
c© 2015 by Junho Yang. All rights reserved.



VISION BASED ESTIMATION, LOCALIZATION, AND MAPPING FOR
AUTONOMOUS VEHICLES

BY

JUNHO YANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mechanical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Andrew Alleyne, Chair
Associate Professor Soon-Jo Chung, Director of Research
Professor Seth Hutchinson, Director of Research
Assistant Professor Derek Hoiem



Abstract

In this dissertation, we focus on developing simultaneous localization and mapping (SLAM) algorithms with

a robot-centric estimation framework primarily using monocular vision sensors. A primary contribution of

this work is to use a robot-centric mapping framework concurrently with a world-centric localization method.

We exploit the differential equation of motion of the normalized pixel coordinates of each point feature in the

robot body frame. Another contribution of our work is to exploit a multiple-view geometry formulation with

initial and current view projection of point features. We extract the features from objects surrounding the

river and their reflections. The correspondences of the features are used along with the attitude and altitude

information of the robot. We demonstrate that the observability of the estimation system is improved by

applying our robot-centric mapping framework and multiple-view measurements.

Using the robot-centric mapping framework and multiple-view measurements including reflection of fea-

tures, we present a vision based localization and mapping algorithm that we developed for an unmanned

aerial vehicle (UAV) flying in a riverine environment. Our algorithm estimates the 3D positions of point

features along a river and the pose of the UAV. Our UAV is equipped with a lightweight monocular camera,

an inertial measurement unit (IMU), a magnetometer, an altimeter, and an onboard computer. To our

knowledge, we report the first result that exploits the reflections of features in a riverine environment for

localization and mapping.

We also present an omnidirectional vision based localization and mapping system for a lawn mowing

robot. Our algorithm can detect whether the robotic mower is contained in a permitted area. Our robotic

mower is modified with an omnidirectional camera, an IMU, a magnetometer, and a vehicle speed sensor.

Here, we also exploit the robot-centric mapping framework. The estimator in our system generates a 3D

point based map with landmarks. Concurrently, the estimator defines a boundary of the mowing area by

using the estimated trajectory of the mower. The estimated boundary and the landmark map are provided

for the estimation of the mowing location and for the containment detection. First, we derive a nonlinear

observer with contraction analysis and pseudo-measurements of the depth of each landmark to prevent

the map estimator from diverging. Of particular interest for this work is ensuring that the estimator for
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localization and mapping will not fail due to the nonlinearity of the system model. For batch estimation, we

design a hybrid extended Kalman smoother for our localization and robot-centric mapping model. Finally,

we present a single camera based SLAM algorithm using a convex optimization based nonlinear estimator.

We validate the effectiveness of our algorithms through numerical simulations and outdoor experiments.
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Chapter 1

Introduction

Recent advances in navigation technologies using onboard local sensing modalities are allowing autonomous

vehicles to execute missions in a range of diverse environments [1, 2, 3]. The problem for navigating a

robot without a priori knowledge of the surroundings is solved by progressively constructing a map while

estimating the location of the robot. The process is often known as simultaneous localization and mapping

(SLAM) [4, 5, 6]

In this dissertation, we develop localization and mapping algorithms that primarily use monocular vision

sensors. Solving a monocular-vision-based SLAM problem is particularly difficult because the depth of the

scene cannot be estimated with a single view from a monocular camera. In particular, we seek methods of

enhancing the accuracy of the vision-based localization and mapping results for two interesting applications:

the riverine mapping with an unmanned aerial vehicle (UAV) and the autonomous mowing with a robotic

mower. A goal in our research is to further expand the scope of future intelligence, surveillance, and

reconnaissance (ISR) missions by developing a localization and mapping algorithm particularly for a riverine

environment. Another goal is to allow autonomous robots to help us in our daily lives by investigating a

vision-based localization and mapping scheme and solving the containment problem for autonomous lawn

mowing.

1.1 Main Contributions

A primary contribution of this dissertation is to use a robot-centric mapping framework concurrently with a

world-centric localization method to improve the accuracy of localization and mapping results. We exploit

the differential equation of motion of the normalized pixel coordinates of each point feature in the robot

body frame. This prevents the estimator from underestimating the error [7] in the feature estimate. Prior

work of robot-centric SLAM [8, 9, 10] estimates both the initial robot body frame and the features with

respect to the robot’s current pose indirectly through a composition stage without properly considering

the actual dynamics of the features. Another category of robot-centric work [7, 11, 12, 13, 14] estimates
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Figure 1.1: Illustration of the robot-centric mapping and multiple view measurements.

the features with respect to the robot or the camera by using a dynamic model with velocity and angular

velocity information without estimating the pose of the robot. In contrast, we formulate a system model

that exploits the robot-centric mapping framework for localization of the robot with respect to its initial

pose. Using the robot-centric estimation framework, we report the first experimental results of containment

detection with an omnidirectional camera for robotic mowing applications.

Another contribution of our work is to exploit a multiple-view geometry formulation with initial and

current view projection of point features. For the problem of solving localization and mapping in river-

ine environments, we augment the measurements with the features that are extracted from real objects

surrounding the river and their reflections. The correspondences of the features are used along with the

attitude and altitude information that are available from our UAV. We demonstrate that the observability

of the estimation system is improved by applying our proposed methods and show enhanced localization

and mapping results in both numerical simulations and real-world experiments in a riverine environment.

We report the first result that exploits the reflections of features in a riverine environment for localization

and mapping.

Finally, we present a single camera based SLAM algorithm using convex optimization. We formulate a

convex optimization problem with linear matrix inequality (LMI) constraints for the convergence of the state

estimate to the true state. We reduce the mean-squared estimation error by minimizing an objective function

that is derived using a contraction analysis approach. Using the convex optimization based estimator, we

enhance the performance of our localization and robot-centric mapping algorithm.
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1.2 Literature Review

The problem of navigating a vehicle in an unknown environment is addressed by SLAM. In the field of

robotics, SLAM algorithms [4, 5, 6] have been studied extensively for over a decade using various types

of sensors. In this dissertation we developed SLAM algorithms that primarily use a monocular camera

and an IMU. We compare our work with the recent research in monocular camera based SLAM, riverine

environment SLAM, observability of SLAM, and robot-centric estimation.

One of the most well known early work in monocular vision based SLAM [15] solves the localization and

mapping problem by using Cartesian coordinates of features in the world reference frame and by sequentially

updating the feature measurements from different locations. Instead of estimating the Cartesian coordinates

of features in the world reference frame, some recent work [16, 17] defines the locations of the moving camera

(anchor locations) where a set of point features is first observed. The point features are parameterized using

these stationary anchor locations, the direction of each feature with respect to the world reference frame,

and the inverse-distance between the feature and the anchor. Such methods reduce the accumulation of the

linearization errors by representing the uncertainty of the features with respect to a close-by anchor location.

The inverse-depth parametrization (IDP) is used in the anchor-based methods [16, 17, 18] to alleviate

the nonlinearity of the measurement model and to introduce new features to the map immediately. The

inverse-depth method ameliorates the known problem of the EKF-based mono-vision SLAM, which often

appears when the features are estimated in Cartesian coordinates [16]. We shall compare our localization

and mapping approach against an anchored IDP method.

The computational issues of SLAM are addressed by keyframe-based optimization [19, 20, 21, 22] and sub-

mapping [23]. In the scope of keyframe optimization-based research, parallel tracking and mapping (PTAM)

[24] achieves real-time processing by separating the tracking of the camera and mapping of the environment

into two parallel tasks. The UAV navigation [1, 25] and surveillance [26] problems are addressed based on

the PTAM method.

A navigation algorithm particularly suited for riverine environments is presented in [27] with a graph-

based state estimation framework [28] to estimate the vehicle’s state with vision and limited GPS, while

mapping the river with a self-supervised river detection algorithm and finding obstacles with a LIDAR sensor.

In [29], a LIDAR and a stereo camera is used to demonstrate autonomous flight in riverine environments.

A sub-mapping approach is applied in [30] to address the SLAM problem with an autonomous surface-craft

that builds a map above and below the water’s surface. A sonar is used for subsurface mapping while a

LIDAR sensor, a camera, and a radar system are used for terrestrial mapping to account for degradation

of GPS measurements. In [31], a surface-craft equipped with an acoustic modem is used to support the
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localization of autonomous underwater vehicles.

Observations of known points of a vehicle through a mirror are used to estimate the 6-DOF pose of

the camera with a maximum-likelihood estimator in [32]. An approach for estimating the camera intrinsic

parameters as well as the 6-DOF transformation between an IMU and a camera by using a mirror is proposed

in [33]. In [34], epipolar geometry with multiple planar mirrors is used to compute the location of a camera

and reconstruct a 3D scene in an indoor experimental setup. We exploit geometrical constraints from

reflection measurements in a natural environment for localization and mapping.

The observability problems of SLAM [35, 36, 37], and particularly, monocular vision-aided inertial navi-

gation [1, 38, 39, 40] have been studied in the literature. In general, a-priori knowledge of the position of a

set of features in the map are required for the system to be observable. The 3D location of the robot and its

orientation with respect to the gravity vector in the world frame (e.g., heading angle) are the unobservable

modes of a world-centric 6-DOF localization and 3D mapping system that uses a monocular camera and in-

ertial sensors [39]. An observability constrained EKF [37], which finds a linearization point that can preserve

the unobservable subspace while minimizing the linearization error, are applied to a visual-inertial navigation

system in [39] to improve the consistency of the estimation. We formulate a world-centric localization and

robot-centric mapping system model with multiple-view measurements and enhance the observability. We

analyze the local weak observability of our system model and we present the enhancement in the degree of

observability.

Robot-centric estimation, as opposed to world-centric SLAM, has been used with different meanings

and purposes. Robot-centric SLAM for both localization and mapping is introduced in [8] and applied

to monocular visual odometry in [9, 10]. The method defines the origin on the current robot frame and

estimates the previous pose of the robot and the location of the features with respect to the current robot

frame. This scheme reduces the uncertainty in the estimate and alleviates the linearization error in the

EKF. Another category of robot-centric work [7, 11] estimates the features with respect to the robot by

using a dynamic model with velocity and angular velocity information without estimating the pose of the

robot to circumvent the observability issue in SLAM. Nonlinear observers are derived in [12, 13, 14] for

feature tracking and inverse-depth estimation, which can also be viewed as robot-centric mapping with a

monocular camera. We exploit the differential equation of motion of the normalized pixel coordinates in the

body frame for each point feature in contrast with prior work using robot-centric SLAM, which estimates the

robot’s previous pose with respect to the current pose to indirectly acquire the location of each feature. We

demonstrate that the degree of observability of the system is improved by applying the proposed robot-centric

mapping strategy.
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1.3 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, we present our early work which influenced our

research in vision based localization and mapping using a UAV [41]. We use a planar ground assumption

and the epipolar geometry with a fast SLAM algorithm. In Chapter 3, we use multiple views from current

and initial camera projection of features and reflections of features for localization and robot-centric mapping

in a riverine environment using a UAV [42, 43]. We analyze the observability of our system model and present

numerical simulation and real-world experimental results. In Chapter 4, we design a nonlinear observer with

the pseudo measurement of feature’s depth for robot-centric localization and mapping by using contraction

analysis [44]. We present our scheme of separating the task for autonomous mowing into a teaching phase and

a mowing phase. We show simulation results of the two phases and present preliminary experimental results

of the teaching phase. In Chapter 5, we apply a hybrid extended Kalman smoother for batch processing

of the localization and robot-centric mapping in the teaching phase [45]. We show experimental results in

different environments for both teaching and mowing. In Chapter 6, we design a convex optimization based

SLAM estimator for localization and robot-centric mapping. In Chapter 7, we summarize our work with

concluding remarks.
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Chapter 2

Monocular-Vision-Based Localization
and Mapping for a UAV with a
Planar Ground Assumption

2.1 Chapter Objective

This chapter presents a monocular vision based simultaneous localization and mapping (SLAM) algorithm

with a particular focus on navigation of a unmanned aerial vehicle (UAV) operating in multiple environments.

We exploit the so-called planar ground assumption, which holds for many environments. The proposed

methods include image segmentation, epipolar geometry, and a variation of the FastSLAM algorithm in

order to estimate a trajectory of a UAV while building a map by using only a monocular camera and an

altitude sensor. Results of experimentation show the effectiveness of the proposed algorithms in an outdoor

environment, an indoor corridor setting, and a river-like environment.

This chapter is organized as follows: Section 2.2 describes our attitude determination method using epipo-

lar geometry and Kalman filtering; Section 2.3 explains our ground plane feature extraction and landmark

ranging methods; Section 2.4 presents the new FastSLAM formulation with the converted measurement

Kalman filter (CMKF); Section 2.5 illustrates the experimental setup and presents the results from our

monocular vision SLAM algorithm in both indoor and outdoor environments; and Section 2.6 presents our

conclusions.

2.2 Attitude Determination using Epipolar Geometry

The monocular vision algorithm outlined in this chapter presents an approach for localization and mapping

in environments that hold the planar ground assumption. The operational steps are shown in Figure 2.2.

Past works [46, 47] solved the depth measurement problem by using planar features in an orthogonal

indoor environment, with an altimeter measurement of the height of the camera above the ground, which

constrained the geometry sufficiently to enable immediate landmark initialization. Navigation and mapping

results were produced in an orthogonal indoor environment like in Figure 2.1 (a), but the work couldn’t be

used to reliably navigate in outdoor environments not satisfying the orthogonality condition as shown in
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(a) Building corridor (b) Outdoor quad (c) Creek

Figure 2.1: Diverse environments that a UAV may need to navigate.

Figures 2.1 (b) and (c). This placed an immediate constraint on the utility of a UAV; any new environment

that it explores requires a different navigation algorithm. Our work in this chapter extends this to an

approach that is suitable for outdoor environments and others not satisfying the orthogonality assumption.

First, the path that a UAV can navigate through is segmented from the planar ground, and feature points

on this segmented plane are extracted to be used as landmarks in the ranging algorithm. In parallel, features

that are not necessarily from the ground are additionally used to initialize and update the attitude of the

UAV, using epipolar geometry. Given the attitude information, the segmented plane, and altimeter data,

the algorithm can then identify the position of landmarks on the ground plane. These are used iteratively

within the FastSLAM framework [48] to localize the position of the UAV while mapping the structure of

the path for the vehicle. By separating the attitude determination and ranging process, the algorithm can

produce effective results in localization and mapping. The attitude determination can use large numbers

of feature points in the whole scene in order to maintain good accuracy, while the ranging and mapping

algorithm only needs points on the ground, leading to more structured and less cluttered maps built from

visual data.

Our work here attempts to build an algorithm that allows for navigation in multiple environments, by

not making excessive assumptions on the structure of the environment, and by showing results from a range

of settings a UAV can fly through, namely an outdoor scene, an indoor hallway environment, and a river-like

environment. Results of experiments show that our algorithm can be used successfully in all of these settings

to produce an effective navigation estimate along with a coherent, uncluttered map by using a single camera

and an altitude sensor. We focus on developing a lightweight algorithm that can represent the environment

with a two-dimensional map while constructing a 6 DOF trajectories of the UAV, whereas many other vision

based navigation research for UAVs are more concerned about precisely measuring the pose of the UAV for

its attitude and tracking controls. Our algorithm can be effective when a UAV is sent out to explore an

unknown environment and provide a map of an open path for a follower.
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Figure 2.2: Operational steps of the proposed algorithm.

Our approach is composed of attitude estimation and landmark ranging process to estimate the pose of

a UAV while building a map that can represent the environment. In this chapter, we exploit the well known

epipolar geometry to perceive the attitude of a camera fixed on a UAV. With this attitude information, the

range and bearing to landmarks on the ground plane can be determined as described in Section 2.3.

2.2.1 Focus of Expansion Based Attitude Measurement

Before updating the successive rotation of the camera, our monocular vision algorithm initializes the attitude

of a camera with epipolar geometry, or more specifically, by using focus of expansion (FOE). Epipolar

geometry is concerned with the projective geometry of different camera views. Figure 2.3 shows the epipolar

geometry in forward motion of a single pinhole camera. A feature X is projected in two different image

frames as x and x′. The epipole e is the image of a camera center C ′ in the view of another camera that has

C as its center. The line extending the feature x in the image plane and the epipole e is the epipolar line l.

The epipolar lines e−x and e′−x′ in the two images are coplanar and they define an epipolar plane CXC ′.

While typically used for stereo vision, a sequence of images from a monocular camera can also exploit these

properties.
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The fundamental matrix F maps points in an image frame to a line in another image frame [49]. It is

computed from the corresponding points x = [u v 1]
T

in the image frame as

x′
T
Fx = 0 (2.1)


u′1u1 u′1v1 u′1 v′1u1 v′1v1 v′1 u1 v1 1

...
...

...
...

...
...

...
...

...

u′nun u′nvn u′n v′nun v′nvn v′n un vn 1




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

= 0 (2.2)

where there are n correspondences, and Fij are elements of the fundamental matrix.

Given these geometric constraints, it is necessary to extract point matches to derive the fundamental

matrix from which the attitude is extracted. The speeded up robust features (SURF) [50] algorithm is

used in our system to obtain the corresponding feature points. The SURF algorithm is a real time feature

detector that is robust to image transformation and variance in scale. The algorithm first finds unique

keypoints in the images and represents its neighborhood by a descriptor vector. Then it matches the vectors

by comparing their Euclidean distance. Figures 2.4 (a) and 2.5 (a) show the SURF keypoints. Figures 2.4

(b) and (c) and Figures 2.5 (b) and (c) show the point matching between an image from an earlier time-step

and the current image.

Since the fundamental matrix has nine elements and the common scaling is not important, the funda-

mental matrix has 8 DOF. Therefore, the fundamental matrix can be found with eight point correspondences

between two images [51]. When more points are available, the RANSAC algorithm [52] is applied to find

the best fitting combination of points. The algorithm achieves this by using a random subset of the points

and then iteratively taking the particular solution closest to the average, thereby recognizing and discarding

outliers.

By definition, the epipolar line can be expressed as l = FTx′ and (x′
T
F )e = 0. The epipole can be

derived from the relation with the fundamental matrix, Fe = 0. When the camera is purely in translational

forward motion, the epipoles e and e′ coincide with each other, and in this particular case the epipole is
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called as the FOE. When the horizontal and vertical coordinates of the epipole (eu, ev) in the image frame

are close to being stationary, and thus, translate less than thresholds ε1 and ε2 as shown in Eq. (2.3), the

epipole can be assumed as an FOE for the corresponding time interval.

∆eu < ε1, ∆ev < ε2 (2.3)

We assume that the UAV is translating forward during this interval. For a UAV that purely translates

forward through a corridor, the FOE is identical to the vanishing point utilized in a previous work [47] for

attitude measurement. However, while this previous work extracted straight lines from the environment to

estimate the vanishing point, the current algorithm can estimate the FOE with a series of feature points

regardless of the structure of the environment.

Figures 2.4 (d) and 2.5 (d) show the corresponding point matches (cyan), epipolar lines (orange), and

the epipole (green) in an image. The point matches in a sequence of images are first found with the SURF

algorithm. The distance between the corresponding points are computed, and the point matches that have

much longer distance compared to other matches are excluded. When an FOE is detected, we start measuring

the attitude with it, to initialize the camera attitude. The initial yaw ψ and pitch θ angles of the camera

frame relative to its heading direction can be estimated from the FOE by

ψ = − tan−1

(
eu
f/su

)
= − tan−1

(
eu
αx

)
(2.4)

θ = tan−1

(
ev cosψ

f/sv

)
= tan−1

(
ev cosψ

αy

)
(2.5)

where f is the focal length, su and sv are the pixel sizes in horizontal and vertical directions, and αx = f/su

and αy = f/sv are the focal length of the camera in pixels.

While updating the camera attitude through the process presented in Section 2.2.2, the measurement

of the pitch angle θ of the camera is updated in the EKF with Eq. (2.5) every time an FOE is detected.

We also take advantage of the fact that the roll angle φ can generally be assumed to be zero for the short

intervals where the UAV translates forward, since the UAV is tilted in the flight direction to create a thrust

toward that direction [53]. Without computationally heavy bundle adjustment techniques [54], this prevents

drift in the roll angle φ and pitch angle θ, which is critical in our feature ranging method.
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Figure 2.3: Epipolar geometry during pure translational motion.

2.2.2 Attitude Estimation

Once the initial attitude of the camera mounted is derived from the FOE, the attitude is updated from a

sequence of frames by estimating the rotation from the essential matrix E. The essential matrix is a special

version of the fundamental matrix. It is defined as x̂′
T
Ex̂ = 0, where x̂ = K−1x and K is the camera

calibration matrix [49]. The essential matrix can be applied to Eq. (2.1) as x′
T
K−TEK−1x = 0. Therefore,

if the intrinsic camera parameters for the camera calibration matrix are known, the essential matrix can be

derived from the fundamental matrix as

E = KTFK (2.6)

By definition, the essential matrix depends on the external camera parameters as E = SRc0c1 , where S is

a skew symmetric matrix that represents the translation with its elements, and Rc0c1 is the rotation matrix

representing the incremental rotation of the camera (see Figure 2.6). The matrix S can be decomposed as

kUZUT , where the matrix Z is also skew symmetric and U is the left singular vector matrix of E. Here, k

is the mean of singular values from the essential matrix.

To represent the incremental rotation Rc0c1 of the camera with a coordinate frame generally used for aerial

vehicles, Ra0a1 can be derived from Eq. (2.10). In order to obtain the rotation matrix Rc0c1 , the singular value

decomposition (SVD) is applied to the essential matrix E, which is a singular matrix with rank 2.

E = UDkWUTRc0c1

= UkDV T
(2.7)

Here, the matrix Z = DW , where kD = diag(k, k, 0) is the singular value matrix of E, and W is an

orthogonal matrix. The skew symmetric matrix Z and the orthogonal matrix W are defined as

Z =


0 1 0

−1 0 0

0 0 0

 and W =


0 −1 0

1 0 0

0 0 1

 (2.8)
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(a) SURF descriptor (b) Previous match (c) Current match (d) Epipolar lines

(e) Markers (f) Segments (g) Pavement (h) Features

Figure 2.4: Processing vision data collected in outdoor environments.

(a) SURF descriptor (b) Previous match (c) Current match (d) Epipolar lines

(e) Markers (f) Segments (g) Floor segment (h) Features

Figure 2.5: Processing vision data collected in indoor environments.

The SVD of the essential matrix is not unique because two of the singular values are equal. Thus, two sets

of rotation matrices are derived as

Rc0c1 = UWV T and UWTV T (2.9)

The actual rotation can be distinguished from its reflection by considering the determinant of Rc0c1 and the

amount of rotation.

Finally, the rotation of the camera as shown in Figure 2.6 can be expressed as

Ra0a1(∆ψ,∆θ,∆φ) := Ra0c0R
c0
c1R

c1
a1 (2.10)
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where

Ra0a1(∆ψ,∆θ,∆φ) = Rzc,∆ψRyc,∆θRxc,∆φ
(2.11)

Ra0c0 =


0 0 1

1 0 0

0 1 0

 , Rc1a1 =


0 1 0

0 0 1

1 0 0

 (2.12)

Here, Ra0c0 and Rc1a1 shows the relationship between the two coordinate frames shown in Figure 2.6, and c( )

and s( ) are abbreviations of cos( ) and sin( ). The incremental roll ∆φ, pitch ∆θ, and yaw ∆ψ angles of

the successive rotation of the camera are derived from the rotation matrix Ra0a1 .

The integrated roll φ, pitch θ, and yaw ψ angles of the camera frame relative to the inertial frame are

defined in Figure 2.8 and are obtained by integrating the incremental angles with an EKF. The equations

for the propagation step of the EKF is given by

Θn+1

ω̄n+1

 =

Θn + T (∆φn,∆ψn,∆θn) (ω̄n + αn∆tn) ∆tn

ω̄n + αn∆tn

 (2.13)

where angular acceleration α is modeled as a zero mean Gaussian distribution. Here, Θ = [φ θ ψ]
T

includes

the roll, pitch, and yaw angles of the camera, ω̄ denotes the 3 DOF body rotation rate. The transformation

matrix T that transforms the body rotation rate to the Euler angle rate in Eq. (2.13)is given by

T (∆φn,∆ψn,∆θn) =


1 sin ∆φn tan ∆θn cos ∆φn tan ∆θn

0 cos ∆φn − sin ∆φn

0 sin ∆φn sec ∆θn cos ∆φn sec ∆θn

 (2.14)

The measurement Eq. is given by

zn = ω̄n

= T−1(∆φn,∆ψn,∆θn)

(
∆φn ∆θn ∆ψn

)T
/∆tn

(2.15)

where ∆tn denotes the time intervals for computing the essential matrix. Whenever the condition given in

Eq. (2.3) is satisfied, the pitch angle θ of the UAV is measured from Eq. (2.5) and updated in the EKF.

As mentioned in Section 2.2, the roll angle φ can generally be assumed to be zero for intervals where it

translates forward.
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Figure 2.6: Rotation between a sequence of images.

2.3 Landmark Extraction and Ranging

To determine the depth of landmarks satisfying the planar ground assumption, the range estimation method

using rotation between the image frame, the camera frame, and the inertial frame is derived in this section.

We explain how we utilize the structural commonalities of multiple environments.

2.3.1 Ground Plane Segmentation

To utilize features from the ground plane as landmarks, we first segment the ground plane region from its

surroundings using a morphological segmentation method called the watershed transformation [55]. First,

the gradient norm of the gray scale intensity image is acquired to locate dominant edges that are called

ranges and relatively uniform surfaces that are called catchment basins. Figures 2.7 (a) and (b) show the

gray scale intensity and the gradient norm of an image from the UIUC Engineering Quad shown in Figure

2.4.

Watershed markers are specified in the image, and the gradient norm image is then immersed starting

from the watershed markers to select the ground plane. In our algorithm, locations and shapes of the

watershed markers can be automatically updated by considering the intensity difference of regions in the

image. For example, gray scale intensity of the ground and the rest of the scene are different as shown in

Figure 2.7 (a). Figure 2.4 (e) shows a watershed marker being updated automatically, while Figure 2.5 (e)

shows a watershed marker manually initialized in an image.

Watersheds are made in the image where catchment basins meet together. Each catchment basin is then

associated with one of the markers. The catchment basins that meet together along a marker are considered

as a single region. Finally, the ground plane is extracted by increasing the immersion level until only the
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(a) Intensity image (b) Gradient norm image

Figure 2.7: Gray scale intensity and its gradient norm of an image from the UIUC Engineering Quad.

regions corresponding to each markers is left. Here, we take advantage of the fact that the ground region is

on the bottom side of the image. Figures 2.4 (f), 2.4 (g), 2.5 (f), and 2.5 (g) show the segmentation results.

Once the ground plane is segmented, Shi and Tomasi’s method [56] is used to extract feature points from

the ground segment in the original image. These points are used as landmarks that represent the environment

through the SLAM algorithm. The method searches for feature points by computing eigenvalues with the

second order derivatives of the image. Features are selected as good landmarks if the smaller eigenvalue

is larger than a threshold, meaning that the feature must have strong texture and large contrast in two

directions. The algorithm then tracks the features via Lucas-Kanade optical flow technique [57], which

estimates the velocity of image patches around a given set of feature points. In our algorithm, data association

is assisted by tracking the features until they move out from the image. New features are then extracted to

keep a certain number of features in the view and enable continuous localization. Figures 2.4 (h) and 2.5

(h) show the resulting features extracted and tracked from the planar ground.

2.3.2 Landmark Ranging

In a previous work [47], it has been shown that the depth of landmarks can be calculated from two-

dimensional pixel coordinates of an image when the locations of landmarks are constrained on an orthogonal

planar ground. In contrast to the previous work, we do not need to identify a vanishing point from par-

allel lines. Further, we acquire camera attitude through the method proposed in Section 2.2 and perform

localization and mapping only with the coplanar landmarks.

Figure 2.8 shows the rotation between the camera coordinate frame and the inertial frame, which is used

for measuring the depth of each landmark. The rotation between the camera and the inertial frame can be
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described as

Fc =

(
xc yc zc

)T
(2.16)

(
xi yi zi

)T
= Rrc(ψ, θ, φ)Fc (2.17)

where Fc is the camera frame. The three-dimensional rotation matrix Rrc(ψ, θ, φ) represents the rotation

between the camera frame and the inertial frame, where the incremental angles ∆φ, ∆θ, and ∆ψ in Eq. (2.11)

are substituted with the Euler angles ψ, θ, and φ derived from Eq. (2.13).

The relation between the image frame and the camera frame ocxcyczc can be written as

u =
f

su

(
yc
xc

)
= αx

yc
xc

v =
f

sv

(
zc
xc

)
= αy

zc
xc

(2.18)

where u and v are the horizontal and vertical pixel coordinates of a landmark, f is the focal length, su and

sv are the pixel sizes in horizontal and vertical directions, and αx and αy are the focal lengths in pixels.

The coordinates of the landmark are described in the camera frame as

xc =
αy
v
zc

yc =
u

αx
xc =

αyu

αxv
zc

(2.19)

The landmarks expressed in the camera frame can then be derived in the inertial frame from

zi = h

= R31xc +R32yc +R33zc

= −sθxc + cθsφyc + cθcφzc

=

(
−sθαy

v
+ cθsφ

αyu

αxv
+ cθcφ

)
zc

(2.20)

where h is the altitude of the camera, which can be obtained from the onboard altimeter on the UAV, and

Rij are the elements of Rrc(ψ, θ, φ).

The longitudinal distance x and the transverse distance y to a landmark are found from the rotation
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Figure 2.8: Rotation of the camera frame from the inertial frame.

shown in Eq. (2.17) as follows:

xi = R11xc +R12yc +R13zc

=

(
R11αxαy +R12αyu+R13αxv

R31αxαy +R32αyu+R33αxv

)
h

=

(
cψcθαxαy + (−sψcφ+ cψsθsφ)αyu+ (sψsφ+ cψsθcφ)αxv

−sθαxαy + cθsφαyu+ cθcφαxv

)
h

yi = R21xc +R22yc +R23zc

=

(
R21αxαy +R22αyu+R23αxv

R31αxαy +R32αyu+R33αxv

)
h

=

(
sψcθαxαy + (cψcφ+ sψsθsφ)αyu+ (−cψsφ+ sψsθcφ)αxv

−sθαxαy + cθsφαyu+ cθcφαxv

)
h

(2.21)

2.4 CMKF Based FastSLAM

The SLAM algorithm utilizes the attitude and ranging estimates from Sections 2.2 and 2.3 to build the

environment map while localizing the vehicle. It is known that conventional SLAM algorithms based only

on EKF has problems in environments with large number of landmarks. Therefore, we apply the FastSLAM

algorithm [48] for localization and mapping. The algorithm decomposes the vehicle pose posterior into a set

of conditionally independent estimates, one corresponding to each landmark in the environment.

The FastSLAM algorithm uses a particle filter which represents the vehicle pose posterior. Each particle

represents a vehicle pose, and each landmark is represented independently with the mean and covariance

from an EKF. At each time-step, the set of particles are sampled based on the probabilistic motion model,

and each landmark observed has its corresponding EKF updated based on the measurement. Finally, the
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particles are resampled based on their respective probabilistic weights. Particles that are highly consistent

with landmark measurements are redrawn, while inconsistent particles are sampled out in this process.

The probabilistic motion model we use for the particle filter is a standard kinematic vehicle model [4]

with a state xv = [xv yv ψ]T that represent the 2D location of the UAV and its heading direction in the

world frame as shown below.

xv,k+1 =


xv,k+1

yv,k+1

ψk+1

 =


xv,k + V1,k∆tk cosψk

yv,k + V1,k∆tk sinψk

ψk + V2,k∆tk

 (2.22)

Here, V1 and V2 are the forward and angular velocities and ∆tk is the time intervals for processing the Fast-

SLAM algorithm. The motion propagates toward a heading direction ψ, which is estimated from Eq. (2.13).

The measurement equation related with the UAV’s states and the i-th landmark at each time-step is

given by

h (xi,k) =

xi,k
yi,k

 =

xwi,k − xv,k

ywi,k − yv,k

 (2.23)

where xi and yi denote the i-th landmark’s location derived in Eq. (2.21), and xwi and ywi are their location

in the inertial frame.

The range ri and bearing ϑi to a landmark can also be derived from Eq. (2.21) as

ri =
√
xi2 + yi2

ϑi = tan−1

(
yi
xi

)
− ψ

(2.24)

The measurement equation in polar coordinates is given by

h (xi,k) =

ri,k
ϑi,k

 =


√

(xwi,k − xv,k)
2

+ (ywi,k − yv,k)
2

tan−1

(
(ywi,k

−yv,k)
(xwi,k

−xv,k)

)
− ψk

 (2.25)

Either (xwi,k, ywi,k) or (ri, ϑi) can be used by modeling the measurement noise as a zero-mean Gaussian

distribution in the chosen coordinate system. The polar coordinate representation can have a more relevant

approximation of the noise characteristic since monocular vision is known to possess greater uncertainty in

range than in bearing. However, the polar coordinate model has nonlinear terms in the equation, as shown

in Eq. (2.25), and it requires a linearization step to estimate the location of each map feature. If an EKF is

used to approximate the nonlinear terms, a Jacobian matrix has to be updated for each landmark and the
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performance of the estimator will depend on the accuracy of the linearization.

In order to avoid the linearization error of the range and bearing measurements while ensuring a better

approximation of the noise characteristics, we adopt the converted measurement Kalman filter (CMKF)

[58]. We change the Cartesian measurements to polar coordinates, and then after applying the CMKF, we

convert the results back to Cartesian coordinates. The CMKF considers the correlated error in the Cartesian

components, which appears when polar coordinates are converted to Cartesian coordinates. The converted

measurement covariance is updated consistently at each time-step and a nearly optimal estimator gain is

derived from the correct covariance. As a result, it produces a smaller estimation error than the EKF when

it estimates the state of each landmark, especially with a long range. In a recent study [59], it was also

shown that the CMKF is more robust to inconsistent measurements than an EKF.

The average true bias of the converted measurements used in CMKF is

µ̃i,k =

ri,k cos (ϑi,k + ψk)
(
e−σ

2
ϑ − e−σ2

ϑ/2
)

ri,k sin (ϑi,k + ψk)
(
e−σ

2
ϑ − e−σ2

ϑ/2
)
 (2.26)

where ψ is the yaw angle of the camera derived from Eq. (2.13), and σϑ is the standard deviation of the

vision based bearing measurement. We used σϑ = 1.5◦ for our experiments in Section 2.5.

The measurement model for our feature mapping algorithm is derived as

h (xi,k) =

xi,k
yi,k

 =

ri,k cos (ϑi,k + ψk)

ri,k sin (ϑi,k + ψk)

− µ̃i,k (2.27)

The covariance of the noise term represented in cartesian coordinates is called the converted measurement

covariance Rk, which is given by [58] as

R11,k = r2
i,ke
−σ2

ϑ
[

cos2 (ϑi,k + ψk)
(
cosh 2σ2

ϑ − coshσ2
ϑ

)
+ sin2 (ϑi,k + ψk)(

sinh 2σ2
ϑ − sinhσ2

ϑ

) ]
+ σ2

re
−2σ2

ϑ
[

cos2 (ϑi,k + ψk)
(
2 cosh 2σ2

ϑ − coshσ2
ϑ

)
+ sin2 (ϑi,k + ψk)

(
2 sinh 2σ2

ϑ − sinhσ2
ϑ

) ]
R12,k = sin (ϑi,k + ψk) cos (ϑi,k + ψk) e−4σ2

ϑ

[
σ2
r +

(
r2
i,k + σ2

r

) (
1− eσ

2
ϑ

)]
R22,k = r2

i,ke
−σ2

ϑ
[

sin2 (ϑi,k + ψk)
(
cosh 2σ2

ϑ − coshσ2
ϑ

)
+ cos2 (ϑi,k + ψk)(

sinh 2σ2
ϑ − sinhσ2

ϑ

) ]
+ σ2

re
−2σ2

ϑ
[

sin2 (ϑi,k + ψk)
(
2 cosh 2σ2

ϑ − coshσ2
ϑ

)
+ cos2 (ϑi,k + ψk)

(
2 sinh 2σ2

ϑ − sinhσ2
ϑ

) ]

(2.28)
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Figure 2.9: The UAV used for data acquisition.

where Rij,k denotes the elements of the converted measurement covariance Rk at time-step k, and σr is the

standard deviation of the vision based range measurement. When the CMKF computes the Kalman gain to

estimate the location of a map feature, the average true covariance is added in the predicted measurement

covariance as

Kk = Σ̄kC
T
k

(
CkΣ̄kC

T
k +Rk

)−1
(2.29)

where Kk is the Kalman gain, Ck is the measurement matrix, and Σ̄k is the covariance of the states’

prediction.

By performing the series of conversions between measurements in polar and Cartesian coordinates and

applying the CMKF to estimate the location of each feature in FastSLAM, we can avoid dealing with

nonlinearities and systematically model the measurement noise characteristic.

2.5 Experimental Results and Discussions

A number of experiments were performed in different environments to gauge the effectiveness and robustness

of the algorithm by only using a monocular camera and an onboard ultrasonic altimeter of the UAV shown in

Figure 2.9. Figure 2.10 shows the results of the navigation experiment conducted at the UIUC Engineering

Quad (see Figure 2.1 (a)), which is approximately 60 m × 60 m. Compared to methods that require

GPS and IMU, we only need to know the height of the camera. The initial attitude of the UAV was

determined from the image coordinates of the FOE as described in Section 2.2.1 while flying forward for a

short period. Subsequent rotations were measured by accumulating the rotations between sets of images as

shown in Section 2.2.2. Drifting in the roll and pitch angles was prevented by initializing them every time

an FOE was detected. Here, we used 40 pixels for ε1 and ε2 in Eq. (2.3). Preventing the drift in these

two measurements is critical since it can be detrimental to the ranging method, while the yaw ψ drift only
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Figure 2.10: Localization and mapping results from the Engineering Quad.

Figure 2.11: Localization and mapping results from inside the building of the Beckman Institute.

manifests as a more minor drift in the trajectory, as shown in Figure 2.10.

The time-varying height of the UAV was measured with an onboard altimeter and synchronized with each

image. Landmarks shown on the map with gray dots primarily represent the footpath at the Engineering

Quad, composed of features from the ground plane segmentation step. The three-dimensional trajectory

of the UAV was reproduced by using ground features and the height of the UAV measured at each time-

step. There were barely any distinguishable objects around the trajectory, but the algorithm was still able

to represent the path by extracting point features from the pavement. This was possible because there

were contrast between the pavement and the lawn in the quad and the vision sensor was able to detect

the texture of the pavement. This is an advantage of the vision algorithms, and laser range finder based
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Figure 2.12: Localization and mapping results from the Boneyard Creek.

methods would not work for environments like in Figure 2.1 (b) and Figure 2.10. The results suggest that

the algorithm is able to perform localization and mapping without relying on additional sensors for camera

attitude measurement.

Figure 2.10 was generated by matching a set of map features at the beginning of the trajectory (marked

with blue circles in Figure 2.10) in the SLAM result and the Google satellite image. The SLAM result was

overlaid on the satellite image by computing the overlay that minimized the overall position error of the

selected features. The attitude measurement was less accurate in the later part of the trajectory; the SLAM

result is more deviated from the pavement in the southern part of the Engineering Quad. Nevertheless, the

mapping results clearly show the shape and outline of the path, and the overlay with the satellite image

shows the effectiveness of the algorithm.

Figure 2.11 shows the localization and mapping results from the inside of the building of the UIUC

Beckman Institute (see Figure 2.1 (b)). Although feature points were sparse in this indoor environment, the

feature tracking algorithm performed robustly. Given the lack of difference in intensity between the floor and

the wall, the pixel position of the watershed algorithm markers was manually initialized (see Figure 2.5 (e))

to segment the floor in the corridor. The middle part of the floor segment in the images was automatically

removed to avoid tracking erroneous dynamic feature points caused by specular reflections. During the

period where the UAV turned in the corridor, the attitude measurement was updated more frequently to

maintain enough point matches and estimate the rotation properly. The mapping results overlaid on the

building floor plan show that the algorithm can perform well in indoor environments as well.

Figure 2.12 shows the results of the localization and mapping algorithm in the UIUC Boneyard Creek

(see Figure 2.1 (c)). For this experiment, the camera was held approximately at a constant height, but the
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altitude data was not available. This introduced scale ambiguity in the map. Further, the segmented plane

was not perfectly planar due to intrusion into the regions surrounding the water surface. Nonetheless, the

landmarks extracted around the water surface were able to represent the outline of the creek. Note that

the landmarks predominantly consist of features from the river’s edge (shown on the map as a series of

curved points), but a number of these include points from the reflections on the surface of the river and the

surroundings. Such measurements need to be carefully considered in future research since they can induce

errors into the navigation solution. Nevertheless, the produced map illustrates the outline of the creek, and

the results of experiments show that our algorithm can be applied to navigation in river-like environments

as well.

2.6 Conclusions

In this chapter, we presented a monocular-vision-based algorithm with a particular focus on navigation

of a UAV in multiple environments. Our method exploited the planar ground assumption in multiple

environments. In the presence of coplanar features and the knowledge of the camera height, we have shown

that the range and bearing to the landmarks on the ground plane can be measured instantaneously. We

estimated the attitude of the UAV separately by exploiting the epipolar geometry with multiple features

that are not required to be included in the FastSLAM estimation state vector. Localization and mapping

was performed by applying the CMKF based FastSLAM algorithm to the attitude and range estimation.

The results were obtained in an indoor environment from the Beckman Institute at UIUC, and in outdoor

environments such as the Engineering Quad and the Boneyard Creek at UIUC. It was demonstrated that

with our algorithms, a monocular based system is able to perform visual SLAM and generate a map of the

ground plane and obtain a pose estimate of the UAV.
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Chapter 3

Vision-Based Localization and
Robot-Centric Mapping in Riverine
Environments

3.1 Chapter Objective

In this chapter, we present a vision-based localization and mapping algorithm developed for an unmanned

aerial vehicle (UAV) which can operate in a riverine environment. Our algorithm estimates the 3D positions

of point features along a river and the pose of the UAV. By detecting features surrounding a river and

the corresponding reflections on the water’s surface, we can exploit multiple view geometry to enhance the

observability of the estimation system. We use a robot-centric mapping framework to further improve the

observability of the estimation system while reducing the computational burden. We analyze the performance

of the proposed algorithm with numerical simulations and demonstrate its effectiveness through experiments

with data from Crystal Lake Park in Urbana, Illinois. We also draw a comparison to existing approaches.

Our experimental platform is equipped with a lightweight monocular camera, an inertial measurement unit

(IMU), a magnetometer, an altimeter, and an onboard computer. To our knowledge, we report the first

result that exploits the reflections of features in a riverine environment for localization and mapping.

This chapter is organized as follows. In Section 3.2, we describe our experimental platform and explain

our motion models of both the UAV and the robot-centric estimates of point features. We also present

our measurement model which includes reflection measurements. In Section 3.3, we formulate an extended

Kalman filter (EKF) estimator for UAV localization and point feature mapping. In Section 3.4, we analyze

the observability of our estimation system under various conditions and show the advantage of our method.

In Section 3.5, we validate the performance of our algorithm with numerical simulation results. In Section

3.6, we show experimental results of our monocular vision-based localization and mapping algorithm at

Crystal Lake Park in Urbana, Illinois. In Section 3.7, we summarize our work with concluding remarks.
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Figure 3.1: The block diagram of our riverine localization and mapping system.

3.2 Riverine Localization and Mapping System

In this section, we describe the overall architecture of our riverine localization and mapping algorithm. We

present the motion model for the localization of the UAV and the robot-centric mapping of point features.

We also derive the measurement model with multiple views of each point feature and its reflection.

3.2.1 Overview of the Experimental Platform

Our system estimates features with respect to the UAV body frame while estimating the location of the UAV

in the world frame. Figure 3.1 shows the block diagram of our riverine localization and mapping system.

We define our world reference frame with the projection of the X- and Y-axes of the UAV body frame on

the river surface when the estimation begins. The Z-axis points downwards along the gravity vector (see

Figure 3.3). We set the origin of the UAV body frame on the center of the IMU which is mounted on the

UAV and define the UAV body frame as the coordinate frame of the IMU. We use onboard sensor readings

for the motion propagation and the measurement update stages of our EKF estimator in order to simplify

the process and alleviate the nonlinearity of the system.

Figure 3.2 shows our quadcopter which contains a lightweight monocular camera facing forward with a

resolution of 640 × 480 pixels, a three-axis IMU and a magnetometer, an ultrasound/barometric altimeter,

and a compact Pico-ITX onboard computer equipped with a 64-bit VIA Eden X2 dual core processor and

a VIA VX900H media system processor. The distance between the UAV and the surface of the river is

measured with the altimeter. For the propagation stage of the filter, the motion model of the UAV is

derived to use the IMU and magnetometer readings, and the motion model of each feature incorporates

gyroscope measurements. In the measurement update stage, the measurement model is formulated with

multiple views as follows. We project the features to the camera upon their first and current observations.

The measurement model is augmented with observations of corresponding reflection points and the altitude

readings of the UAV.
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Figure 3.2: Our quadcopter is equipped with a lightweight monocular camera, an IMU, a magnetometer, an
altimeter, and a compact Pico-ITX onboard computer.

3.2.2 Dynamic Model

We describe the motion model used for localization of the UAV in the world reference frame and the

estimation of point features with respect to the UAV body frame.

Dynamic Model for the Riverine Localization and Mapping

The state vector for our estimation system consists of pwb ≡ (xwb , y
w
b , z

w
b )T ∈ R3, vb ≡ (v1, v2, v3)T ∈ R3,

bba ∈ R3, qwb ∈ H, bbg ∈ R3, and xbi ≡ ((hbi )
T , ρbi )

T ∈ R3, where pwb and qwb are the location and the attitude

quaternion of the UAV’s body with respect to the world reference frame, vb is the velocity of the UAV with

respect to the UAV body frame, and bba and bbg are the bias of the accelerometer and the gyroscope. The

subscript (or superscript) b denotes the UAV body frame and w represents the world reference frame. The

vector xbi for the i-th landmark consists of its normalized coordinates hbi = (hb1,i, h
b
2,i)

T = (ybi /x
b
i , z

b
i /x

b
i )
T ∈

R2 and its inverse-depth ρbi = 1/xbi∈ R+ from the UAV along the X-axis of the UAV body frame, where

the vector pbi = (xbi , y
b
i , z

b
i )
T ∈ R3 is the Cartesian coordinates of the feature with respect to the UAV

body frame. We get the acceleration ab = ãb − bba ∈ R3 by subtracting the accelerometer bias bba from the

accelerometer readings ãb ∈ R3, and the angular velocity ωb ≡ (ω1, ω2, ω3)T = ω̃b−bbg ∈ R3 by subtracting

the gyroscope bias bbg from the gyroscope readings ω̃b ∈ R3 as shown in [38].
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The dynamic model for our estimation system is given by

d

dt



pwb

vb

bba

qwb

bbg

xb1
...

xbn



=



R(qwb )vb

−[ωb]×vb + ab +RT (qwb )gw

0

1
2Ω(ωb)qwb

0

f(xb1, vb, ωb)

...

f(xbn, vb, ωb)



(3.1)

where (xb1 · · ·xbn) are the state vectors of n point features, and gw ∈ R3 is the gravity vector in the world

reference frame. We shall define the motion model f(xbi , vb, ωb) of the i-th feature in Section 3.2.2. The

skew-symmetric matrix [ωb]× ∈ so(3) is constructed from the angular velocity vector ωb, and Ω(ωb) is given

by

Ω(ωb) ≡

 −[ωb]× ωb

−
(
ωb
)T

0

 (3.2)

The motion model for each feature xbi in Eq. (3.1) requires the velocity of the UAV in the UAV body

frame of reference as shall be shown in Eq. (3.4). Therefore, we employ the time derivative of the UAV’s

velocity which considers the acceleration ab and the angular velocity ωb in the UAV body frame instead of

integrating the acceleration aw in the world reference frame.

Vision Motion Model for the Robot-Centric Mapping

We perform robot-centric mapping to generate a 3D point feature-based map. The method references the

point features to the UAV body frame and mainly considers the current motion of the UAV to estimate the

position of the features. We provide the observability analysis of our estimation system in Section 3.4.

The position of each point feature is first estimated in the UAV body frame. The dynamics of the i-th

feature in Cartesian coordinates is given in [60] as follows:

d

dt
pbi = −[ωb]×pbi − vb (3.3)

where pbi is the location of the i-th feature with respect to the UAV body frame. We represent the vector

pbi of the feature with normalized coordinates hbi ≡ (hb1,i, h
b
2,i)

T and the inverse-depth ρbi . In [14], a model

27



that consists of the normalized pixel coordinates hci ≡ (hc1,i, h
c
2,i)

T ∈ R2 and the inverse-depth ρci ∈ R+ of

a point feature with respect to the camera coordinate frame is used to estimate the location of the point;

along with the angular velocity and two of the velocity components of the camera. In this work, we employ

the robot-centric mapping framework and formulate a system for both localization and mapping. We derive

the dynamics (ẋbi = f(xbi , vb, ωb)) of the i-th feature referenced with respect to the UAV body frame from

Eq. (3.3) as

d

dt


hb1,i

hb2,i

ρbi

 =


(
−v2 + hb1,iv1

)
ρi + hb2,iω1 −

(
1 +

(
hb1,i
)2)

ω3 + hb1,ih
b
2,iω2(

−v3 + hb2,iv1

)
ρi − hb1,iω1 +

(
1 +

(
hb2,i
)2)

ω2 − hb1,ihb2,iω3(
−ω3h

b
1,i + ω2h

b
2,i

)
ρbi + v1

(
ρbi
)2

 (3.4)

where xbi ≡ ((hbi )
T , ρbi )

T represents the vector of the i-th landmark from the UAV body frame.

The model in Eq. (3.4) is similar to the one presented in [14], but the model is augmented with the

UAV localization part. We construct the motion model in Eq. (3.1) for the localization and mapping by

combining the dynamic model of the UAV and the vision motion model given by Eq. (3.4). The estimator

that we will present in Section 3.3 exploits the motion model given by Eqs. (3.1) and (3.4).

3.2.3 Vision Measurement Model

We describe our vision measurement model for our estimation system. The vision measurements consist of

the projection of each point feature at the first and current observations and its reflection.

Projected Measurements of Features

We compute the normalized pixel coordinates hci of the i-th point feature in the camera coordinate frame

with hci = ((xmi −xm0 )/λα, (ymi − ym0 )/λ)T , where (xmi , y
m
i ) is the pixel coordinates of the feature, (xm0 , y

m
0 )

is the coordinates of the principal point, λ is the focal length of the camera lens, and α is the ratio of

the pixel dimensions [60]. The camera coordinate frame is assigned with a rightward pointing X-axis, a

downward pointing Y-axis, which forms the basis for the image plane, and a Z-axis perpendicular to the

image plane along the optical axis. Also, the camera coordinate frame has an origin located at distance

λ behind the image plane. We compute the unit vector pcs,i ≡ (xcs,i, y
c
s,i, z

c
s,i)

T ∈ R3 to the feature with

respect to the camera coordinate frame from the normalized pixel coordinates hci . The subscript s stands

for the unit sphere projection of a vector. We get the unit vector pbs,i ≡ (xbs,i, y
b
s,i, z

b
s,i)

T ∈ R3 to the feature

with respect to the UAV body frame from pbs,i = R(qbc)p
c
s,i since the distance between our IMU and camera

is negligible. Here, qbc is the orientation quaternion of the camera with respect to the UAV body frame,
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Figure 3.3: Illustration of the vision measurements of a real object and its reflection. The vector pwi of a
point feature from a real object in the world frame is symmetric to the vector p̃wi of its mirrored point with
respect to the river surface (X-Y plane). The measurement of the reflection is a camera projection of the
vector p̃bi .

which we get from the IMU-camera calibration. Note that pbs,i is a unit sphere projection of the vector

pbi ≡ (xbi , y
b
i , z

b
i )
T ∈ R3 of the feature which is referenced with respect to the UAV body frame. We compute

the normalized coordinates hbi ≡ (hb1,i, h
b
2,i)

T = (ybi /x
b
i , z

b
i /x

b
i )
T = (ybs,i/x

b
s,i, z

b
s,i/x

b
s,i)

T of the i-th feature

in the UAV body frame with the elements of the unit vector pbs,i.

We define pwbi ∈ R3 and qwbi ∈ H as the location and the attitude quaternion of the UAV when the

estimator first incorporates the i-th feature to the state vector. The current location of the UAV with

respect to (pwbi, qwbi) is given by pbib = RT (qwbi)(p
w
b − pwbi) ∈ R3, and the current attitude quaternion of the

UAV with respect to qwbi is denoted by qbib ∈ H, where R(qbib ) = RT (qwbi)R(qwb ). We reference the i-th feature

with respect to (pwbi, qwbi) as pbii ≡ (xbii , y
bi
i , z

bi
i )T ∈ R3 and express it in terms of the state of the UAV and

the feature itself as

pbii = RT (qwbi) (pwb − pwbi) +RT (qwbi)R(qwb )pbi (3.5)

where the vector pbi of the feature with respect to the UAV body frame is given by pbi = (1/ρbi , h
b
1,i/ρ

b
i , h

b
2,i/ρ

b
i )
T .

We include the initial normalized coordinates hbii = (ybii /x
bi
i , z

bi
i /x

bi
i )T ∈ R2 of the i-th feature in the mea-

surement vector and exploit multiple views as shall be seen in Section 3.3.2. The initial normalized coor-

dinates hbii define a constant vector which is identical to the normalized coordinates hbi of the i-th feature

upon its first observation.
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Measurements of Reflections of Features

Reflection of the surrounding environment is an important aspect of riverine environments. We express the

reflection of the i-th point feature pwi that we measure with the camera as pbr,i ≡ (xbr,i, y
b
r,i, z

b
r,i)

T ∈ R3 in

the UAV body frame and define a mirrored point as p̃wi = Spwi ∈ R3, where S = I − 2nnT ∈ R3×3 is the

householder transformation matrix that describes a reflection about a plane and n = (0, 0, 1)T [32]. The

point feature pwi in the world reference frame is symmetric to its mirrored point in the world reference frame

p̃wi with respect to the river surface. We define the X-Y plane of the world reference frame as the river

surface as shown in Figure 3.3.

The measurement of the reflection can be expressed with a projection of the vector p̃bi ≡ (x̃bi , ỹ
b
i , z̃

b
i )
T ∈

R3 which is the position of the mirrored point with respect to the UAV body frame. The equality of

the normalized coordinates h̃bi ≡ (h̃b1,i, h̃
b
2,i)

T = (ỹbi /x̃
b
i , z̃

b
i /x̃

b
i )
T = (ybr,i/x

b
r,i, z

b
r,i/x

b
r,i)

T ∈ R2 holds, where

(ỹbi /x̃
b
i , z̃

b
i /x̃

b
i )
T is the normalized coordinates of the mirrored point p̃bi , and (ybr,i/x

b
r,i, z

b
r,i/x

b
r,i)

T is the

normalized coordinates of the reflection pbr,i. The position of the mirrored point with respect to the world

reference frame is p̃wi = Spwi = S
(
pwb +R(qwb )pbi

)
. The position of the mirrored point with respect to the

UAV body frame is given by [32]

p̃bi = RT (qwb )
(
S
(
pwb +R(qwb )pbi

)
− pwb

)
(3.6)

Figure 3.3 shows an illustration of the projection of the vector to a point feature pbi and the vector

to its reflection pbr,i from the UAV body frame. We include the two-view measurements (hbi , hbii ) and the

reflection measurement h̃bi in the measurement model and enhance the observability of our estimation system

(see Section 3.4 for the observability analysis).

Vision-Data Processing and Reflection Matching

We implement an algorithm that matches the points from the objects around the river to the points from

the reflections in the image by using the normalized correlation coefficients (NCC) [27]. The algorithm

discards false matches by using the UAV’s attitude information. The pseudo-code of the reflection matching

algorithm is shown in Algorithm 1.

The algorithm first selects good features to track by using Shi and Tomasi’s method [61], which computes

the minimum eigenvalue of the auto-correlation matrix of the Hessian over a small window in the intensity

image. Algorithm 1 extracts an image patch around each point feature and inverts the image patch vertically

to take account for the reflection symmetry. We compute the correlation coefficient of the two intensity image
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Figure 3.4: The results of reflection feature detection with the reflection matching Algorithm 1. The real
objects (red boxes), the corresponding reflections (green boxes), the matching slope θi (black lines), and the
reference slope θ0 (blue line in the middle of the image) are shown.

patches by

M (x̃m, ỹm) =

50∑
x′=1

50∑
y′=1

(
T (x′, y′)− T̄

) (
T0(x̃m + x′, ỹm + y′)− T̄0

)
(3.7)

where T0 is the original intensity image, T is a 50×50 pixels patch from the image T0, which is vertically

inverted, and T̄ and T̄0 are the means of T and T0. The coordinates of the pixels that form the patch T

are (x′, y′), and the coordinates of the first upper left pixel in the image T0 are (x̃m, ỹm). The results are

normalized to reduce the effects of lighting differences. The NCC is given by [62]

N (x̃m, ỹm) = M (x̃m, ỹm)

 50∑
x′=1

50∑
y′=1

(
T (x′, y′)− T̄

)2 · 50∑
x′=1

50∑
y′=1

(
T0(x̃m + x′, ỹm + y′)− T̄0

)2−1/2

(3.8)

Algorithm 1 then finds the corresponding location in the source image that has the highest NCC. The

methods proposed in [63, 64] could also be considered as cues for reflection detection.

To reject incorrect matches, we define a reference slope θ0, which is computed based on the camera

orientation, across the source image. Algorithm 1 computes the reflection matching slope θi with the pixel

coordinates of the object and its reflection. If the difference between the reference slope and the matching

slope exceeds a threshold η , the algorithm rejects the matched reflection. The reference slope θ0 and the

matching slope θi are given by

θ0 = atan2
(
ycs,0 − ỹcs,0, xcs,0 − x̃cs,0

)
, θi = atan2 (ymi − ỹmi , xmi − x̃mi ) (3.9)

where (xmi , y
m
i ) are the pixel coordinates of the i-th feature, and (x̃mi , ỹ

m
i ) are the coordinates of the
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Algorithm 1: Reflection matching in riverine environments

Input: image data T0 and camera orientation qwc
Output: normalized pixel coordinates of real objects and their reflections
1. while image data is present do
2. Select good features to track with the Shi and Tomasi’s method.
3. Select an image patch around each feature and invert the patch vertically.
4. Slide each patch T on the source image T0 and compute the NCC given by Eq. (3.8).
5. Match each patch T in the source image T0 based on the NCC.
6. Compute the reference slope θ0 and the matching slope θi given by Eq. (3.9).
7. if |θ0 − θi| > η then
8. Reject the matching result.
9. end if
10. Acquire reflection measurements from the matching results.
11. Track the feature and its reflection with the KLT algorithm.
12. end while

candidate for the reflection of the feature. We compute the unit vector pcs,0 with a unit sphere projection

of an arbitrary point in the image. The reflection corresponding to the unit vector pcs,0 is given by p̃cs,0 =

(x̃cs,0, ỹ
c
s,0, z̃

c
s,0)T = RT (qbc)R

T (qwb )SR(qwb )R(qbc)p
c
s,0 ∈ R3 in the camera frame.

Figure 3.4 shows an example of matching real objects and their reflections at Crystal Lake. The algorithm

tracks the center of the inverted image patch and its matched image patch over the sequence of image data

with the pyramid KLT tracking algorithm [55]. The KLT algorithm solves an optical flow equation by the

least-squares criterion while assuming that the flow is locally constant. We assume that the UAV does not

perform acrobatic maneuvers, so the pixel coordinates of real objects lie above their reflections in the image.

3.3 EKF Estimator

In this section, we formulate a discrete-time EKF [65] to estimate the location p̂wb ∈ R3 of the UAV in the

world reference frame; the velocity v̂b ≡ (v̂1, v̂2, v̂3)T ∈ R3 of the UAV, accelerometer bias b̂ba ∈ R3, and

each vector of the i-th point feature x̂bi ≡ (ĥb1,i, ĥ
b
2,i ρ̂

b
i )
T ∈ R3 with respect to the UAV body frame, where

the hat operator (̂.) indicates an estimated value.

3.3.1 Motion Propagation

Let us denote the reduced-order state estimate by µ ≡ ((p̂wb )T , (v̂b)T , (b̂ba)T , (x̂b1:n)T )T ∈ R9+3n, where

x̂b1:n denotes n features. We denote the predicted state estimate by µk at time-step k and the corrected

state estimate after the measurement update by µ+
k in discrete time. We denote the estimate covariance

by Σk ∈ R(9+3n)×(9+3n) at time-step k. The state estimate of the UAV is propagated through the dynamic
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model based on Eqs. (3.1) and (3.4) as follows

µk = f(µ+
k−1, qwb,k−1, ω

b
k−1, ãbk−1) (3.10)

where

f(µ+
k−1, qwb,k−1, ω

b
k−1, ãbk−1) =



p̂w+
b,k−1 +R(qwb,k−1)v̂b+k−1∆t

v̂b+k−1 +
(
−[ωbk−1]×v̂b+k−1 + ãbk−1 − b̂b+a,k−1 +RT (qwb,k−1)gw

)
∆t

b̂b+a,k−1

x̂b+1,k−1 + f1(µ+
k−1, ω

b
k−1)∆t

...

x̂b+n,k−1 + fn(µ+
k−1, ω

b
k−1)∆t


(3.11)

and

fi(µ
+
k−1, ω

b
k−1)

=



(
−v̂+

2,k−1 + ĥb+1,i,k−1v̂
+
1,k−1

)
ρ̂b+i,k−1 + ĥb+2,i,k−1ω1,k−1 −

(
1 +

(
ĥb+1,i,k−1

)2
)
ω3,k−1 + ĥb+1,i,k−1ĥ

b+
2,i,k−1ω2,k−1(

−v̂+
3,k−1 + ĥb+2,i,k−1v̂

+
1,k−1

)
ρ̂b+i,k−1 − ĥ

b+
1,i,k−1ω1,k−1 +

(
1 +

(
ĥb+2,i,k−1

)2
)
ω2,k−1 − ĥb+1,i,k−1ĥ

b+
2,i,k−1ω3,k−1(

−ω3,k−1ĥ
b+
1,i,k−1 + ω2,k−1ĥ

b+
2,i,k−1

)
ρ̂b+i,k−1 + v̂+

1,k−1

(
ρ̂b+i,k−1

)2


(3.12)

Here, µ+
k−1 is the state estimate from the previous time-step; qwb,k−1 is the attitude quaternion of the UAV,

and ãbk−1 and ωbk−1 are the acceleration and the bias free angular velocity measurements, which are provided

by the magnetometer and the IMU at time-step k − 1.

The covariance matrix is propagated through Σk = Fk−1Σ+
k−1F

T
k−1 +Wk−1, where Fk−1 is the Jacobian

of the motion model f(µ+
k−1, qwb,k−1, ω

b
k−1, ãbk−1) in Eq. (3.11) evaluated at µ+

k−1, and Wk−1 represents the

covariance of the process noise.

The prediction of the error angle vector δθ̂
w

b ∈ R3 and the gyroscope bias error ∆b̂bg = bbg − b̂bg ∈ R3

[66, 38] can be included in Eq. (3.11) as

δθ̂
w

b,k = δθ̂
w+

b,k−1 −
((

[ω̃bk−1]× − [b̂b+g,k−1]×

)
δθ̂

w+

b,k−1 + ∆b̂b+g,k−1

)
∆t

∆b̂bg,k = ∆b̂b+g,k−1

(3.13)
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where ω̃bk−1 is the gyroscope measurement that includes a bias bbg, and b̂bg,k−1 is the estimate of the gyroscope

bias. The predicted estimate of the attitude quaternion q̂wb,k is given by

q̂wb,k = q̂w+
b,k−1 +

1

2

(
Ω(ω̃bk−1)− Ω(b̂b+g,k−1)

)
q̂w+
b,k−1∆t (3.14)

The error angle vector δθ̂
w

b is a minimal representation derived with a small angle approximation of

the error quaternion δq̂wb = qwb ⊗ (q̂wb )−1 [66, 38], where ⊗ denotes quaternion multiplication. For the

case of including the attitude in the estimation state vector, the estimate of the UAV’s attitude q̂wb,k−1 and

the angular velocity ω̂bk−1 ≡ (ω̂1,k−1, ω̂2,k−1, ω̂3,k−1)
T

= ω̃bk−1 − b̂bg,k−1 should replace qwb,k−1 and ωbk−1 in

Eqs. (3.11) and (3.12), respectively.

It is possible to include the gyroscope bias error ∆b̂bg and the error angle vector δθ̂
w

b in the estimation

state to estimate the attitude of the UAV while preserving the normalization constraint of the quaternion

if the UAV’s attitude information is not provided. Reduced-order estimators are often used [12, 13, 14] to

solve an estimation problem concisely with directly measurable variables when it is not necessary to filter the

measurements. We simplify the process and alleviate the nonlinearity of the model by acquiring the estimated

attitude qwb of the UAV and the bias-compensated angular velocity from an IMU and a magnetometer and

excluding the corresponding state variables from the estimation state vector.

3.3.2 Measurement Update

The predicted measurements of our estimation system that consist of the current view hb1:n of features, the

observation hb1:n of the features from the initial feature detection positions (which we denote as the initial

view hbi1:n), the reflection view h̃b1:n of n point features, and the altitude −ẑwb,k are given by

h(µk, qwb,k, pwbi, qwbi) =



hb1:n(µk)

hbi1:n(µk, qwb,k,p
w
bi,q

w
bi)

h̃b1:n(µk, qwb,k)

−ẑwb,k


(3.15)

where the altitude −ẑwb,k is measured by an altimeter. The current view of the i-th point feature is given by

hbi (µk) =

(
ĥb1,i,k ĥb2,i,k

)T
(3.16)

We transform the measurements hci in the camera coordinate frame to hbi in the UAV body frame as we
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described in Section 3.2.3.

The initial view of the i-th point feature is given by

hbii (µk, qwb,k,p
w
bi,q

w
bi) =

(
ŷbii,k/x̂

bi
i,k ẑbii,k/x̂

bi
i,k

)T
(3.17)

where p̂bii,k = (x̂bii,k, ŷ
bi
i,k, ẑ

bi
i,k)T = RT (qwbi)

(
x̂wb,k − x̂wbi

)
+RT (qwbi)R(qwb,k)p̂bi,k (which is given by Eq. (3.5)) is

the estimated position of the feature with respect to (pwbi, qwbi). The estimated location pwbi = p̂wb,ki and the

filtered attitude qwbi of the UAV are stored at time-step ki when the i-th feature is first measured. On the

other hand, p̂bi,k = (1/ρ̂bi,k, ĥ
b
1,i,k/ρ̂

b
i,k, ĥ

b
2,i,k/ρ̂

b
i,k)T is the estimated position of the feature with respect to

the UAV body frame at the current time-step k.

The current view h̃b1:n(µk, qwb,k) of a reflection of the i-th feature is given by

h̃bi (µk, qwb,k) =

(
ˆ̃xbi,k/

ˆ̃zbi,k
ˆ̃ybi,k/

ˆ̃zbi,k

)T
(3.18)

where ˆ̃pbi,k ≡ (ˆ̃xbi , ˆ̃ybi , ˆ̃zbi )
T = RT (qwb,k)(S(p̂wb,k + R(qwb,k)p̂bi,k) − p̂wb,k) (which is given by Eq. (3.6)) is the

estimated position of the mirrored point of the i-th feature with respect to the current UAV body frame

(see Figure 3.3).

The state estimate and the estimate covariance are updated with vision measurements by

µ+
k = µk +Kk

(
zk − h(µk, qwb,k, pwbi, qwbi)

)
Σ+
k = Σk −KkHkΣk

(3.19)

where the Kalman gain is given by Kk = ΣkH
T
k

(
HkΣkH

T
k + Vk

)−1
. Here, zk is the measurement vector at

time-step k, Hk is the Jacobian of the measurement model h(µk, qwb,k, pwbi, qwbi) in Eq. (3.15) evaluated at

µk, and Vk is the covariance of the measurement noise.

If we include the error angle vector δθ̂
w

b and the gyroscope bias ∆b̂bg in Eq. (3.11), the estimate of the

UAV’s attitude and the gyroscope bias can be updated by

q̂w+
b,k = q̂wb,k +

1

2
Ω(δθ̂

w+

b,k )q̂wb,k

b̂b+g,k = b̂bg,k + ∆b̂b+g,k

(3.20)

where (q̂wb,k, b̂bg,k) are the predicted estimates of the attitude and the gyroscope bias, and (δθ̂
w+

b,k , ∆b̂b+g,k) are

the updated error angle vector and the gyroscope bias error.
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3.3.3 World Reference Frame Representation

The motion model in Eq. (3.11) includes the dynamics of each feature in the UAV body frame. By using this

robot-centric approach, we are able to estimate the position of each point feature with respect to the UAV

body frame and enhance the observability of the estimation system as shall be shown in Section 3.4. After

the measurement update of each EKF cycle, we express the estimates of the point features with respect to

the world reference frame as follows

p̂wi,k = p̂wb,k +R(qwb,k)p̂bi,k (3.21)

where p̂wb,k is the estimated location of the UAV, p̂bi,k is the estimated position of the i-th feature, and qwb,k

is the attitude of the UAV. By representing the estimated p̂wi,k in the world reference frame, we are able to

generate a map in a global frame instead of showing the time-varying trajectories of point features in the

UAV body frame. We estimate the vector x̂bi,k of the feature that is being measured and discard the features

that go out of sight to maintain the size of the state vector, thereby reducing the computational load.

3.4 Observability Analysis

The observability problem of VINS [1, 38, 39, 40] and SLAM [35, 36, 37] have been studied in the literature.

It has been shown that VINS and SLAM require a priori knowledge of the position of a set of features

in the map in order to make the system observable. In Section 3.2, we presented an estimation system

for world-centric localization and robot-centric mapping, which includes water reflections and feature point

locations referenced to initial-view robot positions. In this section, we analyze the observability property of

the estimation system under various conditions.

3.4.1 Methods of Observability Analysis

First, we state the definition of the observability. A system is observable if there exists t0 ≤ tf such that

the state x0 of the system at time t0 can be determined from the knowledge of the system’s output over the

interval [t0, tf ] [67]. Here, x0 is the state vector at time t0. Observability implies that the current state of

the system can be determined from the present and past output measurements and input commands.

In [68], the observability of nonlinear systems are categorized to be observable, locally observable, weakly

observable, and locally weakly observable. Local weak observability is defined in [68] as follows:

Definition 1 (Local weak observability): A system is locally weakly observable at x0 if there exists an

open neighborhood U of x0 such that for every open neighborhood V of x0 contained in U , x0 is distinguishable
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from any other point in V .

The local weak observability from Definition 1 implies that we can instantaneously distinguish [68] each

state from its neighbors. In [36], it is stated that if the nonlinear system in not locally weakly observable,

the linearized system can gain spurious information along the unobservable direction and degrade the per-

formance. Therefore, we first check the local weak observability of our estimation system and verify the

role of the measurements included in Eq. (3.15). The local weak observability can be analyzed with the

rank of the nonlinear observability matrix ONL. We formulate the nonlinear observability matrix ONL by

recursively computing the Lie derivatives of the measurement function h in Eq. (3.15) with respect to the

affine form of the dynamic function f = f0 + f1a
b+ f2ω

b presented in Eqs. (3.11) and (3.12) as shown in [38].

The nonlinear observability matrix is given by

ONL = ∇
(

(L0h)T (L1
f0

h)T · · · (Lγf0f1f2h)T · · ·
)T

(3.22)

where ∇ is the gradient operator with respect to our state, L0h = h, Lγf0h = ∇Lγ−1h · f0 for the γ-th order

Lie derivative, and Lγf0f1f2h = ∇Lγ−1
f1f2

h · f0 for mixed Lie derivatives.

3.4.2 Observability Analysis of the System

We analyze the observability of our estimation system and show the advantage of employing the measurement

model given by Eq. (3.15) along with the motion model of our reduced-order system given by Eqs. (3.11)

and (3.12). We consider situations where we do not acquire the reflection measurement, the initial view

measurement, which is the observation of a feature from the initial feature detection location, and the

altitude measurement to show the necessity of each type of measurements.

Observability with Current View, Initial View, Reflection, and Altitude Measurements

The nonlinear observability matrix ONL for our estimation system given by Eqs. (3.11) and (3.15) satisfies

the observability rank condition. The linear observability matrix for our estimation system also satisfies

the rank condition. Therefore, the nonlinear system is locally weakly observable, and the linearized model

computed for the EKF estimator is completely observable. The reflection measurements h̃b1:n allow the

observability results to hold even if a single feature is measured without any a priori knowledge of the

feature’s position and the UAV is stationary without any motion parallax provided for the feature. The

multiple measurements in the model given by Eq. (3.15) provides sufficient constraints with the information

from the motion model given by Eqs. (3.11) and (3.12).
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Observability with Only Current View Measurements

We consider the case where the altitude −zwb measurement is not available, and the reflection view h̃bi and

the initial view hbii measurements are not used in order to show the role of these measurements. If we only

include the current view hbi of a single feature to the measurement function and omit the rest, the null space

of the nonlinear observability matrix can be found a

span

 I3×3 03×3 03×3 03×2 03×1

01×3 −
(
vb
)T

ρbi
−
(
bb
)T

+ gTR(qwb )

ρbi
01×2 1


T

(3.23)

where the state vector of the reduced-order system is composed of (pwb , vb, bba, xbi ). Note that the same

state vector is used in this section except for Eq. (3.24). We treat the attitude quaternion qwb of the UAV as

a known vector since we acquire the estimate of the UAV’s attitude from the IMU and the magnetometer.

The null space shows the unobservable modes. The location of the UAV is unobservable. Also, the velocity

of the UAV, the bias of the accelerometer, and the inverse-depth of the feature constitute the unobservable

modes. The normalized coordinates (hb1,i, h
b
2,i) of the feature, which are directly measured, are observable.

It is known that the monocular-vision SLAM with IMU measurements is also unobservable when the

position pwi = (xwi , y
w
i , z

w
i )T ∈ R3 of the feature is estimated with respect to the world reference frame.

The null space of the nonlinear observability matrix for the visual-inertial SLAM with a single feature

prescribed in the world frame is given as

span

 I3×3 03×3 03×3 I3×3

−gT [pwb ]T× −gT [vwb ]T× 03×3 −gT [pwi ]T×


T

(3.24)

where the state vector of the reduced-order system is composed of (pwb , vb, bba, pwi ).

From Eq. (3.24), we can see that the relative 3D location of the robot and the feature location are

unobservable. The location and the velocity of the robot and the position of the feature also form the

unobservable modes for a world-centric 6-DOF localization and 3D mapping system that uses a monocular

camera and inertial sensors. Furthermore, the attitude of the UAV along the gravity vector, i.e., yaw, is

unobservable for visual-inertial SLAM if we do not acquire the attitude information from the IMU and the

magnetometer [39].
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Observability with Partial Measurements

If we measure the current view hbi and the initial view hbii of a single feature but not the reflection h̃bi and

the altitude −zwb after the initialization, the null space of the nonlinear observability matrix can be found as

span

(
(pwbi − pwb )

T

ρbi
−
(
vb
)T

ρbi
−
(
bb + g

)T
ρbi

01×2 1

)T
(3.25)

For this case, we fixed the attitude of the UAV with R(qwb ) = I3×3 for simplicity. The null space shows

that the translation of the UAV from the initial-view position, the velocity of the UAV, and the bias of the

accelerometer constitute the unobservable modes.

If we employ all the measurements in Eq. (3.15) except for the initial view hbii of a feature, the null space

of the nonlinear observability matrix ONL can be found as

span

(
I2×3 02×1 02×3 02×3 02×3

)T
(3.26)

The null space shows that the location of the UAV is unobservable without the initial view hbii . The initial

view provides a reference to estimate the translation of the UAV. The results in Eqs. (3.23)-(3.26) show the

necessity of employing the initial view hbi1:n, the reflection view h̃b1:n, and the altitude −zwb measurements

for achieving observability. In Section 3.4.3, we will quantify the degree of observability of our estimation

system.

3.4.3 Degree of Observability

In Section 3.4.2, we used the observability matrix to analytically determine whether the system is observable

and find the unobservable modes. In this section, we quantify the observability by computing the degree

of observability with the eigenvalues related to the observability Gramian as given by [69]. The degree

of observability indicates how accurate the estimation results are with noisy measurements. The discrete

time-varying observability Gramian over a time-step interval [k, k +m] is given by

Ψ , HT
k Hk + FTk H

T
k+1Hk+1Fk + FTk F

T
k+1H

T
k+2Hk+2Fk+1Fk+

· · ·+ FTk · · ·FTk+m−1H
T
k+mHk+mFk+m−1 · · ·Fk

(3.27)

where Fk and Hk are the Jacobian matrices of the dynamic function given Eqs. (3.11) and (3.12) and the

measurement function given by Eq. (3.15), respectively, at time-step k. The smallest eigenvalue of Ψ1/2

shows the degree of observability [69].
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Figure 3.5: The degree of observability of our localization and robot-centric mapping system with reflection
measurements and the anchored IDP SLAM system are shown, where the observability Gramian Ψ is defined
in Eq. (3.27).

We compare our localization and robot-centric mapping system, which exploits the reflection measure-

ments as presented in Sections 3.2 and 3.3, with a popular localization and mapping method that represents

the features with respect to anchors in the world reference frame with the inverse-depth parametrization

(IDP) [16, 17, 18] by providing the anchored IDP SLAM method with the UAV’s attitude and altitude

information but without reflection measurements. The observability Gramian is computed with true state

values for both of the systems in the simulation environment that shall be shown in Section 3.5. Figure

3.5 shows that our localization and robot-centric mapping system with reflection measurements has a larger

degree of observability than the anchored IDP SLAM system which does not use reflection measurements.

The comparatively large degree of observability of our localization and robot-centric mapping system with

reflection measurements shows that we can expect the estimation results from our estimation system to

be more robust to measurement noise than the anchored IDP SLAM system. We shall demonstrate the

superior performance of our localization and robot-centric mapping system with reflection measurements

to the anchored IDP SLAM system in Section 3.5 with numerical simulation results of the localization and

mapping.

3.5 Numerical Simulations

In this section, we present results of numerical simulation and analyze the performance of our riverine

localization and mapping algorithm. In Section 3.6, we will present experimental results using real-world
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Figure 3.6: Results of the localization and mapping in a simulated riverine environment. The solid blue
curve shows the trajectory of the UAV and the green dots are the 3D point features extracted from the
trees. The dashed red curve is the time-history of the UAV’s location estimate and the orange dots are the
estimated locations of the features.

data. Here, we simulate a riverine environment with a river image [70] as shown in Figure 3.6. A trajectory

along the river is defined by a sequence of way points and a potential field-style algorithm to generate the

acceleration and angular velocity commands and execute a smooth 3D trajectory with roll, pitch, and yaw

motions. Gaussian white noise of standard deviation σ = 0.01 is added to the acceleration and angular

velocity commands as a disturbance. The UAV travels 418 m along the river for 530 seconds and extracts

330 point features from the trees around the river. The features are evenly distributed along the river 5 m

apart from each other along the latitude and longitude directions. The height of the features are distributed

with a uniform distribution on the interval 0 ∼ 30 m. The features that are between 5 ∼ 20 m away from

the camera that has a 90 degree field of view are considered as visible features. We allow the UAV to always

measure four features at each step, where two of the features have reflections.

Gaussian white noise of standard deviation σ = 0.01 and σ = 0.001 is added to the acceleration and

angular velocity readings, and the attitude and altitude measurements, respectively. The noise in camera

pixel measurements is simulated as Gaussian white noise of σ = 1 considering a focal length of λ = 770

pixels. The location estimate of the UAV is initialized as p̂wb,0 = (0, 0, zwb,0)T , where −zwb,0 ∈ R+ is the initial

altitude of the UAV over the river. The velocity estimate of the UAV and the accelerometer bias estimate
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Figure 3.7: The location estimate of the UAV in the world reference frame, the velocity estimate of the UAV
with respect to the UAV body frame, and the accelerometer bias estimate are shown. The estimates of the
point features with respect to the UAV body frame are also shown.

are initialized as v̂b0 = 0 and b̂b0 = 0, respectively. The i-th point feature for Eq. (3.12) is initialized as

x̂bi,0 = (hb1,i,0, h
b
2,i,0, 0.1)T , where hb1,i,0 and hb2,i,0 are the initial normalized coordinates of the feature.

Figure 3.6 shows the localization and mapping results from our localization and robot-centric mapping

system with reflection measurements projected on the simulated environment. The simulation results show

the time-history of the location estimate of the UAV converging to the true trajectory of the UAV, and the

estimated positions of the features converging to their true positions. Figure 3.7 also compares the estimates

of the state variables and their true values. The estimation state includes the location and the velocity of the

UAV, the bias of the accelerometer, and the normalized coordinates and the inverse-depth (ρ̂bi,k = 1/x̂bi,k)

of the features. The results show that the estimates converge to their true values. The estimates of the

features, which are shown in Figure 3.7(d), are in the UAV body frame as described in Section 3.2.2. We
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(b) Estimation error of the UAV’s velocity
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(c) Estimation error of the features

0 100 200 300 400 500
0

20

40

U
A

V
 lo

ca
tio

n 
(m

)

0 100 200 300 400 500
0

0.5

1
ve

lo
ci

ty
 (

m
/s

)

0 100 200 300 400 500
0

0.2

0.4

time (sec)

in
ve

rs
e 

de
tp

h 
(1

/m
)

 

 
anchord IDP
RC w/o reflection
RC w/ reflection

(d) Estimation error norm

Figure 3.8: The estimation errors and the 3σ standard deviation estimates of the location and the velocity
of the UAV and the features are shown. The error norms of the location and the velocity of the UAV and
the inverse-depth of all the features are also shown.

represent the robot-centric results in the world reference frame as described in Section 3.3.3 and generate

mapping results that are shown in Figure 3.6.

Figure 3.8 shows the error between the state estimate and the true state values of the UAV and the

features. The errors converge close to zero and the 3σ standard deviation are bounded because our mea-

surements, which consist of the current view, the initial view, and the reflection view of each feature, along

with the altitude of the UAV, provide sufficient information for the estimation. The spikes that appear in

the error are due to the impulses in the acceleration, which are generated from the algorithm we used to

define the trajectory of the UAV. Figure 3.8(d) shows the error norm of the location and the velocity of the

UAV and the error norm of the inverse-depth of all the features. Our localization and robot-centric mapping

system with reflection measurements has an average error norm of 0.3155 m for the location of the UAV,
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0.0312 m/s for the velocity of the UAV, and 0.0029 (1/m) for the inverse-depth of the features. The anchored

IDP SLAM system has an average error norm of 18.7497 m for the location of the UAV, 0.1969 m/s for the

velocity of the UAV, and 0.0589 (1/m) for the inverse-depth of the features. The superior performance of

our localization and robot-centric mapping system with reflection measurements compared to that of the

anchored IDP SLAM system that does not have reflection measurements is related to the relatively large

degree of observability which is shown in Section 3.4.3.

3.6 Experimental Results and Discussion

To demonstrate the effectiveness of our algorithm in a real environment, we conducted experiments at Crystal

Lake Park in Urbana, Illinois (see Figure 3.9). To evaluate our method, we present five sets of results.

• We present results obtained using GPS and IMU data to serve as ground truth.

• To compare our method against existing methods, we present results obtained using an anchored IDP

method [16, 18, 17].

• To demonstrate the effectiveness of our method, we present results obtained using reflection measure-

ments, and that incorporate loop closure.

• To demonstrate the relative performance of our approach for localization and mapping, we present

results for our method that do not exploit loop closure.

• To illustrate that a short sequences of badly estimated poses can cause the pose estimates to diverge,

we show the results of our method obtained when GPS data are provided for those sequences.

Below, we describe our experimental methodology, present the results of our experiments, and discuss factors

that influence the performance.

3.6.1 Methodology

For all experiments, we flew our quadcopter UAV (described in Section 3.2.1) at Crystal Lake in Urbana,

Illinois using the altitude hold mode of the onboard automatic flight control system that accepts a radio

control pilot input for heading control. We performed a calibration of all parameters of the sensing system,

including the camera intrinsic parameters (through camera calibration [71]) and the orientation between the

IMU and the camera (with IMU-camera calibration [72]). We removed the initial bias in the accelerometer by

performing static calibration of the IMU at the beginning, and the IMU provided bias-compensated angular
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Figure 3.9: We acquired the real-environment data by using our quadcopter UAV (highlighted with a red
circle). We flew our quadcopter UAV at Crystal Lake in Urbana, Illinois using the altitude hold mode of
the onboard automatic flight control system.

velocity. We used the Ublox Lea-6H GPS module that has an accuracy of 2.5 m and used the position results

that are filtered with the inertial navigation system (INS) for the ground truth.

Figure 3.10 shows a characteristic set of images taken from the experimental data acquired at Crystal

Lake with our quadcopter. We detected multiple point features from the image data automatically with Shi

and Tomasi’s method [61] and found their reflections with Algorithm 1, which we presented in Section 3.2.3.

The algorithm tracked the features with the pyramid KLT method [55] and sorted outliers with random

sample consensus (RANSAC) [55] on consecutive images. Algorithm 1 searched for a new pair of reflections

per frame per core at 10 Hz. The rest of the estimation algorithm was capable to run at 100 Hz on a

quad-core computer with the features shown in Figures 3.10 and 3.11. We simplified the estimation process

by estimating the vector x̂bi,k of the feature that was being measured and by discarding the features that left

the camera field of view in order to keep the size of the state vector small and to reduce the computational

load. When an old feature was removed, a new feature was initialized in its place in the estimation state

vector. We used a fixed number of features in the estimation for each frame (40 considering the process

speed). Preference was given to features with matched reflections, and when there were not sufficiently many

of these, features without matching reflections were used.

We updated the global map with the estimated location p̂wi,k of each feature which is derived from the
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(a) 14 seconds (b) 75 seconds (c) 152 seconds (d) 211 seconds

Figure 3.10: Feature tracking on image data from Crystal Lake. Feature tracking results (green lines) with
the pyramid KLT method and outliers (red lines) are shown in the first row. Matching of the reflections
(green boxes) corresponding to real objects (red boxes) with Algorithm 1 are shown in the second row.

state estimate x̂bi,k of the feature. We initialized the location estimate and the velocity estimate of the

UAV as p̂wb,0 = (0, 0, −zwb,0)T and v̂b0 = 0, respectively, and the accelerometer bias estimate as b̂b0 = 0. We

initialized the altitude −zwb,0 of the UAV over the water with the measurements from the altimeter.

State-of-the-art SLAM methods [1, 27, 39] rely on loop closing to prevent drift over time. Therefore, we

have implemented a simple vision-based algorithm to detect loop closure, and incorporated a post-processing

stage to minimize the final error between our UAV’s location estimate and the ground truth. Our algorithm

used speeded-up robust features (SURF) [55] to find the best match between image data that was acquired

from the starting location and from when our UAV quadcopter revisited the starting point. Then, our

algorithm used a Kalman smoother [73] to constrain the two location estimates to coincide and filtered the

entire trajectory.

3.6.2 Experimental Results

Figure 3.12 gives a quantitative summary of our results. Figure 3.12(a) shows the ground truth (GPS/INS)

location of our quadcopter UAV, the estimated location of our quadcopter from the anchored IDP SLAM

method, our method of using reflection measurements (without loop closure), and our method augmented

with loop closure detection. Figure 3.12(b) shows the estimation errors of the three aforementioned methods,

relative to the GPS/INS data. Figure 3.12(c) shows the estimate of the UAV’s velocity. Figure 3.12(d) shows

the normalized coordinates and the inverse-depth estimates of the features. In Figure 3.12(d), the estimation

of old features that move out of sight are re-initialized with new features as we stated in Section 3.6.1.
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Figure 3.11: The number of features incorporated in the measurement vector with and without reflection
measurements.

The estimation results and GPS/INS data are overlaid on a satellite image of Crystal Lake provided by

Google Maps in Figure 3.13. According to the GPS data, the quadcopter traveled approximately 343.48 m

for 253 seconds. The rotation with respect to the gravity direction is unobservable in a pure visual-inertial

navigation system. However, the sensor package we use compensates the gyro bias and provides angular rate

and attitude estimates by using its gyroscope and accelerometer along with a magnetometer, and makes the

unobservable rotation directly measurable. The reduced-order state estimator we presented in Section 3.3

uses the drift-free attitude information acquired by the IMU and the magnetometer.

The final error between the GPS data and the estimated location of the UAV was 26.26 m for our

localization and robot-centric mapping system with reflection measurements, 100.36 m for the anchored IDP

SLAM method without reflection measurements, and 0.67 m for our method with loop closing. The average

error norm of the UAV’s location over the entire trajectory was 10.64 m from our localization and robot-

centric mapping system with reflection measurements and 34.93 m from the anchored IDP SLAM system

without reflection measurements.

3.6.3 Lessons Learned

As can be seen in both Figures 3.12(b) and 3.13, our method outperforms the anchored IDP method,

and incorporating loop closure provides further improvement. In particular, the drift along the X-Y plane is

reduced when we used our localization and robot-centric mapping system which uses reflection measurements,

and is nearly eliminated when loop closure is exploited. We believe that the inaccuracies in the localization

results for the anchored IDP method were due in part to inaccurate estimation of feature depth. Our
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0 50 100 150 200 250
0

50

100

x
 (

m
)

0 50 100 150 200 250
0

50

100

y
 (

m
)

0 50 100 150 200 250
0

100

200

d
is

ta
n
c
e
 (

m
)

time (sec)

anchored rc reflection loop closing

(b) Estimation error of the UAV’s location
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(c) Estimate of the UAV’s velocity
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(d) [Estimates of the features

Figure 3.12: The location estimate of the UAV with respect to the world reference frame, and the velocity
estimate of the UAV and the estimates of the point features both with respect to the UAV body frame are
shown. The estimation error of the UAV’s location relative to the GPS/INS data is also shown.

method is able to exploit additional geometrical constraints imposed by using reflection measurements when

estimating the depths of the features and the location of the UAV. A second advantage for our method is

its larger degree of observability (Section 3.4).

Even though our method outperformed the anchored IDP method in real experiments, the difference in

performance of our method for simulations versus real-world experiments raises issues that merit discussion.

The most significant cause for the difference between simulation and experimental performance is likely

tied to the quality of feature matching, and consequent feature tracking error. For our simulations, we

modeled the error in the vision measurements with Gaussian noise, but we did not model incorrect vision

measurements caused by mismatch of reflections and drift in feature tracking results. In simulations, features

with reflections were always visible to the UAV. In contrast, for our experiments, there were instances for
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anchored IDP w/o reflectionan

robot-centric w/ reflection & loop closingro

GPS/INS truth

Figure 3.13: The experimental results are overlaid on a satellite image of Crystal Lake provided by Google
Maps. The time-history of the UAV’s location estimate from our robot-centric method with reflections (red)
and the anchored IDP method without reflections (blue) and the position estimate of the features from our
method with reflections (orange dots) are shown. GPS/INS ground truth trajectory of the UAV (yellow)
and the loop closing results with our method using reflections (green) are also shown. The ending locations
are marked with circles.

which Algorithm 1 was unable to find reflections. This can be seen in Figure 3.11(a), which shows that the

number of detected reflection features varied significantly over the course of the experiment. Further, in

the experimental data, there were instances of incorrect feature matching and tracking, as shown in Figure

3.10(c).

A secondary factor in the mismatch between simulated and experimental results is related to the geometry

of the environment. In simulations, features were located between 5∼20 m away from the UAV, while for

our experiments, the features that were available in the scene were sometimes significantly more distant. As

features become more distant, the accuracy of our method decreases, and this can be seen in our experimental

results.

Finally, as with all localization and mapping methods, the incremental nature of the pose estimation

process is such that a short sequence of badly estimated poses can cause the pose estimates to diverge. This

is illustrated in Figure 3.14. At the positions indicated by the blue circles, significant pose estimation error
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Figure 3.14: The experimental results show that a short sequences of badly estimated poses (blue circles)
can cause the pose estimates to drift (red). The localization result that is obtained when GPS data are
provided as measurements to the smoothing filter around these points is also shown (green).

occurred, and from these points onward, the localization error begins to drift. To more fully illustrate this,

we also show in green the localization result that is obtained when GPS data are provided as measurements

to a Kalman smoother near these points in the trajectory to process the GPS data over a sequence of local

intervals. This demonstrates both the detrimental consequences of even a small number of pose estimation

errors, as well as pointing to the utility of our method in situations for which intermittent GPS data might

be available.

3.7 Conclusions

In this chapter, we presented a vision-based SLAM algorithm developed for riverine environments. To our

knowledge, the water reflections of the surrounding features for SLAM are used for the first time. The

performance of our visual SLAM algorithm has been validated through numerical simulations. We also

demonstrated the effectiveness of our algorithm with real-world experiments that we conducted at Crystal

Lake. The numerical simulation results and the real-environment experimental results show that the accuracy
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in the estimation of the UAV’s location along the X-Y plane in riverine environments is greatly improved

by using our localization and robot-centric mapping framework with reflection measurements.

We believe that the water reflections of the surrounding features are important aspects of riverine en-

vironments. The localization results of our localization and robot-centric mapping system with reflection

measurements outperformed the anchored IDP SLAM method because additional geometrical constraints

are exploited by using reflection measurements to estimate the depths of the features and the location of

the UAV. In contrast, without the geometrical constraints from the reflection measurements, the anchored

IDP SLAM method lacked reliable depth information of the features that could improve the performance

of the localization and mapping. The superior performance of our localization and robot-centric mapping

system with reflection measurements was expected in the experiments due to its larger degree of observability

compared to the anchored IDP SLAM method.
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Chapter 4

Observer Design for Localization and
Mapping with an Omnidirectional
Camera for Autonomous Mowing

4.1 Chapter Objective

In this chapter, we present an omnidirectional-vision-based localization and mapping algorithm with an

application to autonomous mowing. We divide the task for robotic mowing into two separate phases, a

teaching phase and a mowing phase. During the teaching phase, the mower estimates the 3D positions of

landmarks and defines a boundary in the lawn with an estimate of its own trajectory. During the mowing

phase, the location of the mower is estimated using the landmark and boundary map acquired from the

teaching phase. Of particular interest for our work is ensuring that the estimator for landmark mapping

will not fail due to the nonlinearity of the system during the teaching phase. A nonlinear observer is

designed with pseudo-measurements of each landmark’s depth to prevent the map estimator from diverging.

Simultaneously, the boundary is estimated with an EKF. Measurements taken from an omnidirectional

camera, an IMU, and a vehicle speed sensor are used for the estimation. Numerical simulations and offline

teaching phase experiments with our autonomous mower demonstrate the potential of our algorithm.

The rest of this chapter is organized as follows. In Section 4.2, we give an overview of our system. In

Section 4.3, we describe the dynamics and measurements for landmark mapping, and design a nonlinear

observer with hybrid contraction analysis. In Section 4.4, an EKF estimator is presented to estimate the

trajectory of the mower and define a boundary in the lawn. In Section 4.5, the landmarks are used to estimate

the location of the autonomous mower and solve the containment problem with the boundary information.

Numerical simulations are shown in Section 4.6. Offline experiments of the teaching phase are presented in

Section 4.7. We conclude with plans for future work in Section 4.8.

4.2 Overview of the System

In this work, we used a robotic mower from John Deere which is shown in Figure 4.1. Our autonomous

mower is equipped with a ground speed sensor and modified with an omnidirectional vision sensor and an
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Figure 4.1: Our autonomous mower modified with an omnidirectional camera and an IMU for experiments.

Teaching Phase Mowing Phase 

IMU 

Omnidirectional 
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Speed Sensor 
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Containment 

Determination 

Landmark 

Mapping 

Boundary 

Teaching 

Figure 4.2: Block diagram of our localization and mapping strategy developed for the autonomous mowing.

IMU. The task for robotic mowing can be divided into two phases, a teaching phase and a mowing phase as

shown in Figure 4.2. During the teaching phase, the mower can follow a boundary wire temporarily set-up in

the lawn or can be tele-operated by a user. Our algorithm defines a boundary by estimating the trajectory

of the mower with an EKF while generating a point feature-based map of its surrounding landmarks with

an observer. We designed a nonlinear observer to estimate the 3D positions of landmarks with respect to

the robot’s body frame.

There have been several research prototypes as well as manufactured products developed for robotic lawn

mowing [74, 75, 76]. Boundary wires are widely used to ensure containment in available products. However,

they require users to add infrastructure to the environment which increases set-up time and decreases

portability. GPS has been widely used for navigation purposes [77] but performs best in a wide open area.

It can be difficult to get accurate position estimation results with the GPS in a residential area occluded by
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walls and tree canopies. RF and infrared signal based methods have also been demonstrated for localization

[78, 76] but they can require costly infrastructure. Vision sensors are an attractive option for mowing robots

for their potential to enable no-infrastructure installations and perform sensing functions beyond positioning

such as determining and diagnosing turf problems.

4.3 Observer Design for Robot-Centric Landmark Mapping

In this section, we describe the dynamics of the vision system for robot-centric mapping and derive pseudo-

measurements of the depth of each landmark. A nonlinear observer is designed for mapping, and the

convergence of the estimates is proved with hybrid contraction analysis.

4.3.1 Dynamic Model for Landmark Mapping

The dynamic model of each landmark in the robot’s body frame is given by [79]

ẋi = −[ω]×xi − v (4.1)

where xi ∈ R3 is the location of the i-th landmark with respect to the robot’s body frame. The x-axis of

the robot’s body frame is pointing towards the front of the mower, and the z-axis is pointing up from the

mower. For simplicity, all the variables without a superscript are in the robot’s body frame in this chapter.

The linear and angular velocities of the robot measured in the robot’s body frame are denoted by v ∈ R3

and ω ∈ R3. The skew-symmetric matrix [ω]× ∈ so(3) is formed from the angular velocity vector ω.

We estimate the location of each landmark in the robot’s body frame and let the measurements be linear

with respect to the states. Similar to [80], a landmark can be described with a unit vector y = xi/‖xi‖2 ∈ R3

from the robot and its distance d = ‖xi‖2 ∈ R. The state vector of each landmark is zT = (d, yT )T , and

the dynamics of the system is given by

d

dt

d
y

 =

 −vTy

−(I − yyT )vd−1 − [ω]×y

+ η (4.2)

where η ∈ R4 denotes the disturbance.

Assumption 1 The Euclidean distance d between the camera and a landmark is lower bounded by a known

positive constant. Therefore, we assume that d ≤ d, where d ∈ R+ is a known constant parameter.

Remark 1 Assumptions 1 is satisfied due to physical constraints of the system.
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Measurements of system in Eq. (4.2) is linear to the states. The unit vector y is directly measurable,

whereas the depth d of a landmark is not directly measurable from a single image. However, pseudo-

measurements of d can be formulated as we shall describe in Section 4.3.2.

4.3.2 Pseudo-Measurements of a Landmark’s Depth

We formulate pseudo-measurements dk ∈ R at current time-step k to acquire the depth of each landmark as

dk=‖x̂bjb ‖

1−( x̂
bj
b

‖x̂bjb ‖
·yj

)2
1

2(
1−
(
RT(q̂bj)yk ·yj

)2)− 1
2

+ ξd,k (4.3)

where yk and yj are the direction vector measurements of a landmark at time-step k and at a previous

time-step j. Noise in the pseudo-measurements dk is denoted by ξd,k ∈ R, and R(·) is a rotation matrix.

In Section 4.4, we estimate the location x̂bj and orientation quaternions q̂bj of the robot’s body frame at

time-step j with respect to its current body frame. The current location of the mower with respect to its

body frame at time-step j, which is used in Eq. (4.3), is x̂
bj
b = −RT (qbj )x̂bj .

4.3.3 Observer Design with Hybrid Contraction Analysis

The observer presented in this section updates the estimate of the state using vision measurements at

discrete-time instances and propagates the motion between the measurements in continuous-time. We use

dwell-time ∆tk = tk − tk−1 for vision measurements yk since image processing can be much slower than

the inertial measurements which is used in the dynamic model. One can also consider using the direction

estimates ŷk to improve the vision tracking algorithm. We can allow sufficiently long dwell-time to track

landmarks which are instantaneously occluded in images.

Estimation of landmarks is decoupled by using separate observers. This gives us a potential to increase

the number of landmarks for the map. It is shown in [19] that increasing the number of landmarks is more

profitable than increasing the measurement rate in order to enhance the accuracy of the estimates. We prove

that our observer is guaranteed to be globally exponentially stable by using contraction theory.
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4.3.4 Observer Design and Stability Analysis

The observer for each landmark is given by

d

dt

d̂
ŷ

 =

 −vT ŷ

−(I − ŷŷT )vd̂−1 − [ω]×ŷ

 (4.4)

d̂+
k

ŷ+
k

 =

 d̂−k + lk,1(dk − d̂−k )

ŷ−k + Ilk,2(yk − ŷ−k )

 (4.5)

where d̂ ∈ R is an estimate of a landmark’s depth between vision measurements, d̂−k ∈ R and d̂+
k ∈ R are

estimates of the depth before and after the measurement update at time-step k, ŷ ∈ R3 is an estimate of a

unit vector from the robot’s body frame to the landmark between its measurements, ŷ−k ∈ R3 and ŷ+
k ∈ R3

are estimates of the unit vector before and after the measurement update at time-step k, and I ∈ R3×3 is

an identity matrix. The user can select observer gains lk,1 ∈ R and lk,2 ∈ R for d̂k and ŷk respectively.

The continuous system for prediction of the state ẑT = (d̂, ŷT )T ∈ R4 is switched to the discrete system

in Eq. (4.5) at every ∆tk to update the states with measurements.

The estimation error for the hybrid system is defined as ek , zk− ẑk ∈ R4 , where zk ∈ R4 is the ground

truth of the state.

Theorem 1 The observer in Eqs. (4.4) and (4.5) is globally exponentially stable such that

‖ek+1‖ ≤ σ̄k‖ek‖ exp
(
λ̄∆tk

)
(4.6)

if Assumption 1 is satisfied and the state is constrained by ‖ŷ‖ = 1 and d̂ > d, and if the observer gain is

given by

lk,m = 1− exp

(
1

2

(
γm − λ̄

)
∆tk

)
, m ∈ {1, 2} (4.7)

where γm ∈ R− is defined by the user for d̂k and ŷk. The convergence rate of the system in the prediction

stage in Eq. (4.4) is given by λ̄ = λmax(FT +F ), where λmax denotes the maximum eigenvalue and F ∈ R4×4

is the Jacobian matrix in Eq. (4.8).
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Proof 1 We can write the first variation of system in Eqs. (4.4) and (4.5) as

d

dt

δd̂
δŷ

=

 0 −vT

(I−ŷŷT )vd̂−2 −[ω]×+
(
ŷvT+vTŷI

)
d̂−1


δd̂
δŷ

 (4.8)

δd̂+
k

δŷ+
k

=

1− lk,1 0

0 I(1− lk,2)


δd̂−k
δŷ−k

 (4.9)

where the virtual displacement δd̂ ∈ R and δŷ ∈ R3 are infinitesimal displacements [81] at a fixed time

instance, and I ∈ R3×3 is an identity matrix. Let Fk ∈ R4×4 denote the Jacobian matrix in Eq. (4.9), and

let γ = max{γ1, γ2}. The convergence rate of the measurement update stage is given by

σ̄k = λmax(FTk Fk) = (1− lk)2 (4.10)

where lk = lk,m with γm = γ.

Consider the observer given by Eqs. (4.4) and (4.5). The condition for the hybrid system to be contracting

[81, 82, 83] is satisfied since

λ̄+
ln σ̄k
∆tk

= λ̄+
ln exp

(
γ∆tk − λ̄∆tk

)
∆tk

= γ

(4.11)

where γ is selected to be negative. We then have

‖δẑk+1‖ ≤ σ̄k‖δẑk‖ exp(λ̄∆tk) (4.12)

and since δẑk converges to zero, the estimated state converges to its true value globally exponentially fast.

4.3.5 Uncertainty Bound on the Estimation Error

Uncertainty bound on estimation error can be analyzed by considering the disturbance η and measurement

noise ξk = (ξd,k, ξ
T
y,k)T ∈ R4, where ξy,k ∈ R3 is the noise in the unit vector vision measurement. Let

ēk =
∫ z

ẑ
‖δxk‖ ∈ R be the quadratic bound of the observer error [81] which considers the uncertainty. Then

ēk+1 ≤ σ̄kēk exp
(
λ̄∆tk

)
+ ‖η∆tk + lkξk‖∞ (4.13)
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Figure 4.3: Simulation results of the landmark depth and direction estimation.

where lk is the observer gain. The observer gain can be designed to take into account the magnitude of the

noise in the measurements. When the observer gain lk is increased, the estimation error converges to zero

faster and the estimates are less sensitive to disturbance η. When the observer gain lk is decreased, the

estimates will be affected less by the measurement noise ξk.

4.4 Robot-Centric Localization for Boundary Estimation

In this section, we estimate the trajectory of the mower with a robot-centric system which allows us to use a

linear motion model. The mower traverses a boundary in the lawn during the teaching phase. It can either

follow a boundary wire temporarily set-up in the lawn or be tele-operated by a user.

Consider a model with a state vector x = ((xbj )T , (qbj )T )T , where xbj ∈ R3 and qbj ∈ H are the location

and orientation quaternions of the mower at an instance for time-step j with respect to its current body

frame.

The motion model is given by

d

dt

xbj

qbj

 =

−[ω]× 0

0 1
2Ω(ω)


xbj

qbj

−
v

0

 (4.14)
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Figure 4.4: Simulation results of the estimation of landmarks in the robot’s body frame.

where Ω(ω) ∈ R4×4 is a skew symmetric matrix

Ω(ω) =

 0 ωT

−ω −[ω]×

 (4.15)

The measurement model h(x) is a stacked vector of measurements of each landmark given by

hi(x) = y
bj
i

= x
bj
i /‖x

bj
i ‖2, ∀i ∈ {1, 2, · · · , n}

(4.16)

Here, n is the number of landmarks. The direction vector measurement y
bj
i of the i-th landmark is taken

when the landmark was first observed at time-step j.

Note that x
bj
i = RT (qbj )(xi−xbj ), where, xi = yid ∈ R3 is the position of the i-th landmark we estimate

in the robot’s body frame with the nonlinear observer given by Eqs. (4.4) and (4.5).

An EKF estimator for boundary estimation is written as

˙̂x = Ax̂ + u +K (h− h(x̂))

Ṗ = AP + PAT − PHTV −1HP +W

(4.17)

where P is the covariance of the state, A ∈ R7×7 is the state transition matrix in Eq. (4.14), u =
(
−vT , 0

)T ∈
59



Figure 4.5: Simulation results of the boundary estimation and landmark mapping.

R7 is the velocity input, h is the vision measurement, H is the Jacobian of the measurement function h(x̂),

and V and W are the covariance matrices that approximate the measurement noise and the process noise.

The estimator gain K is given by

K = PHTV −1 (4.18)

The location and orientation of the world reference frame with respect to the current body frame are

updated by

x̂w = x̂bj +R(q̂bj )x̂bjw

q̂w = q̂bj ⊗ q̂bjw

(4.19)

where ⊗ is a quaternion multiplication.

Finally, the results of mower localization x̂wb and landmark mapping x̂wi are represented in the world

reference frame by x̂wb

x̂wi

 =

 −RT (q̂w)x̂w

RT (q̂w) (x̂i − x̂w)

 (4.20)

The boundary can be defined in the lawn based on the history of the estimated trajectory x̂wb of the mower.
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Figure 4.6: Simulation results of the robot containment based on the localization with information provided
from the teaching phase.

4.5 Localization During Autonomous Mowing

During the mowing phase, localization of the autonomous mower can be performed with the information of

the landmarks acquired through the teaching phase. The estimated location of the autonomous mower can

be used to determine whether the mower is contained inside the estimated boundary.

The state vector of the autonomous mower is given by ((xwb )T , (qwb )T )T , where xwb ∈ R3 is the current

location of the mower, and qwb ∈ H is the orientation quaternion of the mower. The pose xwb and qwb are

described in the world reference frame.

The motion model of the system is given by

d

dt

xwb

qwb

 =

 R(qwb )v

1
2Ω(ω)qwb

 (4.21)

The measurement model g(xwb ,q
w
b ) is a stacked vector of measurements of each landmark given by

gi(x
w
b ,q

w
b ) = yi

= xi/‖xi‖2, ∀i ∈ {1, 2, · · · , n}
(4.22)
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where the i-th landmark in the robot’s body frame xi is

xi = R(qw) (xwi − xwb ) (4.23)

the location of the i-th landmark xwi in the world reference frame is provided by the teaching phase results

in Eq. (4.20).

The states of the autonomous mower can be estimated with an EKF estimator using the motion model

in Eq. (4.21) and the measurement model in Eq. (4.22). A world-centric representation is used since the

location of the landmarks xwi are provided by the teaching phase algorithm and the problem becomes a

standard localization problem.

Containment of the robot can be determined by applying the estimated boundary and the estimate of

the mower’s current location to a point-in-polygon algorithm [84]. Consider spreading a set of rays from

the mower’s estimated location. The number of times the rays encounter the predefined boundary can be

denoted as a winding number when the boundary is a single loop. If the winding number is odd, the mower

is determined to be contained inside the boundary and it is permitted to continue mowing. If the winding

number is even, the mower is outside of the boundary and mowing should be halted.

4.6 Simulation Results

Numerical simulation results are presented in this section. We distribute 15 landmark points randomly in a

3D space in a simulation. Gaussian white noise with standard deviation of 3 was added to the camera pixel

measurements.

Figure 4.3 shows the estimated depth and direction vector of one of the landmarks converging to their

true values. Figure 4.4 shows the trajectories of the landmarks in the robot’s body frame converging to their

true position. The motion of the robot and the scene can be understood when the estimates are converted

to the world reference frame through Eq. (4.20). Figure 4.5 shows simulation results of boundary estimation

and landmark mapping represented in the world reference frame. The estimated boundary follows the

true trajectory of the mower, and the estimated landmarks converge to their true locations. The estimated

trajectory of the mower is red, and the true trajectory of the mower is blue. The red circles are the estimated

positions of the landmarks, and the blue stars are the true positions of the landmarks.

Figure 4.6 shows simulation results of containment during autonomous mowing. The estimated trajectory

of the robot is red, and its true trajectory is blue. The boundary estimated during the teaching phase is

green. The red circles are the positions of the landmarks estimated in the teaching phase. The mower
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Figure 4.7: Estimation error in the location of the boundary and the average of the landmarks’ positions
during the teaching phase.

changes its heading direction randomly when it approaches the boundary. Threshold distance of 40cm from

the boundary is used for changing the heading direction. Once the robot declares that it is inside the

boundary, the mower randomly covers the given area while estimating the location of itself in the map. It

is shown in Figure 4.6 that the estimated trajectory of the robot converges to its true trajectory.

Figure 4.7 shows the estimation error of the mower’s location and orientation that are used to define

the boundary and generate the map during the teaching phase. Figure 4.8 shows the error in the estimated

location and the orientation quaternions of the mower during the mowing phase. The errors converge towards

zero rapidly but oscillate continually because the mower abruptly changes its heading direction whenever it

approaches the boundary.

Parameter Value

Focal Length (fu, fv) (476.60667, 476.74991)
Principal Point (u0, v0) (775.11715, 778.91684)

Mirror Transformation ξ 0.92036
Skew α 0

Distortion (−0.17357, 0.02025,
(k1, k2, k3, k4) −0.00209, 0.00091, 0)

Pixel Error (ex, ey) (0.50050, 0.51821)

Table 4.1: Camera calibration results
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Figure 4.8: Estimation error in the location and the orientation quaternions of the mower during the mowing
phase.

4.7 Teaching Phase Experiments

In this section, we demonstrate the potential of our teaching algorithm using a data set collected with our

autonomous mower. Our autonomous mower is equipped with a 0-360 Panoramic Optic omnidirectional

camera which can persistently capture landmarks in the scene with 360 degree field of view. A VM-100

Rugged IMU is mounted on the bottom of the camera. The vehicle speed measurements are provided from

the mower.

During the teaching phase, our mower followed a boundary wire set-up in the lawn as shown in Figure 4.9.

The mower made a full loop while traversing a boundary and captured 1540×1540 pixels omnidirectional

camera images at 4Hz. We collected inertial measurements at 100Hz and filtered the measurements from the

ground speed sensor at the same rate. Figure 4.11 shows the angular and linear velocities measured from

the IMU and the vehicle speed sensor, respectively.

To demonstrate our algorithm, we manually selected 10 corners from the windows near the lawn as

landmarks and tracked the points with the pyramid Lucas Kanade optical flow method [57]. Figure 4.10

shows a set of images collected using our autonomous mower. The landmarks are marked in Figure 4.10

with red dots. To extract the direction vector measurement y, the pixel coordinates p = (pu, pv, 1)T of

each feature were transformed to normalized image coordinates with pn = C−1p = (px, py, 1)T , where C

is the camera projection matrix. The calibration parameters for our camera are shown in Table 4.1. The
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Figure 4.9: Our autonomous mower following a boundary set-up in the backyard of our research building
for the map estimation and the boundary teaching.

Figure 4.10: Tracking landmarks in a sequence of omnidirectional camera images.

normalized coordinates pn were projected on a unit sphere through the method described in [85] which is

given by

y =


ζ+
√

1+(1−ζ2)(p2x+p2y)

p2x+p2y+1 px
ζ+
√

1+(1−ζ2)(p2x+p2y)

p2x+p2y+1 py
ζ+
√

1+(1−ζ2)(p2x+p2y)

p2x+p2y+1 − ζ

 (4.24)

where ζ is a mirror transformation parameter. Figure 4.12 shows the unit sphere projection of the landmarks

measured with the omnidirectional camera at each time-step.

Figure 4.13 shows the depth of a landmark estimated with pseudo-measurements and the filtered direction

of the unit vector vision measurement. Figure 4.14 demonstrates the landmark mapping and the boundary
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Figure 4.11: Angular and linear velocities of the mower collected during the experiments.

teaching with the data set collected using our mower. The estimated boundary, which the mower traversed,

is marked with red. The blue circles are the estimated positions of the landmarks. Shape of the estimated

boundary and the estimated positions of the landmarks resemble the actual configuration.

4.8 Conclusions

A vision based localization and mapping algorithm for an autonomous mower was presented in this chapter. A

nonlinear observer was designed using pseudo-measurements of landmarks’ depth for robot-centric landmark

mapping. A boundary estimation strategy using localization results was described. We proposed to use the

estimated boundary and landmark map to estimate the location of the mower for autonomous mowing.

Numerical simulations illustrated the convergence of the estimates and the capability of using the estimates

for containment of the mower. Preliminary experimental results showed boundary estimation and landmark

mapping with a set of data collected with our autonomous mower.
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Figure 4.12: Unit sphere projection of landmark measurements at each time-step.
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Figure 4.13: Experimental results of landmark depth and direction estimation.
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Figure 4.14: Experimental results of the boundary teaching and the landmark mapping with the data set
collected using our autonomous mower.
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Chapter 5

Omnidirectional-Vision-Based
Estimation for Containment
Detection of a Robotic Mower

5.1 Chapter Objective

In this chapter, we improve the omnidirectional-vision-based localization and mapping system with a batch

estimator. We exploit the differential equation of motion of both the robot and the landmarks in the

body frame with inertial measurements in contrast with prior work using robot-centric SLAM [8, 9, 10],

which acquire the location of each landmark through a composition step by estimating the robot’s previous

pose with respect to the current pose. We analyze the performance and the degree of observability of our

method with numerical simulations and present outdoor experimental results. To our knowledge, we report

the first experimental results of containment detection with an omnidirectional camera for robotic mowing

applications.

The rest of this chapter proceeds as follows. In Section 5.2, we give an overview of our system. In Section

5.3, we present our model for the boundary estimation and the landmark mapping. In Section 5.4, we show

the model we use for the mowing location estimation and the algorithm we use to report the containment

status. In Section 5.5, we describe the estimator we applied to our work. In Section 5.6, we compare the

localization and mapping part of our algorithm with an existing method through numerical simulations.

In Section 5.7, we present experimental results of the boundary estimation, landmark mapping, mowing

location estimation, and containment detection of our robotic mower. In Section 5.8, we summarize our

work with concluding remarks and future work.

5.2 Overview of the System

Our scheme for robotic mowing is separated into two phases. First, the mower generates a map of the

boundary and the landmarks with the estimator described in this chapter. Our mower travels a boundary

by following a wire temporarily set up over the lawn. A user can also tele-operate our mower to travel

the boundary. We estimate the trajectory of the mower and define the area where it is permitted to mow.
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Figure 5.1: An overview of our localization and mapping algorithm and our containment detection scheme
for robotic mowing.

Simultaneously, we estimate the 3D location of landmarks with our robot-centric scheme. We estimate the

mowing location later with the landmark map and detect the containment of the mower with the boundary

map (see Figure 5.1). We modified our John Deere robotic mower with a IDS UI-1490LE CMOS camera

attached to a 360 PALNON omnidirectional camera lens, a VectorNav VN-100 Rugged IMU/magnetometer

package (see Figure 5.2), and a Intel NUC5i5RYK computer for the data collection. The mower contains an

IVC which computes its velocity based on encoder readings.

5.3 Boundary Estimation and Landmark Mapping

We present the model we used for the boundary estimation and landmark mapping in this section.

5.3.1 SLAM Motion Model

First, let us define the robot body frame and the world frame. We set the origin of the robot body frame on

the center of the IMU which is attached to our robotic mower. The X-axis of the robot body frame points

towards the front of the mower. The Z-axis of the robot body frame points upwards from the mower. The

robot body frame at the initial time t0 defines the world frame.

The estimation state of the mower consists of the location p̂wb ∈ R3 and the orientation quaternions

q̂wb ∈ H of the robot body frame with respect to the world frame and the velocity v̂b ∈ R3 of the mower
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omnidirectional camera / IMU package 

robotic mower / internal IVC 

Figure 5.2: Our robotic mower is traveling a boundary in the lawn.

with respect to the current robot body frame. The state of the i-th landmark is composed of x̂bi = (ŷbi , ρ
b
i )
T ,

where ŷbi = p̂bi‖p̂bi‖
−1
2 ∈ R3 is a unit vector, ρbi = ‖p̂bi‖

−1
2 ∈ R+ is an inverse-distance, and p̂bi ∈ R3 is the

estimated location of the landmark with respect to the robot body frame. The motion model for the mower

and n landmarks is given by 

˙̂pwb = R(q̂wb )v̂b

˙̂qwb = 1
2Ω(ωb)q̂wb

˙̂vb = −[ωb]×v̂b + ab

˙̂xb1 = f1(ŷb1, ρ̂
b
1, v̂

b,ωb)

...

˙̂xbn = fn(ŷbn, ρ̂
b
n, v̂

b,ωb)

(5.1)

The kinematic model of the i-th landmark fi is described in Eq. (5.3). The skew symmetric matrices

[ωb]× ∈ so(3) and Ω(ωb) ∈ so(4) consist of the angular velocity ωb ∈ R3 acquired from the IMU. The

acceleration ab ∈ R3 of the mower is provided by the IMU/magnetometer package with a compensation of

gravity. It is possible to include the IMU bias in the estimation by using error quaternions as shown in [38].

However, our sensor package internally compensates the gyroscope bias with a magnetometer, and the IVC

in our mower provides velocity measurements which can accommodate the acceleration bias after a static

calibration procedure.
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5.3.2 Motion Model for Robot-Centric Mapping

The kinematic model of a landmark referenced with respect to the robot body frame in Cartesian coordinates

is given in [60] as follows:

˙̂pbi = −[ωb]×p̂bi − v̂b (5.2)

where p̂bi is the location estimate of the i-th landmark with respect to the robot body frame.

We estimate each landmark with respect to the robot body frame by using a unit vector and an inverse-

distance. The kinematic model fi(ŷ
b
i , ρ̂

b
i , v̂

b,ωb) of the i-th landmark used in Eq. (5.1) with respect to the

robot body frame is given in [86] as follows:


˙̂ybi = −[ωb]×ŷbi +

(
I − ŷbi ŷ

b
i
T
)
v̂bρ̂bi

˙̂ρbi = ρ̂bi
2v̂bT ŷbi

(5.3)

Note that we parameterize the landmarks with a unit vector and an inverse-distance from the robot instead

of a normalized pixel coordinates and a depth along the optical axis, which we used in [43]. We are able to

have a continuous parametrization of the landmarks that are acquired through an omnidirectional camera.

The state estimate (ŷbi , ρ̂
b
i ) of a landmark can be referenced with respect to the world frame by

p̂wi = p̂wb +R(q̂wb )ŷbi/ρ̂
b
i (5.4)

where p̂wi ∈ R3. By expressing the estimates of ŷbi and ρ̂bi in the world frame, we are able to generate a

stationary map from the estimated trajectories of the landmarks. We will analyze the advantage of our

robot-centric method in Section 5.6.

5.3.3 Measurement Model

We define p̂wbi ∈ R3 and q̂wbi ∈ H as the estimates of the location and the orientation quaternions of the

robot with respect to the world frame at time ti, where ti is the time the i-th feature is first observed and

initialized in the state vector. The location estimate p̂bii ∈ R3 of the i-th landmark is referenced with respect

to the estimated pose p̂wbi and q̂wbi of the mower by

p̂bii = R(q̂wbi)
T (p̂wb − p̂wbi) +R(q̂wbi)

TR(q̂wb )ŷbi/ρ̂
b
i

(5.5)

We define a constant initial view unit vector ŷbii = p̂bii ‖p̂bii ‖
−1
2 ∈ R3 of the i-th landmark as the unit vector

estimate ŷbi of the landmark at time ti.
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The measurement model is given by

h =

(
ŷb1:n

T ŷbi1:n
T v̂bT

)T
(5.6)

Note that we include the initial view unit vector ŷbii of the landmark along with the current view unit vector

ŷbi and formulate multiple view constraints on the mower’s motion estimate (p̂bw, q̂bw) and the landmark

estimate (ŷbi , ρ̂
b
i ).

5.4 Robotic Mowing

In this section, we present the model we use to estimate the mowing location with the map. We also describe

the algorithm which we use to detect the containment of the mower.

5.4.1 Localization of the Mower

The location of the mower during autonomous mowing can be estimated with the map composed of landmarks

given by Eq. (5.4). The state vector is composed of the estimate of the location p̂wb ∈ R3 and the orientation

quaternions q̂wb ∈ H of the mower with respect to the world frame, and the velocity v̂b of the mower. The

motion model is given by



˙̂pwb = R(q̂wb )v̂b

˙̂qwb = 1
2Ω(ωb)q̂wb

˙̂vb = −[ωb]×v̂b + ab

(5.7)

The measurement model is given by

h =

(
ŷb1:n v̂b

)T
(5.8)

where ŷb1:n is composed of the unit vectors of n landmarks. The unit vector estimates of the i-th landmark

is ŷbi = p̂bi‖p̂bi‖
−1
2 , and the location of the i-th landmark with respect to the robot body frame is given by

p̂bi = R(q̂wb )T (p̂wi − p̂wb ) (5.9)

Here, p̂wi is the estimated location of the i-th landmark in the world referenced map given by Eq. (5.4). The
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Figure 5.3: Localization and mapping simulation results.

map estimated with the model presented in Section 5.3 enables estimation of the mowing location p̂wb from

an arbitrary initial condition.

5.4.2 Containment Detection

Containment detection of the robotic mower can be approximated as a point-in-polygon problem [84]

once we have a closed boundary map and the mowing location estimate. We use a ray casting [84] style

algorithm and spread a ray from the estimated mowing location to an arbitrary direction along the X-Y

plane. We report the number of intersections of the ray and the boundary projected to the X-Y plane. The

mower is inside the boundary if the crossing number is odd and outside the boundary if the number is even.

The mower should be allowed to continue to mow only when it is detected inside the boundary or close

enough to the boundary.

5.5 Nonlinear Estimation

In this section, we describe an EKF and an extended Kalman smoother [73] we used with the models

presented in Sections 5.3 and 5.4. We consider a resetting hybrid system [82] that has continuous state

variables governed by differential equations and resetting laws that reset state variables at discrete time

instances.
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5.5.1 Continuous-Time Motion Propagation

Considering the high sampling rate of our IMU, we propagate the state estimate and the estimate covariance

in continuous-time as follows:

˙̂x = f(x̂, t)

Ṗ (x̂, t) = F (x̂, t)P (x̂, t) + P (x̂, t)F (x̂, t)T +W

(5.10)

where x̂ ∈ Rr is the predicted state estimate, P (x̂, t) ∈ Rr×r is the predicted estimate covariance, and

W ∈ Rr×r is the covariance approximating the process noise. Here, r is the dimension of the state vector of

the motion model f(x̂, t) given by Eqs. (5.1) and (5.7) for the boundary estimation and landmark mapping

and for the mowing location estimation, respectively. The Jacobian F (x̂, t) ∈ Rr×r of the function f(x̂, t) is

evaluated at x̂.

5.5.2 Discrete-Time Update of the Vision Measurements

Vision measurements are updated in discrete-time instances tk considering the low sampling rate of our

high-resolution omnidirectional camera. The subscript k is a piecewise constant index for the reset. Update

of the state estimate and the estimate covariance with the measurements are given by

x̂+ = x̂ +K(x̂, tk) (z− h(x̂, tk))

P (x̂+, tk) = (I −K(x̂, tk)H(x̂, tk))P (x̂, tk) (I −K(x̂, tk)H(x̂, tk))
T

+K(x̂, tk)V K(x̂, tk)T
(5.11)

where x̂+ ∈ Rr is the updated state estimate, P (x̂+, tk) ∈ Rr×r is the updated estimate covariance, V s×s is

the covariance approximating the measurement noise, and z ∈ Rs is the vision measurement vector at time

tk. Here, s is the dimension of the measurement model h(x̂, tk) given by Eqs. (5.6) and (5.8). The Jacobian

H(x̂, tk) ∈ Rs×r of the function h(x̂, tk) is evaluated at x̂+. The estimator gain K(x̂, tk) ∈ Rr×s is given by

K(x̂, tk) = P (x̂, tk)H(x̂, tk)T
(
H(x̂, tk)P (x̂, tk)H(x̂, tk)T + V

)−1 (5.12)

The predicted state estimate and the predicted estimate covariance are corrected in the measurement update

stage. It is understood that an EKF SLAM has a quadratic complexity in the size of the state [15]. We

estimate the vectors of the features that are being measured and discard the features that go out of sight in

order to maintain the size of the estimation state vector and reduce the computational load.
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5.5.3 Batch Estimation

To provide an accurate map for robotic mowing, we use the entire batch of measurements over the time

interval [to, tf ] after the sequential estimation of the boundary and the map is completed. We process the

estimates from Eqs. (5.10) and (5.11) with the batch stage of a Rauch-Tung-Striebel (RTS) smoother [87].

The batch stage starts at the final time tf and proceeds backwards to t0 recursively by

˙̂xs = − (F (x̂, t) +K(x̂, t)) (x̂s − x̂)− f (x̂, t)

Ṗs(x̂, t) = − (F (x̂, t) +K(x̂, t))P (x̂, t)− P (x̂, t) (F (x̂, t) +K(x̂, t))
T

+W

(5.13)

where x̂s ∈ Rr is the batch state estimate, and Ps(x̂, t) ∈ Rr×r is the batch estimate covariance. The

estimator gain Ks(x̂, t) ∈ Rr×s is given by

Ks(x̂, t) = WP (x̂, t)−1 (5.14)

After the mower travels the boundary and returns to its initial location, we recognize the location based

on normalized correlations [55] of the images and trigger a loop closure. The initial location of the mower

is added to the measurement model in Eq. (5.6) as a constraint, and the map of the boundary and the

landmarks are corrected through the batch stage given by Eq. (5.13).

5.6 Numerical Simulation

In this section, we present results of numerical simulations and analyze the performance of our robot-

centric framework in comparison to the world-centric SLAM that parameterizes landmarks with anchored

homogeneous points (AHP) [17]. In Section 5.7, we will present experimental results by using real-world

data acquired from the mower in an outdoor environment. During the simulation, the robot travels a 3D

circular trajectory (see Figure 5.3) at an average velocity of 1 m/s and angular velocity of 0.15 rad/s and

observes landmarks (marked with black dots) with 3σ Gaussian white noise in the pixel measurements. We

use the normalized estimation error squared (NEES) and the root mean squared error (RMSE) to analyze

the consistency and the accuracy of the estimation results. Figure 5.4 compares the NEES and the RMSE

of our approach and the AHP. The results show that our approach outperforms the AHP with average

RMSE of 0.2674 m for the boundary estimate, 0.0080 for the orientation quaternion, 0.0130 (1/m) for the

inverse-distance, and has an average overall NEES of 0.0034. The AHP has average RMSE of 0.8948 m for

the boundary estimate, 0.0143 for the orientation quaternion, 0.0371 (1/m) for the inverse-distance, and has
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Figure 5.4: RMSE and NEES of our approach and the AHP.

an average overall NEES of 0.0043 due to the noise in the measurements.

We compute the degree of observability of the system models with the observability Gramian [69] to

further analyze the difference between our approach and the AHP from a control theory perspective. We

approximate our motion model given by Eq. (5.1) with a discrete-time model and use the discrete linear

time-varying (LTV) observability Gramian which is given by

Ψ , HT
k0Hk0 + FTk0H

T
k0+1Hk0+1Fk0 + · · ·+ FTk0 · · ·F

T
kf−2H

T
kf−1Hkf−1Fkf−2 · · ·Fk0 (5.15)

for a time interval of [t0, tf ], where Fk and Hk are from the Jacobian matrices F (x, tk) and H(x, tk) of our

model evaluated at the true state x. The degree of observability is assessed with the smallest eigenvalue

|λmin(Ψ1/2)| during the simulation, where Ψ1/2 is the square root of the observability Gramian [88]. Figure

5.5 shows that the matrix Ψ1/2 of our approach has significantly higher degree of observability in comparison

to the AHP. This indicates that measurement noise has a relatively small impact [69] on the estimation results

of our approach.
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Figure 5.5: Comparison of the degree of observability.

5.7 Experimental Results

In this section, we present experimental results of containment detection with the real-world data which we

collected with our robotic mower.

5.7.1 Vision Data Processing

We conducted outdoor experiments at the research park in the University of Illinois at Urbana-Champaign

(UIUC) and at a front yard of a residential area. Our mower followed the boundary wire temporarily set-up

in the lawn in both places. Our mower received omnidirectional camera images at 3Hz with 2500×2500 pixels

resolutions, angular velocity ωb measurement from the IMU at 200Hz, and velocity measurement from the

mower IVC, which was filtered with the IMU at 200Hz.

To extract the unit vector measurements y1:n from the camera, we compensated the image distortion and

converted the image with normalized image coordinates p = (px, py, 1)T . We projected the coordinates p

onto a unit sphere [89] to get the unit vector y = (y1, y2, y3)T ∈ R3 and onto a unit cylinder to get yc ∈ R3

of each pixel with the functions given by

y =


ζ+
√

1+(1−ζ2)(p2x+p2y)

p2x+p2y+1 px
ζ+
√

1+(1−ζ2)(p2x+p2y)

p2x+p2y+1 py
ζ+
√

1+(1−ζ2)(p2x+p2y)

p2x+p2y+1 − ζ


yc = y

(
y2

1 + y2
2

)−1/2

(5.16)

where ζ is a calibration parameter for the omnidirectional camera mirror. We unwrapped the cylinder and

extended each image to remove the discontinuity within each image.

We selected 18 landmarks from the research park data set (see Figure 5.6), and a pyramid KLT algorithm

[57] tracked the landmarks with human assistance to reduce the drift error. From the residential area data

set (see Figure 5.7), 126 landmarks were extracted and tracked without any assistance.
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Figure 5.6: Omnidirectional camera images for the boundary estimation and landmark mapping (top left)
and for the robotic mowing (top right) are projected to unwrapped cylinders. The landmarks are marked
with red in the mapping image (middle row) and with yellow in the mowing image (bottom row)

After the landmarks were extracted, our algorithm computed the unit vector y with the pixel coordinates

of the landmarks by using Eq. (5.16) for the measurement models given by Eqs. (5.6) and (5.8).

5.7.2 Containment Detection

The boundary was defined with the history of the mowing location estimate, and the inverse-distance to

each landmark was estimated with the model presented in Section 5.3. The estimates of the landmarks are

shown with respect to the world frame through Eq. (5.4). The map was provided to estimate the mowing

location and report the containment status. The location and the orientation of the mower were estimated

with the model presented in Section 5.4.1. The status of containment was reported with the ray-casting style

algorithm described in Section 5.4.2 based on the boundary map and the estimates of the mowing location.

Figures 5.8 and 5.9 show the experimental results of boundary estimation and landmark mapping, mowing

location estimation, and containment detection in a lawn near a building at the research park in the UIUC.

The mower was contained inside the boundary during the mowing experiment by randomly changing the

heading direction with a bang bang control style algorithm whenever the mower approached the boundary

wire. The results show more false detections in one of the corners of the mowing area. The dilution of

79



Figure 5.7: Tracking on unwrapped cylinder image data from a front yard in a residential area.

precision (DOP) [90] overlaid on the results shows that the expected accuracy of the estimate is low in the

corresponding region due to the lack of landmarks.

Figure 5.10 shows the experimental results of containment detection in a residential area. The mower’s

location was estimated along the boundary with the data used for boundary estimation and landmark map-

ping. We set an arbitrary initial condition for the location estimation and the location estimate quickly

converged towards the starting location in the beginning as shown in Figures 5.10 and 5.11. The contain-

ment status was reported with a 10 cm margin. Figure 5.11 shows the boundary estimate, the estimate of

the mowing location over the boundary, and the error between the two. The estimated error of the mowing

location after one lap was 32.4 cm without loop closing. The average error between the estimate of the

boundary and the mowing location along the X-Y plane, which was 45.7 cm, caused an error in the contain-

ment detection results. Although the results show that our algorithm is capable of reporting significant drift

from the boundary, the accuracy of the estimation should be improved to report the drift more precisely.

Using artificial landmarks can be an option to increase the DOP in the area where we do not have many

landmarks and improve the accuracy of the estimation.

5.8 Conclusions

In this chapter, we have presented an omnidirectional-vision-based system for boundary estimation and

landmark mapping, mowing location estimation, and containment detection of a robotic mower. As we

showed with numerical simulation results, our method of using robot-centric mapping with initial view

measurements can outperform existing methods due to its relatively high degree of observability. The

outdoor experimental results demonstrated the effectiveness of our overall system although the accuracy of

the estimation should be improved further.
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Figure 5.8: Experimental results of mowing location estimation and containment detection with mapping
results from the UIUC research park (see Figure 5.6). The initial estimates (marked with red x) of the
mowing location given in the middle of the lawn quickly converges to the true location (lower left corner).
The DOP analysis results (green) overlaid on the map show the expected accuracy of the mowing location
estimation. The accuracy degrades in the region where the DOP is high (bright).
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Figure 5.9: Experimental results of the boundary estimation, landmark mapping, mowing location estima-
tion, and containment detection.
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Figure 5.10: Experimental results of mowing location estimation and containment detection from a residential
area (see Figure 5.7).

83



0 10 20 30 40 50 60 70 80
−10

0

10

bo
un

da
ry

lo
ca

tio
n 

(m
)

0 10 20 30 40 50 60 70 80
−10

0

10

m
ow

in
g

lo
ca

tio
n 

(m
)

0 10 20 30 40 50 60 70 80
−1

0

1

lo
ca

tio
n

er
ro

r 
(m

)

 

 

x
b
w y

b
w z

b
w

0 10 20 30 40 50 60 70 80
0

1

2

3

time (sec)

ra
y 

in
te

rs
ec

tio
ns

Figure 5.11: Location estimation error during boundary following experiments and the containment detection
results.
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Chapter 6

Convex Optimization Based SLAM

6.1 Chapter Objective

In this chapter, we present a convex optimization based simultaneous localization and mapping (SLAM)

algorithm. We design a single camera based SLAM estimator using contraction analysis. We guarantee the

stability of the estimator and minimize the mean squared estimation error.

Convex optimization has been studied in the SLAM literature [91, 92]. It is shown in [91] that a simplified

SLAM problem can be approximated as a nonlinear least squares problem when relative position of features

from the robot and odometry measurements are provided. In [92], a least squares pose SLAM problem

is approximated as a convex optimization problem by introducing new variables. In contrast, we solve a

single camera based SLAM problem by using a convex optimization based SLAM estimator. Linear matrix

inequality (LMI) constraints for the convex optimization is derived using contraction theory to guarantee

the stability of the estimator. Stochastic contraction analysis [93, 94] is used to derive the objective function

that reduces the mean-squared error of the state estimate. The structure and the derivation of the nonlinear

estimator used in our work is strongly influenced by the LMI state-dependent algebraic Riccati equation

(SDARE) estimator [93]. In contrast to the LMI-SDARE, we use Jacobian matrices of the motion model

and the measurement model instead of state dependent coefficient (SDC) matrices. Therefore, we relax an

assumption in the LMI-SDARE estimator.

We employ the robot-centric feature mapping framework which we presented in Section 5. We consider

an omnidirectional camera as our primary sensor but we can also directly apply our method to monocular

camera based systems. We exploit the differential equation of motion of each feature in the robot body frame

in contrast with existing work using robot-centric SLAM [9, 10]. We estimate the state of the robot and

the features by formulating a measurement model with multiple views of point features. In Chapters 3 and

5, we showed world-centric localization and robot-centric mapping results using an EKF. In this chapter,

we apply a convex optimization based nonlinear estimator to our single camera based robot-centric system

model [45] and validate the effectiveness of our methods through numerical simulations. We report the first
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result of convex optimization based SLAM using a single camera as a primary sensor.

The rest of this chapter proceeds as follows. In Section 6.2, we give an overview of our localization and

robot-centric mapping system model. In Section 6.3, we describe the convex optimization based estimator,

specifically for the single camera based localization and robot-centric mapping. In Section 6.4, we compare

the performance of the convex optimization based estimator with an EKF estimator through numerical

simulations. In Section 6.5, we summarize our work with concluding remarks.

6.2 Overview of Our System Model

In this section, we present the motion model for the 6 DOF world-centric localization of the robot and the

3D robot-centric mapping of point features. We also describe the measurement model with different views

of point features.

We denote the state of our system by x ≡ ((pwb )T , (qwb )T , (xb1:n)T )T ∈ R7+4n, where pwb ∈ R3 and qwb ∈ H

are the location and the orientation quaternion of the robot body frame in the world frame, respectively.

The vector xb1:n ∈ R4n denotes n features, where xbi ≡ (ybi , ρ
b
i )
T ∈ R4 represents the i-th point feature with

respect to the robot body frame (see Figure 6.1). The unit vector ybi = pbi‖pbi‖
−1
2 ∈ R3 is the direction,

ρbi = ‖pbi‖
−1
2 ∈ R+ is the inverse-distance, and pbi ∈ R3 is the location of the i-th feature in the robot body

frame, respectively.

Consider our dynamic system represented by an Itô stochastic differential model [94] and our measurement

model which are given by

dx = f(x,vb,ωb, t)dt+B(x, t)dW1(t)

z = h(x, t) +D(x, t)ν(t)

(6.1)

where z(t) ∈ Rm is the vision measurement, and h(x, t) : Rm × R → Rm is the measurement model. The

vector ν(t) ∈ Rm is white noise of dW2(t) = ν(t)dt, W1(t) ∈ Rn and W2(t) ∈ Rm are independent Wiener

processes, B(x, t) : Rn × R → Rn×n, and D(x, t) : Rm × R → Rm×m. The vectors vb ∈ R3 and ωb ∈ R3

are the velocity and angular velocity, respectively.

The motion model f(x, t) : R7+4n × R → R7+4n of the robot and n features is given in Section 5 as

follows:
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f(x,vb,ωb, t) =



ṗwb

q̇wb

ẋb1
...

ẋbn


=



R(qwb )vb

1
2Ω(ωb)qwb

f1(x,vb,ωb, t))

...

fn(x,vb,ωb, t))


(6.2)

The skew-symmetric matrix [ωb]× ∈ so(3) is formed with the angular velocity ωb, and Ω(ωb) is given by

Ω(ωb) ≡

 −[ωb]× ωb

−
(
ωb
)T

0

 (6.3)

The kinematic model f i(x
b
i , vb, ωb, t) of the i-th feature used in Eq. (6.2) with respect to the robot body

frame is given in Section 5 as follows:

f i(x,v
b,ωb, t))

=

ẏbi

ρ̇bi

 =

−[ωb]×ybi +
(
I − ybi

(
ybi
)T)

vb(
ρbi
)2 (

vb
)T

ybi

 (6.4)

We use this representation to parameterize each feature without any discontinuity in the direction of the fea-

ture considering the case of using an omnidirectional camera, but we can also directly apply this parametriza-

tion to an ordinary monocular camera [86].

We formulate the measurement model as

h(x, t) =

(
yb1:n

T ybi1:n
T

)T
(6.5)

where ybii is a unit vector of the i-th feature stored as a constant vector upon its first observation. The

vector ybii is identical to the unit vector measurement ybi of the i-th feature at time ti .
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Figure 6.1: A feature seen from an omnidirectional camera and coordinate relationships.

6.3 Estimator Design and Stability Analysis

In this section, we design a nonlinear estimator to estimate the state x(t) of the system in Eq. (6.1). We

denote the state estimate by x̂ ≡ ((p̂wb )T , (q̂wb )T , (x̂b1:n)T )T ∈ R7+4n, where p̂wb ∈ R3 and q̂wb ∈ H are the

estimate of the robot’s location and orientation quaternion in the world frame, respectively. The vector

x̂b1:n ∈ R4n denotes the estimate of n features in the robot body frame. The vector x̂bi ≡ (ŷbi , ρ̂
b
i )
T ∈ R3

represents the i-th point feature, where ŷbi = p̂bi‖p̂bi‖
−1
2 ∈ R3 is a unit vector estimate, and ρ̂bi = ‖p̂bi‖

−1
2 ∈ R+

is a inverse-distance estimate. The vector p̂bi ∈ R3 is the estimated location of the i-th feature with respect

to the robot body frame.

6.3.1 Estimator Design

We design the estimator as

dx̂ = f(x̂,vb,ωb, t)dt+K(x̂,vb,ωb, t)
(
h(x, t)−h(x̂, t)

)
dt (6.6)

The estimator gain in Eq. (6.6) is given by

K(x̂,vb,ωb, t) = P (x̂,vb,ωb, t)HT (x̂, t)R(x̂, t)−1 (6.7)

where H(x̂, t) = ∂h(x̂,t)
∂x̂ is the Jacobian of the measurement model h(x̂, t), and R(x̂, t) = D(x̂, t)DT (x̂, t) is

a positive definite approximation of the measurement noise covariance matrix. The matrix P (x̂,vb,ωb, t) ∈
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R(7+4n)×(7+4n) is a positive definite symmetric matrix and a solution to the equation given by

dP (x̂,vb,ωb, t) =
(
F (x̂,vb,ωb, t)P (x̂,vb,ωb, t) + P (x̂,vb,ωb, t)FT (x̂,vb,ωb, t) + 2αP (x̂,vb,ωb, t)

− P (x̂,vb,ωb, t)
(
−2κI +HT (x̂, t)R−1(x̂, t)H(x̂, t)

)
P (x̂,vb,ωb, t)

)
dt

(6.8)

where α > 0 is a scalar tuning parameter, κ > 0 is a scalar solution to an optimization problem that we shall

present in Section 6.3.3, and I ∈ R7+4n×7+4n is an identity matrix. Here, n is the number of features in

the state estimate. By considering Jacobian matrices, F (x̂,vb,ωb, t) = ∂f(x̂,vb,ωb,t)
∂x̂ to represent the motion

model and H(x̂, t) = ∂h(x̂,t)
∂x̂ for the measurement model, we relax an assumption presented in the approach

that uses state dependent coefficient (SDC) matrices [93]. We find the symmetric matrix P (x̂,vb,ωb, t) and

compute the estimator gain K(x̂,vb,ωb, t) as shown in Eq. (6.7). The motion model for the robot and n

features is given by

f(x̂,vb,ωb, t) =



˙̂pwb

˙̂qwb

˙̂xb1
...

˙̂xbn


=



R(qwb )vb

1
2Ω(ωb)qwb

f1(x̂,vb,ωb, t)

...

fn(x̂,vb,ωb, t)


(6.9)

where

f i(x̂,v
b,ωb, t)

=

 ˙̂ybi

˙̂ρbi

 =

−[ωb]×ŷbi +
(
I − ŷbi

(
ŷbi
)T)

vb(
ρ̂bi
)2 (

v̂b
)T

ŷbi

 (6.10)

We represent the estimate of each feature by using a unit vector ŷbi and an inverse-distance ρ̂bi from the

robot body frame as shown in [45, 86]. It is possible to use the error quaternions and include the IMU bias

and the acceleration in the state estimate as shown in [38]. However, the gyroscope bias is removed from our

sensor package output using a magnetometer, and we can neglect the acceleration since we consider using a

robot that acquires velocity information.

We generate a stationary map derived from the estimated motion of the features x̂bi ≡ (ŷbi , ρ̂
b
i ) with

respect to the robot body frame. We reference the estimate of a feature with respect to the world frame by

using

89



p̂wi = p̂wb +R(q̂wb )ŷbi/ρ̂
b
i (6.11)

where p̂wi ∈ R3 is the location of the feature with respect to the world frame. The advantage of the

localization and robot-centric mapping method is analyzed in Chapters 3 and 5.

The measurement model for our estimation system is given by

h(x̂, t) =

(
ŷb1:n

T ŷbi1:n
T

)T
(6.12)

Let us denote ti as the time instance the i-th feature is measured for the first time. We define p̂wbi ∈ R3

as the robot’s location estimate and q̂wbi ∈ H as the robot’s quaternion orientation estimate, both referenced

with respect to the world frame at time ti. The estimate of the i-th feature p̂bii ∈ R3 referenced with respect

to the estimated pose (p̂wbi, q̂wbi) of the robot is given by

p̂bii = R(qwbi)
T (p̂wb − p̂wbi) +R(qwbi)

TR(q̂wb )ŷbi/ρ̂
b
i

(6.13)

We define the initial view estimate ŷbii = p̂bii ‖p̂bii ‖
−1
2 ∈ R3 of the i-th feature as a constant vector that is

equivalent to the unit vector estimate ŷbi of the feature at time ti.

6.3.2 Estimator Stability with Contraction Analysis

We analyze the stability of the estimator described in Section 6.3.1 using contraction theory. The trajectories

of the system in Eq. (6.6) without noise and disturbance is given by

ṡ = fCL(s,vb,ωb, t)

= f(s,vb,ωb, t) +K(x̂,vb,ωb, t)
(
h(x, t)− h(s, t)

) (6.14)

where the particular solutions of the virtual system in Eq. (6.14) are s = x and s = x̂.

Assumption 2 The Jacobian matrix F (x̂,vb,ωb, t) of the motion model f(x̂,vb,ωb, t) and the Jacobian

matrix H(x̂, t) of the measurement model h(x̂, t) are uniformly observable.

Assumption 3 There exist positive scalars δ1 and δ̄1 such that δ1 ≤ ‖H(x̂, t)‖ ≤ δ̄1.

Assumption 4 There exist strictly positive constants p and p̄ such that

pI ≤ P−1(x̂,vb,ωb, t) ≤ p̄I, ∀t ≥ 0 (6.15)
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Theorem 2 (Deterministic Stability) The estimate x̂(t) of the estimator in Eqs. (6.6)-(6.8) converges to the

state x(t) globally and exponentially fast under Assumptions 2-4 if there exists a uniformly positive definite

metric P (s,vb,ωb, t) that satisfies

Ṗ (s,vb,ωb, t) = F (s,vb,ωb, t)P (s,vb,ωb, t) + P (s,vb,ωb, t)FT (s,vb,ωb, t) + 2αP (s,vb,ωb, t)

− P (s,vb,ωb, t)
(
−2κI +HT (s, t)R−1(s, t)H(s, t)

)
P (s,vb,ωb, t)

+
(
K(x̂,vb,ωb, t)−K(s,vb,ωb, t)

)
R(s, t)

(
K(x̂,vb,ωb, t)−K(s,vb,ωb, t)

)T (6.16)

Proof 2 The virtual dynamics of Eq. (6.14) is given by

δṡ =
(
F (s, t)−K(x̂, t)H(s, t)

)
δs (6.17)

where δs is the virtual displacement, which is an infinitesimal displacement of s at a fixed time t. We will

not present (vb,ωb) from here for the sake of simplicity.

Consider the time derivative of the squared length of the virtual displacement δs with respect to the metric

P−1(s, t)

d

dt

(
δsTP−1(s, t)δs

)
= δsT

(
F (s, t)−K(x̂, t)H(s, t)

)T
P−1(s, t)δs− δsTP−1(s, t)Ṗ (s, t)P−1(s, t)δs

+ δsTP−1(s, t)
(
F (s, t)−K(x̂, t)H(s, t)

)
δs

= δsTP−1(s, t)
(
P (s, t)FT (s, t) + F (s, t)P (s, t)− Ṗ (s, t) + (K(x̂, t)−K(s, t))R(s, t)

× (K(x̂, t)−K(s, t))
T −K(x̂, t)R(s, t)KT (x̂, t)−K(s, t)R(s, t)KT (s, t)

)
P−1(s, t)δs

(6.18)

where Ṗ−1(s, t) = −P−1(s, t)Ṗ (s, t)P−1(s, t) [93]. By substituting Eq. (6.16), we can write Eq. (6.18) as

d

dt

(
δsTP−1(s, t)δs

)
= δsTP−1(s, t)

(
P (s, t)FT (s, t) + F (s, t)P (s, t)−

(
F (s, t)P (s, t) + P (s, t)FT (s, t)

+ 2αP (s, t)− P (s, t)
(
−2κI +HT (s, t)R−1(s, t)H(s, t)

)
P (s, t)

+ (K(x̂, t)−K(s, t))R(s, t) (K(x̂, t)−K(s, t))
T
)

+ (K(x̂, t)−K(s, t))R(s, t)
(
K(x̂, t)−K(s, t)

)T
−K(x̂, t)R(s, t)KT (x̂, t)−K(s, t)R(s, t)KT (s, t)

)
P−1(s, t)δs

= δsTP−1(s, t)
(
− 2αP (s, t)− 2κP (s, t)P (s, t)−K(x̂, t)R(s, t)KT (x̂, t)

)
P−1(s, t)δs

(6.19)
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By considering the estimator gain given in Eq. (6.7), we can express the last term in Eq. (6.19) as

P−1(s, t)K(x̂, t)R(s, t)KT (x̂, t)P−1(s, t)

= P−1(s, t)P (x̂, t)HT (x̂, t)R(x̂, t)−1R(s, t)R(x̂, t)−1H(x̂, t)P (x̂, t)P−1(s, t)

≥
(
pδ1

p̄r

)2

r̄I

= 2κ1I

(6.20)

where r̄I ≤ R(s, t) ≤ rI, and δ1 is the lower bound of ‖H(x̂, t)‖ from Assumption 3. Then,

d

dt

(
δsTP−1(s, t)δs

)
≤ δsT

(
− 2αP−1(s, t)− 2κI − 2κ1I

)
δs

≤ −2α1δs
TP−1(s, t)δs

(6.21)

where α1 = α+ κ+κ1

p . Our proof follows the steps in [93], but we consider Jacobian matrices F (x̂,vb,ωb, t) =

∂f(x̂,vb,ωb,t)
∂x̂ and H(x̂, t) = ∂h(x̂,t)

∂x̂ to represent the motion model and the measurement model and relax the

assumption that is required for SDC matrices.

The bound on the squared length of the virtual displacement δs with respect to the metric P−1(s, t) is

given by

δsTP−1(s, t)δs ≤ δsT (0)P−1(s(0), 0)δs(0)e−2α1t (6.22)

and

‖δs(t)‖ ≤
√
p̄

p
‖δs(0)‖ e−α1t (6.23)

which shows that the virtual system in Eq. (6.14) is contracting. Therefore, the state estimate x̂(t) of the

estimator in Eqs. (6.6)-(6.8) converges to the true state x(t) globally and exponentially fast. �

Assumption 5 Let p̄x = sup
t≥0,i,j

∥∥(P−1
ij )s

∥∥, p̄x2 = sup
t≥0,i,j

∥∥∂2(P−1
ij )/∂si∂sj

∥∥, and ‖B (x, t)‖F ≤ b̄.

Theorem 3 (Stochastic Stability) The mean-squared estimation error of the estimator in Eqs. (6.6)-(6.8)

is exponentially bounded with

E
[
‖x− x̂‖2

]
≤
(
E [V (s(0), δs(0), 0)]

1

p
e−2α2t +

δ2
2pα2

)
(6.24)

under assumptions 2-5, where

δ2
2pα2

≥
p̄x
ε1
κp + p̄b̄2 +

(
δ̄1
r̄

)2

rtr (P (x̂, t))

2pα2

(6.25)
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The variable α2 ≡ α1 − κp

2p

(
ε1p̄x +

p̄x2

2

)
> 0, ε1 > 0, and κp = b̄2 +

(
δ̄1
r̄

)2

rtr
(
P 2(x̂, t)

)
as shown in [93],

and α1 = α+ κ+κ1

p is the convergence rate in Eq. (6.23).

Proof 3 Consider a Lyapunov-like function that is given by

V (s, δs, t) =

∫ 1

0

(
∂s

∂µ

)T
P−1(s(µ, t), t)

(
∂s

∂µ

)
dµ (6.26)

where s(µ = 0) = x and s(µ = 1) = x̂ are the particular solutions of the virtual system in Eq. (6.14).

The differential generator of V (s, δs, t) is given by

LV (s, δs, t)

=
d

dt

∫ 1

0

(
∂s

∂µ

)T
P−1(s, t)

∂s

∂µ
dµ

=

∫ 1

0

(
∂s

∂µ

)T
d

dt
P−1(s, t)

∂s

∂µ
dµ+

∫ 1

0

d

dt

(
∂s

∂µ

)T
P−1(s, t)

∂s

∂µ
dµ+

∫ 1

0

(
∂s

∂µ

)T
P−1(s, t)

d

dt

∂s

∂µ
dµ

=

∫ 1

0

(
∂s

∂µ

)T
P−1(s, t)Ṗ (s, t)P−1(s, t)

∂s

∂µ
dµ+ V1 + V2

≤
∫ 1

0

(
∂s

∂µ

)T
P−1(s, t)Ṗ (s, t)P−1(s, t)

∂s

∂µ
dµ+ V̄1 + V̄2

(6.27)

where

V1 =

∫ 1

0

(
∂s

∂µ

)T ((
∂fCL
∂µ

)
P−1(s, t) + P−1(s, t)

∂fCL
∂µ

)
∂s

∂µ
dµ

=

∫ 1

0

(
∂s

∂µ

)T
U1

∂s

∂µ
dµ

≤
∫ 1

0

(
∂s

∂µ

)T
Ū1

∂s

∂µ
dµ

= V̄1

(6.28)

and

U1 =

(
∂fCL
∂µ

)T
P−1(s, t) + P−1(s, t)

∂fCL
∂µ

=
(
F (s, t)−K(x̂, t)H(s, t)

)T
P−1(s, t) + P−1(s, t)

(
F (s, t)−K(x̂, t)H(s, t)

)
= P−1(s, t)

(
P (s, t)FT (s, t) + F (s, t)P (s, t) +

(
K(s, t)−K(x̂, t)

)
R(s, t)

(
K(s, t)−K(x̂, t)

)T
−K(s, t)R(s, t)KT (s, t)−K(x̂, t)R(s, t)KT (x̂, t)

)
P−1(s, t)

(6.29)
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Here, P−1(s, t)K(x̂, t)R(s, t)KT (x̂, t)P−1(s, t) ≥ 2κ1I as we consider in Eq. (6.20). Therefore,

U1 ≤ P−1(s, t)
(
P (s, t)FT (s, t) + F (s, t)P (s, t) +

(
K(s, t)−K(x̂, t)

)
R(s, t)

(
K(s, t)−K(x̂, t)

)T
− P (s, t)HT (s, t)R−1(s, t)H(s, t)PT (s, t)

)
P−1(s, t)− 2κ1I

= Ū1

(6.30)

The V2 and V̄2 are given in [93]. Particularly, the upper bound of V2 is given by

V̄2 = tr
(
BT (x, t)P−1(x, t)B(x, t) +

(
K(x̂, t)D(x, t)

)T
P−1(x̂, t)K(x̂, t)D(x, t)

)
+ p̄x

(
b̄2 +

δ̄2
1r

r̄2
tr
(
P 2(x̂, t)

))(∫ 1

0

ε1

∥∥∥∥ ∂s

∂µ

∥∥∥∥2

dµ+
1

ε1

)
+

1

2
p̄x2

(
b̄2 +

δ̄2
1r

r̄2
tr
(
P 2(x̂, t)

))∫ 1

0

∥∥∥∥ ∂s

∂µ

∥∥∥∥2

dµ

(6.31)

Therefore,

LV (s, δs, t) ≤
∫ 1

0

(
∂s

∂µ

)T (
− P−1(s, t)

(
F (s, t)P (s, t) + P (s, t)FT (s, t) + 2αP (s, t)− P (s, t)

(
− 2κI

+HT (s, t)R−1(s, t)H(s, t)
)
P (s, t) +

(
K(x̂, t)−K(s, t)

)
R(x̂, t)

(
K(x̂, t)−K(s, t)

)T)
P−1(s, t)

+ P−1(s, t)
(
P (s, t)FT (s, t) + F (s, t)P (s, t) +

(
K(s, t)−K(x̂, t)

)
R(s, t)

(
K(s, t)−K(x̂, t)

)T
−K(s, t)R(s, t)KT (s, t)

)
P−1(s, t)− 2κ1I

)
∂s

∂µ
dµ+ V̄2

=

∫ 1

0

(
∂s

∂µ

)T (
−2αP−1(s, t)− 2κI − 2κ1I

) ∂s

∂µ
dµ+ V̄2

≤ −2α1V (s, t) + V̄2

≤ −2α2V (s, t) + δ2

(6.32)

where α1 and α2 are defined after Eq. (6.25), and a lower bound of δ2 is given by Eq. (6.25). Our proof and

assumptions follow the steps in [93], but we do not require the parameters that bounds SDCs. �

6.3.3 LMI Formulation

We present an algorithm that computes the gain for the estimator given in Eqs. (6.6)-(6.8). We approximate

Ṗ (x̂, t) to its steady state value [93] and convert the differential Riccati equation in Eq. (6.8) to an algebraic
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Riccati inequality given by

F (x̂, t)P (x̂, t) +P (x̂, t)FT (x̂, t) + 2αP (x̂, t)−P (x̂, t)
(
−2κI +HT (x̂, t)R−1(x̂, t)H(x̂, t)

)
P (x̂, t) ≤ 0 (6.33)

We multiply both side of Eq. (6.33) with Q(x̂, t) = P−1(x̂, t) to derive the algebraic Riccati inequality

given by

Q(x̂, t)F (x̂, t) + FT (x̂, t)Q(x̂, t) + 2αQ(x̂, t) + 2κI −HT (x̂, t)R−1(x̂, t)H(x̂, t) ≤ 0 (6.34)

We solve a convex optimization problem with the LMI constraint given by Eq. (6.34). We minimize the

mean-squared estimation error E
[
‖x− x̂‖2

]
which converges to δ2

2pα2
as shown in Eq. (6.24). By approxi-

mating the covariance of the measurement noise with a constant matrix R(s, t), Eq. (6.25) can be extended

as

δ2
2pα2

≥
p̄x
ε1
κp + p̄b̄2 +

δ̄21
r̄ tr (P (x̂, t))

2pα2

≥

(
p̄x
ε1

+ p̄
)
b̄2 +

(
p̄x
ε1

tr
(
P 2(x̂, t)

)
+ tr (P (x̂, t))

)
δ̄21
r̄

2

(
pα+ κ+

(pδ1)
2

p̄2r

)
−
(
b̄2 +

δ̄21
r̄ tr (P 2(x̂, t))

)(
ε1p̄x +

p̄x2

2

) (6.35)

To reduce the lower bound for δ2
2pα2

, we want to minimize p̄x
ε1

tr
(
P 2(x̂, t)

)
+tr (P (x̂, t)) and b̄2+

δ̄21
r̄ tr

(
P 2(x̂, t)

)
by minimizing tr (P (x̂, t))

2
and tr (P (x̂, t)). We want to minimize

(
p̄x
ε1

+ p̄
)
b̄2 and maximize pα+κ+

(pδ1)
2

p̄2r

by minimizing λmax

(
P−1(x̂, t)

)
and maximizing λmin

(
P−1(x̂, t)

)
and κ. Since tr

(
P 2(x̂, t)

)
is not a convex

function of P (x̂, t), we minimize its convex upper bound tr (P (x̂, t))
2
.

Considering these conditions, we apply a convex objective function which as follows:

min
(

Λ1tr
(
Q(x̂, t)−1

)2
+ Λ2λmax (Q(x̂, t))− Λ3λmin (Q(x̂, t))− Λ4κ

)
subject to Eq. (6.34)

(6.36)

Eq. (6.36) follows the structure of the convex optimization problem presented in [93] except for the SDC

parametrization. The estimator in Eqs. (6.6)-(6.8) reduces the mean-squared estimation error using the

solution of the convex optimization problem described in Eq. (6.36).
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(b) Localization and mapping with convex optimization

Figure 6.2: Numerical simulation results

6.4 Numerical Simulations

In this section, we present simulation results of localization and robot-centric mapping and analyze the

performance of the convex optimization based SLAM estimator in comparison with an EKF based SLAM

estimator. During the simulation, the robot travels a circular 3D trajectory for approximately 100 m (see

Figure 6.2) at a velocity of approximately 0.5 m/s and angular velocity of approximately 0.03 rad/s and

observes 16 features (marked with black dots) with 1σ Gaussian white noise in the pixel measurements.

The convex optimization problem is solved using the CVX toolbox [95, 96] with the MOSEK solver [97]

in MATLAB to obtain the positive definite metric P . To expedite the overall computation, the metric P

is computed every 10 time-steps. The estimator gain K is computed every time-step using the piecewise

constant metric P . Figures 6.3 and 6.4 compares the pose error of the robot and the RMSE using the EKF

estimator and our estimator. The error norm of the EKF based SLAM is 3.2591 m, 0.0356, and 10.5795 m

for the location and the quaternion orientation of the robot and the location of the features, respectively.

The error norm of the convex optimization based SLAM is 1.0037 m, 0.023676, and 4.555 m for the location

and the quaternion orientation of the robot and the location of the features, respectively. The accuracy of

the EKF based SLAM degrades with an incorrect initial estimate covariance and the results can quickly

diverge in the worse case. The results show that the trajectory of the robot is estimated more reliably using

our convex optimization based estimator.
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(a) Estimation error of the robot with EKF
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(b) Estimation error of the robot with convex optimization

Figure 6.3: Error in the robot’s pose estimate
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(a) Estimation error of the inverse-depth with EKF
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(b) Estimation error of the inverse-depth with convex opti-
mization

Figure 6.4: Error in the inverse-depth estimates of the features
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6.5 Conclusions

In this chapter, we presented a convex optimization based SLAM algorithm using our localization and robot-

centric mapping system model and a nonlinear estimator implemented with convex optimization. Contrac-

tion analysis of the nonlinear estimator was used to derive an LMI constraint that guarantees exponential

stability under the assumptions that we described. The stochastic incremental stability of the estimator was

used to derive the objective function of the optimization problem that could reduce mean-squared estimation

error.

We showed a comparison of the performance of our convex optimization based estimator and an EKF

estimator via numerical simulations of the localization and mapping. From the simulation results, we

concluded that the convex optimization based estimator could produce SLAM results more accurately than

the EKF estimator without tuning the initial estimate covariance
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Chapter 7

CONCLUSIONS AND FUTURE
WORK

In this chapter, we provide a brief summary and a list of major contributions of this dissertation. We also

recommend future work in the areas of estimator design and on-vehicle experiments.

7.1 Thesis Summary and Contributions

In this dissertation, we developed vision-based localization and mapping methods that can enhance the

accuracy of the localization and mapping results for two different applications: the riverine mapping with

a UAV and the autonomous mowing with a robotic mower. We formulated a system model that exploited

the robot-centric mapping framework and localization of the robot with respect to its initial pose. We

exploited a multiple-view geometry formulation with initial and current view projection of point features

and the reflection of features for the riverine SLAM problem. We demonstrated that the observability of

the estimation system is improved by applying our proposed methods and showed enhanced localization

and mapping results in both numerical simulations and real-world experiments. We also presented a convex

optimization based localization and mapping algorithm using incremental stability analysis. We assured the

performance of the localization and mapping using the proposed convex optimization based estimator.

Monocular-Vision-Based Localization and Mapping for a UAV with a Planar Ground Assump-

tion

We presented a monocular-vision-based algorithm with a particular focus on navigation of a UAV in mul-

tiple environments. Our method exploited the planar ground assumption in multiple environments. In the

presence of coplanar features and the knowledge of the camera height, we have shown that the range and

bearing to the landmarks on the ground plane can be measured instantaneously. We estimated the attitude

of the UAV separately by exploiting the epipolar geometry with multiple features that are not required to

be included in the FastSLAM estimation state vector. Localization and mapping was performed by applying

the CMKF based FastSLAM algorithm to the attitude and range estimation. The results were obtained

in an indoor environment from the Beckman Institute at the UIUC, and in outdoor environments at the
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Engineering Quad and Boneyard Creek at the UIUC. It was demonstrated that with our algorithms, a

monocular based system is able to perform visual SLAM that generates a structured map of the ground

plane and obtains a pose estimate of the vehicle.

Vision-Based Localization and Robot-Centric Mapping in Riverine Environments

We presented a vision-based SLAM algorithm developed for riverine environments. The water reflections

of the surrounding features were used for SLAM for the first time. The performance of our visual SLAM

algorithm was validated through numerical simulations. We also demonstrated the effectiveness of our

algorithm with real-world experiments that we conducted at Crystal Lake. The numerical simulation results

and the real-environment experimental results showed that the accuracy in the estimation of the UAV’s

location along the X-Y plane in riverine environments is greatly improved by using our localization and

robot-centric mapping framework with reflection measurements.

We believe that the water reflections of the surrounding features are important aspects of riverine en-

vironments. The localization results of our localization and robot-centric mapping system with reflection

measurements outperformed the anchored IDP SLAM method because additional geometrical constraints

are exploited by using reflection measurements to estimate the depths of the features and the location of

the UAV. The superior performance of our localization and robot-centric mapping system with reflection

measurements was expected in the experiments due to its larger degree of observability compared to the

anchored IDP SLAM method.

Observer Design for Localization and Mapping with an Omnidirectional Camera for Au-

tonomous Mowing

An omnidirectional vision based localization and mapping algorithm for an autonomous mower was pre-

sented. A nonlinear observer was designed using pseudo-measurements of landmarks’ depth for robot-centric

landmark mapping. A boundary estimation strategy using localization results was described. We proposed

to use the estimated boundary and landmark map to estimate the location of the mower for autonomous

mowing. Numerical simulations illustrated the convergence of the estimates and the capability of using the

estimates for containment of the mower. Preliminary experimental results showed boundary estimation and

landmark mapping with a set of data collected with our autonomous mower.

Omnidirectional-Vision-Based Estimation for Containment Detection of a Robotic Mower

The boundary estimation and landmark mapping, mowing location estimation, and containment detection

of a robotic mower was presented with an omnidirectional-vision-based system. We designed a model for
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the localization and mapping with a robot-centric framework which uses inertial measurements and velocity

measurements, along with unit vector vision measurements. As we showed with numerical simulation results,

our method could outperform a well-known exiting method due to its relatively high degree of observability.

The outdoor experimental results demonstrated the process of our entire algorithm.

Convex Optimization Based SLAM

We presented a convex optimization based SLAM algorithm using our localization and robot-centric mapping

system model and a nonlinear estimator implemented with convex optimization. Contraction analysis of the

nonlinear estimator was used to derive an LMI constraint that guarantees exponential stability under the

assumptions that we described. The stochastic incremental stability of the estimator was used to derive the

objective function of the optimization problem that could reduce mean-squared estimation error.

We showed a comparison of the performance of our convex optimization based estimator and an EKF

estimator via numerical simulations of the localization and mapping. From the simulation results, we

concluded that the convex optimization based estimator could produce SLAM results more accurately than

the EKF estimator without tuning the initial estimate covariance.

Summary of Contributions

The contributions of this dissertation are summarized as follows:

• We formulated a system model that exploited a differential equation of motion of robot-centric mapping

for the localization of the robot with respect to its initial pose.

• Using the robot-centric estimation framework, we reported experimental results of containment detec-

tion with an omnidirectional camera for robotic mowing applications for the first time.

• We used a multiple-view geometry formulation with initial and current view projection of point features

and reflection of features in a riverine environment.

• We reported the first result that exploited the reflections of features in a riverine environment for

localization and mapping.

• Using incremental stability analysis, we formulated a convex optimization based localization and map-

ping algorithm that could outperform EKF based methods.
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7.2 Recommended Future Work

We have shown the enhancement in the performance of the localization and mapping using the robot-centric

mapping framework and multiple view measurements with real-world experimental results, but the results

were obtained offline. Recommendations of future work to achieve successful on-vehicle experimental results

are as follows:

• To perform precise localization in real-time, an accurate dense map has to be provided to the robot.

Therefore, a large set of features should be extracted from the vision data with tracking and matching

results that are highly reliable.

• Additional constraints from the surrounding environment can improve the estimation results. For

example, a planar constraint can be used to enhance the accuracy of the results if we can extract

regions from building walls.

• The localization and mapping results should be accurate and robust to the tracking error and to the

error in the calibration of the vision sensor and the IMU used in our algorithms. Since the estimate

of a feature in our algorithms include the unit vector direction or the normalized pixel coordinates of

the feature, we can use the estimation results to predict the location of the feature in the next image

frame and achieve robustness to abrupt motion.

We have presented a convex optimization based SLAM algorithm. Stochastic incremental stability has

been used to derive the lower bound of the mean-squared estimation error of our SLAM estimator. We can

investigate an objective function of the convex optimization problem that can represent the mean-squared

estimation error more precisely and reduce the error more effectively.
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