, such a approach cannot provide asymptotic statements but can, at best,

provide approximate solutions. Consequently, an inherently serial process reliant on a prematurely truncated

learning scheme often fails to provide accurate solutions to the computational problem.

(b) Variational approach: Under suitable convexity and differentiability requirements, the following holds:

x∗ solves (Pox(θ∗)) and θ∗ solves (Lθ),

if and only if (x∗, θ∗) is a solution to the (stochastic) variational inequality problem VI(Z,F ) [20] where

Z , X ×Θ and H(z) ,

E[∇xf(x; θ, ξ)]

E[∇θg(θ; η)]

 .

Recall that z∗ is a solution to VI(Z,F ) if (z− z∗)TF (z) ≥ 0 for all z ∈ Z. Furthermore, if x∗ and θ∗ denote

solutions to (Pox(θ∗)) and (Lθ), respectively, then an oft-used avenue in obtaining a solution (x∗, θ∗) entails

obtaining a solution to VI(Z,F ). However, unless rather strong assumptions are imposed, the map H is not

necessarily monotone, precluding the use of recently developed stochastic approximation schemes for solving

monotone stochastic variational inequality problems [21, 22, 23], extragradient-based variants [24, 25], and

accelerated approaches [26].

Simultaneous approach: This chapter is motivated by the inadequacy of available approaches and, more

generally, the absence of asymptotically convergent schemes with provable non-asymptotic rates. We present a

framework where the learning and the computational problems are solved simultaneously via a joint set of

stochastic approximation schemes. Such an avenue has several advantages. First, under such an approach,

one can provide rigorous statements of asymptotic convergence of the obtained estimators for both, the

solution to the computational problem and the associated learning problem. Second, error bounds on the

expected error can be provided for a fixed number of steps under a regime with constant and diminishing

steplengths. Third, the statements may be extended to the variational regime in which the computational

problem is given by the variational counterpart of (Pox(θ∗)), given by (Pvx(θ∗)); such a problem requires an

x∗ ∈ X such that

E[F (x∗; θ∗, ξ(ω))]T (x− x∗ ) ≥ 0, ∀x ∈ X, (Pvx(θ∗))

where X ⊆ Rn is a closed and convex set, ξ : Ω → Rd is a d−dimensional random variable defined on a
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probability space (Ω,Fx,Px), F : X ×Rd ×Rm → Rn is a real-valued continuous mapping. Note that when

F (x∗; θ∗, ξ) , ∇xf(x∗; θ∗, ξ), this reduces to a convex optimization problem. Furthermore, the choice of

using a variational problem, rather than merely an optimization problem, is founded on the need to model

a variety of multiagent settings complicated by a breadth of strategic interactions, ranging from purely

cooperative to distinctly noncooperative [27].

2.1.1 Related decision-making models

While unaware of the availability of general purpose tools that can resolve precisely such problems, we

describe settings where such questions have assumed relevance:

Adaptive control [28]: In tracking problems in adaptive control [29], the authors consider a perturbation

approach for analyzing a adaptive tracking algorithm and consider three estimation schemes, specifically

least mean squares (LMS) scheme, its recursive variant (RLMS), and the Kalman filter (which requires

some distributional assumptions on the noise). First, much of this treatment is in the unconstrained regime

with tractable (often quadratic estimation objectives), allowing for deriving closed-form (and often linear)

update rules. Second, when the noise in the estimation process is Gaussian, the Kalman filter provides

a minimum variance estimator. If on the other hand, the noise is non-Gaussian, then the Kalman filter

provides the optimal linear estimator (in the sense that no linear filter provides smaller variance). In fact,

these assumptions often form the basis of most adaptive control algorithms (cf. [30] and [31] for a discussion

adaptive control and stochastic approximation.) Our focus is on static stochastic problems with far less

assumptions on the nature of the problem and the associated distributions. Specifically, we allow for more

general stochastic convex objectives (or monotone maps in the context of VIs) in either the optimization or

the learning problem, allow for convex feasibility sets for both the optimization or the learning problems,

and impose relatively mild moment assumptions on the noise (unlike the Gaussian assumptions that are

necessary in some of the estimation models).

Iterative learning control: A related avenue lies in iterative learning control (ILC) has its roots in the

studies by Uchiyama [32] and Arimoto et al. [33]. ILC [34] is a form of tracking control employed for repetitive

control problems, instances being chemical batch processes, robot arm manipulators, and reliability testing

rigs. Our problem is more restrictive in its focus (static problems) but allow for more general settings in

terms of nonlinearity and the underlying distributional requirements.

Multi-armed bandit problems: The multi-armed bandit (MAB) problem considers the question of how

to play given a collection of slot machines faced by a gambler. Each machine provides a random reward

from a distribution specific to that machine. The gambler aims to maximize the expected sum of rewards
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earned through a sequence of lever pulls. The total discounted reward is maximized by the index policy

that pulls the bandit having greatest value of the Gittins index [35]. In effect, the reward function needs to

be learnt while optimizing the system. There has been significant research on such problems over the last

several decades, including on the question of computation [36] and finite-time analysis [37].

Finally, related questions have also been studied in revenue management where [38] examined the devas-

tating effect of learning with an incorrect model while maximizing revenue.

2.1.2 Outline and contributions

Broadly speaking, this chapter focuses on the development of stochastic approximation schemes that gen-

erate iterates {xk} and {θk} and makes the following contributions. (i) In Section 2.2, we prove the a.s.

convergence of the produced iterates to the prescribed solutions and derive error bounds in a standard and

an averaging regime. In particular, we quantify the degradation in the convergence rate from introducing

an additional learning phase; (ii) Section 2.2 concludes with a precise non-asymptotic bound on the average

regret associated with employing the proposed scheme instead of an offline algorithm; (iii) In Section 2.3,

we extend the a.s. convergence results to accommodate stochastic variational inequality problems, rather

than merely convex optimization problems. Error analysis is carried out under a suitably defined growth

property; (iv) In Section 2.4, we provide some supporting numerics and conclude in Section 2.5.

2.2 Stochastic optimization problems with imperfect information

In this section, we focus on examining (Pox(θ∗)) under various assumptions. We begin by stating the coupled

stochastic approximation scheme and providing the necessary assumptions in Section 2.2.1. Convergence

analysis of the presented scheme is provided in Section 2.2.2 while diminishing and constant steplength

rate analysis is performed in Section 2.2.3. We conclude with a discussion of an online algorithm with the

associated bounds on the decay of average regret in Section 2.2.4.

2.2.1 Algorithm statement and assumptions

As mentioned in the previous section, we propose a set of coupled stochastic approximation schemes for

computing x∗ and θ∗.
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Algorithm 1 (Coupled SA schemes for stochastic optimization problems). Step 0. Given x0 ∈

X, θ0 ∈ Θ and sequences {γk,x, γk,θ}, k := 0

Step 1.

xk+1 := ΠX

(
xk − γk,x(∇xf(xk; θk) + wk)

)
, k ≥ 0 (Optk)

θk+1 := ΠΘ

(
θk − γk,θ(∇θg(θk) + vk)

)
, k ≥ 0 (Learnk)

where wk , ∇xf(xk; θk, ξk)−∇xf(xk; θk) and vk , ∇θg(θk; ηk)−∇θg(θk).

Step 2. If k > K, stop; else k := k + 1, go to Step. 1.

We begin by stating an assumption on the functions f and g.

Assumption 1 (Problem properties, A1-1). Suppose the following hold:

(i) For every θ ∈ Θ, f(x; θ) is strongly convex and continuously differentiable with Lipschitz continuous

gradients in x with convexity constant µx and Lipschitz constant Lx, respectively.

(ii) For every x ∈ X, the gradient ∇xf(x; θ) is Lipschitz continuous in θ with constant Lθ.

(iii) The function g(θ) is strongly convex and continuously differentiable with Lipschitz continuous gradients

in θ with convexity constant µθ and Lipschitz constant Cθ, respectively.

Under Assumption (A1-1), the coupled problem admits a unique solution, as shown next.

Lemma 1 (Solvability). Consider the problems (Pox(θ∗)) and (Lθ) and suppose assumption (A1) holds.

Then (Pox(θ∗)) and (Lθ) collectively admit a unique solution.

Proof. This follows from the strong convexity of g over Θ and the strong convexity of f(•; θ) over X.

Additionally, we make the following assumptions on the steplength sequences employed in the algorithm.

Assumption 2 (Steplength requirements, A2-1). Let {γk,x} and {γk,θ} be chosen such that:

(i)
∑∞
k=0 γk,x =∞,

∑∞
k=0 γ

2
k,x <∞

(ii) γk,θ = γk,xL
2
θ/(µxµθ).

We define a new probability space (Z,F ,P), where Z , Ω× Λ, F , Fx × Fθ and P , Px × Pθ. We use

Fk to denote the sigma-field generated by the initial points (x0, θ0) and errors (wl, vl) for l = 0, 1, · · · , k− 1,

i.e., F0 =
{

(x0, θ0)
}

and Fk =
{

(x0, θ0),
(
(wl, vl), l = 0, 1, · · · , k − 1

)}
for k ≥ 1. We make the following

assumptions on the filtration and errors.
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Assumption 3 (A3). Let the following hold:

(i) E[wk | Fk] = 0 and E[vk | Fk] = 0 a.s. for all k.

(ii) E[‖wk‖2 | Fk] ≤ ν2
x and E[‖vk‖2 | Fk] ≤ ν2

θ a.s. for all k.

We conclude this subsection by stating three results (without proof) that will be subsequently employed

in developing our convergence statements. The first two of these are relatively well-known super-martingale

convergence results (cf. [39, Lemma 10, Pg. 49–50])

Lemma 2. Let vk be a sequence of nonnegative random variables adapted to σ-algebra Fk and such that

E[vk+1|Fk] ≤ (1− uk)vk + βk for all k ≥ 0 almost surely,

where 0 ≤ uk ≤ 1, βk ≥ 0, and
∑∞
k=0 uk =∞,

∑∞
k=0 βk <∞ and limk→∞

βk
uk

= 0. Then, vk → 0 a.s.

Lemma 3. Let vk, uk, βk and γk be non-negative random variables adapted to σ-algebra Fk. If
∑∞
k=0 uk <

∞,
∑∞
k=0 βk <∞ and

E[vk+1|Fk] ≤ (1 + uk)vk − γk + βk for all k ≥ 0 almost surely.

Then, {vk} is convergent and
∑∞
k=0 γk <∞ almost surely.

Finally, we present a contraction result reliant on monotonicity and Lipschitz continuity requirements

(cf. [40, Theorem 12.1.2, Pg. 1109]).

Lemma 4. Let H : K → Rn be a mapping that is strongly monotone over K with constant µ, and Lipschitz

continuous over K with constant L. If q ,
√

1− 2µγ + γ2L2, then for any γ > 0, we have that for any x, y,

we have ‖ΠK(x− γH(x))−ΠK(y − γH(y))‖ ≤ q‖x− y‖.

2.2.2 Almost-sure convergence

Our first convergence result shows that under the prescribed assumptions, Algorithm 1 generates a sequence

of iterates that converges to the unique solution.

Proposition 1 (Almost-sure convergence under strong convexity of f). Suppose (A1-1), (A2-1)

and (A3) hold. Let {xk, θk} be computed via Algorithm 1. Then, xk → x∗ and θk → θ∗ a.s. as k → ∞,

where θ∗ denotes the unique solution of (Lθ) and x∗ denotes the unique solution to (Pox(θ∗)).
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Proof. Note that x∗ = ΠX(x∗ − γk,x∇xf(x∗; θ∗)). Then, by the nonexpansivity of the Euclidean projector,

‖xk+1 − x∗‖2 may be bounded as follows:

‖xk+1 − x∗‖2 = ‖ΠX(xk − γk,x(∇xf(xk; θk) + wk))−ΠX(x∗ − γk,x∇xf(x∗; θ∗))‖2

≤ ‖(xk − x∗)− γk,x(∇xf(xk; θk)−∇xf(x∗; θ∗))− γk,xwk‖2.

By adding and subtracting γk,x∇xf(x∗, θk), this expression can be further expanded as follows:

‖(xk − x∗)− γk,x(∇xf(xk; θk)−∇xf(x∗; θk))− γk,x(∇xf(x∗; θk)−∇xf(x∗; θ∗))− γk,xwk‖2

= ‖(xk − x∗)− γk,x(∇xf(xk; θk)−∇xf(x∗; θk))‖2 + γ2
k,x‖∇xf(x∗; θk)−∇xf(x∗; θ∗)‖2 + γ2

k,x‖wk‖2

− 2γk,x[(xk − x∗)− γk,x(∇xf(xk; θk)−∇xf(x∗; θk))]T (∇xf(x∗; θk)−∇xf(x∗; θ∗))

− 2γk,x[(xk − x∗)− γk,x(∇xf(xk; θk)−∇xf(x∗; θk))]Twk + 2γ2
k,x(∇xf(x∗; θk)−∇xf(x∗; θ∗))Twk.

By leveraging the fact that E[wk | Fk] = 0, we have

E[‖xk+1 − x∗‖2 | Fk] ≤ Term 1 + Term 2 + Term 3 + γ2
k,xE[‖wk‖2 | Fk], (2.1)

where Terms 1 – 3 are defined as follows:

Term 1 , ‖(xk − x∗)− γk,x(∇xf(xk; θk)−∇xf(x∗; θk))‖2,

Term 2 , γ2
k,x‖∇xf(x∗; θk)−∇xf(x∗; θ∗)‖2,

and Term 3 , −2γk,x[(xk − x∗)− γk,x(∇xf(xk; θk)−∇xf(x∗; θk))]T (∇xf(x∗; θk)−∇xf(x∗; θ∗)).

By Lemma 4 and (A1-1), it follows that

Term 1 ≤ (1− 2γk,xµx + γ2
k,xL

2
x)‖xk − x∗‖2. (2.2)

Furthermore, the Lipschitz continuity of ∇xf(x∗; θ) in θ (A1-1) allows for deriving the following bound:

Term 2 ≤ γ2
k,xL

2
θ‖θk − θ∗‖2. (2.3)

Finally, Term 3 can be bounded by invoking the Cauchy-Schwarz inequality, Lemma 4, (A1-1) and the
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triangle inequality, we obtain

2γk,x‖(xk − x∗)− γk,x(∇xf(xk; θk)−∇xf(x∗; θk))‖‖∇xf(x∗; θk)−∇xf(x∗; θ∗)‖

≤ 2γk,x

√
1− 2γk,xµx + γ2

k,xL
2
x‖xk − x∗‖Lθ‖θk − θ∗‖

≤ 2γk,xLθ‖xk − x∗‖‖θk − θ∗‖

≤ γk,xµx‖xk − x∗‖2 + γk,x(L2
θ/µx)‖θk − θ∗‖2,

(2.4)

where the last inequality follows from 2aT b ≤ ‖a‖2 + ‖b‖2. Combining (2.1), (2.2), (2.3) and (2.4), we get

E[‖xk+1 − x∗‖2 | Fk] ≤ (1− γk,xµx + γ2
k,xL

2
x)‖xk − x∗‖2

+ (γk,xL
2
θ/µx + γ2

k,xL
2
θ)‖θk − θ∗‖2 + γ2

k,xν
2
x.

(2.5)

Recall that θ∗ satisfies the fixed point relationship θ∗ = ΠΘ(θ∗ − γθ,k∇θg(θ∗)), which, together with non-

expansivity of the Euclidean projector, allows for deriving the following bound on ‖θk+1 − θ∗‖2:

‖θk+1 − θ∗‖2 = ‖ΠΘ(θk − γθ,k(∇θg(θk) + vk))−ΠΘ(θ∗ − γθ,k∇θg(θ∗))‖2

≤ ‖θk − θ∗ − γθ,k(∇θg(θk)−∇θg(θ∗))− γθ,kvk‖2

= ‖θk − θ∗ − γθ,k(∇θg(θk)−∇θg(θ∗))‖2 + γ2
θ,k‖vk‖2 − 2(θk − θ∗ − γθ,k(∇θg(θk)−∇θg(θ∗)))T vk.

By taking conditional expectations and by recalling that E[vk | Fk] = 0, we obtain the following bound:

E[‖θk+1 − θ∗‖2 | Fk] ≤ ‖θk − θ∗ − γk,θ(∇θg(θk)−∇θg(θ∗))‖2 + γ2
k,θE[‖vk‖2 | Fk]

≤ q2
k,θ‖θk − θ∗‖2 + γ2

k,θν
2
θ ,

(2.6)

where qk,θ ,
√

1− 2γk,θµθ + γ2
k,θC

2
θ . Next, by adding (2.5) and (2.6) and by invoking (A2-1), we obtain the

following bound.

E[‖xk+1 − x∗‖2 | Fk] + E[‖θk+1 − θ∗‖2 | Fk]

≤ (1− γk,xµx + γ2
k,xL

2
x)‖xk − x∗‖2 + (q2

k,θ + γk,xL
2
θ/µx + γ2

k,xL
2
θ)‖θk − θ∗‖2 + γ2

k,xν
2
x + γ2

k,θν
2
θ

= (1− γk,xµx + γ2
k,xL

2
x)‖xk − x∗‖2 + (1− γk,xL2

θ/µx + γ2
k,x(L2

θ + L4
θC

2
θ/(µ

2
xµ

2
θ)))‖θk − θ∗‖2

+ γ2
k,xν

2
x + γ2

k,xν
2
θL

4
θ/(µ

2
xµ

2
θ)

≤ (1− αγk,x + βγ2
k,x)(‖xk − x∗‖2 + ‖θk − θ∗‖2) + δγ2

k,x,
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where α = min{µx, L2
θ/µx}, β = max{L2

x, L
2
θ + L4

θC
2
θ/(µ

2
xµ

2
θ)} and δ = ν2

x + ν2
θL

4
θ/(µ

2
xµ

2
θ). From (A2-1), we

have that
∑∞
k=0(αγk,x − βγ2

k,x) =∞,
∑∞
k=0 δγ

2
k,x <∞, and

lim
k→∞

δγ2
k,x

αγk,x − βγ2
k,x

= 0.

Then, by invoking the super-martingale convergence theorem (Lemma 2), we have that ‖xk − x∗‖2 + ‖θk −

θ∗‖2 → 0 a.s. as k →∞, which implies that xk → x∗ and θk → θ∗ a.s. as k →∞.

Next we weaken the strong convexity requirement on the function f through the following assumption.

Assumption 4 (A1-2). Suppose the following holds in addition to (A1-1 (ii)) and (A1-1 (iii)).

(i) For every θ ∈ Θ, f(x; θ) is convex and continuously differentiable with Lipschitz continuous gradients

in x with Lipschitz constant Lx.

Furthermore, we make the following assumptions on the steplength sequences employed in the algorithm.

Assumption 5 (A2-2). Let {γk,x}, {γk,θ} and some constant τ ∈ (0, 1) be chosen such that:

(i)
∑∞
k=0 γ

2−τ
k,x <∞ and

∑∞
k=0 γ

2
k,θ <∞,

(iii)
∑∞
k=0 γk,x =∞ and

∑∞
k=0 γk,θ =∞,

(iii) βk =
γτk,x

2γk,θµθ
↓ 0 as k →∞.

Proceeding as in the previous result, we present a convergence result under these weakened conditions.

Theorem 1 (Almost-sure convergence under convexity of f). Suppose (A1-2), (A2-2) and (A3)

hold. Suppose X is bounded and the solution set X∗ of (Pox(θ∗)) is nonempty. Let {xk, θk} be computed via

Algorithm 1. Then, θk → θ∗ a.s. as k → ∞, and xk converges to a random point in X∗ a.s. as k → ∞,

where θ∗ denotes the unique solution of (Lθ) and X∗ denotes the solution set of (Pox(θ∗)).

Proof. By the nonexpansivity of the Euclidean projector, we have for any x∗ ∈ X∗ that

‖xk+1 − x∗‖2 = ‖ΠX(xk − γk,x(∇xf(xk; θk) + wk))−ΠX(x∗)‖2

≤ ‖(xk − x∗)− γk,x∇xf(xk; θk)− γk,xwk‖2.
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By adding and subtracting γk,x∇xf(x∗, θk), this expression can be further expanded as follows:

‖(xk − x∗)− γk,x∇xf(xk; θ∗)− γk,x(∇xf(xk; θk)−∇xf(xk; θ∗))− γk,xwk‖2

= ‖(xk − x∗)− γk,x∇xf(xk; θ∗)‖2 + γ2
k,x‖∇xf(xk; θk)−∇xf(xk; θ∗)‖2 + γ2

k,x‖wk‖2

− 2γk,x[(xk − x∗)− γk,x∇xf(xk; θ∗)]T (∇xf(xk; θk)−∇xf(xk; θ∗))

− 2γk,x[(xk − x∗)− γk,x∇xf(xk; θ∗)]Twk + 2γ2
k,x(∇xf(xk; θk)−∇xf(xk; θ∗))Twk.

Noting that E[wk | Fk] = 0, we have

E[‖xk+1 − x∗‖2 | Fk] ≤ Term 1 + Term 2 + Term 3 + γ2
k,xE[‖wk‖2 | Fk], (2.7)

where Terms 1 – 3 are defined as follows:

Term 1 , ‖(xk − x∗)− γk,x∇xf(xk; θ∗)‖2,

Term 2 , γ2
k,x‖∇xf(xk; θk)−∇xf(xk; θ∗)‖2,

and Term 3 , −2γk,x[(xk − x∗)− γk,x∇xf(xk; θ∗)]T (∇xf(xk; θk)−∇xf(xk; θ∗)).

By invoking the convexity of f(x; θ) in x and the gradient inequality (see A1-2), we have that

Term 1 = ‖xk − x∗‖2 + γ2
k,x‖∇xf(xk; θ∗)‖2 − 2γk,x(xk − x∗)T∇xf(xk; θ∗)

≤ ‖xk − x∗‖2 + γ2
k,x‖∇xf(xk; θ∗)‖2 − 2γk,x(f(xk; θ∗)− f(x∗; θ∗))

≤ ‖xk − x∗‖2 + 2γ2
k,x‖∇xf(xk; θ∗)−∇xf(x∗; θ∗)‖2 + 2γ2

k,x‖∇xf(x∗; θ∗)‖2

− 2γk,x(f(xk; θ∗)− f(x∗; θ∗)),

where the last inequality follows from the identity ‖(a − b) + b‖2 ≤ 2‖a − b‖2 + 2‖b‖2. From the Lipschitz

continuity of ∇xf(x; θ) in x, the right hand side can be bounded as follows:

‖xk − x∗‖2 + 2γ2
k,x‖∇xf(xk; θ∗)−∇xf(x∗; θ∗)‖2 + 2γ2

k,x‖∇xf(x∗; θ∗)‖2 − 2γk,x(f(xk; θ∗)− f(x∗; θ∗))

≤ (1 + 2γ2
k,xL

2
x)‖xk − x∗‖2 + 2γ2

k,x‖∇xf(x∗; θ∗)‖2 − 2γk,x(f(xk; θ∗)− f(x∗; θ∗)). (2.8)

By the Lipschitz continuity of ∇xf(x; θ) in θ (A1-2),

Term 2 ≤ γ2
k,xL

2
θ‖θk − θ∗‖2. (2.9)
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By adding and subtracting ∇xf(x∗; θ∗), and by invoking the Lipschitz continuity of ∇xf(x; θ) in x (A1-2)

and the triangle inequality, we may derive a bound for Term 3 as follows:

Term 3 ≤ 2γk,x‖(xk − x∗)− γk,x∇xf(xk; θ∗)‖‖∇xf(xk; θk)−∇xf(xk; θ∗)‖

≤ 2γk,x‖(xk − x∗)− γk,x(∇xf(xk; θ∗)−∇xf(x∗; θ∗))− γk,x∇xf(x∗; θ∗)‖Lθ‖θk − θ∗‖

≤ 2γk,x
(
(1 + γk,xLx)‖xk − x∗‖+ γk,x‖∇xf(x∗; θ∗)‖

)
Lθ‖θk − θ∗‖

= 2γk,xLθ‖xk − x∗‖‖θk − θ∗‖+ 2γ2
k,xLθLx‖xk − x∗‖‖θk − θ∗‖+ 2γ2

k,xLθ‖∇xf(x∗; θ∗)‖‖θk − θ∗‖.

By using the fact that 2ab ≤ a2 + b2, we have further that

Term 3 ≤ γ2−τ
k,x L

2
θ‖xk − x∗‖2 + γτk,x‖θk − θ∗‖2 + γ2

k,xLθLx‖xk − x∗‖2

+ γ2
k,xLθLx‖θk − θ∗‖2 + γ2

k,xL
2
θ‖θk − θ∗‖2 + γ2

k,x‖∇xf(x∗; θ∗)‖2,
(2.10)

where τ ∈ (0, 1) is chosen to satisfy (A2-2). Combining (2.7), (2.8), (2.9) and (2.10), we obtain the following

bound on the conditional error.

E[‖xk+1 − x∗‖2 | Fk] ≤ (1 + γ2−τ
k,x L

2
θ + γ2

k,x(2L2
x + LθLx))‖xk − x∗‖2 + (γτk,x + γ2

k,x(2L2
θ + LθLx))‖θk − θ∗‖2

+ 3γ2
k,x‖∇xf(x∗; θ∗)‖2 − 2γk,x(f(xk; θ∗)− f(x∗; θ∗)). (2.11)

From (2.6), we have that

E[‖θk+1 − θ∗‖2 | Fk] ≤ q2
k,θ‖θk − θ∗‖2 + γ2

k,θν
2
θ , (2.12)

where qk,θ ,
√

1− 2γk,θµθ + γ2
k,θC

2
θ . Choose βk =

γτk,x
2γk,θµθ

by (A2-2). Note that by assumption βk+1 ≤ βk.

By multiplying the left hand side of (2.12) by βk+1 and adding to the left hand side of (2.11), we get

E[‖xk+1 − x∗‖2 | Fk] + βk+1E[‖θk+1 − θ∗‖2 | Fk] ≤ E[‖xk+1 − x∗‖2 | Fk] + βkE[‖θk+1 − θ∗‖2 | Fk] (2.13)

≤ (1 + γ2−τ
k,x L

2
θ + γ2

k,x(2L2
x + LθLx))‖xk − x∗‖2 + (βkq

2
k,θ + γτk,x + γ2

k,x(2L2
θ + LθLx))‖θk − θ∗‖2

+ 3γ2
k,x‖∇xf(x∗; θ∗)‖2 + βkγ

2
k,θν

2
θ − 2γk,x(f(xk; θ∗)− f(x∗; θ∗))

≤ (1 + γ2−τ
k,x L

2
θ + γ2

k,x(2L2
x + LθLx))‖xk − x∗‖2 +

βkq
2
k,θ + γτk,x + γ2

k,x(2L2
θ + LθLx)

βk︸ ︷︷ ︸
Term 4

·βk‖θk − θ∗‖2

+ 3γ2
k,x‖∇xf(x∗; θ∗)‖2 + βkγ

2
k,θν

2
θ − 2γk,x(f(xk; θ∗)− f(x∗; θ∗)).
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Term 4 on the right hand side of (2.13) can be further expanded as

βkq
2
k,θ + γτk,x + γ2

k,x(2L2
θ + LθLx)

βk
= q2

k,θ +
γτk,x + γ2

k,x(2L2
θ + LθLx)

βk

= 1− 2γk,θµθ + γ2
k,θC

2
θ +

γτk,x
βk

+
γ2
k,x(2L2

θ + LθLx)

βk

= 1 + γ2
k,θC

2
θ + 2γk,θγ

2−τ
k,x µθ(2L

2
θ + LθLx).

(2.14)

Combining (2.13) and (2.14), we get

E[‖xk+1 − x∗‖2 | Fk] + βk+1E[‖θk+1 − θ∗‖2 | Fk]

≤ (1 + γ2−τ
k,x L

2
θ + γ2

k,x(2L2
x + LθLx))‖xk − x∗‖2 + (1 + γ2

k,θC
2
θ + 2γk,θγ

2−τ
k,x µθ(2L

2
θ + LθLx))βk‖θk − θ∗‖2

+ 3γ2
k,x‖∇xf(x∗; θ∗)‖2 + βkγ

2
k,θν

2
θ − 2γk,x(f(xk; θ∗)− f(x∗; θ∗))

≤ (1 + γ2
k,θC

2
θ + 2γk,θγ

2−τ
k,x µθ(2L

2
θ + LθLx))(‖xk − x∗‖2 + βk‖θk − θ∗‖2)

+ (γ2−τ
k,x L

2
θ + γ2

k,x(2L2
x + LθLx))‖xk − x∗‖2

+ 3γ2
k,x‖∇xf(x∗; θ∗)‖2 + βkγ

2
k,θν

2
θ − 2γk,x(f(xk; θ∗)− f(x∗; θ∗)).

We define the following:

uk , γ2
k,θC

2
θ + 2γk,θγ

2−τ
k,x µθ(2L

2
θ + LθLx), σk , 2γk,x(f(xk; θ∗)− f(x∗; θ∗)),

and ρk , (γ2−τ
k,x L

2
θ + γ2

k,x(2L2
x + LθLx))‖xk − x∗‖2 + 3γ2

k,x‖∇xf(x∗; θ∗)‖2 + βkγ
2
k,θν

2
θ .

Then, we have

E[‖xk+1 − x∗‖2 | Fk] + βk+1E[‖θk+1 − θ∗‖2 | Fk] ≤ (1 + uk)(‖xk − x∗‖2 + βk‖θk − θ∗‖2) + ρk − σk.

By boundedness of X and (A2-2), we have that
∑∞
k=0 uk <∞ and

∑∞
k=0 ρk <∞. So, by Lemma 3 we get

that there exists a random variable V such that ‖xk − x∗‖2 + βk‖θk − θ∗‖2 → V in an almost sure sense as

k →∞ and
∑∞
k=0 σk =

∑∞
k=0 2γk,x(f(xk; θ∗)− f(x∗; θ∗)) <∞.

By (A2-2), Lemma 2 and (2.12), we can get that ‖θk − θ∗‖ → 0 a.s. as k → ∞. Thus, it follows that

‖xk−x∗‖ → V a.s. as k →∞. Since
∑∞
k=0 γk,x =∞, we get lim infk→∞ f(xk; θ∗) = f(x∗; θ∗) a.s. as k →∞.

Since the set X is closed, all accumulation points of {xk} lie in X. Furthermore, since f(xk; θ∗)→ f(x∗; θ∗)

along a subsequence a.s., by continuity of f it follows that {xk} has a subsequence converging a.s. to some

point in X, say x̃, which satisfies f(x̃; θ∗) = f(x∗; θ∗). That means x̃ is some random point in X∗. Moreover,
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since ‖xk−x∗‖ is convergent for any x∗ ∈ X∗ a.s., the entire sequence {xk} converges to some random point

in X∗ a.s.

2.2.3 Diminishing and constant steplength rate analysis

While the previous section focused on the almost sure convergence of the prescribed learning and computa-

tional schemes, a natural question is whether one can develop rate statements. We begin with an examination

of the global rate of convergence and show that O(1/K) rate estimate is derived for an upper bound on the

mean-squared error in the solution xK when f(•; θ∗) is strongly convex in (•) and K represents the number

of steps, consistent with the result obtained for stochastic approximation (cf. [41, 42]). In addition, it is seen

that when the function loses strong convexity, an analogous rate estimate is available by using averaging,

akin to an approach first employed in [43], where longer stepsizes were suggested with consequent averaging

of the obtained iterates.

Proposition 2 (Rate estimates for strongly convex f). Suppose (A1-1) and (A3) hold. Suppose

γx,k = λx/k and γθ,k = λθ/k with λx > 1/µx and λθ > 1/(2µθ). Let E[‖∇xf(xk; θk) + wk‖2] ≤ M2 and

E[‖∇θg(θk) + vk‖2] ≤M2
θ for all xk ∈ X and θk ∈ Θ. Let {xk, θk} be computed via Algorithm 1. Then, the

following hold after K iterations:

E[‖θK − θ∗‖2] ≤ Qθ(λθ)

K
and E[‖xK − x∗‖2] ≤ Qx(λx)

K
,

where Qθ(λθ) , max
{
λ2
θM

2
θ (2µθλθ − 1)−1,E[‖θ1 − θ∗‖2]

}
,

Qx(λx) , max
{
λ2
xM̃

2(µxλx − 1)−1,E[‖x1 − x∗‖2]
}
, and M̃ ,

√
M2 +

L2
θQθ(λθ)

µxλx
.

Proof. Suppose Ak , 1
2‖x

k − x∗‖2 and ak , E[Ak]. Then, Ak+1 may be bounded as follows by using the

non-expansivity of the Euclidean projector:

Ak+1 =
1

2
‖xk+1 − x∗‖2 =

1

2

∥∥ΠX

(
xk − γx,k(∇xf(xk; θk) + wk)

)
−ΠX(x∗)

∥∥2

≤ 1

2
‖xk − x∗ − γx,k(∇xf(xk; θk) + wk)‖2

= Ak +
1

2
γ2
x,k‖∇xf(xk; θk) + wk‖2 − γx,k(xk − x∗)T (∇xf(xk; θk) + wk).

(2.15)

19



Note that E[(xk−x∗)Twk] = E[E[(xk−x∗)Twk|Fk]] = E[(xk−x∗)TE[wk|Fk]] = 0. By taking expectations on

both sides of (2.15) and by invoking the bounds E[‖∇xf(xk; θk)+wk‖2] ≤M2 and E[‖∇θg(θk)+vk‖2] ≤M2
θ ,

it follows that

ak+1 ≤ ak +
1

2
γ2
x,kM

2 − γx,kE[(xk − x∗)T∇xf(xk; θk)]. (2.16)

But f(x; θ) is strongly convex in x with constant µx for every θ ∈ Θ, leading to the following expression:

E[(xk − x∗)T∇xf(xk; θk)] = E[(xk − x∗)T (∇xf(xk; θk)−∇xf(x∗; θk))]

+ E[(xk − x∗)T (∇xf(x∗; θk)−∇xf(x∗; θ∗))] + E[(xk − x∗)T∇xf(x∗; θ∗)]

≥ µxE[‖xk − x∗‖2] + E[(xk − x∗)T (∇xf(x∗; θk)−∇xf(x∗; θ∗))].

(2.17)

Combining (2.16) and (2.17), we get

ak+1 ≤ (1− 2γx,kµx)ak +
1

2
γ2
x,kM

2 − γx,kE[(xk − x∗)T (∇xf(x∗; θk)−∇xf(x∗; θ∗))]

≤ (1− 2γx,kµx)ak +
1

2
γ2
x,kM

2 +
1

2
γx,kµxE[‖xk − x∗‖2] +

1

2

γx,k
µx

E[‖∇xf(x∗; θk)−∇xf(x∗; θ∗)‖2]

≤ (1− γx,kµx)ak +
1

2
γ2
x,kM

2 +
1

2

γx,k
µx

L2
θE[‖θk − θ∗‖2]. (2.18)

Suppose γθ,k = λθ/k. Since the function g(θ) is strongly convex, we can use the standard rate estimate (cf.

inequality (5.292) in [42]) to get the following

E[‖θk − θ∗‖2] ≤ Qθ(λθ)

k
, (2.19)

where Qθ(λθ) , max
{
λ2
θM

2
θ (2µθλθ − 1)−1,E[‖θ1 − θ∗‖2]

}
with λθ > 1/(2µθ). Suppose γx,k = λx/k, allow-

ing us to claim the following:

ak+1 ≤
(

1− µxλx
k

)
ak +

1

2

λ2
xM

2

k2
+

1

2

λxL
2
θQθ(λθ)

µxk2
=

(
1− µxλx

k

)
ak +

1

2

λ2
xM̃

2

k2
,

where M̃ ,
√
M2 +

L2
θQθ(λθ)

µxλx
. By assuming that λx > 1/µx, the result follows by observing that

E[‖xk − x∗‖2] ≤ Qx(λx)

k
,

where Qx(λx) , max
{
λ2
xM̃

2(µxλx − 1)−1,E[‖x1 − x∗‖2]
}

.
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Remark: Notice that here we assume that f and g are both smooth and strongly convex. A more general

framework is that of composite objectives where the objective is a sume of nonsmooth and smooth stochastic

components. Lan [44] proposed the accelerated stochastic approximation (AC-SA) algorithm for solving

stochastic composite optimization (SCO) problems and proved that it achieves the optimal rate. In related

work, Ghadimi and Lan [45, 46] propose a multi-stage AC-SA algorithm, which possesses an optimal rate

of convergence for solving strongly convex SCO problems in terms of the dependence on different problem

parameters. While this problem class is beyond the current scope, this approach may aid in refinement of

the constants in the Proposition 2 in some regimes.

A shortcoming of the previous result is the need for strong convexity of f(x, θ) in x for every θ ∈ Θ. In

our next result, we weaken this requirement and allow for a merely convex f , extending the optimal constant

stepsize result in [42]. Specifically, given a prescribed number of iterations, say K, the optimal “constant

stepsize” derives the error minimizing steplength; in other words, γk = γ for 1 ≤ k ≤ K. This is in contrast

with the constant stepsize result presented in Proposition 3, where γk = γ for all k. steps. The following

Lipschitzian assumption is imposed on the function f(x; θ).

Assumption 6 (A6). Suppose the following holds in addition to (A1-2).

(i) For every x ∈ X, f(x; θ) is Lipschitz continuous in θ with constant Dθ.

Theorem 2 (Rate estimates under convexity of f). Suppose (A3) and (A6) hold. Suppose E[‖xk −

x∗‖2] ≤ M2
x , E[‖∇xf(xk; θk) + wk‖2] ≤ M2 and E[‖∇θg(θk) + vk‖2] ≤ M2

θ for all xk ∈ X and θk ∈ Θ.

Let {xk, θk} be computed via Algorithm 1. For 1 ≤ i, t ≤ k, we define vt ,
γx,t∑k
s=i γx,s

, x̃i,k ,
∑k
t=i vtx

t and

DX , maxx∈X ‖x− x1‖. Suppose for 1 ≤ t ≤ K, γx is defined as follows:

γx =

√
4D2

X + L2
θQθ(λθ)(1 + lnK)

(M2 +M2
x)K

,

where Qθ(λθ) , max
{
λ2
θM

2
θ (2µθλθ − 1)−1,E[‖θ1 − θ∗‖2]

}
, and γθ,k = λθ/K with λθ > 1/(2µθ). Then the

following holds for 1 ≤ i ≤ K:

∣∣E[f(x̃i,K ; θK)− f(x∗; θ∗)]
∣∣ ≤ √Qθ(λθ)Dθ + Ci,K

√
BK√

K
,

where Ci,K = K
K−i+1 and BK = (4D2

X + L2
θQθ(λθ)(1 + lnK))(M2 +M2

x).
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Proof. By using the same notation in Proposition 2, we have from (2.16) that

ak+1 ≤ ak +
1

2
γ2
x,kM

2 − γx,kE[(xk − x∗)T∇xf(xk; θk)]

≤ ak +
1

2
γ2
x,kM

2 − γx,kE[(xk − x∗)T∇xf(xk; θ∗)]− γx,kE[(xk − x∗)T (∇xf(xk; θk)−∇xf(xk; θ∗))].

(2.20)

Note that f(x; θ) is convex in x for every θ ∈ Θ, allowing us to leverage the gradient inequality.

E[(xk − x∗)T∇xf(xk; θ∗)] ≥ E[f(xk; θ∗)− f(x∗; θ∗)]. (2.21)

Combining (2.20) and (2.21), we obtain the following:

ak+1 ≤ ak +
1

2
γ2
x,kM

2 − γx,kE[f(xk; θ∗)− f(x∗; θ∗)]− γx,kE[(xk − x∗)T (∇xf(xk; θk)−∇xf(xk; θ∗))].

This allows for constructing the following bounds:

γx,kE[f(xk; θ∗)− f(x∗; θ∗)]

≤ ak − ak+1 +
1

2
γ2
x,kM

2 − γx,kE[(xk − x∗)T (∇xf(xk; θk)−∇xf(xk; θ∗))]

≤ ak − ak+1 +
1

2
γ2
x,kM

2 +
1

2
γ2
x,kE[‖xk − x∗‖2] +

1

2
E[‖∇xf(xk; θk)−∇xf(xk; θ∗)‖2]

≤ ak − ak+1 +
1

2
γ2
x,kM

2 +
1

2
γ2
x,kM

2
x +

1

2
L2
θE[‖θk − θ∗‖2]

≤ ak − ak+1 +
1

2
γ2
x,k(M2 +M2

x) +
1

2

L2
θQθ(λθ)

k
, (2.22)

where the second inequality follows from the fact that 2ab ≤ a2 + b2, the third inequality follows from the

boundedness of E[‖xk−x∗‖2] and Lipschitz continuity of ∇xf(x; θ) in θ, and the last inequality follows from

(2.19). As a result, for 1 ≤ i ≤ k, we have the following:

k∑
t=i

γx,tE[f(xt; θ∗)− f(x∗; θ∗)] ≤
k∑
t=i

(at − at+1) +
1

2

k∑
t=i

γ2
x,t(M

2 +M2
x) +

1

2

k∑
t=i

L2
θQθ(λθ)

t

≤ ai +
1

2

k∑
t=i

γ2
x,t(M

2 +M2
x) +

1

2

k∑
t=i

L2
θQθ(λθ)

t

≤ ai +
1

2

k∑
t=i

γ2
x,t(M

2 +M2
x) +

1

2
L2
θQθ(λθ)(1 + ln k). (2.23)
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Next, we define vt ,
γx,t∑k
s=i γx,s

and DX , max
x∈X
‖x− x1‖. The following holds invoking these definitions:

E

[
k∑
t=i

vtf(xt; θ∗)− f(x∗; θ∗)

]
≤
ai + 1

2

∑k
t=i γ

2
x,t(M

2 +M2
x) + 1

2L
2
θQθ(λθ)(1 + ln k)∑k

t=i γx,t
. (2.24)

Next, we consider points given by x̃i,k ,
∑k
t=i vtx

t. By convexity of X, we have that x̃i,k ∈ X and by the

convexity of f(x; θ∗) in x, we have f(x̃i,k; θ∗) ≤
∑k
t=i vtf(xt). From (2.24) and by noting that a1 ≤ 1

2D
2
X

and ai ≤ 2D2
X for i > 1, we obtain the following for 1 ≤ i ≤ k

E[f(x̃i,k; θ∗)− f(x∗; θ∗)] ≤
4D2

X +
∑k
t=i γ

2
x,t(M

2 +M2
x) + L2

θQθ(λθ)(1 + ln k)

2
∑k
t=i γx,t

. (2.25)

Suppose γx,t = γx for t = 1, . . . , k. Then, it follows that

E[f(x̃1,k; θ∗)− f(x∗; θ∗)] ≤ 4D2
X + kγ2

x(M2 +M2
x) + L2

θQθ(λθ)(1 + ln k)

2kγx
. (2.26)

By minimizing the right hand side in γx > 0, we obtain that

γx =

√
4D2

X + L2
θQθ(λθ)(1 + ln k)

(M2 +M2
x)k

.

This implies the following bound:

E[f(x̃1,k; θ∗)− f(x∗; θ∗)] ≤
√
Bk
k
,

where Bk , (4D2
X + L2

θQθ(λθ)(1 + ln k))(M2 +M2
x). Next, we can also claim that for 1 ≤ i ≤ k,

E[f(x̃i,k; θ∗)− f(x∗; θ∗)] ≤ Ci,k

√
Bk
k
, (2.27)

where Ci,k = k
k−i+1 . Thus, by employing (2.19), (2.27) and the Lipschitz continuity of f(x; θ) in θ, we have

the required result:

∣∣E[f(x̃i,k; θk)− f(x∗; θ∗)]
∣∣ ≤ ∣∣E[f(x̃i,k; θk)− f(x̃i,k; θ∗)]

∣∣+ |E[f(x̃i,k; θ∗)− f(x∗; θ∗)]|

≤ DθE[‖θk − θ∗‖] + E[f(x̃i,k; θ∗)− f(x∗; θ∗)]

≤
√
Qθ(λθ)Dθ√

k
+ E[f(x̃i,k; θ∗)− f(x∗; θ∗)] ≤

√
Qθ(λθ)Dθ + Ci,k

√
Bk√

k
.
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Remark: In effect, in the context of learning and optimization, the averaging approach leads to a complexity

bound given loosely by

O

 aθ√
K

+
b+ cθ

√
ln(K)√
K︸ ︷︷ ︸

degradation from learning

 ,

where aθ, b, cθ are suitably defined. If θ∗ is available, then aθ, cθ = 0, leading to the standard bound of

O(1/
√
K). While it is not surprising that the requirement to learn θ∗ imposes a degradation, it appears

that this degradation is not severe. However, by changing the averaging window, this degradation disappears

from a rate standpoint. Specifically, the next result is a corollary of Theorem 2 and uses a modified averaging

window, as seen in [41].

Corollary 1 (Rate estimates under convexity of f). Suppose (A3) and (A6) hold. Suppose E[‖xk −

x∗‖2] ≤ M2
x , E[‖∇xf(xk; θk) + wk‖2] ≤ M2 and E[‖∇θg(θk) + vk‖2] ≤ M2

θ for all xk ∈ X and θk ∈ Θ.

Let {xk, θk} be computed via Algorithm 1. Let k be a positive even number. For k/2 ≤ t ≤ k, we define

vt ,
γx,t∑k

s=k/2 γx,s
, x̃k/2,k ,

∑k
t=k/2 vtx

t and DX , maxx∈X ‖x − x1‖. Suppose for 1 ≤ t ≤ K, γx is defined

as follows:

γx =

√
4D2

X + L2
θQθ(λθ)(1 + ln 2)

(M2 +M2
x)k

,

where Qθ(λθ) , max
{
λ2
θM

2
θ (2µθλθ − 1)−1,E[‖θ1 − θ∗‖2]

}
, and γθ,k = λθ/K with λθ > 1/(2µθ). Then the

following holds:

∣∣E[f(x̃K/2,K ; θK)− f(x∗; θ∗)]
∣∣ ≤ √Qθ(λθ)Dθ + 2

√
B√

K
,

where B , (4D2
X + L2

θQθ(λθ)(1 + ln 2))(M2 +M2
x).

Proof. When i = k/2 where k is a positive even number, the second inequality of (2.23) becomes

k∑
t=k/2

γx,tE[f(xt; θ∗)− f(x∗; θ∗)] ≤ ak/2 +
1

2

k∑
t=k/2

γ2
x,t(M

2 +M2
x) +

1

2

k∑
t=k/2

L2
θQθ(λθ)

t

≤ ak/2 +
1

2

k∑
t=k/2

γ2
x,t(M

2 +M2
x) +

1

2
L2
θQθ(λθ)

 k∑
t=1

1

t
−

k∑
t=k/2−1

1

t


≤ ak/2 +

1

2

k∑
t=k/2

γ2
x,t(M

2 +M2
x) +

1

2
L2
θQθ(λθ) [1 + ln(k)− ln(k/2)]

≤ ak/2 +
1

2

k∑
t=k/2

γ2
x,t(M

2 +M2
x) +

1

2
L2
θQθ(λθ)(1 + ln 2). (2.28)
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Then, (2.26) becomes

E[f(x̃1,k; θ∗)− f(x∗; θ∗)] ≤ 4D2
X + kγ2

x(M2 +M2
x) + L2

θQθ(λθ)(1 + ln 2)

2kγx
.

By minimizing the right hand side in γx > 0, we obtain that

γx =

√
4D2

X + L2
θQθ(λθ)(1 + ln 2)

(M2 +M2
x)k

.

This implies the following bound:

E[f(x̃1,k; θ∗)− f(x∗; θ∗)] ≤
√
B

k
,

where B , (4D2
X + L2

θQθ(λθ)(1 + ln 2))(M2 +M2
x). Next, we can also claim that,

E[f(x̃k/2,k; θ∗)− f(x∗; θ∗)] ≤ Ck

√
B

k
,

where Ck = k
k−k/2+1 ≤ 2. Thus, we have the required result:

∣∣E[f(x̃k/2,k; θk)− f(x∗; θ∗)]
∣∣ ≤ √Qθ(λθ)Dθ + 2

√
B√

k
.

We now present a constant steplength error bound where the steplength is fixed over the entire algorithm.

As mentioned before, this differs from Theorem 2 in that the number of iterations is not fixed. Constant

steplength statements are particularly relevant in networked regimes where the coordination of changing

steplength sequences across a collection of agents may prove complicated.
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Proposition 3 (Constant steplength error bound). Suppose (A3) holds. Suppose γθ,k := γθ and

γx,k := γx. Suppose E[‖xk − x∗‖2] ≤ M2
x and E[‖∇xf(xk; θk) + wk‖2] ≤ M2 for all xk ∈ X. Suppose

Ak , 1
2‖x

k − x∗‖2 and ak , E[Ak]. Let {xk, θk} be computed via Algorithm 1.

(i) Suppose (A1-1) holds. Then, the following holds:

lim sup
k→∞

ak ≤
1

2µx
γxM

2 +
1

2µ2
x

γθν
2
θL

2
θ

2µθ − γθC2
θ

;

(ii) Suppose (A1-2) and (A6) hold and 0 < τ < 1. Then, the following holds:

lim sup
k→∞

∣∣E[f(xk; θk)− f(x∗; θ∗)]
∣∣ ≤ 1

2
γxM

2 +
1

2
γ1−τ
x M2

x +
1

2
γτ−1
x L2

θ

γθν
2
θ

2µθ − γθC2
θ

+Dθ

√
γθν2

θ

2µθ − γθC2
θ

.

Proof. By (2.6), we get the following:

E[‖θk+1 − θ∗‖2 | Fk] ≤ q2
k,θ‖θk − θ∗‖2 + γ2

k,θν
2
θ ,

where qk,θ ,
√

1− 2γk,θµθ + γ2
k,θC

2
θ . Suppose γθ,k := γθ is chosen such that (1 − qθ) < 1 where qθ,k := qθ.

By taking the expectation and limit supremum on both sides, we have

lim sup
k→∞

E[‖θk+1 − θ∗‖2] ≤ q2
θ lim sup

k→∞
E[‖θk − θ∗‖2] + γ2

θν
2
θ ,

or,

lim sup
k→∞

E[‖θk − θ∗‖2] ≤ γθν
2
θ

2µθ − γθC2
θ

. (2.29)

(i) f is strongly convex: From (2.18), for γx,k := γx where γx is sufficiently small, we have the following:

ak+1 ≤ (1− γxµx)ak +
1

2
γ2
xM

2 +
1

2

γx
µx
L2
θE[‖θk − θ∗‖2].

It follows that

lim sup
k→∞

ak+1 ≤ (1− γxµx) lim sup
k→∞

ak +
1

2
γ2
xM

2 +
1

2

γx
µx
L2
θ lim sup

k→∞
E[‖θk − θ∗‖2]

≤ (1− γxµx) lim sup
k→∞

ak +
1

2
γ2
xM

2 +
1

2

γx
µx
L2
θ

γθν
2
θ

2µθ − γθC2
θ

.
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It follows that

lim sup
k→∞

ak ≤
1

2µx
γxM

2 +
1

2

1

µ2
x

L2
θ

γθν
2
θ

2µθ − γθC2
θ

.

(ii) f is convex: From (2.22), for γx,k := γx, we have the following:

γxE[f(xk; θ∗)− f(x∗; θ∗)] ≤ ak − ak+1 +
1

2
γ2
xM

2 − γxE[(xk − x∗)T (∇xf(xk; θk)−∇xf(xk; θ∗))]

≤ ak − ak+1 +
1

2
γ2
xM

2 +
1

2
γ2−τ
x E[‖xk − x∗‖2]

+
1

2
γτxE[‖∇xf(xk; θk)−∇xf(xk; θ∗)‖2]

≤ ak − ak+1 +
1

2
γ2
xM

2 +
1

2
γ2−τ
x M2

x +
1

2
γτxL

2
θE[‖θk − θ∗‖2],

where 0 < τ < 1. It follows that

γx lim sup
k→∞

E[f(xk; θ∗)− f(x∗; θ∗)] ≤ lim sup
k→∞

ak − lim sup
k→∞

ak+1 +
1

2
γ2
xM

2 +
1

2
γ2−τ
x M2

x

+
1

2
γτxL

2
θ lim sup

k→∞
E[‖θk − θ∗‖2]

≤ 1

2
γ2
xM

2 +
1

2
γ2−τ
x M2

x +
1

2
γτxL

2
θ

γθν
2
θ

2µθ − γθC2
θ

.

It follows that

lim sup
k→∞

E[f(xk; θ∗)− f(x∗; θ∗)] ≤ 1

2
γxM

2 +
1

2
γ1−τ
x M2

x +
1

2
γτ−1
x L2

θ

γθν
2
θ

2µθ − γθC2
θ

.

By the Lipschitz continuity of f(x; θ) in θ (A6(i)), Hölder’s inequality and (2.29), we have

lim sup
k→∞

∣∣E[f(xk; θk)− f(xk; θ∗)]
∣∣ ≤ Dθ lim sup

k→∞
E[‖θk − θ∗‖]

≤ Dθ lim sup
k→∞

√
E[‖θk − θ∗‖2]

= Dθ

√
lim sup
k→∞

E[‖θk − θ∗‖2]

≤ Dθ

√
γθν2

θ

2µθ − γθC2
θ

.
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Therefore,

lim sup
k→∞

∣∣E[f(xk; θk)− f(x∗; θ∗)]
∣∣ ≤ lim sup

k→∞

∣∣E[f(xk; θk)− f(xk; θ∗)]
∣∣+ lim sup

k→∞

∣∣E[f(xk; θ∗)− f(x∗; θ∗)]
∣∣

≤ 1

2
γxM

2 +
1

2
γ1−τ
x M2

x +
1

2
γτ−1
x L2

θ

γθν
2
θ

2µθ − γθC2
θ

+Dθ

√
γθν2

θ

2µθ − γθC2
θ

.

2.2.4 Regret analysis

In this subsection, we consider the problem of online convex programming in a misspecified regime. In

online convex programming problems, a decision-maker sees an infinite sequence of functions c1, c2, . . . where

each function is convex in its argument over a closed and convex set X. An online convex programming

algorithm [47] generates an iterate xk at each time epoch k and a metric of performance is the regret

associated with not using an offline algorithm that considers the following problem: minx∈X
∑K
k=1 ck(x).

If an online convex algorithm generates iterates x1, x2, . . . , then the regret RK is defined as

RK ,

[
K∑
k=1

ck(xk)−min
x∈X

K∑
k=1

ck(x)

]
.

A desirable feature of an online convex programming algorithm is that it is characterized by sublinear re-

gret [47], which is given by the following theorem.

Theorem 3 (Theorem 1 in [47]). Select an arbitrary x1 ∈ F and a sequence of learning rates η1, η2, . . . ∈ R+.

In time step t, after receiving a cost function, select the next vector xt+1 according to the Greedy Projection

algorithm:

xt+1 = ΠF (xt − ηt∇ct(xt)).

If ηt = t−1/2, the regret of the Greedy Projection algorithm is:

RG(T ) ≤ ‖F‖
2
√
T

2
+

(√
T − 1

2

)
‖∇c‖2,

where ‖F‖ , maxx,y∈F d(x, y) and ‖∇c‖ , maxx∈F,t∈{1,2,...} ‖∇ct(x)‖.
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Proof sketch: The regret of the Greedy Projection algorithm can be bounded as follows:

RG(T ) ≤ ‖F‖
2

2ηT
+
‖∇c‖2

2

T∑
t=1

ηt.

The result can be immediately obtained when ηt = t−1/2.

Often the model prescribed in an online optimization regime can be refined to a setting where the

functions are related across time rather than being a sequence of unrelated functions. We consider one

particular regime in which the decision-maker sees a sequence of functions given by f(•; θ1), f(•; θ2), . . . .

Furthermore, neither the values θ1, θ2, . . . are known to the decision-maker nor is the fact that θk → θ∗ as

k →∞. As earlier, we assume that the decision-maker has to furnish x1, x2, . . . and we define the misspecified

regret after K steps associated with our generated sequence {xk, θk} as follows:

RK , E

[
K∑
k=1

f(xk; θk, ξ)−Kf(x∗; θ∗, ξ)

]
.

Unlike the traditional definition, we consider the departure from f(x∗, θ∗) and should be contrasted with

the standard regret metric given by Rstd
K , E

[∑K
k=1 f(xk; θ∗, ξ)−Kf(x∗; θ∗, ξ)

]
. For purposes of deriving

analytical bounds, we define the following variant of regret as follows:

R̂K , E

[
K∑
k=1

f(xk; θk, ξ)−
K∑
k=1

f(y∗K ; θk, ξ)

]
, where y∗K , argmin

y∈X
E

[
K∑
k=1

f(y; θk, ξ)

]
.

Next, we provide a rate of decay of the upper bound of average regret.
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Theorem 4 (Regret under convexity of f). Suppose (A3) and (A6) hold. Suppose E[‖x − x∗‖2] ≤

M2
x , E[‖∇xf(x; θ) + wk‖2] ≤ M2 and E[‖∇θg(θ) + vk‖2] ≤ M2

θ for all x ∈ X and θ ∈ Θ. Suppose

E[‖∇xf(y∗K ; θk) + uk‖2] ≤ M2, where uk , E[∇xf(y∗K ; θk, ξ)] −∇xf(y∗K ; θk). Let {xk, θk} be computed via

Algorithm 1. Suppose γk,x = k−α with 0.5 ≤ α < 1, and γθ,k = λθ/k with λθ > 1/(2µθ). If 0 < β < 1, then

the following holds:

RK
K
≤ M2

xK
α−1

2
+
M2(K1−α − α)

2(1− α)K
+
Dθ

√
Qθ(λθ)(2

√
K − 1)

K
+
M2
x

2Kβ
+
L2
θQθ(λθ)(ln(K) + 1)

2K1−β ,

where β > 0. Furthermore,

lim sup
K→∞

R(K)

K
≤ 0.

Proof. By using the proof in Theorem 1 in [47] (cf. Theorem 3), we obtain that R̂K/K is bounded as follows:

R̂K ≤
M2
x

2γK,x
+
M2

2

K∑
k=1

γk,x.

Next, if γk,x = k−α with 0.5 ≤ α < 1, then we have the following bound on
∑K
k=1 γk,x:

K∑
k=1

γk,x =

K∑
k=1

k−α ≤ 1 +

∫ K

1

x−αdx =
1

1− α
(K1−α − α).

Therefore, we obtain the following bound on R̂K :

R̂K ≤
M2
xK

α

2
+
M2(K1−α − α)

2(1− α)
. (2.30)

Recall that the difference between the real regret and misspecified regret is given by the following:

∣∣∣RK − R̂K∣∣∣ =

∣∣∣∣∣E
[
K∑
k=1

f(y∗K ; θk, ξ)−Kf(x∗; θ∗, ξ)

]∣∣∣∣∣
≤

∣∣∣∣∣E
[
K∑
k=1

f(y∗K ; θk, ξ)−Kf(y∗K ; θ∗, ξ)

]∣∣∣∣∣+ |E [K (f(y∗K ; θ∗, ξ)− f(x∗; θ∗, ξ))]| ,
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or ∣∣∣RK − R̂K∣∣∣
K

≤

∣∣∣∣∣E
[

1

K

K∑
k=1

f(y∗K ; θk, ξ)− f(y∗K ; θ∗, ξ)

]∣∣∣∣∣︸ ︷︷ ︸
Term 1

+ |E [f(y∗K ; θ∗, ξ)− f(x∗; θ∗, ξ)]|︸ ︷︷ ︸
Term 2

.
(2.31)

We proceed to derive bounds for Terms 1 and 2. Term 1 in (2.31) may be bounded as follows:

∣∣∣∣∣E
[

1

K

K∑
k=1

f(y∗K ; θk, ξ)− f(y∗K ; θ∗, ξ)

]∣∣∣∣∣ ≤ 1

K

K∑
k=1

E
[∣∣f(y∗K ; θk, ξ)− f(y∗K ; θ∗, ξ)

∣∣]
≤ Dθ

K

K∑
k=1

E[‖θk − θ∗‖]

≤ Dθ

K

K∑
k=1

√
Qθ(λθ)

k
.

where the second and third inequalities follow from the Lipschitz continuity of ∇f(y∗; θ) in θ (A6) and (2.19).

Through some analysis, the right hand side may be further bounded as follows:

Dθ

K

K∑
k=1

√
Qθ(λθ)

k
≤
Dθ

√
Qθ(λθ)

K

(
1+

∫ K

1

1√
x
dx

)
≤
Dθ

√
Qθ(λθ)(2

√
K − 1)

K
. (2.32)

This implies that Term 1 in (2.31) converges to zero as K →∞. Next, we consider Term 2 in (2.31). By

the optimality condition for y∗K , we have the following expression:

0 ≥
K∑
k=1

E[(y∗K − x∗)T∇xf(y∗K ; θk, ξ)]

=

K∑
k=1

E[(y∗K − x∗)T∇xf(y∗K ; θ∗, ξ)] +

K∑
k=1

E[(y∗K − x∗)T (∇xf(y∗K ; θk, ξ)−∇xf(y∗K ; θ∗, ξ))]. (2.33)

Since f(x; θ) is convex in x for every θ ∈ Θ, we may leverage the gradient inequality.

E[f(x∗; θ∗, ξ)] ≥ E[f(y∗K ; θ∗, ξ)] + E[∇xf(y∗K ; θ∗, ξ)T (x∗ − y∗K)]

=⇒ E[(y∗K − x∗)T∇xf(y∗K ; θ∗, ξ)] ≥ E[f(y∗K ; θ∗, ξ)− f(x∗; θ∗, ξ)]. (2.34)

Combining (2.33) and (2.34), we get the following lower bound:

0 ≥
K∑
k=1

E[f(y∗K ; θ∗, ξ)− f(x∗; θ∗, ξ)] +

K∑
k=1

E[(y∗K − x∗)T (∇xf(y∗K ; θk, ξ)−∇xf(y∗; θ∗, ξ))].
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This allows for constructing the following bound on
∑K
k=1 E[f(y∗K ; θ∗, ξ)− f(x∗; θ∗, ξ)]:

K∑
k=1

E[f(y∗K ; θ∗, ξ)− f(x∗; θ∗, ξ)] ≤ −
K∑
k=1

E[(y∗K − x∗)T (∇xf(y∗K ; θk, ξ)−∇xf(y∗K ; θ∗, ξ))]

≤ 1

2

K∑
k=1

δKE[‖y∗K − x∗‖2] +
1

2

K∑
k=1

1

δK
E[‖∇xf(y∗K ; θk, ξ)−∇xf(y∗K ; θ∗, ξ)‖2]

≤ 1

2

K∑
k=1

δKM
2
x +

1

2

K∑
k=1

1

δK
L2
θE[‖θk − θ∗‖2]

≤ 1

2

K∑
k=1

δKM
2
x +

1

2

K∑
k=1

1

δK

L2
θQθ(λθ)

k
, (2.35)

where δK = K−β with 0 < β < 1 and the last inequality follows from (2.19). Note that
∑K
k=1

1
k ≤ ln(K)+1.

Thus, |E [f(y∗K ; θ∗, ξ)− f(x∗; θ∗, ξ)]| = E[f(y∗K ; θ∗)− f(x∗; θ∗)]

≤ M2
x

2Kβ
+

∑K
k=1

L2
θQθ(λθ)
k

2KδK

≤ M2
x

2Kβ
+
L2
θQθ(λθ)(ln(K) + 1)

2K1−β .

(2.36)

Combining (2.30), (2.31), (2.32), and (2.36), we have that RK/K can be bounded as follows:

RK
K
≤ R̂K

K
+
RK − R̂K

K
≤ R̂K

K
+

∣∣∣RK − R̂K∣∣∣
K

≤ M2
xK

α−1

2
+
M2(K1−α − α)

2(1− α)K
+
Dθ

√
Qθ(λθ)(2

√
K − 1)

K
+

M2
x

2Kβ
+
L2
θQθ(λθ)(ln(K) + 1)

2K1−β .

Furthermore, this implies that the limit superior of the average regret is nonpositive.

Remark: In effect, in the context of learning and optimization, the averaging approach leads to a

complexity bound given loosely by

O

 a

K1−α +
b

Kα
+

d

Kβ
+

cθ√
K

+
eθ ln(K)

K1−β︸ ︷︷ ︸
contribution from learning

 ,

where a, b, cθ, d, eθ are suitably defined. If θ∗ is available, then cθ, eθ = 0. Furthermore, by setting α = 0.5

and β = 0.5, this leads to the bound of O(lnK/
√
K), which is a degradation as the result of learning θ∗.
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2.3 Stochastic variational inequality problems with imperfect

information

Several shortcomings exist in the optimization based formulation represented by (Pox(θ∗)). First, the mis-

specification arises entirely in the objectives while the constraints are known with certainty. Second, the

underlying problem need not be an optimization problem, but could instead be captured by a variational

inequality problem. Such problems [20] can capture a range of problems including economic equilibrium

problems, traffic equilibrium problems, and convex Nash games. In fact, variational inequality problems can

effectively capture optimization problems with misspecified constraints. This motivates the consideration

of the misspecified stochastic variational inequality problem (Pvx(θ∗)) where θ∗ can be learnt through the

solution of the following problem:

(ϑ− θ)TE[G(θ; η)] ≥ 0, ∀ϑ ∈ Θ, (Lvθ)

where G : θ × Rp → Rm, and Θ and η abide by the previous specifications. In the majority of problem

settings, G(θ; θ) , ∇θg(θ; η) but we employ the variational structure to introduce generality. In this section,

we extend the results of the previous section to this regime. Specifically, we develop the convergence theory

under settings where the variational map F is both strongly monotone and merely monotone in x for every

θ ∈ Θ in Section 2.3.1 and provide rate statements in Section 2.3.2.

2.3.1 Almost-sure convergence

As in Section 2.2, we propose a set of coupled stochastic approximation schemes for computing x∗ and θ∗.

Given x0 ∈ X and θ0 ∈ Θ, the coupled SA schemes are stated next:

Algorithm 2 (Coupled SA schemes for stochastic variational inequality problems). Step 0.

Given x0 ∈ X, θ0 ∈ Θ and sequences {γk,x, γk,θ}, k := 0

Step 1.

xk+1 := ΠX

(
xk − γk,x(F (xk; θk) + wk)

)
(Compk)

θk+1 := ΠΘ

(
θk − γk,θ(G(θk) + vk)

)
, (Learnk)

where wk , F (xk; θk, ξk)− F (xk; θk) and vk , G(θk; ηk)−G(θk).

Step 2. If k > K, stop; else k : k + 1, go to Step. 1.
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We begin by stating an assumption similar to (A1-1) on the mappings F and G.

Assumption 7 (A1-3). Suppose the following hold:

(i) For every θ ∈ Θ, F (x; θ) is both strongly monotone and Lipschitz continuous in x with constants µx

and Lx, respectively.

(ii) For every x ∈ X, F (x; θ) is Lipschitz continuous in θ with constant Lθ.

(iii) G(θ) is strongly monotone and Lipschitz continuous in θ with constants µθ and Cθ, respectively.

Now, we can leverage the results in Section 2.2.2 to examine the convergence properties for Algorithm 2.

Proposition 4 (Almost-sure convergence under strong monotonicity of F ). Suppose (A1-3), (A2-

1) and (A3) hold. Let {xk, θk} be computed via Algorithm 2. Then, xk → x∗ a.s. and θk → θ∗ a.s. as

k →∞, where x∗ is the unique solution to (Pvx(θ∗)) and θ∗ is the unique solution to (Lvθ).

Proof. Note that x∗ = ΠX(x∗− γk,xF (x∗; θ∗)) and θ∗ = ΠΘ(θ∗− γk,θG(θ∗)). If we replace ∇xf and ∇θg by

F and G in Proposition 1, respectively, then by the proof of Proposition 1, we get xk → x∗ a.s. and θk → θ∗

a.s. as k →∞.

Next, we weaken the rather stringent requirement of strong monotonicity of the map by using an iterative

Tikhonov regularization, which can be stated as follows.

Algorithm 3 (Coupled regularized SA schemes for stochastic variational inequality problems).

Step 0. Given x0 ∈ X, θ0 ∈ Θ and sequences {γk,x, γk,θ}, k := 0

Step 1.

xk+1 := ΠX

(
xk − γk,x(F (xk; θk) + εkx

k + wk)
)

(Compk)

θk+1 := ΠΘ

(
θk − γk,θ(G(θk) + vk)

)
, (Learnk)

where wk , F (xk; θk, ξk)− F (xk; θk) and vk , G(θk; ηk)−G(θk).

Step 2. If k > K, stop; else k := k + 1, go to Step. 1.

Unlike in standard Tikhonov regularization, such a scheme updates the regularization parameter εk after ev-

ery step. Tikhonov regularization and its iterative counterpart has a long history [39] while iterative regular-

ization schemes have seen relatively less study in the context of variational inequality problems (cf. [48, 49]).
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Of note is the extension to distributed schemes to accommodate monotone Cartesian stochastic variational

inequality problems [22]. We employ such techniques in developing single-loop stochastic approximation

schemes in the context of learning and optimization. The following assumptions will be made on both the

decision variable and parameter.

Assumption 8 (A1-4). Suppose the following holds in addition to (A1-3 (ii)) and (A1-3 (iii)).

(i) For every θ ∈ Θ, F (x; θ) is monotone in x and Lipschitz continuous in x with constant Lx.

In iterative Tikhonov regularization, one cannot independently choose {εk} and {γk}; in fact, these

sequences are related and satisfy some collectively imposed requirements.

Assumption 9 (A2-3). Let {γk,x}, {γk,θ}, {εk} and some constant τ ∈ (0, 1) be chosen such that:

(i)
∑∞
k=0 γ

2−τ
k,x <∞ and

∑∞
k=0 γ

2
k,θ <∞,

(ii)
∑∞
k=0 γk,xεk =∞ and

∑∞
k=0 γk,θ =∞,

(iii) βk =
γτk,x

2γk,θµθ
↓ 0 as k → 0.

(iv)
∑∞
k=0

(εk−1−εk)
εk

<∞.

Before providing a convergence result for Algorithm 3, we introduce the following results.

Lemma 5. Let H : K → Rn be a mapping that is monotone over K, and Lipschitz continuous over K with

constant L. Then, for any γ > 0 and ε > 0, we have ‖(x − y) − γ(H(x) −H(y)) − εγ(x − y)‖ ≤ q‖x − y‖,

where q =
√

1− 2γε+ γ2(L2 + ε2).

Proof. See proof of Theorem 1 in [50].

Lemma 6. Let H : K → Rn be a mapping that is monotone over K. Given εk > 0, let yk be a solution to

VI(K,H + εkI). Then,

‖yk − yk−1‖ ≤ M(εk−1 − εk)

εk
,

where M = ‖x∗‖ and x∗ is a solution to VI(H,K).

Proof. See Lemma 3 in [50].

The convergence result for Algorithm 3 can be stated as follows.
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Theorem 5 (Almost-sure convergence under monotonicity of F ). Suppose (A1-4) , (A2-3) and (A3)

hold. Suppose X is bounded and the solution set X∗ of (Pvx(θ∗)) is nonempty. Let {xk, θk} be computed via

Algorithm 3. Then, θk → θ∗ a.s. as k →∞, and xk converges to a random point in X∗ a.s. as k →∞.

Proof. We have for any x∗ ∈ X∗ that x∗ = ΠX(x∗−γk,xF (x∗; θ∗)). Suppose yk is a solution to the following

fixed-point problem

yk = ΠX(yk − γk,x(F (yk; θ∗) + εky
k)).

Then, by the triangle inequality ‖xk+1 − x∗‖ may be bounded as follows:

‖xk+1 − x∗‖ ≤ ‖xk+1 − yk‖︸ ︷︷ ︸
Term 1

+ ‖yk − x∗‖︸ ︷︷ ︸
Term 2

.

Term 2 converges to zero by the convergence statement of Tikhonov regularization methods [20]. By using

the non-expansivity of the Euclidean projector, ‖xk+1 − yk‖2 can be bounded as follows:

‖xk+1 − yk‖2 = ‖ΠX(xk − γk,x(F (xk; θk) + εkx
k + wk))−ΠX(yk − γk,x(F (yk; θ∗) + εky

k))‖2

≤ ‖(xk − yk)− γk,x(F (xk; θk)− F (yk; θ∗))− εkγk,x(xk − yk)− γk,xwk‖2.

By adding and subtracting γk,xF (xk; θ∗), this expression can be further expanded as follows:

‖(xk − yk)− γk,x(F (xk; θ∗)− F (yk; θ∗))− γk,x(F (xk; θk)− F (xk; θ∗))− εkγk,x(xk − yk)− γk,xwk‖2

= ‖(xk − yk)− γk,x(F (xk; θ∗)− F (yk; θ∗))− εkγk,x(xk − yk)‖2 + γ2
k,x‖F (xk; θk)− F (xk; θ∗)‖2 + γ2

k,x‖wk‖2

− 2[(xk − yk)− γk,x(F (xk; θ∗)− F (yk; θ∗))− εkγk,x(xk − yk)]T × (F (xk; θk)− F (xk; θ∗))

− 2[(xk − yk)− γk,x(F (xk; θ∗)− F (yk; θ∗))− εkγk,x(xk − yk)]Twk + 2γ2
k,x(F (xk; θk)− F (xk; θ∗))Twk.

Noting that E[wk | Fk] = 0, we have

E[‖xk+1 − yk‖2 | Fk] ≤ Term 3 + Term 4 + Term 5 + γ2
k,xE[‖wk‖2 | Fk], (2.37)
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where

Term 3 , ‖(xk − yk)− γk,x(F (xk; θ∗)− F (yk; θ∗))− εkγk,x(xk − yk)‖2,

Term 4 , γ2
k,x‖F (xk; θk)− F (xk; θ∗)‖2,

Term 5 , −2γk,x[(xk − yk)− γk,x(F (xk; θ∗)− F (yk; θ∗))− εkγk,x(xk − yk)]T (F (xk; θk)− F (xk; θ∗)).

By Lemma 5 and (A1-4), Term 3 can be further bounded by

(1− 2γk,xεk + γ2
k,x(L2

x + (εk)2))‖xk − yk‖2. (2.38)

By the Lipschitz continuity of F (x; θ) in θ (A1-4), Term 4 can be further bounded by

γ2
k,xL

2
θ‖θk − θ∗‖2. (2.39)

By the Cauchy-Schwarz inequality, Lemma 5, (A1-4) as well as the fact that 2ab ≤ a2 + b2, Term 5 can be

further bounded by

2γk,x‖(xk − yk)− γk,x(F (xk; θ∗)− F (yk; θ∗))− εkγk,x(xk − yk)‖‖F (xk; θk)− F (xk; θ∗)‖

≤ 2γk,x

√
1− 2γk,xεk + γ2

k,x(L2
x + (εk)2)‖xk − yk‖Lθ‖θk − θ∗‖

≤ 2γk,xLθ‖xk − yk‖‖θk − θ∗‖

≤ γ2−τ
k,x L

2
θ‖xk − yk‖2 + γτk,x‖θk − θ∗‖2,

(2.40)

where τ ∈ (0, 1) is chosen to satisfy (A2-3). Combining (2.37), (2.38), (2.39) and (2.40), we get

E[‖xk+1 − yk‖2 | Fk] ≤ (q2
k,x + γ2−τ

k,x L
2
θ)‖xk − yk‖2 + (γτk,x + γ2

k,xL
2
θ)‖θk − θ∗‖2 + γ2

k,xν
2
x, (2.41)

where qk,x =
√

1− 2γk,xεk + γ2
k,x(L2

x + (εk)2).

On the other hand, we have that θ∗ is the unique solution to VI(Θ,E[G(•; η)]) and

θ∗ = ΠΘ(θ∗ − γk,θG(θ∗)).
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Therefore, by the nonexpansivity of the Euclidean projector, ‖θk+1 − θ∗‖2 may be bounded as follows:

‖θk+1 − θ∗‖2 = ‖ΠΘ(θk − γk,θ(G(θk) + vk))−ΠΘ(θ∗ − γk,θG(θ∗))‖2

≤ ‖(θk − θ∗)− γk,θ(G(θk)−G(θ∗))− γk,θvk‖2

= ‖(θk − θ∗)− γk,θ(G(θk)−G(θ∗))‖2 + γ2
k,θ‖vk‖2 − 2γk,θ[(θ

k − θ∗)− γk,θ(G(θk)−G(θ∗))]T vk.

By taking conditional expectations and by recalling that E[vk | Fk] = 0 (A3), we obtain the following:

E[‖θk+1 − θ∗‖2 | Fk] ≤ ‖(θk − θ∗)− γk,θ(G(θk)−G(θ∗))‖2 + γ2
k,θE[‖vk‖2 | Fk]

≤ q2
k,θ‖θk − θ∗‖2 + γ2

k,θν
2
θ ,

(2.42)

where qk,θ =
√

1− 2γk,θµθ + γ2
k,θC

2
θ , and the second inequality follows from Lemma 4, (A1-4) and (A3).

Since by (A2-3)
∑∞
k=0(1− q2

k,θ) =∞ and
∑∞
k=0 γ

2
k,θν

2
θ <∞, and

lim
k→∞

γ2
k,θν

2
θ

1− q2
k,θ

= lim
k→∞

γ2
k,θν

2
θ

2γk,θµθ − γ2
k,θC

2
θ

= lim
k→∞

γk,θν
2
θ

2µθ − γk,θC2
θ

= 0,

we have by Lemma 2 that ‖θk − θ∗‖ → 0 a.s. as k → ∞. Choose βk =
γτk,x

2γk,θµθ
by (A2-3). Note that by

assumption βk+1 ≤ βk. By multiplying the left hand side of (2.42) by βk+1 and adding to the left hand side

of (2.41), we get

E[‖xk+1 − yk‖2 | Fk] + βk+1E[‖θk+1 − θ∗‖2 | Fk]

≤ E[‖xk+1 − yk‖2 | Fk] + βkE[‖θk+1 − θ∗‖2 | Fk]

≤ (q2
k,x + γ2−τ

k,x L
2
θ)‖xk − yk‖2 + (βkq

2
k,θ + γτk,x + γ2

k,xL
2
θ)‖θk − θ∗‖2 + βkγ

2
k,θν

2
θ + γ2

k,xν
2
x

= (q2
k,x + γ2−τ

k,x L
2
θ)‖xk − yk‖2 +

βkq
2
k,θ + γτk,x + γ2

k,xL
2
θ

βk︸ ︷︷ ︸
Term6

·βk‖θk − θ∗‖2 + βkγ
2
k,θν

2
θ + γ2

k,xν
2
x.

(2.43)

Term 6 on the right hand side of (2.43) can be further expanded as

βkq
2
k,θ + γτk,x + γ2

k,xL
2
θ

βk
= q2

k,θ +
γτk,x + γ2

k,xL
2
θ

βk
= 1− 2γk,θµθ + γ2

k,θC
2
θ +

γτk,x
βk

+
γ2
k,xL

2
θ

βk

= 1 + γ2
k,θC

2
θ + 2γk,θγ

2−τ
k,x µθL

2
θ.

(2.44)
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Combining (2.43) and (2.44), we get

E[‖xk+1 − yk‖2 | Fk] + βk+1E[‖θk+1 − θ∗‖2 | Fk]

≤ (q2
k,x + γ2−τ

k,x L
2
θ)‖xk − yk‖2 + (1 + γ2

k,θC
2
θ + 2γk,θγ

2−τ
k,x µθL

2
θ)βk‖θk − θ∗‖2 + βkγ

2
k,θν

2
θ + γ2

k,xν
2
x

= (1 + γ2
k,θC

2
θ + 2γk,θγ

2−τ
k,x µθL

2
θ)(‖xk − yk‖2 + βk‖θk − θ∗‖2)

− (γ2
k,θC

2
θ + 2γk,θγ

2−τ
k,x µθL

2
θ + 2γk,xεk)‖xk − yk‖2

+ (γ2
k,x(L2

x + (εk)2) + γ2−τ
k,x L

2
θ)‖xk − yk‖2 + βkγ

2
k,θν

2
θ + γ2

k,xν
2
x.

Note that ‖xk+1 − yk‖2 ≤ ‖xk − yk−1‖2 + 2‖xk − yk−1‖‖yk − yk−1‖+ ‖yk − yk−1‖2. We have

E[‖xk+1 − yk‖2 | Fk] + βk+1E[‖θk+1 − θ∗‖2 | Fk]

≤ (1 + γ2
k,θC

2
θ + 2γk,θγ

2−τ
k,x µθL

2
θ)(‖xk − yk−1‖2 + βk‖θk − θ∗‖2)

+ 2(1 + γ2
k,θC

2
θ + 2γk,θγ

2−τ
k,x µθL

2
θ)‖xk − yk−1‖‖yk − yk−1‖+ (1 + γ2

k,θC
2
θ + 2γk,θγ

2−τ
k,x µθL

2
θ)‖yk − yk−1‖2

− (γ2
k,θC

2
θ + 2γk,θγ

2−τ
k,x µθL

2
θ + 2γk,xεk)‖xk − yk‖2 + (γ2

k,x(L2
x + (εk)2) + γ2−τ

k,x L
2
θ)‖xk − yk‖2

+ βkγ
2
k,θν

2
θ + γ2

k,xν
2
x,

which can be further reduced to

E[‖xk+1 − yk‖2 | Fk] + βk+1E[‖θk+1 − θ∗‖2 | Fk]

≤ (1 + γ2
k,θC

2
θ + 2γk,θγ

2−τ
k,x µθL

2
θ)(‖xk − yk−1‖2 + βk‖θk − θ∗‖2)

+ 2(1 + γ2
k,θC

2
θ + 2γk,θγ

2−τ
k,x µθL

2
θ)‖xk − yk−1‖‖yk − yk−1‖

+ (1 + γ2
k,θC

2
θ + 2γk,θγ

2−τ
k,x µθL

2
θ)‖yk − yk−1‖2

− 2γk,xεk‖xk − yk‖2 + (γ2
k,x(L2

x + (εk)2) + γ2−τ
k,x L

2
θ)‖xk − yk‖2 + βkγ

2
k,θν

2
θ + γ2

k,xν
2
x.

By Lemma 6 and (A2-3),
∑∞
k=0 ‖yk − yk−1‖ <∞. and

∑∞
k=0 ‖yk − yk−1‖2 <∞. Therefore, by boundedness

of X, (A2-3) and Lemma 3, we have that there exists a random variable V such that

‖xk − yk−1‖2 + βk‖θk − θ∗‖2 → V a.s. as k →∞.

and
∑∞
k=0 2γk,xεk‖xk − yk‖2 < ∞. Since

∑∞
k=0 γk,xεk = ∞, we get ‖xk − yk‖ → 0 a.s. as k → ∞. This

implies ‖xk − x∗‖ → 0 a.s. as k →∞.
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2.3.2 Diminishing and constant steplength error analysis

In this section, we estimate the convergence rate of the proposed schemes. Analogous to Section 2.2.3,

we obtain the optimal O(1/K) rate estimate for the upper bound on the expected error in the solution

xK when F (•; θ∗) is strongly monotone in (•). In addition, when F (•; θ∗) is merely monotone and the

variational inequality problem possesses the minimum principle sufficiency (MPS) property (See Lemma 7

for a definition of the MPS property), a rate estimate is still available by using averaging. If we replace ∇xf

and ∇θg by F and G, respectively, in Theorem 2, then we obtain the following:

Theorem 6 (Rate estimate for strongly monotone F ). Suppose (A1-3) and (A3) hold. Suppose

γx,k = λx/k and γθ,k = λθ/k with λx > 1/µx and λθ > 1/(2µθ). Let E[‖F (xk; θk) + wk‖2] ≤ M2 and

E[‖G(θk)+vk‖2] ≤M2
θ for all xk ∈ X and θk ∈ Θ. Suppose x∗ is the unique solution to VI(X,E[F (•; θ∗, ξ)]).

Let {xk, θk} be computed via Algorithm 2. Then, the following hold:

E[‖θk − θ∗‖2] ≤ Qθ(λθ)

k
and E[‖xk − x∗‖2] ≤ Qx(λx)

k
,

where

Qθ(λθ) , max
{
λ2
θM

2
θ (2µθλθ − 1)−1,E[‖θ1 − θ∗‖2]

}
,

Qx(λx) , max
{
λ2
xM̃

2(µxλx − 1)−1,E[‖x1 − x∗‖2]
}
,

and M̃ ,

√
M2 +

L2
θQθ(λθ)

µxλx
.

Next, we weaken the strong monotonicity of F , but assume that (Pvx(θ∗)) satisfies the MPS property,

introduced in the following Lemma. Note that this property guarantees weak sharpness of the solution set;

this is analogous to weak-sharpness of minima in optimization problems [51].

Lemma 7 (Theorem 4.3 in [52]). Let H : X → Rn be a mapping that is monotone over the compact polyhedral

set X. Let X∗ be the solution set of VI(X,H). If the VI(X,H) possesses the minimum principle sufficiency

(MPS) property, then there exists a positive number α such that (x − x∗)TH(x∗) ≥ α dist(x,X∗), ∀x ∈

X, ∀x∗ ∈ X∗, where dist(x,X∗) , minx∗∈X∗ ‖x − x∗‖. We say that the VI(X,H) possesses the MPS

property if Γ(x∗) = X∗ for every x∗ in X∗, where Γ(x) = arg maxy∈X(x− y)TH(x).

By leveraging this property, we may estimate the convergence rate by using averaging as in Theorem 2.
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Theorem 7 (Rate estimates under monotonicity of F ). Suppose (A1-4) and (A3) hold. Suppose

E[‖xk − x∗‖2] ≤ M2
x , E[‖F (xk; θk) + wk‖2] ≤ M2 and E[‖G(θk) + vk‖2] ≤ M2

θ for all xk ∈ X and θk ∈ Θ.

Suppose X is a compact polyhedral set, the solution set X∗ of VI(X,E[F (•; θ∗, ξ)]) is nonempty, and x∗

is a point in X∗. Suppose VI(X,E[F (•; θ∗, ξ)]) possesses the MPS property. Let {xk, θk} be computed via

Algorithm 2. For 1 ≤ i, t ≤ k, we define vt , γx,t∑k
s=i γx,s

, x̃i,k ,
∑k
t=i vtx

t and DX , maxx∈X ‖x − x1‖.

Suppose for 1 ≤ t ≤ k

γx =

√
4D2

X + L2
θQθ(λθ)(1 + ln k)

(M2 +M2
x)k

,

where Qθ(λθ) , max
{
λ2
θM

2
θ (2µθλθ − 1)−1,E[‖θ1 − θ∗‖2]

}
, and γθ,k = λθ/k with λθ > 1/(2µθ). Then there

exists a positive number α such that for 1 ≤ i ≤ k:

E [α dist(x̃i,k, X
∗)] ≤ Ci,k

√
Bk
k
,

where Ci,k = k
k−i+1 and Bk = (4D2

X + L2
θQθ(λθ)(1 + ln k))(M2 +M2

x).

Proof. By using the same notation in Theorem 2 except that we replace ∇xf and ∇θg by F and G, respec-

tively, we have from (2.20) that

ak+1 ≤ ak +
1

2
γ2
x,kM

2 − γx,kE[(xk − x∗)TF (xk; θ∗)]− γx,kE[(xk − x∗)T (F (xk; θk)− F (xk; θ∗))]. (2.45)

By Lemma 7, we have that there exists a positive number α such that

α dist(xk, X∗) ≤ (xk − x∗)TF (x∗; θ∗) = (xk − x∗)TF (xk; θ∗)− (xk − x∗)T (F (xk; θ∗)− F (x∗; θ∗))

≤ (xk − x∗)TF (xk; θ∗),
(2.46)

where the last inequality follows from the monotonicity of F (•; θ∗) in (•). Combining (2.45) and (2.46),

αγx,kE[dist(xk, X∗)] ≤ γx,kE[(xk − x∗)TF (xk; θ∗)]

≤ ak − ak+1 +
1

2
γ2
x,kM

2 − γx,kE[(xk − x∗)T (F (xk; θk)− F (xk; θ∗))].
(2.47)

Next, we follow the same proof method in Theorem 2. We define vt ,
γx,t∑k
s=i γx,s

and DX , max
x∈X
‖x− x1‖. It

follows from (2.24) and (2.47) that

E

[
α

k∑
t=i

vtdist(xt, X∗)

]
≤
ai + 1

2

∑k
t=i γ

2
x,t(M

2 +M2
x) + 1

2L
2
θQθ(λθ)(1 + ln k)∑k

t=i γx,t
. (2.48)
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Next, we consider points given by x̃i,k ,
∑k
t=i vtx

t. Since F (x; θ∗) is monotone in x, we have that X∗ is

convex, which implies that dist(x,X∗) is convex in x. So, we get dist(x̃i,k, X
∗) ≤

∑k
t=i vtdist(xt, X∗). It

follows from (2.25) and (2.48) that for 1 ≤ i ≤ k

E [α dist(x̃i,k, X
∗)] ≤

4D2
X +

∑k
t=i γ

2
x,t(M

2 +M2
x) + L2

θQθ(λθ)(1 + ln k)

2
∑k
t=i γx,t

. (2.49)

Suppose γx,t = γx for t = 1, . . . , k. If we follow the same proof method in Theorem 2, then we can get from

(2.27) and (2.49) that

E [α dist(x̃i,k, X
∗)] ≤ Ci,k

√
Bk
k
.

The following corollary is a special case of Theorem 7, an avenue that has been adopted in [41].

Corollary 2 (Rate estimates under monotonicity of F ). Suppose (A1-4) and (A3) hold. Suppose

E[‖xk − x∗‖2] ≤ M2
x , E[‖F (xk; θk) + wk‖2] ≤ M2 and E[‖G(θk) + vk‖2] ≤ M2

θ for all xk ∈ X and θk ∈ Θ.

Suppose X is a compact polyhedral set, the solution set X∗ of VI(X,E[F (•; θ∗, ξ)]) is nonempty, and x∗

is a point in X∗. Suppose VI(X,E[F (•; θ∗, ξ)]) possesses the MPS property. Let {xk, θk} be computed via

Algorithm 2. For k/2 ≤ t ≤ k, we define vt ,
γx,t∑k

s=k/2 γx,s
, x̃k/2,k ,

∑k
t=k/2 vtx

t and DX , maxx∈X ‖x−x1‖.

Suppose for 1 ≤ t ≤ k

γx =

√
4D2

X + L2
θQθ(λθ)(1 + ln 2)

(M2 +M2
x)k

,

where Qθ(λθ) , max
{
λ2
θM

2
θ (2µθλθ − 1)−1,E[‖θ1 − θ∗‖2]

}
, and γθ,k = λθ/k with λθ > 1/(2µθ). Then there

exists a positive number α such that

E
[
α dist(x̃k/2,k, X

∗)
]
≤ 2

√
B

k
,

where B = (4D2
X + L2

θQθ(λθ)(1 + ln 2))(M2 +M2
x).

Proof. When i = k/2 where k is a positive even number, then by utilizing the same approach as in Corollary

1, inequality (2.49) becomes the following:

E
[
α dist(x̃k/2,k, X

∗)
]
≤

4D2
X +

∑k
t=k/2 γ

2
x,t(M

2 +M2
x) + L2

θQθ(λθ)(1 + ln 2)

2
∑k
t=k/2 γx,t

. (2.50)
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Suppose γx,t = γx for t = 1, . . . , k. By utilizing the same techniques as in Theorem 7, then we obtain the

following bound:

E
[
α dist(x̃k/2,k, X

∗)
]
≤ 2

√
B

k
,

where B , (4D2
X + L2

θQθ(λθ)(1 + ln 2))(M2 +M2
x).

Next, we present a constant steplength error bound.

Proposition 5 (Constant steplength error bound). Suppose (A3) holds. Suppose γθ,k := γθ and γx,k :=

γx. Suppose E[‖xk − x∗‖2] ≤M2
x and E[F (xk; θk) +wk‖2] ≤M2 for all xk ∈ X. Suppose Ak , 1

2‖x
k − x∗‖2

and ak , E[Ak]. Suppose X is a compact polyhedral set, the solution set X∗ of VI(X,E[F (•; θ∗, ξ)]) is

nonempty, and x∗ is a point in X∗. Suppose VI(X,E[F (•; θ∗, ξ)]) possesses the MPS property. Let {xk, θk}

be computed via Algorithm 1.

(i) Suppose (A1-3) holds. Then, the following holds:

lim sup
k→∞

ak ≤
1

2µx
γxM

2 +
1

2

1

µ2
x

L2
θ

γθν
2
θ

2µθ − γθC2
θ

;

(ii) Suppose (A1-4) holds. Then, there exists a positive number α such that:

lim sup
k→∞

E[dist(xk, X∗)] ≤ 1

α

[
1

2
γxM

2 +
1

2
γ1−τ
x M2

x +
1

2
γτ−1
x L2

θ

γθν
2
θ

2µθ − γθC2
θ

]
,

where 0 < τ < 1.

Proof. If we replace ∇xf and ∇θg by F and G in Proposition 3, we obtain that

lim sup
k→∞

E[‖θk − θ∗‖2] ≤ γθν
2
θ

2µθ − γθC2
θ

,

and the following can be derived based on the properties of F :

(i) F is strongly monotone:

lim sup
k→∞

ak ≤
1

2µx
γxM

2 +
1

2

1

µ2
x

L2
θ

γθν
2
θ

2µθ − γθC2
θ

;
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(ii) f is convex: From (2.47), for γx,k := γx, we have that there exists a positive number α such that:

αγxE[dist(xk, X∗)] ≤ γxE[(xk − x∗)TF (xk; θ∗)]

≤ ak − ak+1 +
1

2
γ2
xM

2 − γxE[(xk − x∗)T (F (xk; θk)− F (xk; θ∗))]

≤ ak − ak+1 +
1

2
γ2
xM

2 +
1

2
γ2−τ
x E[‖xk − x∗‖2] +

1

2
γτxE[‖F (xk; θk)− F (xk; θ∗)‖2]

≤ ak − ak+1 +
1

2
γ2
xM

2 +
1

2
γ2−τ
x M2

x +
1

2
γτxL

2
θE[‖θk − θ∗‖2],

where 0 < τ < 1. It follows that

αγxE[dist(xk, X∗)] ≤ lim sup
k→∞

ak − lim sup
k→∞

ak+1 +
1

2
γ2
xM

2 +
1

2
γ2−τ
x M2

x +
1

2
γτxL

2
θ lim sup

k→∞
E[‖θk − θ∗‖2]

≤ 1

2
γ2
xM

2 +
1

2
γ2−τ
x M2

x +
1

2
γτxL

2
θ

γθν
2
θ

2µθ − γθC2
θ

.

It follows that

lim sup
k→∞

E[dist(xk, X∗)] ≤ 1

α

[
1

2
γxM

2 +
1

2
γ1−τ
x M2

x +
1

2
γτ−1
x L2

θ

γθν
2
θ

2µθ − γθC2
θ

]
.

2.4 Numerical results

In this section, we apply the developed algorithms on a class of misspecified economic dispatch problems

described in Section 2.4.1. In Section 2.4.2, we apply the proposed schemes for purposes of learning optimal

solutions and the misspecified parameters. Note that the simulations were carried out on Tomlab 7.4. The

complementarity solver PATH [53] was utilized for obtaining solutions to these problems which subsequently

formed the basis for comparison.

2.4.1 Problem description

We consider a setting where there are N firms competing over a W -node network. Firm f may produce and

sell its good at node i, where f = 1, . . . , N and i = 1, . . . ,W . We assume that for a given firm f , the cost of

generating xfi units of power at node i is random and is given by cfi(xfi) = dfix
2
fi +hfixfi + ξfi, where dfi

and hfi are positive parameters, and ξfi is a random variable with mean zero for all f and i. Furthermore,

the generation level associated with firm f is bounded by its production capacity, which is denoted by capfi.
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The aggregate sales of all firms at node i has to satisfy the demand Di at node i. A given firm can produce

at any node and then sell at different nodes, provided that the aggregate production at all nodes matches

the aggregate sales at all nodes for each firm. For simplicity, we assume that there is no limit of sales at any

node. Then, the resulting problem faced by the grid operator can be stated as follows:

min
xfi≥0

E

 N∑
f=1

W∑
i=1

cfi(xfi)


subject to xfi ≤ capfi, for all f, i

N∑
f=1

xfi = Di.

(2.51)

The resulting optimal solution is given by x∗. Suppose firm f generates yfi units of power at node i. We

use cfi(yfi) = dfi(yfi)
2 +hfiyfi + ξfi to denote the cost associated with firm f at node i. The operator will

solve the following (regularized) problem to estimate cfi and dfi:

min
{dfi,hf,i}∈Θ

E
[
(dfi(yfi)

2 + hfiyfi − cfi(yfi))2 + µθd
2
fi + µθh

2
fi

]
. (2.52)

The resulting optimal solution is given by θ∗. We assume that yfi is distributed as per a uniform distribution

and is specified by yfi ∼ U [0, capfi], while that the noise ξfi is distributed as per a uniform distribution and

is specified by ξfi ∼ U [−θ∗fi/2, θ∗fi/2].

2.4.2 Results

In this subsection, we employ Algorithm 1 proposed in Section 2.2 for learning parameters and computing

optimal solutions. We will examine the behavior and error bounds of the algorithm.

Behavior of the algorithm

In this part, we consider a special case when N = 5 and W = 5. Suppose, the noise ξ is distributed as per

a uniform distribution and is specified by ξ ∼ U [−θ∗/2, θ∗/2]. Suppose the steplength sequences {γk,x} and

{γk,θ} are chosen according to Proportion 2: γk,x = 1/k and γk,θ = 40/k. Figure 2.1(a) illustrates the scaled

error of the learning scheme when the number of steps increases.

Error bounds

In this part, we examine the errors of the algorithm and compare them with the theoretical error bounds

proposed in Section 2.2. Suppose, the noise ξ is distributed as per a uniform distribution and is specified by
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Figure 2.1: Computing x∗ and learning θ∗ (ξ ∼ U [−θ∗/2, θ∗/2], N = 5, W = 5)

ξ ∼ U [−θ∗/2, θ∗/2].

(a) In the strongly convex regime, suppose the steplength sequences {γk,x} and {γk,θ} are chosen according

to Proportion 2: γk,x = 1/k and γk,θ = 40/k. We use ERR to denote the theoretical error provided in

Proportion 2. The algorithm was terminated at K = 10000. Table 2.1 (L) shows the scaled errors of

the learning scheme.

(b) In the merely convex regime, suppose the steplength γx and the steplength sequence {γk,θ} are chosen

according to Theorem 2: γx is chosen by Table 2.1 (R) and γk,θ = 40/k. We use ERR to denote the

theoretical error provided in Theorem 2 while z∗ denotes f(x∗; θ∗). The algorithm was terminated at

K = 10000 and Table 2.1(R) shows the scaled errors of the learning scheme.

(c) Suppose the steplength sequences {γk,x} and {γk,θ} are chosen according to Theorem 4: γk,x = k−α

and γk,θ = 40/k. We employ ERR to denote the theoretical error provided in Theorem 4 while z∗

denotes f(x∗; θ∗). The algorithm was terminated after K = 10000 iterations. Figure 2.1(b) illustrates

the scaled regret and scaled theoretical error of the learning scheme when the number of steps increases

(α = β = 0.5). Table 2.2 shows the scaled theoretical error of the learning scheme for different chosen

γk,x = k−α with α = 0.5, 0.6, 0.7, 0.8, 0.9 when β = 0.5. We see that when α changes, error bounds

change marginally primarily because the last term in Theorem 4 dominates the bound.

Table 2.1: Learning x∗ and θ∗ in a strongly convex (L) and convex (R) regime: ξ ∼ U [−θ∗/2, θ∗/2]

N W
E[‖xK−x∗‖]

1+‖x∗‖
ERR

1+‖x∗‖
‖E[θK−θ∗‖]

1+‖θ∗‖
ERR

1+‖θ∗‖
10 2 7.3×10−3 9.2×109 4.8×10−2 3.7×104

10 4 3.7×10−2 2.1×1010 4.9×10−2 3.1×104

10 6 3.8×10−2 7.8×1010 4.7×10−2 8.3×104

10 8 1.7×10−2 9.1×1010 4.8×10−2 8.5×104

10 10 2.4×10−2 1.2×1011 4.3×10−2 8.6×104

N W
E[f(x̃1,K ;θK )−z∗]

1+‖z∗‖
ERR

1+‖x∗‖ γx

10 2 1.9×10−1 2.5×105 72

10 4 6.5×10−2 1.1×105 93

10 6 2.7×10−1 2.6×105 127

10 8 1.3×10−1 1.7×105 131

10 10 1.4×10−1 2.6×105 133
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Table 2.2: Investigation of regret when learning x∗ and θ∗ in a stochastic convex regime: ξ ∼ U [−θ∗/2, θ∗/2],
N = 5, W = 5

α
RK

K‖z∗‖
ERR
‖z∗‖

0.5 4.8×10−2 3.1×108

0.6 3.3×10−2 3.1×108

0.7 2.3×10−2 3.1×108

0.8 1.8×10−2 3.1×108

0.9 1.5×10−2 3.1×103

2.5 Concluding remarks

Traditionally, much of the field of optimization has been defined by problems in which the functions and sets

are known to the decision-maker. However, as problems grow in their reliance on data, such knowledge cannot

be taken for granted. We consider one such instance of such problems where functions may be misspecified

and the associated vector may be learnt through the parallel solution of a suitably defined problem. It

is worth emphasizing the problem in the full space of learning and optimization variables is a challenging

(non-monotone) stochastic variational problem for which no first-order methods are currently available. Yet,

by leveraging the structure of the problem, we show that such problems can indeed be efficiently solved.

We consider a problem of solving a stochastic optimization problem in which the objective is parameter-

ized by a vector that can be learnt by solving a suitably defined learning problem, captured by a stochastic

optimization problem. In both strongly convex and merely convex regimes, we develop a set of coupled

stochastic approximation schemes which produces a sequence of iterates that are shown to converge to the

solution and unknown parameter in an almost sure sense. Additionally, we provide rate estimates for the

prescribed schemes in both strongly convex and convex regimes. Through an analysis of the rate of con-

vergence under a diminishing steplength setting, it is seen that the optimal rate of convergence is observed

in strongly convex problems while in convex regimes, we see a degradation introduced by learning from

O
(

1√
K

)
to O

(√
ln(K)√
K

)
. This degradation is seen to disappear if the averaging window is modified appro-

priately. Similar rate statements are also provided in a constant steplength regime. In fact, we may also cast

this problem as an online decision-making problem where a decision-maker sees a collection of misspecified

functions. In a stochastic regime, we observe that an upper bound on the average regret can be shown to

decay at a rate no worse than O
(

lnK√
K

)
for a suitably chosen steplength.

Unfortunately, the optimization-based model cannot accommodate settings where there is misspecifi-

cation in the constraints or, more generally, if the associated decision-making problem is an equilibrium

problem. Motivated by this gap, we consider a misspecified stochastic variational inequality problem and

propose analogous stochastic approximation schemes for computation and learning. To resolve the challenge

associated with merely monotone maps, we employ (Tikhonov) regularized counterparts for which almost-

sure convergence statements can be provided. Additionally, we provide rate statements for constant and

47



diminishing steplength regimes, of which the latter requires imposing a suitable weak-sharpness assumption

on the original problem. Again, it is seen that while the schemes display the optimal rate of convergence

under strongly monotone regimes, a degradation in the rate is seen in the monotone regime.
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Chapter 3

Misspecified Stochastic Nash Games

3.1 Introduction

In networked engineered systems, a common challenge lies in designing distributed control architectures that

ensure the satisfaction of a system-wide criterion in environments complicated by nonlinearity, uncertainty,

and dynamics. Such control-theoretic problems take on a variety of forms and arise in a variety of networked

settings, including networks of unmanned aerial vehicles (UAVs), traffic networks, wireline and wireless

communication networks, and energy systems, amongst others. These systems are often characterized by the

absence of a designated central entity that either has system-wide control or has access to global information.

Consequently, control is effected through distributed decision-making and local interactions that rely on

limited information. Game-theoretic approaches represent an avenue for designing such protocols. Game

theory has seen wide applicability in the social, economic, and engineered sciences in a largely descriptive

role. There has been immense recent interest in a prescriptive role [54] that considers designing a game whose

equilibria represent the solutions to the control problem of interest [55, 56]; consequently, the distributed

learning of Nash equilibria assumes immediate relevance in the management of networked systems. Learning

in Nash games has seen much study in the last several decades [57, 58, 59, 60]. In continuous strategy regimes,

convex static games find significance in engineered systems such as communication networks [61, 62, 63, 64]

and signal processing [65, 66].

An oft-used assumption in game-theoretic models requires that player payoffs are public knowledge,

allowing every player to correctly forecast the choices of his adversaries. As noted by Kirman [67], a firm’s

view of the game may be corrupted or misspecified in at least two distinct ways in a Cournot setting where

firms decide production levels given a price function: (i) a firm might have a correct description of the

price function but an incorrect estimate of its parameters; and (ii) it may have an incorrect structure of the

price function and incorrectly conclude that prediction errors are a consequence of misspecified parameters.

Kirman [67] considered such a learning process, and showed that by observing true demand, the suggested

learning process guarantees that the firm strategies converge to the noncooperative Nash equilibrium. Further
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inspiration may be drawn from studies by Bischi [68, 69], Szidarovsky [70, 71], and others [72], where firms

competing in a deterministic Nash-Cournot game learn a parameter of the demand function while playing

the game repeatedly. Note that an inherent assumption of a low discount rate is imposed that discounts

the future effect of any player’s strategies. Analogous questions of optimization and estimation have also

been studied by Cooper et al. [38] who consider a joint process of forecasting and optimization in a regime

where the underlying model may be erroneous, demonstrating that the resulting revenues can systematically

reduce over time.

When designing protocols for practical engineered systems, particularly in the absence of a centralized

controller, the associated parameters of the utility functions may often be misspecified. For instance, in

power market models that enlist Nash-Cournot models [73, 74], the precise nature of the price function is

assumed to be given. Similarly, the expected capacity or availability of renewable generation assets is rarely

known a priori. Similarly, when developing distributed protocols for networked UAVs, the prescribed utility

functions may rely on agent-specific information that can only be learnt through observations. Faced by

such challenges, our goal lies in the development and analysis of general purpose algorithms that combine

computation of Nash equilibria with a learning phase to correct misspecification.

Motivation: This chapter is motivated by the absence of general-purpose distributed schemes with asymp-

totic convergence and rate guarantees for learning equilibria in the face of imperfect information. Such prob-

lems emerge from stochastic generalizations of problems arising in communication networks [62, 75, 63, 64],

signal processing [65, 66], and power markets [73]. Accordingly, we present two distributed learning schemes

in which agents learn their Nash strategy while correcting the misspecification in their payoffs:

(1) Stochastic gradient schemes for stochastic Nash games: In Section 3.2, we present a distributed

stochastic approximation framework in which every agent makes two projected gradient updates: Every

agent first updates its belief regarding the equilibrium strategy by using the sampled gradient of its payoff

function and subsequently updates its belief regarding the misspecified parameter through a similar project-

ed (stochastic) gradient update. The resulting sequence of equilibrium and parameter estimates are shown

to converge to their true counterparts in an almost sure sense. Notably, we show that the mean-squared

error of the equilibrium estimates converges to zero at the optimal rate O(1/K) despite the presence of

misspecification.

(2) Iterative fixed-point schemes for stochastic Nash-Cournot games: In Section 3.3, we consider a

Cournot regime where aggregate output is unobservable and one parameter of the demand function is mis-

specified. Under common-knowledge, agents develop an estimate of aggregate output and the misspecified

price function parameter by observing noisy prices. These estimates allow developing an iterative fixed-point

scheme that produces iterates that are shown to converge to the Nash-Cournot equilibrium in an almost-sure
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sense. Additionally, firms learn the true parameter in an almost-sure sense. The result can be extended to

nonlinear price functions.

Remark: We make two remarks before proceeding. (a) First, in (1), the learning problem is constructed

independently of the computational problem through a set of observations while in (2), the learning is

affected by the computational step (akin to multi-armed bandit problems). (b) Second, we comment on the

sequential two-stage framework for resolving misspecification:

Step 1. Learn θ∗ Step 2. Compute x∗(θ∗),

where θ∗ is to be learnt and x∗(θ∗) is the (stochastic) Nash equilibrium, given θ∗. Unfortunately, such an

approach is complicated by several challenges. First, Step 1. needs to be completed in a finite number of

iterations, practically impossible for stochastic learning problems. Second, premature termination of Step 1.

leads to an erroneous estimate θ̂ leading to an incorrect Nash equilibrium x̂. In fact, in stochastic regimes,

one often cannot prescribe the amount of learning effort required in a priori sense. Preliminary numerics

reveal that sequential schemes may perform orders of magnitude worse when compared with iterative fixed-

point schemes (see Table 3.3). Third, offline or a priori observations may be unavailable as required by Step

1.

This chapter is organized as follows. In Section 3.2, we define and resolve a misspecified stochastic Nash

game and present a joint set of stochastic approximation schemes that jointly allow for learning equilibria

and resolving misspecification. In Section 3.3, we develop iterative fixed-point schemes in Cournot settings

where aggregate output is unobservable. Empirical studies and conclusions are provided in Sections 3.4 and

3.5, respectively.

3.2 Gradient-based schemes for convex Nash games

3.2.1 Problem description, assumptions and background

We consider an N−person stochastic Nash game in which the ith player solves Opt(x−i):

min
xi∈Ki

fi(x; θ∗) , E[fi(x; θ∗, ξ)] (Opt(x−i))

where Ki ⊆ Rni , θ∗ ∈ Rm, ξ : Ω → Rd defined on a probability space (Ωx,Fx,Px), n =
∑N
i=1 ni, and

fi : Rn × Rm × Rd → R is a real-valued function in xi, x−i , (xj)
N
i 6=j=1, and ξ. The associated Nash

equilibrium is given by a tuple x∗ = (x∗i )
N
i=1 where x∗i ∈ SOL(Opt(x∗−i)) for i = 1, . . . , N, SOL(Opt(x∗−i))
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denotes the solution of Opt(x−i) and under suitable convexity requirements (see (A10) below), x∗ is a

solution to a stochastic variational inequality problem VI(K,F (•; θ∗)) where K and F : K × Θ → Rn are

defined as follows:

K ,
N∏
i=1

Ki and F (x; θ) ,

(
E[∇xifi(x; θ, ξ)]

)N
i=1

, (3.1)

respectively. It may be recalled that VI(K,F ) requires an x ∈ K satisfying

(y − x)TF (x; θ∗) ≥ 0, for all y ∈ K. (3.2)

Our overall goal lies in computing equilibria when θ∗ is unavailable or misspecified.

Learning scheme In this section, we consider the estimation of θ∗ through the solution of a suitably

defined stochastic convex learning problem [1]:

min
θ∈Θ

g(θ) , E[g(θ; η)], (3.3)

where Θ ⊆ Rm is a closed and convex set, η : Z → Rp is a random variable defined on a probability

space (Λ,Fθ,Pθ), and g : Θ × Λ → R is a real-valued learning metric function (such as a regression metric

constructed from a set of observations). Consequently, θ∗ may be learnt through a stochastic gradient scheme

of the form:

θk+1
i := ΠΘ

(
θki − αki∇θg(θki ; ηki )

)
, k ≥ 0, i = 1, . . . , N. (3.4)

We emphasize that this learning problem is unrelated to the computational process and is a built from a set

of independently collected observations.

Distributed computational scheme We consider a distributed stochastic approximation scheme where

the ith agent employs its belief regarding θ∗ to take a (stochastic) gradient step:

xk+1
i := ΠKi

(
xki − γki ∇xifi(xk; θk, ξk)

)
, k ≥ 0, i = 1, . . . , N, (3.5)

where γki and ∇xifi(xk; θk, ξk) denotes the steplength and sampled gradient used by player i at step k

and ΠX(u) denotes the Euclidean projection of u onto X. While a fully rational agent would always take

a best response step, in stochastic settings, the complexity of this step might be significant. In bounded
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rational regimes where computational constraints are imposed, an alternative lies in computing other steps

(such as the gradient-response) (cf. [76, 77]) (cf. research in communication networks [61] and cognitive

radio games [78]. An alternate motivation arises from distributed control/optimization settings where a

“game” is designed whose equilibrium is a desirable solution to a suitably defined control problem. Here,

a distributed protocol for computing an equilibrium can be designed and gradient-based approaches can be

adopted (cf. [54, 55, 56]). We propose a game-theoretic extension of that developed in [79]. We may specify

our joint simulation-based scheme for learning and computation as follows:

Algorithm 4 (Gradient response and learning). Step 0. Given θ0
i ∈ Θ, x0 ∈ K, {γki , αki } > 0 , for

i = 1, . . . , N , and k = 0.

Step 1:

xk+1
i := ΠKi

(
xki − γki ∇xifi(xk; θki , ξ

k
i )
)
, k ≥ 0, i = 1, . . . , N (Computation)

θk+1
i := ΠΘ

(
θki − αki∇θg(θki ; ηki )

)
, k ≥ 0, i = 1, . . . , N. (Learning)

Step 2: if k > K̄, stop; else k := k + 1 and go to Step 1.

We now present the main assumptions employed in deriving convergence properties of Algorithm 4. (A1)

enforces convexity assumptions that allow for deriving sufficient equilibrium conditions as VI(X,F ) while

the monotonicity requirements on F allow for claiming the existence of a unique equilibrium. Lipschitzian

requirements of F aid in deriving subsequent convergence and rate statements. Furthermore, a breadth of

learning problems (such as regression, classification etc. [1]) are convex. The requirements imposed by (A11)

are standard in developing distributed protocols while (A12) imposes assumptions on the conditional first

and second moments common in stochastic approximation literature [80, 43, 81].

Assumption 10 (A10). For i = 1, . . . , N , suppose the function fi(x; θ) is convex and continuously differ-

entiable function in xi for every x−i ∈
∏
j 6=iKj and every θ ∈ Θ. Furthermore, suppose Θ is a closed,

convex, and bounded set and for i = 1, . . . , N , Ki ⊆ Rni is a nonempty, closed, convex and bounded set.

Furthermore, suppose the following hold:(a) For every θ ∈ Θ, F (x; θ) is both strongly monotone and Lips-

chitz continuous in x with constants µx and Lx; for every θ, (F (x; θ)− F (y; θ))T (x− y) ≥ µx‖x− y‖2, and

‖F (x; θ)−F (y; θ)‖ ≤ Lx‖x−y‖; (b) For every x ∈ K, F (x; θ) is Lipschitz continuous in θ with constant Lθ;

(c) The function g(θ) is strongly convex and continuously differentiable with Lipschitz continuous gradients

in θ with convexity constant µθ and Lipschitz constant Cθ, respectively.

Note that monotone Nash games include stable Nash games, a class of games for which it has been

shown that a range of evolutionary dynamics allow for convergence to Nash equilibria [82]. In fact, in recent
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work [83], a notion of passivity has been developed.

Assumption 11 (A11). For i = 1, . . . , N , the ith agent knows only his objective fi and strategy set Ki.

Furthermore, the vector x is assumed to be observable.

We define a new probability space (Z,F ,P), where Z , Ω × Λ, F , Fx × Fθ and P , Px × Pθ. For

i = 1, . . . , N , suppose wki , ∇xifi(xk; θki , ξ
k) −∇xifi(xk; θki ) and vki , ∇θg(θki ; ηk) −∇θg(θki ). Fk denotes

the sigma-field generated by (x0, θ0) and errors (wl, vl) for l = 0, 1, · · · , k − 1, i.e., F0 = σ
{

(x0, θ0)
}

and

Fk = σ
{

(x0, θ0),
(
(wl, vl), l = 0, 1, · · · , k − 1

)}
for k ≥ 1.

Assumption 12 (A12). (a) Unbiasedness: E[wk | Fk] = 0 and E[vki | Fk] = 0 a.s. for all k and i;

(b)Bounded second moments: E[‖wk‖2 | Fk] ≤ ν2
x and E[‖vki ‖2 | Fk] ≤ ν2

θ a.s. for all k, i.

To construct distributed schemes requiring no coordination in terms of setting parameters, we allow

each agent to independently set steplengths and as long as a suitable relationship between these steplengths

holds, convergence follows. Specifically, the ith agent employs a diminishing steplength sequence given by

γki . Furthermore, we define γkmin , min1≤i≤N{γki } and γkmax , max1≤i≤N{γki } for all k. Similarly, we define

αkmin , min1≤i≤N{αki } and αkmax , max1≤i≤N{αki } for all k. Then, we can make the following assumptions

on the steplengths of the algorithm.

Assumption 13 (Steplength requirements, A13). Let {γki } and {αki } be chosen such that: (a)
∑∞
k=1 γ

k
min =

∞,
∑∞
k=1(γkmax)2 < ∞,

∑∞
k=1(αkmax)2 < ∞; (b) limk→∞

γkmax−γkmin

γkmax
= 0; (c) αkmin ≥ γkmaxL

2
θ/(µxµθ) for

sufficiently large k, limk→∞
(αkmax)2

γkmax
= 0.

Notice that (a)
∑∞
k=1 γ

k
min = ∞ and (c) αkmin ≥ γkmaxL

2
θ/(µxµθ) for sufficiently large k implies that∑∞

k=1 α
k
min =∞.

3.2.2 Analysis

We begin with a contraction statement for the sequence of iterates produced by Algorithm 4.

Lemma 8. Suppose (A10), (A11), (A12) and (A13) hold. Let {xk, θk} be computed via Algorithm 4. For

any k ≥ 0, E
[
‖xk+1 − x∗‖2 | Fk

]
≤ ζk‖xk−x∗‖2+βk, where ζk = 1−γkmaxµx+2(γkmax−γkmin)Lx+2(γkmax)2L2

x

and βk = (2(γkmax)2L2
θ + γkmaxL

2
θ/µx)

∑N
i=1 ‖θki − θ∗‖2 + (γkmax)2ν2

x.
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Proof. Since x∗i = ΠKi(x
∗
i − γki Fi(x∗; θ∗)), by the nonexpansivity of the Euclidean projector:

‖xk+1 − x∗‖2 ≤
N∑
i=1

(‖xki − x∗i ‖2 + (γki )2‖Fi(xk; θki )− Fi(x∗; θ∗)‖2 + (γki )2‖wki ‖2)

− 2

N∑
i=1

γki (xki − x∗i )T (Fi(x
k; θki )− Fi(x∗; θ∗))

− 2

N∑
i=1

γki (xki − x∗i )Twki + 2

N∑
i=1

(γki )2(Fi(x
k; θki )− Fi(x∗; θ∗))Twki . (3.6)

RHS of (3.6) ≤ ‖xk − x∗‖2 + (γkmax)2
N∑
i=1

‖Fi(xk; θki )− Fi(x∗; θ∗)‖2︸ ︷︷ ︸
term1

+(γkmax)2‖wk‖2

−2

N∑
i=1

γki (xki − x∗i )T (Fi(x
k; θki )− Fi(xk; θ∗))︸ ︷︷ ︸

term2

−2

N∑
i=1

γki (xki − x∗i )T (Fi(x
k; θ∗)− Fi(x∗; θ∗))︸ ︷︷ ︸

term3

− 2

N∑
i=1

γki (xki − x∗i )Twki + 2

N∑
i=1

(γki )2(Fi(x
k; θki )− Fi(x∗; θ∗))Twki . (3.7)

By (A10), term 1 in (3.7) may be bounded by leveraging the Lipschitz continuity of F (x; θ):

‖xk − x∗‖2 + 2(γkmax)2
N∑
i=1

‖Fi(xk; θki )− Fi(xk; θ∗)‖2 + 2(γkmax)2
N∑
i=1

‖Fi(xk; θ∗)− Fi(x∗; θ∗)‖2

≤ ‖xk − x∗‖2 + 2(γkmax)2
N∑
i=1

‖F (xk; θki )− F (xk; θ∗)‖2 + 2(γkmax)2‖F (xk; θ∗)− F (x∗; θ∗)‖2

≤ (1 + 2(γkmax)2L2
x)‖xk − x∗‖2 + 2(γkmax)2L2

θ

N∑
i=1

‖θki − θ∗‖2. (3.8)

By (A10), term 2 in (3.7) can be bounded by the Cauchy-Schwarz inequality, Hölder’s inequality and the

Lipschitz continuity of F (x; θ):

− 2

N∑
i=1

γki (xki − x∗i )T (Fi(x
k; θki )− Fi(xk; θ∗)) ≤ 2γkmax

N∑
i=1

‖xki − x∗i ‖‖Fi(xk; θki )− Fi(xk; θ∗)‖

≤ 2γkmax‖xk − x∗‖

√√√√ N∑
i=1

‖Fi(xk; θki )− Fi(xk; θ∗)‖2 ≤ 2γkmax‖xk − x∗‖

√√√√ N∑
i=1

‖F (xk; θki )− F (xk; θ∗)‖2

≤ 2γkmaxLθ‖xk − x∗‖

√√√√ N∑
i=1

‖θki − θ∗‖2 ≤ γ
k
maxµx‖xk − x∗‖2 + γkmax

L2
θ

µx

N∑
i=1

‖θki − θ∗‖2, (3.9)

where the last inequality follows from the fact that 2ab ≤ a2 + b2. Term 3 in (3.7) can be bounded by the
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Cauchy-Schwarz inequality and γki ≤ γkmax for all i:

− 2

N∑
i=1

γki (xki − x∗i )T (Fi(x
k; θ∗)− Fi(x∗; θ∗)) = −2

N∑
i=1

γkmax(xki − x∗i )T (Fi(x
k; θ∗)− Fi(x∗; θ∗))

− 2

N∑
i=1

(γki − γkmax)(xki − x∗i )T (Fi(x
k; θ∗)− Fi(x∗; θ∗))

≤ −2γkmax

N∑
i=1

(xki − x∗i )T (Fi(x
k; θ∗)− Fi(x∗; θ∗)) + 2(γkmax − γkmin)

N∑
i=1

‖xki − x∗i ‖‖Fi(xk; θ∗)− Fi(x∗; θ∗)‖.

Proceeding further, we may leverage Hölder’s inequality, the Lipschitz continuity of F (x; θ) and (A10), to

obtain the following sequence of inequalities:

− 2γkmax

N∑
i=1

(xki − x∗i )T (Fi(x
k; θ∗)− Fi(x∗; θ∗)) + 2(γkmax − γkmin)

N∑
i=1

‖xki − x∗i ‖‖Fi(xk; θ∗)− Fi(x∗; θ∗)‖

≤ −2γkmax(xk − x∗)T (F (xk; θ∗)− F (x∗; θ∗)) + 2(γkmax − γkmin)‖xk − x∗‖‖F (xk; θ∗)− F (x∗; θ∗)‖

≤ −2γkmaxµx‖xk − x∗‖2 + 2(γkmax − γkmin)Lx‖xk − x∗‖2. (3.10)

Combining (3.6) with (3.7), (3.8), (3.9), and (3.10), we obtain

‖xk+1 − x∗‖2 ≤ (1 + 2(γkmax)2L2
x)‖xk − x∗‖2 − γkmaxµx‖xk − x∗‖2 + 2(γkmax − γkmin)Lx‖xk − x∗‖2

+ 2(γkmax)2L2
θ

N∑
i=1

‖θki − θ∗‖2 + γkmaxL
2
θ/µx

N∑
i=1

‖θki − θ∗‖2 + (γkmax)2‖wk‖2

− 2

N∑
i=1

γki (xki − x∗i )Twki + 2

N∑
i=1

(γki )2(Fi(x
k; θki )− Fi(x∗; θ∗))Twki

=
(
1− γkmaxµx + 2(γkmax − γkmin)Lx + 2(γkmax)2L2

x

)
‖xk − x∗‖2

+ (2(γkmax)2L2
θ + γkmaxL

2
θ/µx)

N∑
i=1

‖θki − θ∗‖2 + (γkmax)2‖wk‖2

− 2

N∑
i=1

γki (xki − x∗i )Twki + 2

N∑
i=1

(γki )2(Fi(x
k; θki )− Fi(x∗; θ∗))Twki .

By taking conditional expectations and by recalling that E[wk | Fk] = 0 and E[‖wk‖2 | Fk] ≤ ν2
x, we obtain

that E
[
‖xk+1 − x∗‖2 | Fk

]
≤ ζk‖xk − x∗‖2 + βk, where ζk = 1 − γkmaxµx + 2(γkmax − γkmin)Lx + 2(γkmax)2L2

x

and βk = (2(γkmax)2L2
θ + γkmaxL

2
θ/µx)

∑N
i=1 ‖θki − θ∗‖2 + (γkmax)2ν2

x.

We may now prove our main a.s. convergence result for the sequences {xk} and {θk}.

Theorem 8. Suppose (A10), (A11), (A12) and (A13) hold. Let {xk, θk} be computed via Algorithm 4.

Then, xk
a.s.−→ x∗ and θki

a.s.−→ θ∗ as k →∞ for all i.
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Proof. From Lemma 8, the following holds for every k:

E
[
‖xk+1 − x∗‖2 | Fk

]
≤
(
1− γkmaxµx + 2(γkmax − γkmin)Lx + 2(γkmax)2L2

x

)︸ ︷︷ ︸
, ζk

‖xk − x∗‖2

+ (2(γkmax)2L2
θ + γkmaxL

2
θ/µx)

N∑
i=1

‖θki − θ∗‖2 + (γkmax)2ν2
x︸ ︷︷ ︸

, βk

.
(3.11)

By invoking the fixed-point property given by θ∗ = ΠΘ(θ∗ − αki∇θg(θ∗)) (see [20]) and the non-expansivity

of the Euclidean projector, we may derive the following bound on ‖θk+1
i − θ∗‖2:

‖θk+1
i − θ∗‖2 ≤ ‖θki − θ∗i − αki (∇θg(θki )−∇θg(θ∗))− αki vki ‖2

= ‖θki − θ∗i − αki (∇θg(θki )−∇θg(θ∗))‖2 + (αki )2‖vki ‖2 − 2αki (θki − θ∗i − αki (∇θg(θki )−∇θg(θ∗)))T vki .

By taking conditional expectations, recalling that E[vki | Fk] = 0 and using Lemma 4, we obtain the following

bound:

E[‖θk+1
i − θ∗‖2 | Fk] ≤ ‖θki − θ∗ − αki (∇θg(θki )−∇θg(θ∗))‖2 + (αki )2E[‖vki ‖2 | Fk]

≤ (1− 2αki µθ + (αki )2C2
θ )‖θki − θ∗‖2 + (αki )2ν2

θ

≤ (1− 2αkminµθ + (αkmax)2C2
θ )‖θki − θ∗‖2 + (αkmax)2ν2

θ .

(3.12)

Next, by adding (3.11) and (3.12) and by invoking (A13), we obtain the following bound.

E
[
‖xk+1 − x∗‖2 | Fk

]
+ E

[
N∑
i=1

‖θk+1
i − θ∗‖2 | Fk

]

≤
(
1− γkmaxµx + 2(γkmax − γkmin)Lx + 2(γkmax)2L2

x

)
‖xk − x∗‖2

+ (1− 2αkminµθ + (αkmax)2C2
θ + 2(γkmax)2L2

θ + γkmaxL
2
θ/µx)

N∑
i=1

‖θki − θ∗‖2 + (γkmax)2ν2
x +N(αkmax)2ν2

θ

≤ (1− γkmaxµx + 2(γkmax − γkmin)Lx + 2(αkmax)2L2
xµ

2
xµ

2
θ/L

4
θ)‖xk − x∗‖2

+ (1− γkmaxL
2
θ/µx + (αkmax)2C2

θ + 2(αkmax)2µ2
xµ

2
θ/L

2
θ)

N∑
i=1

‖θki − θ∗‖2 + (γkmax)2ν2
x +N(αkmax)2ν2

θ

≤
(
1− υkγkmax + β(αkmax)2

)(
‖xk − x∗‖2 +

N∑
i=1

‖θki − θ∗‖2
)

+ δk,

where the second inequality results from invoking A13(c) through which −µθαkmin ≤ −γkmaxL
2
θ/µx and υk =

min{µx − 2(γkmax − γkmin)Lx/γ
k
max, L

2
θ/µx}, β = max{2L2

xµ
2
xµ

2
θ/L

4
θ, C

2
θ + 2µ2

xµ
2
θ/L

2
θ}, and δk = (γkmax)2ν2

x +
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N(αkmax)2ν2
θ . To show the non-summability of (υkγ

k
max − β(αkmax)2), we consider two cases: (i) If µx ≤

L2
θ/µx then υk = µx − 2(γkmax − γkmin)Lx/γ

k
max and for k > K, υk ≥ µx − ε where ε > 0. Consequently,∑

k>K υkγ
k
max ≥

∑
k>K(µx − ε)γkmax = ∞; (ii) Alternately, if µx > L2

θ/µx, then for k > K, υk = L2
θ/µx

and
∑
k>K υkγ

k
max =

∑
k>K L

2
θ/µxγ

k
max =∞. Since αkmax is square summable from (A13), we conclude that∑∞

k=0(υkγ
k
max − β(αkmax)2) =∞. In addition, we have that

lim
k→∞

δk
υkγkmax − β(αkmax)2

= lim
k→∞

(γkmax)2ν2
x +N(αkmax)2ν2

θ

υkγkmax − β(αkmax)2
= lim
k→∞

(γkmax)ν2
x +N

(αkmax)2

γkmax
ν2
θ

υk − β(αkmax)2/γkmax

= 0,

where the last equality results from noting that limk→∞ γkmax = 0, limk→∞(αkmax)2/γkmax = 0 and limk→∞ υk =

c > 0. Then, by invoking the super-martingale convergence theorem (Lemma 2), we have that ‖xk − x∗‖2 +∑N
i=1 ‖θki − θ∗‖2 → 0 a.s. as k →∞, which implies that xk → x∗ and θki → θ∗ a.s. as k →∞ for all i.

A natural concern is whether the rule that relates the steplengths can be implemented in a distributed

fashion without coordination. We propose a rule, first suggested by [49], in which every agent chooses a

positive integer and the required coordination statement holds. We view this as a protocol that may be

employed for developing distributed schemes. The next result ensures that for such a choice, the required

assumptions hold [49].

Lemma 9 (Choice of steplength sequences). Let {γki } and {αki } be chosen such that γki = 1
(k+Ni)α

and αki =

1
(k+Mi)β

where Ni and Mi are positive integers and 1
2 < β < α < 1. Then,

∑∞
k=1 γ

k
min =∞,

∑∞
k=1(γkmax)2 <

∞,
∑∞
k=1(αkmax)2 < ∞ and limk→∞

γkmax−γkmin

γkmax
= 0, limk→∞

(αkmax)2

γkmax
= 0, αkmin ≥ γkmaxL

2
θ/(µxµθ) for suffi-

ciently large k.

Finally, we conclude this section with a non-asymptotic error bound that demonstrates that the joint

scheme demonstrates the optimal rate of convergence of O(1/K) in mean-squared error.
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Theorem 9. Suppose (A10), (A11) and (A12) hold. Suppose γki = λx,i/k and αki = λθ,i/k. Let

E[‖Fi(xk; θki ) + wki ‖2] ≤ M2/N and E[‖∇θg(θki ) + vki ‖2] ≤ M2
θ for all xk ∈ K and θki ∈ Θ. Let {xk, θk} be

computed via Algorithm 4. We define λx,min , min
1≤i≤N

{λx,i}, λx,max , max
1≤i≤N

{λx,i}, λθ,min , min
1≤i≤N

{λθ,i}

and λθ,max , max
1≤i≤N

{λθ,i}. Suppose 2µθλθ,min > 1 and µxλx,max − 2(λx,max − λx,min)Lx > 1. Then, the

following hold after K iterations:

E[‖θKi − θ∗‖2] ≤ Qθ(λθ)

K
and E[‖xK − x∗‖2] ≤ Qx,θ(λx, λθ)

K
,

where Qθ(λθ) , max

{
λ2
θ,maxM

2
θ

(2µθλθ,min − 1)
,max

i
E[‖θ0

i − θ∗‖2]

}
and

Qx,θ(λx, λθ) , max

{
λ2
x,maxM

2 + λ2
x,maxL

2
θNQθ(λθ)

(µxλx,max − 2(λx,max − λx,min)Lx − 1)
,E[‖x0 − x∗‖2]

}
.

Proof. Suppose Ak , 1
2‖x

k − x∗‖2 and ak , E[Ak]. Then, Ak+1 may be bounded as follows by using the

non-expansivity of the Euclidean projector:

Ak+1 ≤
1

2

N∑
i=1

‖xki − x∗i − γki (Fi(x
k; θki ) + wki ))‖2

= Ak +
1

2

N∑
i=1

(γki )2‖Fi(xk; θki ) + wki ‖2 −
N∑
i=1

γki (xki − x∗i )T (Fi(x
k; θki ) + wki ).

(3.13)

Note that E[(xki − x∗i )Twki ] = 0. By taking expectations on both sides of (3.13) and by invoking the bounds

E[‖Fi(xk; θki ) + wki ‖2] ≤M2/N and E[‖∇θg(θki ) + vki ‖2] ≤M2
θ , it follows that

ak+1 ≤ ak +
1

2
(γkmax)2M2 −

N∑
i=1

γki E[(xki − x∗i )TFi(xk; θki )]. (3.14)

By (3.9) and (3.10), the last term (including the negative sign) in (3.14) can be bounded by

−
N∑
i=1

γki E[(xki − x∗i )T (Fi(x
k; θki )− Fi(xk; θ∗))]

−
N∑
i=1

γki E[(xki − x∗i )T (Fi(x
k; θ∗)− Fi(x∗; θ∗))]−

N∑
i=1

γki E[(xki − x∗i )TFi(x∗; θ∗)]

≤ −
N∑
i=1

γki E[(xki − x∗i )T (Fi(x
k; θki )− Fi(xk; θ∗))]−

N∑
i=1

γki E[(xki − x∗i )T (Fi(x
k; θ∗)− Fi(x∗; θ∗))]

≤ γkmaxµxak + γkmaxL
2
θ/(2µx)

N∑
i=1

E[‖θki − θ∗‖2]− 2γkmaxµxak + 2(γkmax − γkmin)Lxak. (3.15)
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Combining (3.14) and (3.15), we get

ak+1 ≤ (1− γkmaxµx + 2(γkmax − γkmin)Lx)ak +
1

2
(γkmax)2M2 + γkmaxL

2
θ/(2µx)

N∑
i=1

E[‖θki − θ∗‖2].

Suppose αki = λθ,i/k for all i. Since the function g(θ) is strongly convex, we can use the standard rate

estimate (cf. inequality (5.292) in [42]) to get the following

E[‖θki − θ∗‖2] ≤ Qθ(λθ)

k
, (3.16)

where Qθ(λθ) , max
{
λ2
θ,maxM

2
θ (2µθλθ,min − 1)−1,maxi E[‖θ0

i − θ∗‖2]
}

with λθ,min > 1/(2µθ). Suppose

γki = λx,i/k, allowing us to claim the following:

ak+1 ≤
(

1− µxλx,max − 2(λx,max − λx,min)Lx
k

)
ak +

λ2
x,max

2k2

(
M2 +

L2
θNQθ(λθ)

λx,maxµx

)
,

By assuming that µxλx,max− 2(λx,max−λx,min)Lx > 1, the result follows by observing that E[‖xk−x∗‖2] ≤
Qx,θ(λx,λθ)

k , where

Qx,θ(λx, λθ) , max

{
λ2
x,maxM

2 + λ2
x,maxL

2
θNQθ(λθ)

(µxλx,max − 2(λx,max − λx,min)Lx − 1)
,E[‖x0 − x∗‖2]

}
.

Remark: Surprisingly, misspecification does not lead to a degeneration in the rate of convergence of the

mean-squared error but does lead to a worsening of the constant. In addition, the lack of consistency across

steplengths leads to a further growth in this constant. In fact, if θ0
i = θ∗ for every i, we obtain a rate close

to that seen for perfectly specified stochastic Nash games.

3.3 Iterative fixed-point schemes for misspecified Nash-Cournot

games

Inspired by the analysis of misspecified Nash-Cournot games [68, 84, 69, 71, 70], we develop an iterative

fixed-point scheme. We introduce the problem in Section 3.3.1 and describe and analyze the algorithm in

Sections 3.3.2 and 3.3.3, respectively. We conclude with an extension to nonlinear prices in Section 3.3.4.
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3.3.1 Problem description, assumptions and background

We consider a Nash-Cournot game wherein fi(x) , ci(xi) − p(X; a∗, b∗)xi, where X ,
∑N
i=1 xi, xi and

ci(xi) denotes the scalar output and cost function associated with firm i, θ∗ denotes the true value of the

misspecified parameter of the price function while Ki denotes the strategy set of firm i. Suppose the price

function p(X; a∗, b∗) is defined as

p(X; a∗, b∗) , (a∗ − b∗X) , (3.17)

Note that a∗ represents the “choke price” at which demand plummets to zero, while b∗ represents the price

elasticity of demand. Inspired by [69, 84], we assume that either a∗ or b∗ is unknown and firm i’s belief of

this unknown parameter is denoted by θi. A natural extension is where both parameters are unknown and

this will require two or more observations at each epoch, rather than a single observation of noisy prices.

Case 1 (Learning a∗): We assume that firms know b∗ but are unaware of a∗ (θ∗ = a∗); the ith firm harbors

a belief on a∗ denoted by θi and estimates the aggregate output X by Xi, then the ith firm’s price estimate

and the true noise-corrupted prices are defined as follows:

p(Xi; θi, 0) , θi − b∗Xi (Estimate) and p(X; θ∗, ξ) , (θ∗ + ξ)− b∗X. (True price). (3.18)

Case 2 (Learning b∗): Distinct from Case 1, firms know a∗ and estimate b∗ as θi (θ∗ = b∗) while the true

price is corrupted by noise scaled by the aggregate output. Firm i’s price estimate and the true prices are

defined as follows:

p(Xi; θi, 0) , a∗ − θiXi (Estimate) and p(X; θ∗, ξ) , a∗ − (θ∗ + ξ)X. (True price). (3.19)

The next assumption formalizes these two cases.

Assumption 14 (A14). Either (A14a) or (A14b) holds:

(A14a) Firms know b∗ but not a∗ (θ∗ = a∗) and the price is defined by (3.18).

(A14b) Firms know a∗ but not b∗ (θ∗ = b∗) and the price is defined by (3.19).

Furthermore, the random variable ξ is defined by ξ : Λ → R, (Λ,Fθ,Pθ) is the associated probability space

and ξ1, . . . , ξk are i.i.d. random variables with mean zero for all k.

Our assumption on costs is a special case of (A10).

Assumption 15 (A15). The cost function ci(xi) is a convex and continuously differentiable function in
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xi over Ki with Lipschitz continuous gradients with constant Mi. Furthermore, K1, . . . ,KN ,Θ are closed,

convex, and bounded sets.

As forwarded by [85], the notion of “common knowledge” in game theory extends beyond agents having

access to information; specifically, two agents are assumed to have common knowledge of an event, if both

agents know the event, agent 1 knows that agent 2 knows it, agent 2 knows that agent 1 knows it, agent

1 knows that agent 2 knows that agent 1 knows it and so on. We also assume that firms cannot observe

aggregate output and firms employ a belief of aggregate output, relying on the knowledge of the cost functions

and strategy sets of their competitors. Such a knowledge is assured through a common knowledge assumption.

Collectively, these two assumptions are captured by (A16). An assumption often employed in games is that

of common knowledge, whereby firms are aware of the costs functions and strategy sets of their competitors

(see [57]). Formally, this assumption is given by the following:

Assumption 16 (A16). The common knowledge assumption holds with regard to ci(xi) and Ki for i =

1, . . . , N. Furthermore, aggregate output is unobservable.

Several motivating examples exist in the literature detailing common knowledge; these include instances

provided by [86] (the barbecue problem) and [87] (the department store problem), amongst others. While

our results are agnostic to applications, it is worth emphasizing that such assumptions often hold when

agents need to make their assets and costs public through suitable filings, such as in utility-based regulation

(power, gas, water, etc.). This is often the case in regulatory settings (cf. [88, Pg. 78-79]). Common knowledge

assumptions immediately hold when a game is designed [54, 55, 56] and agents can be endowed with the

requisite knowledge. A select number of results will rely on boundedness of strategy sets, as specified by

(A17).

Assumption 17 (A17). Suppose the estimator set Θ is a compact convex set in R+ given by [δ,∆] and

0 < δ < θ∗ + ξk < ∆ for all k. Furthermore, suppose the sets K1, . . . ,KN are bounded.

3.3.2 Description and definition of algorithm

Our goal lies in developing schemes for learning equilibria and misspecified parameters. Unfortunately,

since neither the aggregate output nor θ∗ are observable, gradient/best-response schemes cannot be directly

implemented. However, under (A16), every firm knows the cost functions and strategy sets of its competitors,

allowing for computing the best response of all firms, based on an estimate of θ∗ and the aggregate. By using

the discrepancy between estimated and observed prices, each firm may construct improved estimates of the

misspecified parameter. This model, while aligned, with that suggested by [69, 84] enjoys distinctions at
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several levels; specifically, we allow for constrained problems with nonlinear cost functions with noisy price

observations arising from possibly nonlinear price functions. Throughout this section, let xki = (xki1, · · · , xkiN )

for i = 1, · · · , N and Xk
i =

∑k
j=1 x

k
ij where xkij denotes firm i’s conjecture of firm j’s output at the kth

period and Xk
i denote firm i’s estimate of aggregate output. Note that Xk

i is maintained as strictly positive

by assuming that at least one of the strategy sets requires strictly positive output while the true aggregate

Xk is given by Xk ,
∑N
j=1 x

k
jj . The proposed algorithm relies on simultaneous updates of xk+1

i and θk+1
i .

Before proceeding, we define θ̂k+1
i , ϑk+1

i , and ϑ̄k+1
i :

Definition of ϑki , ϑ̄
k
i and θ̂ki : The variable ϑki is defined as follows:

under (A14a) : p(Xk; θ∗, ξk) = (θ∗ + ξk)− b∗Xk, ϑki , p(Xk; θ∗, ξk) + b∗Xk
i , (3.20)

under (A14b) : p(Xk; θ∗, ξk) = a∗ − (θ∗ + ξk)Xk, ϑki , (a∗ − p(Xk; θ∗, ξk))/Xk
i . (3.21)

Consequently, ϑ̄ki after k steps is given by

ϑ̄ki =
(k − 1)ϑ̄k−1

i + ϑki
k

. (3.22)

Subsequently, we show that ϑ̄ki is the sample average of θ∗ + ξ1, . . . , θ∗ + ξk after k steps.

θ̂k+1
i , as a function θk+1

i , is defined as follows:

θ̂k+1
i (θk+1

i ) ,
1

k + 1
θk+1
i +

k

k + 1
ϑ̄ki . (3.23)

(a) Update of xk+1
i1 , . . . , xk+1

iN : Under (A16), firm i can compute the Nash equilibrium, contingent on its

choice of θk+1
i , and is a fixed-point of the best-response map:

xk+1
ij ∈ argmin

xj∈Kj

[
cj(x

k+1
ij )− p(Xk+1

i ; θ̂k+1
i (θk+1

i ), 0)xk+1
ij +

1

2
εk‖xk+1

ij ‖
2

]
, j = 1, . . . , N.

(BRx
ij(x

k+1
i,−j , θ

k+1
i ))

(b) Update of θk+1
i : Firm i defines the difference between the price observed at the kth step p(Xk; θ∗, ξk)

and its estimate p(Xk+1
i ; θ̂k+1

i , 0) as p̃k+1
i (θk+1

i , Xk+1
i ):

p̃k+1
i (θk+1

i , Xk+1
i ) :=


p(Xk+1

i ; θ̂k+1
i (θk+1

i ), 0)− p(Xk; θ∗, ξk), under (A14a)

p(Xk; θ∗, ξk)− p(Xk+1
i ; θ̂k+1

i (θk+1
i ), 0). under (A14b)
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Then suppose tk+1
i (Xk+1

i ) denotes a unique solution to

p̃k+1
i (θk+1

i , Xk+1
i ) + εkθk+1

i = 0

implying that

tk+1
i (Xk+1

i ) =


[(k + 1)(p(Xk; θ∗, ξk) + b∗Xk+1

i )− kϑ̄ki ]/(1 + (k + 1)εk), under (A14a)

[(k + 1)(a∗ − p(Xk; θ∗, ξk))− kϑ̄kiX
k+1
i ]/(Xk+1

i + (k + 1)εk), under (A14b)

(3.24)

Suppose δ and ∆ are lower and upper bounds of Θ, respectively. We can update θk+1
i as follows:

θk+1
i =


δ, if tk+1

i (Xk+1
i ) < δ

tk+1
i (Xk+1

i ), if δ ≤ tk+1
i (Xk+1

i ) ≤ ∆

∆. if tk+1
i (Xk+1

i ) > ∆

(BRθ
i (X

k+1
i ))

Algorithm 5 (Iterative fixed-point and learning). Step 0. Given a sequence {εk} ↓ 0, and γx, γθ.

k = 0;
∑N
j=1 x

0
jj = X0; p(X0; θ∗, ξ0) := a∗ − b∗X0; ε0 > 0; ϑ̄0

i = 0 for i = 1, . . . , N .

Step 1. For i = 1, . . . , N , if Xk+1
i =

∑N
j=1 x

k+1
ij , then {xk+1

i1 , . . . , xk+1
iN , θk+1

i } is a solution to the following

system:

xk+1
ij solves BRx

ij(x
k+1
i,−j , θ

k+1
i ), j = 1, . . . , N

θk+1
i solves BRθ

i (X
k+1
i ).

(3.25)

Step 2. For i = 1, . . . , N , ϑ̄k+1
i is updated as follows:

ϑ̄k+1
i =

kϑ̄ki + ϑk+1
i

k + 1
. (3.26)

Step 3. If k > K̄, stop; else k := k + 1 and go to Step 1.

3.3.3 Analysis of noise-corrupted iterative fixed-point schemes

In this subsection, we analyze our iterative fixed-point scheme and partition the discussion as follows: (i)

First, we provide a brief discussion as to why the update specified by (3.25) can be succinctly captured by

the solution to a single variational equality problem; (ii) Second, we provide a brief sketch of the results to

follows; and (iii) We provide the convergence theory.

(i) Equivalence of (3.25) to a fixed-point problem: First, any best response of a convex optimization
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problem is equivalent to a solution of a suitable variational inequality problem [20]:

[
y∗i ∈ argmin

yi∈Yi
di(yi)

]
⇔ [y∗i solves VI(Yi,∇yidi)] ,

where di is a convex function in yi over a convex set Yi. In fact, given a collection of functions di(yi; y−i) that

are convex in yi over convex sets Yi for all y−i with y−i , (yj)i 6=j , the coupled best response is equivalent

to the solution of a single variational inequality problem [27]:



[
y∗1 ∈ argmin

y1∈Y1

d1(y1, y−1)

]
⇔
[
y∗1 solves VI(Y1,∇y1d1(•, y∗−1))

]
...[

y∗N ∈ argmin
yN∈YN

dN (yN , y−N )

]
⇔
[
y∗N solves VI(YN ,∇yNdN (•, y∗−N ))

]


⇔ y∗ solves VI(Y, F ),

where Y ,
∏N
i=1 Yi and F (y) = (∇yidi(yi, y−i))Ni=1. Finally, any solution to a variational inequality problem

is a fixed point of a suitably defined problem where γ is a positive scalar:

[y∗ solves VI(Y, F )]⇔ [y∗ = ΠY(y∗ − γF (y∗))] .

By using this avenue, the problem (BRx
ij(x

k+1
i,−j , θ

k+1
i )) is the set of coupled fixed-point problems:

xk+1
ij = ΠKj

(
xk+1
ij − γ

(
∇xijfj(xk+1

i ; θ̂k+1
i (θk+1

i )) + εkxk+1
ij

))
, j = 1, . . . , N, (3.27)

where fj(x
k+1
i ; θ̂k+1

i (θk+1
i )) = cj(x

k+1
ij ) − p(Xk+1

i ; θ̂k+1
i (θk+1

i ))xk+1
ij . Similarly, (BRθ

i (X
k+1
i )) can be stated

as the following fixed-point problem:

θk+1
i = ΠΘ

(
θk+1
i − γ

(
p̃k+1
i (θk+1

i , Xk+1
i ) + εkθk+1

i

))
. (3.28)

Before proceeding, we shed some light on this equivalence. Suppose the root of p̃k+1
i (θk+1

i , Xk+1
i )+εkθk+1

i = 0

is denoted by tk+1
i . Then from (3.28), this implies that tk+1

i = ΠΘ

(
tk+1
i

)
. Consequently, if tk+1

i ∈ Θ , [δ,∆],

then θk+1
i = tk+1

i while θk+1
i = δ( or ∆), if tk+1

i < δ( or > ∆). But this is equivalent to (BRθ
i (X

k+1
i )).

We define zk+1
i , (xk+1

i1 , . . . , xk+1
iN , θk+1

i ). Then, zk+1
i solves the coupled fixed-point problem (3.27) –
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(3.28) if and only if zk+1
i solves VI(Z, F k+1) where

Z ,
N∏
i=1

Ki ×Θ and F k+1(zk+1
i ) =



∇xi1f1(xk+1
i ; θ̂k+1

i (θk+1
i ))

...

∇xiN fN (xk+1
i ; θ̂k+1

i (θk+1
i ))

p̃k+1
i (θk+1

i , Xk+1
i )


+ εkzk+1

i .

In sum, the coupled best response scheme (3.25) is equivalent to the coupled fixed-point problem (3.27)

– (3.28), which is also equivalent to the variational inequality problem VI(Z, F k+1).

(ii) Sketch of results: We first show that the coupled best response scheme given by (3.25) always admits

a unique solution (Prop. 6). Theorem 10 shows that the sequence {xki , θ̂ki } → {x∗, θ∗} as k → ∞ in an a.s.

sense. This proof relies on showing that θ̂ki → θ∗ as k →∞ in an a.s. sense. Then, if the solution xk+1
i (θ̂k+1

i )

is a continuous function in θ̂k+1
i (Prop. 8), we may conclude that limk→∞ xk+1

i (θ̂k+1
i ) = xk+1

i (θ∗) = x∗, where

the last equality follows from noting that

Proposition 6. Suppose (A14), (A15) and (A16) hold. If k ≥ 0 and εk > 0, and given p(Xk; θ∗, ξk) and

{ϑ̄ki }Ni=1, the following hold:

(a) Under (A14a), the solution to (3.25) is a singleton.

(b) Under (A14b), the solution to (3.25) is a singleton.

Proof. It suffices to show that given p(Xk; θ∗, ξk) and {ϑ̄ki }Ni=1, the variational inequality VI(Z, F k+1) has

a unique solution for each i. Now, for simplicity, we ignore the superscript k for all variables. Given p, ϑ̄i,

i and k, let H(zi) denote the Jacobian matrix ∇F (zi) of F at zi ∈ Z. We will proceed to show that H(zi)

is a P-matrix for all zi ∈ Z̃ in part (a) and a P0-matrix for all zi ∈ Z̃ in part (b) where Z ⊂ Z̃ and Z̃

is a rectangle. Then, by invoking Proposition 3.5.9 in [20], the associated mapping F is P-mapping on Z̃

in part (a) and a P0-mapping on Z̃ in part (b). Consequently, by Theorem 3.5.15 in [20], the regularized

variational inequality VI(Z, F k+1) has a unique solution in both parts (a) and (b). Specifically, we employ

a rectangular Z̃ defined as Z̃ , [0,∞)N ×Θ, where Θ is a compact set in (0,∞). (a) Given zi ∈ Z̃, let Hi

denote H(zi). Then,

Hi =

 Ai B

C D

 , (3.29)

where Ai = b∗(I + eeT ) +Ei, B = − 1
k+1e, C = −b∗eT , D = 1

k+1 , e denotes the column of ones in RN , Ei is
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an N ×N diagonal matrix with c′′j (xij) as its jth diagonal entry. Since, the nonnegativity of c′′j (xij) follows

from the convexity of costs, Ei is a nonnegative diagonal matrix and is therefore positive semidefinite. Recall

that the sum of a diagonal positive semidefinite matrix and a P-matrix is a P-matrix and it suffices to show

that Hi is a P-matrix when Ei = 0. This amounts to showing that the principal minors of H are positive.

Since Ai and D are P-matrices, we only consider the principal submatrix Hα of Hi, where α ⊆ {1, . . . , N}

is a nonempty index set and Hα is given by Hα ,

 Aα Bα

Cα D

 , where Aα = b∗(Inα + enα(enα)T ), Bα =

− 1
k+1e

nα , Cα = −b∗(enα)T , and Inα and enα denote the identity matrix and the column of ones in Rnα×nα

and Rnα , respectively, with nα = |α|. Since A−1
α = 1

b∗

(
Inα − 1

nα+1e
nα(enα)T

)
, we have

CαA
−1
α Bα =

1

k + 1
(enα)T

(
Inα −

1

nα + 1
enα(enα)T

)
enα

=
1

k + 1

(
nα −

n2
α

nα + 1

)
=

1

k + 1

(
nα

nα + 1

)
.

It follows that D − CαA
−1
α Bα = 1

k+1 −
1
k+1

(
nα
nα+1

)
= 1

k+1

(
1

nα+1

)
> 0. Since det(Aα) > 0, we have

det(Hα) = det(Aα) det
(
D − CαA−1

α Bα
)
> 0 for all α ⊆ {1, . . . , N} with α 6= ∅. Therefore, H is a P-matrix.

(b) Analogous to our approach for (a), we consider a matrix Hi, given by Hi = ∇F (zi). Then,

Hi =

 Ai Bi

Ci Di

 , (3.30)

where Ai = b̂i(I + eeT ) + Ei, Bi = 1
k+1 (xi + (eTxi)e), Ci = b̂ie

T , and Di = 1
k+1 (eTxi), where b̂i =

1
k+1bi + k

k+1 b̄i, xi = (xi1, . . . , xiN )T , e denotes the column of ones in RN , and Ei is an N × N diagonal

matrix with c′′j (xij) as its jth diagonal entry. Recall that the sum of a diagonal positive semidefinite matrix

and a P0-matrix is a P0-matrix. As in (a), it suffices to show that H is a P0-matrix when Ei = 0.

Since Ai and Di are P0-matrices, we restrict our attention to the principal submatrix Hα of Hi, where

α ⊆ {1, . . . , N} is a nonempty index set, and Hα is given by Hα ,

 Aα Bα

Cα Di

 , where Aα = b̂i(Inα +

enα(enα)T ), Bα = 1
k+1 (xα + (eTxi)e

nα), Cα = b̂i(e
nα)T , and Inα and enα denote the identity matrix and the

column of ones in Rnα×nα and Rnα , respectively, with nα = |α|. Then, the following hold:

(1) If b̂i = 0, then Aα = 0 and Cα = 0, which implies det(Hα) = 0.
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(2) If b̂i > 0, then A−1
α = 1

b̂i
(Inα − 1

nα+1e
nα(enα)T ). So, we have

CαA
−1
α Bα =

1

k + 1
(enα)T

(
Inα −

1

nα + 1
enα(enα)T

)
(xα + (eTxi)e

nα)

=
1

k + 1
((enα)T − nα

nα + 1

(
enα)T

)
(xα + (eTxi)e

nα)

=
1

(k + 1)(nα + 1)

(
(enα)Txα + nα(eTxi)

)
.

=⇒ Di − CαA−1
α Bα =

1

k + 1
eTxi −

1

(k + 1)(nα + 1)

(
(enα)Txα + nα(eTxi)

)
=

1

(k + 1)(nα + 1)

(
eTxi − (enα)Txα

)
≥ 0.

Since det(Aα) > 0, we have det(Hα) = det(Aα) det
(
Di − CαA−1

α Bα
)
≥ 0.

Therefore, det(Hα) ≥ 0 for all nonempty α ⊆ {1, . . . , N}, implying that Hi is a P0-matrix.

Having shown that the coupled best response scheme has a unique solution, we proceed to show a

Lipschitzian property on the solution set of (3.25) with respect to the parameter θ (Prop. 8). Before that,

we provide some preliminary results. The strong monotonicity and Lipschitz continuity of the mapping F (x)

can be easily shown under (A15).

Lemma 10. Consider the mapping F (x) defined by (3.1) and suppose (A15) holds. Then F (x) is a strongly

monotone Lipschitz continuous mapping.

Proof. Let g(x) = (c′1(x1), . . . , c′N (xN ))T and e = (1, . . . , 1)T . Then, we have F (x) = g(x)+b∗(x+Xe)−a∗e,

where X =
∑N
i=1 xi. Note that g(x) is monotone in x. Thus, we have for x, y ∈ K

(F (x)− F (y))T (x− y) = (g(x)− g(y))T (x− y) + b∗(x− y)T (x− y) + b∗(X − Y )eT (x− y)

≥ b∗(x− y)T (x− y) + b∗(X − Y )T (X − Y ) ≥ b∗‖x− y‖2.

This implies that F (x) is strongly monotone in x with constant b∗. Note that g(x) is Lipschitz continuous

on K with constant M , where M , maxi{Mi}. The Lipschitz continuity of F (x) is easily shown:

‖F (x)− F (y)‖ = ‖g(x)− g(y)‖+ b∗‖x− y‖+ b∗‖(X − Y )e‖

≤M‖x− y‖+ b∗‖x− y‖+ b∗‖eeT ‖‖x− y‖ = L‖x− y‖,

where L = M + b∗ + b∗‖eeT ‖. It follows that F (x) is Lipschitz continuous with constant L.
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This allows for claiming the existence and uniqueness of a Nash-Cournot equilibrium when the price

function is affine.

Proposition 7. Consider a Nash-Cournot game in which the ith player solves (Opt(x−i)) and the price is

determined by (3.17). Furthermore, suppose (A15) holds. Then, the associated Nash-Cournot game admits

a unique equilibrium.

Proof. From Lemma 10, the associated variational inequality VI(K,F ) has a strongly monotone mapping

F (x) over K. Consequently, VI(K,F ) admits a unique solution [20].

Now, we state the Lipschitzian property on the solution set of (3.25). This proof is inspired by a related

result presented by [89].

Proposition 8. Consider a VI(K,F (•; θ)) where F (x; θ) is strongly monotone in x over K for all θ ∈ Θ,

Lipschitz continuous in x for all θ ∈ Θ and Lipschitz continuous in θ for all x ∈ K. Then, the following

hold: (a) If x(θ) denotes the solution of VI(K,F (•; θ)), then x(θ) is Lipschitz continuous in θ for all θ ∈ Θ.

(b) Given an ε > 0, if x(θ, ε) denotes the solution of VI(K,F (•; θ) + εI), then x(θ, ε) is Lipschitz continuous

in θ and ε.

Proof. Consider θ1, θ2 ∈ Θ and let Fi(·) := F (·, θi), i = 1, 2. Let xi be a solution of VI(K,Fi) for i = 1, 2.

By the assumption of strong monotonicity on the map, we have that

(x1 − x2)T (F1(x1)− F1(x2)) ≥ c‖x2 − x1‖2, (3.31)

for some constant c > 0 (assumed to be independent of θ1). Since x1 is a solution of VI(K,F1), it follows

that (x2 − x1)TF1(x1) ≥ 0, which together with (3.31) implies

(x2 − x1)TF1(x2) ≥ c‖x2 − x1‖2. (3.32)

We may express (3.32) as (x2 − x1)T (F1(x2)−F2(x2) +F2(x2)) ≥ c‖x2 − x1‖2. Now since x2 is the solution

of VI(K,F2), it follows that (x2 − x1)TF2(x2) ≤ 0. Consequently we obtain

‖x2 − x1‖‖F1(x2)− F2(x2)‖ ≥ (x2 − x1)T (F1(x2)− F2(x2)) ≥ c‖x2 − x1‖2. (3.33)

By Lipschitz continuity of F (x, θ) (assuming it is uniform in x), we have that ‖F1(x2, θ1) − F2(x2, θ2)‖ ≤

Lθ‖θ2−θ1‖, and hence by (3.33) Lθ‖x2−x1‖‖θ2−θ1‖ ≥ c‖x2−x1‖2. It follows that ‖x2−x1‖ ≤ Lθc−1‖θ2−θ1‖.

To show (b), let x(θi, εj) be the solution of VI(K,Gij(·)), where Gij(·) = F (·, θi) + εjI. We begin by

applying the triangle inequality to obtain that ‖x(θ1, ε1)− x(θ2, ε2)‖ ≤ ‖x(θ1, ε1)− x(θ2, ε1)‖+ ‖x(θ2, ε1)−
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x(θ2, ε2)‖. Since Gi1 is strongly monotone in x with constant c + ε1 and Lipschitz continuous in θ with

constant Lθ, respectively, we have that the first term is bounded by Lθ(c+ ε1)−1‖θ2 − θ1‖ as a result from

part (a). Before proceeding, the Lipschitz continuity of F (x; θ) + εI with respect to ε can be obtained as

‖(F (x; θ) + ε2x)− (F (x; θ) + ε1x)‖ ≤ ‖x‖‖ε1 − ε2‖ ≤ D‖ε1 − ε2‖.

Since G2j is strongly monotone in x with constant c + εj and Lipschitz continuous in ε with constant D,

respectively, we have that the second term is bounded by D(c + ε1)−1‖ε2 − ε1‖ as a result from part (a).

Consequently, we obtain that

‖x(θ1, ε1)− x(θ2, ε2)‖ ≤ Lθ(c+ ε1)−1‖θ2 − θ1‖+D(c+ ε1)−1‖ε2 − ε1‖.

The Lipschitz continuity of x(θ, ε) with respect to its parameters follows.

Notice that the solution xk+1
i to the problem (BRx

ij(x
k+1
i,−j , θ

k+1
i )) is the solution to the variational in-

equality problem VI(
∏N
i=1Ki, F

k+1
x (•; θ̂k+1

i ) + εkI) where F k+1
x (xk+1

i ; θ̂k+1
i ) =

(
∇xijfj(xk+1

i ; θ̂k+1
i )

)N
j=1

.

Based on Lemma 10 and Prop. 8, xk+1
i = xk+1

i (θ̂k+1
i , εk) is a continuous function of (θ̂k+1

i , εk).

We may now show that the iterative fixed-point scheme produces a sequence of iterates that converge

almost surely to the true equilibrium and allow for learning the true parameter.

Theorem 10 (Global convergence of iterative fixed-point scheme). Suppose (A14), (A15), (A16) and (A17)

hold. Let {xki , θ̂ki } be computed via Algorithm 5 for i = 1, . . . , N . Then θ̂ki → θ∗ and xki → x∗ almost surely

for i = 1, . . . , N , where x∗ is a solution of the variational inequality (3.2).

Proof. Suppose k ≥ 0. At the kth iteration, p̃ki is a function of θ̂k+1
i , which is a function of ϑ̄ki . Consequently,

the fixed-point problem (3.25) is a function of ϑ̄ki ; at the outset, ϑ̄0
i is zero for i = 1, . . . , N and every agent is

faced by (3.25) with the same parametrization. Since (3.25) has a unique solution (Prop. 6), it follows that

xi,• = xj,• for i 6= j and xkij = xkjj . Therefore, Given p(Xk; θ∗, ξk) and {ϑ̄ki }Ni=1,the solution (xk+1
i , θk+1

i ) to

(3.25) satisfies xk+1
ij = xk+1

jj for all i, j. Thus, for all k ≥ 0 and all i, we have that

p(Xk; θ∗, ξk) =


(a∗ + ξk)− b∗

∑N
j=1 x

k
jj = (a∗ + ξk)− b∗

∑N
j=1 x

k
ij , under (A14a),

a∗ − (θ∗ + ξk)
∑N
j=1 x

k
jj = a∗ − (θ∗ + ξk)

∑N
j=1 x

k
ij , under (A14b).
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Since for all k ≥ 0 and all i,

ϑki =


p(Xk; θ∗, ξk) + b∗Xk

i , under (A14a),

(a∗ − p(Xk; θ∗, ξk))/Xk
i , under (A14b).

we have ϑki = θ∗ + ξk for all i. As a result, after k iterative fixed-point steps, we obtain k samples {θ∗ +

ξ1, . . . , θ∗ + ξk} of the estimated parameter. Since for all k ≥ 0 and all i, ϑ̄ki =
(k−1)ϑ̄k−1

i +ϑki
k , the sample

mean of the estimated parameter is given by ϑ̄ki , i.e., ϑ̄ki =
∑k
l=1(θ∗+ξl)

k . Therefore, ϑ̄ki → θ∗ a.s. as k →∞,

which implies by the boundedness of {θki } that for all i

θ̂k+1
i =

1

k + 1
θk+1
i +

k

k + 1
ϑ̄ki → θ∗ a.s. as k →∞,

by the strong law of large numbers. By Proposition 8, xk+1
i = xk+1

i (θ̂k+1
i , εk) is a continuous function of

(θ̂k+1
i , εk), and xk+1

i (θ∗, 0) = x∗. Therefore, xk+1
i → x∗ a.s. as k →∞.

Remark: We emphasize that this scheme requires each agent to effectively solve a suitably defined variational

inequality problem, similar to the centralized problem seen in [69, 84]. Such schemes more closely tied to

best-response schemes than the gradient-based approaches presented in the previous section. Yet, it is worth

emphasizing that the computational complexity of the best-response step is of the same order as that of

solving a strongly convex optimization problem, which is the problem that arises in computing a projected

gradient step [27].

3.3.4 Extension to nonlinear price functions

We now consider a generalization to nonlinear prices defined as follows:

p(X; θ∗, ξ) ,


a∗ − b∗Xσ + ξ,

a∗ − (b∗ + ξ)Xσ.

(3.34)

This nonlinear price function has been examined by [49] where a discussion of the strict monotonicity of the

associated mapping is presented (Lemma 11(a)). Specifically, the equilibrium of the Nash-Cournot game are

captured by VI(K,F ) where F (x) is defined as

F (x) ,

(
c′i(xi)− (a∗ − b∗Xσ) + σb∗Xσ−1xi

)N
i=1

. (3.35)
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In the next result, the mapping F (x) is strongly monotone for all x ∈ K if ∇F (x) is a diagonally dominant

matrix for all x ∈ K.

Lemma 11. Consider the mapping F (x) defined in (3.35). Suppose (A15) holds, N < 3σ−1
σ−1 and σ > 1.

Then the following hold:

(a) F (x) is a strictly monotone mapping over K;

(b) Suppose X ≥ η for some η > 0, then F (x) is a strongly monotone mapping over K.

Proof. (a) Strict monotonicity of F (x) is implied by the positive definiteness of the Jacobian ∇F (x). This

is given by ∇F (x) = J1 + J2 + J3, where J2 = 2b∗σXσ−1eeT and

J1 =


c′′1(x1)

. . .

c′′N (xN )

 and , J3 = b∗σ(σ − 1)Xσ−2


X
σ−1 + x1 . . . x1

...
. . .

...

xN . . . X
σ−1 + xN

 .

Since ci(xi) is a convex function in xi for all i, J1 is a positive semidefinite matrix. J2, compactly stated

as 2b∗σXσ−1eeT , is also a positive semidefinite matrix. As a consequence, positive definiteness of ∇F (x)

follows from the diagonal dominance of the following matrix:

b∗σ(σ − 1)Xσ−2


X
σ−1 + x1 . . . 1

2 (x1 + xN )

...
. . .

...

1
2 (xN + x1) . . . X

σ−1 + xN

 .

By a minor rearrangement, it suffices to show the diagonal dominance of the following:

b∗σ(σ − 1)Xσ−2


X−1

σ−1 + (1 + 1
(σ−1) )x1 . . . 1

2 (x1 + xN )

...
. . .

...

1
2 (xN + x1) . . . X−N

σ−1 + (1 + 1
(σ−1) )xN

 ,

where X−j ,
∑
i 6=j xi. The result follows by noting that

(
1 +

1

(σ − 1)

)
>

(N − 1)

2
or

2σ

σ − 1
> N − 1 or N <

3σ − 1

σ − 1
.

(b) For x, y ∈ K, (x− y)T (F (x)− F (y)) =
∫ 1

0
(x− y)T∇F (y + α(x− y))(x− y)dα. Let x̃ = y + α(x− y) an

X̃ =
∑N
i=1 x̃i. Akin to ∇F (x), ∇F (y + α(x− y)) = J̃1 + J̃2 + J̃3, where J̃1 and J̃2 are positive semidefinite,
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and J̃3 = b∗σ(σ − 1)X̃σ−2J̃4, where

J̃4 =


X̃−1

σ−1 + (1 + 1
(σ−1) )x̃1 . . . 1

2 (x̃1 + x̃N )

...
. . .

...

1
2 (x̃N + x̃1) . . . X̃−N

σ−1 + (1 + 1
(σ−1) )x̃N



=


X̃−1

σ−1 + N−1
2 x̃1 . . . 1

2 (x̃1 + x̃N )

...
. . .

...

1
2 (x̃N + x̃1) . . . X̃−N

σ−1 + N−1
2 x̃N

+

(
σ

σ − 1
− N − 1

2

)
IN , J̃5 + ρIN ,

where J̃5 is a positive semidefinite matrix and ρ = (1 + 1
σ−1 −

N−1
2 ) > 0. Therefore,

(x− y)T (F (x)− F (y)) ≥
∫ 1

0

(x− y)T J̃3(x− y)dα

≥ b∗σ(σ − 1)

∫ 1

0

(x− y)T X̃σ−2J̃4(x− y)dα

≥ b∗σ(σ − 1)ησ−2

∫ 1

0

(x− y)T (J̃5 + ρIN )(x− y)dα

≥ b∗σ(σ − 1)ησ−2ρ‖x− y‖2,

implying the strong monotonicity of F .

Directly deriving a Lipschitzian statement on F (x; θ) in terms of θ is not easy when the price function

has the prescribed nonlinear form; instead, by noting that ∇F (x) is bounded when x is bounded, allows for

proving such a statement. Next, we provide a corollary of Proposition 8 where such a property is derived.

Corollary 3. Consider a VI(K,F (•; θ)) where F (x; θ) is strongly monotone in x over K for all θ ∈ Θ, and

Lipschitz continuous in θ for all x ∈ K. Also, there is a constant R > 0, such that ‖∇F (x; θ)‖ ≤ R for

all x ∈ K and θ ∈ Θ. Given an ε > 0, if x(θ, ε) denotes the solution of VI(K,F (•; θ) + εI), then x(θ, ε) is

Lipschitz continuous in θ and ε.

Proof. By Proposition 8, it suffices to show that F (x; θ) is Lipschitz continuous in x for all θ ∈ Θ. For θ ∈ Θ,

and x, y ∈ K, we have that

‖F (x; θ)− F (y; θ)‖ =

∥∥∥∥∫ 1

0

∇F (y + α(x− y); θ)(x− y)dα

∥∥∥∥ for some α ∈ (0, 1)

≤
∫ 1

0

‖∇F (y + α(x− y); θ)‖ ‖x− y‖dα ≤
∫ 1

0

r‖x− y‖dα = r‖x− y‖,
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which implies the Lipschitz continuity in x of the mapping F .

Proposition 9. Suppose (A14a) holds. Consider the mapping F (x) defined in (3.35) and suppose (A15)

and (A17) hold. Suppose X ≥ η for some η > 0 and all x ∈ K, where X =
∑N
i=1 xi. If N < 3σ−1

σ−1 and

σ > 1, then the following hold:

(a) If x(θ) denotes the solution of VI(K,F (.; θ)), then x(θ) is Lipschitz continuous in θ for all θ ∈ Θ.

(b) Given an ε > 0, if x(θ, ε) denotes the solution of VI(K,F (.; θ)+εI), then x(θ, ε) is Lipschitz continuous

in θ and ε.

Proof. By Lemma 11, F (x; θ) is a strongly monotone mapping over K for all θ ∈ Θ. By definition of F ,

F (x; θ) is Lipschitz continuous in θ for all x ∈ K. By definition of ∇F and boundedness of x ∈ K, ∇F (x; θ)

is bounded for x ∈ K and θ ∈ Θ. Then, the conclusion follows from Corollary 3.

We may now show that the fixed-point problem yields a unique solution.

Proposition 10. Suppose (A15) and (A16) hold. Let the price be given by (3.34). If N < 3σ−1
σ−1 and σ > 1,

then given pk(ξk) and {θ̄ki }Ni=1, the solution to (3.25) is a singleton.

Proof. Given p, θ̄i, i and k, let H(zi) denote the Jacobian matrix ∇F (zi) of the mapping F at zi ∈ Z̃. Then,

as in Proposition 6, it suffices to show that H(zi) is a P-matrix for all zi ∈ Z̃. Given zi ∈ Z̃, let H = H(zi).

Then,

H = H(zi) =

 Ai B

Ci D

 , (3.36)

where Ai = σb∗(Xi)
σ−2

[
Xi(I + eeT ) + (σ − 1)xie

T
]
+Ei, B = − 1

k+1e, Ci = −σb∗(Xi)
σ−1eT , and D = 1

k+1 ,

where Xi =
∑N
j=1 xij , xi = (x11, . . . , x1N )T , and Ei is an N × N diagonal matrix with c′′j (xij) as its jth

diagonal entry. It suffices to show that H is a P-matrix when Ei = 0.

If N < 3σ−1
σ−1 , then Ai is positive semidefinite by Lemma 11. Therefore, we only consider the principal

submatrix Hα of H, where α ⊆ {1, . . . , N} is a nonempty index set, and Hα ,

 Aα Bα

Cα D

 , where Aα =

σb∗(Xi)
σ−1

[
Inα + enα(enα)T

]
+ σ(σ − 1)b∗(Xi)

σ−2xα(enα)T , Bα = − 1
k+1e

nα , Cα = −σb∗(Xi)
σ−1(enα)T ,

and Inα and enα denote the identity matrix and the column of ones in Rnα×nα and Rnα , respectively, with

nα = |α|. Since

BαD
−1Cα =

1

k + 1
enα(k + 1)σb∗(Xi)

σ−1(enα)T = σb∗(Xi)
σ−1enα(enα)T ,
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it follows that Aα−BαD−1Cα = σb∗(Xi)
σ−1Inα +σ(σ−1)b∗(Xi)

σ−2xα(enα)T , which is a sum of a diagonal

positive definite matrix and a P0-matrix, and thus is a P-matrix. Therefore, det(Hα) = det(D) det(Aα −

BαD
−1Cα) > 0 for all α ⊆ {1, . . . , N} with α 6= ∅, which implies that H is a P-matrix.

By leveraging Propositions 9 and 10, the convergence of the iterative fixed-point scheme can be claimed

under the caveat that the aggregate output is always bounded away from zero, as stated by the next result,

whose proof is similar to Theorem 10 and is omitted.

Corollary 4. Suppose (A15), (A16) and (A17) hold. Suppose X ≥ η for some η > 0 and all x ∈ K, where

X =
∑N
i=1 xi. Let {xki , θ̂ki } be computed via Algorithm 5 for i = 1, . . . , N . Suppose a unique solution to the

fixed-point problem (3.25) can be obtained, given pk(ξk) and {θ̄ki }Ni=1 for each k ≥ 0. Then, θ̂ki → θ∗ almost

surely for i = 1, . . . , N and xki → x∗ almost surely for i = 1, . . . , N , where x∗ is a solution of the variational

inequality (3.2).

We conclude this section with an observation. If one used a more widely used estimation technique such

as a least-squares estimation then it remains unclear if almost-sure convergence statements can always be

claimed since least-squares estimators generally converge in a weaker-sense while stronger statements may

be available for linear regression (see [90]). In effect, a scheme that combines a least-squares estimation

technique with a strategy update, while convergent, may not possess desirable almost-sure convergence

properties. While, we examine nonlinear Nash-Cournot games in this section, we also show that such

claims hold for more general aggregative Nash games. However, it should be emphasized that extending

this avenue to Nash games where the associated variational map is non-monotone may lead to challenges.

In particular, what are perfectly reasonable schemes for a subclass of Nash games may not be supported

by similar asymptotic guarantees when the structural properties of the problem do not satisfy some key

requirements.

3.4 Numerical results

In this section, we apply the developed algorithms on a class of networked Nash-Cournot games described

in Section 3.4.1. In Section 3.4.2, we apply the distributed gradient-based schemes for purposes of learning

equilibria and the misspecified parameters when aggregate output is observable, while in Section 3.4.2, we

apply the proposed iterative fixed-point schemes when aggregate output is unobservable. Note that the

simulations were carried out on Matlab R2009a on a laptop with Intel Core 2 Duo CPU (2.40GHz) and

2GB memory. The complementarity solver PATH, developed by [53], was utilized for solving the variational

inequality problems that arose in implementing the algorithms.

75



3.4.1 Problem description

We consider a setting where there are N firms competing over a W -node network. Firm f may produce

and sell its good at node i (denoted by gfi and sfi, respectively), where f = 1, . . . , N and i = 1, . . . ,W .

We assume that for a given firm f , the cost of generating gfi units of power at node i is linear and is given

by cfigfi. Furthermore, the generation level associated with firm f is bounded by its production capacity,

which is denoted by capfi. The aggregate sales of all firms at node i is denoted by Si, and the nodal price

of power at node i, assumed to be a linear function of Si, is defined as pi(Si) , a∗i − b∗iSi, where a∗i and b∗i

are node-specific positive price function parameters. A given firm can produce at any node and then sell at

different nodes, provided that the aggregate production at all nodes matches the aggregate sales at all nodes

for each firm. For simplicity, we assume that there is no transportation cost between any two nodes, and

that there is no limit of sales at any node. Then, the resulting problem faced by firm f can be stated as

(Firm(x−f )) max
sfi≥0, capfi≥gfi≥0

{
W∑
i=1

(pi(Si)sfi − cfigfi) :

W∑
i=1

(sfi − gfi) = 0

}
. (3.37)

The resulting Nash-Cournot equilibrium is given by {x∗f}Nf=1 where x∗f is a solution to (Firm(x∗−f )) for

f = 1, . . . , N . Prices are assumed to be corrupted by noise, in one of two ways:

pi(Si; ξi) = (a∗i + ξi)− b∗iSi, (3.38)

pi(Si; ξi) = a∗i − (b∗i + ξi)Si. (3.39)

Note that firm f either has to learn θ∗ , (a∗i )
W
i=1 when prices are given by (3.38) or learn θ∗ , (b∗i )

W
i=1 when

prices are given by (3.39). In the remainder of this section, let

a∗ , (a∗1, . . . , a
∗
W )T , b∗ , (b∗1, . . . , b

∗
W )T , θ∗ , (θ∗1 , . . . , θ

∗
W )T , ξ∗ , (ξ∗1 , . . . , ξ

∗
W )T and x , (xT1 , . . . , x

T
W )T

with xi , (s1i, s2i, . . . , sNi, g1i, g2i, . . . , gNi)
T . Note that this problem is employed as a motivating example

since Cournot-based models have been used extensively in their analysis (cf. [73, 74]). Naturally, a range of

rationality assumptions can be imposed on firms in power markets, but given the sheer size of the problem

and the repeated nature of competition (in most power markets, firms compete as many as 5–6 times every

hour in the setting of prices) with relatively minor changes occuring in demand/availability over a short

period.
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3.4.2 Learning with observation of the aggregate output

In this subsection, we assume that every firm knows the aggregate output at each node, and employ the

learning schemes proposed in Section 3.2.1. Suppose, the nodal price function is given by (3.38) and suppose

Algorithm 4 (the gradient-based distributed learning scheme), proposed in Section 3.2.1, is employed for

learning parameters and computing equilibria. Suppose firms have generated a price at each node. We use

pi = a∗i + ξi − b∗iSi to denote the price. Each firm will solve the following (regularized) problem to estimate

a∗i and b∗i :

min
{ai,bi}∈Θ

E
[
(ai − biSi − pi)2 + λa2

i + λb2i
]
. (3.40)

Suppose Si is as per a uniform distribution and is specified by Si ∼ U [0, a0
i /b

0
i ], where a0

i and b0i are initial

estimates of a∗i and b∗i . Suppose, the noise ξi is distributed as per a uniform distribution and is specified

by ξi ∼ U [−a∗/2, a∗/2]. Suppose the steplength sequence {γki } and {αki } are chosen according to Lemma

9: γki = 1
(k+Ni)α

and αki = 1
(k+Mi)β

, where α = 0.8 and β = 0.6 and Ni and Mi are randomly chosen from

an interval [1, 200]. The algorithm was terminated at k = 10000. Table 3.1 shows the scaled errors of the

learning scheme.

Table 3.1: Distributed gradient scheme
N W

Learning a∗ and b∗
‖xk−x∗‖
1+‖x∗‖

‖âk−a∗‖
1+‖a∗‖

‖b̂k−b∗‖
1+‖b∗‖

5 1 7.2×10−7 2.9×10−2 4.7×10−2

5 2 3.3×10−4 3.3×10−2 5.3×10−2

5 3 7.4×10−5 3.3×10−2 5.3×10−2

5 4 1.2×10−2 4.2×10−2 6.8×10−2

5 5 1.4×10−2 3.2×10−2 8.5×10−2

10 2 1.3×10−4 3.4×10−2 3.7×10−2

10 4 1.1×10−2 2.6×10−2 8.4×10−2

10 6 2.4×10−2 3.6×10−2 8.6×10−2

10 8 2.8×10−2 3.0×10−2 6.4×10−2

10 10 3.1×10−2 4.1×10−2 5.4×10−2

Table 3.2: Iterative fixed-point scheme
N W

Learning a∗ Learning b∗

maxf

‖xkf−x
∗‖

1+‖x∗‖ maxf

‖âkf−a
∗‖

1+‖a∗‖ maxf

‖xkf−x
∗‖

1+‖x∗‖ maxf

‖b̂kf−b
∗‖

1+‖b∗‖
5 1 6.0×10−3 5.4×10−3 2.3×10−3 1.5×10−3

5 2 1.9×10−3 1.6×10−3 9.1×10−4 7.7×10−4

5 3 1.4×10−3 2.7×10−3 7.8×10−4 1.4×10−3

5 4 7.8×10−3 2.8×10−3 2.0×10−3 1.0×10−3

5 5 1.0×10−3 2.5×10−3 1.2×10−2 2.2×10−3

10 2 2.0×10−3 1.9×10−3 1.2×10−3 1.2×10−3

10 4 1.1×10−2 4.2×10−3 1.5×10−2 9.4×10−4

10 6 1.8×10−3 0.8×10−3 3.0×10−4 1.5×10−3

10 8 2.0×10−3 2.7×10−3 1.3×10−3 8.5×10−4

10 10 1.1×10−3 3.5×10−3 3.8×10−4 7.0×10−4

Learning without observing the aggregate output

In this subsection, we examine how the schemes perform when firms are ignorant of aggregate output at

each node while a common knowledge assumption is assumed to hold.
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Suppose, the nodal price function is given by (3.38) or (3.39) and suppose Algorithm 5 (the iterative

fixed-point scheme), proposed in Section 3.3.1, is employed for learning parameters and computing equilibria.

Suppose, the noise ξ is distributed as per a uniform distribution and is specified by ξ ∼ U [−θ∗/2, θ∗/2]. Each

run comprised of 10000 steps learning a∗ and 50000 steps for learning b∗. Table 3.2 shows the scaled errors

of the learning scheme while Figures 3.1(a) and 3.1(b) illustrate the scaled errors of the learning scheme

when the number of steps, denoted by k, increases for learning x∗ and a∗, respectively. Analogous figures

for learning x∗ and b∗ are provided (see Figures 3.2(a) and 3.2(b)).
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Figure 3.1: Computing x∗ and learning a∗ (ξ ∼ U [−θ∗/2, θ∗/2], N = 10)

0

0.5

1
maxf

xk
f−x∗

1+ x∗

 

0 100 200 300 400 500 600 700 800 900 1000 k

W = 2

W = 10

(a) Learning x

0

0.2

0.4

0.6

0.8
maxf

b̂k
f−b∗

1+ b∗

 

0 100 200 300 400 500 600 700 800 900 1000 k

W = 2

W = 10

(b) Learning b

Figure 3.2: Computing x∗ and learning b∗ ( ξ ∼ U [−θ∗/2, θ∗/2], N = 10)

Table 3.3: Learning x∗ and b∗ in a stochastic regime when N = 5 and W = 1, stopping at k = 10000

(a) ξ ∼ U [− b∗/2, b∗/2]
Sequential Simultaneous

Bound
‖xk−x∗‖
1+‖x∗‖

‖b̂k−b∗‖
1+‖b∗‖

max ‖xkf−x
∗‖

1+‖x∗‖
max ‖b̂kf−b

∗‖
1+‖b∗‖

32.3664 2.1×10−1 1.2×10−1 4.9×10−3 3.3×10−3

64.7329 1.2×10−1 1.0×10−1 5.0×10−3 3.3×10−3

97.0993 5.5×10−1 8.8×10−1 5.0×10−3 3.3×10−3

129.4658 7.4×10−1 1.1 5.1×10−3 3.4×10−3

161.8322 1.2 7.9×10−1 5.1×10−3 3.4×10−3

(b) ξ ∼ U [−R,R]

Sequential Simultaneous

R
‖xk−x∗‖
1+‖x∗‖

‖b̂k−b∗‖
1+‖b∗‖

max ‖xkf−x
∗‖

1+‖x∗‖
max ‖b̂kf−b

∗‖
1+‖b∗‖

b∗/5 7.5×10−2 4.8×10−2 1.9×10−3 1.2×10−3

b∗/4 9.6×10−2 6.0×10−2 2.4×10−3 1.6×10−3

b∗/3 1.3×10−1 8.0×10−2 3.2×10−3 2.2×10−3

b∗/2 2.1×10−1 1.2×10−1 4.9×10−3 3.3×10−3

b∗/1 5.3×10−1 2.3×10−1 9.9×10−3 6.7×10−3

In Table 3.3(a), we raise the upper bounds of the strategy sets of all agents and compare a sequential

scheme with our iterative fixed-point scheme. In the sequential counterpart, we employ 10, 000 steps of

stochastic approximation-based learning followed by 10, 000 steps of computation. It is seen that the error

from the sequential scheme increases proportionally to the bound, while the error associated with our si-

multaneous scheme does not change significantly. Table 3.3(b) shows that when increasing the variance of

the noise makes the difference in errors between the sequential and simultaneous schemes more pronounced.

Consequently, for the same effort, it can be seen that the simultaneous scheme performs far better to the
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sequential scheme, particularly when the variance of the noise grows.

3.5 Concluding remarks

Nash games, a broadly applicable paradigm for modeling strategic interactions in noncooperative settings,

have emerged as immensely useful in the context of distributed control problems. Yet, the development of

distributed protocols for learning equilibria may be complicated by several challenges: (i) Agents may have an

incomplete specification of payoffs; (ii) Agents may be unavailable to observe the actions of their counterparts;

and finally, (iii) Observations may be corrupted by noise. Accordingly, this chapter is motivated by developing

schemes for learning equilibria and resolving misspecification (such as in the price functions). We consider two

specific settings as part of our investigation and apply these techniques on a class of networked Nash-Cournot

games. First, we consider convex static stochastic Nash games characterized by a suitable monotonicity

property in which agent payoffs are parameterized by a misspecified vector. We consider a framework

that combines (stochastic) gradient steps with a stochastic approximation step that attempts to learn the

parameter. In such settings, we provide asymptotic statements that show that agents may learn equilibria

and the true parameters in an almost sure sense. In addition, we provide non-asymptotic error bounds that

demonstrate that the rate of convergence is not impaired by the presence of learning. Second, we refine

our statements to a Cournot regime where we assume common knowledge holds but aggregate output is

unobservable. In such a setting, we construct a learning scheme in which firms maintain a belief of the

aggregate output and the misspecified price function parameter. After each step, these beliefs are updated

by employing fixed-point steps and by leveraging the disparity between estimated and (noisy) observed

prices. We proceed to show that in the limit, every firm learns the true Nash-Cournot equilibrium strategy

in an almost-sure sense. Additionally, every firm learns the correct value of the misspecified parameter in an

almost-sure sense. Yet much remains to be studied, including weakening monotonicity requirements on the

map and boundedness requirements on the strategy sets. It also remains to be investigated as to whether

learning can allow for weakening the common knowledge assumption.
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Chapter 4

Misspecified Markov Decision
Processes

4.1 Introduction

Markov decision processes (MDPs) are an important class of models for analyzing dynamic decision making

problems. First examined in [91], such models have been used in a number of domains including robotics,

control-theory, economics, healthcare, and manufacturing. Specifically, a Markov decision process is a dis-

crete time stochastic control process. At each time step, the process is in some state s, and the decision

maker may choose an action a that is available in state s. The process responds at the next time step by

moving to a new state s′, and giving the decision maker a corresponding reward Ra(s, s′) or cost Ca(s, s′).

The next state s′ depends on the current state s and the decision maker’s action a, but given s and a, it is

conditionally independent of all previous states and actions; in other words, the state transitions of an MDP

have the Markov property. In an MDP with a discrete state space, the state transition probabilities from

time t to t+ 1 are specified by an action Ut at time t, i.e., P(s′ | s, a) , P(Xt+1 = s′ | Xt = s, Ut = a), where

at time t, Xt and Ut denotes the state of the process and the transition matrix, respectively.

Suppose A and S denote the set of actions and states. Suppose C(a, s;ψ∗) denotes the correctly specified

cost of taking action a at state s where γ ∈ [0, 1) denotes the discount factor. The probability of the system

transitioning from state s′ to s′′ based on action a is specified by P∗(s = s′′ | s = s′, a). Furthermore,

we define a policy map as π : S → A while the value function of a policy π is denoted by V π : S → R

and V π(s) denotes the expected discounted cost of policy π when starting at state s. The objective lies

in determining a policy π that minimizes the discounted expected sum over an infinite horizon, given by∑∞
k=0 γ

kC(sk, ak;ψ∗), where ak+1 = π(sk).

This chapter considers the resolution of such problems in regimes where the transition matrix P∗ and

the parametrization of the cost function ψ∗ are unavailable a priori. Estimation of transition matrices has

been studied extensively in the literature [92, 93, 94] while robust optimization approaches have also been

employed (cf. [95, 96]). A rather distinct approach in contending with the absence of information is embodied

by the Q-learning algorithm presented in [97]. This is a simulation-based technique for computing estimates
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to the value function and has a similar structure to stochastic approximation algorithms [98]. Simulation-

based approaches have also been reviewed in [99], particularly notable being the upper confidence bound

(UCB) sampling algorithm (cf. [100, 101, 102]).

Given an MDP(P∗, ψ∗) where P∗ and ψ∗ are unavailable, a standard approach is the following:

(1) Learn P∗ and ψ∗; (2) Solve MDP(P∗, ψ∗).

This technique is afflicted by several challenges, a subset of which we describe next:

(i) Inability to accommodate streaming data: Increasingly, MDP-based models have to be constantly updated

with new, and possibly, streaming data. Yet the traditionally developed asymptotics and error analysis for

resolving MDPs cannot accommodate streaming data.

(ii) Lack of asymptotics: Step (1) often requires solving stochastic and/or large-scale learning problems whose

solutions are obtained in an asymptotic sense. Any practical implementation of this scheme necessitates that

Step (1) terminate finitely; however, premature termination of (1) leads to estimators afflicted by error and

may result in significant error in the computed value function. In effect, asymptotic convergence of this

scheme cannot be claimed.

(iii) Practical implementations: Step (1) may require infinite time, particularly since it requires solving s-

tochastic optimization problems and during this period, no estimate of the optimal value function is available.

In effect, error bounds can only be prescribed after step (1) is complete.

A simultaneous scheme for learning and computation: We consider an avenue that has found

recent application for resolving misspecified optimization and variational problems in stochastic regimes

[79, 103]. This necessitates a simultaneous approach in which the learning problems for P∗ and ψ∗ are

resolved simultaneously with the original MDP. In effect, we consider the estimators from the coupled

dynamics and examine both the asymptotics and error bounds for a variety of computational schemes. Our

scheme relies on the prescription of learning problems.

(i) Learning of transition matrices: We consider the following learning problem for transition matrices based

on using observational data:

P∗ ∈ argmin
P∈P

E[g(P; η)], (LP)

where P denotes the space of stochastic matrices, i.e. nonnegative matrices with row sums equal to unity.

(ii) Misspecification of cost functions: The cost functions are parameterized by a vector ψ∗, representing a

set of parameters idiosyncratic to the machine of interest. For instance, it may pertain to the efficiency of the

81



machine, the start-up/shut-down times, the skill of the workers in question etc. All of these parameters may

require learning, often via an online approach that incorporates the use of observations, possibly corrupted

by noise. Such a problem can be cast as a stochastic optimization problem, defined as follows:

ψ∗ ∈ argmin
ψ∈Ψ

E[R(ψ; ξ)], (RΨ)

where ξ a random variable and Ψ denotes the feasibility set for ψ. By using stochastic approximation, we

may generate sequences {Pk} and {ψk} such that Pk → P∗ and ψk → ψ∗ as k →∞ in an a.s. sense.

We provide an illustration of the approach by using the well-studied value iteration scheme as a basis [104].

In its original form, value iteration maintains an estimate of the value function and updates this belief based

on solving a suitable problem. When the change in the value functions falls within a suitably defined threshold

in a norm-sense, the scheme terminates. We now provide a relatively quick overview of this scheme (cf. [3]).

Let V denote the space of value functions and M : V → V be a mapping such that for each s ∈ S, M is

defined as follows:

Mv(s) = max
a∈A

{
C(s, a;ψ∗) + γ

∑
s′∈S

P∗(s′ | s, a)v(s′)

}
. (MDP(P∗,Ψ∗))

Given a v0, the value iteration scheme is defined as follows:

vk+1 :=Mvk, for k ≥ 0. (Value Iteration)

Since M is a contraction mapping on V if 0 ≤ γ < 1 (cf. Proposition 3.10.2 in [3]), convergence of the

scheme can be shown within a reasonably straightforward fashion. However, one of the challenges lies in the

availability of C(s, a;ψ∗) and P∗, motivating the development of a misspecified variant. We assume the cost

and matrix to be given by C(s, a; ψ̃) and P̃(s′|s, a). We may then define a misspecified operator M̃k : V → V

by utilizing estimates P̃k and ψ̃k:

M̃kv(s) = max
a∈A

{
C(s, a; ψ̃k) + γ

∑
s′∈S

P̃k(s′|s, a)v(s′)

}
. (4.1)

Specifically, we assume that P̃k and ψ̃k are sequences converging to P∗ and ψ∗ a.s. as a result of stochastic

approximation schemes.

We now present our main research questions and provide an outline of this chapter:

(i) Misspecified value iteration: In Section 2, we present a misspecified value iteration scheme for address-

ing MDPs in which the cost function and transition matrices are misspecified. We examine the asymptotics
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of the resulting scheme and providing a quantification of the degradation of the rate of convergence based

on the presence of learning.

(ii) Misspecified policy iteration: In Section 3, we consider an analogous set of questions in the regime

of policy iteration where we provide almost sure convergence statements.

(iii) Misspecified Q-learning: Finally, in Section 4, we consider Q-learning approaches for solving MDPs

with misspecified cost functions and present constant steplength error bounds for extensions that resolve the

misspecification while solving the original MDP.

4.2 Misspecified value iteration

Value iteration [91] represents amongst the oldest of schemes for solving an MDP. We begin by present-

ing a misspecified value iteration scheme for resolving MDP(P∗, ψ∗) and subsequently present asymptotic

convergence and error analysis.

We define P to be set of all transition matrices, vec(P) to be the vector drawn from the entries of P for

all P ∈ P, and vec(P) , {vec(P) : P ∈ P}. Estimating P∗ often requires the resolution of a suitably defined

learning problem, given by a stochastic optimization problem (LP), where vec(P) is a closed and convex

set, η : Λ → Rp is a random variable defined on a probability space (Λ,Fη,Pη), and g : P × Λ → R is a

real-valued function. We may specify our joint scheme for learning and computation as follows:

Algorithm 6 (Misspecified Value Iteration). Step 0: Let ṽ0 : S → R, vec(P̃0) ∈ vec(P), ψ̃0 ∈ Ψ,

α0 > 0, β0 > 0 and k = 0.

Step 1: For all k ≥ 0,

ṽk+1 := M̃kṽ
k, (Computation)

vec(P̃k+1) := Πvec(P)

(
vec(P̃k)− αk(∇g(P̃k) + wk)

)
, (Learning−P)

ψ̃k+1:= ΠΨ

(
ψ̃k − βk(∇R(ψ̃k) + uk)

)
, (Learning−ψ)

where wk , ∇g(P̃k; ηk) − ∇g(P̃k), g(P) , E[g(P; η)], uk = ∇R(ψ̃k; ξk) − ∇R(ψ̃k), R(ψ) , E[R(ψ; ξ)],

M̃kv(s) := maxa∈A(C(s, a; ψ̃k) + γ
∑
s′∈S P̃n(s′|s, a)v(s′)), and αk and βk are chosen according to Proposi-

tion 11.

Step 2: If k > K, stop; else k := k + 1 and go to Step 1.

We begin by showing that the misspecified operator M̃k is a contraction mapping for any k. We suppress

the subscript k in this proof for purposes of clarity.
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Lemma 12 (Contractive property of M̃). Define M̃ by suppressing the subscript k in (4.1), i.e.

M̃v(s) = max
a∈A

{
C(s, a; ψ̃) + γ

∑
s′∈S

P̃(s′|s, a)v(s′)

}
.

If 0 ≤ γ < 1, then M̃ is a contraction mapping on V.

Proof. Let u, v ∈ V and assume that M̃v(s) ≥ M̃u(s) without loss of generality for any state s. For any

state s, let ã∗s(v) be defined as follows:

ã∗s(v) = argmax
a∈A

{
C(s, a; ψ̃) + γ

∑
s′∈S

P̃(s′|s, a)v(s′)

}
.

Then, we have the following sequence of inequalities:

0 ≤ M̃v(s)− M̃u(s) = C(s, ã∗s(v); ψ̃) + γ
∑
s′∈S

P̃(s′|s, ã∗s(v))v(s′)−

(
C(s, ã∗s(u); ψ̃) + γ

∑
s′∈S

P̃(s′|s, ã∗s(u))u(s′)

)

≤ C(s, ã∗s(v); ψ̃) + γ
∑
s′∈S

P̃(s′|s, ã∗s(v))v(s′)−

(
C(s, ã∗s(v); ψ̃) + γ

∑
s′∈S

P̃(s′|s, ã∗s(v))u(s′)

)
︸ ︷︷ ︸

Term (a)

,

where the second inequality is a consequence of noting that for all s, we have the following:

M̃u(s) = max
a∈A

{
C(s, a; ψ̃) + γ

∑
s′∈S

P̃(s′|s, a)u(s′)

}
=

(
C(s, ã∗s(u); ψ̃) + γ

∑
s′∈S

P̃(s′|s, ã∗s(u))u(s′)

)

≥

(
C(s, ã∗s(v); ψ̃) + γ

∑
s′∈S

P̃(s′|s, ã∗s(v))u(s′)

)
.

It follows that Term (a) can be bounded as follows:

C(s, ã∗s(v); ψ̃) + γ
∑
s′∈S

P̃(s′|s, ã∗s(v))v(s′)−

(
C(s, ã∗s(v); ψ̃) + γ

∑
s′∈S

P̃(s′|s, ã∗s(v))u(s′)

)

= γ
∑
s′∈S

P̃(s′|s, ã∗s(v)) (v(s′)− u(s′)) ≤ γ
∑
s′∈S

P̃(s′|s, ã∗s(v))‖v − u‖∞ = γ‖v − u‖∞,

Consequently, ‖M̃v−M̃u‖∞ = sups∈S |M̃v(s)−M̃u(s)| ≤ γ‖v−u‖∞, implying that M̃ is contractive.

Our next proposition shows that when the estimated transition matrix is within some bound of its true

counterpart, under a suitable Lipschitzian requirement of C(s, a, ψ) in ψ, we obtain the following relationship

between the true operator and its misspecified counterpart. This lemma subsequently finds application in

the main convergence result.
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Lemma 13. Suppose
∑
s′∈S |P∗(s′|s, a) − P̃(s′|s, a)| ≤ δ for all s and a. Suppose C(s, a;ψ) is Lipschitz

continuous in ψ with constant LC uniformly in s and a. Then the following holds for all u, v ∈ V:

‖Mv − M̃u‖ ≤ LC‖ψ∗ − ψ̃‖+ γδ(‖v‖+ ‖u‖) + γ‖v − u‖.

Proof. Let u, v ∈ V and assume without loss of generality that Mv(s) ≥ M̃u(s). For a state s, we may

define a∗s(v) and ã∗s(v) as follows:

a∗s(v) , argmax
a∈A

(C(s, a;ψ∗) + γ
∑
s′∈S

P∗(s′|s, a)v(s′)) and ã∗s(v) , argmax
a∈A

(C(s, a; ψ̃) + γ
∑
s′∈S

P̃(s′|s, a)v(s′)).

Then, we have the following set of relations:

0 ≤Mv(s)− M̃u(s) =Mv(s)− M̃v(s) + M̃v(s)− M̃u(s)

= C(s, a∗s(v);ψ∗) + γ
∑
s′∈S

P∗(s′|s, a∗s(v))v(s′)−

(
C(s, ã∗s(v); ψ̃) + γ

∑
s′∈S

P̃(s′|s, ã∗s(v))v(s′)

)

+ M̃v(s)− M̃u(s)

≤ C(s, a∗s(v);ψ∗) + γ
∑
s′∈S

P∗(s′|s, a∗s(v))v(s′)−

(
C(s, a∗s(v); ψ̃) + γ

∑
s′∈S

P̃(s′|s, a∗s(v))v(s′)

)

+ M̃v(s)− M̃u(s),

where the second inequality follows from the suboptimality of a∗s(v) with respect to a∗(v). It follows that

C(s, a∗s(v);ψ∗) + γ
∑
s′∈S

P∗(s′|s, a∗s(v))v(s′)−

(
C(s, a∗s(v); ψ̃) + γ

∑
s′∈S

P̃(s′|s, a∗s(v))v(s′)

)

+ M̃v(s)− M̃u(s)

≤ LC‖ψ∗ − ψ̃‖+ γ
∑
s′∈S

(
P∗(s′|s, a∗s(v))− P̃(s′|s, a∗s(v))

)
v(s′) + M̃v(s)− M̃u(s)

≤ LC‖ψ∗ − ψ̃‖+ γ
∑
s′∈S
|P∗(s′|s, a∗s(v))− P̃(s′|s, a∗s(v))|‖v‖+ M̃v(s)− M̃u(s)

≤ LC‖ψ∗ − ψ̃‖+ γδ‖v‖+ M̃v(s)− M̃u(s)

≤ LC‖ψ∗ − ψ̃‖+ γδ‖v‖+ γ‖v − u‖

≤ LC‖ψ∗ − ψ̃‖+ γδ(‖v‖+ ‖u‖) + γ‖v − u‖,

where the first inequality follows from the Lipschitz continuity of C(s, a;ψ) in ψ for fixed s and a, the second

inequality is a consequence of the Cauchy-Schwarz inequality and the last inequality is a consequence of
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invoking the contractive property of M̃ with constant γ.

We are now ready to prove our main convergence statement.

Proposition 11 (Misspecified value iteration: a.s. convergence and rate statement). Suppose

{ṽk}, {P̃k} and {ψ̃k} are generated from Algorithm 6. Suppose the learning function g(·) is strongly convex

in vec(P), and the learning function R(·) is strongly convex in Ψ. Suppose αk = θ1/k and βk = θ2/k with

θ1 > 1/(2µg), θ2 > 1/(2µR), µg is the strong convexity constant of g and µR is the strong convexity constant

of R. Suppose C(s, a;ψ) is Lipschitz continuous in ψ with constant LC for all s and a. Then, there exists a

constant λ such that the following hold:

(i) ‖ṽk − v∗‖ → 0, P̃k → P∗ and ψ̃k → ψ∗ a.s. as k →∞.

(ii) For any k, we have that the following holds:

E
[
‖ṽk+1 − v∗‖

]
≤ γkE[‖ṽ0 − v∗‖] +

k∑
j=1

γk−jλ√
j

= O
(

1√
k

)
.

Proof. (i) First, we have that the following holds almost surely:

‖ṽk+1 − v∗‖ = ‖M̃kṽ
k −Mv∗‖

= ‖M̃kṽ
k − M̃kv

∗ + M̃kv
∗ −Mv∗‖ ≤ ‖M̃kṽ

k − M̃kv
∗‖+ ‖M̃kv

∗ −Mv∗‖

≤ γ‖ṽk − v∗‖+ LC‖ψ̃k − ψ∗‖+ γ‖vec(P̃k)− vec(P∗)‖‖v∗‖, (4.2)

where the last inequality follows from invoking Lemmas 12 and 13. Let ak = LC‖ψ̃k − ψ∗‖ + γ‖vec(P̃k) −

vec(P∗)‖‖v∗‖. Then, we have

‖ṽk+1 − v∗‖ ≤ γ‖ṽk − v∗‖+ ak ≤ γ(γ‖ṽk−1 − v∗‖+ ak−1) + ak

= γ2‖ṽk−1 − v∗‖+ γak−1 + ak ≤ · · · ≤ γk+1‖ṽ0 − v∗‖+

k∑
i=0

γiak−i.

Since γk+1 → 0, it suffices to show that
∑k
i=0 γ

iak−i → 0 as k → ∞ in an a.s. sense. Since the learning

problems for ψ∗ and P∗ are both strongly convex, we have that ak → 0 a.s. as k →∞. Then, for almost all

ω ∈ Ω, given ε > 0, there exists N1(ω) such that ak ≤ ε for all k ≥ N1(ω). Also, for almost every ω ∈ Ω,
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ak ≤ L(ω) for all k and some constant L(ω) > 0. Thus, for k ≥ N1(ω),

k∑
i=0

γiak−i = γna0 + . . .+ γk−N1(ω)aN1(ω) + γk−N1(ω)−1aN1(ω)+1 + . . .+ γ0ak

≤ (γk + . . .+ γk−N1(ω))L(ω) +
ε

1− γ
.

Since γk → 0, there exists N2(ω) such that γk ≤ ε
N1(ω)+1 , . . . , γ

k−N1(ω) ≤ ε
N1(ω)+1 for all k ≥ N2(ω). So,

when k ≥ N(ω) , max{N1(ω), N2(ω)}, we have that

k∑
i=0

γiak−i ≤ L(ω)ε+
ε

1− γ
=

(
L(ω) +

1

1− γ

)
ε.

Since L(ω) is finite in an a.s. sense and ε is arbitrarily chosen, proving that
∑k
i=0 γ

ian−i → 0 a.s.. We may

then conclude that ‖ṽk+1 − v∗‖ → 0 in an a.s. sense as k →∞.

(ii) By taking expectations on both sides of (4.2), we have the following:

E[‖ṽk+1 − v∗‖] ≤ γE[‖ṽk − v∗‖] + LCE[‖ψ̃k − ψ∗‖] + γE[‖vec(P̃k)− vec(P∗)‖]‖v∗‖. (4.3)

Recall that the learning problem for ψ∗ and P∗ are both strongly convex. Then, we may use the standard

rate estimate (see (5.292) in [42]) to get the following for suitably chosen λ1 and λ2:

E[‖ψ̃k − ψ∗‖] ≤
λ1√
k

and E[‖vec(P̃k)− vec(P∗)‖] ≤ λ2√
k
. (4.4)

Consequently, we obtain the following:

E[‖ṽk+1 − v∗‖] ≤ γE[‖ṽk − v∗‖] +
LCλ1 + γλ2‖v∗‖√

k
.

Let λ = LCλ1 + γλ2‖v∗‖. Then, we have

E[‖ṽk+1 − v∗‖] ≤ γE[‖ṽk − v∗‖] +
λ√
k
≤ γ2E[‖ṽk−1 − v∗‖] +

γλ√
k − 1

+
λ√
k

≤ γkE[‖ṽ0 − v∗‖] +

k∑
j=1

γk−jλ√
j
.

Since γ−j is increasing in j and 1√
j

is decreasing in j, then there exists a K1 such that γ−j√
j

is decreasing in

j for j ≤ K1 and γ−j√
j

is increasing in j for j > K1. Then, the second term in the above inequality can be
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bounded as

k∑
j=1

γk−jλ√
j

= γkλ

k∑
j=1

γ−j√
j

= γkλ

K1∑
j=1

γ−j√
j

+

k∑
j=K1+1

γ−j√
j


≤ γkλ

(
K1γ

−1 +

∫ k+1

K1+2

γ−t√
t
dt

)
.

(4.5)

Note that there exists a K2 > K1 +2 such that γ−t

t
√
t

is decreasing for t ≤ K2 and γ−t

t
√
t

is increasing for t > K2.

Then, we have

∫ k+1

K1+2

γ−t√
t
dt =

γ−t

ln γ−1
· 1√

t

∣∣∣∣k+1

K1+2

+
1

2

∫ k+1

K1+2

γ−t

ln γ−1
· 1

t
√
t
dt

≤ 1

ln γ−1
· γ
−(k+1)

√
k + 1

+
1

2

∫ K2

K1+2

γ−t

ln γ−1
· 1

t
√
t
dt+

1

2

∫ k+1

K2

γ−t

ln γ−1
· 1

t
√
t
dt

≤ 1

ln γ−1
· γ
−(k+1)

√
k + 1

+
1

2

∫ K2

K1+2

γ−t

ln γ−1
· 1

t
√
t
dt+

γ−(k+1)

2 ln γ−1
· 1

(k + 1)
√
k + 1

· (k + 1−K2)

≤ 1

ln γ−1
· γ
−(k+1)

√
k + 1

+
1

2

∫ K2

K1+2

γ−t

ln γ−1
· 1

t
√
t
dt+

1

2 ln γ−1
· γ
−(k+1)

√
k + 1

=
3

2 ln γ−1
· γ
−(k+1)

√
k + 1

+ L(γ),

(4.6)

where the second inequality follows from the fact that γ−t

t
√
t

is increasing for t > K2, and L(γ) = 1
2

∫K2

K1+2
γ−t

ln γ−1 ·
1
t
√
t
dt is a constant determined by γ. Combining (4.5) and (4.6), we have

k∑
j=1

γk−jλ√
j
≤ γkλ

(
K1γ

−1 +
3

2 ln γ−1
· γ
−(k+1)

√
k + 1

+ L(γ)

)

= γkλ
(
K1γ

−1 + L(γ)
)

+
3λγ−1

2 ln γ−1
· 1√

k + 1
= O

(
1√
k

)

We now present a constant steplength error bound where the steplength is fixed by a prescribed number

of iterations, say K. The optimal “constant stepsize” derives the error minimizing steplength; in other words,

αk and βk are constants for 1 ≤ k ≤ K.
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Proposition 12 (Misspecified value iteration: constant steplength scheme). Suppose {ṽk}, {P̃k}

and {ψ̃k} are generated from Algorithm 6. Suppose the learning function g(·) is strongly convex in vec(P)

with convexity constant µg, and is continuously differentiable in vec(P) with Lipschitz gradient constant Lg.

Suppose the learning function R(·) is strongly convex in Ψ with convexity constant µR, and is continuously

differentiable in Ψ with Lipschitz gradient constant LR. Suppose αk = λg and βk = λR with λg > 0 and

λR > 0. Suppose E[‖wk‖2] ≤ ν2
g and E[‖uk‖2] ≤ ν2

R. Suppose C(s, a;ψ) is Lipschitz continuous in ψ with

constant LC for all s and a. If we define v̄K = 1
K

∑K
k=1 ṽ

k, then

E[‖v̄K − v∗‖] = O
(

1

K1/4

)
.

Proof. Instead of (4.4) in the proof of Prop. 11, we have the following

E[‖ψ̃k+1 − ψ∗‖2] ≤ (1− qg)E[‖ψ̃k − ψ∗‖2] + λ2
gν

2
g ,

where qg , 2λgµg − λ2
gL

2
g. Suppose λg is chosen such that qg < 1. Thus,

qgE[‖ψ̃k − ψ∗‖2] ≤(E[‖ψ̃k − ψ∗‖2]− E[‖ψ̃k+1 − ψ∗‖2]) + λ2
gν

2
g .

Then, we have

1

K

K∑
k=1

qgE[‖ψ̃k − ψ∗‖2] ≤ 1

K

K∑
k=1

(E[‖ψ̃k − ψ∗‖2]− E[‖ψ̃k+1 − ψ∗‖2]) + λ2
gν

2
g

≤ 1

K
E[‖ψ̃0 − ψ∗‖2] + λ2

gν
2
g .

(4.7)

By using Hölder’s inequality, Jensen’s inequality applied to the counting measure, and the inequality (4.7),

we have

1

K

K∑
k=1

E[‖ψ̃k − ψ∗‖] ≤
1

K

K∑
k=1

√
E[‖ψ̃k − ψ∗‖2]

≤

√√√√ 1

K

K∑
k=1

E[‖ψ̃k − ψ∗‖2]

≤
√

1

K
E[‖ψ̃0 − ψ∗‖2]/qg + λ2

gν
2
g/qg

≤

√
ag + λ2

gν
2
g

2λgµg − λ2
gL

2
g

,
√
bg(λg),

(4.8)

where ag = E[‖ψ̃0−ψ∗‖2]/K and bg(λg) = (ag + λ2
gν

2
g )/(2λgµg − λ2

gL
2
g). By taking the derivative of bg with
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respect to λg, we have

∂bg
∂λg

=
2λgν

2
g (2λgµg − λ2

gL
2
g)− (ag + λ2

gν
2
g )(2µg − 2λgL

2
g)

(2λgµg − λ2
gL

2
g)

2

=
2λ2

gν
2
gµg − ag(2µg − 2λgL

2
g)

(2λgµg − λ2
gL

2
g)

2

=
2ν2
gµg

(2λgµg − λ2
gL

2
g)

2
·

[
λ2
g + λg

agL
2
g

ν2
gµg
− ag
ν2
g

]

=
2ν2
gµg

(2λgµg − λ2
gL

2
g)

2
·

(λg +
agL

2
g

2ν2
gµg

)2

− ag
ν2
g

−
a2
gL

4
g

4ν4
gµ

2
g

 .

Thus,
∂bg
∂λg

= 0 implies that λ∗g =

√
ag
ν2
g

+
a2gL

4
g

4ν4
gµ

2
g
− agL

2
g

2ν2
gµg

= O(1/
√
K). If 0 < λg ≤ λ∗g, then

∂bg
∂λg
≤ 0 and

thus bg(λg) is nonincreasing in λg; if λ∗g ≤ λg <
2µg
λ2
g

, then
∂bg
∂λg
≥ 0 and thus bg(λg) is nondecreasing in λg.

Therefore, λ∗g minimizes bg. Then, bg(λ
∗
g) = (ag + λ2

gν
2
g )/(2λgµg − λ2

gL
2
g) ≤ O(1/

√
K). Therefore, we have

from (4.8) that

1

K

K∑
k=1

E[‖ψ̃k − ψ∗‖] ≤
√
bg(λg) ≤ O

(
1

K1/4

)
. (4.9)

Similarly, we have for suitably chosen λR that

1

K

K∑
k=1

E[‖vec(P̃k)− vec(P∗)‖] ≤ O
(

1

K1/4

)
. (4.10)

Now, we define v̄K = 1
K

∑K
k=1 ṽ

k. From (4.3), we have

E[‖ṽk+1 − v∗‖] ≤ γE[‖ṽk − v∗‖] + LCE[‖ψ̃k − ψ∗‖] + γE[‖vec(P̃k)− vec(P∗)‖]‖v∗‖.

Thus,

(1− γ)E[‖ṽk − v∗‖] ≤ (E[‖ṽk − v∗‖]− E[‖ṽk+1 − v∗‖]) + LCE[‖ψ̃k − ψ∗‖] + γE[‖vec(P̃k)− vec(P∗)‖]‖v∗‖.
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Then, we have

1

K

K∑
k=1

(1− γ)E[‖ṽk − v∗‖] ≤ 1

K

K∑
k=1

(E[‖ṽk − v∗‖]− E[‖ṽk+1 − v∗‖])

+
1

K

K∑
k=1

LCE[‖ψ̃k − ψ∗‖] +
1

K

K∑
k=1

γE[‖vec(P̃k)− vec(P∗)‖]‖v∗‖

≤ 1

K
E[‖ṽ0 − v∗‖] +O

(
1

K1/4

)
,

where the last inequality follows from (4.9) and (4.10). Therefore, we have

E[‖v̄K − v∗‖] = E

[
‖ 1

K

K∑
k=1

ṽk − v∗‖

]
= E

[
‖ 1

K

K∑
k=1

(ṽk − v∗)‖

]
≤ 1

K

K∑
k=1

E[‖ṽk − v∗‖]

≤ E[‖ṽ0 − v∗‖]/(1− γ)

K
+O

(
1

K1/4

)
.

4.3 Misspecified policy iteration

In this section, we consider a policy iteration scheme for the resolution of misspecified MDPs. We initiate

our discussion with a formal statement of the misspecified policy iteration scheme and subsequently prove

its asymptotic convergence. If cπ(·) , C(·, π(·);ψ∗) and c̃πk(·) , C(·, πk(·); ψ̃k), then the operatorsMπ and

M̃πk
k may be defined as follows for policies π and πk, respectively:

Mπv , cπ + γ(P∗)πv and M̃πk
k v , c̃πk + γP̃πkk v,

Next, we define the misspecified policy iteration scheme.
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Algorithm 7 (Misspecified policy Iteration). Step 0: Let ṽ0 : S → R, vec(P̃0) ∈ vec(P), αk > 0,

ψ̃0 ∈ Ψ, α0 > 0, β0 > 0 and k = 0.

Step 1: For all k ≥ 0,

ak+1(s) := argmax
a∈A

(C(s, a; ψ̃k) + γP̃πk+1

k ṽk+1), (Computation)

vec(P̃k+1) := Πvec(P)

(
vec(P̃k)− αk(∇g(P̃k) + wk)

)
, (Learning−P)

ψ̃k+1:= ΠΨ

(
ψ̃k − βk(∇R(ψ̃k) + uk)

)
, (Learning−Ψ)

where wk , ∇g(P̃k; ηk) − ∇g(P̃k) with g(P) , E[g(P; η)], uk = ∇R(ψ̃k; ξk) − ∇R(ψ̃k), R(ψ) , E[R(ψ; ξ)]

and (I − γP̃πkk )ṽk+1 = c̃πk .

Step 2: If k > K, stop; else k := k + 1 and go to Step 1.

We now provide a lemma that provides the error bound for the approximate policy iteration, which is

useful for our rate analysis.

Lemma 14 (Approximate policy iteration bound (cf. p.48 in [105])). Let ṽk be the approximate value

function. Suppose for all k

‖vk − ṽk‖ ≤ δ,

and

‖Mπ∗ ṽk −Mπk+1 ṽk‖ ≤ ε.

Then, we have

lim sup
k→∞

‖vk+1 − v∗‖ ≤ ε+ 2γδ

(1− γ)2
.

Analogous to Proposition 11 for the value iteration, we can get the following convergence statement where

‖ • ‖ denotes the infinity norm for both matrices and vectors.
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Proposition 13 (Misspecified policy iteration: a.s. convergence and rate statement). Suppose

{ṽk}, {P̃k} and {ψ̃k} are generated by Algorithm 7 and the learning functions g(·) and R(·) are strongly

convex. Finally, suppose C(s, a;ψ) is Lipschitz continuous in ψ with constant LC for all s and a and ‖ṽk‖

is bounded a.s. for all k. Suppose ‖cπ∗ − cπk‖ ≤ ∆ and ‖(P∗)π∗ − (P∗)πk‖ ≤ ∆ for all k. Then, the following

hold:

(i) ‖ṽk − v∗‖ → 0 a.s. as k →∞.

(ii) For any k, we have that the following holds:

E[‖ṽk+1 − v∗‖] = O
(

(1 + γ)∆

(1− γ)2

)
+O

(
(1 + γ2)(1 + γ)

(1− γ)3
√
k

)
.

Proof. (i) We proceed to show that ‖vk − ṽk‖ → 0 as k → ∞ whereby the result follows by recalling that

by the convergence of policy iteration, ‖vk − v∗‖ → 0 as k →∞. From Algorithm 7, we have

‖vk+1 − ṽk+1‖ = ‖cπk + γ(P∗)πkvk+1 − (c̃πk + γP̃πkk ṽk+1)‖

= ‖cπk − c̃πk + γ(P∗)πk(vk+1 − ṽk+1) + γ((P∗)πk − P̃πkk )ṽk+1‖

≤ LCN‖ψ∗ − ψ̃k‖+ γ‖(P∗)πk‖‖vk+1 − ṽk+1‖+ γ‖(P∗)πk − P̃πkk ‖‖ṽ
k+1‖.

It follows that

‖vk+1 − ṽk+1‖ ≤
LCN‖ψ∗ − ψ̃k‖+ γ‖(P∗)πk − P̃πkk ‖‖ṽk+1‖

1− γ‖(P∗)πk‖

=
LCN‖ψ∗ − ψ̃k‖+ γ‖(P∗)πk − P̃πkk ‖‖ṽk+1‖

1− γ
.

(4.11)

Recall that the learning problem for ψ∗ and P∗ are both strongly convex, implying that ψ̃k → ψ∗ and

vec(P̃k) → vec(P∗) a.s. as k → ∞. Thus, by the a.s. boundedness of ṽk and by invoking the property that

‖vk − v∗‖ → 0 as k → ∞, we have that ‖vk − ṽk‖ → 0 a.s. as k → ∞. Therefore, ‖ṽk − v∗‖ → 0 a.s. as

k →∞.

(ii) By taking expectations on both sides of (4.11), we have the following:

E[‖vk+1 − ṽk+1‖] ≤
LCNE[‖ψ∗ − ψ̃k‖] + γE[‖(P∗)πk − P̃πkk ‖‖ṽk+1‖]

1− γ
. (4.12)

Recall that the learning problem for ψ∗ and P∗ are both strongly convex. Then, we can use the standard

93



rate estimate (see (5.292) in [42]) to get the following:

E[‖ψ̃k − ψ∗‖] = O
(

1√
k

)
and E[‖(P∗)πk − P̃πkk ‖] = O

(
1√
k

)
. (4.13)

Consequently, we obtain the following:

E[‖vk+1 − ṽk+1‖] =
1 + γ

1− γ
O
(

1√
k

)
.

On the other hand,

E[‖Mπ∗ ṽk −Mπk+1 ṽk‖] = E[‖cπ
∗

+ γ(P∗)π
∗
ṽk − (cπk+1 + γ(P∗)πk+1 ṽk)‖] = (1 + γ)O (∆) .

Then, we may use the approximate policy iteration bound (Lemma 14) to get the following:

E[‖vk+1 − v∗‖] =
(1 + γ)O (∆) + 2γ · 1+γ

1−γO
(

1√
k

)
(1− γ)2

.

Therefore,

E[‖ṽk+1 − v∗‖] = O
(

(1 + γ)∆

(1− γ)2

)
+O

(
(1 + γ2)(1 + γ)

(1− γ)3
√
k

)
.

4.4 Misspecified Q-learning

When transition matrices are unavailable, a commonly adopted approach is a simulated approach popularly

referred to as Q-learning [97]. We consider a misspecified variant of Q-learning that incorporates learning of

the misspecified cost and examines the resulting sequence of estimators. We begin by defining the Q-function

as Q(s, a) , C(s, a;ψ∗) + γ
∑
s′∈S P∗(s′|s, a)v(s′), which allows for restating as follows:

Q(s, a) , C(s, a;ψ∗) + γ
∑
s′∈S

P∗(s′|s, a) max
b∈A

Q(s′, b). (4.14)

We define the operator T as

T [Q(s, a)] , C(s, a;ψ∗) + γ
∑
s′∈S

P∗(s′|s, a) max
b∈A

Q(s′, b).
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Then the Q-function is the fixed point of the operator T ; i.e. Q = T [Q]. Given the vector ψ̃k in the cost at

iteration n, we may define the misspecified operator T̃k at iteration n as

T̃kQ(s, a) , C(s, a; ψ̃k) + γ
∑
s′∈S

P∗(s′|s, a) max
b∈A

Q(s′, b),

where T̃kQ is used to denote T̃k[Q]. As in previous sections, we may specify our misspecified Q-learning

scheme as follows:

Algorithm 8 (Misspecified Q-learning). Step 0: Let Q̃0(s, a) ∈ R, ψ̃0 ∈ Ψ, β0 > 0 and k = 0.

Step 1: For all n ≥ 0,

Q̃k+1(s, a) := (1− δ)Q̃k(s, a) + δ

[
C(s, a; ψ̃k) + γmax

b∈A
Q̃k(s′, b)

]
, (Q−update)

ψ̃k+1 := ΠΨ

(
ψ̃k − βk(∇R(ψ̃k) + uk)

)
, (Learning-ψ)

where δ ∈ (0, 1), s′ is the random next state reached when the current state is s and action is a, and

uk = ∇R(ψ̃k; ξk)−∇R(ψ̃k) with R(ψ) , E[R(ψ; ξ)].

Step 2: If n > K, stop; else k := k + 1 and go to Step 1.

Our convergence analysis begins with a reproduction of two classical results regarding the operator T̃ , which

may be directly applied to the misspecified operator T̃k. First, T̃k is a contraction mapping.

Proposition 14 (Contractive property of T̃k [98]). If 0 ≤ γ < 1, then ‖T̃k[Q1]−T̃k[Q2]‖∞ ≤ γ‖Q1−Q2‖∞

for any two vectors Q1 and Q2.

Second, the estimated Q-function stays bounded.

Proposition 15 (Boundedness of Q function [106]). There exists Q̂max such that ‖Q̂k‖∞ ≤ Q̂max for

any k.

We now provide an intermediate lemma that provides a constant steplength error bound on a suitably defined

metric D.

Lemma 15. For any state-action pair (s, a), suppose Dk(s, a) = Qk(s, a) − zk and zk(s, a) be defined as

follows:

zk+1(s, a) = (1− δ)zk(s, a) + δγwk(s, a), z0(s, a) = 0. (4.15)

Then for any k, we have that E[‖Dk‖∞] ≤
(
O
(

1√
k

)
+ γ2

1−γ

√
δW 2

max

2−δ

)
.
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Proof. We utilize an approach employed in [107] and begin by defining the error Qk(s, a) as Qk(s, a) ,

Q̃k(s, a)−Q(s, a). Using (4.14) and (Q−update), the error can be written as

Qk+1(s, a) = (1− δ)Qk(s, a) + δ

[
C(s, a; ψ̃k) + γmax

b∈A
Q̃k(s′, b)−Q(s, a)

]
= (1− δ)Qk(s, a) + δ

[
C(s, a; ψ̃k)− C(s, a;ψ∗) + γmax

b∈A
Q̃k(s′, b)− γ

∑
s′∈S

P∗(s′|s, a) max
b∈A

Q(s′, b)

]

= (1− δ)Qk(s, a) + δ
(
C(s, a; ψ̃k)− C(s, a;ψ∗)

)
+ δγ

∑
s′∈S

P∗(s′|s, a)

(
max
b∈A

Q̃k(s′, b)−max
b∈A

Q(s′, b)

)
+ δγwk(s, a)

= (1− δ)Qk(s, a) + δ
(
C(s, a; ψ̃k)− C(s, a;ψ∗)

)
+ δ(TQ̃k(s, a)− TQ(s, a)) + δγwn(s, a),

where wk(s, a) = maxb∈A Q̃k(s′, b) −
∑
s′∈S P∗(s′|s, a) maxb∈A Q̃n(s′, b). If zk is defined by (4.15) (as done

in [107]), then the following holds for the second moment:

E[‖zk‖2] ≤
√
γ2δW 2

max

2− δ
, (4.16)

where W 2
max = |S ×A|4Q̂2

max with |S| being the cardinality of the set of states and |A| being the cardinality

of the set of possible actions. By defining the sequence Dk , Qk − zk, we may bound it as follows:

Dk+1(s, a) = (1− δ)Dk(s, a) + δ
(
C(s, a; ψ̃k)− C(s, a;ψ∗)

)
+ δ(TQ̃k(s, a)− TQ(s, a))

=⇒ |Dk+1(s, a)| ≤ (1− δ)|Dk(s, a)|+ δLC‖ψ̃k − ψ∗‖+ δ‖TQ̃k(s, a)− TQ(s, a)‖∞

≤ (1− δ)|Dk(s, a)|+ δLC‖ψ̃k − ψ∗‖+ δγ‖Q̃k −Q‖∞

≤ (1− δ)‖Dk‖∞ + δLC‖ψ̃k − ψ∗‖+ δγ‖Qk‖∞,

where the first inequality follows from the Lipschitz continuity of the cost function and the second inequality

follows from Proposition 14. Therefore,

‖Dk+1‖∞ ≤ (1− δ)‖Dk‖∞ + δLC‖ψ̃k − ψ∗‖+ δγ‖Qk‖∞

≤ (1− δ)‖Dk‖∞ + δLC‖ψ̃k − ψ∗‖+ δγ(‖Dk‖∞ + ‖zn‖∞)

= (1− δ(1− γ))‖Dk‖∞ + δLC‖ψ̃k − ψ∗‖+ δγ‖zk‖∞.
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We may then derive a bound for Dk:

‖Dk‖∞ ≤ (1− δ(1− γ))‖Dk−1‖∞ + δLC‖ψ̃k−1 − ψ∗‖+ δγ‖zk−1‖∞

≤ (1− δ(1− γ))2‖Dk−2‖∞ + (1− δ(1− γ))δLC‖ψ̃k−2 − ψ∗‖+ δLC‖ψ̃k−1 − ψ∗‖

+ (1− δ(1− γ))δγ‖zk−2‖∞ + δγ‖zk−1‖∞

≤
...

≤ (1− δ(1− γ))k‖D0‖∞ + δLC

k−1∑
l=0

(1− δ(1− γ))l‖ψ̃k−1−l − ψ∗‖+ δγ

k−1∑
l=0

(1− δ(1− γ))l‖zk−1−l‖∞.

Recall that the learning problem for ψ∗ is strongly convex implying that for some λ and for all k, we have

E[‖ψ̃k − ψ∗‖] ≤ λ√
k
. Therefore,

E[‖Dk‖∞] ≤ (1− δ(1− γ))k‖Q0‖∞ + δLC

k−1∑
l=0

(1− δ(1− γ))lλ√
k − 1− l

+ δγ

k−1∑
l=0

(1− δ(1− γ))l‖zk−1−l‖∞

≤ (1− δ(1− γ))k‖Q0‖∞ + δLC

k−1∑
l=0

(1− δ(1− γ))lλ√
k − 1− l

+
δγ

δ(1− γ)

√
γ2δW 2

max

2− δ

= O
(

1√
k

)
+

γ2

1− γ

√
δW 2

max

2− δ
,

(4.17)

where the second inequality utilizes E[‖zk‖∞] ≤ E[‖zk‖2] together with the bound (4.16) and the last equality

utilizes a proof technique similar to that adopted in Prop. 11.

Proposition 16 (Constant steplength error bound for misspecified Q-learning). Suppose {Q̃k},

and {ψ̃k} are generated from Algorithm 8. Suppose the learning function R(·) is strongly convex in Ψ and

C(s, a;ψ) is Lipschitz continuous in ψ with constant LC for all s and a. Then, the following holds for any

k and δ < 1:

E
[
‖Qk‖∞

]
≤ O

(
1√
k

)
+

γ

1− γ

√
δW 2

max

2− δ
.

Proof. The result follows directly from Lemma 15, expression (4.16), and δ < 1:

E
[
‖Qk‖∞

]
≤ O

(
1√
k

)
+

γ2

1− γ

√
δW 2

max

2− δ
+

√
γ2δW 2

max

2− δ

= O
(

1√
k

)
+

γ

1− γ

√
δW 2

max

2− δ

= O
(

1√
k

)
+O

(√
δ
)
.
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Suppose we take m learning steps in ψ before updating the Q function. Then, we may specify our

misspecified Q-learning scheme as follows:

Algorithm 9 (Misspecified Q-learning with multiple steps of learning). Step 0: Let Q̃0(s, a) ∈ R,

ψ̃
(0)
0 ∈ Ψ, β0 > 0 and k = 0.

Step 1: For all n ≥ 0,

Q̃k+1(s, a) := (1− δ)Q̃k(s, a) + δ

[
C(s, a; ψ̃

(m)
k ) + γmax

b∈A
Q̃k(s′, b)

]
, (Q−update)

ψ̃
(0)
k+1 := ψ̃

(m)
k , (Learning-ψ)

ψ̃
(l)
k := ΠΨ

(
ψ̃

(l−1)
k − β(l−1)

k (∇R(ψ̃
(l−1)
k ) + u

(l−1)
k )

)
, l = 1, . . . ,m,

where δ ∈ (0, 1), s′ is the random next state reached when the current state is s and action is a, and

u
(l)
k = ∇R(ψ̃

(l)
k ; ξ

(l)
k )−∇R(ψ̃

(l)
k ) with R(ψ) , E[R(ψ; ξ)].

Step 2: If n > K, stop; else k := k + 1 and go to Step 1.

Proposition 17 (Constant steplength error bound for misspecified Q-learning with multiple

steps of learning). Suppose {Q̃k}, and {ψ̃(l)
k } are generated from Algorithm 9. Suppose the learning

function R(·) is strongly convex in Ψ and C(s, a;ψ) is Lipschitz continuous in ψ with constant LC for all s

and a. Then, the following holds for any k and δ < 1:

E
[
‖Qk‖∞

]
≤ O

(
1√
mk

)
+

γ

1− γ

√
δW 2

max

2− δ
.

Proof. Recall that the learning problem for ψ∗ is strongly convex implying that for some λ and for all k, we

have E[‖ψ̃(m)
k − ψ∗‖] ≤ λ√

mk
= λ/

√
m√
k
. By using the same technique in Lemma 15, we have a similar bound

for E[‖Dk‖∞] in (4.17):

E[‖Dk‖∞] ≤ (1− δ(1− γ))k‖Q0‖∞ + δLC

k−1∑
l=0

(1− δ(1− γ))lλ
√
m
√
k − 1− l

+ δγ

k−1∑
l=0

(1− δ(1− γ))l‖zk−1−l‖∞

≤ (1− δ(1− γ))k‖Q0‖∞ + δLC

k−1∑
l=0

(1− δ(1− γ))lλ
√
m
√
k − 1− l

+
δγ

δ(1− γ)

√
γ2δW 2

max

2− δ

= O
(

1√
mk

)
+

γ2

1− γ

√
δW 2

max

2− δ
,

(4.18)

where the second inequality utilizes E[‖zk‖∞] ≤ E[‖zk‖2] together with the bound (4.16) and the last equality

utilizes a proof technique similar to that adopted in Prop. 11. Then, the result follows directly from (4.18),
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expression (4.16), and δ < 1:

E
[
‖Qk‖∞

]
≤ O

(
1√
mk

)
+

γ2

1− γ

√
δW 2

max

2− δ
+

√
γ2δW 2

max

2− δ
= O

(
1√
mk

)
+O

(√
δ
)
.

4.5 Numerical results

4.5.1 Problem setting

We consider a Markov decision problem. There is a chain of N states, which are labeled consecutively from

left to right, s = 1, 2, . . . , N . An agent has two possible actions, go to the left (lower state numbers; a = −1),

or go to the right (higher state numbers; a = +1). Both the first and last states in the chain, states number 1

and N , are rewarded with r(1) = r(N) = 1. The reward of the intermediate states is set to a small negative

value, i.e. r(i) = −0.1 for 1 < i < N . We consider a discount factor γ = 0.9.

If the agent wants to move to the left (a = −1), with probability P1 = 0.8 the system responds with

the correct move from the intended. So, the agent will move to the right with probability 1 − P1 = 0.2.

Similarly, if the agent wants to move to the right (a = 1), the system responds with the correct move from

the intended with probability P2 = 0.6 . The transition probabilities T (s′|s, a) for this example are zero

expect for the following elements,

T (1|1,±1) = 1, T (N |N,±1) = 1,

T (s− 1|s, 1) = 1− P2, T (s+ 1|s, 1) = P2, 1 < s < N,

T (s− 1|s,−1) = P1, T (s+ 1|s,−1) = 1− P1, 1 < s < N.

The first two entries specify the ends of the chain as absorbing boundaries as the agent would stay in this

state once it reaches these states.

For learning the reward function, we first generate L N -dimensional random vectors Xi ∈ RN , i =

1, . . . , L, such that Xi(s) is a normal random variables with mean r(s) and variance r(s)2/4 for 1 < s < N ,

i = 1, . . . , L with L = 1000. We assume that r(s) ≡ r for 1 < s < N . Our estimator for r is r̂, which solves

the following optimization problems:

min
r̂

E

N−1∑
s=2

(
r̂ −

∑L
i=1Xi(s)

L

)2
 . (4.19)
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For learning the transition matrices, we first generate two N -dimensional random vectors Y1 ∈ RN and

Y2 ∈ RN , such that Y1(s) is a binomial random variables with parameters L = 1000 and P1 = 0.8 for

1 < s < N , and Y2(s) ia a binomial random variables with parameters L = 1000 and P2 = 0.6 for 1 < s < N .

Our estimators for P1 and P2 are P̂1 and P̂2, respectively, which solve the following optimization problems:

min
P̂i

E

[
N−1∑
s=2

(
P̂i −

Yi(s)

L

)2
]
, (4.20)

for i = 1, 2.

4.5.2 Results

We use the value iteration to generate 15 sample paths for each dimension of the transition matrices. We

stop at k = 1000. If we use constant steplength αk = βk = 0.01 for the learning problem in the value

iteration, we can get

Table 4.1: Misspecified value iteration
N E[‖ṽk − v∗‖/‖v∗‖]
10 4.0× 10−3

20 6.2× 10−3

50 3.9× 10−3

100 3.1× 10−3

Next, we use the policy iteration for each dimension of the transition matrices. We stop when ‖ṽk+1 −

ṽk‖ < 10−4. If we use constant steplength αk = βk = 0.01 for the learning problem in the policy iteration,

we can get

Table 4.2: Misspecified policy iteration
N ‖ṽk − v∗‖/‖v∗‖ Number of iteration Number of iteration given P∗ and r
10 2.3× 10−3 18 3
20 9.3× 10−3 7 4
50 2.7× 10−3 7 5
100 4.4× 10−3 8 4

Finally, we use Q-learning for each dimension of the transition matrices. We stop when ‖Q̃k+1 − Q̃k‖ <

10−4. If we use constant steplength βk = 0.01 for the learning problem, we can get

Table 4.3: Misspecified Q-learning
N Number of iteration Number of iteration given r
10 135 125
20 85 55
50 389 919
100 769 760
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4.6 Concluding remarks

Motivated by the increasing role of streaming data and misspecification in decision-making problems, we

consider the resolution of MDPs in which transition matrices are unknown and the cost functions are mis-

specified. We develop extensions to value iteration, policy iteration and Q-learning through which both

misspecification is resolved while solving the original MDP in an asymptotic sense. A precise characteriza-

tion of the impact of learning on the resulting error bounds is provided in the context of value iteration and

Q-learning.

We conclude with a short commentary on the nature of the error bounds. First, we assume that the

learning problems are strongly convex since deriving overall rate statements requires bounds on the expected

error in parameter estimates. In fact, the knowledge of the convexity constant in the learning problem

is crucial in the development of bounds. It is worth emphasizing that if mere convexity assumptions are

imposed on the learning problems, the currently adopted avenue cannot be utilized since error bounds are

only available in a functional value sense. Furthermore, while averaging-based techniques may be utilized

to resolve merely convex learning problems, such approaches provide bounds on the averaged iterates in

a functional sense but not on the solution iterates; in the absence of bounds on the solution iterates, one

cannot derive rate statements. Second, in the context of Q-learning, we develop a misspecified variant of the

constant steplength scheme. Naturally, diminishing steplength versions can also be developed which will be

the subject of future work. Third, throughout the chapter, we assume that the learning problems are static

and consequently, rather than regret-based bounds, we derive error bounds on the optimal functional value

or solution.
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Chapter 5

Conclusions

In this thesis, we consider a broad class of computational problems that have historically been addressed

in a regime when their parameters are known a priori. Yet, as we contend with challenges posed by the

presence of streaming data, growing uncertainty, and informational inadequacy, we can no longer work under

the premise that such parameters are available. Instances of such parameters include the covariance matrix

in a portfolio optimization problem, distributional parameters of arrival and service processes in a queueing

system, and machine efficiencies in a production network. In many instances, these parameters may be

estimated through a separate learning problem. In fact, the traditional approach has been to first learn

such parameters and subsequently solve the parametrized computational problem. However, if the learning

problem is a stochastic optimization problem, resolving the learning problem may require simulation-based

schemes and provide exact solutions only in a limiting sense. In practical settings, the learning process

has to be terminated finitely and thus leading to an erroneous estimator of the parameter which in turn

leads to the error cascading into the solution of the subsequent computational problem. We pursue a rather

different tack that solves the learning and computational problem simultaneously rather than sequentially

and consider three types of computational problems: (i) Misspecified stochastic optimization and variational

inequality problems; (ii) Misspecified stochastic Nash games; nd (iii) misspecified Markov decision processes.

We first consider a misspecified stochastic optimization problem in which the objective is parameterized

by a vector that can be learnt by solving a suitably defined learning problem. In both strongly convex

and merely convex regimes, we develop a set of coupled stochastic approximation schemes which produces

schemes such that almost sure convergence can be guaranteed for both the solution and parameters. Error

bounds are also provided for both regimes. For strongly convex problems, the optimal rate of convergence is

recovered while in convex regimes there is a degradation in error, i.e. O
(√

ln(K)√
K

)
instead of O

(
1√
K

)
. When

the averaging window is modified suitably, it can be seen that the original rate of of O
(

1√
K

)
is recovered.

Also, we can get an error bound for the average regret in the online decision-making setting, i.e. O
(

lnK√
K

)
for

a suitably chosen steplength. As the generalization of the misspecified optimization problem, a misspecified

stochastic variational inequality problem is considered, and we propose analogous stochastic approximation
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schemes for simultaneous computation and learning. Almost-sure convergence statements and error analysis

can be provided. Specially, for merely monotone maps, we employ (Tikhonov) regularized scheme, and we

can quantify the degradation associated with learning under suitable weak-sharpness assumption.

We then consider misspecified Nash games and present schemes for learning equilibria and parameters

under two settings. First, we consider convex stochastic Nash games in which agent payoffs are parameterized

by a misspecified vector. We propose schemes that combine a gradient step and a stochastic approximation

step. Equilibria and the true parameters can be both shown to be achieved in an almost sure sense. Second,

we consider stochastic Nash-Cournot games where we assume common knowledge holds but aggregate output

is unobservable. In such a setting, we propose an iterative fixed-point scheme by leveraging the disparity

between estimated and (noisy) observed prices. Notably, this scheme does not necessitate a separate learning

problem and instead we learn the parametrization while playing the game. We may show that every firm

learns the true Nash-Cournot equilibrium strategy and the correct value of the misspecified parameter in an

almost-sure sense.

Finally, we consider misspecified Markov decision problems in which transition matrices are unknown

and the cost functions are misspecified. We propose three types of schemes: (1) misspecified value iteration;

(2) misspecified policy iteration; and (3) misspecified Q-learning. The almost sure convergence and a non-

asymptotic bound on the mean-squared error can be derived for the misspecified value iteration scheme.

When the steplength is held constant, we may also get an optimized error bound for the averaged misspecified

value funtion. Next, we propose a misspecified policy iteration scheme and provide an analogous asymptotic

almost-sure convergence statement and an analysis of the rate of convergence. Finally, a constant steplength

misspecified Q-learning scheme is presented and a suitable error bound based on iteration steps and steplength

is provided.
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