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Abstract 

Breast cancer (BC) is the most commonly diagnosed cancer in women, the leading cause 

of cancer death in females worldwide,1 and the second in American women (after lung cancer) 

according to CDCi. In the most advanced stage of BC, stage IV, cancer cells metastasize from 

the original site to distant organs, such as bone, lung and liver. Tumor metastasis is responsible 

for nearly all of the morbidity and mortality associated with BC.2 Treatments of BC fail in the 

advanced stage, when metastases have already occurred.3
  

To mimic late stage BC in female patients, a mouse model was utilized to create a micro-

metastatic lesion by implanting a small number of metastatic murine mammary tumor cells into 

the marrow cavity of tibia. Subsequent lung metastasis was evaluated. Previously our group 

reported that estrogens and phytoestrogens stimulated BC primary tumor growth in mice.4,5
 

Estradiol stimulated ER negative BC metastasis in mice.6
 Based on foregoing studies, the 

hypothesis of this study is that the aromatase inhibitor letrozole may inhibit BC metastases to 

lungs by suppressing estrogen synthesis. BC growth on the bone micro-metastatic site and lung 

metastases were monitored in live animals via Bioluminescence Imaging (BLI). Effects of 

ovariectomy and letrozole on body estradiol levels were examined. Tumor nodules on lungs 

stained with India ink were counted. Furthermore, tumor grown in lungs was analyzed via H&E 

staining and proliferative cell percentage in lung tumors was calculated via Ki-67 staining. Our 

results showed that ovariectomy lowered body estrogen level and increased bone tumor area 

and density as indicated by BLI, while letrozole inhibited BC lung metastases in mice inoculated 

with murine 4T1 cancer cells. 

In a following project, the effects of a Low Calcium Diet (LCD) on BC metastases from bone 

to lungs, and its effects on the bone microenvironment in mice inoculated with murine 4T1 cells 

were studied. Bioluminescence imaging and India ink staining were used to evaluate tumor 

metastasis to the lungs. India ink stained lungs showed that LCD increased tumor numbers on 

the surface of lungs compared with control diet. LCD also induced negative impacts on the bone 

microenvironment where the primary tumor grows.  

In the third project, the effects of a high fat diet (HFD) on BC growth and metastasis in mice 

inoculated with murine 4T1 or 4T1.2 BC cells were studied. HFDs have been associated with 

BC progression and metastasis, indicated to increase BC risk by raising estradiol level.7,8 In 

BALB/c mice, dietary fat was found to increase mammary tumor growth and metastasis, and 

increase mortality.9 In this study, effects of HFD on mammary ductal tumor growth and BC 

metastasis in mice were evaluated. Metastases from bone to visceral tissues were monitored by 

BLI. It is found in this project that HFD increased BC metastasis to lung and liver in mice 
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injected with 4T1.2 cells as shown by H&E staining. Mice injected with 4T1.2 cells developed 

more aggressive metastasis than mice with 4T1 cells, and also had higher liver weight and more 

liver lipid accumulation.  
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1.1 Breast Cancer  

As a global disease, breast cancer (BC) is becoming an increasingly urgent problem in low- 

and middle-income countries, where its incidence is on the rise as populations increasingly 

adopt western lifestyles. Cases increase in Africa and Asia, although prevalence is still the 

highest in Europe and the Americas.10 In developing countries, a large fraction of women with 

BC are diagnosed with advanced-stage disease and have no access to treatment or basic 

palliative care.11 Thus a critical issue arises in regard to how we can transform existing 

knowledge about diet and BC into preventative or cautious practices among patients. 

Metastasis is the primary cause of cancer treatment failure.12 It usually occurs at later 

stages of BC, resulting in numerous comorbidities in patients. Lung is considered as a filter 

between the primary tumor and other secondary sites, and is therefore the organ most likely 

containing metastatic BC at autopsy.13 It was reported that isolated lung metastasis occurs in 

10-20% of all women with BC and around 60-74% of patients who died of breast carcinoma 

developed lung metastasis.14,15 Another frequent site for BC metastases is bone. Around 70% of 

patients with BC have bone metastasis,16 and up to 75% of women with advanced BC develop 

bone metastasis,17 which can lead to advanced disease of bone destruction and mortality.18  

During the last decade, there have been significant improvements in managing early stage 

BC patients. The 5-year survival rate for localized BC has increased to 98% compared to 72% 

in the 1940s. A decrease in mortality occurred mainly due to earlier detection and improved 

therapy. In contrast, metastatic BC remains essentially incurable with a 5-year survival rate of 

21%. Most BC deaths result from complications of metastases rather than from the primary 

tumor. Tumor cells in the bone marrow of BC patients, as shown from clinical studies, correlate 

with a poor prognosis and predict for early recurrence.19 

Studies have also found a set of genes mediating BC metastasis through their vascular 

remodeling functions, including EREG ii, COX2 iii, MMP1 and MMP2 iv.20 Specifically for lung 

metastasis, several extracellular modifiers were reported to cooperate, including SPARC v , 

CXCL1vi, VCAM1vii, IL13RA2viii, ROBO1ix, and ID1x.21 Besides, TGFβxi and NF-κBxii pathways 

were implicated in lung metastasis too.22 In animals implanted with BC tumors, expression of 

these genes can vary depending on the cell line used. Gene expressions can also be modulated 

by diet, and program cancer metastasis. 

1.1.1 Tumor Microenvironment  

As proposed in the Seed and Soil theory by Stephen Paget, the microenvironment in the 

secondary organs is among the three key influential factors that determines the fate of cancer 

metastasis. The process of metastasis involves complex interactions between tumor cells and 
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the environment. The capability of tumor cells to metastasize cannot be entirely explained by 

circulatory routes.19 The microenvironment dictates whether cancer cells of a given molecular 

phenotype would be supported or inhibited during metastasis.23 The host microenvironment 

must provide appropriate conditions for the tumor cells to survive and proliferate. BC cells show 

a marked predilection for the skeletal system and can adhere to bone marrow stromal cells. The 

abundance of cytokines and growth factors produced by cells of the hematopoietic 

microenvironment are regarded to facilitate tumor cell behavior in an autocrine and/or paracrine 

fashion.19 

There is dramatic difference between premenopausal women and postmenopausal women 

on the presence of growth factors in the bone pre-metastatic niche. Premenopausal women 

would have a lower biological activity of activin and TGFβ in this niche due to presence of the 

inhibitors - inhibin, oestrogen and progesterone.24 Whereas in post-menopausal women, high 

activin and TGFβ activity may predispose to a tumor cell with active tumor suppressor smad2/3 

signaling, macrophages polarised to an antitumor phenotype, fibroblasts with functional TGFβ 

signaling and anti-tumor growth signaling and antiangiogenic effects of activing; eventually 

modify disseminated tumor cells to a less aggressive phenotype.24 

1.1.1.1 Bone Micrometastasis 

Around 25-43% of BC patients have micrometastatic disease in the bone marrow, even 

after resection of their primary tumors.25 Another study estimated that 12-45% of patients with 

primary operable BC could have tumor cells in the bone marrow as determined by 

immunocytochemistry.26  

Detection of disseminated tumor cells in the bone marrow of patients at surgery was 

reported to correlate with subsequent development of clinical bone metastasis.23 

Micrometastasis in bone has been shown as a biomarker for BC survival in patients. Molino A. 

et al. found evidence of longer disease-free and overall survival for patients with negative bone 

marrow, when the time-dependent evolution of bone marrow aspirates was taken into account. 

Even though the study was started in early 90s and was limited by the technical availability then, 

their results still hold value in interpreting the role of bone marrow micrometastasis in BC patient 

long term outcome, owing to the very long follow-up (13 years) and large number of bone 

aspirates taken.27 Another study reported that immunocytochemical detection of micrometastatic 

cells in the bone marrow but not in lymph nodes is an independent prognostic risk factor in node 

negative BC that may have implications for surgery and stratification into adjuvant therapy 

trials.28 
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Additionally, studies found that both the overall rate of death and rate of death from BC 

among patients with micrometastasis were significantly higher than the rate of death among 

patients without micrometastasis in the bone marrow.29 There is strong evidence from clinical 

studies that BC patients with bone marrow micrometastasis, which is defined as the presence of 

single cancer cells or microscopic cancer cell-clusters in the bone marrow, have a shorter time 

to recurrence and decreased overall survival.23 

Besides, bone marrow may also act as a long-term reservoir of tumor cells, which can 

recirculate to other distant organs before growing into metastases, as reported by Vincent-

Salomon A. et al. The high genetic heterogeneity of bone marrow micrometastatic cells might be 

responsible for recirculation of some cancer seeds from the bone marrow to different host 

organs. However, no biological or clinical study has directly reported such a process for bone 

marrow DTC and currently there is no direct evidence suggesting that they are responsible for 

the late growth of lung or liver metastases.26 

1.1.1.2 Animal Models for Bone Micrometastasis 

The majority of animal models available for studying skeletal metastases focus on the 

relationship between tumor cells and bone, but clinical and experimental observations suggest 

that bone marrow may be the initial target tissue. Bone metastases are usually found in close 

association with bone marrow and frequently involve bones with a high proportion of red 

marrow.19 

It was stated by some researchers that an ideal in vivo model of BC metastases to the 

marrow should simulate the real pathological condition. Currently, producing skeletal 

metastases in established models are usually achieved by manipulation of blood flow to the 

vertebrae, direct injection of tumor cells into the bone or left ventricular/intra-arterial injection. 

For example, widespread arterial dissemination of tumor cells can be generated via the 

intracardiac injection model by bypassing the lungs in order to seed cells to various organs. This 

method was employed in a study with luciferase-positive MDA-MB-231 derivative cell lines that 

were selected for enhanced in vivo metastasis to the bone in athymic nude mice.30 

While these systems provide valuable information, researchers argued that implanting 

tumor cells at the site of origin may be required for expression of the cellular properties 

associated with metastasis. An appropriate microenvironment may be essential for the 

development of metastatic phenotype. However, though orthotopic models have been described 

for a variety of tumor types, spontaneous bone marrow metastases from a primary breast tumor 

has not been described. In general, such a model is regarded necessary to evaluate the 
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mechanisms involved in metastasis and determine the timing and actual target (bone or bone 

marrow) of DTCs.19 

1.1.2 Disseminated Tumor Cells in the Bone 

Early BC can relapse even years after successful treatment of the primary tumor. It has 

therefore been hypothesized that individual tumor cells spread to secondary sites in the body 

where they can persist for long periods of time before initiating metastatic growth.31 For most 

patients with solid tumor, they undergo a complete resection of primary tumor, but still harbor a 

considerable risk of death from metastatic relapse due to minimal residual disease not 

eliminated by primary surgery, radio- or chemotherapy.32 

Since many advanced BC patients develop bone metastasis, it is crucial to understand the 

basis of bone marrow micrometastasis. Currently, little is known about the molecular 

mechanisms that govern dissemination of cancer cells to the bone marrow, their survival and 

dormancy in this niche, and progression from bone marrow micrometastasis to clinical 

metastasis.23 Clinical studies have reported a link between bone marrow DTC and the onset of 

bone metastasis, supporting the idea of local growth of DTC into macrometastases.26 

Furthermore, the persistence of DTCs during adjuvant treatment of stages I-III BC predicts an 

increased risk of disease relapse and death.31 For most bone marrow DTC-positive patients, 

they never relapse, while others experience dramatic metastatic progression.26 

Now clinical manifestation of distant relapse is recognized as a consequence of early tumor 

cell dissemination, thus search for residual micrometastatic cells has become an issue of 

significant interest. With regional lymphatic spread considered as paralleled by hematogenous 

dissemination of tumor cells as a function of tumor load quantity,28 up to 30% of node negative 

BC patients will recur with distant metastasis within 5 years after diagnosis, which may have 

arisen from occult metastatic cells present in secondary organs at diagnosis.28  

Besides, DTCs have been described to survive chemotherapy and hormonal therapy,31 and 

can persist in bone marrow in a dormant, non-proliferative state over many years post-surgery.32 

Dormancy for DTCs is defined as the period from the dissemination of tumor cells until the 

appearance of clinically manifest metastases; during this time these cells appear to remain 

latent.25 Factors that determine tumor cell dormancy are unclear, but may relate to the lack of 

the primary tumor microenvironment, such as the absence of stimulating growth factors and 

presence of growth-inhibiting cytokine.26 

DTC has been shown as an independent predictor of disease-free survival and overall 

survival in BC patients.31 Hartkopf A.D. et al. reported that DTCs were detectable in 26% of 

bone marrow aspirates collected from 3141 patients. As compared to DTC-negative patients, 
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DTC-positive patients more frequently had larger tumors, lymph node involvement, hormonal 

receptor positive tumors and HER2-positive tumors. DTC-positive patients were also at an 

increased risk of relapse and death.31 However, in another prospective cohort study including 

unselected patients before the standard procedure was established, detection of DTCs in bone 

marrow was not able to be confirmed as an independent prognostic marker of poor prognosis in 

primary BC.33 

1.1.3 Occult Micrometastasis as Circulating Tumor Cells 

Besides DTCs detected in bone or other secondary organs, there are also occult 

haematogenous micrometastases reported in BC patients.25 Depending on the detection 

technique used, circulating tumor cells (CTC) were found in 50-100% of patients with metastatic 

BC. Even in patients with no clinical signs of overt metastases, detection rates range from 10% 

to 60%.26 It is unknown whether these cells reach secondary organs and survive there to form 

manifest metastases. But the number of these CTCs is reported to decrease with time after 

primary surgery.25 

The medullary space is a site of particularly intensive cell exchange between circulating 

blood and mesenchymal interstitium.25 Two immunocytochemical studies demonstrated 

statistically significant correlations between DTC detection in bone marrow and CTC in blood, 

but bone marrow was more frequently positive than blood. Detection of DTC in bone marrow 

based on Real-Time rt-PCR had superior significance to CTC measurements in blood.26 Another 

study suggested that cancer cells detected in the bone marrow are different from those in the 

blood, although DTCs that colonize the bone marrow pass through the blood.23 Plus, current 

findings do not support an exchange of DTC in bone marrow with CTC from blood.26 

There is evidence showing that CTCs can be used as a biomarker for BC patient survival. 

In a prospective, multicenter study, 177 patients with measurable metastatic BC for levels of 

CTCs were tested before starting a new line of treatment and at the first follow-up visit. 

Specifically, the number of CTCs before treatment is an independent predictor of progression-

free survival and overall survival in patients with metastatic BC.34 

However, other observations from studies showed that CTCs does not predict outcome in 

newly diagnosed BC patients. Presence of CTCs may be necessary, but is not sufficient for the 

development of metastases. It is argued that techniques used for the identification of 

micrometastatic tumor cells did not evaluate their viability or growth potential. Animal studies 

and clinical observations have demonstrated that metastasis is inherently an inefficient process. 

Studies employing tagged tumor cells have documented that micrometastases in some organs 

are a transient phenomenon. Evidence also suggested that very few metastatic tumor cells 
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actually proliferate and even fewer form macrometastases, possibly due to their clonogenicity. 

These cells may not have an angiogenic phenotype or the host microenvironment may be 

inadequate for their sustained growth, for example, lack of appropriate growth factors and/or 

adhesion/signaling molecules. Potentially random activation of additional genes was pointed out 

to be necessary to convert micrometastatic tumor cells into gross metastases.19 

1.2 Letrozole 

Letrozole is a third generation aromatase inhibitor which inhibits the enzyme aromatase that 

converts androgens to estrogens in women, mostly postmenopausal women, and is used to 

treat BC. After menopause, women’s body estrogen is no longer supplied by ovary, but mostly 

generated, in much smaller amounts, from nonovarian tissues, such as the breast, the bone, the 

brain and the adipose tissue. Letrozole, as one of the aromatase inhibitors developed, was used 

to suppress estrogen production from these other sites by the enzyme aromatase, thus lower 

body estrogen level and suppress BC growth and development in BC patients.35 

Having been studied extensively in postmenopausal women with metastatic BC, as either a 

second-line or first-line Aromatase Inhibitor (AI) treatment or in adjuvant settings36,37
, the efficacy 

of letrozole to treat BC in premenopausal patients remains to be elucidated. Though it is mainly 

recommended for post-menopausal women considering their body estrogen no longer supplied 

from ovary but transformed by aromatase in other organs, there are studies using letrozole in 

premenopausal women with BC together with goserelin showing positive outcomes.38-40
 Yet 

scarce data can be found regarding its use in premenopausal females as a single-agent 

treatment. Letrozole effectively abrogated aromatase-induced mammary hyperplasia in 

aromatase transgenic mice and was suggested as capable of blocking in situ estrogen 

production in breast tissue in premenopausal women.41
 Another study in rats suggested its 

efficacy in suppressing mammary carcinogenesis in a premenopausal model.42
  

Traditionally, the antiestrogen (AE) tamoxifen has been used to treat BC in patient by 

blocking the binding of estrogens to estrogen receptors (ER). Many organs in the body, 

including the mammary gland, as well as some of the mammary tumors themselves, express 

estrogen receptors. As a first-line or adjuvant endocrine treatment, tamoxifen has shown 

effectiveness in treating BC tumor growth, in mostly estrogen responsive or ER+ tumors. On the 

other hand, there are side effects from tamoxifen reported as well. AIs that lower estrogen level 

by inhibiting the enzyme aromatase and suppress mostly estrogen responsive mammary tumors 

have been compared with AEs and have shown fewer side effects than tamoxifen in vitro.35 One 

study showed that Selective Estrogen Receptor Modulators (SERMs)/antiestrogens and AIs 

exhibited opposed effects on the ER expression of BC cells: tamoxifen up regulated ERα 
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expression, while AIs increased ERβ expression. And this may contribute to the therapeutic 

superiority of AIs over antiestrogens. 11 

1.2.1 Letrozole Resistance 

Since letrozole directly interferes with estrogen production in the body and lowers body 

estradiol level, it has mostly been used to treat estrogen responsive BC or ER+ BC. Although 

effective as an anticancer agent, resistance to letrozole was reported in studies. It was observed 

in clinical trials that although AIs have been proven as an effective treatment for ER+ BC, some 

BC patients may eventually relapse during AI treatment while others may never regain 

responsiveness.43 In vitro studies also showed that long-term letrozole-treated cells and tumors 

became insensitive to hormone therapy, probably because they adapted to the extreme 

conditions of estrogen deprivation.44 Such drug resistance or non-responsiveness might develop 

in animal models as well. Future studies with better controlled variance are in need to explore 

the mechanism of this drug in animals. 

The mechanism of letrozole resistance has been studied but is still vague. Sensitivity of 

TGF-β signaling was reported to be compromised in letrozole-resistant BC cells. 45 4T1 cells 

were reported to express TGF-β receptors and blockage of TGF-β inhibits 4T1 cell migration 

and metastases.46 PELP1 was also reported to be related to letrozole resistance in BC cells.47 

Down-regulation of the ER coregulator PELP1 affected the proliferative ability and migration of 

4T1 cells as shown in another study.48  

To delay the development of AI resistance, blocking ER was shown effective in studies.44,49 

Additionally, a short period without letrozole to let the tumor regain responsiveness was 

suggested as effective in reversing the resistance to AI and delaying the need for 

chemotherapy.50  

1.2.2 Effects of Letrozole on the Bone 

Most of the BC patients and survivors are postmenopausal females with lower body 

estrogen levels, lower calcium absorption and higher bone turnover compared with 

premenopausal females. One of the animal models of studying late stage BC metastasis is 

injecting BC cells directly into the tibia to mimic micrometastatic tumor growth in the bone and 

subsequent metastasis, same as the model used in our research group.51 Since the bone 

microenvironment would dictate BC tumor growth, it would be of vital interest to know whether 

the treatment or diet in a study would affect the bone microenvironment or not. Moreover, any 

changes to the bone microenvironment from the treatment or drug, such as the action of 

releasing growth factors to the tumor, may influence and even exacerbate BC development in 

the body.  
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1.2.2.1 Reported No Adverse Effects from Letrozole 

There were few studies showing that there is no effect of letrozole on the bone. In a study, 

women receiving letrozole experienced more hormonally related side effects than those 

receiving placebo, but the incidences of bone fractures and cardiovascular events were the 

same. They concluded that letrozole after tamoxifen is well-tolerated and improves both 

disease-free and distant disease – free survival but not overall survival, except in node-positive 

patients.52 

Though previously reported to induce bone loss, several animal studies showed that 

letrozole had no effect on bone turnover. In one study, letrozole inhibited BC tumor growth 

without inducing uterine hypertrophy or affecting Bone Mineral Density (BMD) in ovariectomized 

nude mice, suggesting that letrozole is an effective and safe (in terms of risk of endometrial 

cancer risk and osteoporosis) alternative or complement to tamoxifen treatment for BC.53 In 

another study, OVX rats treated with letrozole had similar BMD, bone biomarkers, mechanical 

failure properties, and lipid levels to those of OVX controls. Thus they concluded that 

nonsteroidal inhibitor letrozole did not affect bone loss, bone mechanical strength, and serum 

cholesterol and low-density lipoprotein levels in OVX rats.54 

More studies were conducted in clinical settings, and showed that letrozole has been 

working when incorporated into BC therapy. For example, one study showed that primary 

endocrine therapy with aromatase inhibitors is an option in elderly patients unfit for or unwilling 

to undergo surgery. Letrozole was shown as a reasonable alternative in elderly women with 

early ER/PR-positive invasive BC that are unfit or unwilling to undergo standard therapy.55 

1.2.2.2 Reported Adverse Effects from Letrozole 

However, women with BC, especially those receiving AIs, are indeed regarded to be at 

higher risk for bone loss and fracture. Postmenopausal women may already have multiple risk 

factors for fracture, and BC therapies compound these risks.56 One study evaluated bone health 

in a prospective clinical cohort of patients recruited prior to adjuvant AI therapy, and showed 

that low bone mass, prevalent fractures and vitamin D insufficiency were highly prevalent 

among candidates to adjuvant AI for early BC.57 In a large prospective clinical trial, about one-

quarter of the patients entered discontinued the AI therapy. Musculoskeletal adverse events 

represent a major impediment to the use of AIs and have been the major single cause of 

patients discontinuing AI therapy.58 A retrospective longitudinal analysis of a large cohort of BC 

patients demonstrated that AI therapies carry an increased risk of bone loss, which corroborates 

previous findings from smaller clinical trials.59 In a case report, when letrozole was taken at one 
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dose daily (2.5mg), a patient had recurrent hypercalcemia, suggesting that letrozole may 

precipitate hypercalcemia in a patient with BC.60 

Letrozole, as one of the AIs, has been compared with other AIs on effectiveness to treat BC 

and side effects on the bone. In a prospective, open-label, randomized pharmacodynamics 

study designed to assess the effects of AIs on bone turnover in healthy postmenopausal women 

with ER+ BC, effects of letrozole on bone turnover increased with time.61 In an open, 

randomised Phase I study comparing three licensed AIs on bone turnover markers, lipid profiles 

and adrenal function, letrozole induced increases in bone resorption markers, similar as other 

AIs.62 

Studies comparing non-steroidal AI, such as letrozole, with steroidal AI on the side effects 

showed varied results. In a study, exemestane was compared with nonsteroidal AIs anastrozole 

and letrozole on serum and urine levels of biomarkers of bone turnover in healthy 

postmenopausal women. The steroidal aromatase inactivator exemestane did not have 

detrimental effects on bone in animal models, in contrast to nonsteroidal AIs.63 While when 

tested against each other in postmenopausal women with early BC, all of the AIs, both 

nonsteroidal (anastrozole and letrozole) and steroidal (exemestane), were reported to cause 

similar increases in bone turnover markers, with no difference between the two drug classes. 

The absolute fracture risk in early BC patients receiving AI therapy remains relatively low, 

although still higher than that in the general population of postmenopausal women, and this 

should not be a reason for excluding patients from highly effective adjuvant treatment, such as 

AIs.64 

Used in premenopausal women as reported in several studies, treatment including letrozole 

as an adjuvant therapy showed side effects. One study showed clinical efficacies in 

premenopausal metastatic BC patients with combined letrozole and goserelin therapy 

comparable to those in postmenopausal patients treated with letrozole alone. They also showed 

that letrozole+ goserelin resulted in a modest increase in bone resorption.65 Another single-arm 

phase II study in premenopausal women showed that letrozole as an adjuvant therapy induced 

side effects together with other treatments, by evaluating the feasibility of administering 2 years 

of ovarian suppression with letrozole to patients with BC who remained premenopausal after 

adjuvant tamoxifen. This study closed due to poor accrual over 3.5 years, and a quarter of 

enrollees stopped treatment due to toxicity. Extended therapy with GnRH-a and an aromatase 

inhibitor (plus optional bisphosphonate) is associated with substantial side effects in 

premenopausal women who have already completed > 4.5 years of adjuvant tamoxifen.66 

1.3 Low Calcium Diet (LCD) and BC 



 

11 
 

1.3.1 Calcium as a Growth Factor for BC Metastatic Tumor in the Bone  

The bone microenvironment serves as the soil, once cancer colonized in this niche, the soil 

produces growth factors to create an environment conducive for tumor to grow. On the other 

hand, this is rather a two-way communication than a single-way monologue. BC cells produce 

regulating factors in this fertile environment, facilitating their growth in this secondary site.67 

Micrometastasis thus forms, when BC cells begin to proliferate in this new site.68 

Growth factors secreted from the bone microenvironment include TGF, IGF-1, FGF, PDGF, 

BMPs, cytokines, chemokines, and cell adhesion molecules. Calcium ions are also among 

these important factors secreted from the bone to promote tumor growth. The high extracellular 

calcium concentration provides a physical environment favorable for tumor growth.67 Besides, 

these growth factors from the mineralized bone matrix can also feedback to promote further 

production of osteolytic and osteoblastic factors from the bone.69 Concurrently in this process, 

cancer cells secrete factors to increase bone resorption. These growth factors from cancer cells 

include PTHrP, which mimics the action of PTH, interleukin-8, and MIP1 alpha in multiple 

myeloma.68  

Tumor metastasis in the bone involves changes on the network of gene and protein 

expressions, such as matrix metalloproteinases, interleukin‑6, Jagged 1–Notch, GLI2, RUNX2, 

hypoxia-induced growth factor 1α, calcium and the calcium-sensing receptor.69 

1.3.2 Clinical Trials on LCD and BC 

Su X. et al. studied the association between calcium intake during adolescence and benign 

breast tissue, which is a marker of increased breast cancer risk, and did not find an 

association.70 Although it was previously reported that calcium may have anticarcinogenic 

properties including regulations on cell differentiation, proliferation and apoptosis, yet Anderson 

L.N. et al. did not find a significant association of calcium supplement intake and reduced breast 

cancer risk in pre- or post-menopausal women, but observed a significant inverse trend.71 In a 

case control study in Japan, Kawase T. et al. found that calcium intake is protective against 

breast cancer risk in postmenopausal women only, and the association is modified by tumor 

receptor status (significant only in ER+ and/or PR+⁄HER2 + postmenopausal BC and ER+ 

and/or PR+ ⁄HER2- postmenopausal BC); while no association was found in premenopausal 

women.72 

In a large European prospective cohort study, Abbas S. et al. did not find any association 

between dietary vitamin D or calcium intake and BC risk; in postmenopausal women, there was 

a borderline significant inverse association (Ptrend = 0.05).73 They suggested that since blood 

calcium level in humans is tightly regulated, it may not be a good marker indicating calcium 
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status or dietary calcium intake. Thus it is difficult to derive an association from dietary calcium 

intake and BC risk. They also mentioned that most cohort studies so far have suggested an 

inverse association between calcium intake and BC risk in premenopausal women only, but not 

postmenopausal women; while there are also studies finding no association at all.73 

It is still inconclusive regarding the evidence from clinical trials on calcium intake and BC 

risks among women. Some studies suggested an inverse trend despite no association was 

found among women71, while others found no overall association but inverse trend in 

premenopausal women; among postmenopausal women, some reported protective effects72
, or 

borderline significant inverse association73. Intriguingly enough, Almquist M. et al. conducted a 

prospective cohort study of 7,847 women and reported in 2007 that serum calcium level was 

inversely associated with BC risk in premenopausal women in a dose-response manner.74 The 

same group conducted a prospective nested case-control study and reported in 2010 that 

serum calcium level was positively associated with BC risk in premenopausal women.75  

In the first study in 2007, they found no overall association between serum calcium levels 

and BC; while serum calcium levels were inversely associated with BC incidence in 

premenopausal women dose-responsively, but the p for trend was not significant (p=0.25). They 

also found that serum calcium rises with menopause: there was higher percentage of women in 

peri-postmenopausal stages, and these women are also in higher calcium quartiles. This may 

be explained by the fact that with declining body estrogen in these women, bone becomes more 

sensitive to PTH, and results in higher serum calcium.74 In their second study in 2010, they had 

opposite findings that serum calcium was positively associated with BC risk in premenopausal 

women. However, they did mention that it was based on a small number of cases (n=39), and 

the confidence interval for the positive association was wide (1.33–7.22). They hence suggested 

that larger-scale prospective studies are needed for a robust conclusion.75 

In the second trial by Almquist M. et al., they also examined the associations between PTH, 

vitamin D levels and BC risk, since blood levels of these two are closely related to calcium 

levels. PTH was suggested by experimental studies to have carcinogenic and tumor promoting 

effects; while vitamin D was shown to have tumor protective effects such as inhibiting 

invasiveness and angiogenesis. Since calcium levels in serum is associated, or maybe 

stimulated by PTH and vitamin D, the effects of calcium itself on BC seem quite inconclusive, 

though experimental studies suggest that high calcium level have a tumor protective effect. 

Besides, the disease of BC itself may cause hypercalcemia (hypercalcemia of malignancy), 

which adds difficulty to elucidate the association of serum calcium and BC risk. It was 

hypothesized that in postmenopausal women, serum calcium level may reflect more of PTH 
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level instead of vitamin D level. On the contrary, in premenopausal women, serum calcium more 

represents vitamin D level.74 

1.3.3 Animal Models in BC and Calcium Studies 

Hu Z. et al. showed in an animal study that mice injected with BC cells into the left heart 

ventrical and developed bone metastasis had higher serum calcium levels than control mice. 

Basal calcium levels in normal sera were 7.18±0.13 mg/dl; while mice that received tumor cells 

followed by buffer had significantly higher calcium levels: 13.33±1.43 mg/dl (p=0.0006).76 

Animal models aimed to develop bone metastasis have included efforts to inject cancer 

cells into the heart, so that tumor cells can travel to the bone via circulation; or directly inject 

cancer cells to the bone. The second model has been recognized as having the advantage of 

excluding potential metastasis to other visceral organs which might be brought about in the first 

case. 77 

1.3.4 Molecular Studies on Calcium and BC 

Molecular studies examined the mechanisms of how calcium could modulate or interact 

with BC cells in vitro. D’Ambrosio J. et al. reported that osteoblasts can protect BC cells from 

cell death caused by increased cytosolic Ca2+. This mechanism as part of the reciprocal 

interaction of tumor cells and bone microenvironment, can lead to macroscopic skeletal 

metastasis of BC.78 

Vitamin D and calcium insufficiency may cause impairment of VDR and CaSR signaling, 

lead to cellular dysfunction, and thus increase the risk of certain diseases, including BC.79 

Increased extracellular Ca2+ will activate CaSR signaling, and can either reduce cell proliferation 

(as reported in human colon cancer, or ovarian surface epithelial cells), stimulate cell growth 

(reported in malignant Leydig cells), or protect from apoptosis (reported in prostate cancer 

cells).79 Functions of CaSR, together with VDR, have been implicated in how vitamin D and 

calcium can regulate neoplastic mammary gland cell growth in vivo.79-81 

As an intracellular messenger, calcium has been involved in different cell processes 

including proliferation, apoptosis and cell signaling. High calcium level in extracellular 

environment has an “estrogen-like” effect mediated through the calcium sensing receptor (CaSR) 

and even involves estrogen receptor (ER). Yet there is quite inconclusive in vitro evidence so far 

regarding calcium and BC growth.75  

Molecular studies have suggested the involvement of calcium sensing receptor (CaSR) in 

the interaction or modulation of calcium on BC cells. CaSR functions to allow extracellular Ca2+ 

to enter the cells and participate in calcium signaling pathways. The Ca2+/CaSR signaling is also 

closely linked to some functions of the vitamin D receptor (VDR) activated pathways, regulating 
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osteoblast and bone formation, inhibiting colorectal cancer cell proliferation, as well as inducing 

Ca2+ influx into BC cells and activating apoptosis signaling.82 CaSR is highly expressed in 

organs involved in the regulation of mineral ion metabolism in the body, such as the parathyroid, 

kidney, and bone. It is also expressed in the mammary gland79, the gut, the vasculature and the 

lung.83  

CaSR has been closely related to BC bone metastasis. Mihai R. et al. examined the 

histology materials of 65 patients who died from metastatic BC, and found that CaSR is highly 

expressed in those patients who had bone metastasis than visceral metastasis.84 Liu G. et al. 

found that CaSR is involved in how extracellular Ca2+ down regulated cell proliferation, invasion 

and growth of two human BC cell lines: the ER+ MCF-7 cells and the ER- MDA-MB-435 cells. 

Thus loss of CaSR may promote malignancy as they suggested.85 Saidak Z. et al. reported that 

activation of CaSR via calcium is a necessary step and produces a strong chemoattractant 

effect on how extracellular Ca2+ modulates the migration of bone metastatic BC cells to a Ca2+ 

rich environment, such as those near the resorbing bone.86  

Studies also showed that calcium can even interact and activate ER following the activation 

of CaSR by calcium. Leclercq G. reported that high level of extracellular calcium, through 

interacting with CaSR could enhance ERα transcription and confer an active conformation to 

ER.87 Divekar S.D. et al. identified several potential sites on the ERα ligand-binding domain for 

calcium to activate the receptor, and suggested that calcium can mediate the cross-talk 

between ERα activating signaling pathways. 88 

Several other calcium channels were identified in how calcium can affect BC. Peters A.A. et 

al. found that plasma membrane calcium channel TRPV6 is overexpressed in some BC cell 

lines (ER negative), and also suggested that elevated expression of calcium channels and 

pumps is a characteristic of certain BC.89 Britschgi A. et al. found that a calcium-activated 

chloride channel anoctamin 1 (ANO1) is amplified and highly expressed in BC cells and can 

promote BC progression.90 

1.4 HFD and BC 

Several animal studies have linked HFD to increased mammary cancer development or BC 

tumor growth.91,92,93 Response to HFD in mice may be strain-dependent. BALB/c mice, referred 

to as obesity resistant in some studies, would have different metabolism and cancer related 

responses when fed HFD, compared with the C57BL/6 mice, which are more prone to weight 

gain on HFD.94 Effects of HFD on BC may also depend upon sources of dietary fat. Plant source 

fat was indicated to reduce BC risk whereas animal source fat increased BC risk.95  
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Western diet (WD) high in fat, sucrose and cholesterol has been introduced in animal 

models, especially in studies on metabolic syndromes. Studies have shown that western diet is 

linked with increased body oxidative stress,96 or increased mammary carcinogenesis.97 However, 

there is one study showing that a diet containing 5% typical anhydrous milk fat (representing 

~70% of the total dietary fat component) fed to Balb/c mice delayed the appearance of 

subcutaneous 4T1 BC tumors and inhibited metastasis to the lung and liver, when compared to 

the control diet containing soybean oil as the only fat component. Instead of using HFD, they 

used a diet with fat content in the normal range. This study promoted using milk fat as an 

adjuvant to inhibit tumor metastasis during cancer chemotherapy, and to spare patients from 

debilitating side-effects of cytotoxic drugs.98 

1.5 HFD and Metabolism 

1.5.1 HFD and Hepatic Tumorigenesis 

HFD affects lipid metabolism in liver and energy homeostasis in the adipose tissue by 

modulating gene expressions. There seems to be an inherent link between liver lipid 

metabolism, body inflammatory state, and hepatic tumorigenesis. Itoh et al. reported that, after 

feeding mice with HFD for one year, there is chronic inflammation marked by increased 

macrophage infiltration and fibrotic changes in adipose tissue, leading to hepatocellular 

carcinoma.99
 Kampschulte et al. reported that feeding a western diet for around 9 months in 

ApoE xiii -LDLR xiv  double-deficient mouse model of atherosclerosis led to hepatic steatosis, 

fibrosis, and tumorigenesis.100 Tajima et al. also found liver tumorigenesis induced by HFD in 

C57Bl/6 mice with altered inflammatory cytokine gene expressions, such as MCP-1 xv  and 

NADPHxvi oxidase complex.101
 

1.5.2 HFD and Hepatic Lipid Metabolism 

A number of studies in rodents reported that HFD modulates lipid metabolism in 

liver.102,103,104
 However, more studies on HFD and metabolism were conducted in C57/Bl mice. 

Lipogenic genes, such as SREBP1cxvii, PPARγ, SCD1xviii, CPT1axix, Hmgcrxx, GPATxxi105
 and 

gluconeogenic genes, like PCK1xxii and G6Pcxxiii were usually target genes in these studies.106
 

Genes regulating fatty acid metabolism were also measured in studies on HFD and liver lipids, 

including liver PPARα and its downstream target medium-chain acyl-CoA dehydrogenase, and 

fatty acid oxidation genes including ACOxxiv, AMPKxxv, PGC-1α/βxxvi and VLADxxvii. 105,
 
107

 

1.5.3 Hormones Modulated by HFD 

In mammals, adipose tissue is a major site controlling fatty acid (FA) metabolism and 

energy homeostasis. White adipose tissue (WAT), as an endocrine organ,108
 secretes several 

cytokines, also known as adipokines, like leptin, adiponectin, resistin, IL6, and TNF-α, which 
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play important roles in FA metabolism and can be modulated by a HFD.109
 Among them, leptin 

functions to decrease food intake, increase energy expenditure, and inhibit lipogenesis.110
 

Another hormone carnitine transports CoA-activated fatty acid into mitochondria and out of 

peroxisomes. Higher plasma acetylcarnitine level reflects stimulated β-oxidation of fatty acids.111
 

Besides FA oxidation, another mechanism that increases energy expenditure is brown adipose 

tissue (BATxxviii)-mediated thermogenesis. Thermogenic genes in BAT include PGC1α, PPARγ, 

Cideaxxix, protein kinase IKKεxxx, and TIF2xxxi.109
 Enhanced thermogenesis was reported to be 

modulated by up-regulation of UCP1 in BAT, PPARα, PPARγ, and PGC1α in WAT.109
 PGC1α 

regulates the expression of UCP1, which creates a proton leak in mitochondria that dissipates 

energy produced by oxidative metabolism.109
 Expression of UCPxxxii can be tested in both BAT 

and WATxxxiii.112
 Other key regulators of adipocyte gene expression and differentiation, which 

could be modified by a HFD, also encompass C/EBP xxxiv s, ADD1 xxxv , RXR xxxvi  isotypes, 

GATAxxxvii, and KLF-4xxxviii.  

1.5.4 HFD and Energy Intake 

Mice fed a HFD usually have increased energy intake (EI) and increased body weight (BW) 

than control. Increased thermogenesis in BAT is a mechanism by which rodents fed HFD can 

compensate for increased EI. In one study, female C57BL/6J mice received a low (10 kcal% fat), 

medium (45 kcal% fat), or high-fat diet (60 kcal% fat) for 12 weeks. Mice with greater resting 

metabolic rates (RMRs) also had greater food intakes (FIs), with an extent sufficient to offset the 

greater energy expenditure.113
 

However, studies also showed that mice on a HFD can have lower or comparable EI than 

control, while still maintaining higher body weight. With their incipient capability to regulate EI, 

mice could decrease FI and reduce EI when fed a HFD, to compensate for the greater energy 

density and higher apparent energy absorption efficiency (AEAE). Animals failing to match the 

adjusted intake to expenditure gained weight; while others showed resistance and maintained 

their body mass on a diet providing 60% calories from fat. Hambly et al. reported that a 

reduction in intake overcompensated for the increased energy and absorption efficiency of the 

diet so that animals actually absorbed less energy on HFD than on the relatively low-fat chow. 

There was no change in animal body weight over 3-week exposure to HFD, suggesting that 

those mice made additional modulations of their expenditure to balance their energy budgets.114
 

Ishii et al. reported that rats fed a HFD had a comparable calorie intake, yet higher body weight 

compared with control. In their study, rats on a control diet had an increased calorie intake over 

time, while those on a HFD had a slightly decreasing calorie intake.115
 



 

17 
 

Several other studies on HFD and BC showed similarly lower EI in HFD animals. Lane et al. 

reported that diets high in fat, particularly fat as com oil, promoted mammary tumors in rats 

treated with 7,12-dimethylbenz(a)anthracene (DMBA) or N-nitroso-AT-methylurea. Tumorigenic 

effects of HFD seem to be the strongest during promotional phase of tumorigenesis; this effect 

may be enhanced by high body weight. In their study, Balb/c mice fed HFD consumed 

significantly less food, had a decreasing and lower EI, and lost more body weight during DMBA 

treatment than control.116
 

Lane et al. also suggested that organisms can react to reductions in EI by reducing their 

basal energy level, activity level and growth rate. In their study, energy consumption was 

highest in standard diet-fed groups followed by HFD-fed groups. They also mentioned it was 

previously reported that sedentary rats fed a HFD consumed less energy than sedentary rats on 

a standard AIN-76A diet. Besides, consumption of HFD may induce thermogenesis, which 

would affect tumor incidence.117
 

1.5.5 HFD and Energy Expenditure 

Haramizu et al. pointed out that body weight increase induced by high-fat feeding in their 

study was related to reduced energy expenditure, higher respiratory quotient, and lower fatty 

acid beta-oxidation in liver. They tested genes regulating fatty acid uptake and oxidation, such 

as PPARα, PPARγ, PPARδ and their co-activator PGC-1γ. Among them, PPARα is 

predominantly expressed in liver, and its activation up-regulates beta-oxidation enzymes, 

resulting in reduced body fat accumulation. By comparing two mice strains, they found that 

BALB/c mice had higher liver PPARα, MCAD and UCP2 mRNA levels than C57BL/6J mice. 118
 

Vaanholt et al. reported that mice reduced food intake and increased body fat mass and 

plasma leptin levels on HFD. They had elevated daily energy expenditure, increased 

spontaneous cage activity and higher RMR on HFD than standard chow diet. Compared to 

chow diet group, HFD females had lower food intake and yet higher body weight. Their food 

intake was initially decreasing over time and later became stable. They concluded that mice on 

HFD obtained more energy with greater food efficiency. 119
 

Satyanarayana et al. found that ablation of the Id1 gene, the protein of which is highly 

expressed in BAT and WAT and was suggested to have a role in adipogenesis, enhanced 

energy expenditure and improved insulin sensitivity. Other potential target genes affected by 

HFD on energy expenditure include critical regulators of adipocyte gene expression and 

differentiation, like CCAAT/enhancer binding proteins(C/EBPs), PPAR, adipocyte differentiation 

determinant-dependent factor 1(ADD1), retinoid X receptor(RXR) isotypes, GATA, and KLF-4. 

109
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Key regulators of mitochondrial energy production and/or lipid mobilization also include 

protein kinase A regulatory subunit 2 alpha (RII alpha), adipose triglyceride lipase (ATGL)120, as 

well as genes involved in mitochondrial oxidative phosphorylation (COX1) and β-oxidation 

(CPT1b, PDK4, and FABP3).121 Elevated expression of PGC-1α is a hallmark of BAT, which is 

specialized for consumptive metabolism of thermogenesis. Fatty acid transporter 1 (FATP1) is 

also reported as a critical regulator of BAT metabolism.120
 General adipogenic markers, such as 

aP2 and adiponectin (AdipoQ) could also be affected by a HFD. 121
 

1.5.6 Obesity Caused by HFD 

When animals were fed high-fat diet for 20 weeks, mMCP6, F4/80, and cleaved caspase-3 

gene expressions were increased in C57BL/6 mice, while adiponectin, leptin, IL-6, and MCP-1 

gene expression levels were lower in epididymal fat of obese than lean mice. TNF-α and IL-10 

gene expression were higher in epididymal fat of obese mice. Cytokines, like tumor necrosis 

factor-α (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), and monocyte chemotactive protein-

1 (MCP-1) have profound effects on metabolism.122
 In another study by Morita et al., mRNA 

levels of energy metabolism-related IGFBP1 was tested in hepatocytes.123
 

1.6 4T1 and 4T1.2 cell lines 

1.6.1 4T1 cell line 

The murine 4T1 BC cell line used in our experiments was originally isolated from the 

Karmanos Cancer Institute, and has been extensively used in animal studies on BC, especially 

stage IV BC, due to its strong capabilities of metastasis to lungs, liver, bone and other sites.124  

4T1 cells have been regarded as one of the best models to study late stage BC.124,125 Unlike 

some previous studies using xenograft human BC cells on immuno-compromised athymic nude 

mice, where their immune functions were totally disrupted; with 4T1 cells, immunocompetent 

Balb/c mice can be used as hosts.126 Once injected into Balb/c mice, 4T1 multiply rapidly and 

develop metastases aggressively and spontaneously metastasize to lung, lymph nodes, liver, 

bone, and other sites in a pattern analogous to human BC.126  

The current laboratory group has been studying effects of different phytoestrogens on BC 

growth in mouse model for years. It is of great concern whether the cell line is estrogen 

responsive in studies of BC in response to either a diet containing phytoestrogens or a 

drug/agent that can modulate body estrogen level. In the first project, effects of letrozole (an 

aromatase inhibitor) on BC metastasis were studied and thus the estrogen responsiveness of 

4T1 cell line needs to be considered. In vitro studies showed that 4T1 cells are E2 non-

responsive.127
 Estrogens can affect tumor growth and metastasis by interacting with the 

secondary organs hosting metastatic BC tumors, such as bone and lung. 128,129
 Hence in our 
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study the involvement of the microenvironment in the context of BC growth and metastasis 

should be considered. 

The 4T1 cell line is among the clonal lines derived originally from a spontaneously arising 

mammary tumor in a Balb/cfC3H mouse. Compared with other clonal lines that were either non-

metastatic (67NR), or metastasized only to lung (66cl4), 4T1 cells metastasized to liver in 

addition to lung. Tester et al. established a murine model to investigate BC metastasis to bone 

by injecting 4T1 cells into the mammary gland of mice. Among the first to show spontaneous 

metastasis of BC cells from the primary site to bone, their model closely mimics the pattern of 

metastatic spread observed in human BC. According to this study, their model provides a more 

complete representation than existing models that require the cancer cells to be injected into the 

arterial system via the left ventricle or directly into the tibia to induce bone metastasis. 130
 

1.6.2 4T1.2 cell line 

Lelekakis M et al. reported that clonogenic cells can be detected in spines of 4T1 bearing 

mice.131 The highly metastatic 4T1.2 cell line is derived from single cell cloning of its parental 

cell line, 4T1.131 The 4T1.2 cells metastasize to the bone, and reproducibly form metastases in 

numerous sites in addition to bone following orthotopic inoculation into the mammary fat pad.130  

4T1.2 cells are highly metastatic to lymph nodes, bone, lungs and other organs, and were 

originally selected based on its aggressive properties. Similar as its parental line, 4T1 cells, the 

advantage of the model using 4T1.2 cells is that immunocompetent mice can be used, in 

contrast to xenogeneic tumor models that utilize athymic nude mice or other 

immunocompromised animals.126
 Thus 4T1.2 cells provide a rare and valuable model that 

closely resembles the events that occur in metastatic BC in humans, with spontaneous 

metastasis from the mammary gland to distal sites, including spine and femur.132 In one study, 

Matrigel invasion in Boyden chamber was progressively higher in the more metastatic lines 

4T1.2, together with higher MMP-2 activation potential, MMP-9 secretion, and migration over 

either type I or IV collagen than other BC cell lines.130 
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Chapter 2 Effects of Letrozole on Breast Cancer Micro-metastatic Tumor Growth in Bone 

and Lung in Mice Inoculated with Murine 4T1 Cells 

Abstract 

Breast cancer (BC) is the leading cancer in women worldwide. Metastasis occurs in stage 

IV BC with bone and lung being common metastatic sites. Aromatase inhibitors (AI) like 

letrozole suppress the conversion of androgens to estrogens and inhibit estrogen-responsive 

mammary tumor growth. The goal of this study was to evaluate the effects of letrozole on BC 

micro-metastatic tumor growth in bone and lung metastasis in intact and ovariectomized (OVX) 

mice with murine estrogen receptor negative (ER-) BC cells inoculated in tibia. Forty-eight 

BALB/c mice were randomly assigned to one of four groups: OVX, OVX+Letrozole, Intact, and 

Intact+Letrozole, and injected with 4T1 cells intra-tibially. Letrozole was subcutaneously injected 

daily for 23 days at a dose of 1.75 µg/g body weight. Tumor progression was monitored by 

bioluminescence imaging. OVX mice had lower serum estradiol than intact mice and greater 

tumor area and integrated density in the inoculated limb on D14 and D17. Letrozole decreased 

serum estradiol levels and reduced lung surface tumor numbers in intact animals. Mice 

receiving letrozole had significantly fewer tumor colonies and fewer proliferative cells in the lung 

than OVX and intact controls based on H&E and Ki-67 staining, respectively. In conclusion, 

tumors were larger with greater integrated density in inoculated limbs of OVX animals and 

letrozole reduced BC metastases to lungs, suggesting that though 4T1 cells are considered 

estrogen unresponsive, by lowering systemic estrogen level and possibly through interacting 

with the host organ, breast cancer metastasis to the lung was still effectively reduced by the 

aromatase inhibitor letrozole. 
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Introduction 

Breast cancer (BC) is the leading cancer type in women worldwide, and the second in 

estimated deaths.1 Stage IV BC is the most advanced stage, in which cancer cells metastasize 

from the original site to distant tissues, such as bone, lung and liver. The invasiveness and 

metastatic spread of tumor cells are responsible for most of the morbidity and mortality 

associated with BC, and are considered as the primary cause of cancer treatment failure.12 In 

general, BC therapies often fail in advanced stage BC, after metastasis has already occurred.3 

Considered as a filter between primary tumor and other secondary sites, lung typically contains 

metastatic BC at autopsy.13 Bone is another frequent site for BC metastases.133 Once BC 

metastasizes to bone, bone destruction occurs, inducing higher risk of fracture, hypercalcemia, 

paralysis due to spinal cord compression, and associated bone pain in BC patients.133,134 

Occult BC tumors are commonly present in BC patients. Also 7% of women that have died 

from unrelated causes had small, occult, undiagnosed BC in situ in breast at autopsy.135 Micro-

metastatic BC cells, also known as disseminated tumor cells, can stay dormant in bone for 

years.136 These metastatic cells were found in the bone of up to 80% of patients who died from 

BC, and skeleton is the second largest reservoir for BC metastasis after lymph nodes.137 Braun 

et al. reported that 30% of BC patients had bone micrometastasis at diagnosis of BC, and these 

patients often had larger tumors and hormone receptor-negative BC.29 To understand why 

metastatic BC cells specifically harbor in certain organs like bone and lung, the intriguing 

interaction between host organ and tumor cells needs to be considered.138 

Estrogens play a critical role in the development and progression of BC. About 70% of BCs 

express estrogen receptors (ER). Estrogens interact with ER alpha (ERα) and beta (ERβ) to 

mediate BC cell growth through distinct mechanisms.139 The majority of patients with BC are 

postmenopausal women. Most estrogens (estrone and estradiol) in postmenopausal women are 

synthesized from androgens (androstenedione and testosterone) at extragonadal sites, 

including breasts, and exert their effects locally.35,41 This led to the development of a third-

generation BC therapy, aromatase inhibitors (AIs), which inhibit the enzyme aromatase 

converting androgens to estrogens. AIs are currently the most widely prescribed hormonal 

therapy for postmenopausal women with early stage or advanced ER+ BC.140  

Among the third generation aromatase inhibitors, letrozole is one of the most effective 

therapies for lowering estrogen in the breast tissue and plasma. It decreased estrone, estradiol, 

and estrone sulfate by 98.8%, 95.2% and 98.9% respectively in postmenopausal BC 

patients.141,142 In vitro and in vivo studies indicate that letrozole inhibits tumor growth. In ER+ 

MCF-7 cells, it suppressed cell proliferation and inhibited type IV collagenase expression, 
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through a mechanism possibly involving other estrogen-dependent pathways besides inhibiting 

aromatase, and was suggested as of value in suppressing mammary tumor growth and 

invasiveness.12 In clinical trials, letrozole reduced distant metastases risk among BC 

patients.141,143 However, there are reported side effects from this drug, including bone loss.58,59 In 

this study, the effects of letrozole on BC metastasis were evaluated by using intact and 

ovariectomized (OVX) mice as models for pre and post-menopause, respectively. 

BC cells not expressing ER, progesterone receptor or HER2 are considered “triple negative” 

cells. Women bearing this kind of tumor were usually diagnosed at a later stage, with a more 

aggressive phenotype and poorer survival rate regardless of stage.144 Based on the fact that 

postmenopausal women with ER- BC cannot be effectively treated with antiestrogen tamoxifen, 

a generally accepted view regarding ER- tumors is that they do not respond to estrogen, unlike 

estrogen responsive ER+ tumors.128 It is of importance to note that in the current study, 4T1 

cells are triple negative (ER-, PR-, HER2-). However, we and others have observed an 

enhancement of whole animal estrogen action on BC metastasis with ER- 4T1 tumor cells, 

which is likely due to an overall systemic estrogenic effect that alters the microenvironment of 

organs and allows ER- tumor to grow.145,6   

The murine model utilized in this study aims to mimic late stage BC in female patients by 

implanting a small number of metastatic murine mammary tumor cells into the marrow cavity of 

tibia to model a micrometastatic lesion. Subsequent lung metastasis was evaluated. Based on 

prior studies on letrozole and ovariectomy, the hypothesis is that ovariectomy will increase 

tumor growth in bone, while letrozole will reduce BC metastases to lungs. To assess this, BC 

growth in the bone micro-metastatic site and lung metastases in live animals was monitored via 

Bioluminescence Imaging (BLI), examined effects of ovariectomy and letrozole on circulating 

estradiol levels, and tumor nodule count on lungs. Furthermore, lung tumors were analyzed with 

H&E and Ki-67 staining. Our results suggest that ovariectomy increases BC tumor growth in 

bone, while letrozole reduces BC metastases from bone to lungs in mice inoculated with murine 

4T1 cancer cells.  
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Materials and methods 

Materials 

Murine 4T1 cells tagged with firefly luciferase were provided by Dr. David Piwanica-Worms 

(Washington University, St. Louis, MO). Heat-Inactivated Fetal Bovine Serum (HI-FBS) was 

purchased from Atlanta Biologicals (Lawrenceville, GA). Modified IMEM, Penicillin/Streptomycin, 

Fungizone, and Trypsin-EDTA were purchased from Invitrogen (Carlsbad, CA). L-Glutamine 

was purchased from Sigma Chemical Co. (St Louis, MO). MatrigelTM matrix was purchased from 

BD Biosciences (San Jose, CA). AIN-93G pellet diet was purchased from Research Diets (New 

Brunswick, NJ). D-luciferin potassium salt was purchased from Regis Technologies (Morton 

Grove, IL). Isoflurane was purchased from Baxter Healthcare Corporation (Deerfield, IL). India 

ink was purchased from Sanford (Bellwood, IL). 

Cell culture 

4T1 murine mammary cancer cells were cultured with IMEM, supplemented with 10% HI-FBS, 

100 unit/mL Penicillin, 100 μg/mL Streptomycin, 1% L-Glutamine, and 0.1% Fungizone in a 

humidified incubator containing 5% CO2 at 37℃. Cells were harvested at 70% confluence, 

centrifuged (0℃, 700 rpm, 5 minutes), and resuspended in MatrigelTX for injection. 3,146 

BALB/c mice 

Forty-eight female BALB/c mice (intact) were purchased from Charles River Laboratories 

(Wilmington, MA). Mice were 7 months of age when cancer cells were injected into their tibia. 

During the study, animals were singly caged and maintained under the standard light-dark cycle 

(12 h light and 12 h dark), with ad libitum access to food and water. All studies were carried out 

under animal experiment protocols approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of Illinois at Urbana-Champaign. 

Methods 

Mice were randomly assigned to 1 of 4 groups (n=12/group): OVX, OVX+Letrozole, Intact, and 

Intact+Letrozole. The OVX and OVX+Letrozole groups were ovariectomized and inoculated with 

4T1 cells. The Intact and Intact+Letrozole groups were inoculated with 4T1 cells. Each animal in 

the Intact+Letrozole group and OVX+Letrozole group was injected daily with the drug 

subcutaneously at a dose of 1.75 µg/g body weight for the 3 week duration of treatment. Dosage 

of letrozole (40 µg per day) was determined based on the results of a pilot study performed in our 

laboratory showing that lower doses were ineffective. The dose chosen in this study is in the range (10-50 

µg per day) reported in the literature.
49,147-152

 Mice were ovariectomized in our facility following 

procedures as previously described.153 Letrozole treatment was initiated on postoperative day 1 

and continued until the end of the study. Letrozole (0.4 mg/mL) was made in dimethyl sulfoxide 
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(0.08%), ethanol (0.8%) and 0.3% HPC-PBS (99%). Animals were weighed once a week and 

prior to sacrifice. Mice were sacrificed with CO2 asphyxiation.  

Intra-tibial injection 

Mice were anesthetized with isoflurane/oxygen and placed in a supine position during operation. 

After an incision was made on the right knee of the animal, 1,000 4T1 cells suspended in 2.5µL 

MatrigelTM were inoculated. A 26-gauge needle connected to a syringe was first inserted into the 

bone marrow cavity to create space for the subsequent injection, and then replaced by a 27-

gauge for injection. The incision was sealed with tissue adhesive (3M Vetbond) and closed with 

a surgical staple. Banamine (2.3 μg/g body weight) was subcutaneously administered at surgery 

and 12 hours post-surgery for pain relief. 

Bioluminescence imaging  

Mice were injected with 15 mg/mL luciferin dissolved in PBS at a dose of 10 μL luciferin per 

gram of body weight 3 minutes prior to BLI. Each mouse was anesthetized with continual 

administration of isoflurane gas from an inlet tube and imaged with BLI twice per week. The 

whole body scan of one mouse takes three minutes. BLI signals were detected by a camera set 

inside of the imaging unit. Pictures taken by the camera were transferred to a computer. Images 

and movies were acquired and compiled by the Piper Control software (Stanford Photonics, 

Palo Alto, CA). Images obtained were later analyzed by the software Image J (NIH, Bethesda, 

MD) and Photoshop Elements (Adobe, San Jose, CA). The background image of the mouse 

body was combined with the image showing only the luminescence of the tumor. Tumor area 

and integrated density (the product of area and the intensity of luminescence) on the bone were 

analyzed using ImageJ.  

Serum collection 

Venous blood was collected from each animal from inferior vena cava, allowed to clot at room 

temperature, and centrifuged to separate serum, which was frozen and stored at -20°C until 

analysis. Serum concentrations of E2 were measured using LC/MS/MS since typical 

immunochemical approaches are known to be unreliable for very low physiological levels of E2, 

like those present in OVX females.  Method details and validation were previously published.154 

Briefly, 10-100 µL aliquots of individual mouse serum samples were subjected to liquid-liquid 

extraction, dansyl chloride derivatization, and isotope dilution LC/MS/MS analysis. The limit of 

detection (LOD) for E2 was 1.5 pg/mL (5 pM). When calculating group mean values, samples 

<LOD were replaced with a value of 0. Using a value of 1/2LOD (0.8 pg/mL) for those samples 

<LOD was also tried. There is no difference in statistical analysis result between these two 

methods. All analyses were performed without an enzymatic hydrolysis step using B-
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glucuronidase/arylsulfatase, so only “free” (i.e., active, unconjugated) E2 concentrations were 

obtained. 

India ink staining 

Lungs of mice were perfused with India ink to stain the lobes and visualize the tumor following 

the method described by Wexler.155,156 Briefly, ribs were cut to expose the lung and trachea, and 

India ink was slowly injected into the lung via trachea until the lung fully expanded. The fully 

infused lung was harvested and fixed in fekete solution (90% of 70% EtOH, 9% of 37% 

formaldehyde, and 1% of 9% acetic acid). After being kept in fresh fekete solution for 24 hours, 

tumor nodules on lung lobes were counted by three individuals. Tumors were distinguished as 

white extrudates not being stained while normal lung tissue was stained black. The mean value 

of the three individuals’ counts is reported. 

Histopathological analysis 

Lung sections were embedded in paraffin, trimmed and sliced into 5 μm slices. Each slice was 

mounted on a glass slide, and tissue slides were deparaffinized, rehydrated, and stained with 

H&E. Stained tissues were observed under the 5X objective of an AxioSkop 40 microscope 

(Carl Zeiss, Thornwood, NY), and photographed using Axio Cam HRc (Carl Zeiss, Thornwood, 

NY). Tumors on each slide were counted and tumor area was determined using the software 

ImageJ. Tumor area percentage on the lung from each animal was calculated by dividing the 

total tumor area (with individual tumor area added together) by the total area of lung lobes. 

To evaluate proliferative cell percentage by Ki-67 staining, deparaffinized and rehydrated tissue 

slides were incubated with anti-Ki-67 antibody (Pharmingen, San Diego, CA) and biotinylated 

secondary antibody (Vector Laboratories, Burlingame, CA). Slides were then stained by 

diaminobenzidine substrate and counter stained by hematoxylin. Proliferating cells expressing 

Ki-67 were stained brown and were considered as positive cells. By contrast, cells stained blue 

by hematoxylin were considered as negative cells. The immunostained slides were 

photographed under an AxioSkop 40 microscope and Axio Cam HRc. Tumor images were 

analyzed using Adobe Photoshop Elements. To assess the percentage of proliferating cells, the 

proportion of Ki-67-positive nuclei was determined. According to H&E staining results, four 

animals with the H&E tumor count most close to the group average were selected from each 

group. Ki-67 stained positive and negative cells were counted on slides of these four animals, 

with at least 24 viable tumor areas evaluated under high-power (40X objective) fields.  

Statistical Analysis 

All parametric data, including BLI tumor area, integrated density, uterine wet weights, serum 

estradiol level and proliferating cell percentage from Ki-67 staining were analyzed using ANOVA 
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Two Way by SAS GLM procedure to determine the significant difference between groups. The 

non-parametric tumor colony numbers on lungs stained with India ink were analyzed using 

Wilcoxon rank sum test. Tumor numbers by H&E staining, also as non-parametric data, were 

analyzed using the Poisson model. All data are reported as mean ± SEM. All hypotheses were 

tested in a two sided way and significance was set at p<0.05. All statistical tests were done in 

SAS (SAS Institute, Cary, NC). 
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Results 

Ovariectomized mice had larger tumor area and stronger integrated density in the bone 

BLI is proven as effective to monitor tumor growth and progression and determine an 

appropriate ending point of a study.6 Tumor progression was evaluated by BLI on day 4, 7, 10, 

14, 17, 21, and 23. Representative BLI images (Figure 2.1) show that while there was primary 

tumor growth in situ in tibia, no metastasis to the lung occurred until on Day 7 in most animals 

(Figure 2.2). Most of mice started to show metastases to lungs on Day 17. By day 23, the lung 

tumors had grown into a large luminescent area in most of the animals (Figure 2.1). OVX mice 

had greater BLI tumor area and integrated density of the micrometastatic bone tumor compared 

with intact animals on both Day 14 and Day 17 (Figure 2.2), whereas there was no difference on 

either tumor area or integrated density on other days from BLI (Figure A.1).  

 

Ovariectomy lowered serum estradiol level; letrozole lowered estradiol level in intact mice 

Serum estradiol in Intact group was significantly higher (p<0.05) than Intact+Letrozole group 

(Figure 2.3). Ovariectomy significantly decreased serum estradiol level, consistent with uterine 

wet weight measured during necropsy that OVX mice had significantly lower uterine weight than 

intact animals (data not shown). Serum estradiol levels of mice in OVX+Letrozole group were all 

below the detection level (1.5 pg/mL) and thus recorded as 0.  

 

Letrozole reduced metastatic progression of 4T1 cells to lungs in intact mice  

Tumor colony numbers on lungs stained with India ink were counted to assess severity of lung 

metastases. Lungs stained with India ink harvested during necropsy show that several animals 

had severe lung metastasis, with many visible tumor nodules spread on the outer surface of the 

lung. This observation was consistent with our findings from BLI images. Tumor colony numbers 

of Intact+Letrozole group were significantly lower (p<0.05) than that of Intact group; while there 

was no significant difference in OVX animals (Figure 2.4). There was no difference in lung 

surface tumor numbers between OVX and intact animals. 

 

Letrozole reduced metastatic progression of 4T1 cells to lungs in both OVX and intact mice; 

Intact mice had more lung tumors than OVX mice. 

Tumor numbers and tumor areas were analyzed in histological lung sections stained with H&E 

to assess the severity of lung metastasis. Tumor numbers in H&E stained lungs in 

OVX+Letrozole group were significantly lower (p<0.05) than OVX group (Figure 2.5 a). A similar 

pattern was observed in intact mice that there were fewer (p<0.05) tumors inside the lung of 
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Intact+Letrozole group compared with Intact (Figure 2.5 a). Noticeably, Intact group had a 

higher tumor number than OVX group. There was no significant difference in tumor area 

percentage on lungs among different groups (Figure A.2).  

 

Letrozole reduced tumor proliferation in lungs in both OVX and intact mice 

Proliferative cells on lung tumors were analyzed with Ki-67 staining to show cancer cell 

proliferation in the lung. Letrozole was found to reduce lung tumor proliferation in both OVX and 

intact mice. There is a significant major effect from letrozole in reducing tumor proliferation, 

which means the proportion of Ki-67 positive cells, positively stained brown compared to the 

negatively blue-stained cells, in the lungs of mice treated with letrozole was significantly lower 

than mice not treated with the drug, irrespective of OVX status (Figure 2.6 a).  

  



 

29 
 

Discussion 

Microenvironment is important in determining whether cancer cells of a given molecular 

phenotype would be supported or inhibited during metastasis.23 As pointed out by Stephen 

Paget in the seed and soil theory in 1889, cancer cells metastasize to distinct organs and 

tissues dependent on specific characteristics of the cells, the blood flow pattern and local 

environment of those secondary sites.157 As a complex process, metastasis involves interactions 

between both ‘seed’ and ‘soil’, and cannot be solely explained by circulatory routes. For cancer 

cells to survive and proliferate, secondary organs need to provide a conducive environment with 

enough ‘nutrients’ and appropriate conditions.158 Among them, bone and lungs are two primary 

metastatic organs for late stage breast carcinoma.158 It was reported that BC cells can adhere to 

bone marrow stromal cells. Cytokines and growth factors from hematopoietic microenvironment 

via autocrine and/or paracrine secretion provide fertile ‘soil’ for tumors to grow in the local 

environment.19 The current study is the first to evaluate effects of letrozole on ER- BC 

micrometastatic tumor growth in bone and subsequent lung metastases in mice. In this study, 

OVX mice had larger tumor area and greater integrated density in bone on D14 and D17 

compared with intact mice (Figure 2), due potentially to a more susceptible environment for BC 

to grow in the bone of OVX animals.  

There are many growth factors released during osteoclast-mediated bone resorption, which 

constantly takes place in the bone environment of OVX mice. For example, TGF-β is one of the 

factors involved in aiding BC progression. Muraoka et al. reported that 4T1 cells express TGF-β 

receptors and blockage of TGF-β inhibits 4T1 cell migration and bone metastases.46 Masri et al. 

found that sensitivity of TGF-β signaling was compromised in letrozole-resistant BC cells.45 

According to Wilson et al., in post-menopausal women, there is a predilection for tumor cells to 

stay in bone with activated TGF-β and activin signaling.24 In a post-menopausal bone 

environment, higher levels of TGF-β and activin are present due to significantly decreased 

inhibin, estrogen and progesterone, which leads to upregulated CXCL4 and bone-derived 

growth factors, leading to an environment susceptible for BC in the bone. In contrast, in 

premenopausal women, higher levels of inhibin, estrogen and progesterone would impair the 

signaling pathway by inhibiting bone resorption-mediated TGF-β and activin release.24  

Metastatic tumors in the lung were rather sporadic and variable with regard to tumor area 

and density measured by BLI. As previously pointed out,159,160 BLI is a semi-quantitative 

measurement and to evaluate lung metastasis, histopathology analysis was needed. It is found 

in this project that letrozole reduced lung metastasis, likely due to systemic decrease of 

estradiol by the aromatase inhibitor, as well as modulations of host cell interactions on the 
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secondary metastatic site - lung.127,128 As is known, ER+ mammary tumor growth is stimulated 

by estrogens. Previously our group reported that phytoestrogens, such as genistein, stimulate 

growth of human BC cells in mice with plasma estradiol concentrations comparable to those 

found in postmenopausal women, and can even negate the inhibitory effect of letrozole on 

human BC cell growth in vivo.4,5 Dietary daidzein was also found to significantly stimulate 

human mammary tumor growth in mice.161 Using an experimental metastasis model, our 

previous study showed that estradiol stimulated ER- BC metastasis in mice.6  

Murine 4T1 BC cell line was originally isolated by Fred Miller and colleagues and have been 

used in BALB/c mice or tissue culture.162 Due to high frequency of metastasis to lung, liver, bone 

and other sites, 4T1 cells have been widely used in animal studies of BC, especially stage IV 

BC.124 The syngeneic nature of this cell line enables both innate and acquired immune 

responses in mice, providing an advantage over human originated BC cells used in 

immunocompromised mice for metastatic BC studies. Additionally, 4T1 cells multiply rapidly and 

develop metastases aggressively once injected into BALB/c mice. For the above-mentioned 

reasons, 4T1 cells have been regarded as a useful model to study late stage BC.124,125  

Previously, we demonstrated that estrogens and phytoestrogens stimulate ER+ BC primary 

tumor growth in mice.4,5 In this study, letrozole significantly lowered serum estradiol levels, 

consistent with some previous studies. In a clinical trial, letrozole reduced serum estrone and 

estradiol to nearly undetectable levels.163 To evaluate effects of letrozole on BC metastases to 

lungs, lung surface tumor nodules were counted, and there were fewer tumors on the lung in 

Intact+Letrozole group than Intact group. H&E staining showed that letrozole reduced 

metastatic progression of cancer to lungs in both OVX and intact mice. The intact group had the 

highest tumor numbers, probably resulting from higher estrogen level, which is consistent with 

higher uterine weight (data not shown). Ki-67 protein expression in cell nuclei indicates 

proliferating cancer cells. A previous study from our laboratory reported that dietary soy 

isoflavones, including genistein, daidzein, equol and a mix of isoflavones increased breast 

cancer lung metastasis by increasing Ki-67 expression in the lung metastatic tumors.51 In the 

present study, it was demonstrated that the aromatase inhibitor letrozole lowered proliferative 

cell percentages in lung tumors possibly by lowering estrogen levels, consistent with previous 

findings in our group on how estradiol and soy isoflavones increased proliferative cell 

percentages on lung metastatic tumors in a similar model utilizing murine 4T1 cells.6,51 We 

hence propose that letrozole can reduce lung metastasis of ER- 4T1 cells, by decreasing tumor 

proliferation in both intact and OVX mice.  
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In vitro studies showed that 4T1 cells are E2 non-responsive.127 Using RT-PCR, Michigami 

et al. presented ERβ gene expressions in 4T1 cells.164 Estrogen was reported to promote the 

growth of ER- cancers by acting on cells distinct from tumors to stimulate angiogenesis.128 Iyer 

et al. found that estrogen can promote the outgrowth of murine xenograft tumors established 

from patient-derived ER- BC cells by influencing the mobilization and recruitment of 

proangiogenic bone marrow-derived myeloid cells.129 Furthermore, E2 increased tumor burden 

in lungs of mice injected with E2 non-responsive 4T1 cells by influencing host cells instead of 

cancer cells.127 Signaling pathways other than ER mediated ones were reported as involved in 

ER- BC metastasis, including ER coregulator-PELP1,48 and aryl hydrocarbon receptor (AHR) 

pathways.165 In distant BC metastasis, receptor conversions were also reported. Receptor 

phenotypes in metastatic tumors differ from its original tumor phenotypes.166 In the current study, 

letrozole may have modulated BC lung metastasis by directly acting on the metastatic site, lung. 

Although 4T1 cells are considered as triple negative, pulmonary endothelial cells, however, 

do express ERs.127,167 Compared with mice uterine and MCF-7 tumors, which highly express 

ERα, lung was not a major organ with ERα expression (data not shown). Yet ERβ is reported as 

predominant in the lung.168 As reported in previous studies, host-cell interactions including the 

process of estrogens binding with ER on the lung may be involved in how letrozole reduces lung 

metastasis, besides its systemic effect on lowering estrogenic activities. 

In summary, letrozole was effective in reducing BC metastases to lungs in mice inoculated 

with murine 4T1 cancer cells in the tibial marrow cavity. There were larger tumor areas and 

higher integrated density in bone on D14 and D17 in OVX animals. Both ovariectomy and 

letrozole lowered serum estradiol levels. Letrozole decreased tumor numbers on lungs by 

significantly reducing cell proliferation. Therefore, letrozole can be a potent agent to reduce ER- 

BC metastases. The model developed in this study can be further used to evaluate effects of 

other agents on bone micrometastatic tumor growth and lung metastases in mice. 
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Figures 

Figure 2.1 
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Figure 2.1 Metastatic progression of 4T1 cells monitored by bioluminescence imaging (BLI) 

The date for cell injection and ovariectomy surgery was set as day 1. BLI was conducted on 

seven separate days of the study: day 4, day 7, day 10, day 14, day 17, day 21, and day 23. 

Representative images of one animal in each group on day 7, day 14, day 21, and day 23 are 

presented, showing progressive stages of tumor development. Tumor area and integrated 

density from the bone tumor on BLI images were measured and compared between OVX and 

intact animals, also between groups treated with letrozole and groups not being treated, as 

results shown in Figure 2 and Figure A. (a) Representative images of ovariectomized (OVX) 

animals: images from a mouse in ovariectomy (OVX) group are shown in the upper panel, 

showing tumor aggressively metastasized to lungs; images from a mouse in OVX+Letrozole 

group are shown in the lower panel, showing tumor slowly developed moderate metastases to 

lungs. (b) Representative images of intact animals: images from a mouse in Intact group are 

shown in the upper panel, showing tumor aggressively metastasized to lungs; images from a 

mouse in Intact+Letrozole group are shown in the lower panel, showing tumor slowly developed 

moderate metastases to lungs. 
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Figure 2.2  

(a)  

 

 

(b)  
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Figure 2.2 (cont.) 

 

Figure 2.2 OVX animals had greater area and density on bone micrometastatic tumor on D14 

and D17 shown by BLI. 

(a) BLI tumor area: tumor area growth in bone over time, as well as the tumor area on D14 and 

D17 measured by BLI in the four groups is shown in Figure 2 a. The significance levels of the 

major effect from OVX or Letrozole were shown above the figure. Groups treated with letrozole 

were compared with groups not treated with the drug. OVX groups were compared with intact 

groups. (b) BLI integrated density: integrated density of tumor on the bone over time, as well as 

the integrated density on D14 and D17 in the four groups is shown in Figure 2 b. The 

significance levels of the major effect from OVX or Letrozole were shown above the figure. Data 

are presented as mean ± SEM. P values show that OVX animals had significantly greater tumor 

area and integrated density than intact animals. 
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Figure 2.3  

 

Figure 2.3 Intact mice had higher serum estradiol level than OVX mice, and letrozole reduced 

serum estradiol level in OVX and intact mice. 

Serum was collected at necropsy and analyzed by LC-MS/MS. Serum aglycone estradiol levels 

are shown in this figure and presented as mean ± SEM. Serum level below the detection level 

(0.5 pg/mL) was recorded as 0. The significance levels of the major effect from OVX or 

Letrozole were shown above the figure. Groups treated with letrozole were compared with 

groups not treated with the drug. OVX groups were compared with intact groups. P values show 

that both ovariectomy and letrozole significantly reduced estradiol levels. 
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Figure 2.4  
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Figure 2.4 Letrozole reduced metastatic progression of 4T1 cells to lungs shown by India ink 

staining. 

Tumor colony numbers on lungs stained with India ink are presented. Groups treated with 

letrozole were compared with groups not treated with the drug. OVX groups were compared 

with intact groups. Intact+Letrozole group has fewer tumors compared with Intact group. Data 

are presented as mean ± SEM.  Bars with different letters are significantly different (p<0.05). 
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Figure 2.5  

(a)  

 

(b)  
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Figure 2.5 Letrozole reduced metastatic progression of 4T1 cells to lungs shown by H&E 

staining. 

Tumor number and area from OVX and intact mice with or without letrozole injection are 

presented. (a) Tumor number of lungs with H&E staining. There are fewer tumors in 

OVX+Letrozole group than OVX group, and there are fewer tumors in Intact+Letrozole group 

than Intact group. Data are presented as mean ± SEM.  Bars with different letters are 

significantly different (p<0.05). (b) Representative images of lungs selected from each group 

stained with H&E. Tumor cells are stained red in the cytosol and blue in the nucleus, while 

normal cells are black due to India ink staining. Top left: representative image from OVX group, 

showing a tumor with a large area; Top right: representative image from OVX+Letrozole group, 

showing a tumor with a small area; bottom left: representative image from Intact group, showing 

a tumor with a large area; bottom right: representative image from Intact+Letrozole group, 

showing a tumor with a small area.  
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Figure 2.6  

(a)  
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Figure 2.6 Letrozole reduced metastatic progression of 4T1 cells to lungs shown by Ki-67 

staining. 

Positive tumor cell percentages were calculated as the number of positive cells divided by the 

sum of positive and negative cells from metastatic lung tumors in mice. (a): Percentage of Ki-67 

positive cells. Data are presented as mean ± SEM. The significance levels of the major effect 

from OVX or Letrozole were shown above the figure. Groups treated with letrozole were 

compared with groups not treated with the drug. OVX groups were compared with intact groups. 

P values show that letrozole significantly reduced proliferative cell percentage. (b): 

Representative images of lungs selected from each group showing Ki-67 staining. Top left: 

representative image from OVX group, showing tumor area with a proportion of positive cells 

(indicated by arrows); Top right: representative image from OVX+Letrozole group, showing 

tumor area with few positive cells (indicated by arrows); bottom left: representative image from 

Intact group, showing tumor area with a proportion of positive cells (indicated by arrows); bottom 

right: representative image from Intact+Letrozole group, showing tumor area with few positive 

cells (indicated by arrows).  
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Chapter 3 Effects of a Low Calcium Diet on Breast Cancer Micro-metastatic Bone Tumor 

Growth and Lung Metastasis in Mice from a Time Course Study 

Abstract 

Breast cancer (BC) is the second most common cancer in women worldwide. Metastasis 

occurs in stage IV BC, when cancer starts to spread to major organs like bone and lungs. Low 

Calcium (LC) diet was reported to increase bone turnover and promote tumor growth in the 

bone of mice. Our goal was to study the effects of LC diet on BC metastases from bone to lungs, 

and effects on the bone microenvironment in mice inoculated with murine 4T1 cells. 76 female 

Balb/c mice were randomly assigned to 7 groups. Mice in the Control (C) diet and LC diet 

groups were sacrificed on day 5, day 10, and day 21. Mice in the sham group, which were not 

injected with cancer cells, were sacrificed on day 10. Bioluminescence imaging and India ink 

staining were used to evaluate tumor metastasis to the lungs. Our bioluminescence images 

showed that Mice in LC-D21 group had stronger integrated density on the bone tumor than C-

D21 on Day 14 and Day 17. Among animals not inoculated with tumor, mice on LC diet had 

higher serum parathyroid hormone level than control. India ink stained lungs showed that mice 

in LC-D21 group had more tumor nodules on the surface of lung than C-D21 group. In summary, 

LC diet induced stronger tumor growth in the bone and increased BC metastatic tumor nodules 

on lung surface.  
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Introduction 

According to American Cancer Society, in 2010, there were 200,000 women in the United 

States who are diagnosed with BC; among them, there were around 40,000 deaths.76 BC 

frequently metastasizes to the bone. More than 70% of BC patients have bone metastasis169, 

which usually leads to several skeletal complications, including pathological fractures, pain, 

debilitating neurologic symptoms, and hypercalcemia.170 Though BC cells do not have the ability 

to resorb bone, they can cause destruction to the bone microenvironment by disrupting the 

equilibrium between osteoblasts and osteoclasts during bone remodeling by releasing growth 

factors for osteoclastic cells170, which results in increased osteoclast activity that drives bone 

resorption169 and formation of osteolytic lesions. 170 

Most of late stage BC patients are post-menopausal women. Several studies reported that 

menopause and subsequently reduced estrogen levels result in a decrease in calcium 

absorption efficiency. Women entering menopause were reported to experience a sudden 

decline in calcium absorption corresponding to decreased serum estradiol levels, whereas 

women with ongoing menses experienced stable calcium absorption. Also reported is a decline 

in calcium absorption with age (around 0.2% per year). The one time decrease in calcium 

absorption at menopause is more than 10 times of the absorption decline per year (around 

2.2%). Women would also have a decrease in calcium absorption following oophorectomy, 

which could be reversed with estrogen therapy.171
 

Inadequate calcium intake, vitamin D deficiency, and inadequate exercise increase the risk 

of osteoporosis and fractures, which are common among cancer patients. BC patients 

frequently have low dietary calcium intake and high bone turnover. Increased bone turnover, 

due to dietary calcium deficiency, promotes tumor growth in bone.172 For BC survivors, they are 

also at risk for bone loss because of the disease itself and other reasons like chemotherapy, 

irradiation, or anti-hormone therapy.173
  

Though evidence is still inconclusive, some of epidemiological studies have linked a low 

calcium intake to breast cancer risk. Kawase et al. reported that calcium intake was inversely 

associated with BC risk. In analyses stratified to menopausal status, there is an inverse 

association between BC risk and calcium intake, modified by tumor receptor status, only among 

postmenopausal women.72
 In another study, a 19% decrease in BC risk was found for those with 

highest quantile of calcium intake than the lowest quantile. These results suggested that 

calcium have a chemopreventive effect against BC.174
 It was also reported that women might 

have the lowest risk of BC with dietary calcium intake of about 600 mg/day.175
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Animal studies showed how LC diet increases BC risk by increasing bone turnover. Among 

BC metastases, osteosclerotic metastases account for 20% with the remainder osteolytic or 

mixed. Osteolytic metastases were shown to depend on bone resorption for growth in mice 

models.176
 Zheng et al. reported a low calcium diet increased tumor area compared with control 

in association with increased osteoclast numbers.176
 Another study evaluated effects of dietary 

calcium restriction, with chow containing 0.1% calcium (normal chow contained 0.79% calcium), 

on BC cell growth by implanting cancer cells intratibially in young growing nude mice. Over 

three days on this diet, nude mice developed secondary hyperparathyroidism with increased 

circulating levels of PTH, increased biochemical indices of bone resorption, and decreased 

bone density. 68
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Materials and Methods 

Materials 

Heat-Inactivated Fetal Bovine Serum (HI-FBS) was purchased from Atlanta Biologicals 

(Lawrenceville, GA). Modified IMEM, Penicillin/Streptomycin, Fungizone, and Trypsin-EDTA 

were purchased from Invitrogen (Carlsbad, CA). L-Glutamine was purchased from Sigma 

Chemical Co. (St Louis, MO). MatrigelTM matrix was purchased from BD Biosciences (San Jose, 

CA). AIN-93G pellet diet was purchased from Research Diets (New Brunswick, NJ). D-luciferin 

potassium salt was purchased from Regis Technologies (Morton Grove, IL). Isoflurane was 

purchased from Baxter Healthcare Corporation (Deerfield, IL). 

Cell Culture 

Murine 4T1 mammary cancer cells tagged with firefly luciferase were provided by Dr. David 

Piwanica-Worms from Washington University (St. Louis, MO). 4T1 cells were cultured with 

IMEM, plus 10% HI-FBS, 100 unit/mL Penicillin, 100 μg/mL Streptomycin, 1% L-Glutamine, and 

0.1% Fungizone in a humidified incubator containing 5% CO2 at 37℃. 70% confluent cells were 

harvested, centrifuged, and resuspended in MatrigelTX for injection.125,127 

BALB/c mice 

Female Balb/c OVX mice were obtained from National Cancer Institute (Wilmington, MA). 

During the study, animals were singly caged and maintained under the standard light-dark cycle 

(12 h light and 12 h dark), with access to food and water. All studies were carried out under 

animal experiment protocols approved by the Institutional Animal Care and Uses Committee 

(IACUC) at the University of Illinois at Urbana-Champaign. 

Methods 

Seventy six female Balb/c mice (intact) were fed with AIN-93G diet for two days and then 

randomly assigned to four groups. The Control group (32 mice) was fed with normal diet (AIN-

93G, contains 5g calcium per kilogram diet, or 0.5% w/w) and inoculated with 4T1 cells. The 

Control-Sham group (6 mice) was fed with normal diet with no cancer cell injected. The Low 

Calcium group (32 mice) was fed with low calcium diet (contains 80 mg calcium per kilogram 

diet, or 0.008% w/w) and inoculated with 4T1 cells. The Low Calcium-Sham group (6 mice) was 

fed with low calcium diet with no cancer cell injected. Animals were on their own diet for two 

weeks before cells were injected. They were 9 months old when cancer cells were injected into 

their tibia. Mice in the Control group and Low Calcium group were randomly assigned to three 

separate groups respectively: D5, D10, D21, with the numbers indicating the duration of days 

from tumor injection to sacrifice. Animals were weighed once a week and once more before 

sacrifice. Three weeks later, mice were sacrificed with CO2 asphyxiation. 
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Intra-tibia Injection 

Mice were anesthetized with isoflurane (mixed in oxygen) and placed in a supine position during 

operation. After an incision was made on the right knee of the animal, 1000 4T1 suspended in 

Matrigel were inoculated. A 26-gauge needle was first inserted into the bone marrow cavity to 

create space for inoculation, and a 27-gauge needle was then used for injection. The incision 

was sealed with tissue adhesive (3M Vetbond, No. 1469SB) and closed with a surgical staple. 

Banamine (2.3 μg/g body weight) was subcutaneously administered immediately and 12 hours 

later for pain relief after surgery. 

Bioluminescence Imaging 

Three minutes before BLI, mice were injected with 15 mg/mL luciferin dissolved in PBS at a 

dose of 10 μL luciferin per gram of body weight. Each mouse was anesthetized with continual 

administration of isoflurane gas from an inlet tube and imaged with BLI twice per week. The 

whole body scan takes three minutes per animal. BLI signals were detected by a camera set 

inside of the imaging unit. BLI images and movies were acquired and compiled by the Piper 

Control software (Stanford Photonics, Palo Alto, CA). Images obtained were later analyzed by 

the software Image J (NIH, Bethesda, MD) and Photoshop Elements (Adobe, San Jose, CA). 

The background image of the mouse body was combined with the image showing only the 

luminescence of the tumor. Tumor area and integrated density (the product of area and intensity 

of luminescence) on the bone were analyzed using ImageJ.  

India ink staining 

Lungs of mice were perfused with India ink to stain the lobes and visualize the tumor following 

the method described by Wexler.155,156 Briefly, ribs were cut to expose the lung and trachea, and 

India ink was slowly injected into the lung via trachea. The fully infused lung was harvested and 

fixed in fekete solution (90% of 70% ethanol, 9% of 37% formaldehyde, and 1% of 9% acetic 

acid). After placed in fresh fekete solution for 24 hours, tumor nodules on lung lobes were 

counted by three individuals. Tumors were distinguished as white extrudates not being stained 

while normal lung tissue was stained black. The mean value of the three individuals’ counts is 

reported. 

Uteri and serum collection 

Blood was collected from each animal and centrifuged to separate serum from the blood cells. 

Serum was frozen and stored at -20°C freezer and sent to Dr. Iwaniec’s lab in Oregon State 

University for parathyroid hormone (PTH) level measurement. 

Statistical Analysis 
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BLI tumor area, integrated density, and serum PTH level were analyzed using Student t-test in 

Microsoft Excel to determine the significant difference between groups. Tumor nodule numbers 

on lung surface was analyzed using Wilcoxon rank sum test. All hypotheses were tested in a 

two sided way and significance was set at p<0.05.  
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Results 

Mice in LC-D21 group had stronger integrated density on the bone tumor than control 

BLI is shown as effective to monitor tumor growth and progression and determine an 

appropriate ending point of a study.6 Tumor progression was monitored via BLI on day 4, 7, 11, 

14, 17, and 20. Representative BLI images (Figure 3.1) show that mice on LC diet had larger 

bone tumor with stronger integrated density than mice on Control diet. It was confirmed later by 

tumor area and integrated density measurement on the bone (Figure 3.2). Mice in the LC-D21 

group had stronger BLI integrated density of the micrometastatic bone tumor compared with 

mice in C-D21 group on both Day 14 (p=0.05) and Day 17 (p<0.05). A similar trend was shown 

in tumor area measurement on the bone, where LC-D21 seems to have a larger tumor area on 

the bone than C-D21, especially on Day 14 and D 17. The significance level between the two 

groups on Day 14 and D 17 is p=0.07, respectively.  

 

Mice on LC diet had higher serum parathyroid hormone level than mice on Control diet 

Serum PTH level in mice on a LC diet with no tumor inoculated is significantly higher than mice 

on a control diet with no tumor inoculated (Figure 3.3). However, there is no significant 

difference between LC group and Control group in those mice inoculated with cancer cells: D10 

and D21 groups. Mice in the Control group that were inoculated with tumor in the bone also had 

higher serum PTH levels than those in the Control group without tumor inoculation. 

 

Mice in LC-D21 group had more lung surface tumor nodules than mice in C-D21 group 

Tumor colony numbers on lungs stained with India ink were counted to assess severity of lung 

metastases. Tumor nodule numbers of LC-D21 group were significantly higher (p<0.05) than 

that of C-D21 group; while there was no significant difference between LC and control in D5 and 

D10 groups (Figure 3.4).  
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Discussion 

Previously we demonstrated that ovariectomy increased bone metastatic tumor area and 

integrated density as measured by bioluminescence imaging, which confirmed with previous 

findings that ovariectomy can enhance the growth of cancer cells in bone. However, whether 

this growth is facilitated by increased bone resorption induced by ovariectomy or other 

mechanisms remains unclear.68 In this time course study, a similar model was utilized to 

investigate the effects of a low calcium diet on breast cancer bone metastatic tumor growth and 

lung metastasis. The tibias of animals in this study, together with carcasses were sent to our 

collaborators for bone mineral analysis and to study the damage that a low calcium diet induced 

with tumors in the bone microenvironment. 

In this study, stronger integrated density of bone tumor were observed from BLI analysis in 

those mice fed with LC diet, compared with control, which confirms with previous findings from 

Ooi L.L. et al. They showed that mice deficient in calcium (0.1% calcium) with BC cells (MDA-

MB-231) implanted intratibially had larger tumor histologically with increased lesion size as 

assessed radiologically than mice on control diet (0.79% calcium). Mice on calcium deficient diet 

also had increased circulating PTH, increased bone resorption and bone density.68 In our study, 

increased PTH levels was also observed in low calcium fed sham animals (mice not injected 

with cancer cells) than control animals. However, for animals on control diet inoculated with 

tumors, their PTH levels seemed to be higher than mice with no tumor and no difference was 

found between LC and control in those tumor-bearing mice. 

In this study, after analysis on the bone, our collaborators found increased bone mineral 

content and bone mineral density in those low calcium fed animals (data not shown). There was 

also some foreign tissue formed in the area close to the tumor inoculation site on the tibia of 

those tumor-bearing animals (data not shown). It needs to be elucidated whether this foreign 

tissue formation was due to the low calcium diet or tumor inoculation, or both. Such finding 

coincides with some previous reports that bone injection of breast cancer cells would cause 

osteogenesis. Liang H. et al. adopted the bone injection model in their study with MDA-MB-231 

cells, and found osteogenesis in the bone tissue after tumor inoculation.77 Compared with 

control, animals received tumor inoculation in the bone had decreased bone volume during the 

study while increased bone density throughout the first three weeks post-injection which was 

higher than the control, and suddenly dropped bone density in the last week. 77 

In the current study, though mice were fed with a low calcium diet, the serum calcium levels 

of these animals were not assessed. The assumption is that the low calcium diet increased 

bone turnover, but due to the tight regulation of calcium level in blood, there is possibly not 
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much difference of serum calcium levels between LC and C groups. However, it was also 

reported that low calcium fed animals may also have a lower calcium level than control. Rader 

J.I. et al. fed male rats with calcium deficient diet and control diet in a study. They found that 

serum calcium levels for calcium-deficient rats continued to decline during the 5 week study, 

and control calcium level was higher than calcium-deficient rats. For serum PTH levels, calcium-

depleted rats had rapidly increased PTH levels and much higher than control, which had a 

stable PTH level during the study177, consistent with previous studies and our finding. 

In clinical trials, there have been inconsistent study outcomes in regard to whether serum 

calcium level or dietary calcium would affect breast cancer risks in women. Since serum calcium 

was tightly regulated in the body, it may not be an accurate indicator of dietary calcium intake.74 

In our study, intact animals were used, to exclude any possible effects from ovariectomy on 

bone resorption, which if existing, may confound study results. In the lung metastasis results, 

increased tumor nodules on the surface in LC-D21 group were found.  

In summary, it is found in this project stronger integrated density on BC metastatic tumor in 

the bone via BLI, and increased tumor nodule counts on the lung surface induced by a low 

calcium diet compared with control in mice inoculated with murine 4T1cells intratibially. LC diet 

also increased serum PTH level. Further evidence is needed on LC and BC metastasis, 

possibly through a larger scale study with more animals per group and extensive investigations 

on metastatic sites. 
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Figures 

Figure 3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Metastatic progression of 4T1 cells monitored by bioluminescence imaging (BLI) 

The date for cell injection was set as day 1. BLI was conducted on six days of the study: day 4, 

7, 11, 14, 17, and 20. Representative images of one animal in each group on day 7, 11, 17, and 

20 are presented, showing progressive stages of tumor development. Images from a mouse in 

LC-D21 group are shown in the upper panel, showing tumor progressively metastasized to 

lungs with severe tumor growth developed in the bone; images from a mouse in C-D21 group 

are shown in the lower panel, showing tumor developed moderate metastases to lungs with 

sizable tumor growth in the bone.  
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Figure 3.2 

(a) 

 

(b) 

 

Figure 3.2 LC-D21 animals had greater integrated density on bone micrometastatic tumor on 

D14 and D17 shown by BLI. 

(a) BLI tumor area: tumor area growth in bone over time from mice in LC-D21 and C-D21 

groups is shown in Figure 2 a. (b) BLI integrated density: integrated density of tumor on the 

bone over time from mice in LC-D21 and C-D21 groups is shown in Figure 2 b. Data are 

presented as mean ± SEM. Asterisk (*) indicates a significant difference between LC and 

control (p<0.05); triangle (∆) indicates a significant difference at the border-line level between 

LC and control (p=0.05). 
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Figure 3.3 

 

Figure 3.3 Mice on LC diet with no tumor inoculated had higher serum PTH level than control 

group with no tumor inoculated. 

Serum was collected at necropsy and sent to be analyzed by research group in Oregon State 

University. Serum parathyroid hormone levels are shown in this figure and presented as mean ± 

SEM. Among mice that were not inoculated tumor in the bone, LC diet increased serum PTH 

level than control. 
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Figure 3.4 

 
    

 

 

 

 

 

 

 

 

 

Figure 3.4 Mice in LC-D21 group had more metastatic tumors on lung surface than C-D21 group 

shown by India ink staining. 

Tumor nodule numbers on lungs stained with India ink are presented. Mice in LC-D21 group 

had significantly more metastatic tumors on the surface of lung than C-D21 group. Data are 

presented as mean ± SEM.  Asterisk (*) indicates significant difference between LC group and 

control group (p<0.05). Representative images of lungs stained with India ink from LC-D21 

group and C-D21 group were also shown with arrows pointing to tumor nodules. 
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Chapter 4 Changes of Breast Cancer Metastasis in Mice Inoculated with Murine Breast 

Cancer Cells 4T1 and 4T1.2 Induced by a High Fat Diet  

Abstract 

Breast cancer (BC) is the leading cancer in women worldwide. Metastasis occurs in stage 

IV BC with bone and lung being common metastatic sites. Our goal is to study the effects of a 

High Fat Diet (HFD) on BC growth and metastases from bone to lungs in mice inoculated with 

murine 4T1 or 4T1.2 cells. 104 female ovariectomized BALB/c mice were randomly assigned to 

two groups. Mice on the Control Diet (CD) consumed 17.2% calories from fat; mice on the HFD 

consumed 46.9% calories from fat. After 30 days of feeding, 32 mice were injected with cancer 

cells into mammary gland, while the rest were injected intratibially. Animals were sacrificed 

three weeks after injection. Bioluminescence imaging (BLI) was used to monitor BC metastasis. 

Mice on HFD had higher body weight and lower energy intake than control. Mice on HFD with 

mammary injection had higher gonadal adipose weight than control, while mice with 4T1.2 cells 

had higher liver weight than 4T1 mice. BLI images showed that 4T1.2 cells metastasized from 

bone to lungs and other body parts, like abdominal cavity. Mice injected with 4T1.2 cells had 

significantly more lung surface tumors than those with 4T1 cells. H&E staining showed that HF-

4T1.2 mice with bone injection had more lung tumors and more liver tumors than C-4T1.2 mice. 

In summary, mice with 4T1.2 cells developed more aggressive metastasis than mice with 4T1 

cells; HFD increased BC metastasis to the lung and liver in mice with 4T1.2 cells injected in the 

bone shown by H&E staining.  
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Introduction 

Breast cancer (BC) is the most commonly diagnosed cancer in women, the leading cause 

of cancer death in females worldwide,1 and the second in American women (after lung cancer) 

according to CDCxxxix. Stage IV of BC is the most advanced stage, in which cancer cells 

metastasize from the original site to distant organs like bone, lung and liver. The invasiveness 

and metastatic spread of BC are responsible for nearly all of the morbidity and mortality 

associated with BC.2 Metastasis is considered as the primary cause of cancer treatment 

failure.12 In developing countries, a large fraction of women with BC are diagnosed with 

advanced-stage disease and have no access to treatment or basic palliative care.11 How we can 

transform existing knowledge about diet and BC into preventative or protective practices among 

BC patients and survivors becomes a critical issue. 

The animal model utilized in this study mimics late stage BC in female patients by 

implanting a small number of metastatic murine mammary tumor cells into the marrow cavity of 

tibia to create a micrometastatic lesion. Subsequent metastasis to the lung is evaluated. 

Considered as a filter between the primary tumor and other secondary sites, lung is the organ 

mostly likely containing metastatic breast cancer at autopsy.13 Bone, as another frequent site for 

BC metastasis, has also stimulated extensive research. Once BC metastasizes to the bone, 

advanced disease of bone destruction and associated bone pain may occur, like fracture, 

hypercalcemia, and paralysis due to spinal cord compression. The most devastating 

consequence once BC has spread to bone is that the disease may be treatable but not 

curable.18 

In this study, effects of a high fat diet (HFD) on BC growth and metastasis in mice were 

evaluated. HFD has been associated with BC growth and metastasis in previous studies; a few 

studies on HFD and BC metastasis were found. Rose D.P. et al. reported in 1991 that HFD 

increased the percentage of mice with palpable tumors, increased lung tumor surface area and 

lung metastasis incidence.93  A high fat diet providing 60% Kcal from fat, as reported by Kim E.J. 

et al., increased mammary tumor growth and metastasis, and increased mortality in obesity-

resistant BALB/c mice.9  

More studies focus on HFD and BC growth or development. Zhao Y. et al. reported that 

pubertal HFD affected mammary cancer development and reduced tumor latency. Three weeks 

of HFD induced a transient influx of eosinophils into the mammary gland, and elevated 

inflammatory and growth factor gene expression in the mammary gland.91 In transgenic mice 

spontaneously developing mammary cancers, HFD increased tumor weights in axillary and 

inguinal regions.178 Another study using MCF-7 human BC cells in athymic nude mice reported 
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that HFD increased primary tumor weight and volume. HFD also modulated cell proliferation 

indicated by IHCxl staining on mammary tumor.92 HFD were also used together with another 

dietary component as treatment. For example, it was reported that depending on whether the 

background diet is HFD or not, phytoestrogens may have differential effects on BC growth. 

Perinatal high-fat exposure accelerated onset of spontaneous mammary tumor growth 

compared with low-fat diet, when given alone or together with flax seed in Tg.NK(MMTV/c-neu) 

mice.179  

The murine 4T1 BC cell line used in this project has been extensively utilized in animal 

studies on BC, especially stage IV BC, due to high potential of metastasis to lung, liver, bone 

and other sites.124 4T1 cells have been regarded as an attractive model for studying late stage 

BC.124,125 They multiply rapidly and develop metastases aggressively once injected into the 

BALB/c mice, which closely imitate human BC.  

According to Lelekakis M. et al., clonogenic cells can be detected in the spines of 4T1 

bearing mice.131 4T1.2 cells are derived from its parental cell line 4T1 by single cell cloning, and 

metastasize to lung and bone following orthotopic inoculation into mammary fat pad. This cell 

line is highly metastatic to lymph nodes, bone, lungs and other organs; thus provides a rare and 

valuable model that closely resembles metastatic BC in humans, with spontaneous metastasis 

from the mammary gland to distal sites, including spine and femur.132 Tester AM et al. reported 

that Matrigel invasion in Boyden chamber was progressively higher in the more metastatic line 

4T1.2 than other BC cell lines (66cl4 and 67NR cells), together with higher MMP-2 activation 

potential, MMP-9 secretion, and migration over type I or IV collagen.130 To our knowledge, the 

current study is the first to compare 4T1.2 and its parental line 4T1 in animal models of diet and 

metastatic BC. 
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Materials and methods 

Materials 

Murine 4T1 cells tagged with firefly luciferase were provided by Dr. David Piwnica-Worms 

(Washington University, St. Louis, MO). Murine 4T1.2 cells tagged with firefly luciferase were 

provided by Dr. Robin L. Anderson (Peter MacCallum Cancer Centre, Melbourne, Australia). 

Heat-Inactivated Fetal Bovine Serum (HI-FBS) was purchased from Atlanta Biologicals 

(Lawrenceville, GA). Modified IMEM, Penicillin/Streptomycin, Fungizone, and Trypsin-EDTA 

were purchased from Invitrogen (Carlsbad, CA). L-Glutamine was purchased from Sigma 

Chemical Co. (St Louis, MO). MatrigelTM matrix was purchased from BD Biosciences (San Jose, 

CA). AIN-93G pellet diet was purchased from Research Diets (New Brunswick, NJ). D-luciferin 

potassium salt was purchased from Regis Technologies (Morton Grove, IL). Isoflurane was 

purchased from Baxter Healthcare Corporation (Deerfield, IL). Thermo Infinity Triglyceride 

Reagent was purchased from Thermo Fisher Scientific (Rockford, IL). Standard solution for liver 

triglyceride measurement was purchased from 9500 Verichem Lab Inc. (Providence, RI). 

Cell culture 

Both 4T1 and 4T1.2 murine mammary cancer cells were cultured with IMEM, supplemented 

with 10% HI-FBS, 100 unit/mL Penicillin, 100 μg/mL Streptomycin, 1% L-Glutamine, and 0.1% 

Fungizone in a humidified incubator containing 5% CO2 at 37℃. 3,146 Cells were harvested at 70% 

confluence, centrifuged (0℃, 700 rpm, 5 minutes), and suspended in MatrigelTM for injection. 

BALB/c mice 

104 female BALB/c mice (OVX) were purchased from National Cancer Institute (Wilmington, 

MA). Mice were 5 weeks old when arrived. During the study, animals were singly caged and 

maintained under the standard light-dark cycle (12 h light and 12 h dark), with ad libitum access 

to food and water. All studies were carried out under animal experiment protocols approved by 

the Institutional Animal Care and Use Committee (IACUC) at the University of Illinois at Urbana-

Champaign. 

Mice were randomly assigned to 2 groups. Half of them were fed with a High Fat Diet (HFD) and 

the other half with Control Diet (CD) for 30 days. Then within each of the two diet groups, mice 

were randomly assigned to four groups (according to the cell line and whether cells were 

injected into the mammary gland or bone marrow cavity) as shown in Table 4.1. Mice on CD 

consumed 17.2% calories from fat; mice on HFD consumed 46.9% calories from fat. The 4T1 

groups (18 mice each group) were inoculated with 4T1 cells via tibial injection. The 4T1-PT 

(Primary Tumor) groups (8 mice each group) were inoculated with 4T1 cells via mammary 

ductal injection. The 4T1.2 groups (18 mice each group) were inoculated with 4T1.2 cells via 
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tibial injection. The 4T1.2-PT (Primary Tumor) groups (8 mice each group) were inoculated with 

4T1.2 cells into their mammary gland. Animals were weighed and food intake was measured 

once a week. Energy intake (Kcal/d) was calculated by multiplying their food intake with the 

amount of calories per gram of each diet. Macronutrient profile and diet composition were 

shown in Table 4.2 and Table 4.3, respectively. Three weeks after injection, mice were 

sacrificed with CO2 asphyxiation. Major findings for mice in the bone injection model are 

presented in the Results section; major findings for mice in the mammary injection model are 

presented in Appendix B as supplemental materials. 

Intra-tibial injection 

Mice were anesthetized with isoflurane/oxygen and placed in a supine position during operation. 

After an incision was made on the right knee of the animal, 1,000 4T1 or 4T1.2 cells suspended 

in 2.5µL MatrigelTM were inoculated. A 26-gauge needle connected to a syringe was first 

inserted into the bone marrow cavity to create space for the subsequent injection, and then 

replaced by a 27-gauge for injection. The incision was sealed with tissue adhesive (3M Vetbond) 

and closed with a surgical staple. Banamine (2.3 μg/g body weight) was subcutaneously 

administered at surgery and 12 hours post-surgery for pain relief. 

Mammary ductal injection 

Mice were anesthetized with isoflurane/oxygen and placed in a supine position during operation. 

1,000,000 4T1 or 4T1.2 cells suspended in 100 µL MatrigelTM were injected into the second rear 

right mammary gland of the animal via a syringe tipped with a 27-gauge needle. 

Bioluminescence imaging  

Three minutes before BLI, mice were injected with 15 mg/mL luciferin dissolved in PBS at a 

dose of 10μL luciferin per gram of body weight. Each mouse was anesthetized with continual 

administration of isoflurane gas from an inlet tube and imaged with BLI twice per week. The 

whole body scan of one mouse takes three minutes. BLI signals were detected by a camera set 

inside of the imaging unit. Images and movies were acquired and compiled by the Piper Control 

software (Stanford Photonics, Palo Alto, CA) on a computer. Images obtained were later 

analyzed by the software Image J (NIH, Bethesda, MD) and Photoshop Elements (Adobe, San 

Jose, CA). The image showing the luminescence of the tumor area was layered on top of the 

background image of the mouse body.  

Primary tumor area measurement 

The area of primary tumor was measured using a caliper during the study. At least four 

measurements were conducted before animals were sacrificed. The surface area of primary 

tumor was first swiped with a cotton ball soaked in 70% ethanol before measurement, so the 
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palpable tumor was easier to find. The length and width of the tumor were measured and 

recorded. Area was calculated as π×(length/2)×(width/2). After sacrifice, tumor area was 

measured once again ex vivo after the tumor was removed from the body. 

Primary tumor and organ collection 

During necropsy, primary tumors in the mammary gland were collected. An incision was made 

next to the tumor; a number 15 scalpel was then used to gently loosen the mammary tumor 

from surrounding tissue. Primary tumor was cut into two halves. One half was kept in formalin 

first and changed to 70% ethanol 24 hours after sacrifice. The other half was frozen in liquid 

nitrogen and stored in -80°C freezer. Gonadal adipose tissue and liver were collected and 

weighed at necropsy. One lobe of liver was kept in formalin first and changed to 70% ethanol 24 

hours after sacrifice.  

Histopathological analysis 

Lung sections from each animal in this study were embedded in paraffin, trimmed and sliced 

into 5 μm slices. Each slice was mounted on a glass slide, and tissue slides were deparaffinized, 

rehydrated, and stained with H&E. Stained tissues were observed and photographed using 

NanoZoomer Digital Pathology System (Hamamatsu, Hamamatsu City, Japan). Tumors on 

each slide were counted and tumor area was measured using the software NDP. View 2 

(Hamamatsu, Hamamatsu City, Japan). Tumor area percentage on the lung from each animal 

was calculated by dividing the total tumor area (with individual tumor area added together) by 

the total area of lung lobes. 

To evaluate proliferative cell percentage by Ki-67 staining, deparaffinized and rehydrated tissue 

slides were incubated with anti-Ki-67 antibody (Pharmingen, San Diego, CA) and biotinylated 

secondary antibody (Vector Laboratories, Burlingame, CA). Slides were then stained by 

diaminobenzidine substrate and counter stained by hematoxylin. Proliferating cells expressing 

Ki-67 were stained brown and considered as positive cells. By contrast, cells stained blue by 

hematoxylin were considered as negative cells. Immunostained slides were photographed 

under NanoZoomer Digital Pathology System (Hamamatsu, Hamamatsu City, Japan). Tumor 

images were analyzed using Adobe Photoshop Elements. To assess the percentage of 

proliferating cells, proportion of Ki-67-positive nuclei was determined. According to H&E staining 

results, four animals with H&E tumor count most close to the group average were selected from 

each group. Ki-67 stained positive and negative cells were counted on slides of these four 

animals under high-power (40X objective) fields. 

Liver Triacylglyceride (TAG) content measurement 
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A piece (around 50 mg) of the frozen liver sample was grinded in liquid nitrogen, homogenized 

in 0.3 mL saline (0.9% w/v NaCl) and weighed. Samples were diluted 2X with saline. 20 µL of 

the diluted sample was mixed with 20 µL 1% deoxycholate, and incubated at 37°C for 5 minutes. 

10 µL of sample or standard solution was added into each well of a 96 well plate. 200 µL 

Thermo Infinity Triglyceride Reagent was added into each well. Plate was incubated at 37°C for 

5 minutes, and read by a plate reader at λ=562 nm. 

Statistical Analysis 

Mice body weight and energy intake before cell injection were analyzed using student t-test. 

Mice body weight and energy intake after cell injection, gonadal adipose weight, liver weight, 

and proliferating cell percentage from Ki-67 staining were analyzed using ANOVA LSD test to 

determine the significant difference between groups. Tumor nodule counts on lung surface and 

tumor numbers inside lung tissue were analyzed using Wilcoxon rank sum test. Metastatic 

tumor incidence rate in liver was analyzed using Chi-Square test. All hypotheses were tested in 

a two-sided way and significance is set at p<0.05. All statistical tests were conducted in SAS 

(SAS Institute, Cary, NC). 
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Results 

Mice in HFD groups had higher body weight and lower energy intake than control 

As shown in Figure 4.1, before cell injection, HFD mice had higher body weight than control 

from week 2 to week 5; while they had lower energy intake than control at week 4 and week 5. 

After tumors were inoculated, HF-4T1.2 mice had higher body weight than C-4T1.2 during the 

first and third week after cell injection, and HF-4T1 had higher body weight than C-4T1 during 

the third week after cell injection. HF mice had lower energy intake than control during the first 

week after cell injection, then their energy intake became stable and were similar as control 

during the last two weeks. 

 

Mice with 4T1.2 cells had more lung surface tumor nodules than mice with 4T1 cells in the bone 

injection model 

Lung surface tumor nodule count shows that mice with 4T1.2 cells had significantly more 

metastatic lung tumors than 4T1 mice in the bone injection model (Figure 4.2). Bioluminescence 

images showed that mice injected with 4T1.2 cells in the bone had metastasis spread to 

different parts of the body, such as chest and abdominal cavity (Figure B.1). Representative 

pictures of lungs with surface tumors are shown (Figure 4.2). There is no difference on lung 

surface tumor nodule count between CD and HFD fed mice receiving bone injection. There is no 

difference on lung surface tumor nodule count among the four mammary injection groups 

(Figure B.2a). Measurement on primary tumor area of mice with mammary ductal injection 

shows that HF-4T1.2 mice had larger primary tumor area than C-4T1.2 on D9, D13 and D16 

after cell injection (Figure B.3). There is no difference for the weight and area of primary tumors, 

recorded during and after necropsy, among the four mammary injection groups (data not 

shown). 

 

HF-4T1.2 mice had more tumors in lung than C-4T1.2 in the bone injection model as shown by 

H&E staining 

Among the four bone injection groups, HF-4T1.2 group had significantly more tumors inside 

lung than C-4T1.2 group from H&E staining results presented in Figure 4.3. There is no 

difference for tumor number inside lung between C-4T1 and HF-4T1 groups. HF-4T1.2 group 

had significantly more tumors inside lung than HF-4T1 group. There is no difference for tumor 

number inside lung among the four groups with mammary injection (Figure B.2b). There is no 

difference for tumor area percentage inside lung among the four groups with bone injection 
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(Figure B.4) or the four mammary injection groups (data not shown). There is no difference for 

Ki-67 positive cell percentage among all the 8 groups (Figure B.5). 

 

HF-4T1.2 mice had more tumors in liver than C-4T1.2 among the four bone injection groups as 

shown by H&E staining 

From H&E staining results presented in Figure 4, HF-4T1.2 group had significantly more 

metastatic tumor incidence rate inside liver than C-4T1.2 group among the four bone injection 

groups. No metastatic tumor was found in the liver of mice in C-4T1.2 group, while liver 

metastatic tumors were found in 7 out of 16 mice in the HF-4T1.2 group. Among these 7 mice of 

the HF-4T1.2 group which developed liver metastasis, the total metastatic tumor count in the 

liver is 16. No metastatic tumor was found in the liver of groups injected with 4T1 cells in the 

bone, or the four groups with mammary injection (data not shown). 

 

4T1.2 mice had higher liver weight and higher liver triacylglyceride (TAG) content than 4T1 mice 

in the bone injection model 

Liver weight at necropsy showed that mice with 4T1.2 cells injected in the bone had higher liver 

weight than mice with 4T1 cells injected in the bone (Figure 4.5). Mice with 4T1.2 cells injected 

in the bone also had higher liver triacylglyceride (TAG) content than mice with 4T1 cells injected 

in the bone (Figure 4.6). Among the four groups with mammary injection, there is no difference 

on liver TAG content (data not shown); while HFD groups had higher gonadal adipose weight 

than CD groups in the mammary injection model (Figure B.6). There is no difference for gonadal 

adipose weight between the four bone injection groups (data not shown). 
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Discussion 

The reason why HFD is studied in this project not only lies in the fact that it reflects the 

considerably high dietary fat intake among westerners, but also stems from the inconsistent 

association of dietary fat and risk of BC. HFDs have been associated with BC progression and 

metastasis, indicated to increase BC risk by raising estradiol level.7,8  

In this study, it is found in this project that in mice inoculated with 4T1.2 cells, an HFD 

providing 46.9% Kcal from fat increased metastatic tumors inside lung and liver compared with 

CD which provided 17.2% Kcal from fat, as shown by H&E staining. Mice with 4T1.2 cells had 

more metastatic tumors on the surface of lung than mice with 4T1 cells; while there is no 

difference between HFD and CD on lung surface tumor nodule count. Several reasons may 

explain why there was no significant difference on lung surface tumor nodule counts between 

HFD and CD fed groups, as illustrated below. 

First, dietary fat percentage may impact study results. Some previous studies on HFD and 

BC used a diet containing as high as 60% Kcal from fat.9,91,92,94 In this study, HFD provides 46.9% 

Kcal from fat, which is still higher than, yet much closer to dietary fat consumption in humans. 

Second, different sources of fat have different effects on BC patients. Diet high in animal fat 

relates to a higher BC risk in sedentary women, while consumption of plant fat products may 

reduce the risk.95 Mammary adenocarcinomas from high olive oil fed animals showed a low 

histologic grade, few necrotic and invasive areas, and a high percentage of papillary areas; 

while adenocarcinomas from high corn oil diet fed animals had higher degree of morphological 

malignancy.180 Dairy fat is a source of estrogenic hormones and relates to worse BC survival. 

Intake of high-fat dairy was related to a higher risk of mortality after BC diagnosis.181 Western 

diet (WD) high in fat, sucrose and cholesterol have been introduced in animal models, 

especially in studies on metabolic syndrome. With anhydrous milk fat as a fat source, WD 

induces whole-body oxidative stress and elevates adiposity in male C57B1/6N mice, compared 

with an equal caloric HFD with lard as a fat source.96 Matthews S.B. et al. used anhydrous milk 

fat and corn oil as fat source for HFD and found that excess weight gain accelerated carcinogen 

induced mammary carcinogenesis in a rat model of premenopausal BC.97  

Besides, other factors, such as dietary lipid profile, feeding time frame and duration may 

also impact study results. Epidemiological studies found that different types of fat may have 

differential effects on BC risk in post-menopausal women. For example, polyunsaturated fatty 

acids may protect women from BC; while saturated fat may increase BC risk.182 Previous 

studies on HFD and BC in animals mostly have a longer feeding duration compared with our 
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study. Animals were usually fed from 12 weeks to 5 months before cell injection, and at least 1 

month after injection as reported.9,92 

Another influential factor may relate to the mice strain used, since it was reported that 

response to HFD in mice may be strain-dependent. In this project, BALB/c mice were used, 

which were referred to as obesity-resistant by some previous studies on HFD and BC.9 Other 

studies on HFD and metabolism,101,106 and some on diet and cancer have used C57/BL 

mice,94,183 which are more prone to gain weight and become obese on HFD. Yet in the current 

project, our focus is not on obesity and BC; using BALB/c mice helps to justify our goal by 

excluding possible effects from obesity on BC in the study. Moreover it was still reported that in 

pubertal BALB/c mice, HFD increased mammary epithelial cell proliferation, while in pubertal 

C57BL/6 mice it caused stunted mammary duct elongation and reduced mammary epithelial cell 

proliferation.94 

In this study, slightly higher body weight from HFD fed animals than control was observed, 

as expected, and intriguingly lower energy intake in the HFD groups. Yet similar findings were 

reported before. Ishii Y et al. found comparable energy intake while higher body weight in HFD 

rats than control.115 Lane et al. reported lower energy intake in sedentary rats fed with HFD than 

those on standard diet.117 They pointed out that organisms can react to reductions in energy 

intake by reducing basal energy, activity and growth rate. HFD may induce thermogenesis, and 

affect tumor incidence. 

Studies showed that a pro-inflammatory state induced by HFD may cause cancer. For 

example, chronic inflammation in mice fed HFD for one year, marked by increased macrophage 

infiltration and fibrotic changes in the adipose tissue, led to hepatocellular carcinoma.99 HFD can 

also affect lipid metabolism in the liver and energy homeostasis in the adipose tissue by 

modulating gene expressions. Liver tumorigenesis induced by HFD in C57Bl/6 mice was 

accompanied with altered gene expression of inflammatory cytokines, such as MCP-1xli and 

NADPHxlii oxidase complex.101 In regard to fatty-acid and lipid metabolism in mice on HFD, 

Nishikawa S. et al. reported that vacuolation of hepatocytes was severe in nine-week HFD-fed 

BALB/c mice, with up-regulated genes in fatty acid uptake and biosynthesis, such as CD36xliii, 

ACACAxliv, ACLYxlv, and FASnxlvi.102 In contrast, Montgomery M.K. et al. reported that BALB/c 

mice were protected from detrimental effects by HFD, without accumulating excess lipid in the 

liver, potentially due to lower fatty acid uptake.103 Waller-Evans H. et al. also showed BALB/c’s 

resistance to HFD-induced nonalcoholic fatty liver disease, though HFD did change liver gene 

expression of PPARxlvii  signaling, fatty acid metabolism, JAK-STAT xlviii  signaling and steroid 

biosynthesis in BALB/c.104  
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In this study, conducted histological staining and Oil-Red-O staining were on liver trying to 

locate lipid vacuoles. However, we did not find significant amount of liver lipid accumulation in 

either control animals or HFD animals (data not shown), possibly due to the fact that BALB/c 

mice did not gain much weight on HFD in such a short time frame (one month pre-injection 

feeding and three weeks post-injection feeding). However, in liver TAG content analysis, it is 

found in this project that mice with 4T1.2 cells had significantly more liver lipid accumulation 

than mice with 4T1 cells, consistent with liver weight results that mice with 4T1.2 injected in the 

bone had higher liver weight than mice with 4T1 cells in the bone. This may be explained by the 

fact that mice with 4T1.2 cells developed more aggressive metastasis than mice with 4T1 cells, 

and thus tend to store more nutrients in liver such as TAG for survival in the extreme situation. 

Though 4T1.2 is considered more aggressive than its parental cell line 4T1, comparison of them 

in animal models responding to dietary modulations has not been directly addressed so far. 

Besides affecting metabolism and cancer growth and progression, HFDs were reported to 

influence gene and protein expressions in rodents with BC. In F2 mice from a cross between a 

polygenic obese strain and a mammary cancer strain, HFD decreased BC latency and 

increased pulmonary metastases. HFD altered 211 hepatic gene expressions in tumor free F2 

control mice, while only changed the expression of five genes in mammary tumors; four of which 

are downstream of the tumor suppressor PTEN, suggesting that diet affects cancer metastasis 

through tumor autonomous and non-autonomous mechanisms.184 In another study on athymic 

mice, HFD decreased protein expression of PCNAxlix and Cyclin D1 in mammary fat pads, which 

were involved in cell proliferation, while increased Ob-Rb l , IGF-1R li , Bcl-2 lii , and Bax liii  in 

mammary tumors.183 Lamas B. et al. reported that HFD increased primary tumor weight and 

volume in athymic nude mice bearing MCF-7 human BC, and expression of genes such as 

VEGFR2 liv  (angiogenesis), TRADD lv  (apoptosis), and PTEN lvi  (tumor suppressor) were 

increased; while key regulating genes on adiponectin metabolism and lipid metabolism were 

decreased.92 Besides, there may be epigenetic mechanisms involved in how HFD in pregnancy 

exerts trans-generational effects on BC development. Mammary tumorigenesis was found to be 

higher in daughters and granddaughters of HF rat dams.185 It would be worthwhile to explore the 

mechanism of HFD’s modulation on BC metastasis and differences between the two cell lines 

from this project utilizing gene expression analysis in the future. 

In summary, it is found in this project that an HFD containing 46.9% Kcal from fat increased 

metastatic tumors inside lung and liver as shown by H&E staining in BALB/c mice inoculated 

with murine 4T1.2 cells in the tibia, compared with control diet containing 16.9% Kcal from fat. 

HFD increased gonadal adipose weight in animals injected with cancer cells in mammary gland. 
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Mice with 4T1.2 cells developed more aggressive metastasis as shown by lung tumor nodule 

counts. Liver weight and triacylglyceride content analysis showed that mice with 4T1.2 cells had 

higher liver weight and accumulated more TAG in the liver. Future studies with a longer feeding 

time frame and possibly a different diet composition and lipid profile are needed to further 

confirm whether HFD affects BC metastasis to secondary organs. Studies examining gene 

expression changes modulated by HFD in primary or secondary tumor site, such as lung and 

liver, are in need to investigate the mechanisms on how HFD affects metabolism and modulates 

BC metastasis. 
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Figures and Tables 

Figure 4.1 

(a) 

 

(b) 

 

Figure 4.1 Mice on HFD had higher body weight and lower energy intake than control before 

and at certain time points after cell injection.  

Star (*) before cell injection indicates a significant difference between HF group and C group by 

t-test (p<0.05). After cell injection, single asterisk (*) indicates a significant difference between 

HF and C in mice injected with 4T1 cells; two asterisks (**) indicates a significant difference 

between HF and C in mice with 4T1.2 cells (p<0.05). Before cell injection, all the mice were 

assigned to two groups, C or HF. After cell injection, mice were assigned to 8 groups. Here the 

body weight and energy intake of the four groups in the bone injection model is presented. 

(a) Body weight of mice before and after cell injection.  

(b) Energy intake of mice before and after cell injection 
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Figure 4.2 

 

 

     

Figure 4.2 Lung tumor nodule counts in the bone injection model showed that mice with 4T1.2 

cells had significantly more tumors on the surface of lung than mice with 4T1 cells.  

Representative pictures of lungs with surface tumors are shown, with arrows pointing to lung 

surface tumor nodules. Asterisks between two columns indicate significate differences between 

two groups. Statistical analysis is done by Wilcoxan Rank Sum test, p<0.05. 

 

 

 

 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

C-4T1 C-4T1.2 HF-4T1 HF-4T1.2

L
u
n

g
 T

u
m

o
r 

N
o

d
u

le
 C

o
u

n
t 

* * 



 

73 
 

Figure 4.3 
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Figure 4.3 (cont.) 
 

                 
 
 

                 
 

Figure 4.3 Tumor numbers inside lung in the bone injection model showed that HF-4T1.2 group 

had significantly more lung tumors than C-4T1.2 group as shown by H&E staining; HF-4T1.2 

also had more tumors inside lung than HF-4T1.  

Representative images of lung tumor by H&E staining under 0.5X and 7X objectives were 

shown. Circled areas indicate the specific locations of tumors displayed on the 7X images under 

the 0.5X lens. Asterisks between two columns indicate significate differences between two 

groups. Statistical analysis is done by Wilcoxan Rank Sum test, p<0.05. 
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Figure 4.4 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Liver metastatic tumor incidence rate in C-4T1.2 group and HF-4T1.2 groups in the 

bone injection model showed that HF-4T1.2 group had higher liver metastatic tumor incidence 

rate (7/16 with liver metastasis) than C-4T1.2 (0/17 with liver metastasis).  

Representative metastatic liver tumor images by H&E staining were shown. Circles indicate the 

location of liver metastatic tumors from an animal in HF-4T1.2 group. The image for one of the 

metastatic tumors under 40X objective is also shown. Statistical analysis is done by Chi-Square 

test, p<0.05. 
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Figure 4.5 

 

Figure 4.5 Liver weight at necropsy showed that mice with 4T1.2 cells in the bone injection 

model had higher liver weight than mice with 4T1 cells.  

Asterisks between two columns indicate significate differences between two groups. Statistical 

analysis is done by ANOVA LSD, p<0.05. 
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Figure 4.6 

 

Figure 4.6 Liver Triacylglyceride (TAG) content after normalized to 50 mg liver weight showed 

that mice with 4T1.2 cells in the bone injection model had higher liver TAG content than mice 

with 4T1 cells.  

Asterisks between two columns indicate significate differences between two groups. Statistical 

analysis is done by ANOVA LSD, p<0.05. 
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Table 4.1 Experimental design and animal groups 

Cell Injection Model Cell Line High Fat Diet Control Diet 

Tibial Injection Model 
4T1 18 mice 18 Mice 

4T1.2 18 mice 18 Mice 

Mammary Injection 
Model 

4T1 8 Mice 8 Mice 

4T1.2 8 Mice 8 Mice 

 

Table 4.2 Diet calories 

Nutrients 

High Fat Diet Control Diet 

Percentage by 
weight (g) 

Percentage by 
energy (Kcal) 

Percentage by 
weight (g) 

Percentage by 
energy (Kcal) 

Protein 21.2 18.4 17.7 18.8 

Carbohydrate 40.2 34.8 60.1 63.9 

Fat 24.0 46.8 7.2 17.2 

 

Table 4.3 Diet composition 

Macro-nutrient Component HFD (g/Kg) Control Diet (g/Kg) 

Carbohydrate 

Corn starch 125 397 

Maltodextrin 158 132 

Sucrose 119 100 

Fat 
Soybean oil 83 70 

Lard 155 / 

*In HFD, protein, vitamins, minerals and cellulose are increased in proportion to the increase in Kcal 

density. 
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Chapter 5 Conclusion and Future Research 

In the first project, effects of the aromatase inhibitor letrozole on breast cancer metastasis 

from bone to the lung were evaluated. Mice that were ovariectomized had lower body estradiol 

level and lower uterine weight. They also had larger bone tumor area and greater integrated 

density on Day 14 and Day 17 as shown from BLI. Letrozole decreased serum estradiol level, 

reduced lung surface tumor nodules in intact mice, reduced tumor numbers inside lung as 

shown by H&E staining, and reduced proliferative cell percentage in lung shown by Ki-67 

staining. In conclusion, ovariectomy induced more aggressive micrometastatic tumor growth in 

the bone and letrozole reduced BC lung metastasis by suppressing tumor proliferation. Future 

research of this project lies in several areas: first, molecular analysis in vitro would help to 

investigate possible mechanisms involved in letrozole’s effects on reducing BC metastasis. For 

example, cell culture studies with 4T1 cells and letrozole given in different dosages would help 

to investigate whether letrozole has any effects on cell migration and invasion in vitro, which will 

provide further implication when compared with animal study. Second, expression of genes 

related to BC progression and metastasis can be tested in 4T1 cells cultured with letrozole, so 

that possible molecular pathways involved in this drug’s effects on BC metastasis can be 

elaborated. 

In the second project, effects of low calcium diet on BC metastasis in a similar murine 

model as the previous one was evaluated in this time-course study. Low calcium diet induced 

greater integrated density on the bone tumor on Day 14 and Day 17 according to BLI, and 

reduced lung surface tumor nodule counts in mice that were sacrificed on Day 21. Data from our 

collaborators showed that low calcium diet induced more damage to the bone microenvironment 

as well compared with the control diet. In the future, improvements can be made to further 

research this topic. First, a longer feeding time frame should be considered. In this project, mice 

were fed one month prior to cell injection. Future studies could feed several months longer. 

Second, tumor on the bone could be harvested from future study to conduct both 

histopathological staining and gene expression analysis, to show the changes from low calcium 

diet to the bone tumor growth as well as molecular pathways modulated by the diet. Third, 

analysis using 4T1 cells cultured in vitro with a low calcium diet can be conducted to examine 

whether the diet affects cell growth, invasion, or migration. Gene expression analysis can also 

be conducted to demonstrate molecular changes induced by a low calcium diet to the tumor 

cells. 

In the third project, high fat diet increased tumor numbers inside both lung and liver in mice 

injected with 4T1.2 tumor cells as shown by H&E staining. Mice with the 4T1.2 cells had 
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significantly more aggressive lung metastasis shown by lung surface tumor counts. Future 

research for this project would be: molecular analysis on the liver tissue is needed to 

demonstrate the gene expression differences in liver induced by the high fat diet, especially 

genes related to inflammation and cancer metastasis. On the other hand, genes related to 

metabolism in liver, such as lipid or fatty acid synthesis and breakdown, or glycogen synthesis 

and breakdown, could be tested to see whether there is any difference between mice injected 

with the two different cells lines. The higher liver weight and more TAG accumulation in mice 

received 4T1.2 cell injection as seen from this current study could be attributed to the fact that 

more aggressive tumor growth in these animals would need more nutrient supply from their host 

organs. Further investigation in this arena would be both meaningful and intriguing. 
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Appendix A Supplemental Figures for Chapter 2 

Figure A.1  
(a)  
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Figure A.1 (cont.) 

(b)  

 

     

Figure A.1 BLI tumor area and integrated density measurement on D4, D7, D10, D21, and D23 

(a) BLI tumor area  

(b) BLI integrated density 

There is no significant difference between groups in tumor area and integrated density of the 

micrometastatic tumor on bone measured on Day 4, Day 7, Day 10, Day 21 and Day 23. 
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Figure A.2  

 

Figure A.2 Tumor area percentage on the lung from H&E staining showed no major effect of 

either ovariectomy or letrozole between groups 

Tumor area percentage was calculated from H&E stained lung slides, as described in Methods 

and Materials. There is no significant effect from either ovariectomy or letrozole. 
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Appendix B Supplemental Figures for Chapter 4 

Figure B.1  

                                     

Figure B.1 Images from Bioluminescence Imaging showed that mice with 4T1.2 cells in the 

bone injection model developed metastasis to secondary sites in the body, such as chest and 

abdominal cavity.  
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Figure B.2 

(a) 

 

(b) 

 

Figure B.2 There is no difference on lung surface tumor nodule count among the four groups in 

the mammary injection model; there is no difference on tumor numbers inside lung from H&E 

staining among the four groups in the mammary injection model. 

(a) Lung tumor nodule count among mammary injection groups 

(b) Tumor numbers inside lung from H&E staining among mammary injection groups 
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Figure B.3  

 

Figure B.3 Primary tumor area of mice with mammary ductal injection showed that HF-4T1.2-PT 

mice had larger primary tumor area than C-4T1.2-PT on Day 9, Day 13 and Day 16. Single 

asterisk (*) indicates a significant difference between HF and C in mice injected with 4T1 cells; 

two asterisks (**) indicate a significant difference between HF and C in mice with 4T1.2 cells. 

(p<0.05) 
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Figure B.4 

 

Figure B.4 There is no significant effect from either the diet or the cell line on metastatic tumor 

area percentage from H&E staining inside lung among the four groups in the bone injection 

model. Tumor area percentage was calculated from H&E stained lung slides, as described in 

Methods and Materials. 
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Figure B.5 

 

Figure B.5 There is no difference from either the diet or the cell line on Ki-67 positive cell 

percentage on the lung metastatic tumors in all the 8 groups. Ki-67 positive cell percentage 

indicates proliferative cell percentage. It was calculated as the number of positive cells divided 

by the sum of positive and negative cells on metastatic lung tumors in mice. Columns with 

dashed outlines represent the four mammary injection groups. 
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Figure B.6 

 

Figure B.6 Mice on a high fat diet had higher gonadal adipose weight than control in the 

mammary injection model. Asterisks between two columns indicate significant differences 

between two groups. Statistical analysis is done by ANOVA LSD, p<0.05. 
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 CDC: Center for Disease Control and Prevention 
ii
 EREG: Epiregulin 

iii
 COX 2: cyclooxygenase 2 

iv
 MMP: matrix-remodeling metalloproteinase 

v
 SPARC: secreted protein acidic and rich in cysteine, also known as osteonectin or BM-40 

vi
 CXCL1: Chemokine (C-X-C motif) ligand 1 
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vii

 VCAM1: vascular cell adhesion molecule 1 
viii

 IL13RA2: Interleukin-13 receptor subunit alpha-2 
ix
 ROBO1: Roundabout homolog 1 

x
 ID-1: DNA-binding protein inhibitor 

xi
 TGF-β: Transforming growth factor beta 

xii
 NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells 

xiii
 ApoE: Apolipoprotein E 

xiv
 LDLR: low density lipoprotein receptor 

xv
 MCP-1: monocyte chemotactic protein-1 

xvi
 NADP: Nicotinamide adenine dinucleotide phosphate 

xvii
 SREBP1-c: sterol regulatory element-binding protein 1 

xviii
 SCD-1: Stearoyl-CoA desaturase-1 

xix
 CPT-1a: Carnitine palmitoyltransferase I 

xx
 Hmgcr: 3-hydroxy-3-methyl-glutaryl-CoA reductase 

xxi
 GPAT: Glycerol-3-phosphate acyltransferase 

xxii
 PCK1: Phosphoenolpyruvate carboxykinase 1 

xxiii
 G6P: Glucose-6-phosphatase 

xxiv
 ACO: acyl-coenzyme A oxidase 

xxv
 AMPK: AMP-activated protein kinase 

xxvi
 PGC-1α/β: Peroxisome proliferator-activated receptor gamma coactivator 1 

xxvii
 VLAD: very long chain acyl dehydrogenase 

xxviii
 BAT: brown adipose tissue 

xxix
 Cidea: Cell death-inducing DFFA-like effector a 

xxx
 IKKε: Inhibitor-κB kinase ε 

xxxi
 TIF2: transcriptional mediators/intermediary factor 2 

xxxii
 UCP: uncoupling protein 

xxxiii
 WAT: white adipose tissue 

xxxiv
 C/EBPs: Ccaat-enhancer-binding proteins 

xxxv
 ADD1: Alpha-adducin 

xxxvi
 RXR: Retinoid X receptor 

xxxvii
 GATA: Erythroid transcription factor also known as GATA-binding factor 

xxxviii
 KLF-4: Kruppel-like factor 4 

xxxix
 CDC: Center for Disease Control and Prevention 

xl
 IHC: Immunohistochemistry 

xli
 MCP-1: monocyte chemotactic protein-1 

xlii
 NADP: Nicotinamide adenine dinucleotide phosphate 

xliii
 CD-36: Cluster of Differentiation 36 

xliv
 ACACA: Acetyl-CoA carboxylase 1 

xlv
 ACLY: ATP citrate lyase 

xlvi
 FASn: Fatty acid synthase 

xlvii
 PPAR: Peroxisome proliferator-activated receptor 

xlviii
 JAK-STAT: Janus kinase- Signal Transducer and Activator of Transcription 

xlix
 PCNA: Proliferating cell nuclear antigen 

l
 Ob-Rb: Leptin receptor 
li
 IGF-1R: insulin-like growth factor 1 (IGF-1) receptor 

lii
 Bcl-2: B-cell lymphoma 2 

liii
 Bax: Bcl-2-associated X protein 

liv
 VEGFR2: receptors for vascular endothelial growth factor. 

lv
 TRADD: Tumor necrosis factor receptor type 1-associated DEATH domain protein 

lvi
 PTEN: Phosphatase and tensin homolog 


