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Abstract

Changes in the mechanical properties of soft tissues may be indicative of disease processes.

Medical elastography techniques are an attempt to create images of the mechanical behavior

to increase the sensitivity and specificity of existing imaging modalities. Current quantitative

elasticity imaging methods rely on a priori assumptions of the tissue biomechanics in order

to simply the forward problem, from which an inverse problem is developed. Erroneous

assumptions and noisy image data result in incorrect estimates of the mechanical parameters.

This thesis presents a new method of characterizing the mechanical response of soft tis-

sues. Machine-learning techniques and measured force-displacement data are used to create

empirical models of the constitutive behavior. Informational models are developed without

enforcing simplyfing assumptions of the true underlying mechanics, allowing the mechanical

properties of the tissue to be investigated after the model is developed. Knowledge of the

true behavior allows the appropriate consitutive model to be chosen to create a parametric

summary of the tissue suitable for imaging.

The informational modeling process is demonstrated on gelatin phantoms comprised of a

soft background material with one or three stiffer inclusions. An ultrasound probe was used

to uniaxially compress the phantoms while acquiring surface force and displacement data,

as well as ultrasound images. A speckle-tracking algorithm estimated motion of the phan-

toms within the imaged region. Force-displacement data and the Autoprogressive training

algorithm was then used to build informational models describing the constitutive behavior

of the gelatin materials.

It will be shown that estimates of the full stress and strain vectors throughout an entire
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model can be computed with the use of informational models, a feat not previously possible

in ultrasound elastography. These vectors can then be used to create a parametric summary

of mechanical properties of the gelatin materials - in this case, estimates of the Young’s

modulus. The resuling images of the Young’s modulus distribution clearly differentiate the

stiff inclusion(s) from the soft background.

Results from this investigation are just the starting point for developing informational

models of soft tissues. Sampling requirements and training methods to improve the ability

of the models to characterize the linear-elastic properties of the gelatin are discussed. Future

work will involve extending this method to 3D and characterizing more complex mechanical

behaviors, including nonlinear, time-dependent, path-dependent properties.
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Chapter 1

Introduction

Ultrasound elastography is a non-invasive method of assessing the mechanical properties of

soft tissues. Many pathologies, particularly cancer, induce a change in the local cellular

structure that alters the biomechanical response of the diseased tissue [38] [6]. Similar to

a physician performing manual palpation to feel for areas expressing abnormal mechanical

response (usually areas of increased stiffness), elasticity imaging provides a view of the

mechanical behavior.

Small lesions, or those surrounded by dense tissue, are often non-palpable. Furthermore,

the change in biomechanical properties does not correlate with increased contrast in con-

ventional B-mode ultrasound (US) imaging [35]. For example, specific characteristics in US

images of infiltrating ductal carcinomas could not be found, although the majority exhib-

ited an irregular boundary and were slightly hypoechoic [10]. Contrast between healthy and

diseased tissue may be increased by instead imaging the mechanical properties. US elas-

tography, then, can provide a radiologist with more information about imaged tissue than

B-mode images alone.

Several US elastography techniques exist based on either quasi-static or dynamic ap-

plication of a stimulus. Of interest in this study is the former. In the following sections,

the principles of quasi-static elastography are described, followed by a discussion of inverse

methods for mechanical parameter estimation.
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1.1 Quasi-static Ultrasound Elastography

Quasi-static ultrasound elastography was first introduced by Ophir and colleagues [27] as a

method to generate images of elastic parameters from US images. A series of RF images

acquired during compression of the tissue with an US probe are used to estimate the motion

of the tissue in the imaged region. Unlike dynamic methods, which often involved an internal

or external stimulus to generate shear waves, quasi-static loading allows points throughout

the entire object to sense and respond to the applied force. This means the motion of tissue

throughout the imaged region can be tracked after applying a single stimulus.

Displacement estimation is primarily done by tracking the change in the speckle pattern

resulting from the compression. One often used speckle-tracking technique is to calculate the

cross-correlation of individual scan lines in the pre- and post-deformation RF echo frames.

Speckle is created through coherent detection of echoes generated as an US pulse propagates

through the tissue. As the tissue deforms, the movement of scatterers in a small region is

governed by the same overlying mechanical behavior and is thus correlated. Small changes in

the speckle field caused by scatterer motion can therefore be tracked through cross-correlation

techniques.

Consider the situation where a single scatterer is embedded in an acoustically transparent

medium. In the left plot of Figure 1.1, the RF echo recorded from the scatterer is illustrated

by the solid black line. Once the US probe compresses the medium, the scatterer appears to

move toward the face of the probe, resulting in a time-lag, ∆t, of the RF echo signal (dashed

line). Computing the cross-correlation between the two received signals gives an estimate of

the time-lag (right plot, Figure 1.1). Using the relationship ∆d = ∆t ∗ c, where ∆d is the

change in position and c is the speed of sound, the motion of the scatterer can be found in

terms of distance.

Applying the cross-correlation across all scan lines produces a displacement map of the

imaged region, like that displayed in the left plot of Figure 1.2. Strain is calculated from

the displacement field by simply computing the gradient along the image axis (right plot,
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Figure 1.1: (Left) Examples of an RF line before (solid line) and after (dashed line) the tissue is compressed by the US probe.
(Right) The result of the cross-correlation between the two RF lines gives an estimate to the time-lag between the two pulses.

Figure 1.2). Darker regions in the strain image indicate areas of less strain, implying the

material is stiffer at that location.

The caveat to speckle-tracking methods is the necessity of small strains between images

to avoid phase ambiguity and pulse decorrelation. Motions due to large strain cause are

significant on the scale of the pulse length, resuling in decorrelation between the pre- and

post-deformation RF echo frames. Decorrelation effects may be circumvented by acquiring

many images of small deformations up to the desired strain amount. For example, the strain

image in Figure 1.2 is the cumulation of 31 RF echo frames. A total of 3% strain was applied

to the phantom in 30 steps, resulting in a total of 31 frames. From these, 30 strain images

were computed between successive RF echo frames. Summing all of the images produced

the single map of a large strain. This type of multi-image strain computation comes at the

cost of increased computation time and may accumulate or compound errors - errors in each

of the images get summed during the creation of the final image.

Another short-coming of strain estimation based on speckle-tracking is the limitation on

accuracy of computed displacements. Motion of the material in the same direction as the

propagated pulse can be accurately estimated, but displacements orthogonal to the beam are

more difficult to track. This is due to the phase information contained within the US pulse

along the axis of propagation. Methods have been introduced that attempt to track motion
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Gradient

Figure 1.2: (Left) Axial displacement estimate (in mm) produced from application of a speckle-tracking algorithm on RF
images. (Right) Calculating the gradient of the displacement field produces an estimate of the axial strain.

orthogonal to the pulse, including a weighted interpolation [25] and computing a synthetic

lateral phase [9], but the methods have limited success and low resolution. Because speckle-

tracking is relatively insensitive at estimating lateral motion, strains other than those in

the direction of the pulse propagation are prone to errors and suffer from very poor spatial

resolution.

Regardless of how many components of displacement and strain can be estimated, strain

images only offer a qualitative view of the mechanical properties. Strain distributions high-

light areas of increased or decreased stiffness, but do not provide enough information to

distinguish between benign and malignant lesions at a satisfactory level of specificity [7],[36].

The goal, then, is to quantify the mechanical properties of the structures in the imaged

region. Different types of soft tissues exhibit different values of shear modulus [32],[13].

Furthermore, it may be possible to differentiate benign and malignant lesions based on the

estimated shear modulus [2]. By constructing an inverse problem to estimate mechanical

parameters, the diagnostic capabilities of US elastography can be enhanced.

4



1.2 Inverse Problems in Elastography

Developing the inverse problem begins with the equilibrium equation of an elastic continuum:

3∑
j=1

∂σij
∂xj

+ fi = 0 (1.1)

where σij are the components of internal stress and fi are the external forces. Note that

this equilibrium condition is true for both linear and nonlinear elastostatics. In the nonlinear

case, the internal stress is dependent on the current strain (i.e., σij = σij(εkl)). Stress is

related to strain through a constitutive matrix, Cijkl:

σij =
3∑

k=1

3∑
l=1

Cijklεkl (1.2)

Equation (1.2) also remains true in the nonlinear case where the constitutive matrix

becomes dependent on the current strain (i.e., Cijkl = Cijkl(εkl)).

Inverse methods for quantitative elastography are an attempt to determine the values

of the constitutive matrix based on measured data. Up to 81 independent components

exist within the matrix, making the inverse problem exceptionally difficult. To combat this,

assumptions are made about the stress-strain behavior, such as linearity and isotropy, to

reduce the number of independent parameters to just a few. Most often, the assumption is of

a linear-elastic, isotropic solid under small (infinitesimal) strain. Some formulations assume

the material is compressible (ν < 0.5) while others assume incompressibility (ν = 0.5).

Assuming incompressibility leaves only the shear modulus, µ, to be determined; otherwise,

the inverse problem includes the other Lamé parameter λ. Further approximations are often

made to reduce the 3D problem to a 2D formulation. US images scan a plane through a three-

dimenional object, allowing only the two normal displacement components to be estimated.

Therefore, a plane-stress or plane-strain approximation is most commonly adopted.

An example of an inverse formulation for a two-dimensional problem is given here. Ap-
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plying the assumption of a linear-elastic, incompressible material under plane-strain loading,

a partial differential equation can be derived from (1.1) for the unknown shear modulus [33]:

∂2µεxy
∂x2

− ∂2µεxy
∂y2

+ 2
∂2µεyy
∂x∂y

= 0 (1.3)

The direct approach to shear modulus reconstruction is to solve equation (1.3) for every

location in the imaged region using strain fields computed from speckle-tracking methods.

Two important factors give rise to errors in the modulus estimation: 1) the inclusion of lat-

eral and shear strains in the inverse problem and 2) the existence ofsecond-order derivatives.

Recall that speckle-tracking methods poorly estimate displacements orthogonal to the axis

of propagation for the US pulse. Inaccuracies in the displacements lead to inaccurate strain

estimates, causing errors in the modulus estimation with (1.3). Regarding the second-order

derivatives, the first problem arises due to noise. Differentiation is a poorly conditioned op-

eration which amplifies noise, meaning noise in the strain estimates is magnified after taking

the derivative. Furthermore, (1.3) implies that the shear modulus is twice differentiable,

making it impossible to clearly delineate instantaneous changes in the stiffness.

Not as apparent from equation (1.3) is the need for sufficient boundary values. Solu-

tions to the ODE with second-order derivatives requires values along the boundary to be

defined. Without knowledge of the boundary values, the inverse problem is ill-conditioned

and produces non-unique solutions [5] [4]. Investigations have also shown that displacement

information alone is insufficient and a large amount of information related to the shear mod-

ulus must be supplied or assumed a priori [3] [4]. Barbone and Bamber [3] demonstrated

that errors in the assumed value of µ on the boundary has significant effects on the recon-

structed modulus image. They specifically show how the same set of strain data produced

three different modulus reconstructions.

Other approaches to solving the inverse problem using computational techniques, referred

to as iterative approaches, do not suffer from the same issues of non-uniqueness due to
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insufficient boundary data, such as those described in [23] and [37]. Often these methods

employ finite element analysis techniques and create a computational model of the entire

imaged object in 2D or 3D. After assuming a constitutive model for the object (or every

distinct region in the object), the tractions and/or displacements on the surface provide

enough information to solve the forward problem. Solutions to the inverse are found by

performing several iterations. In each iteration, the forward problem is solved and the

computed displacements are compared to the measured values. The error between computed

and measured values are used to adjust the parameters of the constitutive model chosen for

the material. Iterations continue until predetermined convergence criteria are satisfied.

Iterative techniques have the drawback of increased computational load due to a forward

problem being solved in every iteration. Direct methods may be on the order of seconds

to minutes whereas iterative methods may takes tens to hundreds of minutes. And, even

though they do not suffer from the same problems with boundary conditions, solutions found

with iterative methods aren’t necessarily unique. It is possible that two different modulus

distributions could give rise to the same measured displacements. Then, the solution found

by the iterative method will depend on the initial guess of the shear modulus. Just like with

the direct inversion, some information about the shear modulus must be known a priori in

order to be sure the correct solution is found.

Inherent to the above inverse formulations is an assumption of small strain. Limiting

the inverse problems to small deformation may miss important diagnostic information since

biomechanical properties of healthy and diseased tissue may differ under small and large

strain. For example, intraductal in situ carcinomas had a mechanical response similar to

fat under small strains, but were much stiffer than glandular tissue under large strain [26].

Similarly, infiltrating ductal carcinomas were found to approximately 2.5 times as stiff as

normal glandular tissue under compression at 1% strain, but nearly 5 times stiffer under

15% strain [38]. Work has been done to develop methods of solving the inverse problem

for nonlinear elastostatics [33] and to determine the requirements for unique solutions [12].
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It has been shown that assuming a linear model for material that exhibits more complex

behavior, such as nonlinearity or anisotropy, leads to unpredictable errors in the modulus

estimation [11].

To summarize, the mechanical properties of soft-tissues are not yet understood well

enough to make assumptions of the underlying constitutive behavior required by current

inverse methods. Restricting deformations to incremental displacements will likely cause

important properties (e.g., strain stiffening) to be missed. A method is needed to estimate

the stress and strain fields without assumptions to solve this problem.

1.3 The Innovation

Presented here is a method to build informational models of the constitutive behavior ex-

pressed by soft-tissues. Instead of enforcing an assumption of the constitutive matrix, Cijkl,

creating an inverse problem, and using measured data to estimate mechanical parameters,

force-displacement data is acquired and used in conjunction with machine learning techniques

to develop empirical models. These models obey the same mechanical laws as the interro-

gated tissue because the information used in their creation describes the true underlying

constitutive behavior.

Perhaps the greatest advancement with the informational modeling approach is the ability

to compute accurate images of the full stress and strain vectors using noisy data acquired

from surface measurements and US imaging. Some existing methods, especially those which

implement FEA to solve the inverse problem, may also produce estimates of the full vectors,

but the estimates are based on simplifying a priori assumptions of the underlying constitutive

behavior. Conversely, informational models are empirical and are not developed with an

assumption of the biomechanical response of the tissue, thus the computed stress and strain

vectors are based only on measurable data and more accurately portray the true response.

Once the informational model is developed, investigations into the underlying biome-
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chanical properties of soft-tissues can be performed. Trained ANNs can be interrogated

to determine if the tissue expresses isotropy, nonlinearity, viscoelasticity, etc. Information

about the constitutive properties will guide the selection of an appropriate analytical model

for mechanical parameter estimation. Unlike existing inverse methods, the behavior learned

by the ANNs is exploited to determine which constitutive model best describes the tissue

behavior instead of making the assumption a priori. Once a model is chosen, parameter

estimation can be done using the computed stress and strain vectors. Moreover, informa-

tional models are not limited to a small-strain assumption and can describe the tissue motion

under large strain. The ability to choose the best model for parameter estimation after the

constitutive behavior is known and removing the small-strain limitation may further improve

the specificity of elasticity imaging.

Chapter 2 contains a brief overview of artificial neural networks used as the machine

learning method in informational modeling, followed by a derivation of the backpropagation

learning algorithm. Chapter 2 continues with a concise derivation of the finite-element

formulation for an elastic material to illustrate how a neural network is used in the solution.

A description of the Autoprogressive algorithm concludes in the chapter. In Chapter 3

describes the informational modeling method applied to gelatin phantoms. A discussion of

the important findings from Chapter 3 and future work concludes this document in Chapter 4.
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Chapter 2

Neural Network Constitutive
Modeling

Constitutive models describing elastic behaviors are all derived from the equilibrium con-

dition defined in equation (1.1) and the stress-strain relationship in (1.2). Reducing the

constitutive matrix by making assumptions of mechanical properties allows for a concise

set of parameters to be defined. These parameters provide a simple way to describe the

constitutive behavior of a material. The goal of elastography is to create images of mechan-

ical parameter distributions to identify various tissues and structures in a medical image.

Assumptions about tissue behavior are made not only to simplify the inverse problem, but

to facilitate the parameterization process and provide as much information as possible in

a single elastogram. If, for example, multiple parameters were estimated based on a more

elaborate model, multiple elastograms would be needed to display the information, reducing

the practicality of elastography.

Informational models avoid a priori assumptions and learn the mechanical behavior di-

rectly from measured data. Artificial neural networks (ANN), the chosen machine-learning

tool, act in place of the constitutive matrix in (1.2) to relate strain inputs to stress outputs.

An example of this is shown in Figure 2.1. The plane-stress approximation reduces the

three-dimensional problem (with a certain geometry) to two dimensions using assumptions

of linear-elasticity, isotropy, and compressibility (i.e., Poisson’s ratio, ν < 0.5). Mechanical

parameters in the plane-stress formulation are Young’s modulus, E, and Poisson’s ratio. As-

sume that force-displacement data were acquired from a material capable of being described

by the plane-stress approximation and used to train an ANN. After training, the connec-

tion weights in the ANN hold the same information as the constitutive matrix at the top of
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Figure 2.1: Under certain geometric constraints, linear-elastic, isotropic, compressible materials may be modeled with the
plane-stress approximation shown at the top. Trained ANN material models act in place of the constitutive matrix to relate
strain inputs to stress outputs. It is important to note that plane-stress behavior is not assumed during NNCM development.
The relationship between the constitutive matrix and the ANN diagrammed here occurs because of the model geometry and
aforementioned mechanical properties of the material.

Figure 2.1. Interrogating the trained ANN would reveal it describes the same behavior as

the plane-stress approximation. It is at this point that the plane-stress model can be chosen

and parameters estimated based on the stress-strain behavior characterized by the ANN in

order to create a concise summary of material properties suitable for display.

Training ANNs on the constitutive behavior of a material requires a method to convert

acquired force-displacement data to stresses and strains. Because no assumptions are made

about the mechanical properties, an iterative process is needed to direct the ANNs to the true

behavior. The method used in this approach to building neural network constitutive models

(NNCM) is the Autoprogressive algorithm (AutoP). AutoP utilizes finite element analysis

(FEA) to iteratively estimate stresses and strains from force-displacement data. Iteratively

solving FEAs using ANNs produces increasingly accurate estimates of the true stresses and

strains.

Section 2.1 provides a brief overview of ANNs and associated training methods. A concise

derivation of finite element methods follows in Section 2.2 to demonstrate how ANNs can

be used to solve FEAs. This chapter concludes with a more thorough description of the

Autoprogressive algorithm in Section 2.3.
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2.1 Artificial Neural Networks

2.1.1 Overview

Artificial neural networks are an information-based machine learning technique often used

to solve complex problems. Loosely based on biological neural networks, ANNs consist of

a network of “neurons”, or nodes, interconnected to exchange information and compute an

output based on a given input stimulus. Several characteristics inherent to ANNs make them

desirable as a problem-solving technique, including their massive parallelism, ability to learn

and generalize, inherent nonlinearity, adaptability, robustness, and ability to handle noisy

data [15],[20]. Because of these properties, ANNs are able to produce accurate results when

provided with “fuzzy” information and when modeling complex behaviors and relationships.

Perhaps the most important ability of ANNs for the subject of informational modeling is their

ability to model phenomena only understood through measurement or observation. From

a set of noisy measurements, ANNs can generalize and learn the underlying relationships

between chosen inputs and outputs.

Many different types of neural network topologies exists; for the purposes of informational

modeling, our interest lies only in feed-forward networks: Figure 2.2 contains an example

of a simple feed-forward, two-layer ANN. Nodes in the first layer produce outputs that feed

the nodes in the second layer. Connection weights multiply the output of a node before it

reaches the next node. The label wji is the weight of the connection from node i in the

previous layer to node j in the next layer. Input to a node, referred to as the input signal,

is computed by summing the output of all feeding nodes multiplied by the corresponding

connection weights. Node output is found by supplying the input signal to an activation

function defined for the node. For informational modeling, the activation function used is

the hyperbolic tangent.

ANNs “learn” by adjusting the connection weights between nodes. Input-output rela-

tionships described by ANNs are the result of the chosen activation function and connection
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Figure 2.2: Example of a simple two-layer, feed-forward ANN. Output from nodes are weighted and summed to form the
input to a node in the succeeding layer. The input signal is passed to an activation function, the output of which becomes the
output of the node.

weights. The activation function(s) remain static, meaning the connection weights must

change for the ANN to adjust its response. The type of learning used for building informa-

tional models is a form of supervised learning, meaning a known output is given for every

training input. Many supervised learning techniques are based on the backpropagation (BP)

algorithm. BP is a method used in conjunction with gradient descent optimization to ad-

just the connection weights based on the error between ANN output and expected response.

Section 2.1.2 is the derivation of the BP algorithm to help the reader understand how an

ANN can learn from given information.

Informational models - also referred to as NNCMs or ANN material models - are ANNs

that have been trained on the constitutive behavior of a material. A strain vector is provided

at the input of the network and a stress vector is computed. NNCMs act as the constitutive

matrix between the strain and stress vectors. The empirical nature of the NNCMs means

they accurately model the true mechanical behavior of a material without requiring any

assumptions about the constitutive matrix.
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Care must be taken when implementing developed NNCMs in computational models

since trained ANNs produce valid outputs only over the range covered by the training data.

They have the ability to generalize information and make accurate predictions within the

bounds of training, but are unable to extrapolate. If presented with an input outside of their

valid range, the response becomes nonlinear and unpredictable. Therefore, a data set must

be provided for training that is comprehensive and spans the entire space of information that

may be entered during later computations. In the case of NNCMs, the force-displacement

data must cover the stress-strain range that may be seen in later FEAs. For example,

attempting to apply a 5% strain to a NNCM that was trained up to 3% strain will produce

inaccurate results.

2.1.2 Derivation of Backpropagation Algorithm

The purpose of this section is to illustrate how learning occurs in an ANN using BP. By

deriving the weight update formula, it should become clear how the error at the output

of the network trickles backward, or backpropagates, through the network and adjusts the

nodal connection weights. The weight update formula will first be derived for a node at the

output layer of the network. Then, it will be shown how the errors at the output can be used

in a recursive fashion to define a weight update equation for a hidden node. The derivation

shown here is based on [31] and [18].

An example of an ANN is provided in Figure 2.3. For the first part of the derivation,

the hidden nodes that feed into the output nodes are indexed by i whereas output nodes are

indexed by j. The connection weight from node i to j is denoted as wji. A training pair

consists of an input vector and its corresponding output vector. The nth training iteration

consists of presenting the input vector for a training pair to the input nodes that propagates

forward through the network and produces a computed output y(n) at the output nodes.

Suppose the input vector for the training pair in the nth training iteration has been

presented to the input nodes of the ANN. The signal to output node j is the sum over
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Figure 2.3: Example of an ANN with two hidden layers. The connection from node i to node j is weighted by wji.

the output of all I nodes in the previous layer multiplied by the corresponding connection

weights:

fj(n) =
I∑
i=0

wji(n)yi(n) (2.1)

After calculating the input signal, fj(n), the output of node j is found by passing the signal

into the activation function ψj():

yj(n) = ψj(fj(n)) (2.2)

The error of output node j is the difference between the computed output and the given

output vector of the training pair:

ej(n) = dj(n)− yj(n) (2.3)

where dj(n) is the expected output of node j (given by the training pair) for the nth iteration

and yj(n) is the actual output for node j. Error energy for node j can be defined as 1
2
e2
j(n).
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With this, the total error energy is found by summing over all J output nodes:

E(n) =
1

2

J∑
j=1

e2
j(n) (2.4)

The back-propagation algorithm is used in conjunction with gradient descent methods. Con-

nection weights are updated by a value ∆wji that is proportional to the partial derivative

of the error energy to connection weight wji. Applying the chain rule, the derivative can be

written as:

∂E(n)

∂wji(n)
=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂fj(n)

∂fj(n)

∂wji(n)
(2.5)

Each term on the right-hand side of (2.5) will be evaluated separately to make the solution

process more clear. Solving for the first term:

∂E(n)

∂ej(n)
=

∂

∂ej(n)

1

2

K∑
k=1

e2
k(n)

=
1

2

K∑
k=1

∂e2
k(n)

∂ej(n)

= δjkek(n)

= ej(n) (2.6)

Differentiating the second term on the RHS of (2.5):

∂ej(n)

∂yj(n)
=

∂

∂yj(n)
(dj(n)− yj(n))

= −1 (2.7)
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Evaluating the third term:

∂yj(n)

∂fj(n)
=

∂

∂fj(n)
ψj(fj(n))

= ψ′j(fj(n)) (2.8)

And finally, the fourth term evaluates to

∂fj(n)

∂wji(n)
=

∂

∂wji(n)

K∑
k=0

wjk(n)yk(n)

=
K∑
k=0

∂

∂wji(n)
wjk(n)yk(n)

= δikyk(n)

= yi(n) (2.9)

Plugging (2.6), (2.7), (2.8), and (2.9) back into (2.5):

∂E(n)

∂wji(n)
= −ej(n)ψ′(fj(n))yi(n) (2.10)

The correction factor ∆wji(n) is defined as

∆wji(n) = −η ∂E(n)

∂wji(n)

= ηej(n)ψ′(fj(n))yi(n) (2.11)

where η is a parameter that defines the learning rate. That is, increasing the value of η

increases the amount that weight wji can change during an update step. Defining the local

gradient as

δj(n) = − ∂E(n)

∂fj(n)
= ej(n)ψ′(fj(n)) (2.12)
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(2.11) can be written in a more succint form:

∆wji(n) = ηδj(n)yi(n) (2.13)

This correction factor applies to nodes in the output layer only where an error function

can be defined. For nodes in the hidden layer(s), the node output is not definitively known,

meaning an equation such as (2.3) cannot be directly defined for that node. Instead, the

error for a hidden node must be determined recursively based on the output errors of all the

nodes to which the hidden node feeds.

To begin the derivation of the local gradient for a hidden node, a change of indices is

performed:

j → k

i→ j

This means in Figure 2.3, the hidden node is now indexed by j and the output node indexed

by k. The local gradient for a hidden node j is defined the same way as (2.12):

δj(n) = − ∂E(n)

∂yj(n)

∂yj(n)

∂fj(n)

= − ∂E(n)

∂yj(n)
ψ′(fj(n)) (2.14)

Using the error energy defined in (2.4) with index k, the differentiation becomes

∂E(n)

∂yj(n)
=

∑
k

ek(n)
∂ek(n)

∂yj(n)

=
∑
k

ek(n)
∂ek(n)

∂fk(n)

∂fk(n)

∂yj(n)
(2.15)

Recalling that the error for output node k takes the form ek(n) = dk(n) − yk(n) = dk(n) −
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ψk(fk(n)), the derivative of the error with respect to the sum of the input signals is

∂ek(n)

∂fk(n)
= −ψ′k(fk(n)) (2.16)

Continuing with the derivative on the last term of (2.15):

∂fk(n)

∂yj(n)
=

∂

∂yj(n)

L∑
l=0

wklyl(n)

=
L∑
l=0

∂

∂yj(n)
wklyl(n)

= δjlwkl

= wkj (2.17)

The index l is used as a dummy variable to index over all L hidden nodes connected to

output node k. Putting (2.16) and (2.17) back into (2.15):

∂E(n)

∂yj(n)
= −

∑
k

ek(n)ψ′k(fk(n))wkj(n)

= −
∑
k

δk(n)wkj(n) (2.18)

where the local gradient δk(n) for output node k is defined the same as (2.12) using k instead

of j. To get the local gradient for hidden node j, (2.18) is substituted back into (2.14):

δj(n) = ψ′j(fj(n))
∑
k

δk(n)wkj(n) (2.19)

Summarizing the above derivation, the local gradient for node j in layer l is

δ
(l)
j (n) =


e

(L)
j (n)ψ′(f

(L)
j (n)) node j is an output node in layer L

ψ′j(f
(l)
j (n)

∑
k δ

(l+1)
k (n)w

(l+1)
kj (n) node j is a hidden node in layer l

(2.20)
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and the weight adjustment becomes

∆w
(l)
ji (n) = ηδ

(l)
j (n)y

(l−1)
i (n) (2.21)

where the superscripts specify which layer the node resides. Finally, the weight update

equation can be concisely defined:

w
(l)
ji (n+ 1) = w

(l)
ji (n) + ∆w

(l)
ji (n) (2.22)

Training can be performed in either “online” or “batch” mode. During “online” training,

the connection weights are updated according to (2.22) after the presention of each training

pair to the ANN. On the other hand, in “batch” mode all of the training pairs are presented

and the error vectors collected. After collecting all of the error vectors for the given set of

training data, the ANN connection weights are then updated. A discussion of benefits and

drawbacks of each training method are beyond the scope of this paper. It should be noted

that the “batch” method of training is used for NNCMs developed using AutoP.

Provided here is an example of ANN training using the standard backpropagation al-

gorithm. A simple network with a single hidden layer shown in Figure 2.4 is considered.

Connections weights are initialized to unity (i.e., wji = 1). Input to the ANN is “1” and the

expected output is “2”. Training begins by calculating the ANN output after presenting the

input. First, the output of node 1 is

y1(1) = ψ(1) = tanh(1) = .7616 (2.23)

Given that the connection weights from node 1 to nodes 2 and 3 are identical, the output

from the latter nodes is calculated as

y2(1) = y3(1) = tanh(w21 ∗ y1(1)) = tanh(0.7616) = 0.6420 (2.24)
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Figure 2.4: Simple ANN to demonstrate weight adjustment with the backpropagation algorithm. Each weight is initialized
with a value of “1”. The activation function for each node is a hyperbolic tangent.

Outputs from nodes 2 and 3 are weighted and summed to become the input signal for node

4:

f4(1) = w42 ∗ y2(1) + w43 ∗ y3(1) = 1 ∗ 0.6420 + 1 ∗ 0.6420 = 1.2840 (2.25)

Finally, output of the ANN is

y4(1) = tanh(f4) = tanh(1.2840) = 0.8576 (2.26)

Output error is e4(1) = d(1)− y4(1) = 2− y4(1) = 1.1424. Using the definition in (2.20),

the local gradient for nodes 2, 3, and 4 are as follows:

δ4(1) = e4 ∗
dtanh(y4(1))

dx
= 0.3023

δ2(1) = δ3(1) =
dtanh(y2(1))

dx
∗ δ4(1)w42 = 0.1777 (2.27)

Local gradients δ2(1) and δ3(1) are equivalent because both associated nodes connect to node

4, w21 = w31, and y2(1) = y3(1). For this example, the learning rate η will be unity. Using

21



Figure 2.5: Activation function ψ() = tanh() used for NNCMs.

(2.22), the weight updates become

∆w42 = ∆w43 = η ∗ δ4(1) ∗ y2(1) = 0.1941

∆w21 = ∆w31 = η ∗ δ2(1) ∗ y1(1) = 0.1353 (2.28)

After the update, the weights are w21 = w31 = 1.1353 and w42 = w43 = 1.1941. Performing

another forward pass following the same process as (2.23) to (2.26), the ANN output is

now y4(2) = .9314. The output error after this second iteration is e4(2) = 0.9314, which is

smaller than e4(1) = 1.1424. It is clear that the ANN has “learned” and has produced a

more accurate output.

Calculation of the local gradient defined in (2.20) depends heavily on the derivative of

the activation function. Based on the input signal, yj(n), the derivative of the function

shown in Figure 2.5 may be very small (i.e., yj(n) >> 0) or very large (i.e., yj(n) = 0).

Weight updates are prone to be very small or fluctuate wildly, possibly leading to the ANN

to get stuck in a local minimum or overshooting minima. Many ANN training methods

based on making adjustments to BP attempt to circumvent the problems associated with

the dependence on the derivation of the activation function. One such algorithm, used in

our method with AutoP, is the Resilient Propagation algorithm.
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2.1.3 Resilient Propagation

Resilient Propagation (RPROP) [29] is an adaptive learning algorithm that acts directly on

the weight update value based on the sign of the local gradient. Other adaptive techniques

make adjustments to the learning rate parameter, η, that effectively increase of decrease the

size of the weight adjustment. However, such learning schemes are still susceptible to the

magnitude of the gradient.

To remove the effective of the magnitude of the gradient, RPROP works by defining

a new weight update value, ∆ji(n), based on the changing sign of the gradient defined in

(2.20):

∆ji(n) =


α+∆ji(n− 1) if ∂E(n−1)

∂wji(n−1)
∗ ∂E(n)
∂wji(n)

> 0

α−∆ji(n− 1) if ∂E(n−1)
∂wji(n−1)

∗ ∂E(n)
∂wji(n)

< 0

∆ji(n− 1) otherwise

(2.29)

where 0 < α− < 1 < α+. This learning rule states that every time the local gradient for a

given connection weight changes sign, indicating that the last weight update caused a jump

over a local minimum, the weight update value is decreased by a factor of α−; otherwise, the

weight update is increased by α+ to acclerate convergence in regions of a minimum. After

determining the magnitude of the weight update value, the sign is determined as follows:

∆wji(n) =


−∆ji(n) if ∂E(n)

∂wji(n)
> 0

+∆ji(n) if ∂E(n)
∂wji(n)

< 0

0 otherwise

(2.30)

Simply put, if the magnitude of the local gradient is positive, meaning the error is increasing,

the connection weight is decreased by its update value; if the gradient is negative, indicating

a decreasing error, the update value increases the connection weight, again in an attempt to

accelerate convergence. The exception occurs if the gradient changes sign between training
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iterations:

∆wji(n) = −∆wji(n) if
∂E(n− 1)

∂wji(n− 1)
∗ ∂E(n)

∂wji(n)
< 0 (2.31)

The change in sign indicates a jump over a local minimum. Changing the sign of the update

value essentially causes a the connected weight to “backtrack” and undo the step. After

determining the sign and magnitude of the weight update, calculation of the new connection

weight proceeds the same as defined in (2.22).

2.1.4 Adaptive Node Creation

The information capacity of an ANN is determined by its size; that is, increasing the number

of hidden nodes increases the amount of information that can be stored in the connection

weights. Unfortunately, there currently exists no way to determine how large an ANN needs

to be in order to solve a given problem, nor is there a good way to quantify the information

capacity of an ANN.

A naive approach to implementing ANNs is to just use a large network with many hidden

nodes and layers, thus ensuring there is enough capacity to hold all of the information con-

tained within the training data. The drawback to this approach is illustrated in Figure 2.6.

Suppose a set of noisy data is generated, marked by “◦” in the plot, and we wish to develop

an ANN that can generalize the data. In reality, the data follows a first-order polynomial

function with added standard Gaussian white noise. With an ANN of the appropriate size,

the linear function is correctly approximated despite the noise (solid line). Conversely, in-

creasing the number of nodes by too much leads to an ANN that fits the noise (dashed line).

The smaller ANN has successfully captured the true underlying behavior of the data whereas

the larger ANN has “learned the noise”.

A better way to implement ANNs may be to adaptively add nodes as the information

capacity is reached. This idea is diagrammed in Figure 2.7. Training starts with an ANN

with a small number of hidden nodes (Figure 2.7, left side). As training progresses, the error
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Figure 2.6: Example of an ANN overfitting to noisy data. The data points (“◦”) were generated from a first order polynomial
with standard Gaussian white noise added. An ANN of sufficient, but not too large of capacity, would ideally produce the solid
line, which fits the underlying polynomial describing the data. The dashed line represents an ANN with too large a capacity
that has started fitting the noise and thus represents a polynomial function of too high an order.

slope is monitored to determine if the information capacity of the ANN has been reached. If

the error slope falls below a predefined threshold, the ANN is deemed to be saturated and

cannot learn any new information (i.e., its capacity has been reached). When this occurs, one

or more nodes are added to the hidden layers, increasing the capacity of the ANN (Figure 2.7,

right side).

The purpose of adding new nodes is to capture information unable to learned by the

ANN. Therefore, the training process is slightly altered after new nodes are added. Old

connection weights are “frozen” and exempt from update for a number of training iterations.

Instead, backpropagated errors work to adjust the connections of the new nodes only, thus

allowing the new weights to capture information not contained within the old connection

weights. After a certain number of training iterations, the old weights are unfrozen and all

connection weights are able to be adjusted. With this method, an ANN grows to the size

necessary to hold the information contained within the training data.
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Figure 2.7: Example of adaptive node creation. During training, the error slope is monitored to determine if one or more
nodes should be added to the hidden layer(s) of the ANN. If one or more nodes are added, the existing connection weights are
frozen and training adjusts only the weights connecting the newly added nodes, indicated in the figure by the dashed lines.

2.2 Finite Element Formulation

A better understanding of how the ANN material models are utilized in the FEA can be

obtained if the FE formulation is understood. Note that knowledge of the FE formulation is

not necessary to understand AutoP. Therefore, this section is neither rigorous nor complete,

it is only intended to help those interested in understanding how the ANN is used in the FEA

solution. The following derivation is based on that found in [19] and [8]. Einstein notation

is used throughout the derivation; e.g., xijyj = xi1y1 + xi2y2 + . . . xiNyN =
∑N

j=1 xijyj.

In Section 2.2.1, the weak form of the equilibrium equation for an elastic continuum is

derived. The internal force term present in the weak form will then be used to derive the

consistent tangent used in Newton-Raphson iterations. It will be shown how an ANN relating

stress output to strain input can be used to solve for both of these terms. Section 2.2.2

proceeds with the FE formulation to illustrate how spatial information contained within

the elements is passed indirectly to the ANN. First, process of mapping elements in global

(x, y) coordinates to an isoparametric parent element in the (ξ, η) domain through the use of

shape functions is explained. Then, it will be shown that displacements and strains within an
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element can be written in terms of nodal displacements and the shape functions. The section

will conclude by presenting a method to solve the weak form of the equilibrium equation

with the shape functions and Gauss quadrature.

2.2.1 Derivation of the Weak Form

The strong form of the governing equations for an elastic continuum relating internal stresses

to external forces is as follows:

σij,j + fi = 0 in Ω

ui = gi on Γgi

σijnj = hi on Γhi (2.32)

where σij are the internal stresses, fi are the external forces, and Ω represents the interior

domain of the region. In the second line, gi are imposed displacement (ui) on the boundary of

the region indicated by Γgi . The last line equates surfaces tractions, hi to internal stresses in

the direction of a boundary normal, nj, on the boundary indicated by Γhi . Note that the two

different boundaries do not overlap and comprise the full boundary (i.e., Γtotal = Γgi + Γhi).

It is assumed that the stress term is nonlinear and depends on the current value of strain

(i.e., σij = σij(εkl)). The consitutive can then be defined as

Cijkl =
∂σij
∂εkl

(2.33)

The weak, or variational, form of the equilibirum equation is obtained by premultiplying

(2.32, top) by a weighting function and integrating over the domain:

∫
Ω

wi(σij,j + fi)dΩ = 0 (2.34)
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Noting that

(wiσij),j = wi,jσij + wiσij,j (2.35)

equation 2.34 can be rewritten:

∫
Ω

(wiσij,j),jdΩ−
∫

Ω

wi,jσijdΩ = −
∫

Ω

wifidΩ (2.36)

Using the Divergence Theorem on the first term of (2.36) allows the weak form of the

governing equations to be rewritten with the traction boundary conditions:

∫
Ω

wi,jσijdΩ =

∫
Ω

wifi +

∫
Γ

wiσijnjdΓ (2.37)

Surface tractions enforced according the boundary conditions specified in the last line

of (2.32) replace the σijnj term in the last integral. The first term of (2.37) describes the

internal force, which is dependent on the vector of displacements ~d:

n(~d) =

∫
Ω

wi,jσijdΩ (2.38)

The σij term is dependent on the current strain (which is dependent on ~d and is governed

by the ANN material model. Internal force, then, is calculated with the use of the ANN(s).

Solutions to the FEA are found using Newton-Raphson (NR) iterations to account for

nonlinear behavior. NR methods require the derivation of the consistent tangent to guide

the iterations to the solution. The consistent tangent is found by taking the variational

derivative of the internal force term:

Dn(~d) =
∂n(~d)

∂~d
(2.39)

Carrying this derivative into the integral in (2.38), only the stress term is affected:
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Dn(~d) =

∫
Ω

wi,j
∂σij

∂~d
dΩ =

∫
Ω

wi,j
∂σij
∂εkl

∂εkl

∂~d
dΩ =

∫
Ω

wi,jCijkl
∂~ε

∂~d
dΩ (2.40)

The material modulus, defined in (2.33), appears in the calculation of the consistent

tangent and is able to be computed from an ANN material model. It is in the internal force

and consistent tangent calculations, then, that the ANN is used in solving the FEA.

A FE formulation breaks up the domain of the problem into individual elements; i.e.,

Ω = Anen
k=1Ωe

k, where nen is the number of elements and Ωe
k is the domain of element k.

Equation (2.37) must be solved for each element in order to generate a global solution. The

details of how (2.37) is solved for each element, and how the solution process passes spatial

information to the ANN, follows.

2.2.2 Solving for Forces Within an Element

Solving for the internal and external forces within each element involves evaluating (2.37).

The solution process is facilitated by mapping each element onto an isoparametric parent

element before evaluating the integrals. By doing so, the domain of the integration becomes

identical for each element. Furthermore, the domain of the parent element can be specifically

chosen to allow for Gauss quadrature, a particular type of numerical integration, to be

implemented. An example of isoparametric element mapping is illustrated in Figure 2.8.

Here, an arbitrary 4-node quadrilateral element is mapped onto a 4-node square element

spanning −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1.

For the parent element shown, a set of shape functions can be defined. The shape

functions, denoted by Ni, are the same as the weighting functions, wi, in the weak form

above. They exhibit local support and Kronecker delta properties. The former means the

shape functions are zero everywhere outside of the domain of the element and the latter

implies the function Ni takes a value of “1” at node i and “0” at all other nodes. An

example of the shape functions exhibiting these properties for a 3-node, 1D isoparametric
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Figure 2.8: Mapping an arbitrary 4-node, quadrilateral element (left) to an isoparametric parent element (right). Using
isoparametric elements allows Gauss quadrature to be more easily employed when solving the integrals for the consistent
tangent, internal force, and external force vectors for an element.

element is shown in Figure 2.9.

The general form of the shape functions for a 4-node, quadrilateral element is

Ni(ξ, η) = α0 + α1ξ + α2η + α3ξη (2.41)

Using (2.41), local support, and the Kronecker delta property, a system of equations can

be defined in order to derive the shape functions. For example, the set of equations to derive

the shape function for node 1 of the parent element (Figure 2.8, right) are

N1(−1,−1) = 1 = α0 − α1 − α2 + α3

N1(1,−1) = 0 = α0 + α1 − α2 − α3

N1(1, 1) = 0 = α0 + α1 + α2 + α3

N1(−1, 1) = 0 = α0 − α1 + α2 − α3 (2.42)

from which the form of N1(ξ, η) is found to be

N1(ξ, η) =
(1− ξ)(1− η)

4
(2.43)
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Figure 2.9: (a) Example of the shape functions for a 3-node, 1D isoparametric element. The shape function, Ni, takes a value
of “1” at node i and is zero at all other nodes (Kronecker delta property). Each shape function only takes non-zero values
over the domain of the element (local support). (b) Location of the integration points in a FE mesh. While displacements are
calculated at the nodes, stresses and strains are computed at the integration points.

Following the same process, the shape functions for all four nodes can be derived:

N1(ξ, η) =
(1− ξ)(1− η)

4

N2(ξ, η) =
(1 + ξ)(1− η)

4

N3(ξ, η) =
(1 + ξ)(1 + η)

4

N4(ξ, η) =
(1− ξ)(1 + η)

4

(2.44)

Mapping is performed by relating the global coordinates of the nodes comprising an

element to the shape functions. This is defined for a 4-node, quadrilateral element as

xe(ξ, η) =
4∑
i=1

xeiNi

ye(ξ, η) =
4∑
i=1

yeiNi (2.45)
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where xei and yei are the global coordinates of node i for element e. To complete the

coordinate transformation, the Jacobian for the element is found:

Je =

xe(ξ, η),ξ xe(ξ, η),η

ye(ξ, η),ξ ye(ξ, η),η

 (2.46)

and the Jacobian determinant is defined:

je = det(Je). (2.47)

Displacements at location (ξ, η) within the domain of an element, ~Ue(ξ, η), are found by

interpolating the nodal displacements with the shape functions:

~Ue(ξ, η) =

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4





ueξ1

ueη1

ueξ2

ueη2

ueξ3

ueη3

ueξ4

ueη4



(2.48)

where ueξi and ueηi are the displacements along the ξ- and η-coordinates of node i in

element e. Element strains, ~εe(ξ, η), are defined as the gradient of the displacement and can

therefore be written as
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~εe(ξ, η) = ∇~Ue(ξ, η) =

N1,ξ 0 N2,ξ 0 N3,ξ 0 N4,ξ 0

0 N1,η 0 N2,η 0 N3,η 0 N4,η





ueξ1

ueη1

ueξ2

ueη2

ueξ3

ueη3

ueξ4

ueη4



(2.49)

Using (2.44), (2.47), (2.49), and Gauss quadrature, the weak form of the equilibrium

equation in (2.37) for an element takes the form

nξ∑
a=1

nη∑
b=1

Ni,jσ
e
ij(~ε)j

e|ξa,ηb =

nξ∑
a=1

nη∑
b=1

Nif
e
i j

e|ξa,ηb +

nξ∑
a=1

nη∑
b=1

Nih
e
i j
e|ξa,ηb (2.50)

The limits of the sums, nξ and nη, specify the number of points used for the numerical

integration along the ξ- and η-axes, respectively. Integration points along each axes are

denoted by ξa and ηb. An example of where the integration points lie in a 2D mesh comprised

of 4-node, quadrilateral elements is shown in Figure 2.9b.

From this derivation for solving the weak form of the equilibrium equation for an element,

it is hopefully clear how spatial information is conveyed to the ANN without having coordi-

nates as explicit inputs. After defining an isoparametric parent element, shape functions are

found that map the global (x, y) coordinates to the local (ξ, η) coordinates. Displacements

throughout the element can be written in terms of the shape functions and nodal displace-

ments. In turn, the element strains, computed as the spatial derivative of the displacements,

can be defined from the derivatives of the shape functions and the nodal displacements. The

element stress term, noted as σeij and defined by the ANN, is dependent on the value of the

element strain and appears in the calculation of the element internal force. It is through this
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chain that spatial information propagates through to the ANN when solving the FEA.

2.3 Autoprogressive Training

2.3.1 Overview

With this understanding of ANNs, FEA, and how the former are used in the solution of the

latter, the AutoP training process should become more understandable. The Autoprogessive

Algorithm was developed by Ghaboussi et al. [14] as a method to obtain stress and strain

field estimates from acquired force-displacement data. AutoP is an iterative algorithm that

employs two FEAs to generate increasingly accurate estimates of the stress and strain vectors

matching the dimensionality of the given problem. For example, the stress and strain vectors

for a 2D model consists of three components: lateral, axial, and shear. Vector estimates

computed during AutoP are used to train one or more ANN material models that describe

the constitutive behavior of unique materials in the modeled object.

An overview of the AutoP algorithm is diagrammed in Figure 2.10. AutoP works by

exploiting the fact that equilibrium and compatibility conditions are satisfied in the solution

of a FEA. In FEA 1, measured forces are applied to a FE model of the US probe and

object being imaged. Because equilibrium relates forces to stresses, the computed stress

fields are more accurate estimates of the true stresses. Similarly, measured displacements

are applied in FEA 2. Compatibility relates displacements to strains, resulting in computed

strains that are more accurate estimates of the true strain fields. Stress and strain vectors

are collected and used to update the ANN material models at the end of each iteration. A

convergence check is performed by comparing displacements estimated in FEA 1 to measured

displacements supplied in FEA 2. Iterations end if set convergence criteria are satisfied or

if a maximum number of iterations is reached. A more in-depth discussion of the AutoP

training process follows in Sections 2.3.2, 2.3.3, and 2.3.4.

Autoprogressive training of NNCMs has been used in several civil engineering applica-
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Figure 2.10: Overview of the AutoP training process. A FE model of the US probe and imaged object is created to replicate
the data acquisition process. Forces applied in FEA 1 and displacements applied in FEA 2 - both indicated by the red arrows
in FEA 1 and 2 - generate estimates of the stress and strain fields throughout the model. Stress-strain pairs are collected and
used to train the ANN material model.

tions using only surface force-displacement measurements [39],[22],[21],[17]. Unlike previous

applications of AutoP to develop NNCMs, the method being presented here uses interior

displacements as well as surface measurements. The addition of ultrasound imaging allows

for motion within the object to be monitored, providing far more information than surface

measurements alone. With the interior displacements, it may be possible to develop NNCMs

that capture the constitutive behavior of materials with many heterogeneities and complex

geometries. Furthermore, information about interior motion will allow for better character-

ization of complex mechanical properties, including nonlinear, path-, and time-dependent

behaviors. This report focuses on creating NNCMs that characterize linear-elastic of tissue-

like gelatin materials.

Before AutoP training begins, quasi-static force-displacement data is acquired in a man-

ner similar to what is shown in Figure 2.11a (Note: this diagram describes the data acquisi-

35



Nonslip 
surface

Gelatin phantom w/ 
stiff inclusion

Fixed rigid base

Linear array with force 
and position sensing

P

x

xx
x

o

o

o

o

x1
x2

(a)

Pass → Load Step → Iteration → FEA 1 = FEA 2

𝑝 → 𝜎𝑖 𝜀𝑖 ← 𝑢

Measured
Forces

Measured
Displacements𝑁𝑁 𝑖−1

𝑁𝑁 𝑖

FEA 1 FEA 2

Calculated
Stress

Calculated
Strain

Current ANN

Updated ANN

 𝑢𝑖

Convergence Test Δ𝑢𝑖

𝑖 + 1

(b)

Figure 2.11: (a) Example of the data acquisition process on gelatin phantom models. A force applied by a US probe deforms
the gelatin phantom and records images of the region of interest (dashed area). Application of a speckle-tracking algorithm
would estimate displacements in the imaged region. A sparse set of the displacement data - locations marked “◦” and “×” -
would be used in conjunction with the measured forces to develop NNCMs. (b) Flow diagram of the Autoprogressive algorithm.
In the first pass, a load step is applied and measured forces and displacements are supplied to finite-element analyses FEA 1
and FEA 2. These are solved using the current version of the ANNs, [NN ]i−1, as the material models, producing estimates of
the stress σi and strain εi vectors that update connection weights on the ANNs. The process iterates, and each time estimates
of displacements ûi computed in FEA 1 are compared with measured displacements u to compute error vectors ∆ui. If errors
are above set thresholds, the process continues to iterate using the same input data. Once errors fall below thresholds, the
iteration has converged. The process is repeated for additional load steps to complete the first pass. The whole process may
be repeated for the same or new data in a second pass.

tion process used in Chapter 3). An US probe fitted with a force sensor indents the surface

of the object to be characterized. After each indentation step (also called a load step), forces,

probe position, and an RF echo image are acquired. Measured probe positions are used to

determine step-wise probe displacements while a speckle-tracking algorithm is employed to

estimate displacements within the RF images. Locations in the imaged region (dashed area)

in Figure 2.11a marked by “×” and “◦” indicate a possible sparse sampling of displacement

information that can be used during training. More information about the sampling require-

ments is given in Section 2.3.5. After an adequate amount of force-displacement data is

acquired, development of the ANN material models can begin.
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2.3.2 Elastic Pretraining

Before starting the training iterations, the ANN material models are initialized with random-

ized connection weights. While it is possible to perform FEA 1 and 2 with these “random”

ANN material models, the computed stress and strain fields are virtually meaningless and

prolong the time to convergence of the ANNs. For example, the random connection weights

may cause the ANN to compute tensile axial strains in response to a compressive axial force,

a response that is impossible in reality. When such a case occurs the ANN must “unlearn”

the unrealistic physical behavior in order to learn the true mechanical properties.

One way to circumvent non-physical behavior caused by randomized nodal connection

weights is to perform elastic pretraining of the ANNs. For a 2D problem, the plane-stress

formulation (top of Figure 2.1) of a linear-elastic model is used to generate a set of stress-

strain training pairs. While the elastic behavior described by the ANN after initialization

does not match the true behavior of the material to be characterized, the training process

is more effective since the starting error is smaller, resulting in faster convergence to the

true behavior. Note that the pretraining data is removed after the ANNs are initialized

and AutoP training “overwrites” the ANNs with the underlying behavior captured by the

measured force-displacement data.

2.3.3 Training Process

A FE model of the US probe and imaged object are created for use in FEA 1 and 2. Ultra-

sound B-mode images could be used to determine the internal geometry of the interrogated

object while an external vision system captures the external shape. In the current applica-

tion, though, the geometry of the object is known and modeled exactly. One ANN is used

to model the constitutive behavior of every unique material in the object. In this study,

two ANNs were used for each of the gelatin phantom models displayed in Figure 3.2, one to

model the background and one to model the inclusion(s).

AutoP training is broken down into passes composed of load steps. During each load
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step, training iterations are performed until convergence is achieved or a maximum num-

ber of iterations is reached. The training process during one load step is diagrammed in

Figure 2.11b.

In the first FEA, measured forces are applied to the model (FEA 1). FEA 1 is solved

using the ANN(s) as the material model(s) for the target object. Because equilibrium relates

forces to stresses, the computed stress fields in FEA 1 are taken to be a good approximation

of the true stress field.

The second FEA is performed by applying measured displacements to the model (FEA

2). Like FEA 1, the ANN(s) are again used as the material model(s) for the target object

during the solution of FEA 2. Compatibility requirements relate displacements to strains,

so the computed strain fields are taken to be a good approximation of the true strain fields.

Once both FEAs are solved, stress vectors from FEA 1 are paired with their corresponding

strain vectors from FEA 2. This set of stress-strain pairs comprises a training set that is

used to update the connection weights of the ANN(s) using the RPROP algorithm described

Section 2.1.3. A convergence test is done after the ANN update: if convergence has been

achieved, or if the maximum number of iterations has been reached, the iterations exit and

training continues with the force-displacement data for the next load step (if available);

otherwise, the cycle continues with the same force-displacement data for the current load

step.

Figure 2.12 illustrates the stress-strain response of an ANN during AutoP. Consider a 1D

bar exhibiting linear-elastic behavior under uniaxial loading. For this illustration, two load

steps were performed. Elastic pretraining initialized the ANN with a Young’s modulus larger

than the true true modulus value, indicated by the steeper slope. During training iterations

in the first load step, the stress response computed in FEA 1 slowly converges to the true

value for the strain applied in FEA 2. Upon completion of the training iterations, the ANN

characterizes the true constitutive behavior of the bar over the stress-strain range covered

by the training data. Outside of this range, the response deviates from the true behavior
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Figure 2.12: Illustration of the stress response computed by an ANN as training with AutoP progresses. The ANN was
initialized using a linear-elastic constitutive model with a Young’s modulus larger than the true value. During training, the
stress response gets incrementally closer to the true response until convergence in achieved. Stress response outside of the
training range becomes nonlinear and not representative of the true response.

and becomes nonlinear. Training during load step two extends the range over which the

constitutive behavior described by the ANN is valid.

This example is for a very simple case, but the idea is the same for more complex

and higher-dimensional problems. AutoP training adjusts the connection weights of the

ANN(s) until the constitutive behavior described by the ANN(s) matches the true behavior

of the material described by the force-displacement data. The diagram also illustrates how

the response of the ANN is valid only over the stress-strain range covered by the force-

displacement and deviates from the true response outside of this range.

2.3.4 Convergence Testing

A test for convergence is performed at the end of each training iteration by computing dis-

placement errors. Displacements computed in FEA 1 (ûi) are subtracted from the measured

displacements applied in FEA 2 (u) to calculate a vector of displacement errors ∆u = u− ûi.

Convergence is determined by comparing max(∆ui)
max(u)

and mean(∆ui)
max(u)

to predetermined thresholds.
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An important observation about the convergence test is the number of nodes used in the

displacement error calculation. Only displacements used in FEA 2 can enter into the error

computation, meaning the fewer the nodes assigned displacements in FEA 2, the more lax

the convergence test becomes due to fewer nodes having to satisfy convergence. The test

for convergence can be constrained by either including more displacement information in

FEA 2 or by comparing the displacements in FEA 1 to a different set of displacements not

necessarily given in FEA 2. Consequences of the former are discussed in the next section.

The latter case is explored in Chapter 3.

2.3.5 Node Selection

The selection of nodes that are supplied displacement information in FEA 2 will have a large

impact on the ability of the ANN material models to learn the correct constitutive behavior

of the target object. In preliminary studies where displacements were simulated and noise-

free, displacement data for every node in the imaged region without causing negative effects

during the informational modeling process. Displacements estimated from RF images are

not noiseless, though, and care needs to be taken in order to avoid training errors.

To understand how noise in the displacements applied during FEA 2 impact training,

consider the case where every node in the imaged region is assigned an axial displacement.

Noise in the displacements can cause adjacent nodes to move in relation to each other in

ways that are nonphysical. For example, two vertically adjacent nodes may move closer

together, or pull apart, in the FEA because of the noise. Extending this to the entire model,

the variance in the strain field may become very large. This “spreading” of the strain make

it difficult for the ANNs to learn the true mechanical response.

This problem can be circumvented by providing displacement information to as few nodes

as possible. It was found that supplying probe displacements - which are known with sub-

micrometer precision - and displacements for a few nodes within each inclusion provided

enough information for the informational models to learn the correct constitutive behavior.
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Chapter 3

Characterization of Gelatin Phantoms

3.1 Phantom Models

Gelatin phantoms were created to mimic the linear-elastic response of soft tissues under

small strain [16] using a formulation previously employed in the lab [28]. Each phantom was

a 50x50x50 mm3 cube consisting of a soft background with one or three stiffer inclusions.

The stiffness of each gelatin material was controlled by varying the ratio of deionized water

to gelatin: the higher the percentage of gelatin, the stiffer the phantom. Cornstarch was

added to the mixture to act as a scattering field for US imaging. From a previous study,

it was possible to estimate the Young’s modulus of each material based on the percentage

of gelatin [1]. This information was used to guide the creation process; the actual Young’s

modulus was estimated using an indentation technique described below.

Construction of the phantoms began by first creating the background gelatin material.

While still in a liquid state, gelatin was poured into a specially made cubic acrylic mold.

One face of the mold had interchangeable plates with holes at known locations. A pin with

a known diameter could then be placed into the hole after pouring the background material.

After the gelatin solidified, the pin(s) was removed, leaving a cylindrical hole through the

length of the phantom. The stiffer gelatin material was then created and poured into the

hole(s) in the background material and allowed to cool. For Phantom 3, which had three

inclusions, all of the inclusions were composed of the same gelatin mixture, meaning they

had identical mechanical properties.

During the creation of each gelatin material, a small amount was poured into a separate
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cylindrical mold to undergo macroindentation testing. Using a rigid spherical probe with a

radius of 2.5mm, a force-displacement curve was generated by indenting the surface of the

gelatin in a series of small steps up to 1.5mm. Space was left at the top of the cylindrical mold

and filled with water before the indentation test began to remove static electric forces between

the probe and the gelatin. Without the water, the surface of the gelatin may “jump” up to

the probe before contact is made, resulting in a negative force reading. Adhesion between

the probe and gelatin was limited with the use of a lubricant (Pol-Ease 2300 Release Agent,

Polytek Development Corp., Easton, PA).

Under the assumption of no adhesion and elastic bodies, a Hertzian contact model be-

tween a sphere and a half-space was used to estimate the Young’s modulus of the gelatin, as

was done in [1]:

F =
4

3
E∗
√
R
√
d3 (3.1)

and E∗ is defined as

1

E∗
=

1− ν2
sphere

Esphere
+

1− ν2
gelatin

Egelatin
(3.2)

In (3.1), R and d correspond to the radius and displacement of the indenter, respectively,

and F is the measured force. E∗ is a function of the Young’s and Poisson’s ratio of the

spherical indenter (Esphere and νsphere, respectively) and of the gelatin (Egelatin and νgelatin).

The large value of the Young’s modulus for the spherical indenter allows the corresponding

term in (3.2) to be neglected. Then, putting 3.2 into 3.1, the contact model reduces to

F =
16

9
E2
gelatin

√
R
√
d3 (3.3)

An example of the force-displacement curve generated during indentation tests on the

gelatin materials comprising Phantom 1 can be seen in Figure 3.1. The curve for the soft

background is plotted in Figure 3.1a whereas Figure 3.1b is a plot of the curve for the
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(a) (b)

Figure 3.1: Examples of the force-displacement curve generated during a spherical indentation test. The solid black line in
each figure is the measured result whereas the red dotted line is the data fit to the Hertzian contact model described in (3.3).
Both measurements are from indentation tests on the gelatin materials that compose Phantom 1. (a) Spherical indentation on
soft background gelatin (b) Spherical indentation on stiff inclusion gelatin

Young’s Modulus Estimates
Phantom # Indentation Measurement (kPa)

Background Inclusion
1 9.16 22.9
2 8.95 26.87
3 8.00 24.58

Table 3.1: Young’s modulus values estimated from macroindentation tests. Force-displacement curves were fit to the model
described in (3.3) to calculate the moduli.

stiff inclusion. Fitting each measured curve (solid black line) to the contact model in (3.3)

produced a Young’s modulus estimate for the material. Estimated modulus values could

then be used to create estimated force-displacement curves for the indentation (dotted red

line). Young’s moduli estimated with this method for all three phantom models are listed

in Table 3.1.

Three different gelatin phantom models were created. Phantom 1 contained a single

inclusion centered on the background material. A small amount of complexity was added

in Phantom 2 by moving the inclusion away from the center of the phantom, thus removing

43
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(d) (e)

Figure 3.2: FE meshes for each of the phantom models. (a) Phantom 1. This same mesh was used when the US probe was
offset from the lateral center. The position of the FE model of the probe was adjusted. (b) Phantom 2 (c) Phantom 2, rotated
270◦ (d) Phantom 3 (e) Phantom 3, rotated 90◦

symmetry from the imaging plane. The last phantom, Phantom 3, contained three inclusions

placed such that no planes of symmetry were present in the imaging plane, adding even more

complexity to the model.

The FE meshes used to model each of the phantoms are detailed in Figure 3.2. Figure 3.2a

is the mesh for Phantom 1. Data was acquired on Phantoms 2 and 3 from two different sides,

hence the two extra meshes in the figure. Figures 3.2b and 3.2c are the meshes corresponding

to Phantom 2 being imaged from different sides, whereas Figures 3.2d and 3.2e are the meshes

for Phantom 3. Highlighted regions in each of the meshes indicate the elements comprising

the inclusions. An example of the full FE model used during training and forward analyses

is shown in Figure 3.3b.
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3.2 Data Acquisition

Measurements on the gelatin phantoms were performed through a series of indentations with

an US probe. A plastic housing encased the US probe and was attached to a force/torque

(F/T) transducer (ATI Industrial Automation, Apex, NC) capable of measuring three normal

forces and torques. Position of the assembly was controlled to sub-millimeter accuracy using

a motion controller. Figure 3.3a diagrams the experimental setup used in this study.

Data acquisition began by placing a gelatin phantom on a rigid base. Adhesion between

the gelatin and the based fixed the bottom surface of the phantom, arresting any slippage of

the phantom during compression. The US probe was positioned flush with the top surface of

the phantom and centered in the lateral (x1) and elevational (x3) directions. US gel provided

acoustic coupling between the probe and top surface of the phantom. The gel also acted as

a lubricant and was modeled as frictionless contact in the FEAs.

A series of 15-30 indentations along the axial direction (x2) displaced the US probe

1.5mm into the phantom, producing ≈3% global strain. The total strain was kept small to

ensure a linear-elastic response of the gelatin and avoid effects of geometric nonlinearities.

After each indentation, the US probe position, a F/T measurement, and RF image was

acquired. For the applied strain, the resulting axial force ranged from 12-15 N among the

measurement sets. US imaging was performed with a Siemens Sonoline Antares ultrasound

system (Siemens Healthcare USA, Mountain View, CA) with a VF10-5 linear array probe

at 8 MHz center frequency. Displacements within the RF images were estimated using

speckle-tracking algorithm [30] after completion of the data acquisition.

Two different data sets were acquired for each phantom model. For Phantom 1, mea-

surements were performed with the US probe laterally centered on the phantom (set 1) and

with a 4mm lateral offset (set 2). Phantoms 2 and 3 were imaged from two orthogonal sides

with the probe laterally centered during each data acquisition. Two additional meshes had

to be created for Phantoms 2 and 3 to properly perform the FEAs, resulting in a total of five

different FE models of the gelatin phantoms. All five FE meshes are displayed in Figure 3.2.
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(a) (b)

Figure 3.3: (a) Diagram of the experimental setup. An US probe was contained within a plastic housing and attached to a
force/torque transducer. A 3D positioning system controlled the motion of the assembly with sub-micron accuracy. After the
US probe was placed flush with the top surface of the gelatin phantom, a series of indentations were performed to produce ≈3%
global strain. The probe position, a force reading, and an RF echo frame were acquired after each indentation. (b) An example
of the full FE mesh used in Abaqus. Except for one set of measurements on Phantom 1, the position of the FE model of the
US probe remained static while the mesh for the gelatin phantom was interchanged.

Example B-mode images for each set of measurements are displayed in Figure 3.4.

Adjusting the probe position or relative orientations of the probe and phantom changes

the loading situation, producing different stresses and strains throughout the phantom. The

stress and strain vectors produced under different loading conditions span different spaces,

creating different information to be captured by the ANN material models. Even though the

information may change, the same mechanical behavior is being described. Thus, informa-

tional models developed with different force-displacement data sets measured on the same

gelatin phantom should model the same constitutive behavior, albeit over different ranges

of the input stimuli.
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(e) (f)

Figure 3.4: Example B-mode images acquired from each measurement set. Each image is set inside a box designating the
boundaries of the phantom model to illustrate the size of the imaged region relative to the phantom. (a) Phantom 1 (b)
Phantom 1, probe offset 4mm (c) Phantom 2 (d) Phantom 2, rotated 270◦ (e) Phantom 3 (f) Phantom 3, rotated 90◦

3.3 Building the Informational Models

Training consisted of two passes over ten load steps. Force-displacement data used in each

load step was taken from evenly spaced indexes over the range of the indentation mea-

surements. For example, 30 indentations were performed during the measurement phase of

Phantom 1, set 1. Data was then taken from steps 3, 6, ..., 27, 30 for the ten load steps in
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AutoP. During FEA 2, displacements were applied to nodes along the top of the mesh mod-

eling the probe and at the nodes highlighted in the meshes Figure 3.2. Training iterations

were limited to five per load step and the convergence criteria was set to max(∆ui)
max(u)

= 0.5 and

mean(∆ui)
max(u)

= 0.1 (see Section 2.3.4 for a discussion about convergence).

Two ANN material models were developed during training: one to describe the mechan-

ical properties of the background gelatin and one to characterize the inclusion(s). During

the elastic pretraining phase, the Young’s modulus provided to generate the pretraining data

was an incorrect value (i.e., significantly different than the value estimated from macroinden-

tation). As an example, the background material for Phantom 1 had an estimated Young’s

modulus of 9.16 kPa, but a value of 4.0 kPa was given for pretraining. Initializing the ANNs

with an incorrect modulus value allows for observing the rate of convergence to the “true”

behavior.

Discussed in Section 2.3.5 was the effect of noise in the displacements applied in FEA 2

on the computed strain fields. While axial displacements were only applied to a few nodes

in the phantom models, another step was taken to reduce the effect of strain “spreading”.

After collecting all of the stress-strain pairs from FEA 1 and FEA 2, the mean and stan-

dard deviation was computed for the axial strain component. Every strain vector with an

axial strain outside of the mean ± 1 standard deviation range was removed along with its

corresponding stress vector. This process was repeated with the lateral and shear strains.

NNCMs for the background and inclusion materials of Phantom 1 were built under four

different scenarios. Recall that data was acquired with the US probe laterally centered on

the inclusion (set 1) and with a 4mm offset (set 2). With these two data sets, AutoP training

was done the following four ways:

case (a) Training using set 1 only

case (b) Training using set 2 only

case (c) Training using set 1 and retraining with set 2
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case (d) Training using sets 1 and 2 simultaneously

Cases (a) and (b) represent the scenario where a single data set (i.e. single loading condition)

is used to build informational models. Case (c) exemplifies developing ANN material models,

acquiring new information, and then updating the existing ANNs with the new data. In case

(d), all of the acquired information is available at the start. It is expected that the Young’s

modulus estimates resulting from ANN material models developed in cases (c) and (d) will be

more accurate than the estimates coming from (a) and (b). This is because the information

spanned by the combination of sets 1 and 2 is larger than either individual set. Therefore,

the ANNs are able to learn more about the true constitutive behavior of the gelatin, thus

producing more accurate modulus estimates.

A single data set was acquired for Phantoms 2 and 3 in each orientation. Training case

(a) applies to these four situations. Table 3.2 lists all eight of the training scenarios for

informational model building in this experiment.

The constitutive behavior of the gelatin phantoms used in this study can be described

with a simple model. Because the gelatin is linear-elastic under the applied loads, and the

inclusions are cylindrical and span the entire length of the phantom (i.e., they are 50mm

long), the mechanical response can be modeled as plane-stress [34]. Under this assumption,

the behavior described by the trained ANN material models mimics the constitutive matrix

in the previously described plane-stress formula shown at the top of Figure 2.1. A comparison

between the plane-stress model and a trained informational model is presented in Section 3.4.

3.4 Results

3.4.1 Images of the Stress and Strain Vectors

After completion of training with AutoP, a forward FEA was performed using the developed

ANNs as the element material models. These forward analyses are given the appellation

FEANN to identify them as FEAs solved with the use of ANN material models. Another
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FEA was performed for each phantom using a linear-elastic material model with a Young’s

modulus corresponding to the macroindentation estimate. These FEAs are referred to as

FEIdeal and represent the “true” mechanical response of the phantoms under axial loading.

It is important to keep in mind that each FEIdeal is still an estimate of the actual constitutive

behavior of the phantoms, but they do provide a basis in which to evaluate the accuracy of

the informational models.

Figure 3.5 are images of the full stress and strain vectors for Phantom 1 estimated with

trained ANN material models (i.e., calculated in FEANN). Lateral, axial, and shear stresses

(σ11, σ22, and σ12, top row) and strains (ε11, ε22, and ε12, bottom row) are relative to the

US beam direction along the vertical x2 axis. Stress and strain values were calculated at

the integration points – see Figure 2.9b for the locations of the integration points in the FE

mesh for Phantom 1 – and interpolated to a uniform grid for plotting. The corresponding

“true” images of stresses and strains for Phantom 1 computed in FEIdeal are displayed in

Figure 3.6. Similar images are included for Phantom 3: Figure 3.7 are the stress and strain

images estimated in FEANN and Figure 3.8 were computed in FEIdeal.

Comparing the stress and strain maps from FEANN and FEIdeal for a given phantom

model, the estimated axial and lateral fields closely match the corresponding “true” fields.

Recall that during training only axial displacements were supplied in FEA 2. It is reasonable,

then, that the estimated axial stresses and strains are very accurate. The accuracy in the

lateral stress and strain estimates can be attributed to the incompressibility of the gelatin

materials (i.e., Poisson’s ration ν = 0.5). During pretraining, the elastic model used to

generate pretraining pairs assumed an incompressible material and force-displacement data

used during AutoP did not contradict this assumption. Therefore, the accuracy in the lateral

estimates is due to the accuracy in the axial fields. Shear stresses and strains, however, are

not nearly as accurate. The topic of shear information is discussed later in Section 3.4.6.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Images of the stress and strain fields computed during FEANN for Phantom 1. (a) Lateral stress (b) Axial stress
(c) shear stress (d) Lateral strain (e) Axial strain (f) shear strain

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Images of the stress and strain fields computed during FEIdeal for Phantom 1. (a) Lateral stress (b) Axial stress
(c) shear stress (d) Lateral strain (e) Axial strain (f) shear strain
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Images of the stress and strain fields computed during FEANN for Phantom 3. (a) Lateral stress (b) Axial stress
(c) shear stress (d) Lateral strain (e) Axial strain (f) shear strain

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Images of the stress and strain fields computed during FEIdeal for Phantom 3. (a) Lateral stress (b) Axial stress
(c) shear stress (d) Lateral strain (e) Axial strain (f) shear strain
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3.4.2 Young’s Modulus Estimation

Mechanical parameter estimation can be easily performed with access to estimates of the full

stress and strain vectors. It is at this point a constitutive relationship must be assumed. As

mentioned before, the plane-stress approximation can be invoked to model the of the gelatin

phantoms used in this study. A simple inverse problem can be created from the equation at

the top of Figure 2.1:

E(x1, x2) =
(1− ν2)σ22(x1, x2)

νε11(x1, x2) + ε22(x1, x2)
(3.4)

The center line of the plane-stress formula, which relates axial stresses to the strain vector,

was used to derive (3.4). This was picked due to the accuracy of the axial stress and strain

estimates. Using the incompressible result, a Young’s modulus image was computed point-

wise using the stress and strain fields estimated in FEANN . Values were computed at the

integration points of the mesh and interpolated to a uniform grid. Young’s modulus images

for Phantoms 1, 2, and 3 are displayed in Figure 3.9. Modulus estimates for each gelatin

material are computed as the mean of the estimated modulus values from every element

governed by the corresponding NNCM. For example, a Young’s modulus estimate is made at

four points in each element comprising the inclusion. If there were 8 elements modeling the

inclusion, there would be a total of 32 modulus estimates. The estimated Young’s modulus

for the inclusion would then be the mean of the 32 values.

Table 3.2 summarizes the modulus estimates for all eight training cases of the three

phantom models. The column labeled “Estimated” corresponds to the modulus values com-

puted from the ANN material models using (3.4) whereas the “Indentation Measurement”

column corresponds to the values estimated from macroindentation measurements using

(3.3). Standard deviations are given along with the estimated values to illustrate the vari-

ance of the computed modulus within each gelatin material.

While all of the modulus estimates closely match the expected values based on macroin-
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(a) (b) (c)

Figure 3.9: Computed Young’s modulus images for the gelatin phantoms. The stress and strain fields, like those in Figure 3.5,
were input into (3.4) to calculate the modulus values at the integration points. (a) Phantom 1 (b) Phantom 2 (c) Phantom 3.

dentation measurements, the most accurate estimates came from cases (c) and (d) of Phantom

1. Recall that two different sets of force-displacement data were used to train the ANN ma-

terial models in these cases. The total information contained both sets of measurement

data spans a larger space than either set alone, resulting in ANNs that learn more about

the mechanical properties of the gelatin materials. Also to note is the increased accuracy

in modulus estimates for Phantoms 2 and 3 versus cases (a) and (b) of Phantom 1. All

six of these informational model building scenarios used one set of force-displacement data;

however, the increased complexity in the geometry due to multiple inclusions creates more

complex stress and strain fields. This can be seen by comparing the images in Figure 3.8 to

those in Figure 3.6. With the increase in the amount of information contained in the more

complex stress and strain fields, ANN material models are able to capture more detail about

the underlying constitutive behavior.

3.4.3 Quantitative Test of Results

More quantitative tests of trained ANN material models can be found in Figure 3.10. During

the data acquisition phase, the US probe position is known with sub-micrometer accuracy,

allowing for a comparison between known and computed probe displacements after each

load step. This comparison is done by noting that when performing the indentation tests,
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Young’s Modulus Measurements of Phantom Components
{Phan. #} (Case)
[Rot. Angle]

Estimated (kPa) Indentation Measurement (kPa)

Background Inclusion Background Inclusion
{1} (a) [0 deg] 8.01 ± .5599 19.35 ± .2022 9.16 22.9
{1} (b) [0 deg] 11.01 ± .1189 27.71 ± .5141 9.16 22.9
{1} (c) [0 deg] 10.18 ± .3408 22.15 ± .3711 9.16 22.9
{1} (d) [0 deg] 9.06 ± .1433 22.39 ± .3883 9.16 22.9
{2} (a) [0 deg] 8.57 ± .5596 28.84 ± .1770 8.95 26.87
{2} (a) [270 deg] 9.04 ± .0561 26.19 ± .1315 8.95 26.87
{3} (a) [0 deg] 7.99 ± .2755 26.65 ± .2105 8.00 24.58
{3} (a) [90 deg] 9.62 ± .1132 25.58 ± .3166 8.00 24.58

Table 3.2: Young’s modulus values for the three phantoms studied. Estimated values were calculated from modulus images.
Indentation measurements were made on samples for comparison. Cases refer to the training scenarios listed in Section 3.3.
Rotation angles refer to the orientation of phantoms illustrated in Figure 3.2 with respect to the ultrasonic beam.

the US probe is displaced and the resulting force is measured; conversely, in FEANN , the

measured force is applied to the FE model and the resulting displacement is computed.

Perfect mechanical characterization by ANNs would mean the measured and computed US

probe displacement values would match exactly. The results in Figure 3.10a are for the

three phantoms at two scanning angles. These correspond to training case (a) of for each

phantom orientation where only a single set of force-displacement data with the probe later-

ally centered on the phantom was used for training. A slope of “1” is the ideal result where

the informational models have learned the constitutive behavior of the gelatin phantom ex-

actly. In Figure 3.10b, the mean-squared error (MSE) between the displacements calculated

in FEIdeal and those estimated in FEANN at the same locations in the imaged region are

plotted as a function of load step for the same phantoms. Notice in Figure 3.10b that after

the first few load steps, AutoP training iterations have converged or reached a maximum

number of iterations, suggesting the ANNs have learned as much as possible from the given

force-displacement data. The large MSE suggests that the correct mechanical behavior has

not yet been learned, though. After the sixth load step, however, convergence results in a

displacement MSE that is less than 0.01 mm2 for all phantoms studied.

Figures 3.10c and 3.10d contain the same information as 3.10a and 3.10b but now only
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(a) (b)

(c) (d)

Figure 3.10: (a) Comparison of the probe displacements measured directly and predicted by trained ANNs for all phantoms
(b) mean-squared displacement error for nodes in the imaged region for all of the phantom models (c) measured and estimated
probe displacements for cases (a) - (d) of phantom 1 (d) mean-squared node displacement error for cases (a) - (d) of phantom 1

for Phantom 1 where the data used to train the ANNs was varied among the different curves

plotted. In all cases, adding low-noise data from a different view reduced the errors.

3.4.4 Comparison of Informational Models to Current Methods

Discussed before was the more advanced abilities of this new method of mechanical char-

acterization compared to current methods. A direct comparison is between the axial strain

estimates using informational modeling and speckle-tracking is made in Figure 3.11. The

left column consists of strain estimates made using our new method, computed in FEANN ,

whereas the right column are images of the axial strain estimated with speckle tracking. A

least-squares strain estimator [24] was used to differentiate the displacement field estimated

from the speckle-tracking algorithm [30] to produce Figures 3.11b and 3.11d.
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(a)

X

(b)

(c)

X

(d)

Figure 3.11: Comparison of the axial strain computed using trained ANN material models and a speckle-tracking algorithm.
Axial strains computed using the ANNs come from FEAANN . A least-squares estimator was used to compute strain after
displacement estimation from speckle-tracking. (a) Phantom 1, axial strain computed from FEANN (b) Phantom 1, axial strain
computed from speckle-tracking (c) Phantom 3, axial strain computed from FEANN (d) Phantom 3, axial strain computed
from speckle-tracking

A similar comparison is made in Figure 3.12 between the computed Young’s modulus

images. In the left column, modulus images were calculated point-wise with (3.4) using

the stresses and strains computed in FEANN (same as Figures 3.9a and 3.9c). The right

column consists of Young’s modulus images computed using the axial strain maps shown in

Figures 3.11b and 3.11d. Inverting a simple Hookean model of linear-elasticity, the images

were computed using (σaxial)/(εspeckle), where σaxial is the estimated stress field based on the

applied force and εspeckle is the axial strain estimated from speckle-tracking.

The first advancement to notice is the ability to estimate the strain and Young’s modulus

throughout the entire model, not just within the imaged region. Strain computed based
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(a)

X

(b)

(c)

X

(d)

Figure 3.12: Comparison of the computed Young’s modulus image using trained ANN material models and a speckle-tracking
algorithm. Images computed using the ANNs come are the same as those in Figures 3.9a and 3.9c. Based on the axial
strain estimated based on the speckle-tracking results, images were computed from (σaxial)/(εspeckle) to exemplify a classical
approach to image the Young’s modulus. (a) Phantom 1, image computed from FEANN (b) Phantom 1, image computed from
speckle-tracking (c) Phantom 3, image computed from FEANN (d) Phantom 3, image computed from speckle-tracking

on differentiating a displacement field calculated with speckle-tracking is confined to the

imaged region. With the informational models, any geometry can be modeled and an FEA

solved using the ANN material model(s), thus allowing the stress and strain fields to be

estimated throughout an entire model. The second major advancement is the increase in

resolution and reduction of artefacts. Adjusting the size of the elements in the FE model

controls the resolution of the computed fields. Furthermore, a finer mesh will reveal more

complex characteristics in the stresses and strains. With speckle-tracking, performing the

strain calculation involves a derivative. Noise in the displacement estimates lowers the strain

image resolution and produces artefacts which translate to the computed Young’s modulus

image.
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3.4.5 Observing the Constitutive Behavior of Informational

Models

It is possible to glimpse the constitutive behavior described by trained ANN material models

by observing the “matrix” response. By probing an ANN with isolated strain probes and

plotting the resulting stress responses, a constitutive matrix can be formed. For the plane-

stress case, the isolated strain probes are [ε11 0 0]T , [0 ε22 0]T , and [0 0 ε12]
T .

Each strain probe was used as an input to the trained ANN characterizing the back-

ground gelatin material for case (d) of Phantom 1 and the stress responses plotted, shown

in Figure 3.13 as the black curves. Values spanned the ±0.05 range for each strain probe,

extending beyond the range covered during training with AutoP. After applying each strain

probe to the ANN, the σ11, σ22, and σ12 responses were recorded. The slope of the black

curves in Figure 3.13 correspond to the elements in the constitutive matrix in a plane-stress

formulation.

Under the assumption of plane-stress response for these phantom models, the “true”

response to the input strain probes can be predicted using the Young’s modulus estimate

from macroindentation and a Poisson’s ratio of 0.5. Perfect mechanical characterization of

the gelatin by the ANN material model would result in a set of “matrix” response curves

identical to the true values. For Phantom 1, the background material had a Young’s modulus

of 9.16 kPa as measured from macroindentation. A constitutive matrix was constructed

following the formulation at the top of Figure 2.1 and interrogated with the same isolated

strain probes as the ANN. True response curves are plotted as red curves along with the

ANN response curves in Figure 3.13.

A close look at the center plot of Figure 3.13 displaying σ22 versus ε22 reveals a consequence

of using trained ANNs to predict stress values approaching or extending beyond the range

of training data. A linear stress response is observed in the strain range of training −0.03 ≤

ε22 ≤ 0.03, but the stress responses for larger input strain become increasingly nonlinear.

The responses become linear when training is extended to the full range of testing.
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𝜎12
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𝜖11
𝜖22
𝜖12

[𝜖11 0 0] [0 𝜖22 0] [0 0 𝜖12]

Figure 3.13: Stress response of an ANN to strain probes [ε11 0 0]T , [0 ε22 0]T , [0 0 ε12]T , Each strain vector was provided as
an input and the full stress vector was recorded. Slopes of the stress-strain curves should match the values in the constitutive
matrix of the plane-stress model for a Young’s modulus of 9.16 kPa, estimated from indentation tests, and Poisson’s ratio of
0.5. Black curves correspond to the stress values recorded from the ANN whereas the red curves are the expected response for
the given Young’s modulus and Poisson’s ratio.

60



3.4.6 Effects of Varying the Amount of Information During

Training

Figure 3.14 illustrates the influence of additional training data on informational model ac-

curacy. Each plot contains the axial stress response σ22 to an isolated lateral strain ε11 for

ANNs trained in different scenarios. The trained ANNs model the mechanical behavior

of the background gelatin material for Phantom 1. Plot 3.14a is the stress response after

training with a single data set - case (a) in Table 3.2. Plots 3.14b and 3.14c are the stress

response after training with two sets of data either in succession (case c) or simultaneously

(case d). These plots correspond to the top-middle plot in Figure 3.13. Red curves represent

the expected behavior using the plane stress model with a Young’s modulus of 9.16 kPa and

Poisson’s ration of 0.5.

Training with only a single set of data (case a) appears to be insufficient to fully capture

the constitutive behavior of the gelatin, evidenced by the large difference between the red and

black curves in Figure 3.14a. However, the addition of another set of force-displacement data

acquired under slightly different loading situation produced ANNs that far more accurately

model the constitutive behavior of the gelatin. Whether the additional data was used to

update existing ANN material models (case c, Figure 3.14b) or incorporated with the first

set of data into a single round of training (case d, Figure 3.14c), the response of the ANN

more closely resembles the response predicted from a plane-stress model.

It was shown in Figures 3.5, 3.7, and 3.13 that the shear stress (σ12) response to shear

strain (ε12) is difficult to capture using only a uniaxial load while measuring forces and

displacements only along the load axis. Even though a shear stimulus is not applied, there is

a shear response due to the pinned bottom boundary of the phantom and heterogeneity due

to the stiff inclusion(s). The shear stress and strain images in Figures 3.6 and 3.8 illustrate

these responses to a uniaxial load.

An investigation was done to find a way to tease out the information pertaining to the

shear response with the force-displacement data that was acquired. Several versions of AutoP
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(a) (b) (c)

Figure 3.14: Comparing the axial stress response to a lateral strain input for different training scenarios. Black curves
correspond to the trained ANN response. Red curves are the expected response based on the plane-stress formulation using
E = 9.16 kPa and ν = 0.5. All three plots correspond to training cases for Phantom 1 listed in Table 3.2. (a) Case a (b) Case
c (c) Case d.

training were performed to evaluate the effects on the learned shear response: 1) training

using a single set of axial force and displacement information (case (a) in Table 3.2); 2)

training using two sets of axial force and displacement information simultaneously (case (d)

in Table 3.2); 3) providing both axial and lateral displacements during training; and 4)

checking axial and lateral displacement errors for nodes not included in training.

In tests (3) and (4), the nodes specified in Figure 3.2a remained the only ones to be given

displacement information in FEA 2. No lateral displacements were provided during training

in (4); lateral displacements were only used during the convergence check. Figure 3.15 details

which nodes were used during the displacement error check in test (4) to constrain the test

for convergence.

While none of the four described training scenarios produced ANN material models that

captured the expected shear response predicted with the plane-stress model, improvement

was seen when additional information was provided during training or the check for conver-

gence. The improvement is seen as an increase in the slope of the shear stress response (black

curves) toward the expected response (red curves) in Figure 3.16. ANNs developed in tests

(1) and (2) had virtually no shear stress response to a shear strain input, evidenced by the

a value of nearly zero of the slope. However, adding lateral displacement information during
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Figure 3.15: Example of the nodes used for more constrained convergence testing. Highlighted nodes are scattered throughout
the imaged region. Including all of the highlighted nodes in the test for convergence, instead of just those assigned displacements
in FEA 2, forces the ANNs to better learn the mechanical properties of the gelatin phantoms.

training (test (3), Figure 3.16c) or including axial and lateral displacement information for

a larger number of nodes during the convergence check (test (4), Figure 3.16d) forced the

ANNs to capture more of the shear behavior. Test (4) produced an ANN with the most

accurate shear stress response.

The improvement is clearly seen when comparing the shear stress fields. Figure 3.17

compares the shear stress images produced in FEANN for tests (1) and (4) to the expected

shear stress field computed in FEIdeal for Phantom 1. In Figure 3.17a, the nearly zero

shear modulus (i.e., slope of nearly zero in Figure 3.16a) produces a suppressed shear stress

field. Improved shear response characterization resulting from test (4) produced the image

in Figure 3.17b which more closely resembles the expected shear stress field displayed in

Figure 3.17c. The improvement resulting from test (4) suggest there is merit in adding nodes

to the displacement error check for convergence without including said nodes in training.

This strategy could possibly avoid the problem of including too much information during

training, which risks the ANNs learning the noise, while still using more of the acquired data

to increase the accuracy of the ANN material models.
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(a) (b)

(c) (d)

Figure 3.16: Comparison of the σ12 response to an input of ε12 for Phantom 1 trained under different conditions. (a) No
training adjustment (case a) (b) Training with two sets of data simultaneously (case d) (c) axial and lateral displacements
provided to FEA 2 (d) convergence calculated using displacements at nodes throughout the imaged region, not limited to
displacements applied in FEA 2.

(a) (b) (c)

Figure 3.17: Comparison of the estimated shear stress field σ12 of phantom 1 using training versions (1) and (4). (a) Training
version (1) corresponds to the shear response in Figure 3.5c. (b) Training version (4) where displacement convergence is required
for nodes not used for training; the results correspond to the shear response in Fig. 3.16d. (c) Shear stress estimated for an
ideal linear-elastic plane-stress model. This is the same shear stress field displayed in Figure 3.6c
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Chapter 4

Discussion

Results described in Section 3.4 demonstrate the ability of ANNs trained with AutoP to

learn the linear-elastic constitutive behavior of gelatin materials using a sparse sampling of

data. Using only a few estimated axial displacements within the inclusions, as well as axial

forces and displacements at the surface, NNCMs were developed that were used to compute

images of the stress and strain vectors throughout the entire phantom model. These stress

and strain estimates were then used to compute accurate Young’s modulus images for each

model.

4.1 Sampling Requirements and Training Data

Selection

Including the use of US imaging to track interior motion of the target object increases the

amount of available information tremendously. Discussed in Section 2.3.5 was the drawback

of providing too much information when noise is present. It was necessary, then, to determine

the minimum amount of force-displacement data that had to be provided during training

to build accurate ANN material models. Furthermore, the effect of the distribution of the

displacement data throughout the model had to be accounted for.

Preliminary tests sought to answer or at least provide a heuristic for these issues. Three

different analyses were run on the Phantom 1 model where displacements were given 1)

for the probe only, 2) along a vertical line through the lateral center of the inclusion, and

3) along a horizontal line through the axial center of the inclusion. Note that the same
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number of nodes were given displacement information in cases (2) and (3). After training,

the Young’s modulus estimate for the background material was near the expected value in

all three cases; however, only case (2) resulted in a modulus estimate close to the true value.

Results of case (1) are not entirely unexpected because the background gelatin made up

the bulk of the phantom model and would have the largest effect on the force-displacement

behavior measured at the surface. Furthermore, the inclusion had no contact with any of

the phantom boundaries, nor did the complexity in the stress or strain fields caused by

the inclusion reach the boundaries for the applied loads. This means the inclusion was not

sensed from surface measurements; interior motion had to be tracked in order to determine

a heterogeneity existed within the phantom model.

Results from cases (2) and (3) are more interesting and begin the reveal what and where

information needs to be supplied for training. Based on case (1), it is evident that some

amount of information needs to be provided for each region in the model with unique me-

chanical properties. Cases (2) and (3) each provided the same amount of data, the difference

lying in how the data was dispersed in the FE mesh. In case (2), the displacement data fell

along a line parallel to the direction of the applied force whereas in case (3) the data fell on

a line perpendicular to the loading direction. Because only axial displacement information

was given, the motion of the nodes in case (3) reveals very little information about how

the points move relative to each other under uniaxial loading. For example, if no noise was

present in the displacement data, the nodes would have had similar - if not identical - axial

motion. In case (2), though, the nodes compress in relation to each other, providing more

information about how the material responds to the applied load and thus more about the

constitutive behavior of the inclusion.

The results of cases (1)-(3) led to an empirically determined sampling strategy for the 2D

models under plane-stress loading: displacement information should be provided for nodes

oriented along the force gradient produced from the applied load. Furthermore, displace-

ments must be provided within each region with unique mechanical properties. In this study

66



where force was applied in the axial direction only, nodes supplied with displacement data

in FEA 2 should be aligned along the axial direction and be within the boundaries of the in-

clusion(s). It was also found that providing displacements for three nodes within each region

was enough to produce accurate ANN material models. Later studies involving 3D models

and materials with more complex mechanical properties (e.g., nonlinearity, anisotropy, etc.)

will likely require a different sampling strategy. It is expected that the basics of the proposed

sampling strategy will transfer, with the largest difference being the amount of data that

needs to be acquired and provided during training.

4.2 Effects of Constraining Convergence Testing

Stresses and strains resulting from uniaxial loading mostly span the axial and lateral spaces,

as shown in the right columns of Figures 3.6 and 3.8. Pinning the bottom of the phantom

and adding the inclusion produces some shear stresses and strains - mostly in the background

material - that are much smaller in magnitude than the axial and lateral counterparts. This

limited amount of shear information makes it more difficult for the ANNs to learn the shear

response of the material. However, it was demonstrated that adjustments to the training

process can be made that result in the ANNs better capturing the shear behavior. The most

successful of these adjustments was the addition of displacement data during the convergence

check not used in FEA 2.

Adding more displacement data during the displacement error calculation added more

constraint on the convergence check. Even though the extra data was not given during FEA

2, the nodal displacements from FEA 1 still had to accurately predict the motion throughout

a larger region. The extra constraint had the effect of forcing AutoP to perform more training

iterations for each load step. An analogy of ANN training is learning information contained

on flash cards. As a student flips through the stack cards, he or she checks the answer given

to the correct one on the back. If the answer was correct, the student has successfully learned
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the information; otherwise a mental note is made to try and correct the error on the next

pass. Enforcing the extra constraint during the convergence check is like forcing the student

to make more passes through the deck of cards until a larger percentage of the information

has been learned.

Another method was attempted to increasing the ANNs ability to learn the shear re-

sponse, but was not discussed in Section 3.4. This test consisted of assuming the matrix of

material moduli, Cijkl, was symmetric. Recall that this matrix is calculated from the ANN

and is used to solve the FEA. With this assumption, there was no significant effect on the

ability of the ANNs to learn the shear behavior. This may be due to the fact that displace-

ments for Phantom 1 were given along a vertical line laterally centered within a symmetric

model. A symmetry assumption would mostly effect the displacement symmetry within the

FE model. Given that the nodes used during the displacement error calculation lie on the

line of symmetry, virtually no extra constraint was enforced in the check for convergence. It

is possible that the assumption of a symmetric matrix would have more of an effect on Phan-

toms 2 and 3 where symmetry was not present in the model or if nodal displacements used in

FEA 2 were scattered asymmetrically. Regardless, it is an assumption about the underlying

constitutive model and the lack of improvement when implementing this assumption justifies

its neglect in future use of informational modeling.

4.3 Decreasing Computational Load

Informational models discussed in Section 3.4 took 102±14 minutes to train with AutoP on

a standard quad-core processor operating at 3.4 GHz. The largest computational burden

comes from solving FEA 1 and FEA 2. Training over two passes each comprised of ten load

steps requires a minimum of 60 FEAs to be solved in the best-case, up to a maximum of

220 in the worst-case. Best-case scenario occurs when only one training iteration needs to

be performed in each load step whereas the worst-case occurs when the maximum of five
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iterations is performed every load step. Computing the stress, strain, and Young’s modulus

images required time on the order of minutes, an insignificant amount of time compared to

AutoP.

There are a few ways in which to training time can be reduced. Displacement MSE in

Figures 3.10b and 3.10d appears to reach a minimum after a maximum of six load steps in

the first pass. Removing the second pass of training would reduce the computation time

by approximately half and not negatively impact the accuracy of the NNCMs. It may also

be possible to monitor the magnitude of the displacement MSE and the slope of the curve.

If both of these values fall below a predefined threshold, it may be valid to assume the

models have converged and no more training is required, thus allowing the training process

to terminate early. The drawback to early training termination is the information spanned

by the later load steps would not be presented to the ANNs. For example, exiting AutoP

after load step 7 would mean the extended stress-strain range covered in load steps 8-10

would not be learned by the ANNs. Care would need to be taken if such a method was

implemented.

Other possible ways to reduce training time include reducing the number of load steps,

but still covering the whole training range. Instead of training for all ten load steps, training

could occur only on steps 2, 4, 6, 8, and 10. The full training range is covered, but the run

time of AutoP would be reduced by approximately half. Because the ANNs can generalize

within the training range, removing the intermediate steps would not likely be detrimental

to the informational model building process on the 2D linear-elastic models produced in

this study. However, when modeling more complex behavior, the intermediate steps may be

required. Essential information may be lost if materials exhibit nonlinear, path-dependent,

and/or time-dependent behavior and are inadequately sampled.
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4.4 Future Studies

This report demonstrates the first use of incorporating informational modeling with AutoP

to enhance the capabilities of ultrasound elastography. Validation was performed using

gelatin material that exhibits linear-elastic behavior over the range of deformation applied

in the previously described measurements. It was shown that images of the stress and strain

vectors, as well as the Young’s modulus, could be accurately computed after training with

only force-displacement data. Gelatin was chosen based on the predictability of its response.

Because this study is only the first step in using AutoP to develop NNCMs for biological

tissues, models with simple mechanical characteristics were the appropriate choice.

Currently, the geometry of the imaged object is assumed to be known and used to create

the FE mesh. This will not always be the case, especially when imaging biological tissues

with complex geometries and many heterogeneities. Clinical applications will likely require

US images to be segmented to create the mesh. A preliminary test was performed where a US

image was manually segmented to create a mesh approximating the geometry of Phantom 1.

Informational modeling results were similar to those for Phantom 1 described in Chapter 3.

While not definitive or comprehensive, these preliminary results suggest the object geometry

does not have to be perfectly modeled in the FEAs to produce accurate NNCMs. Later

studies will be performed where an autonomous segmentation algorithm is implemented to

generate the FE meshes.

It was mentioned in Section 2.3 the previous applications of AutoP. Several of those

studies successfully built ANN material models that capture nonlinear, path-dependent, and

time-dependent mechanical behaviors. Accurate characterization of biological tissues will

require adjusting the training process described in Section 2.3.3 and developing a sampling

strategy. Given the previous success of modeling more complex behaviors, it is expected

that building NNCMs for soft-tissues will be met with success, especially with the extra

information obtained with ultrasound imaging.
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