
c© 2015 Zigang Xiao

DESIGN AUTOMATION ALGORITHMS FOR ADVANCED LITHOGRAPHY

BY

ZIGANG XIAO

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Martin D.F. Wong, Chair
Professor Rob A. Rutenbar
Professor Deming Chen
Professor Xiuling Li

ABSTRACT

In circuit manufacturing, as the technology nodes keep shrinking, conven-

tional 193 nm immersion lithography (193i) has reached its printability limit.

To continue the scaling with Moore’s law, different kinds of advanced litho-

graphy have been proposed, such as multiple patterning lithography (MPL),

extreme ultraviolet (EUV), electron beam lithography (EBL) and directed

self-assembly (DSA). While these new technologies create enormous oppor-

tunities, they also pose great design challenges due to their unique process

characteristics and stringent constraints. In order to smoothly adopt these

advanced lithography technologies in integrated circuit (IC) fabrication, ef-

fective electronic design automation (EDA) algorithms must be designed and

integrated into computer-aided design (CAD) tools to address the underly-

ing design constraints and help the circuit designer to better facilitate the

lithography process. In this thesis, we focus on algorithmic design and effi-

cient implementation of EDA algorithm for advanced lithography, including

directed self-assembly (DSA) and self-aligned double patterning (SADP), to

conquer the physical challenges and improve the manufacturing yield.

The first advanced lithography technology we explore is self-aligned dou-

ble patterning (SADP). SADP has the significant advantage over traditional

litho-etch-litho-etch (LELE) double patterning in its ability to eliminate over-

lay, making it a preferable DPL choice for the 14 nm technology node. As

in any DPL technology, layout decomposition is the key problem. While the

layout decomposition problem for LELE DPL has been well studied in the

literature, only a few attempts have been made for the SADP layout decom-

position problem. This thesis studies the SADP decomposition problem in

different scenarios.

SADP has been successfully deployed in 1D patterns and has several ap-

plications; however, applying it to 2D patterns turns out to be much more

difficult. All previous exact algorithms were based on computationally expen-

ii

sive methods such as SAT or ILP. Other previous algorithms were heuristics

without a guarantee that an overlay-free solution can be found even if one ex-

ists. The SADP decomposition problem on general 2D layout is proven to be

NP-complete. However, we show that if we restrict the overlay, the problem

is polynomial-time solvable, and present an exact algorithm to determine if

a given 2D layout has a no-overlay SADP decomposition.

When designing the layout decomposition algorithms, it is usually useful

to take the layout structure into consideration. As most of the current IC

layouts adopt a row-based standard cell design style, we can take advantage

of its characteristics and design more efficient algorithms compared to the al-

gorithms for general 2D patterns. In particular, the fixed widths of standard

cells and power tracks on top and bottom of cells suggest that improvements

can be made over the algorithms for general decomposition problem. We

present a shortest-path based polynomial time SADP decomposition algo-

rithm for row-based standard cell layout that efficiently finds decompositions

with minimum overlay violations. Our proposed algorithm takes advantage

of the fixed width of the cells and the alternating power tracks between the

rows to limit the possible decompositions and thus achieve high efficiency.

The next advanced lithography technology we discuss in the thesis is di-

rected self-assembly (DSA). Block copolymer directed self-assembly (DSA)

is a promising technique for patterning contact holes and vias in 7 nm tech-

nology nodes. To pattern contacts/vias with DSA, guiding templates are

usually printed first with conventional lithography (193i) that has a coarser

pitch resolution. Contact holes are then patterned with DSA process. The

guiding templates play the role of defining the DSA patterns, which have a

finer resolution than the templates. As a result, different patterns can be

obtained through controlling the templates. It is shown that DSA lithogra-

phy is very promising in patterning contacts/vias in 7 nm technology node.

However, to utilize DSA for full-chip manufacturing, EDA for DSA must be

fully explored because EDA is the key enabler for manufacturing, and the

EDA research for DSA is still lagging behind.

To pattern the contact layer with DSA, we must ensure that all the con-

tacts in the layout require only feasible DSA templates. Nevertheless, the

original layout may not be designed in a DSA-friendly way. However, even

with an optimized library, infeasible templates may be introduced after the

physical design phase. We propose a simulated-annealing (SA) based scheme

iii

to perform full-chip level contact layer optimization. According to the exper-

imental results, the DSA conflicts in the contact layer are reduced by close

to 90% on average after applying the proposed optimization algorithm.

It is a current trend that industry is transiting from the random 2D de-

signs to highly regular 1D gridded designs for sub-20 nm nodes and fabricat-

ing circuit designs with print-cut technology. In this process, the randomly

distributed cuts may be too dense to be printed by single patterning litho-

graphy. DSA has proven its success in contact hole patterning, and can be

easily expanded to cut printing for 1D gridded designs. Nevertheless, the

irregular distribution of cuts still presents a great challenge for DSA, as the

self-assembly process usually forms regular patterns. As a result, the cut

layer must be optimized for the DSA process. To address the above problem,

we propose an efficient algorithm to optimize cut layers without hurting the

original circuit logic. Our work utilizes a technique called ‘line-end extension’

to move the cuts and extend the functional wires without changing the orig-

inal functionality of the circuit. Consequently, the cuts can be redistributed

and grouped into valid DSA templates.

Multiple patterning lithography has been widely adopted for today’s cir-

cuit manufacturing. However, increasing the number of masks will make

the manufacturing process more expensive. By incorporating DSA into the

multiple patterning process, it is possible to reduce the number of masks

and achieve a cost-effective solution. We study the decomposition prob-

lem for the contact layer in row-based standard cell layout with DSA-MP

complementary lithography. We explore several heuristic-based approaches,

and propose an algorithm that decomposes a standard cell row optimally in

polynomial-time. Our experiments show that our algorithm is guaranteed

to find a minimum cost solution if one exists, while the heuristic cannot

or only finds a sub-optimal solution. Our results show that the DSA-MP

complementary approach is very promising for the future advanced nodes.

As in any lithography technique, the process variation control and prox-

imity correction are the most important issues. As the DSA templates are

patterned by conventional lithography, the patterned templates are prone to

deviate from mask shapes due to process variations, which will ultimately

affect the contacts after the DSA process even for the same type of template.

Therefore, in order to enable the DSA technology in contact/via layer print-

ing, it is extremely important to accurately model and detect hotspots, as

iv

well as estimate the contact pitch and locations during the verification phase.

We propose a machine learning based design automation framework for DSA

verification. A novel DSA model and a set of features are included. We

implemented the proposed ML-based flow and performed extensive experi-

ments on comparing the performances of learning algorithms and features.

The experimental results show that our approach is much more efficient than

the traditional approach, and can produce highly accurate results.

v

To my father, Xianzhi Xiao,

and my mother, Liping Yuan,

for their endless love and support.

vi

ACKNOWLEDGMENTS

I would like to devote my deepest gratitude towards my advisor, Prof. Martin

D.F. Wong. Without this support, I would not have been able to proceed

and finish my PhD work. I have always been impressed and learned a lot

from his thoughtful advice and wisdom.

I am wholeheartedly thankful to my doctoral committee, Prof. Deming

Chen, Prof. Rob Rutenbar and Prof. Xiuling Li. Their comments and in-

sightful suggestions have proven to be extremely valuable in my thesis.

I am especially honored to have the chance to work with Prof. Rutenbar

as one of his teaching assistants. His deep knowledge of the subject, com-

passionate teaching, and empathy for students have always inspired me to

strive for excellence. I am also thankful to my fellow teaching assistants,

Mr. Chen-Hsuan ‘Adonis’ Chen and Mr. Nicholas Chen, for their support

and professional service during the course.

I could not be more grateful to everyone who has worked with me dur-

ing my PhD career for their support. I would like to give special thanks to

Dr. Hongbo Zhang, who has provided invaluable help in both of my academic

and personal life. I would also like to thank Dr. Yuelin Du, Prof. H.-S. Philip

Wong and Dr. Linda He Yi for providing me enormous advice and collabora-

tion for my research in DSA. I owe my deepest gratitude to Ms. Leslie Hwang,

who always provided me great support whenever I encountered difficulties.

I would also like to thank Mr. Haitong Tian, Dr. Ting Yu, Dr. Pei-Ci Wu,

Mr. Daifeng Guo, Mr. Chun-Xun Lin, Dr. Qiang Ma, Dr. Tan Yan, Dr. Li-

juan Luo and Mr. Tsung-Wei Huang. Without them, my PhD life cannot

have been so colorful and enjoyable.

Finally, I owe my deepest gratitude to my parents, who have always been

supportive of my decisions, including pursuing a PhD in the US. Their love

and understanding keep me moving forward, and words cannot express my

gratitude.

vii

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiii

CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Overview of This Dissertation 2

CHAPTER 2 SADP DECOMPOSITION FOR 2D LAYOUT 6
2.1 Introduction . 6
2.2 Preliminaries . 12
2.3 Previous Work . 14
2.4 A Polynomial-time Exact Algorithm for SADP Decomposition 15
2.5 Experimental Results . 30
2.6 Conclusion . 34

CHAPTER 3 SADP DECOMPOSITION FOR ROW-BASED STAN-
DARD CELL LAYOUT . 35
3.1 Introduction . 35
3.2 Preliminaries . 36
3.3 SADP Decomposition Algorithm for Row-based Standard Cell

Layout . 40
3.4 Experiments . 52
3.5 Conclusion . 53

CHAPTER 4 DSA DESIGN-TECHNOLOGY CO-OPTIMIZATION 54
4.1 Introduction . 54
4.2 Cost Modeling and Design Constraints 59
4.3 DSA Contact Layer Optimization for Full-chip Layout . . . 63
4.4 DSA Cut Redistribution Problem 66
4.5 Proposed Method . 67
4.6 Experimental Results . 75
4.7 Conclusion . 77

viii

CHAPTER 5 CONTACT LAYER DECOMPOSITION FOR DSA-
MP COMPLEMENTARY LITHOGRAPHY 78
5.1 Introduction . 78
5.2 Problem Formulation . 81
5.3 Contact Layer Decomposition with DSA-MP 82
5.4 Experimental Results . 95
5.5 Conclusion . 98

CHAPTER 6 DSA TEMPLATE VERIFICATION 99
6.1 Introduction . 99
6.2 ML-based DSA Verification Flow 101
6.3 Feature Extraction . 106
6.4 Learning Algorithms . 110
6.5 Training and Evaluation Data 113
6.6 Experimental Results . 114
6.7 Conclusion . 123

CHAPTER 7 CONCLUSIONS . 124

REFERENCES . 127

ix

LIST OF TABLES

2.1 Comparison Between Our Method And Ilp 32
2.2 Experiment on Critical Edges 32
2.3 Experiment on Large Benchmarks 33

3.1 SADP Layout Decomposition Results 52

4.1 Experimental Result of The Proposed Algorithm 75
4.2 DSA Redistribution Results 76
4.3 Different Library Size Comparison 77

5.1 Comparison of the Algorithms (DPL) 97
5.2 Comparison of the Algorithms (TPL) 97

6.1 Training Data Statistics . 115
6.2 Accuracy Comparison of Learning Algorithm and Features . 117
6.3 Performance Comparison of Classifiers 117
6.4 Comparison of Algorithms and Features (RMSE) 118
6.5 Contact Location Prediction Results (RMSE) 119

x

LIST OF FIGURES

2.1 Crosscut view of SADP patterning. 7
2.2 Illustration of SADP process. 9
2.3 Trim mask overlay and sidewall thickness. 13
2.4 Example of merging technique. 15
2.5 Ring of sidewall example. 17
2.6 Using auxiliary cores to produce target features. 18
2.7 Critical edges example. 19
2.8 Example of widened feature. 20
2.9 Layout example and its SW-graph. 23
2.10 Ring of core, removal, merging and post-processing. 25
2.11 Standard decompositions. 26
2.12 Combining decompositions of {A, B, C} and {D, E}. 28
2.13 Decomposition of a large layout with our algorithm. 31

3.1 Illustration of SID-type SADP process. 35
3.2 Overlay violations. 37
3.3 Row-based standard cell design. 38
3.4 SADP-compliant design rules. 39
3.5 Decomposition interaction types. 43
3.6 Cases to determine the value of W 47
3.7 Indirect case when cores are merged. 49
3.8 An example layout. 51
3.9 Decompositions of R2. 51
3.10 Combinations between decompositions. 51
3.11 Final solution. 51

4.1 SEM picture of guiding templates with their DSA pattern. . 55
4.2 DSA contact patterning. 56
4.3 The layout before and after wire permutation. 57
4.4 1D design fabricated by a combination of dense lines and cuts. 58
4.5 An example of cut redistribution. 59
4.6 ‘Peanut-shaped’ template. 61
4.7 Incremental update of cost and template. 65
4.8 Flow chart of the proposed algorithm. 68
4.9 Conflict graph and connected components. 68

xi

4.10 Match sets of connected component {A,B, F,G,K}. 70
4.11 Match sets of connected component {D,E,H, I, J,M}. . . . 70
4.12 Template embedding example. 72
4.13 Template placement. 73
4.14 1D cells. 75

5.1 DSA templates. 79
5.2 Illustration of DSA-MP complementary lithograph. 82
5.3 Color-First Example . 85
5.4 Group-first example. 86
5.5 Illustration of our row-based algorithm. 87
5.6 Decompositions for three cells. 88
5.7 Compatible and groupable decompositions. 89
5.8 Outline of the algorithm. 91
5.9 Cell splitting and simplified decomposition graph. 93
5.10 Illustration of running DSA-MP algorithm. 94
5.11 DSA-MP decomposition example for TPL. 97

6.1 DSA-aware resolution enhancement flow. 101
6.2 DSA verification methodology and techniques. 102
6.3 Simulation-based approach. 103
6.4 Proposed machine-learning based flows. 104
6.5 Proposed DSA model based on edge sensitivity. 105
6.6 Stages in the proposed verification flow and different models. 106
6.7 Matched points examples. 107
6.8 Timer-series in dynamic time warping. 108
6.9 Filling missing values. 109
6.10 HOG features of mask. 109
6.11 Neural network and random forest. 111
6.12 Example of non-linear support vector regression. 113
6.13 Plot of upper contact locations in training data. 114
6.14 Pitch histogram. 115
6.15 Grid search contour plot. 118
6.16 Model selection. 120
6.17 Learning curve. 121
6.18 Error histogram of predicted values. 122
6.19 Regression plot of the tuned model. 122

xii

LIST OF ABBREVIATIONS

193i 193 nm ArF Immersion Lithography

1D 1 Dimensional

2D 2 Dimensional

2SAT 2-Satisfiability

2CNF 2-Conjunctive Normal Form

AAM Aux-Aux-Merge

ANN Artificial Neural Network

BFS Breadth-First Search

Bagging Bootstrap Aggregating

CAD Computer-Aided Design

CMOS Complementary Metal-Oxide-Semiconductor

CAM Core-Aux-Merge

CAR Core-Aux-Removal

CCM Core-Core-Merge

CF Color-First

CPU Central Processing Unit

DAG Directed Acyclic Graph

DFM Design For Manufacturing

DP Double Patterning

DPL Double Patterning Lithography

xiii

DSA Directed Self-Assembly

DTW Dynamic Time-Warping

DTCO Design Technology Co-Optimization

DUV Deep Ultraviolet

EBL Electron Beam Lithography

EDA Electronic Design Automation

EPE Edge Placement Error

EUV Extreme Ultraviolet

FPT Fixed-Parameter Tractable

GB Gigabytes

GF Group-First

GHz Gigahertz

HOG Histogram or Oriented Gradients

IC Integrated Circuit

ILP Integer Linear Programming

LELE Litho-Etch-Litho-Etch

LI Local Interconnect

LWR Line Width Roughness

M1 Metal 1

M2 Metal 2

ML Machine Learning

MP Multiple Patterning

MPL Multiple Patterning Lithography

MRC Manufacturing Rule Checks

NGL Next Generation Lithography

NMOS N-type Metal-Oxide-Semiconductor

NP Non-deterministic Polynomial-time

xiv

OPC Optical Proximity Correction

OPT Optimal

PMOS P-type Metal-Oxide-Semiconductor

RAM Random Access Memory

RBF Radial Basis Function

RET Resolution Enhancement Technique

RF Random Forest

RMSE Root Mean Square Error

SA Simulated Annealing

SADP Self-Aligned Double Patterning

SAT Satisfiability

SCFT Self-Consistent Field Theory

SEM Scanning Electron Microscope

SID Spacer-Is-Dieletric

SIFT Scale-Invariant Feature Transform

SVM Support Vector Machine

SVR Support Vector Regression

TPL Triple Patterning Lithography

VLSI Very-Large-Scale Integration

xv

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

In the semiconductor industry, the design and manufacturing communities

had been enjoying being able to optimize on their area-specific goals without

excessive dependency on each other. In particular, designers had been able to

rely on electronic design automation (EDA) tools to perform computer-aided

design (CAD), such as using automatic place and route system to minimize

the design area. The designers expected the process scaling would keep up

with the feature size shrinking and thus bring substantial reduction in chip

size and power. Indeed, for a long time manufacturers had successfully main-

tained delivering new process technology to scale with the design needs. As a

result, designers had been able to achieve area and performance improvement

without much of the material and process involved in the design flow.

Nevertheless, scaling CMOS technology at the speed dictated by Moore’s

law has become increasingly difficult. The reason is that the lithography

process has lagged far behind the technology node. While the technology

node has shrunk to sub-20 nm in recent years, the underlying process tech-

nology, 193 nm immersion lithography (193i), has not been improved. Even

though resolution enhancement techniques (RET) such as optical proximity

correction (OPC) have been proposed to enable printing small features with

the coarse resolution of 193i, the printability limit of 193i is finally reached

at 28 nm node.

To keep up with Moore’s law, a number of advanced lithography tech-

nologies have been proposed in recent years, such as multiple patterning

lithography (MPL), including self-aligned double patterning (SADP), triple

patterning (TPL) and beyond, directed self-assembly (DSA) and extreme

ultraviolet (EUV). While these new technologies create enormous opportu-

1

nities, they also pose great design challenges due to their unique process

characteristics and stringent constraints. Instead of only consulting EDA

tools for design for manufacturing (DFM) feedback, the designers have to

consider the process constraints at the early stage of the design. Eventually,

design-technology co-optimization (DTCO) becomes the key enabling factor

for CMOS scaling. As a result, the EDA engines have to understand the

underlying process technology, and corresponding design automation algo-

rithms need to be designed to address the special issues and process rules.

This motivates us to explore and study the topic of design automation algo-

rithms for advanced lithography, and it is the main theme of the dissertation.

1.2 Overview of This Dissertation

In this dissertation, we present our research results on two of the most

promising advanced lithography technologies: self-aligned double patterning

(SADP) and directed self-assembly (DSA).

SADP has a significant advantage over conventional LELE (Litho-Etch-

Litho-Etch) DPL in its ability to eliminate overlay, making it a preferable

DPL choice for the 14 nm technology node. As in any DPL technology, layout

decomposition is the key problem. While the layout decomposition problem

for LELE DPL has been well-studied in the literature, only a few attempts

have been made to solve the SADP layout decomposition problem. SADP

has been successfully deployed in 1D patterns and has several applications.

However, applying it to 2D patterns turns out to be much more difficult. The

previous exact algorithms were based on computationally expensive methods

such as SAT or ILP [1], [2]. Other existing works were heuristics without a

guarantee that an overlay-free solution can be found even if one exists [3]–

[5]. In Chapter 2, we present a polynomial-time exact (optimal) algorithm

to determine if a given layout has SADP decompositions that do not have

overlay at critical edges. Compared to the previous work, our proposed

algorithm can solve all the test cases in a reasonable time.

In Chapter 3, we address the SADP decomposition on row-based standard

cell layout and propose a polynomial-time algorithm. Our objective is to

minimize the overall overlay violations. Although SADP decomposition has

been shown to be NP-hard in general, we show that it can be solved in poly-

2

nomial time when the layout is row-based standard cells. The experimental

results with industrial level standard cells demonstrate our method can solve

large scale problems in a relatively short time. As row-based standard cell

design is a major choice in ASIC design, our approach is expected to find its

potential in the manufacturing industry for the sub-20nm technology node.

It is shown that DSA lithography is very promising in patterning con-

tacts/vias in 7 nm technology node [6]–[8]. However, to utilize DSA for

full-chip manufacturing, EDA for DSA must be fully explored as EDA is the

key enabler for manufacturing, and the EDA research for DSA is still lagging

behind. In Chapter 4, we discuss contact layer and cut layer optimization

problems for DSA. To pattern the contact layer with DSA, we must ensure

that all the contacts in the layout require only feasible DSA templates. As a

result, the original layout must be designed in a DSA-friendly way. A previ-

ous work on contact layer optimization focused on cell level optimization and

aimed to minimize the total templates used in the standard cell library [9].

However, even with an optimized library, infeasible templates may be intro-

duced after the physical design phase. We propose a simulated-annealing

(SA) based scheme to perform full-chip level contact layer optimization. Ac-

cording to the experimental results, the DSA conflicts in contact layer are

reduced by close to 90% on average after applying the proposed optimization

algorithm.

Recently, the industry has been transiting from the random 2D designs

to highly regular 1D gridded designs for sub-20nm nodes and fabricating

circuits designs with print-cut technology. In this design style, randomly

distributed cuts are the major challenge as they may be too dense to be

printed by single patterning lithography. DSA has proven its success in

contact hole patterning, and can be easily expanded to cut printing for 1D

gridded designs. Nevertheless, the irregular distribution of cuts still presents

great challenge for DSA, as the self-assembly process usually forms regular

patterns. As a result, the cut layer must be optimized for the DSA process.

To address the above problem, we propose an efficient algorithm to optimize

cut layers without hurting the original circuit logic in Chapter 4. Our work

utilizes a technique called ‘line-end extension’ to move the cuts and extend

the functional metal wires without changing the original functionality of the

circuit. Consequently, the cuts can be redistributed and grouped into valid

DSA templates. Our experimental result showed that the final cut conflicts

3

are resolved with relatively small costs after the optimization.

Multiple patterning lithography (MPL) has been widely adopted for to-

day’s circuit manufacturing. However, increasing the number of masks will

make the manufacturing process more expensive. More importantly, towards

7 nm technology node, the accumulated overlay in multiple patterning (MP)

will cause unacceptable edge placement error (EPE). Directed self-assembly

(DSA) has been shown to be an effective lithography technology that can pat-

tern contact/via/cuts with high throughput and low cost. DSA is currently

aiming at 7 nm technology, where the guiding template generation needs

either double patterning EUV (extreme ultraviolet) or multiple patterning

DUV (deep ultraviolet) process. By incorporating DSA into the multiple

patterning process, it is possible to reduce the number of masks and achieve

a cost-effective solution. In Chapter 5, we study the contact layer decomposi-

tion problem in row-based standard cell layout with DSA-MP complementary

lithography. We explore several heuristic-based approaches, and propose an

algorithm that decomposes a standard cell row optimally in polynomial-time.

Our experiments show that our algorithm is guaranteed to find a minimum

cost solution if one exists, while the heuristics can only find sub-optimal so-

lutions. Our results show that the DSA-MP complementary approach is very

promising for the future advanced nodes.

In DSA lithography, as the templates are patterned by conventional litho-

graphy (193i), their shapes may vary due to the process variations, which will

ultimately affect the contacts/vias even for the same type of template. Al-

though a rigorous DSA simulation can link the guiding template generation

process to the DSA pattern formation [10]–[13], the extremely low efficiency

makes it barely suitable for adoption in the full-chip level implementation,

e.g., DSA-aware OPC and lithography verification. Therefore, effective DSA

verification methods are urgently needed. Meanwhile, the machine learning

based technique has been shown to be effective in lithography verification

tasks, such as hotspot detection. In Chapter 6, we propose a machine learn-

ing based design automation framework for DSA verification. A novel DSA

model and a set of features are included. Following the proposed framework,

we formulate the DSA hotspot detection and contact pitch and location pre-

diction problems and address them using machine learning techniques. Ex-

tensive experiments are performed to compare the performances of learning

algorithms and features. For hotspot detection, we can achieve 93% accu-

4

racy with the benchmarks. For contact pitch and location prediction, we

can achieve an average RMSE (root mean square error) of below 0.5. The

experimental results also showed that our approach is much more efficient

than the traditional approach.

5

CHAPTER 2

SADP DECOMPOSITION FOR 2D
LAYOUT

2.1 Introduction

As the feature size keeps shrinking and new lithography technologies such

as extreme ultraviolet (EUV) have been further delayed, double patterning

lithography (DPL) technologies have become the most promising process for

today’s sub-32 nm technology nodes with the 193 nm micro-lithography [14].

The conventional DPL such as LELE (litho-etch-litho-etch) that splits the

feature patterns into two separate exposures, has been receiving much atten-

tion and there are quite a few works on it [15]–[19]. However, a fundamental

problem that conventional DPL technologies suffer from is the overlay issue.

Due to problems such as potential mask misplacement and wafer thickness

variations, the features printed may have overlay. This results in hazardous

consequence such as connection failures or short circuit and ultimately leads

to serious yield degradation.

Recently, a new double patterning technology called self-aligned double

patterning (SADP) has drawn lots of attention. Compared to LELE, SADP

has many advantages such as better overlay tolerance and lower line width

roughness (LWR). It is anticipated that SADP will be utilized in more ad-

vanced technology nodes with its smaller spacing rules and more flexible

process control due its intrinsic alignment property [20]. In SADP, the over-

lay can be avoided by carefully decomposing the layout, i.e., splitting the

features to be patterned into two masks such that the target layout can be

printed exactly. The first mask of SADP is called core mask, which is used

to define locations of sidewall spacers. The second mask may be a trim mask

that is used to ‘print out’ the feature patterns, or a cut (or block) mask that

is used to ‘cut out’ the features, depending on the underlying technology (we

adopt the trim mask style in this chapter). The sidewall patterns generated

6

after core mask are used to mask out the regions they are covering from the

trim mask; i.e., only the regions that are covered by the trim mask but not

covered by sidewalls will be etched out after the trim mask phase. Thus, the

sidewalls are essentially defining the features.

Figure 2.1 shows the crosscut view of printing a single rectangular feature

using SADP process.1 After core mask, a core pattern is generated and

then sidewall patterns are deposited along the boundaries of the core pattern

(Figure 2.1(a)). Afterwards, the core pattern is removed. A trim pattern

will then be used to etch out the target feature (Figure 2.1(b)). Note that

only the area that is covered by trim mask but not covered by sidewalls is

patterned. Figure 2.1(c) illustrates how SADP can help to avoid overlay:

even if the trim mask is misaligned with the core mask (within a certain

extent), the target feature can still be printed exactly at the desired position

as long as the amount of misalignment is bounded within the sidewall.

Etch%Layer

SWSW Core

(a) Core patterns and
sidewalls deposited.

SWSW

Trim

Feature

(b) Trim pattern and
feature produced.

SWSW

Feature

Trim

(c) Trim pattern
misaligned.

Figure 2.1: Crosscut view of printing a single feature using SADP process.
‘SW’ denotes sidewall.

It is true that SADP decomposition is not as intuitive and straightforward

as LELE is. However, as [20] pointed out, SADP has many advantages over

LELE such as higher scaling capability. Thus, more effort should be spent

on the design automation algorithms to relieve the designers from the unique

design challenges presented by SADP.

1There are two types of SADP process: positive tone and negative tone. Since the
positive tone process is more flexible, it is thus considered as a more promising technique.
We assume positive tone process is used in our work. Please refer to [21] for more detail.

7

2.1.1 Applying SADP to Multiple Features

Although SADP has been successfully deployed in 1D patterns and has sev-

eral applications, applying it to 2D patterns is relatively new and needs

further attention. Unlike LELE DPL, the core patterns and trim patterns in

SADP are not mapped to the original features directly. For a single feature,

it is easy to use core mask to generate a core pattern that has the same

shape as the feature, deposit the sidewall and use trim pattern to etch out

the desired feature as in the previous example. It may not be as obvious

when there are multiple features.

Figure 2.2 shows an example of printing multiple features using SADP

process. In the target layout (Figure 2.2(a)), features are denoted in green

shapes. Note that some of the features are too close according to the process

rules and cannot be printed simultaneously using only a core mask. The

conflicting pairs are marked with red lines. With SADP, they can be printed

and overlay can be avoided. Figure 2.2(b) shows the core patterns denoted

by the blue rectilinear shapes after the core mask phase. Notice that for

some of the features, there may not be corresponding core patterns. Instead,

some extra core patterns that do not correspond to any features are used

to generate sidewalls to define the remaining features. The extra cores play

a vital part in SADP layout decomposition. We refer to this type of core

pattern as an auxiliary core, as it is essentially helping to generate sidewalls

to avoid overlay.

We proceed by depositing sidewall patterns around the boundaries of the

core patterns. For instance, a rectangle core pattern is generated for the

leftmost feature, and sidewall patterns are deposited around the four sides

of this core pattern. Similarly, sidewall patterns are generated for the rest of

the core patterns as shown in Figure 2.2(c). These sidewall patterns protect

the underlying layer from being etched in the trim mask. Next, the core

patterns will be removed (Figure 2.2(d)), leaving the sidewall patterns on

the layout area.

Finally, trim mask is used to trim out the desired features as shown in

Figure 2.2(e). Again, only the area that is covered by trim patterns but not

covered by sidewalls will be etched. The final result shows that the features

can be printed exactly even if two masks are misaligned, as long as the

amount is small enough to be bounded by the sidewalls. Clearly, the sidewalls

8

feature core sidewall trim

(a) Original features (b) Core patterns

(c) Sidewall deposition (d) Removal of core patterns

(e) Applying trim mask to produce
target features

(f) Final patterns

Figure 2.2: Illustration of SADP process.

9

in SADP process help to tolerate the unexpected process variation when

printing two masks. By carefully placing core and trim patterns, overlay can

be avoided in SADP. Figure 2.2(f) shows the printed patterns, which are

located exactly at the desired places.

The above example illustrates how SADP works and how it can be used to

avoid overlay. Various works [22]–[25] have demonstrated the advantages of

SADP in the sub-30 nm process. Note that without further notice, we will

continue to use the same color coding above in the remaining chapter.

2.1.2 SADP Decomposition Problem

To fully explore the potential of SADP, we have to address the following

problem. Given a layout, find a decomposition that consists of a set of

core patterns and trim patterns that can produce the layout exactly without

overlay after SADP process. Note that there may exist many different de-

compositions for a given layout, while sometimes there may exist no solution.

The above formulation has several problems:

1. The no-overlay constraint may be so tight that it may be very hard to

obtain a decomposition for a layout, especially when the layout is not

optimized for SADP process. Conversely, it is also very challenging to

design a layout that satisfies the no-overlay requirement.

2. Some overlay may be tolerated to a certain extent. For example, we

may allow reasonable overlay to appear at the metal wire endings,

which will not pose a serious problem as long as it does not cause

incorrectly connected metals.

3. The designer should be able to decide the trade-off and risk by having

the flexibility to specify feature edges where overlay may happen.

Thus, instead of not allowing any overlay completely, we should have the

flexibility to allow overlay at specified locations. Specifically, we should al-

ways disallow overlay in important feature edges (critical edges) as the circuit

function may be impacted if overlay happens at these edges. Meanwhile, we

allow overlay in those non-critical feature edges when no serious problem will

occur even if overlay happens. We define the SADP decomposition problem

as follows:

10

Definition 1 (SADP Decomposition). Given a layout, find a decomposition

that consists of a set of core patterns and trim patterns that can produce the

layout exactly without overlay at critical edges after SADP process.

Such a decomposition is referred as an overlay-free or a no-overlay decom-

position. Note that the term no-overlay is always used with respect to critical

edges. We are interested in finding such decompositions efficiently as:

1. Overlay at critical edges may impact the circuit function. We should

maximize the advantage of SADP to eliminate the overlay. Meanwhile,

while we should allow a certain overlay such that we have more flexi-

bility in designing the layout.

2. Designers may want to check if a given design is SADP-compliant,

particularly in an interactive (real-time) fashion.

2.1.3 Our Contributions

The SADP decomposition problem described above is indeed very difficult,

because due to the technology constraints, two core (trim) patterns cannot

be printed simultaneously if their distance is too small (minimum distance

design rule). One possible approach to the problem is to use a graph formu-

lation similar to the one used in LELE [26]. A pair of features that cannot be

printed simultaneously in the core mask can be viewed as a pair in conflict.

Hence, it is natural to construct a constraint graph according to the conflicts,

and use a graph two-coloring algorithm to find out the set of features that

can be printed simultaneously in the core mask. However, the above graph

formulation cannot capture some cases in SADP. As we will show later, the

two-colorability of this graph is only a necessary condition for the SADP de-

composition problem (instead of necessary and sufficient for the LELE case).

Further, it is non-trivial to find a decomposition from the two-coloring solu-

tions, since a two-coloring solution only tells us what features can be assigned

core patterns for simultaneous printing. For the other features, we still need

to introduce core patterns and generate the sidewalls that can define them.

Moreover, there may be many connected components in a graph and the

number of two-coloring solutions is exponential. Not every one of them can

be translated to a feasible decomposition.

11

In fact, the general SADP decomposition problem is proven to be NP-

complete [27]. However, we showed that if we disallow overlay at critical

edges (and thus disallowing the merging technique, which will be introduced

later), the problem is tractable. In this work, we propose that such an

algorithm can solve the above problem exactly in polynomial-time.

The major contributions of this chapter are summarized as the following:

• We present the first work on the SADP decomposition problem that

considers critical edges. To the best of our knowledge, this is the first

work that addresses the SADP decomposition problem with consid-

eration of critical edges, where other works tackle the decomposition

problem by minimizing the overall overlay and/or without considering

the critical edge information.

• We propose a graph formulation for the SADP decomposition problem.

We show that the two-colorability of such a graph is only a necessary

condition for the SADP decomposition problem.

• We propose a polynomial-time exact algorithm that solves the above

SADP decomposition. Our algorithm computes the decompositions for

each graph component, and finds a final decomposition in polynomial-

time with a 2-SAT formulation.

The rest of the chapter is organized as follows. Section 2.2 gives a detailed

introduction to overlay issues and design rules in SADP. We discuss some

of the prior work on the SADP layout decomposition in Section 2.3. The

details of our algorithm for general 2D layout will be covered in Section 2.4.

Section 2.5 shows the experimental results of the proposed algorithm. Finally,

conclusions will be drawn in Section 2.6. The work in this chapter was first

published in [28], then extended in [29].

2.2 Preliminaries

2.2.1 Overlay in SADP Process

We refer to the maximum possible overlay of the trim mask as trim mask

overlay, and denote it as wo. Overlay control in SADP is achieved by pro-

12

viding sidewall protection to feature boundaries. We denote the thickness

of the sidewall as ws. Figure 2.3 provides a detailed scenario of printing

the left-most feature in Figure 2.2. The feature boundaries are protected by

the sidewall, and the boundaries of the trim pattern are located inside the

sidewall. The trim mask may shift left or right within the distance of wo

during the SADP process. However, it is still inside the sidewall and will not

generate incorrect features. Ensuring feature boundaries to be protected by

the sidewall is the key to avoiding feature overlay. In particular, we observe

that the sidewall must have thickness ws ≥ 2wo to fully tolerate the overlay.

Furthermore, the trim pattern must be placed such that it is contained in

the sidewall after the trim process. In other words, the trim pattern must be

at least wo away from the two sides of the sidewall to avoid feature overlay.

w
o

w
o

ws

Figure 2.3: Trim mask overlay and sidewall thickness.

2.2.2 Process Rules

Design rules are always necessary for SADP-compliant manufacturing. We

will adopt the following process rules in this chapter:

• The width of a core pattern is at least wc.

• The width of a trim pattern is at least wt.

• The distance between core patterns is at least dc.

• The distance between trim patterns is at least dt.

• The width of sidewall is ws.

13

• The maximum trim overlay is wo.

In practice, wc and wt are usually the same; without further notice we refer

to them as wmin. dc and dt should also be the same, and we refer to them as

dmin. From the discussion in the previous subsection, we know that ws ≥ 2·wo

must be satisfied in order to guarantee the existence of a decomposition. In

our work, we assume that the original features are all rectilinear polygons

and all the features have widths larger than the minimum width of the mask.

2.3 Previous Work

As of the publication of this work, all of the previous works addressed the

problem indirectly by minimizing the overall overlay, quantified by the length

of the feature edges that are not defined by sidewall. Zhang et al. proposed

to solve the problem with a satisfiability (SAT) formulation in [30]. In this

approach, the layout area is divided into grids. A 0-1 binary variable is cre-

ated to denote whether the grid is assigned a core pattern or not. Then, the

design rules and geometry constraints are formulated as Boolean expressions

in SAT. The objective is to determine whether there is a satisfiable assign-

ment. However, modeling geometry constraints with Boolean expressions,

such as ‘rectilinear shape’, will generate a huge amount of Boolean expres-

sions. Furthermore, the number of variables depends on the granularity of

the grids. As a result, the number of variables will blow up when a fine grid

is used, which is not scalable.

An integer linear programming (ILP) formulation problem is proposed

in [2], where the constraints were expressed in linear inequalities, and the

objective is to minimize the total overlay. This approach suffers from a

similar drawback as the SAT approach. Moreover, the objective may not

directly reflect the solution quality, as the amount of overlay is not directly

related to the yield. For instance, a small amount of overlay at a critical

edge is already enough to cause a problem, while lots of overlay at non-

critical edges may be allowable. Finally, both SAT and ILP are NP-complete

in general, and thus these methods cannot scale to large problems.

Ban et al. presented a graph-coloring based heuristic in [3], [4]. The edge

weight corresponds to the parallel run length of the feature edges that are

violating the process rule. A two-coloring is then constructed heuristically

14

to minimize the total weight of the edges where the incident vertices are

the same color. Note that this is not a valid two-coloring solution in the

traditional sense, since two adjacent vertices can have the same colors (and

thus conflict).

To resolve the coloring conflict mentioned above, i.e., a feature pair that

violates design rules, the authors used a ‘merging’ technique, where the two

conflicting features will be merged as one, and they will be trimmed out

later using two separate trim patterns. An example cited from [4] is shown

in Figure 2.4. The features B, C and D form an odd cycle (Coloring conflict)

and thus there is no two-coloring solution. The merging technique will treat

features B and C as a single feature F (Grouping and Merging). Finally, a

trim pattern that has an opening between the two conflicting boundaries of

B and C will be used to trim them out from the merged pattern. Note that

the red mask pattern in ‘Trimming’ denotes the open of trim pattern, i.e.,

the trim pattern should be its complement.

Figure 4: Edge segment based layout coloring

trim mask layout is highly related to layout spaces be-
tween two polygons (refer to the Section 3.2). Edge
segments of polygons provides better layout informa-
tion for the trim mask.

Figure 4 shows a color assignment based on an edge seg-
ment approach. The first step is to divide every edge of
polygons into multiple segments based on the polygon itself
and neighboring polygons, that is a similar way of layout seg-
ment of a conventional model-based OPC. Then, each edge
in a polygon calculates the connection weight. For example,
in Figure 4, the distance between an edge e4 of a feature f1

and an edge e31 of a feature f2 is less than the minimum
coloring distance d. Thus the edges e4 and e31 have positive
weight. Whereas, since the space of an edge e3 of a feature
f1 is larger than d, no weight value is given. The connection
weight of a polygon can be the sum of connection weights of
all edge. Our overall layout coloring for SID-type SADP is
given in Algorithm 1.

Algorithm 1 Mask aware layout coloring

1: Dummy Layer Insertion in Section 3.5
2: A set of polygon features F in a layer
3: Find self-conflict areas in Section 3.4
4: A set of self-conflict area S in a layer
5: for each polygon f ∈ F do
6: Weightf ← 0
7: Decompose segments E ∈ f
8: for each segment e ∈ E do
9: weighte ← 0
10: detect conflict c with min. distance d
11: if c < d then
12: determine whether conflicted layout ∈ S or not
13: update weighte, shortest-path coloring in Section 3.3
14: end if
15: Weightf + = weighte
16: end for
17: end for
18: assign a color for polygons with sparse matrix solver
19: check grouping in Section 3.2

3.2 Grouping and Merging Coloring
Since SADP mask decomposition does not allow stitch in-

sertion, some coloring conflict is usual. As shown in Figure 5,
the target design has a native coloring conflict which repre-
sents an undecomposable layout even in LELE [4, 12]. To
resolve this coloring conflict, we introduce a grouping and
merging algorithm. Once two same colored polygons are
within the minimum coloring distance d, we make a group
for the polygons and merge them into one polygon. By merg-
ing the two conflicted polygons, we can make a core mask
without any DRC and lithography violation. This merged
region between two grouped polygons should be trimmed
out at the 2nd trim mask patterning step.

!"#"$%&'()"&*#%)+ ,-$'%&' .$%//%&'0$"12%&'

C

D

B

A DB

C

E

A DF E

!"#$%&'()*

+,-)$+,)./(0

!
"
#
$
%
&

1).,/2$',#(/)

+,-)$+,)./(0

Figure 5: Grouping and merging coloring

Note that since the spacer patterns nearby mandrels will
become dielectric after the trim mask patterning, the spacer
acts like an overlay-free region. It implies that if the edge of
a trim mask layout is on the spacer region, the trim layout
can be free from mask overlay variations without any impact
on target metal lines. In the other words, we should carefully
control the mask overlay if the trim mask edge is on metal
lines.

Thus, we should note the following issues if a trim mask
should cut the merged area:

• The width of a trim mask should meet the trim mask
width constraint which is usually the same as the min-
imum target layout width or slightly larger.

• Since the edge of a trim mask layout is passing over the
main mandrel not the safe spacer region, the overlay
error of the trim mask should be carefully controlled.

3.3 Shortest-path Coloring
After merging two conflicted polygons into one polygon,

the trim mask should remove the merged region at the cost
of mask overlay. Therefore, shorter trim mask for removing
merged region is preferable for smaller overlay impact on the
2nd patterning. So, in addition to a grouping and merge col-
oring, we propose a shortest-path coloring as shown in Fig-
ure 6. The shortest-path coloring is achieved by reflecting
the length of an edge segment when we assign a connection
weight on an edge. In Figure 6, the region between polygon
A and B has a longer interacting length of coloring conflict.
Meanwhile, between polygon A and C has the shortest in-
teracting length. The interacting length is multiplied by the
interacting weight for both two polygons. Thus, the poly-
gons having smaller interacting length have less interacting
weight for coloring that makes the shortest interacting poly-
gons having the same color.

!

"#

!

"#

!
"
#
$

%
&
'
(
)
*

CA

B

!"#$%&'(')*+ !,#$-.'(/0')(

CA

B
!

"

#

!1#$(&%23')(

CA

B
!

"

#
A
C

B

!4#$5%+%&')(

Figure 6: Shortest-path coloring

3.4 Self-conflict Aware Coloring
Even though we assign the same color on the polygons

which have less polygon interference, the corresponding trim
mask might have internal DRC errors on the mask itself
because the trim mask should meet single patterning con-
straints as shown in Figure 7. In order to avoid this self-
conflict violation, we identify self-conflict regions of the trim
mask and put more interacting weight in layout coloring.
The self-conflict region on a trim mask usually happens
when three or more consecutive polygons have the same
color where the width of middle polygon is less than the trim
mask space constraint. We can detect the trim self-conflict

!

"

#

!

"

!

"

#

!

"

#

!"#$

!"#$%&

$%"&'(()(

!

"

#

!

"

#

!"#$%&'()*+

,-'./)0/1(2/-%3'4'.5*67.565*24%428'9/ ,)4:13'*:453/%2;2.)%3'4'.5*6

!"#$%&'()*'+(

CA

B
!"

#

!$

!,#$-.+/0'-*

CA

B
!"

#

!$

!1#$(2.34'+(

CA

B
!"

#"

!$

!5#$-.0.2'+(!6#$2&%&'()*'+(

CA

B
!"

#"

!$

B
C

A

Figure 7: Self-conflict aware layout coloring

791

42.3

Figure 2.4: Merging technique used in [4].

The merging technique is currently used in industry, which adds flexibility

in SADP [20]. However, whenever it is used, the merged features must be

cut out using trim mask. Thus, the edges where the merging occur will be

defined by trim mask and thus will suffer from potential overlay. In this

work, we will focus on the problem without merging such that we can find a

no-overlay decomposition if one exists.

2.4 A Polynomial-time Exact Algorithm for SADP

Decomposition

In this section, we first revisit and illustrate the concept and usage of aux-

iliary cores, then discuss the effect of critical edges and how it will affect

15

the solution space of the decomposition problem. Next, we carefully exam-

ine how the design rules will impact core and trim patterns. Based on the

above observations, we propose a concept SW-graph that captures the design

rules, and show that the two-colorability of the SW-graph is only a necessary

condition for SADP layout decomposability. Finally, we present an exact

algorithm that finds a decomposition in polynomial-time. At the end of the

section, we also provide a brief analysis of the correctness and complexity of

our algorithm.

2.4.1 Auxiliary Cores

As we mentioned in the previous sections, we can use auxiliary core to help

generate sidewalls for the features that do not have a corresponding core

pattern. More formally, an auxiliary core is a core pattern that is placed

outside of a feature to generate the required sidewalls to define some critical

edges. To distinguish, we refer to a core pattern as a main core when it has

the same shape as a feature and is placed at the same location of this feature

to generate the required sidewalls.

We have already seen that one way to print a feature is to use a main

core as shown in Figure 2.3. However, we may not be always able to use

this approach due to the process rule constraint. An alternative way is to

use auxiliary cores. Observe that to print a feature exactly without overlay

at any edges, there must be a ring of sidewall surrounding the feature as

shown in Figure 2.5(a). More generally, a set of required sidewalls must

be generated for the critical edges of a feature. The ring of sidewall is a

special case where all the edges are critical. For the purpose of illustration,

we assume in this example that all of the edges of the feature are critical.

Besides using a main core to generate these sidewalls, we can use one of

many auxiliary cores around the feature to generate the ring of sidewall. The

complete decomposition that includes sidewall and trim pattern is shown in

Figure 2.5(b). Note that from now on we include the core mask, sidewalls

and trim mask into one figure for compactness. This example demonstrates

how to print a feature using auxiliary core(s) instead of a main core. We

refer the approaches used in Figure 2.3 (placing a core pattern at the feature

location) and Figure 2.5(b) (placing an auxiliary core outside to generate the

16

sidewalls) as main-method and aux-method.

(b) (d)(a) (c)

Figure 2.5: (a) Ring of sidewall. (b) Core, trim mask and sidewall. (c)
Alternate decomposition. (d) Critical edges example.

Using aux-method, we can obtain different decompositions. For instance,

Figure 2.5(c) illustrates another possible decomposition that uses four aux-

iliary cores to generate the required sidewalls. Clearly, this is also a valid

decomposition that will not have overlay. For the case that not all the edges

are critical, we can use separate auxiliary cores to generate sidewalls. For

instance, if the top and bottom edges of the feature are non-critical, we can

use the decomposition shown in Figure 2.5(d) to generate the sidewalls of its

left and right sides.

The above example shows the basic usage of auxiliary cores. They become

extremely important when there are multiple features. A more sophisticated

example is illustrated in Figure 2.6. In Figure 2.6(a), the two features are

too close to be printed simultaneously in core mask. Figure 2.6(b) shows how

we can obtain an overlay-free solution by using auxiliary cores. If we use a

main-core to feature A, the sidewall generated can then protect the left edge

of feature B. Then, to avoid overlay for the other three edges of feature B,

we use an auxiliary core that can generate the remaining required sidewalls.

The final result is shown in Figure 2.6(c). We use a single trim pattern to

trim out both features. Clearly, this decomposition has a symmetric solution

where a core pattern is used for feature B, and an auxiliary core to generate

a sidewall for feature A. This again shows the flexibility of SADP decompo-

sition. Nevertheless, the distance between an auxiliary core and the feature

that is being assisted must satisfy some requirements. This is discussed in

the following section.

17

A B

d = 30nm

(a) Target feature (b) Core mask (c) Sidewall and trim mask

Figure 2.6: Using auxiliary cores to produce target features.

2.4.2 Critical Edges

We now discuss the effect of critical edges. As we mentioned before, critical

edges are the feature edges that should not have any overlay. However, if

we disallow overlay anywhere, e.g., all the feature edges are critical, it may

be very hard to find a valid decomposition even for a simple layout. We

illustrate this by showing an example.

Figure 2.7 shows a layout that contains four features of line shape, where

each of them has a width wmin. The distance between adjacent features

is ws. We further assume the amount of overlay is much smaller than the

sidewall width. Clearly, we can only simultaneously print the features in

an alternating fashion, i.e., either use core patterns in features A and C or

features B and D. In either way, there are always two features that have no

sidewall protection. Let us assume core patterns are used for features A and

C. We further place an auxiliary core pattern E to the right of feature D to

generate sidewall for D’s right side. Now, one may want to use auxiliary cores

to generate sidewalls for the unprotected top and bottom tips of features B

and D. However, because of the existence of core patterns in features A and

C, no valid core patterns can be put to generate these sidewalls. Thus, there

is no way to decompose this layout without overlay. However, if these tips

are marked as ‘non-critical’, we can safely use the decomposition as shown

in Figure 2.7(b), where the core patterns are placed on A, C and E and

removed. This example shows that with critical edges correctly identified,

we may decompose an otherwise undecomposable layout using SADP process.

18

In practice, usually the feature side is critical as they affect the width of the

metal wire, and thus the resistance, conductance, etc., while the feature tips

are less critical as long as the effect is minor.

A B C D

(a)

B DA C E

(b)

Figure 2.7: Critical edges example.

2.4.3 A Graph Formulation for SADP Decomposition

In this section, we examine the impact of the distance between features. We

define the distance d between two features as the distance of two closest

edges between two features. We will first show that the two-coloring solution

in the conflict graph used in LELE is not necessarily converted to a no-

overlay SADP decomposition. In fact, there are more cases to consider for

the distance between features than the criteria used in LELE. For better

illustration, we assume the dmin = wmin = 40 nm, ws = 30 nm and wo = 10

nm in the following.

Clearly, when the distance between two features is greater than dmin, we

can use main-method to print them simultaneously. When the distance is

smaller than ws and at least one of the closest edges is critical, there is no

way to print them because the width is smaller than the sidewall width.

Now consider the two target features in Figure 2.8(a), where the distance

between them is 35nm and both edges are critical. According to the con-

straint graph formulation in LELE, a graph with two vertices will be con-

structed. Without loss of generality, assume that the left feature is assigned

a core pattern in the coloring solution. We cannot use two separate trim

patterns to trim out the features, for otherwise they will be too close and

violate the process rules. Thus, we can only use a single trim pattern for

both features as shown in Figure 2.8(b). However, the sidewall generated by

19

the left feature cannot touch the right feature since ws = 30 nm. As a result,

after trimming the right feature generated will be widened 5 nm as shown

in Figure 2.8(c). This overlay may severely affect the design. In conclusion,

there is no way to decompose this layout and print the features exactly. The

conflict graph formulation cannot capture this correctly.

35

(b) Decomposition

0 1

35

(a) Target features and
the constraint graph

(c) Feature widened

target feature width30

printed width

5nm widened

Figure 2.8: Example of widened feature.

Another issue we need to consider is how we place the trim patterns. For

a single feature, the trim patterns can be viewed as a polygon that has en-

larged shape of the original feature. Given two features, due to the minimum

distance rule, we have the following cases depending on the criticality of the

closest edge pair and their distance d:

• If both edges are critical, then d must satisfy d ≥ 2wo + wmin to put

the trim patterns.

• If only one of the edge is critical, then d must satisfy d ≥ wo +wmin to

put the trim patterns, where the one edge of the trim pattern overlaps

with the non-critical edge.

• If both edges are non-critical, then d must satisfy d ≥ wmin, where

either trim pattern will have one edge overlap with the non-critical

edge.

In conclusion, the distance between the features must be carefully con-

sidered and reflected in the constraint graph. Given two features in Fig-

ure 2.6(a), we will have the following cases according to the criticality of

feature edges and distance d:

20

• If d < ws, this layout cannot be decomposed because the generated

sidewall will overlap with at least one feature.

• If d = ws, we can use main-method for one feature and use aux-method

for another. The generated sidewall will protect both feature edges.

• If ws < d < wmin, This layout cannot be decomposed, because they

are so close that we cannot put two separate trim patterns to cut them

out, nor can we use a merged trim pattern because there is no way to

generate sidewall for both edges.

• If wmin ≤ d < wo + wmin,

– If at least one edge is critical, we should use main-method for the

features. The trim patterns need to be merged.

– If none of the edges is critical, we can use aux-method for the

features. The trim patterns can be separated.

• If wo + wmin ≤ d < 2wo + wmin,

– If both edges are critical, we should use main-method for the fea-

tures. The trim patterns need to be merged.

– Otherwise, we can use aux-method for the features that have non-

critical edge. The trim patterns can be separated.

• If 2wo + wmin ≤ d < 2ws + wmin,

– If both edges are critical, we should use main-method for the fea-

tures. The trim patterns need to be separated.

– Otherwise, we can use aux-method for the features that have non-

critical edge. The trim patterns can be separated.

• If d ≥ 2ws + wmin, the features are far away enough from each other.

We can use either method to print the features separately.

Clearly, the distance between features is closely related with ws, i.e., the

width of the sidewall, and the criticality of the closest edges. Given a layout

that consists of a set of target features, we construct Gs = (V,E) as follows:

• For each feature in the layout, include a vertex in V .

21

• Insert an edge e = (u, v) between two vertices u and v if d = ws.

Meanwhile, the layout is not decomposable if d < ws or ws < d < wmin.

We refer to the above graph as an SW-graph. We can use two-coloring to

find a set of core patterns that can be printed simultaneously in core mask.

In the following, we will refer to the two colors as ‘core’ and ‘space’. For the

feature that is assigned a ‘core’ color, we put a core pattern at its location.

The following theorem shows the relationship between the two-colorability

of Gs and SADP decomposition problem:

Theorem 1. Two-colorability of Gs is a necessary condition for SADP layout

decomposability.

Proof. If the feature distances does not satisfy the conditions we discussed

above, we know the layout cannot be decomposed. Now, we assume the

feature distances satisfy the condition. Given a decomposition of the layout,

we simply color a vertex as ‘core’ when a core is assigned to its corresponding

feature, and the remaining vertices as ‘space’. For each e = (u, v) in Gs, u

and v must be colored differently, otherwise the decomposition is invalid.

Hence, we obtain a two-coloring solution from the decomposition. As result,

two-colorability of Gs is a necessary condition of whether the layout is SADP-

decomposable.

Clearly, building the graph and finding two-coloring solutions for a graph

can be done efficiently in polynomial-time. As a side note, a graph is two-

colorable if and only if there exists no odd cycle in the graph. An example of

the graph formulation is shown in Figure 2.9. Figure 2.9(a) shows a layout

with five features. The critical edges are marked in red. Figure 2.9(b) shows

the SW-graph of this layout. Figure 2.9(c) shows one of the two-coloring

solutions for the connected component {A, B, C}. This example will be used

throughout the chapter to illustrate the proposed algorithm.

2.4.4 Overview of Our Algorithm

Our algorithm contains two stages. In the first stage, the algorithm finds

decompositions for each of the connected components in the SW-graph sep-

arately. We will introduce a method to find the decompositions according to

22

A

B

D E

30

3050
30

30

40

C

(a) Layout

C

B

DA

E

(b) SW-graph

C

B

A

A

B

C

(c) Two-coloring of {A, B, C}.

Figure 2.9: Layout example and its SW-graph. The blue color denotes a
‘core’.

the two-coloring solutions. Despite the fact that we may obtain many legal

decompositions from the two-coloring solutions of a connected component,

we will show that there are in fact at most two special decompositions with

the property that all the other decompositions are a subset of either one of

them.

In the second stage, a set of decompositions is selected from the connected

component decompositions and combined as a final complete decomposition.

In particular, exactly one decomposition will be selected for a connected

component in such a way that their combination is still an overlay-free de-

composition. In other words, the core and trim patterns in the resulting

decomposition will not violate process rules or cause overlay. Although there

may be exponentially many combinations, we show that the problem of choos-

ing compatible decompositions can be reduced to a 2SAT (2-Satisfiability)

problem and thus can be solved efficiently in polynomial-time.

2.4.5 Decompositions for Connected Components

In the previous section, we conclude that the two-colorability of the SW-

graph is only a necessary condition for the problem. From a two-coloring

solution, we can only obtain a set of non-conflicting features that can be

printed simultaneously using SADP process. The remaining problem is to

find a set of auxiliary core patterns that can generate the required sidewalls

to define the features. Our algorithm divides this problem into two stages.

This section describes the first stage, which finds the decomposition for the

23

features in a connected component of SW-graph separately.

Let us consider a connected component inGs and its two-coloring solutions.

Based on the two-coloring solution, we assign a main core to a feature that

is colored as ‘core’. A trim pattern that has the same shape as the feature is

also assigned and scaled in such a way that it has a distance wo away from

the feature edges. By doing the scaling, we can make sure the trim pattern

will be contained in the sidewalls even if misalignment happens.

For each feature that is assigned a ‘space’, we generate a ring of auxiliary

core with width wc placed outside of the feature to generate the required

sidewall. Figure 2.10(a) illustrates the ring of auxiliary core of feature C in

Figure 2.9. Note that the ring of core may ‘interact’ with other core patterns

and features. This can be addressed according to the following procedure:

1. The ring of auxiliary core conflicts with some main cores or other fea-

tures in the same component. Since the positions of the main cores

and features are fixed, the only solution is to trim the conflicting parts

from this ring. An example is shown in Figure 2.10(b), where feature

B forces part of the auxiliary core for C to be removed. Note that the

solid line around feature B denotes the area that no other core pattern

can be inside. It has a width wc = 40nm in our case.

2. The ring of auxiliary core overlaps with some other auxiliary cores. In

this case, we can safely merge them together. Note that the merging

at this step is to combine auxiliary cores together. Any design rule

violation will be fixed during post-processing.

3. After the trimming or merging, if the shape of the auxiliary core vio-

lates the process rule, we post-process it to satisfy the rules. For ex-

ample, we remove the part that violates the minimum core width rule.

Figure 2.10(c) shows the auxiliary cores for feature A and C merged

together, with some parts post-processed.

In the above procedure, we start with a ring of auxiliary core regardless

of the criticality of edges. The reason is that although we do not require a

non-critical edge to have sidewall protection, it is still useful when it is not

causing conflict. If the auxiliary core that generates the required sidewall for

a non-critical edge is causing conflict, it can always be removed.

24

C

(a) Ring of core
for feature C

B

C

(b) Removal of
conflicting part

B

C

A

(c) Merging auxiliary cores

Figure 2.10: Ring of core, removal, merging and post-processing.

After the above procedure, some design rules may be violated after trim-

ming or merging the auxiliary cores. The post-processing step will try to fix

these violations, including distance rule violation and minimum width rule

violation. To handle distance rule violation, we will try to insert an auxiliary

core between the two auxiliary cores that cause this violation. In particular,

we push the two conflicting edges toward each other until they meet. This

may cause some other conflict, and the conflicting part should be removed.

To handle minimum width rule violation, a similar operation is performed.

We push the two edges at the ‘bottleneck’ part that causes the conflict until

it satisfies the width rule. After the post-processing, if the violation cannot

be fixed, we will report no feasible decomposition.

After the above process, if the required sidewalls cannot be generated by

the auxiliary cores, we conclude that there is no corresponding decomposition

for this two-coloring solution. This is due to the removal of auxiliary cores

that leads to failure of generating the required sidewall. As a result, the

whole layout will not have a decomposition. Note that if the lengths of the

remaining auxiliary cores do not satisfy the minimum width rule, we should

not remove it in the above procedure. The reason is that it may become legal

after merging with other auxiliary cores. This will be discussed in detail in

the second part of the algorithm.

As we have seen before, there may be various sets of auxiliary cores that can

generate the ring of sidewall for a given feature, and thus there may be many

different decompositions. However, we should use the auxiliary core found by

the above approach. To see this, we first assume that the auxiliary cores of

25

minimum width are used. Clearly, a sidewall pattern can only be generated

by an adjacent core pattern, and the ring of auxiliary core is defined using

the ring of sidewall. In other words, the ring of auxiliary core is actually the

union of all possible decompositions, because the sidewall it generates will

contain the sidewalls that are generated by all possible decomposition. If

the auxiliary core after the above process cannot provide required sidewalls,

neither will other auxiliary core patterns.

Note that in the above discussion, we have assumed that the width of

the auxiliary cores are wc. Using the minimum width is already enough to

satisfy the process rules. Any set of auxiliary cores using a larger width is

just a superset of the set of auxiliary cores that have minimum widths. If

the auxiliary core with minimum width does not exist, a wider one will not

exist, either.

In summary, the decomposition derived using the proposed approach, i.e.,

using ring of auxiliary core and post-processing, contains all the possible de-

compositions that correspond to a two-coloring solution. In the following, we

will refer to such a decomposition as a standard decomposition. Figure 2.11(a)

shows the decomposition obtained from another two-coloring solution. Fig-

ure 2.11(b) and 2.11(c) show the standard decompositions for the two two-

coloring solutions of connected component {D, E}. For simplicity, only the

core patterns are shown.

A

B

C

(a)

E

D

D E

(b)

E

D

D E

(c)

Figure 2.11: Standard decompositions.

26

2.4.6 Combining Decompositions

From the above analysis, we know that there will be at most two standard

decompositions for a connected component, since there are exactly two two-

coloring solutions and it is possible that no decomposition can be found for

a two-coloring solution. The remaining problem is how we can combine the

standard decompositions and form a complete decomposition to the original

layout.

Observe that the ‘interaction’ between two decompositions will only be

caused by the auxiliary cores; i.e., the auxiliary cores from one decomposi-

tion may 1) conflict with the main cores or features in another decomposition,

or 2) overlap with some auxiliary cores in another decomposition. Hence, the

‘interaction’ between two decompositions is the same as what we have dis-

cussed in the first stage. We can thus apply the same process to obtain a

combined decomposition. Similar arguments suggest that if some auxiliary

cores in the combined decomposition do not satisfy the minimum width con-

straint, a combined overlay-free decomposition cannot be found from the two

decompositions.

We now define compatibility between two decompositions from two differ-

ent components. We refer two decompositions as compatible if they can be

merged as an overlay-free decomposition. Otherwise, they are incompatible.

As an example, Figure 2.12(a) and Figure 2.12(b) show the two combina-

tions of the decompositions from two connected components, where the first

pair is compatible (and also a complete decomposition for the layout) and

the second incompatible. For the compatible decomposition, we also show

the trim pattern that can print the features exactly in the figure. Note that

since the bottom of feature C and the top of feature A are non-critical, the

sidewall is not needed between them and the trim pattern is used to defined

these tips.

Our objective is to include exactly one decomposition from each graph

component to form a complete decomposition. All the decompositions se-

lected should be mutually compatible. In Section 2.1, we have shown that

the number of final decompositions may be huge. Because there are at most

two decompositions in a component, and the number of components may be

up to the number of features n, the number of final decompositions will be

in O(2n). However, this problem can be solved efficiently, as the following

27

C

A

B

ED

(a) Compatible decomposition

D E

B

C

A

(b) Incompatible decomposition

Figure 2.12: Combining decompositions of {A, B, C} and {D, E}.

theorem indicates.

Theorem 2. Given decompositions of all components of Gs, a complete de-

composition can be found in polynomial-time.

Proof. We show this by reducing the problem to 2SAT (2-Satisfiability),

which is a special case of the general Boolean Satisfiability problem. 2SAT

asks to determine whether a collection of binary variables with paired con-

straints can be assigned values satisfying all the constraints.

Assume that there are k components in Gs, each with at most two de-

compositions. We construct a Boolean formula f as follows. For component

i, we denote its two decompositions as xi and x̄i. If xi (x̄i) does not exist,

include its negation x̄i (xi) in f as a conjunction. For each decomposition,

we check whether it is compatible with all the decompositions except the one

in the same component. Hence, there will be at most O(n2) incompatible

pairs. Conjunct a clause (xi ∧ xj) in f if xi is incompatible with xj where

i 6= j. Clearly, f is in 2-conjunctive normal form (2CNF).

We show that f is satisfiable if and only if there exists a complete de-

composition; the satisfiable assignment for f is the complete decomposition.

The see this, notice that if there is a satisfiable assignment for f , all the

clauses in f must be true. In other words, no incompatible pairs will ap-

pear in the clause, and thus the complete decomposition contains mutually

28

compatible decompositions only. Conversely, if we have a complete decom-

position, where all sub-decompositions in it are compatible, no incompatible

pair exists and thus we have a satisfiable assignment for f . Finally, there

exist efficient algorithms for 2SAT problem such as [31].

The correctness and complexity of our algorithm are concluded in the

following theorem.

Theorem 3. The proposed algorithm solves the SADP layout decomposition

problem exactly in polynomial time.

Proof. In the first stage of the algorithm, we are generating ring of auxiliary

cores in the decomposition, which are essentially the combination of all can-

didate decompositions. We only remove the minimal parts that violate the

process rules. When the remaining auxiliary cores do not satisfy the process

rules, it means all of the candidate decompositions are removed due to con-

flicts. Hence, if there exists a feasible decomposition, it must be contained

in the decompositions found so far. In the second stage, the way we define

compatible decompositions is the same as in the previous stage. Hence, the

consequence is the same, i.e., we will not eliminate a feasible decomposition

during the procedure. Finally, the set of compatible decompositions is a fea-

sible complete decomposition of the layout since it does not violate process

rules anywhere. Hence, the proposed algorithm finds a decomposition if one

exists and is thus exact.

The complexity of our algorithm is presented as follows. Checking the

distance of features is essentially a collision detection problem, which can be

done in O(n2) using existing computational geometry techniques. Construct-

ing the graph and performing two-coloring can be done in O(n2) and O(n),

respectively. In the first stage, we mainly deal with Boolean polygon oper-

ations, e.g., intersecting, removing and merging the polygons. All of these

can be done in polynomial-time. A similar process exists in the second stage.

Furthermore, the second stage requires constructing a 2SAT formula from

the component. Since the number of components is at most O(n), the pair-

wise compatibility check requires O(n2). Finally, the 2SAT problem can be

solved using Tarjan’s strongly connected component based algorithm [31],

which runs in linear time. In conclusion, the proposed algorithm runs in

polynomial time.

29

An outline of our algorithm is given in Algorithm 1. Figure 2.13 shows the

decomposition of running an implementation of our algorithm on a layout

with moderate size of features.

Algorithm 1 SADP Decomposition Algorithm

1: procedure DecomposeLayout(F) . F is a set of target features
2: Construct Gs from T
3: Report undecomposable if feature distances are infeasible
4: C ← ∅, T ← ∅ . C: cores, T : trims
5: for all Component g in Gs do
6: TwoColor(g)
7: Report undecomposable if g is not two-colorable
8: for all Two-coloring solutions of g do
9: for all Feature f colored as ‘core’ do

10: C = C ∪ c, a main core for f
11: end for
12: for all Feature f colored as ‘space’ do
13: C = C ∪ c, a ring of auxiliary core for f
14: Post-process the auxiliary cores in C
15: end for
16: T = T ∪ t, a trim for C
17: end for
18: end for
19: Post-process all the auxiliary cores and trim patterns
20: Combine compatible decompositions as a final decomposition D
21: return D
22: end procedure

2.5 Experimental Results

To demonstrate the efficiency of our algorithm, we implemented our algo-

rithm in C++ programming language, and performed experiments on a 3.20

GHz Intel Xeon CPU with 32GB memory. We tested our program with the

following process rules. The minimum space between the core (trim) pat-

terns and the minimum width of the core (trim) patterns are all set to be 40

nm, while the sidewall width and trim mask overlay are set to be 30 nm and

10 nm. We used the 45 nm Nangate Open Cell Library [32] as our test data.

Since the library is not designed for SADP, most of the layouts do not have

an overlay-free decomposition. We scaled and adjusted the cells to conform

30

(a) Features

(b) Core mask and sidewalls

(c) Trim mask

Figure 2.13: Running our algorithm on general 2D layout. Note that a
darker blue is used for auxiliary cores to better distinguish from main cores.

31

Table 2.1: Comparison Between Our Method And Ilp

Name
Runtime (s)
Fs. Cs. Ours ILP

INV X1 4 2 0.04 7.18
BUF X1 5 1 0.04 3.45
BUF X16 5 3 0.03 38.26

NAND2 X1 5 3 0.10 36.87
AND2 X1 6 2 0.08 25.33
AND3 X1 7 3 0.14 48.90
AND4 X1 8 4 0.32 55.90
OR2 X1 6 3 0.25 4.65
OR4 X4 8 2 0.14 5.22

XOR2 X1 7 2 0.11 4.56

Table 2.2: Experiment on Critical Edges

Name
Decomposable?

Original Critical
AOI211 X2 N Y
AOI221 X1 N Y
OAI221 X1 N Y
NOR2 X1 N Y

CLKBUF X1 N N
DLH X1 N Y

SDFFS X2 N N

with the design rules. In particular, the features are scaled to meet the min-

imum width requirement 40 nm, and the odd feature distance is adjusted to

either as sidewall width or minimum feature distance. We implemented the

ILP method in [2] for comparison purpose, and used Gurobi Optimizer [33]

as the ILP solver.

In the first experiment, all edges are critical and thus overlay should be

avoided everywhere. Table 2.1 shows the performance comparison between

our method and the ILP method [2], where ‘#Fs.’ refers to number of fea-

tures and ‘#Cs.’ refers to the number of components in the SW-graph. From

the table, we can see that our algorithm achieves a 166X speed-up on average

compared to the ILP method.

In the second experiment, we use a set of library cells that cannot be

decomposed when all edges are critical. We create another set of data based

on them and specify the critical edges using the following criteria: for the

32

Table 2.3: Experiment on Large Benchmarks

Name # Features Decomposable? Runtime
std 500 1 500 N 1.5s
std 500 2 500 Y 6.2s
std 1k 1 1000 N 3.7s
std 1k 2 1000 Y 23.4s
std 5k 1 5000 N 27.1s
std 5k 2 5000 Y 101.0s
std 10k 1 10000 N 78.9s
std 10k 2 10000 Y 257.7s
std 50k 1 50000 N 804.4s
std 50k 2 50000 Y 1244.6s

feature that has line-shape, we consider the line ends that do not have a

nearby feature as non-critical. Table 2.2 shows the results of running our

algorithm on the two sets of data. The columns ‘original’ and ‘critical’ denote

the results on two sets of data, where the value Y/N denotes decomposable

or not. We can see that for most of the previously undecomposable layouts,

they can be decomposed by allowing some unimportant edges to have overlay.

In the third experiment, we created a set of large benchmarks using the

cells from the standard library. In each test case, standard cells are selected

randomly and concatenated to form a standard cell row. Nearby cells are

randomly selected and connected using metal wires. For each feature, non-

critical edges are selected with probability 10%. The test cases created in

such a way can be viewed as the routing layer M1 that has complicated 2D

layouts. We created test cases that contain 500, 1000, 5000, 10000 and 50000

features, respectively. For each size, we have two types of benchmarks, one

can be decomposable and one cannot.

We ran the proposed method and ILP method on these benchmarks. How-

ever, the ILP method failed to decompose the layout within a reasonable

amount of time (greater than 12 hours). Thus, we do not include them in

the report. Table 2.3 shows the running time of our algorithm on this set of

benchmarks. We can see that the proposed algorithm can solve all the test

cases using a reasonable amount of time, where the largest case consumed

about 20 minutes. For the cases that cannot be decomposed, the time used

is far less because either the SW-graph cannot be constructed, or the decom-

position cannot be found for some connected component. Thus, the program

33

terminates earlier than a decomposable layout.

2.6 Conclusion

In this chapter, we studied the SADP decomposition problem, where overlay

must be avoided at critical edges. We proposed a graph formulation that

correctly captures the design rules, and showed that the two-colorability of

the proposed graph is a necessary condition for SADP layout decomposabil-

ity. We presented the first polynomial-time exact algorithm that solves this

problem. Experimental results demonstrate the efficiency of our algorithm.

The proposed algorithm is expected to aid the designers to efficiently check

whether their designs are SADP-friendly.

34

CHAPTER 3

SADP DECOMPOSITION FOR
ROW-BASED STANDARD CELL LAYOUT

3.1 Introduction

Among several possible styles of SADP process, space-is-dielectric (SID) is

the most widely adopted type. In the previous chapter, we introduced SADP

process with core and trim mask. In this chapter, we will use the comple-

ment of trim mask, i.e., block mask (or cut mask) for the purpose of clearer

illustration. As we will be allowing merge-and-block technique, using block

notation instead of trim notation will be much more natural.

Under this notation, the core mask will generate a set of core patterns.

Spacer pattern will then be deposited surrounding the core patterns. The

features are defined by the patterns that are not covered by sidewalls or

block mask. Figure 3.1 shows an example of printing features using core

and block mask. Note that the L-shape feature and the vertical 1D feature

are merged and then cut out using a block pattern as in Figure 3.1(b). As

pointed out in [20], it is desirable to avoid overlay at feature sides, i.e., avoid

feature core sidewall block

A B C

(a) Target layout. (b) Decomposition result.

Figure 3.1: Illustration of SID-type SADP process.

35

block-defined feature sides. The overlay effect at feature tips, on the other

hand, is negligible.

In this chapter, we focus on the SADP decomposition problem for row-

based standard cell layout. We consider the sides of the features as critical,

where overlay should be disallowed. If a feature side is defined by block mask,

overlay may happen and such a situation is referred to as an overlay violation.

The objective is to minimize the total number of overlay violations. Despite

the NP-hard nature of SADP decomposition in 2D layout, we show that

the problem can be solved in polynomial time when the layout is row-based

standard cell design. Our contribution is summarized as follows:

• We consider minimizing the total number of overlay violations in SADP

decomposition as the objective. All previous works minimize the overall

overlay of the layout regardless of whether the overlay is critical or not.

To the best of our knowledge, this is the first work that addresses this

problem.

• We propose the first polynomial-time algorithm that optimally solves

the problem for a standard cell row. We further enhance the algorithm

to find a global optimal solution of a multiple-row layout. Experiments

demonstrate the efficiency of the proposed algorithm.

The rest of the chapter is organized as follows. In Section 3.2, preliminaries

of SADP are introduced. The details of our algorithm will be discussed in

Section 3.3. Section 3.4 shows the experimental results for the proposed

method. A conclusion is drawn in Section 3.5. This work is published in [34].

3.2 Preliminaries

Before we discuss the proposed decomposition algorithm, we will first intro-

duce overlay violation, row-based standard cell layout, SADP mask rules and

SADP-compliant design rules used throughout the chapter.

3.2.1 Overlay Violation

We define an overlay violation to be the critical feature side that is not

protected by sidewall (and thus defined by block mask) after the SADP

36

process. Figure 3.2 shows a layout and its SADP decomposition. A U-shape

core pattern generates sidewalls to define the left side of feature A, right side

of feature B, and bottom tips of both A and B. A T-shape block pattern

defines the right side of feature A, left side of feature B and top tips of both

of them. Therefore, there are two overlay violations in the decomposition;

one happens at the right side of feature A, and the other one happens at

the left side of feature B. Note that we consider the tips (line ends) of the

features as non-critical, while the long sides are critical. Thus, the top tips

of A and B are not considered as overlay violations even though they are

defined by block mask.

A B

C

(a)

overlay violations

C

A B

(b)

Figure 3.2: Overlay violations.

3.2.2 SADP Decomposition in Row-based Standard Cell
Layout

In standard cell based designs, a library that contains pre-designed standard

cells is provided to the designers. A standard cell is a basic logic gate (e.g., a

2-input NAND gate) or small logic element (e.g., a flip-flop). The standard

cells in a library have the same height, but may have different widths. The

designers can then use the cells to construct standard cell rows, where the

cells are placed one after another in a row. Wires are routed between cells to

connect the inputs and outputs. A VDD and a GND tracks will be placed

horizontally at the top and bottom of each row to provide power access.

Multiple standard cell rows are stacked vertically as a row-based standard

37

cell layout. A standard cell example is shown in Figure 3.3(a), and standard

cell row is shown in Figure 3.3(b).

(a)

Power tracks

Poly shapes M1 shapes

(b)

Figure 3.3: (a) A standard cell. (b) A standard cell row. Only the poly
layer and the M1 layer are shown.

A standard cell layout may consist of several layers, where some of them

may have preferred routing directions. A common setting is: Metal 2, 4,

. . . layers are vertical-preferred, Metal 3, 5, . . . layers are horizontal-preferred,

while Metal 1 (M1) layer is usually used for inter-cell and intra-cell routing

and does not have a preferred direction, and thus the routing pattern can be

dense 2D. Thus, the most difficult problem instances of layout decomposition

problems usually come from the M1 layer. In this chapter, we target the

decomposition problem in the M1 layer. We further formulate the problem

as follows:

Definition 2 (SADP Decomposition for Row-based Standard Cell Layout).

Given a row-based standard cell layout, decompose the layout into a set of core

patterns and block patterns for SADP patterning and minimize the number

of overlay violations.

In the following, we refer to such a set of core patterns and block patterns

as a feasible SADP decomposition.

Surprisingly, the structure of the row-based standard cell layout has in-

teresting characteristics that can be utilized to solve related problems more

efficiently than their general version (e.g., [35]). In this chapter, we will

demonstrate a decomposition algorithm that utilizes the fixed width and

row-structure.

38

3.2.3 SADP Mask Rules

We use the following mask rules for SADP:

1. The minimum width of a core (block) pattern is d.

2. The minimum distance between two adjacent patterns is s.

3. The width of sidewalls is w.

In practice, we have the following constraints [27]:

w = d (3.1)

d < s (3.2)

s < d+ 2w (3.3)

3.2.4 SADP-compliant Design

Due to the distinguished property of SADP process, some rules must be

assumed to avoid potential MRC (manufacturing rule checks) errors. As

pointed out by Ma et al. in [20], the MRC challenges mostly come from the

block mask. In particular, Figure 3.4 summarizes design rules listed in [20]

to avoid several typical constructs that will cause the above MRC errors.

We will follow these design rules and assume no such constructs exist in the

layout.

A

(a)

B

(b)

C

(c)

Figure 3.4: Design constructs and corresponding SADP decompositions.
Sidewalls are not shown for clarity. (a) Adjacent-track line tip to tip. Rule:
A ≥ d. (b) Parallel run length of adjacent tracks. Rule: B ≥ s. (c) Step
height of non-aligned tips. Rule: C = 0 or C ≥ d.

39

3.3 SADP Decomposition Algorithm for Row-based

Standard Cell Layout

3.3.1 Overview

In this section, we address the problem by first introducing an algorithm

for a single standard cell row. The proposed algorithm mainly consists of

three stages. In the first stage, the standard cell row is evenly divided into

a string of consecutive regions, where each region has the fixed height H of

a standard cell, and the same width W . How the value of W is determined

will be discussed in Section 3.3.4. In the second stage, decompositions of

each region will be computed. In the third stage, we will construct a solution

graph according to the region decompositions computed from the previous

stage. After the graph is constructed, a shortest path will be found and

transformed to a final SADP decomposition.

The motivation of our algorithm is as follows. In the first stage, by di-

viding the standard cell row into uniform regions, we can upper-bound the

number of features inside a region as a function of H and W , which are

both constants. Although the SADP decomposition problem is NP-hard in

general, by bounding the number of features, we can find all the region de-

compositions in a fixed amount of time. Moreover, a cost is associated with

each decomposition and reflects the total number of overlay violations. In

the second stage, the problem is formulated as a single source shortest path

problem. It can be shown that the shortest path of the solution graph corre-

sponds to an optimal solution of the decomposition problem, and it can be

found efficiently in polynomial time.

In the following sections, we will discuss the details and concepts used

in each stage, and show the correctness and complexity of the proposed

algorithm. Note that we will discuss the first stage after the second and

third stages, since the value of W is a result of the idea described in the

latter two stages. Thus, we assume W is available during the introduction

of these two stages. To illustrate the overall idea, an example is shown in

Figure 3.8–3.11. An analysis of the algorithm is given in Section 3.3.6.

40

3.3.2 Layout Decomposition for Regions

We start by considering how to pattern a single feature without any overlay

violation. There are two available methods. The first method is to simply

place a core pattern that has the exact same shape as the feature at its

location, and follow the SADP process to pattern the feature. We refer to

such an approach as assigning a core (pattern). The second method is not

as obvious. An auxiliary core pattern that has the shape of the bloated

contour of the feature is placed around the feature, such that the sidewalls

generated can define the feature. Since core pattern is not directly assigned

to the feature, we refer to it as assigning a space (pattern) to the feature.

To distinguish the core patterns in these two approaches, we refer to a core

pattern that is assigned in the first approach as a main core.

The challenge happens when there are multiple features. The design rule

limits the flexibility of assigning cores or spaces to the features. When the

distance between two features is smaller than s, we cannot assign cores to

them simultaneously. It is tempting to model the problem as a graph two-

coloring problem similar to the classic approach to LELE double patterning.

However, there is a fundamental difference between them. First, as we have

shown in the previous chapter, a graph two-coloring solution is only a neces-

sary condition to the existence of a SADP decomposition. Second, a graph

with odd cycle does not have a two-coloring solution, and LELE utilizes a

stitching technique to break a feature into several to resolve the odd cycle.

In SADP, we utilize the merging technique to break the odd cycle, which

may successfully decompose the layout with added overlay violations.

Given the fact that each layout region has a fixed width W and height H,

the maximum number of features will be bounded to a constant k. Thus, we

can find all decompositions of a region in a fixed amount of time. We have

the following cases to consider:

1. For each feature, we assign a core pattern or auxiliary pattern. Note

that the potential conflict will be minimized when the width of the

auxiliary core pattern is set to the minimum value d.

2. We merge a pair of conflicting features when they are both assigned as

cores. In particular, a minimal core pattern is ‘padded’ between the

conflicting features edges such that the two features are connected as

41

a single pattern. The number of overlay violations caused may be:

0: Both edges are tips.

1: One of the edge is a tip and the other a side.

2: Both of the edges are sides.

An example is given in Figure 3.5(b). We refer to such case as ‘core-

core-merge’ (CCM).

3. Conflict may also exist between a main core and an auxiliary core.

There are two cases according to their relative positions:

• The main core is part of the auxiliary core, and the sides of the

main core align with the sides of the auxiliary core. In this case,

the conflict can be resolved by merging both cores, as the tips

of the main core can be defined by block mask without causing

overlay violation. Figure 3.5(c) shows such a case, in which feature

B is assigned as core and merges with the auxiliary core of A. We

refer to this case as ‘core-aux-merge’ (CAM).

• Otherwise, the conflict must be resolved by either:

(a) Removing the conflict part of the auxiliary core, and post-

processing the auxiliary core such that its shape is valid. This

is illustrated in Figure 3.5(d). We refer this case as ‘core-aux-

removal’ (CAR).

(b) Merging the cores along the sides. This is illustrated in Fig-

ure 3.5(e). This is a special case of CAM.

Either case will cause one edge of either feature defined by the

block mask. The case when the block-defined edge is a tip is

preferred since this will not increase the violations. Otherwise, an

overlay violation will be caused.

4. Finally, two auxiliary cores can be safely merged together directly or

by core-padding. We refer to this as ‘aux-aux-merge’ (AAM).

The above cases are illustrated in Figure 3.5. Following the above proce-

dure, we can find all the decompositions. A number of overlay violations will

be created in each decomposition.

42

B CA

between w and s

w

(a)

BA

(b)

BA

Block mask overlays
with auxiliary core

(c)

C s

s

B

Part of auxiliary core removed

(d)

B

Block mask overlays
 with auxiliary core

C

(e)

CB

(f) AAM

Figure 3.5: (a) Layout to decompose. (b) Merging main cores (CCM). One
violation is caused at feature B’s left side. (c) Merging assigned and
auxiliary cores (CAM). No violation is caused since the block defines the
tips. (d) Removal of the conflicting part of the auxiliary core (CAR). The
outer box around C denotes the region of minimum distance s. (e) Merging
conflicting main core and auxiliary cores (CAM). One violation is caused at
feature C’ s left side. (f) Merging two auxiliary cores (AAM).

43

Note that as we computed the decompositions for each region indepen-

dently, parallel processing can be easily adopted to speed up the whole pro-

cess. Thus, the potential parallel scalability of the algorithm is huge.

3.3.3 Solution Graph

After the previous stage, the decompositions for each region are found. We

follow by constructing a solution graph as follows. A solution graph is defined

as a directed acyclic graph, where each vertex corresponds to a decomposi-

tion, and each arc between two vertices denotes a pair of compatible decom-

positions. Both of the vertices and arcs have costs associated. The cost of a

vertex u is defined as the number of overlay violations in the corresponding

decomposition. Let D(u) be the decomposition w.r.t. vertex u, and R(u) is

corresponding region. An arc (u, v) will be added between vertices u and v

if and only if D(u) is left adjacent to D(v) and u is compatible to v. Two

decompositions are said to be compatible if they can be combined as a de-

composition for both of the regions. We denote D({u, v}) as the combination

of D(u) and D(v). The arc cost c(u, v) is defined as the number of overlay

violations introduced when combining the decompositions. We add a dummy

source vertex u0 with cost 0, and a set of arcs (u0, v) with cost 0 for all v

where R(v) is the left-most region in the standard cell row. Similarly, we add

a dummy sink vertex v0 with cost 0, and a set of arcs (u, v0) with cost 0 for

all u where R(u) is the right-most region in the standard cell row.

Note that in the above, the width of the regions is chosen in such a way that

a region decomposition will not affect decompositions from a non-adjacent

region. Therefore, arcs will only be added between the vertices from two

adjacent regions.

The most critical issue we need to handle when constructing the graph

is to find the arcs and compute their weights. This involves finding the

compatibility two decompositions and resolving the potential conflict when

combining. The algorithm of combining decompositions is in fact the same

as the algorithm we introduced in Section 3.3.2. In particular, we only need

to examine the features near the cut line. Again, there are two situations

to consider: merging the core patterns and removing the conflicting core

patterns. The overlay violations introduced during the combination process

44

will be the costs of the arcs.

After the graph is constructed, we find a shortest path from u0 to v0 in

the solution graph. We have the following theorem:

Theorem 4. A shortest path in the solution graph corresponds to a complete

SADP decomposition of the layout with minimum overlay violations.

Proof. We first show that a path from u0 to v0 corresponds to a complete

SADP decomposition. This can be proven by showing such a path contains

exactly one vertex from each region, and all the corresponding decomposi-

tions are compatible.

In the solution graph, the arcs only connect vertices from adjacent regions.

Thus, a path from u0 to v0 must have at least one vertex from each region.

Given any vertex v except u0 and v0, all of its incoming arcs must be from

some vertex u where R(u) is left-adjacent to R(v) (we can view R(u0) as

an empty region left-adjacent to the left-most region). Similarly, all of the

outgoing arcs of v must enter some vertex w where R(v) is left-adjacent to

R(w) (we can view R(v0) as an empty region right-adjacent to the right-most

region). Thus, if v is in the path, no other vertex v′ in the same region (where

R(v) = R(v′) and v 6= v′) will be in the path, for otherwise there will be a

path from v (v′) to the predecessor of v′ (v), but the arcs can only between

two adjacent regions. In conclusion, exactly one vertex from each region will

be included in the path. Thus, a path defines a complete decomposition and

vice versa.

Since we have all possible decompositions for each region, a complete de-

composition must be a combination of the decompositions chosen from each

region. If there is decomposition with smaller cost, we can then transform it

back to a path with smaller cost. Thus, the shortest path corresponds to a

complete decomposition with minimum overlay violations.

3.3.4 Standard Cell Row Partitioning

In the first stage of the algorithm, the standard cell row will be divided

into multiple manageable regions such that SADP decompositions can be

found efficiently. The motivation is two-fold. First, we would like to find all

decompositions of a region efficiently. Assume the height of the standard cell

is H, and the width of each region is no more than W . Due to the minimum

45

width rule, the number of features inside a region must be bounded. We can

thus find all the decompositions within a region within a limited bound.

The second point is critical to the following stages of the algorithm. As

we introduced in Section 3.3.1, we rely on a solution graph to find a global

optimal solution, which corresponds to a shortest path of the graph. Each

vertex in the shortest path represents a decomposition of a region, and each

region must have exactly one decomposition (vertex) in the path. Recall that

the arcs in the solution graph represent the weight of combining two vertices

and thus the combined decompositions of two regions. If two regions are too

close, we have to determine whether an arc must be added between them

since there may be conflicts between some features in the regions. Thus,

we need to set W to be large enough such that the non-adjacent regions will

never conflict with each other. In such a way, arcs will only be added between

adjacent regions. Visually, if we ‘list’ all the decompositions (vertices) of a

region vertically, and each of these lists horizontally from left to right, we can

clearly see that arcs only exist between adjacent lists of vertices. A path from

the dummy source to the dummy sink nodes will visit exactly one vertex in

each list once. To determine the appropriate value of W , there are two cases

to consider.

Direct Case. We first discuss the case where two non-adjacent regions

directly affect each other. Consider three adjacent regions R1, R2 and R3,

where R1 is left-adjacent to R2 and R2 is left-adjacent to R3. In the worst

case, there will be a feature A aligned at the right cut line of R1, and a

feature B aligned at the left cut line of R3. In order to avoid interaction

between R1 and R3, there are three cases to be considered.

1. Features A and B are both assigned to be cores. Clearly, when W ≥ s,

A and B can be patterned independently without conflict. This is

illustrated in Figure 3.6(a).

2. One of the features is assigned as core and the other is as space. With-

out loss of generality, assume A is core and B is space as in Fig-

ure 3.6(b). In this case, the decomposition for R3 needs to use an

auxiliary core pattern for the left edge of B. When W ≥ s+d+w, the

auxiliary core will not affect A.

3. Both of the features are assigned as spaces in their decompositions. In

46

this case, an auxiliary core will be generated for A and B, respectively.

When W ≥ s+ 2d+ 2w, the auxiliary cores will not affect each other,

and thus the two regions will not interact.

Thus, we have to set W to be at least s + 2d + 2w to avoid a direct

interaction between two regions that have one region in between.

A Bs

R1 R2 R3

(a)

A B

d

w
s

R1 R2 R3

(b)

A B

d

w s

d

w

R1 R2 R3

(c)

Figure 3.6: Direct cases to determine the value of W . (a) Core-core case.
(b) Core-space case. (c) Space-space case.

Indirect Case. The second case considers indirect interaction between

non-adjacent regions. Again, consider the three regions in the previous dis-

cussion. It is possible that the decomposition combination of R1 and R2 may

affect the decomposition combination of R2 and R3, and we consider this

as indirect. However, as the following theorem shows, when the W is large

enough, the combinations is ‘local’ enough.

Theorem 5. Given a region, when its width W is at least 3s+ 2d+ 2w, the

decomposition combination of it and its left-adjacent region will not affect the

decomposition combination of it and its right-adjacent region.

47

Proof. The possible interaction between the two regions includes merging

cores and removing conflicting cores. Both cases modify the original de-

composition by either adding or removing core patterns and adding block

patterns.

In the case when cores are being merged, it can happen in core-core, core-

aux or aux-aux pair. Consider the regions R1 and R2 in the previous section,

where R2 is further divided into three sub-regions Rl
2, R

c
2 and Rr

2 by lines l

and r. The three regions have widths s+w+d, s and s+w+d, respectively

(Figure 3.7). To reach the maximum possible place R1 can affect in R2, there

must be a feature assigned as space at the right boundary of R1. In this case,

an auxiliary core may be created to help generate the sidewall that can define

the right side of feature A. If there is a core pattern to be merged with the

auxiliary core, Rl
2 must contain a part of it, otherwise they are separated

and can be assigned as core simultaneously. Thus, an extra core pattern will

be padded, and it is completely contained in sub-region Rl
2. As a result, a

block pattern must also be added, which will again be completely contained

in sub-region Rl
2. Since the region Rc

2 has a width s, the extra core and

block pattern will not affect anything in Rr
2. In other words, any new overlay

violations only appear in Rl
2 and will not affect Rr

2. Symmetric case holds

for R2 and R3 where the interaction between R3 and R2 only exists in Rr
2

and Rl
2 is not affected.

In the case when an auxiliary core is being removed in R2, it happens when

there is an main core in R1. This is in fact a weaker case than the above, as

the main core can only affect up to a distance s in Rl
2, while the width of Rl

2

is s+ d+ w. The symmetric case holds for R3 and R2.

Note that in the above, the width requirement is tight and the total width

of three sub-regions is 3s+ 2d+ 2w.

As a result of Theorem 3.3.4, we have to set W to be at least 3s+2d+2w to

avoid the indirect interaction between two non-adjacent regions. Combining

both direct and indirect cases, we will use 3s+ 2d+ 2w as the least value of

W .

Due to the uniform width of the regions, some features may be cut into

two (or more) regions. When constructing a solution graph, we need to take

special care of such features and make sure to assign consistent core or space

to these features.

48

A

B

s

R1 Rl
2

R3

w

l

s s d w

r

Rc
2 Rr

2

auxiliary core for A

padded core to merge with B

block pattern

Rr
2 is not

affected
d

Figure 3.7: Indirect case when cores are merged.

3.3.5 Illustration of the Proposed Algorithm

Figure 3.8–3.11 show a complete example to illustrate our algorithm. For

the layout in Figure 3.8, it is divided into three regions R1, R2 and R3. Note

that feature A is cut into two pieces A1 in R1 and A2 in R2.

The decompositions of R2 are shown in Figure 3.9, as well as the vertices

and the costs. In the vertices, ‘C’ denotes a core and ‘S’ denotes a space.

For example, the vertex in Figure 3.9(c) shows ‘SC’ and ‘1’. It means A2 is

assigned a space and B is assigned a core, and the cost (overlay violation) is

1. Also, the block-defined-edges are marked with a red solid line. This clearly

shows the overlay violations in each decomposition. The decompositions of

R1 and R3 are omitted for their simplicity.

In Figure 3.10, we combine the decompositions between R2 and R3. The

overlay violations due to the combination are also marked. Only four com-

binations are shown for illustration purpose. ‘CCM’, ‘CAM’, ‘CAR’ and

‘AAM’ refer to the type of combination we discussed before, and the number

refers to the violation(s).

Figure 3.11(a) shows the solution graph constructed using our algorithm.

We can see that vertex C in group R1 is only connected to two vertices in R2

since we need to maintain the consistency of feature A. Similarly for vertex

S. All the vertex costs and arc costs are labeled. We can then easily find a

shortest path u0 → C → CS → S ′ → v0. The total cost is 1, which means

49

we find a solution with only one overlay violation. The corresponding final

decomposition is shown in Figure 3.11(b).

3.3.6 Complexity

The complexity of our algorithm is summarized as follows.

Theorem 6. The proposed SADP decomposition algorithm runs in polyno-

mial time.

Proof. Since W and H are constants, combined with the minimum width

rule, the maximum number of features in a region is limited. In the worst

case, there will be at most k = (WH)/(d + s)2 features. Thus, the time

needed to find all decompositions of a region is bounded in N = 2k, which

is a constant. For two adjacent regions, there will be at most N2 edges.

Finally, finding a shortest path in a DAG can be done efficiently in O(n),

where n = NL/W is the number of vertices in the solution graph, L is

the length of the standard cell row. In conclusion, the algorithm runs in

polynomial-time.

3.3.7 Decomposition for Multiple-row Layout

In the previous sections, we have discussed the algorithm of solving a single

standard cell row. In a full row-based design, the power tracks are always

parallel and in alternating order. Naively, we can apply the algorithm to

solve for each row, and find a decomposition with consistent core and space

assignment to the power tracks that minimizes the violations, which requires

enumerating all combinations of row decompositions.

A better approach will be the following. For each row, we compute all

optimal solutions. There will be four possible core and space assignments for

power tracks, where VDD and GND are assigned as core-core, core-space,

space-core and space-space. We again construct a higher-level solution graph.

For each row, there will be four vertices with costs. The arcs will be added

in a similar way, i.e., the vertices in a row are connected to the vertices

in the adjacent row(s). Note that the core and space assignments must be

consistent, and there is no cost associated with the arcs. A dummy source

50

B

C

R1 R2 R3

A1 A2

Figure 3.8: An example layout.

A2

B

CC
2

(a)

A2

B

CS
0

(b)

B

A2

SC
1

(c)

B

A2

SS
2

(d)

Figure 3.9: Decompositions of R2.

A2

B

C

CC
2

C'
0

CCM: 1

(a)

A2

B

C

CC
2

S'
0

CAM: 0

(b)

A2

B

C

CS
0

C'
0

Removed
by C

CAR: 0

(c)

A2

B

C

CS
0

S'
0

AAM: 0

(d)

Figure 3.10: Combinations between decompositions in R2 and R3. Only
part of the combinations are shown.

CAR:0
CCM: 1

CAM
: 0AAM: 0

CAR: 0

CCM: 1

CCM: 1

CAR: 0

0

1

0

0

0

0

0
0

R3R2R1

CC
2

CS
0

SS
2

SC
1

C
0

S
0

C'
0

S'
0

u0

0
v0

0

(a) Solution graph and the shortest path.

B

C
A

(b) Corresponding decomposition.

Figure 3.11: Final solution.

51

and sink vertices will also be added in a similar fashion. Clearly, the shortest

path from source to sink is the full decomposition.

By using the above algorithm, a global optimal decomposition can be found

for a multiple-row layout. The time complexity remains polynomial.

3.4 Experiments

The proposed algorithm is implemented in C++ and run on a Linux machine

with 2.8 GHz CPU and 8 GB RAM. We used Nangate Open Cell Library [32]

as our starting point to create the benchmarks. The standard cells are first

scaled to reflect 14 nm technology node, where we set w = d = 20 nm and

s = 50 nm. The relative feature locations are adjusted to adhere to the

SADP design rules and SADP-compliant design style as discussed in Sec-

tion 3.2.3–3.2.4. A set of benchmarks with different row lengths are created

by randomly placing the cells consecutively in a row. Connections between

cells are randomly added between the I/O pins.

Table 3.1 shows the experimental results. The second and third columns

show some statistics of the benchmark. The fourth and fifth columns show

the results of running our algorithm. From the run time we can see that it is

nearly linearly correlated with the number of cells in the benchmark, which

demonstrates our algorithm scales well. Our algorithm can solve the medium

size benchmark (10k cells) within 5 minutes. Note that as the library is not

optimized for SADP, some violations are expected. However, the average

violations per cell remains reasonably small.

Table 3.1: SADP Layout Decomposition Results

Name #Cells #Features #Violations Runtime (s)
tiny 100 296 114 4.88

small 1000 2984 1025 69.52
medium 10000 30018 12890 500.76

large 100000 300634 109424 6123.4

52

3.5 Conclusion

In this chapter, we discussed the SADP decomposition problem for row-based

standard cell layout and presented our solution. In contrast to previous

works, which tried to minimize or disallow overlay, we aim at minimizing

the overlay violation. A polynomial-time optimal algorithm is proposed to

solve the problem by utilizing the characteristics of standard cell design.

The major techniques in our algorithm include layout partitioning, which

breaks down the overall problem complexity, and a solution graph formula-

tion, which captures the region-to-region interaction and can be used to find

an optimal solution from shortest paths. The experimental results showed

that our method can solve large scale problems in a relatively short time.

Moreover, our algorithm can be easily parallelized. As row-based standard

cell design is a major choice in ASIC design, our approach is expected to find

its potential in the manufacturing industry for the sub-20 nm technology

node.

53

CHAPTER 4

DSA DESIGN-TECHNOLOGY
CO-OPTIMIZATION

4.1 Introduction

4.1.1 Background

With the continuous scaling down of semiconductor technology, lithography

has become the bottleneck for integrated circuit (IC) fabrication. To make

IC designs manufacturable for the sub-14 nm technology nodes, the semi-

conductor industry has to adopt advanced lithography technologies, such as

extreme ultraviolet lithography (EUV), electron beam lithography (EBL),

multiple patterning lithography (MPL) and block copolymer directed self-

assembly (DSA). EUV has been proposed and studied yet still is not mature

for industrial-scale implementation. EBL has relatively small throughput

and thus is only suitable for small volume production. Multiple patterning

lithographies, such as double patterning [22], [26], [29], triple patterning [35]

and quadruple patterning [36], are the current industry standards. How-

ever, DPL ultimately reaches its limit and as more masks are involved, the

manufacturing cost may become prohibitively high.

DSA is considered a very promising technology for patterning contact holes

and vias in 7 nm technology nodes [6]–[8], [37]. In DSA process, the contact

holes and vias are formed by the annealing process [10], [12] guided by the

“guiding templates”. The guiding templates are patterned with traditional

optical lithography process such as 193 nm immersion lithography (193i),

which has a coarser pitch resolution. The guiding templates play the role of

controlling the DSA patterns formed, which will have a finer resolution than

the templates. The DSA contact pitch depends on the chemical property of

block copolymer and it can be adjusted within a certain range under strong

lateral confinement to deviate from the natural pitch. As a result, different

54

patterns can be obtained through various parameters. However, the variation

in the template shapes will easily affect the locations of the final contact holes.

In particular, small variations at critical boundaries of the guiding templates

may result in huge interference on the final DSA pattern. We refer to the

templates as infeasible when they have variation larger than some threshold

value and thus cannot print the DSA patterns reliably. For those templates

that can print DSA patterns with tolerable variation, we refer to them as

feasible templates. Figure 4.1 shows several templates that are successfully

applied in patterning for contact hole fabrication [6].

Supplement

Fig. 1. (a) Graphoepitaxy with self-assembled cylinders aligned in the trench center. d represents the
diameter of the cylinder and s represents the nearest center to center distance. (b) – (c)
Self-assembled holes on pre-patterned templates with dimensional scales close to its nature size /
pitch. The physical confinement forces the self-assembly to rearrange according to the array of the
templates thus breaking the inherent hexagonal closed pack structure. Inset of (b) shows the included
angle between two neighboring holes is 55q. Inset of (c) shows the hexagonal closed pack with an
included angle of 60q while the templates in (c) drives the angle between neighboring holes to 75q.
After Chang et al. [5].

Fig. 2. SEM images of DSA patterns confined by small templates. Templates are patterned using
conventional optical lithography and etched into 50 nm depths. Single hole in (a) 75 nm and (b) 92
nm square templates. (c) 4-hole square lattice patterns in 126 nm square templates. (d) 2-hole
patterns in 60 nm × 110 nm rectangle templates. (e) 3-hole pattern in 70 nm ×145 nm rectangle
templates. Scale bar 200 nm. After Bao et al. [6].

d s

75q

200nm

60q

200nm

55qa b c

a b

c d

e

200nm

A
B

A
B
C

Proc. of SPIE Vol. 8323 832303-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/28/2012 Terms of Use: http://spiedl.org/terms

(a) Single hole

Supplement

Fig. 1. (a) Graphoepitaxy with self-assembled cylinders aligned in the trench center. d represents the
diameter of the cylinder and s represents the nearest center to center distance. (b) – (c)
Self-assembled holes on pre-patterned templates with dimensional scales close to its nature size /
pitch. The physical confinement forces the self-assembly to rearrange according to the array of the
templates thus breaking the inherent hexagonal closed pack structure. Inset of (b) shows the included
angle between two neighboring holes is 55q. Inset of (c) shows the hexagonal closed pack with an
included angle of 60q while the templates in (c) drives the angle between neighboring holes to 75q.
After Chang et al. [5].

Fig. 2. SEM images of DSA patterns confined by small templates. Templates are patterned using
conventional optical lithography and etched into 50 nm depths. Single hole in (a) 75 nm and (b) 92
nm square templates. (c) 4-hole square lattice patterns in 126 nm square templates. (d) 2-hole
patterns in 60 nm × 110 nm rectangle templates. (e) 3-hole pattern in 70 nm ×145 nm rectangle
templates. Scale bar 200 nm. After Bao et al. [6].

d s

75q

200nm

60q

200nm

55qa b c

a b

c d

e

200nm

A
B

A
B
C

Proc. of SPIE Vol. 8323 832303-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/28/2012 Terms of Use: http://spiedl.org/terms

(b) 2-hole

Supplement

Fig. 1. (a) Graphoepitaxy with self-assembled cylinders aligned in the trench center. d represents the
diameter of the cylinder and s represents the nearest center to center distance. (b) – (c)
Self-assembled holes on pre-patterned templates with dimensional scales close to its nature size /
pitch. The physical confinement forces the self-assembly to rearrange according to the array of the
templates thus breaking the inherent hexagonal closed pack structure. Inset of (b) shows the included
angle between two neighboring holes is 55q. Inset of (c) shows the hexagonal closed pack with an
included angle of 60q while the templates in (c) drives the angle between neighboring holes to 75q.
After Chang et al. [5].

Fig. 2. SEM images of DSA patterns confined by small templates. Templates are patterned using
conventional optical lithography and etched into 50 nm depths. Single hole in (a) 75 nm and (b) 92
nm square templates. (c) 4-hole square lattice patterns in 126 nm square templates. (d) 2-hole
patterns in 60 nm × 110 nm rectangle templates. (e) 3-hole pattern in 70 nm ×145 nm rectangle
templates. Scale bar 200 nm. After Bao et al. [6].

d s

75q

200nm

60q

200nm

55qa b c

a b

c d

e

200nm

A
B

A
B
C

Proc. of SPIE Vol. 8323 832303-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/28/2012 Terms of Use: http://spiedl.org/terms

(c) 3-hole

Supplement

Fig. 1. (a) Graphoepitaxy with self-assembled cylinders aligned in the trench center. d represents the
diameter of the cylinder and s represents the nearest center to center distance. (b) – (c)
Self-assembled holes on pre-patterned templates with dimensional scales close to its nature size /
pitch. The physical confinement forces the self-assembly to rearrange according to the array of the
templates thus breaking the inherent hexagonal closed pack structure. Inset of (b) shows the included
angle between two neighboring holes is 55q. Inset of (c) shows the hexagonal closed pack with an
included angle of 60q while the templates in (c) drives the angle between neighboring holes to 75q.
After Chang et al. [5].

Fig. 2. SEM images of DSA patterns confined by small templates. Templates are patterned using
conventional optical lithography and etched into 50 nm depths. Single hole in (a) 75 nm and (b) 92
nm square templates. (c) 4-hole square lattice patterns in 126 nm square templates. (d) 2-hole
patterns in 60 nm × 110 nm rectangle templates. (e) 3-hole pattern in 70 nm ×145 nm rectangle
templates. Scale bar 200 nm. After Bao et al. [6].

d s

75q

200nm

60q

200nm

55qa b c

a b

c d

e

200nm

A
B

A
B
C

Proc. of SPIE Vol. 8323 832303-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/28/2012 Terms of Use: http://spiedl.org/terms

(d) 4-hole

Figure 4.1: SEM picture of different guiding templates with their DSA
pattern [6]

Since the DSA technology is very sensitive to the shapes and distributions

of patterns, it is necessary for the EDA engines to understand the DSA pro-

cess such that layouts can be optimized to be DSA-compliant. This motivates

us to consider design-technology co-optimization (DTCO) for DSA. In this

chapter, we explore the contact layer and cut layer optimization problems

for DSA, and propose methods to solve them.

4.1.2 Contact Layer Optimization for DSA

The industry has been transitioning from random 2D designs to highly reg-

ular 1D gridded designs for sub-20 nm nodes for its larger process window

and higher yield [38]. In these designs, the challenge mainly lies in following

the design rules in the poly/metal1 layers. To connect these layers, usually

Metal1 (M1) layer is used for horizontal connections and local interconnect

(LI) layer is used for vertical connections. Whenever a direction switch hap-

pens between M1 and LI, a contact is inserted. As a result, the contact

layer can be highly dense and random in these designs, which is beyond the

capability of traditional lithography. On the other hand, it has been shown

55

that DSA can be used for contact hole patterning [7]. Figure 4.2 shows an

example of using DSA to pattern the contacts of a half-adder. At the 22 nm

node (Figure 4.2(c)), each contact can be patterned by a single-hole tem-

plate. When the pitch is at the 7 nm node (Figure 4.2(d)), a large template

can be used to pattern multiple close contacts. Clearly, it is desirable to

utilize DSA to pattern the dense contact layer.

(a) Half-adder layout (b) Contact layer

(c) Patterning at 22 nm (d) Patterning at 7 nm

Figure 4.2: DSA contact patterning at 22 nm and 7 nm technology node
and quality of DSA pattern formation. Scale bar: 200 nm.

To pattern the contact layer with DSA, only the feasible guiding templates

should be used. Du et al. proposed a contact layer optimization algorithm

for 1D standard cell library [9]. However, their work only focused on cell

level optimization. Even with an optimized standard cell library, infeasible

templates may be introduced after the physical design phase. For example,

routing may create new contacts when switching from LI to M1, which may

introduce new infeasible templates.

In this chapter, we discuss the contact layer optimization problem for DSA

in full chip level layout. We propose a cost function that models the variation

of guiding templates. We further identify the constraints in the problem and

propose an efficient optimization algorithm based on simulated annealing.

The experimental results show that our algorithm is able to optimize the

56

contact layer for DSA manufacturing effectively. To the best of our knowl-

edge, there is no previous work on contact layer optimization targeting on

full-chip level. An example of layout optimized by our algorithm is shown in

Figure 4.3.

feature core sidewall trim

B

A B2 3

4 5 6

	 	

	

	 	

	 	 	 	 	 	 	

1	 	

25 28 27

9

4

C0.9 1.8
4.8

0.6

111

(a) Before permutation

A

	 	

	

	 	

	 	 	 	 	 	 	 	

	

2

4 6

1	

5

B

1 211

25 28

9

4 3

C

0.6

7

(b) After permutation

Figure 4.3: The layout before and after wire permutation.

4.1.3 Cut Layer Optimization for DSA

The advantage of DSA is not limited to contact hole patterning. In particu-

lar, the use of DSA can be further expanded for cut printing in 1D design.

Due to the high regularity of the dense lines, a set of optimal lithography

conditions can be well-defined to print the dense lines with high image quality

by a variety of lithography techniques, such as self-aligned double-patterning

(SADP). A cut layer consists of a number of identical cut patterns, each

located at the line-end of a target wire. An example of such a design is

illustrated in Figure 4.4.

57

Figure 4.4: 1D design fabricated by a combination of dense lines and cuts.

The randomness of logic circuits will affect the cut pattern distribution

and introduce a major challenge in fabricating 1D gridded designs. Although

the guiding template shapes can be arbitrary, the overlay accuracies of the

contact holes are different and largely depend on the templates. To utilize

DSA for cut printing, cuts that have pitch smaller than the lithography pitch

should be grouped and patterned in a guiding template. However, a design

that is not DSA-compliant may introduce infeasible templates. We observed

that for a 1D design, the line-ends of each target wire are usually allowed to

be extended within a certain range. Such extension does not impact logic

connections. We refer to this technique as line-end extension. Through line-

end extension, cuts can be redistributed such that we can pattern the cut

layer using only feasible templates.

Figure 4.5 shows an example of cut redistribution. The original cuts are

shown in Figure 4.5(a), where some of them have conflicts and violate the

design rules. The real wires are colored in blue while the dummy wires are

colored in yellow. Figure 4.5(b) shows a cut redistribution solution, where

the possible templates are as shown in Figure 4.1. To illustrate that the real

wires are ‘extended’, we keep the wires’ colors to show the difference. Note

that the cuts L and M are merged together, which is allowed as long as the

metal wires are not shorted.

We refer to the above problem as DSA cut redistribution problem. We

propose an efficient algorithm to optimize cut layers for DSA patterning.

We utilize the line-end extension technique to perturb the original cuts such

that they can be redistributed and grouped into valid DSA templates, and

the infeasible templates are eliminated. To the best of our knowledge, this

is the first work to address the DSA cut redistribution problem.

The rest of the chapter is organized as follows. Section 4.2–Section 4.3

58

F

A

K

G

B C D

I J

E

H

L M

Conflict

(a) Original cuts.

F

A

K

G

B C D

I J

E

H

L/M

(b) Cuts after DSA redistribution.

Figure 4.5: An example of cut redistribution.

present our work on contact layer optimization. We first present a cost mod-

eling and some design constraints in Section 4.2, then introduce the details of

our simulated-annealing based optimization scheme in Section 4.3. We dis-

cuss the DSA cut redistribution problem in Section 4.4–Section 4.5. Specif-

ically, Section 4.4 gives a formulation of the problem. Section 4.5 presents

the details of our algorithm. Section 4.6 reports the experimental results.

Finally, conclusions are drawn in Section 4.7. The work in this chapter is

published in [39] and [40].

4.2 Cost Modeling and Design Constraints

4.2.1 Cost of DSA Template

To pattern the contact holes using DSA, guiding templates should be printed

first with conventional lithography such as 193i that has a coarser pitch. Con-

tact holes are then patterned by DSA process. The controlling parameters

will determine the hole pitch within the guiding template. Clearly, when the

contact pitch in the layout is large enough, each contact can be defined by

59

a guiding template separately as shown in Figure 4.2(c). However, when the

contact pitch gets smaller, some of the contacts must be grouped together

and patterned in a guiding template as shown in Figure 4.2(d). There are

several challenges that may affect the quality of the DSA patterned:

1. The lithography variation may introduce variation in template shapes

and ultimately affect the pitch of the patterned holes. In the worst case,

small variations at critical boundaries of guiding templates may result

in drastic differences in the final DSA pattern generation. Usually, the

more holes in a template, the harder it is to control the variation of the

patterned holes. For example, two-hole template has larger variation

than single-hole template.

2. Some contacts may form diagonal patterns, which are difficult to print

as they have irregular pitch while the contacts that are on the same row

(column) have regular pitch. Regular pitched contacts can be defined

easily by a simple rectangular shaped template, e.g., Figure 4.1(b). On

the other hand, if the contacts are in diagonal position, their pitch will

be larger than the maximum pitch of DSA holes. Thus, they need to be

put into two separate single hole templates that are very close to each

other, which cannot be printed by conventional lithography. To pattern

this diagonal pair, we need to use a special peanut-shaped template as

shown in Figure 4.6 [41]. Such a template shape is difficult to print by

the conventional lithography and suffers from a large variation.

3. In a real layout, the density of the contacts will also affect the formation

of the contacts and introduce variation.

To model the variation and patterning difficulty of a DSA template i, we

can define a template cost ci. Clearly, challenge 1 indicates a larger template

will have a larger cost; challenge 2 shows that a more irregular template

shape should have a larger cost. We define ci as follows:

ci = ws × si + wp × pi + wl × li + f(i) (4.1)

where si denotes the template size, pi denotes the number of diagonal-shaped

pairs in the template, li refers to the local density around template i, which

is defined as the number of contacts over the area of a fixed window centered

60

(a) (b)

Figure 4.6: (a) A diagonal pair of contacts much be guided by a
‘peanut-shaped’ template. (b) Peanut-shaped templates may lead to large
overlay accuracy variations. Scale bar: 200 nm.

at the contact. f(i) is a penalty function to disallow infeasible templates.

In practice, f(i) returns a prohibitively large number if i is infeasible, or

a small number (or zero) otherwise. ws, wp and wl denote the weight of

size, number of diagonal shapes and local density terms, respectively. In this

work, we define si as the number of holes in the template minus 1, since

when the local density is 0, a single hole template will have zero cost, which

is consistent. Finally, the cost of a layout is defined as the sum of the total

template costs.

4.2.2 1D Design Optimization via Wire Permutation

In 1D standard cell design, M1 wires with contact can be permuted row-wise

as long as the logic is the same as the original circuit [9]. In a full-chip

layout, the intra-cell connections should be considered. For example, wire A

in Figure 4.3(a) is an inter-cell connection, which is not considered in [9]. As

a result, contact 1 can be distributed on any track in their work. However,

this is not valid since contact 2 can only utilize the free tracks between P-

active and N-active, which limits the candidate locations of contact 1. We

summarize the constraints of wire permutation as follows:

1. Geometry constraint. The permuted M1 wire cannot overlap with other

M1 wires.

2. Contact constraint. The contacts that are used to connect the polysil-

icon cannot be placed on the gate regions. This implies the underlying

61

metal wires can only utilize the routing tracks between N-active and

P-active. As illustrated in Figure 4.3(a), contact 2 is on wire A and

above polysilicon. Thus, wire A can only be permuted inside the free

track region.

3. Vertical constraint. This is the same as the vertical constraint in the

classical channel routing problem. If there are two contacts in the same

column, there will be a vertical constraint between them. This implies

that one metal wire must be above the other. For example, contact 3

is above contact 5 in Figure 4.3(a). Therefore, wire B must be above

wire C.

4. Track constraint. Intra-cell connections are used for PMOS/NMOS

connections. Thus, a wire that is connecting PMOS (NMOS) can only

utilize the tracks that lie in the P-active (N-active) and the free tracks

between N-well and P-well. A wire that is used for inter-cell connections

can utilize any routing tracks. For example, wire C is used for NMOS

connection, and thus it can only be permuted within the free track

region and the N-active region.

Clearly, the feasible move range of a wire is the intersection result from

the above constraints.

The costs of the non-single hole templates are labeled in the figures (single

hole template has cost 0). In this work, we set ws = 0.6, wp = 0.3, wl = 0.1.

The local window size for density computation is 5. Note that for clarity and

illustration purpose, we ignore the local density in the example used in this

chapter. We can see that the original cost of the layout before permutation is

8.1, while the cost of the modified layout after permutation is 0.6. Note that

the very large and irregular template in the right cell could have an infinitely

large cost by specifying f(·).
Another important consideration is the routing from M2 and above.

Clearly, M1 in post-routing layout may have connections to M2. Permuting

M1 may affect the original logic. Thus, we need to take special care about

inter-cell routings. Fortunately, usually most of the inter-cell routings switch

layers early and will only utilize a small fraction of M1. In practice, we can

either fix these M1 wires, or obtain a feasible move range by considering

constraints from M2 and above.

62

4.2.3 Problem Description

We now define the DSA contact layer optimization problem in full-chip layout

as follows.

Definition 3. Given a contact layer in 1D design, optimize the layer via

wire permutation such that it can be patterned by the DSA process, and the

total template cost is minimized.

4.3 DSA Contact Layer Optimization for Full-chip

Layout

It is shown that the DSA contact layer optimization problem is NP- hard [9].

The previous SAT formulation can solve the problem in cell scale, but not

full-chip level. On the other hand, simulated annealing [42] has been suc-

cessfully employed in many area, such as floorplanning problem [43]. In

this work, we propose a simulated-annealing based algorithm to search for

a near-optimal solution iteratively. We introduce our annealing scheme and

the operations (moves) to search for neighbors of a state (solution) in the

following. As in any simulated annealing based algorithm, the efficiencies

of evaluating cost (energy) and updating the solution directly affect the ef-

ficiency of the algorithm as they are evaluated at each iteration during the

cooling. Therefore, we propose an efficient algorithm to dynamically update

the graph connected components that correspond to the template shapes.

This enables fast evaluation of template cost.

4.3.1 Overall Annealing Scheme

The proposed algorithm follows the three phases below to converge to a

solution:

1. Perturb the given layout and generate candidate solutions.

2. Evaluate the new cost of the candidate solutions.

3. Accept or reject the candidate solutions according to the Metropolis

criteria.

63

4.3.2 Candidate Solution Generation

A naive candidate generation operation is to randomly select a metal wire

and move it to a feasible location. However, this approach is inefficient due

to the same costs of some neighboring solutions. For example, the solution

in Figure 4.3(b) will have the same cost as the solution where contact 7 is

moved down by one grid. Clearly, there will be lots of such cases. This

inevitably increases the annealing iterations.

To avoid oscillating among a set of neighboring solutions with the same

costs, guidance is required during the solution generation. We propose a

field-based method that is similar to the density penalty concept for over-

lap minimization in analytical placement. Particularly, we define the local

contact density of a grid as the ratio of contacts over the area of a window

centered at the grid. The region that has higher densities will be chosen

and a local search is applied to search for a minimum cost solution. When

the temperature is high, we allow regions with small densities to be chosen.

The purpose is to let the algorithm probe at different places in the solution

space in higher temperature to avoid being trapped in local minima. As the

temperature gets lower, we gradually raise the threshold and only target high

density regions. This is assuming that we have reached a ridge in the solu-

tion space, at this stage we have explored many sub-optimal regions, and the

probability of getting a closer-to-optimal solution is high enough. The region

size of the local search does not have to be fixed. Instead, it is adaptively

increased when no better neighbor solution can be found.

4.3.3 Solution Updating and Cost Evaluating

When wires are permuted, it will be very inefficient if the cost of the whole

layout is re-evaluated from scratch since only a small fraction of the layout is

locally changed. We propose an incremental cost updating algorithm based

on disjoint set data structure [44]. We also keep track of the current size

and number of diagonal shapes in a template (component). Suppose the

cost of the original layout is known and the connected component is already

constructed. If we permute a wire, we have the following cases:

1. A contact on the wire conflicts with some other contacts and thus forms

new template shapes. In this case, we can simply set the parent of the

64

!

!

(a) New template shape

!

!

(b) Split template shapes

Figure 4.7: Incremental update of cost and template.

existing template shape as the contact on the wire.1 If there are multi-

ple templates conflicts, they are merged as a single template. The cost

can be updated in constant time. This is illustrated in Figure 4.7(a),

the left contact on the wire being permuted conflicts with contacts from

two separate templates. The two templates and the contact form a new

template, which now has four templates and two new diagonal shapes.

Thus, the delta cost is computed as

∆cost = (3− 1)ws (∆size)

+ 2wp (∆diagonal)

2. A contact on the wire belongs to some template. Permuting the wire

splits the template into several new templates. In this case, we need to

compute these new templates by running breadth-first-search (BFS),

starting from each contact that it is connecting to. Even though the

worst case runtime is still linear to the size of contacts, in practice,

each template shape should be small enough that the BFS only takes

1A disjoint set maintains a set of trees where every element is a tree node that has a
parent pointer. All the vertices in a tree are considered in the same set. The tree root is
the representative of the corresponding set.

65

an insignificant amount of time. Figure 4.7(b) illustrates an example.

When the wire is moved away, a template shape was split into two

separate template shapes. The connected components and the template

costs need to be re-computed via BFS. The delta cost is:

∆cost = (1 + 1− 4)ws (∆size)

+ (1− 3)wp (∆diagonal)

The above algorithm is summarized in Algorithm 2.

Algorithm 2 Update the solution and delta cost after wire permutation.

1: procedure IncrementalCost(w, t) . w: Wire. t: track
2: cost← 0, s← original track where w is at t
3: for all Contact c ∈ w do . Case 1
4: Ct ← list of contacts that conflict with c at t
5: for all Contact d ∈ Ct do
6: FindRoot(d) ← c . FindRoot is a routine of disjoint set
7: cost← cost+ wp . Increase peanut-shaped count
8: end for
9: S ← list of template shapes where contact in C belongs to

10: Tnew ← Merge S with c
11: cost← cost+ wc

12: Tsplit ← template where c belongs to at s . Case 2
13: cost← cost− cost(Tsplit)
14: Cs ← list of conflict contact with c at s
15: for all Contact c ∈ Cs do
16: L← BFS . Recompute connected component
17: FindRoot(L) ← c . Set the new root
18: cost← cost+ cost(L) . Recompute cost for the split template
19: end for
20: end for
21: return cost
22: end procedure

4.4 DSA Cut Redistribution Problem

Given a 1D layout that has n rows (tracks) with a set of cuts that cut the

tracks into real and dummy wires, cut spacing rules and a set of template

66

patterns, move the cuts such that the cuts can be patterned by DSA. Mean-

while, the overall movements of the cuts should be minimized. In the example

in Figure 4.5, the layout contains three tracks and there are ten cuts. In this

work, we assume that the layout is gridded. The grid size is the same as a

cut. The cuts have uniform size.

The cut redistribution problem is non-trivial. It is different from the 2D

pattern matching problem, which involves finding some patterns in a given

2D target. In our case, the cuts must be moved to form a template pattern

as a match, while the match in 2D pattern matching is fixed. Given a set of

cuts, there may be multiple ways to divide them into matches and multiple

candidate locations to place the match. The constraint that only real wire

can be extended further renders the problem more difficult.

4.5 Proposed Method

To generate a valid DSA template mask, we propose a graph-based algo-

rithm to redistribute the original cuts according to a given set of valid DSA

templates, and minimize the overall cut movements to limit the performance

impact. The proposed algorithm consists of the following steps. Given the

cut locations, an undirected conflict graph is constructed and its connected

components are found. For each connected component, the cuts are matched

to some patterns (templates). After all matches are found in the connected

components, the cuts are moved to form the matched template patterns

such that the overall movement is minimized. Finally, the positions of the

template patterns are optimized to resolve possible conflicts. If there are un-

resolved conflicts, we select some cuts and merge them, then iterate. In the

following, we first give a formal definition of the problem, and then discuss

the algorithm in details. The flow of our algorithm is shown in Figure 4.8.

4.5.1 Conflict Graph Construction

In the first stage, we build a conflict graph according to the cut locations.

Each vertex in the graph represents a cut in the layout. For each pair of

vertices, add an edge between them if they violate the cut spacing rule.

After the graph is constructed, the connected components will be computed.

67

To illustrate the algorithm, we will use the problem instance from Figure 4.5

throughout this section. Figure 4.9 shows its conflict graph and connected

components. In the following we will refer to a connected component as a

set of vertices. For instance, the left-most connected component is denoted

as {A,B, F,G,K}.

Conflict Graph
Construction

Template Matching

Template Placement

Original
Layout

Optimized
Layout

Conflict?

Relaxation
By Merging

Figure 4.8: Flow chart of the proposed algorithm.

A

F

K

B

G

C

L

H

M

D

I

E

J

Figure 4.9: Conflict graph and connected components.

4.5.2 Template Matching for Components

In this step, we match the cuts of each component into a set of templates. It

will be infeasible to enumerate all the possible matches. We use a scanline

68

method to determine the matches. First, the cuts are lined up column by

column from left to right and unmarked. We then use the top-left unmarked

cut as the top-left cut in a match. For each template that can be matched,

remove the matched cuts and re-lineup the remaining cuts. Note that if there

is no match for this cut, we mark it as unmatched and move to the next cut.

We iterate the above until all the cuts are either matched or marked. The

above scanning can also be done from the bottom-left cut, and the line-up

can be from right to left. Thus, there are four possible ‘passes’: l-to-r and

r-to-l directions, each with two cuts to start with. We refer to the collection

of matches in a pass as a match set. We choose the best match set in one of

the passes according to the following precedence:

• Smallest number of marked (unmatched)

• Smallest move cost

where the move cost is defined as the sum of moving distances of the cuts

to form the matched template patterns. The rationale of the above is that

the smaller the number of marked cuts, the more cuts are grouped, and

potentially more space will be saved for the latter stage.

Figure 4.10 shows four match sets obtained from a left-to-right pass that

starts from the top-left cut. The match set in Figure 4.10(a) will be chosen

since there is a cut unmatched in the other match sets in either match set

4.10(b) or 4.10(c), and it has a smaller move cost than 4.10(d).

We also need to note the following:

1. For the unmatched cuts, we can view each of them as matched to a

single-cut template. This is shown in Figure 4.10(b) and Figure 4.10(c).

2. The match set needs to be feasible. For example, the match shown in

Figure 4.10(b) is infeasible since it is impossible to move the cuts A, B,

F and G to form the 2x2 template, unless we shorten the real wires.

Similarly, the match sets for connected component {D,E,H, I, J,M} are

shown in Figure 4.11. They are computed for the top-right cut from right

to left. The match set in Figure 4.11(a) is best as all the cuts are matched.

The steps to match are also illustrated. First, the four cuts D, E, I and J are

matched into a 4-cuts template. They are then removed from the line-ups.

Since this is a right to left line-up, cut H is pushed to the same column as

69

F

A

K

G

B

(a)

F

A

K

G

B

(b)

F

A

K

G

B

(c)

F

A

K

G

B

(d)

Figure 4.10: Match sets of connected component {A,B, F,G,K}.

D

I J

E

H

M

D

I J

E

H

M

H

M

H

M

(a)

D

I J

E

H

M

(b)

D

I J

E

H

M

(c)

Figure 4.11: Match sets of connected component {D,E,H, I, J,M}.

M after re-lineup. The final effective match set is shown at the end. Some

other match sets of the same component are shown in Figure 4.11(b) and

Figure 4.11(c).

Since the types of passes are fixed and the templates are bounded, this

step can be done linearly to the number of cuts in the component.

4.5.3 Conflict Pairs

We introduce the concept of conflict pairs as a technique to speed up the

template matching step. A conflict pair is defined as a pair of cuts that cannot

be in a template simultaneously. The conflict pairs of the given layout and

template library can be determined as follows. Clearly, only the real wire can

be extended. If a real wire is defined by two cuts A and B, they cannot be

shifted towards each other to form a template, for otherwise the real wire is

70

shortened. This condition holds when the distance between two cuts in the

same row in any template is smaller than the length of the real wire. Thus,

we can pre-process and examine all the cut pairs that define a real wire,

and mark them as conflict pairs accordingly. During template matching, we

immediately know a template is infeasible whenever there is a conflict pair

included. In our example, there are two conflict pairs: {A, B} and {F, G}.
Thus, the matching in Figure 4.10(b) is invalid since both pairs are inside the

same template. Pseudo-code of template matching is shown in Algorithm 3.

Algorithm 3 Template Matching Process

1: procedure TemplateMatching(cuts, templates, conflicts, corner)
2: Line up cuts according to corner
3: Unmark all elements in cuts
4: M ← ∅ . M is the set of matches
5: while cuts 6= ∅ do
6: T ← match a template to corner of cuts
7: C ← the matches
8: if T = ∅ then
9: Mark the current cut at corner

10: end if
11: cuts ← cuts\C
12: M ←M ∪ T
13: end while
14: return M
15: end procedure

4.5.4 Template Embedding

After the matching, we need to embed the cuts and form the matched tem-

plate shapes. For example, the cuts {D, E, I, J} are matched to the 2x2

template. We thus need to move them to form a 2x2 shape. This can be

done by computing the common move range of these cuts. A move range

is defined as the possible places a cut can be shifted to from its original

position. The common move range among a set of cuts is defined similarly,

and can be computed by intersecting the move ranges of these cuts, with the

relative positions of the cuts in the template taken into consideration.

Clearly, the minimum cost locations to align a match will be at the extreme

points, which is either end of their common move range. Furthermore, the

71

ends of the common move range are always defined by some cut, which cuts

the end of a real wire that ‘constrains’ the common move range most. For

example, the right end of common move range of {A, F, K} is defined by cut

A, since the left end of the real wire defined by A restricts A from shifting

to the right any further. The process is illustrated in Figure 4.12.

F

A

K

Move range of A

Move range of F

Move range of K

Min cost location

(a)

F

A

K

(b) (c)

Figure 4.12: Template embedding example.

4.5.5 Legalization and Detailed Placement

When processing a single component, the template matching described in

the previous section ignores other connected components. Thus, conflict

may exist between matches in different components. This can be formulated

as a special placement problem. For each shape, we view the out-most cuts

as the boundaries of a polygon and expand these boundaries by the value

of r/2, where r is the value of cut spacing rule. The expanded polygon can

be viewed as a ‘cell’ to be placed along horizontal direction. For each cut in

this shape, create a 2-pin ‘net’ between its original location and the center of

the cell. This is similar to the ‘fixed port’ constraint in the classic placement

problem. The real wires can be modeled as fixed cells, while the dummy wires

can be viewed as empty space. Note that the relative positions of the shapes

are captured in the net wirelength. For example, if originally cell A is to the

left of cell B, the cost of placing cell A to the right of cell B must be larger

than placing cell A to the left of cell B. Clearly, the feasible placement with

minimum wirelength will be the optimal solution to our original problem,

if overlapping is not considered. To eliminate the overlapping, we need to

legalize the obtained placement. Legalization is the process of eliminating all

overlaps by perturbing the modules as little as possible. The legalization may

72

(a) Initial placement.

L/M

(b) Placement after merging L and M.

Figure 4.13: Template placement.

perturb the original placement significantly. Thus, we usually use a detailed

placement step to improve the quality (overall move cost) while maintaining

the legality. The template placement problem from the example can be

illustrated as in Figure 4.13(a).

Note that this is a special version of the placement problem, and it can

be solved easily because: 1) the template can only move horizontally, which

means we only need to consider the x-direction; 2) for each template, the

move range can be easily computed, since one of the cuts must be aligned

to a real wire, and thus can only be moved left or right (single-direction); 3)

finally, the move cost is monotonically non-decreasing.

After the template embedding step, we already have an initial placement,

which may contain overlapping. We can thus apply standard legalization

technique to eliminate the overlapping. Here we adopt the idea of a widely

used legalization technique called Tetris [45]. In this algorithm, the modules

are first sorted by ascending x-coordinate. The modules are then packed

to the left one by one to save space for the unplaced modules. We need to

consider a special case. Let the current module be P and its predecessor be

Q. If they do not share a column, P may still be blocked by Q due to the

73

expanded rectangle. However, chances are there is enough space to the left

of Q for P to fit in. In this circumstance, P should not be blocked.

Note that it is possible that the placement problem does not have any

feasible solution. In this case, we need to merge the cuts to resolve conflicts.

In particular, two adjacent shapes with a dummy wire in between should

be chosen to merge. Since the number of shapes is linear with the number

of cuts, the possible pairs are also linear. We choose the pair that has the

smallest cost after merging. As shown in Figure 4.13(a), the templates {L}
and {H, M} conflict with each other, and there is no other way to separate

them. We merge them and re-run the placement to resolve the conflict.

The legalization and merging continue until the conflicts converge, i.e.,

all the conflicts are resolved, except for some remaining conflicts that may

be impossible to resolve. In either case, we can still perform detailed place-

ment, which involves optimizing the overall cost. There is already abundant

research on the detailed placement. In our work, we optimize the cost by

iteratively perturbing the modules and stop when the result converges.

Pseudo-code of template placement is shown in Algorithm 4. The redis-

tribution of the example is shown in Figure 4.5(b).

Algorithm 4 Template Placement Process

procedure TemplatePlacement(Matches)
Modules ← ∅
for all match ∈ Matches do . Cut aligning

Align cuts in match
Modules ← Modules match

end for
Sorted ← Sort Modules according to their x-coordinate
for all module ∈ Sorted do . Legalization

Pack module to left-most possible position
if fail to pack then

Merge module with its predecessor
end if

end for
Perform detail placement on the packed modules.

end procedure

74

4.6 Experimental Results

The proposed simulated-annealing based contact layer optimization algo-

rithm is implemented in C++ and run on a Linux workstation equipped

with 2.8 GHz CPU and 32 GB RAM. We converted the Nangate 45 nm

library to 1D cells. Some cells are illustrated in Figure 4.14. We further

generated a set of benchmarks to evaluate the algorithm. In particular, a

number of cells are randomly chosen and concatenated as a standard cell

row. Inter-cell connections are randomly inserted between the cells.

2

3

0 6

1 5

4

TINV

0 3 7

102

4 12

5

1 6 14

9 11

8 13

XOR2

2 11 13

0 10

1 14

5 97 15

6 8 12 18

4 17

3 16

XNOR2

1

6 112

3 5 7 9

0 104 8

OR3

Figure 4.14: 1D cells.

Table 4.1 shows the experimental results of running our implementation

on the benchmarks. Five layouts with different sizes are generated for the

experiment. The first several columns show some of the statistics of the

benchmarks, including number of standard cells (# Cell), number of contact

(# Contact) and number of M1 wires (# M1 wires). The initial and final

columns show the cost before and after applying the optimization algorithm.

We can see that the improvement achieves an average of about 90%. On the

other hand, the runtime is affordable even for a layout with 5,000 cells and

60,000 contacts. Note that with enough time for cooling, the solution quality

can be improved more.

Table 4.1: Experimental Result of The Proposed Algorithm

Name # Cell # Contact # M1 Wires Initial Final Improve (%) Runtime (s)
1 10 129 31 45.8 3.5 92.36 0.32
2 100 1262 292 428.3 45.5 89.38 1.18
3 500 6098 1370 1952.7 209.3 89.28 5.49
4 1000 12317 2730 3964.2 401.9 89.86 11.22
5 5000 61081 13341 19627.5 723.41 96.31 67.23

75

In a 1D standard cell design, the top and bottom tracks are power and

ground tracks. Thus, the cell tracks are separated by power and ground

tracks, which means cuts between two standard cell rows will not be in the

same template. Thus, we focus on solving the problem in a standard cell row.

In our design library, there are ten 1D tracks in a row. We generate a set of

benchmarks to evaluate our optimization method for cut redistribution, and

conduct two sets of experiments.

In the first set of experiments, we generate five benchmarks and run our

algorithm on them. The experimental result is shown in Table 4.2. The

column ‘Initial’ means the initial conflict in the layout, and the columns

‘After matching’, ‘After merging’ mean the conflict after matching and after

iterative merge-and-place phase, respectively. The column ‘Cost’ means the

total cost of moving and merging the cuts. We can see that our algorithm

efficiently resolved all the conflicts within seconds.

We compare the effect of different library size on the same set of data in

the second experiment. The library sizes we used are full size (four templates

shown previously) and half size (only 2-cut and 1-cut). The result is shown

in Table 4.3. The columns ‘4’-‘1’ refer to the number of templates matched in

each test case. We can see that not too many cuts are matched to the 4-cut

template, while most of the cuts are still in a single cut template. The result

of two-templates is slightly worse than that of the four-templates. However,

the conflicts resolved are still huge, due to the effectiveness of the merging

and placement technique.

Table 4.2: DSA Redistribution Results

Cuts
Conflicts

Cost Runtime (s)
Initial After matching After merging

50 72 65 0 74 0.1248
100 115 94 0 226 0.1716
500 703 609 0 1012 1.608
1000 1377 1138 0 2240 2.73
2000 2834 2421 0 4411 15.4783

76

Table 4.3: Different Library Size Comparison

Cuts # Conflict
4 Templates 2 Templates

4 3 2 1 merge cost 2 1 merge cost
50 72 0 2 2 40 0 74 4 40 1 88
100 115 0 6 8 63 3 226 12 65 11 364
500 703 3 24 34 338 10 1012 65 340 30 1330
1000 1377 8 70 63 607 25 2240 134 656 76 2988
2000 2834 15 125 103 1306 53 4411 287 1298 128 5534

4.7 Conclusion

DSA is becoming increasingly attractive in patterning contacts, vias and cuts.

Meanwhile, the special property of DSA process presents to the EDA commu-

nity unique challenges. In this chapter, we discussed the design-technology

co-optimization for DSA in order to better facilitate the advanced process and

conquer design challenges. We summarized recent advancements in layout

optimization for DSA and explored contact layer and cut layer optimization

problems. To model the cost of the variations in different templates, we

proposed a cost function for the guiding templates. For the contact layer op-

timization problem, we proposed a simulated-annealing based scheme. For

the cut layer optimization problem, we presented a two-stage algorithm that

groups cuts into templates and iteratively places them to obtain a valid lay-

out for DSA process. The experimental results showed that our algorithm

efficiently optimizes the contact layer, where the average cost improvement

can achieve up to 60%; our algorithm for cut redistribution can effectively

redistribute the cuts and resolve conflicts to a great extent, while the runtime

is efficiently fast. To conclude, our proposed work demonstrates the promise

of utilizing DSA in the 7 nm technology node. Design automation algorithms

are expected to play an important role in the next generation EDA tools that

incorporate the DSA design flow.

77

CHAPTER 5

CONTACT LAYER DECOMPOSITION
FOR DSA-MP COMPLEMENTARY

LITHOGRAPHY

5.1 Introduction

As multiple patterning lithography (MPL) remains the top next-generation

lithography candidate with 193 nm immersion (193i) lithography, mitigating

the cost incurred by multiple patterning becomes a critical issue [46]. Also,

as the EUV technique has been continually delayed, when it really comes

out, it will be most likely to adopt double patterning technique to handle

the challenges in 7nm technology node. Recently, block copolymer directed

self-assembly (DSA) has been receiving much attention with high throughput

and low cost [6]–[8], [37]. In DSA process, uniformly sized dense patterns

(e.g. contacts, vias, cuts, etc.) are in favor, and guiding templates under

DUV or EUV under technology are needed to help regulate the annealing

process [10], [12].

To guide the formation of various contact combinations, different guiding

templates must be used. However, complex guiding templates may introduce

large overlays and the intended contacts may not be patterned correctly.

As a result, only those templates that can reliably produce the intended

patterns should be used, and we refer to such templates as feasible templates.

Examples of feasible templates are shown in Figure 5.1. In practice, smaller

templates are preferred due to their better variation control, and thus they

can be considered having smaller ‘costs’.

Because DSA is currently aiming at 7 nm technology, where the guiding

template generation needs either double patterning EUV or multiple pat-

terning DUV process, by incorporating DSA into the multiple patterning

process, it is possible to reduce the number of masks and achieve a cost-

effective solution [47]. Furthermore, it can split the contact patterns into

simpler and thus more favorable guiding templates. In this combination,

78

1×1 2×1 3×1

1×2

1×3

Figure 5.1: DSA templates.

DSA guiding templates are printed via multiple patterning, and the contacts

are formed via the DSA process. We refer to this approach as DSA-MP com-

plementary lithography. As shown in Figure 5.2, it is possible to use triple

patterning lithography (TPL) with DSA for a layout that would otherwise

require quadruple patterning or very complex DSA template. On the other

hand, by using TPL or DSA alone, the layout cannot be patterned.

For any multiple patterning process, a key issue is the decomposition of

the layout into different masks. Decomposition techniques have been pro-

posed for different kinds of MPL [26], [34], [48] and complementary litho-

graphy [49]–[51]. Due to the unique characteristics of the DSA process, the

DSA-MP complementary scheme faces its own challenges. Existing works on

MPL decomposition usually rely on a graph-coloring algorithm. However,

the decomposition problem in general 2D layout becomes intractable when

the mask number, which translates to the chromatic number of the conflict

graph, is three or more. On the other hand, the combinatorial nature of

choosing different guiding templates to pattern the layout is also non-trivial

even without addressing the template costs. Thus, considering both color-

ing and DSA grouping simultaneously is very challenging. To enable DSA

with multi-patterning technique, the development of corresponding design

automation methods is critical.

So far, EDA works for DSA mostly focused on layout optimization [9],

[39], [40], [52] and lithography verification [53]–[55], without considering the

potential of multiple patterning. A recent work by Badr et al. [56] explored

using sequential approaches that consider the MP and DSA as two indepen-

79

dent steps. Their results showed that both of the approaches may fail to

find a solution, even for very simple cases. It motivates us to address the

constraints in DSA and MP simultaneously and develop effective algorithms

for the problem, which is the main theme of this work.

In this work, we study the contact layer decomposition problem for stan-

dard cell based layouts with DSA-MP complementary lithography. We will

denote the problem as DSA-MP decomposition in the remainder of the chap-

ter. As the first step to the study, we propose two heuristics that perform

‘color-first’ and ‘group-first’ decomposition for the problem, and we propose

an algorithm that decomposes a standard cell row optimally in polynomial-

time. Our contributions are as follows:

• We propose heuristic-based approaches that can be used as baseline

methods for comparing more advanced algorithms.

• Our decomposition algorithm solves the DSA-MP decomposition prob-

lem for a standard cell row optimally in polynomial time. Particularly,

a minimal cost decomposition with no coloring conflict can be found

efficiently if one exists.

• We conduct extensive experiments to compare the proposed methods

and demonstrate the effectiveness of the proposed algorithms. The re-

sults show that our optimal algorithm is effective and efficient. This

suggests that DSA-MP complementary lithography is a viable and

promising approach for the sub 10 nm technology node.

The remainder of this chapter is organized as follows. Section 5.2 discusses

preliminaries and formally formulates the DSA-MP decomposition problem.

In Section 5.3, we present an iterative color-first and a group-first decom-

position algorithm as baseline methods for the problem. The optimal algo-

rithm for standard cell rows is introduced thereafter. Section 5.4 presents

experimental results and comparisons of the proposed algorithms. Finally,

Section 5.5 concludes this chapter. This work was published in [57].

80

5.2 Problem Formulation

In standard cell based designs, a set of predefined standard cells is given in

a library. The standard cells usually implement basic logic elements such as

2-input NAND gate or a D-flop. The standard cells share the characteristic

that all of them have the same height, and two power tracks run through

the top and bottom of the cells. The reusability and ease of use make it

a very popular design strategy in circuit design. As a result, we will focus

on standard cell based layouts in this chapter. Furthermore, we assume the

contacts are of unit size and on grid, which is a reasonable setting for the

current 1D style designs. Finally, we use min dist to denote the minimum

distance design rule.

As discussed in [7], [47], the qualities of the guiding templates are usually

positively correlated with the size. 1D templates are preferred over 2D as the

diagonal contact pairs have irregular pitch, in contrast to the natural pitch

of the DSA process. To model the preference among the templates, we can

assign a ‘cost’ to them. For instance, smaller templates have smaller cost,

and 1D templates have costs smaller than 2D templates.

While stitching technique can be used to solve those undecomposable lay-

outs, it may also cause severe yield loss due to overlay. In this work, we

focus on the complementary effort between DSA and MP, and assume no

stitching is used. Furthermore, we follow the same assumption in [56] that

the self-assembly happens after all the guiding templates have been printed,

and thus all contact holes are generated via the self-assembly process.

While there are multiple different choices for the DSA-MP complementary

process, e.g., the DSA and MP process can both be used to pattern the

contacts, we assume that all the contacts are patterned by DSA, while the MP

process is solely for guiding template printing. In other words, a standalone

contact can be viewed as patterned by a single-contact template.

We now define the DSA-MP decomposition problem as follows:

Definition 4 (DSA-MP Decomposition Problem). Given a standard cell

based contact layer layout, a set of feasible DSA templates with costs, and

the maximum number of masks allowed, find a decomposition that contains a

set of contact groupings and a valid mask assignment such that the total cost

is minimized.

81

Traditionally, the multi-patterning mask assignment problem is solved us-

ing graph-coloring technique, where each layout feature is formulated as a

vertex in a graph and will be assigned a ‘color’ to denote which mask it is

assigned to. Two features that are within the conflict distance cannot be

patterned simultaneously in a single mask, and thus need to be colored dif-

ferently. For DSA-MP decomposition problem, the concept is generalized

such that DSA templates are considered. Specifically, when a set of contacts

is grouped using a feasible template, they must share the same color as they

are formed by the guiding template. An example is shown in Figure 5.2(c),

where contact A and C are grouped in a template, and thus share the same

color. When determining conflicts, the template shape will be used instead

of the single contacts.

A

C

B D
(a)

A

C

B D
(b)

A

C

B D
(c)

Figure 5.2: Illustration of DSA-MP complementary lithography. Gray mesh
denotes the color is unassigned. (a) Conflict graph of four contacts. (b)
Solution of 4-coloring. (c) Solution of 3-coloring with DSA, where contacts
A and C are grouped into a 2-contact template.

5.3 Contact Layer Decomposition with DSA-MP

As discussed previously, a major difficulty of the problem is to consider both

DSA grouping and MP coloring simultaneously. The choices of grouping can

be exponentially large when the contacts are clustered closely to each other,

which is usually the case in today’s aggressive design. Moreover, graph-

coloring is intractable when the number of colors is three or more.

It might be tempting to think that the case of two-coloring is easy. When

coloring conflict happens, contact grouping can be used to resolve the con-

flict. In terms of graph theory terminology, grouping two conflicting contacts

in the conflict graph is essentially edge contraction, which refers to the op-

82

eration that removes the corresponding vertices’ edge and merges the two

vertices. All the previous incident edges are preserved and now connect to

the new merged vertex. Surprisingly, even though graph two-coloring is triv-

ial, making a graph two-colorable by edge contraction is not. Particularly,

making the graph two-colorable is the same as making it bipartite. The

problem of obtaining a bipartite graph by a sequence of at most k edge con-

tractions in graph G is referred as bipartite contraction, which is shown to

be NP-complete [58].

Intuitively, the problem relies on finding all odd cycles in G, which is also

proven to be NP-complete.

Badr et al. [56] proposed two sequential schemes for the problem, which are

referred as decomposition-then-grouping and grouping-then-decomposition.

Intuitively, one of the operations from multiple patterning and contact group-

ing is performed first, and then the other is applied. Their results showed

that both approaches may not even be able to solve a simple case. Further-

more, template cost is not considered. Based on their simple sequential idea,

we propose two iterative schemes, with one of the operations performed as

much as possible. They can be viewed a baseline when designing further

decomposition algorithms. The following sections outline our algorithms.

5.3.1 Color-first Iterative Decomposition

In color-first decomposition, we first construct the conflict graph of the con-

tacts. In the conflict graph, each vertex represents a contact. If the distance

between two contacts is smaller than min dist , we refer to them as a pair

of conflicting contacts, and an edge is added between the two corresponding

vertices. The vertices are then sorted according to a particular order, such

as the vertex degree. Colors are assigned to the vertices and an ‘EMPTY’

color is marked if there is a conflict. For each of the uncolored vertices, we

try to find a colored neighbor for which it is possible to group and match a

template. If no grouping can be done, flip the color between vertex u with

that of its neighbor vertex v that is not in a group. If for some vertex v,

it is groupable with its neighbor vertex w 6= u, we prefer to choose v for

flipping. The flip-and-color procedure continues until a solution is found or

the maximum iteration is reached. The rationale is that grouping can poten-

83

tially resolve the conflict, and the iteration tries to create more groups in the

hope that a solution can be found. Pseudo code of the algorithm is shown

in Algorithm 5. An example of its execution (assuming triple patterning) is

shown in Figure 5.3.1 Notice that without the iterative flipping procedure,

the one-pass decomposition-then-grouping may not be able to find a solution.

The color-first method attempts to assign color as much as possible and use

less grouping in the hope of minimizing cost while finding a solution.

Algorithm 5 Color-First Decomposition

1: procedure ColorFirstDecomposition
2: L← sort vertices according in ascending degree
3: for all v in L do
4: color(v)← next available color c or EMPTY
5: end for
6: repeat
7: for all v where color(v) = EMPTY do
8: u← a neighbor of v and can be grouped with v
9: if u 6= nil then

10: Group u and v
11: next v
12: end if
13: u← a neighbor of v and u groupable w/ neighbor w 6= v
14: if u = nil then
15: u← a random neighbor of v
16: end if
17: Flip color(u), color(v)
18: end for
19: until valid solution is found or no improvement can be made
20: end procedure

5.3.2 Group-first Iterative Decomposition

Group-first decomposition is similar to color-first, except that we try to group

the contacts as much as possible beforehand. To do this, we need to find all

possible groupings. We then choose the candidate groupings according to

their size, until no groupings can be added to the solution anymore. The

groups are then colored using a greedy coloring algorithm. Whenever there

1Note that A and B (or D) cannot be grouped as this will form an irregular pitch
(diagonal) two-hole template, which is not in the library (Figure 4.1).

84

B D

A

C

(a)

B D

A

C

(b)

B D

A

C

(c)

Figure 5.3: (a) Contact D cannot be assigned a color. (b) Flip colors
between A and D. (c) Grouping A and C to resolve the conflict.

is a coloring conflict, we choose a candidate grouping for the uncolored ver-

tex, and remove the overlapped grouping to continue the coloring process,

until the maximum allowed iteration is reached. Algorithm 6 shows the

pseudo-code, and an example using 2-coloring is illustrated in Figure 5.4.

The underlying idea of this algorithm is that grouping as much as possible

can potentially reduce conflicts and increase the chance of finding a valid

coloring solution. However, the total cost may be larger than an optimal

solution as there may be excessive grouping.

Algorithm 6

1: procedure GroupFirstDecomposition
2: G← a list of all possible groupings sorted according to size
3: S ← ∅
4: for g in G do
5: if g ∩ S = ∅ then
6: S ← S ∪ g
7: end if
8: end for
9: GreedyColoring(S)

10: repeat
11: v ← an uncolored vertex
12: g ← a grouping such that v ∈ g and v is not grouped
13: g′ ← a grouping such that g ∈ S and g ∩ g′ 6= ∅
14: S ← S \ g′ ∪ g
15: GreedyColor(S)
16: until valid solution is found or no improvement can be made
17: end procedure

85

A

B

EC

D
(a)

A

B

E

D

C

(b)

A

B

EC

D

(c)

Figure 5.4: (a) Conflict graph of five contacts. (b) Initial grouping. Contact
D cannot be assigned a color as it conflicts with the two groups. (c) Group
contact D with C and remove grouping {C, E}. A solution is found.

5.3.3 Optimal Decomposition for Standard Cell Row

As discussed earlier, standard cell based designs present interesting proper-

ties, which can be exploited for designing efficient algorithms. We propose

an algorithm for a single standard cell row in this section. It contains three

stages. In the first stage, all the decompositions for each cell are computed.

In the second stage, we construct a decomposition graph based on the cell de-

compositions. Each vertex in this graph corresponds to a cell decomposition.

A dummy source and target vertices are added for running the shortest path

algorithm in the next stage. Each vertex has a non-negative weight that

reflects the groupings cost used in the cell decomposition. An arc will be

added between two vertices that do not conflict. The decomposition graph

is a directed graph and it is constructed such that any path from the source

to the target will correspond to a full decomposition for the row. Finally, a

shortest path is found and it is converted back to a full decomposition that

has minimum cost. The outline of the algorithm is shown in Figure 5.8(a)

on page 91. Since the possible decompositions for cells may be large, we

introduce a cell splitting technique to simplify the decomposition graph.

An illustration of the algorithm is shown in Figure 5.5. We denote the jth

decomposition solution for cell i as i, j as the vertex id. The details of the

algorithm are presented in the following sections.

5.3.4 Decomposition for Standard Cell

The height is fixed among the cells in the library, and the width is reasonably

limited as complex cells can be built using basic cells. As a result, we can af-

ford to compute decompositions for each cell by enumeration. Moreover, the

86

t

1, 1

...

1, l

2, 2

2, 1

...

2, m

N, 2

N, 1

......

N, n

1, 2

s
...

Figure 5.5: Illustration of our row-based algorithm. For each cell, the
decomposition solutions are included as a column of vertices in the graph.

Algorithm 7 Algorithm to Decompose A Cell

1: procedure DecomposeCell(D)
2: if all contacts are colored in D then
3: emit D return
4: end if
5: u← an uncolored contact in D
6: for all c in colors do
7: if [thentry coloring]color(u) ← c does not cause conflict
8: D.color(u) ← c
9: DecomposeCell(D)

10: D.color(u) ← EMPTY
11: end if
12: G← available groupings for u
13: for all g ∈ G do
14: if [thentry grouping]color(g)← c does not cause conflict
15: D.groupings ← D.groupings ∪ g
16: DecomposeCell(D)
17: D.groupings ← D.groupings \ g
18: end if
19: end for
20: end for
21: end procedure

87

decomposition for the standard cells can be re-used across different designs.

As a result, in practice it is beneficial to precompute the cell decompositions

and store them for later use. Figure 5.6 shows the possible decomposition

of three cells. For simplicity and illustration purpose, we use two-coloring in

the following. A recursive procedure of generating decompositions for a set

of contacts is listed in Algorithm 7. In Section 5.3.6, we introduce a sim-

plification technique such that the total number of vertices and arcs in the

decomposition graph can be greatly reduced. Before we discuss this tech-

nique, we will first introduce the decomposition graph in the next section.

C

B

A

C

B

A

C

B

A

BA

C

BA

C

BA

C

BA

C

A

B

C

A

B

C

A

B

C

A

B

C

C

B

A

1

BA

C

2

A

B

C3

1 2 3 4

C

B

A

Figure 5.6: Decompositions for three cells.

5.3.5 Decomposition Graph

After we have computed the cell decompositions, we can construct a de-

compositions graph. For each cell decomposition, we include a vertex in the

graph. The vertex weight represents the total cost of the templates used in its

corresponding decomposition. For a pair of vertices from two adjacent cells

respectively, we add an arc between them if they are compatible or groupable.

88

Suppose u and v are vertices from two adjacent cells, with u from the left

cell and v from the right:

• u and v are said to be compatible if the color assignment in the u

and v is valid between all pairs of conflicting contacts. For example,

decomposition (1, 1) is compatible with (2, 3) in Figure 5.6 if we place

cell 1 next to cell 2. The compatible decompositions are shown in

Figure 5.7(a). As we will run a shortest path algorithm later, we copy

the edge weight from the v to the newly added arc as the classic shortest

algorithms usually operate on edge weights.

• u and v are said to be groupable if the contacts between cells can be

grouped, or the existing groupings can be merged as a larger grouping

(template). For example, decomposition (1, 1) is compatible with (3,

1) in Figure 5.6 if we place cell 1 next to cell 3. Even though contact

B in both of the cells conflict with each other, they can be grouped

to make the decompositions compatible again as shown Figure 5.7(b).

However, the arc weight should be assigned as costmerge − costgroup(u),
where costmerge is the cost for the merged groupings, and costgroup(u)

is the cost of the groups being merged in u, instead of simply copying

the weight of v. The idea is to ‘cancel out’ the grouping cost from u if

this arc is chosen in the shortest path.

C

B

A BA

C

(a)

C

B

A A

B

C

(b)

Figure 5.7: (a) Compatible decompositions. (b) Groupable decompositions.

We only have to check the compatibility and groupability between adjacent

cells, as the min dist will unlikely be larger than minimum cell width (e.g.,

an inverter). After the arcs are added, we include 1) a dummy source vertex

and connect it to the vertices from the leftmost cell in the row; 2) a dummy

target vertex and connect the vertices from the rightmost cell to it. Clearly,

89

running a shortest path algorithm will visit a vertex from each cell exactly

once, and the distance from source to target is the total cost of the template.

The shortest path corresponds to a full decomposition of the row that has

the minimum cost.

Note that to avoid the ‘double grouping’ case in which a large template is

formed across more than two cells, we need to ensure that the width (height)

of the template is always smaller than min dist . This can make sure that a

template at the boundary will not reach to the other boundary (so there is at

least one grid separation). In practice, the feasible template is usually small

(e.g., up to 3 contacts in one direction). We assume the above condition

holds for the input cell and template libraries.

5.3.6 Cell Splitting and Simplified Decomposition Graph

Although the cell decompositions are limited in theory, the number of ver-

tices and arcs in the decomposition graph may be prohibitively large when a

cell contains many contacts. Large number of tasks may also pose a challenge

for the cell decomposition process. To reduce the complexity of the decom-

position graph, we can simplify the cell decomposition by cell splitting. A

flow is shown in Figure 5.8(b).

We observe that the cell interaction is local. The contact conflicts between

two cells are within a window of width min dist ; i.e., if two cells are adja-

cent, a contact at the right boundary of the cell at left will conflict with a

contact in the cell at right at most min dist away from its left boundary.

We define the left (right) boundary contacts as the contacts that are within

min dist from the left (right) boundary of the cell. These are the contacts

that can interact with other boundary contacts in the adjacent cells. Thus,

to check the boundary condition between two cells, we only need to solve

for the decomposition for the boundary contacts and check the compatibility

between them. Again, these boundary contacts may also interact with the

remaining middle part of the cell, and they can be addressed the same as

inter-cell compatibility.

Therefore, we can split a cell into a series of subcells and build a decomposi-

tion graph for this cell. The widths of subcells need to be at least min dist to

guarantee that the decomposition vertices from non-adjacent subcells will not

90

Decomposition Graph

Cell Graphs
Template Library
Contact Layout

Shortest Path

Layout
Decomposition

Cell Decomposition

(a)

Cell Splitting

Subcell Decomposition

Cells

Cell Graph Construction

Cell Graphs

(b)

Figure 5.8: (a) Outline of the algorithm. (b) Cell splitting and
decomposition flow.

91

interact such that the correctness of the decomposition graph is maintained.

By performing cell splitting, the numbers of vertices in the decomposition

graph for this cell can be greatly reduced compared to the unsplit version. To

see this, assume that there are n contacts in the cell. If the cell is split into

k subcells, each subcell will have n/k contacts on average. For two-coloring,

the number of possible decompositions is up to O(2n). On the other hand,

cell splitting effectively brings the number of total vertices to O(k2n/k). For

n = 12 and k = 3, the numbers of vertices before and after splitting are

212 = 4096 vs. 3 · 24 = 48.

If there is no conflict between any pair of contacts from two adjacent

subcells (i.e., they are independent), every vertex from the first subcell will

be compatible and thus connected to every vertex from the second subcell.

We can simply include a ‘hub’ vertex and connect all the vertices from the

first subcell to it, and connect it to all the vertices from the second subcell.

For the independent components in the non-boundary subcells, they can

be excluded from the decomposition graph and handled separately, as they

will not interfere with other contacts.

The decomposition graph after cell splitting is referred to as a simplified

decomposition graph, and we refer to the graphs constructed for the split cells

as a cell graph. Figure 5.9 illustrates the idea. The cell in the example is

split into three subcells. The left boundary contacts include A, B, C and D,

and the right boundary contacts include contacts I, J, K and L. There is an

independent component {G, H}. Figure 5.9(b) shows the cell graph of this

cell. As subcell 2 is independent of subcell 3, a hub vertex is added to connect

the vertices from them. It is worth noting that using the cells as splitting

units instead of the full row has the practical advantage that the cell-level

decomposition graph can be cached for use when running the algorithm for

different designs.

A Complete Example

Figure 5.10 illustrates the execution of the algorithm with a simplified de-

composition graph. The relative costs of the template should be cost1×1 <

cost1×2 < cost1×3. In this work, we use the numbers 0, 5, 8 respectively. The

left and right cells each have four solutions. The middle cell is wider and it is

split into left and right subcells. Each of the subcells also has four solutions.

92

A

C

D

E F

G

J

K

L

I

H

min_dist min_dist

B

1 2 3

min_dist

(a)

1,2

1,1

...

2,2

2,1

2,n
...

1,m

hub

3,2

3,1

3,l

...

(b)

Figure 5.9: (a) A cell is split into three subcells. (b) Simplified
decomposition graph for the cell (without source and target).

For the arcs that have weights valued at 8, they are due to the inter-cell

grouping as a 1× 3 template. A hub node ‘h’ is added for the components.

In the optimal solution, a path with cost 13 is found. It can be converted

back to a full composition with two templates. Note that there is more than

one optimal solution. This provides flexibility for us to handle the multiple

row case.

5.3.7 Complexity Analysis

Supposing the input row contains N cells, each cell is split to k subcells on

average, where each of the subcell has n contacts. Let the number of masks

(coloring) be m. The number of vertices in the decomposition graph is then

O(mnkN), and the number of arcs is O(m2nkN). Notice that the graph is a

directed acyclic graph (DAG); we can use a topological sort based algorithm

to find the shortest path that runs inO(|V |+|E|). As a result, the overall run-

ning time is O(m2nkN). Since the patterning technology is pre-determined

for a given library, and the number of contacts in a cell is bounded by the

fixed height and limited width for the subcells, the component m2n becomes

a constant. As a result, the algorithm runs linearly to kN . The proposed

algorithm is a fixed-parameter tractable (FPT) algorithm [59], and the DSA-

MP decomposition problem is a FPT problem, which is parameterized by m

93

85

hs t

0

0

5

5

5

5

5
0

0

0
0

0

0

5
5

5
5

8
10

10

5

5

0

0

0

0

(a)

(b)

(c)

Figure 5.10: (a) A standard cell row that has three cells. The red solid lines
denote intra-cell conflicts. The blue solid lines denote inter-cell conflicts.
The dashed line divides the cell into left and right subcells. (b) The
decomposition graph. The arcs in red denote the shortest path. (c)
Optimal decomposition obtained from the shortest path. The full
decomposition has a cost 13, and uses a 1× 2 and a 1× 3 template.

and n.

94

5.3.8 Handling Multiple Rows

The proposed row-based algorithm can be used to solve multiple rows iter-

atively. One possible approach is to find the optimal decomposition for the

first row first, then use the contacts at the row boundary as constraints to

solve for the second row, and repeat. As shown in the previous example,

there may be several optimal solutions for a row. Therefore, we can start

with each of them to check for a global optimal. Alternatively, one can gen-

erate the solutions for all rows, and resolve the local conflicts that happen at

row boundaries.

Due to the fact that the power rails run through the top and bottom of

the rows, the contacts above the power rails are usually for power accessing

and comparatively less than the contacts in between power rails, which are

usually introduced by routing. It is possible that the contacts between rows

are independent. The inter-row conflicts should also be much sparser than

the inter-cell conflicts along the row. As a result, the proposed iterative

scheme will produce a small number of conflicts in practice.

5.4 Experimental Results

To compare the performances of the proposed algorithms, we implemented

them in C++ programming language and tested in a Linux machine with

2.4 GHz CPU and 34 GB memory. As the benchmarks used in [56] are

synthesized using commercial library and tools and they are unavailable to

us, we designed two sets of benchmarks for double patterning (DPL) and

triple patterning (TPL) based on Nangate 45 nm Open Cell library [60]. The

standard cells are rescaled and resized and modified as an on-grid design. Cell

rows are generated by randomly selecting the cells in the modified library.

The feasible DSA templates in Figure 4.1 are used. We assume that the

min dist is 2 grids for DPL with EUV techniques and 3 grids for TPL with

193i technique.

Table 5.1 shows the experimental data for double patterning. After run-

ning the algorithm, color-first (CF) has the most conflicts, group-first (GF)

the second most, and only the optimal algorithm (OPT) can produce solu-

tions without conflict. We can see that CF uses mostly 1× 2 template, and

very few 1 × 3 templates. The reason is that CF prefers coloring. Though

95

the iterative color flipping helps to find groupings, most of the colors are

already assigned and the grouping opportunity is small. The cost of CF is

small as it uses fewer groupings, but the remaining conflicts are huge. On

the other hand, GF groups as much as possible at the beginning; thus, it

produces one order of magnitude fewer conflicts than CF. However, as lots

of unnecessary groupings are made, it has a huge cost that is almost twice as

large as OPT’s, as the groupings used by GF are also twice as numerous as

OPT’s. In other words, OPT finds a conflict-free decomposition with fewer

groupings than GF. In terms of runtime, OPT runs significantly faster than

CF and GF. The similar slower runtimes of CF and GF are mainly due to

the iterations. In this experiment, OPT outperforms CF and GF in terms of

solution quality and runtime.

In the following test, we inserted multiple dummy contacts at the polys in

the standard cells. Table 5.2 shows comparison statistics for the TPL case.

As seen from the table, a similar conclusion can be made in terms of solution

quality. As CF and GF cannot make any improvement after a certain number

of iterations, they terminated early and thus used a similar runtime as in the

case of DPL. While OPT uses more time than it does in DPL, it finds clean

decompositions for all cases.

Figure 5.11 shows the solution obtained by running our implementation

on a tiny cell row with five cells. The red solid lines are cell boundaries. The

contacts assigned to different masks are colored in green, yellow and blue.

We can see that the contacts are successfully decomposed into three masks.

Feasible templates are used to group contacts that have coloring conflicts

and lead to a clean solution.

96

T
ab

le
5.

1:
C

om
p
ar

is
on

of
th

e
A

lg
or

it
h
m

s
(D

P
L

)

#
C

el
ls

#
C

on
fl

ic
ts
∗

#
C

on
fl

ic
ts

af
te

r†
#

G
ro

u
p

in
g

(2
,

3,
to

ta
l)

C
os

t
R

u
n
ti

m
e

(s
)

C
F

G
F

O
P

T
C

F
G

F
O

P
T

C
F

G
F

O
P

T
C

F
G

F
O

P
T

1
50

45
1

12
2

0
35

,
0,

35
91

,
16

,
10

7
36

,
4,

40
17

5
58

3
21

2
0.

01
2

0.
00

8
0.

04
2

2
10

0
87

6
35

5
0

64
,

0,
64

16
3,

33
,

19
6

73
,

9,
82

32
0

10
79

43
7

0.
02

1
0.

01
6

0.
06

4
3

50
0

44
91

23
1

23
0

36
8,

0,
36

8
77

1,
18

2,
95

3
37

7,
76

,
45

3
18

40
53

11
24

93
0.

21
6

0.
21

3
0.

24
9

4
10

00
92

58
51

5
44

0
78

6,
1,

78
7

15
95

,
39

8,
19

93
81

6,
17

3,
98

9
39

38
11

15
9

54
64

0.
77

6
0.

81
6

0.
49

0
5

15
00

14
05

8
81

5
63

0
12

17
,

0,
12

17
24

36
,

61
5,

30
51

12
55

,
27

5,
15

30
60

85
17

10
0

84
75

1.
69

8
1.

78
3

0.
78

5
6

20
00

18
66

4
10

43
99

0
15

67
,

2,
15

69
31

96
,

80
1,

39
97

16
32

,
35

1,
19

83
78

51
22

38
8

10
96

8
2.

99
9

3.
17

3
1.

02
9

∗
N

u
m

b
er

of
co

n
fl

ic
ti

n
g

co
n
ta

ct
p

ai
rs

†
N

u
m

b
er

of
co

n
ta

ct
s

th
at

ar
e

u
n

ab
le

to
b

e
co

lo
re

d
d

u
e

to
co

n
fl

ic
t

C
F

:
C

ol
or

-fi
rs

t
al

go
ri

th
m

G
F

:
G

ro
u

p
-fi

rs
t

al
go

ri
th

m
O

P
T

:
O

p
ti

m
al

al
go

ri
th

m

T
ab

le
5.

2:
C

om
p
ar

is
on

of
th

e
A

lg
or

it
h
m

s
(T

P
L

)

#
C

el
ls

#
C

on
fl
ic

ts
#

C
on

fl
ic

ts
af

te
r

#
G

ro
u
p
in

g
(2

,
3,

to
ta

l)
C

os
t

R
u
n
ti

m
e

(s
)

C
F

G
F

O
P

T
C

F
G

F
O

P
T

C
F

G
F

O
P

T
C

F
G

F
O

P
T

1
50

13
81

64
8

0
52

,
0,

52
71

,
47

,
11

8
48

,
22

,
70

26
0

73
1

41
6

0.
01

4
0.

00
9

0.
50

1
2

10
0

27
13

10
4

13
0

11
5,

0,
11

5
12

6,
99

,
22

5
99

,
36

,
13

5
57

5
14

22
78

3
0.

02
4

0.
01

9
0.

88
8

3
50

0
13

35
0

55
0

69
0

50
6,

9,
51

5
65

0,
44

3,
10

93
53

0,
16

7,
69

7
26

02
67

94
39

86
0.

24
8

0.
23

6
4.

04
2

4
10

00
26

87
3

11
40

12
2

0
10

46
,

19
,

10
65

13
77

,
86

7,
22

44
10

91
,

33
5,

14
26

53
82

13
82

1
81

35
0.

88
6

0.
86

5
7.

95
4

5
15

00
40

35
2

16
53

16
3

0
16

08
,

30
,

16
38

20
94

,
12

92
,

33
86

16
39

,
51

0,
21

49
82

80
20

80
6

12
27

5
1.

92
9

1.
89

9
12

.1
61

6
20

00
54

31
1

22
77

24
2

0
20

58
,

39
,

20
97

27
33

,
17

54
,

44
87

22
00

,
69

6,
28

96
10

60
2

27
69

7
16

56
8

3.
43

3
3.

37
6

16
.6

03

0 1

2

3

4

5

6 7 8

9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0 2
1

0

1 2 3

4

5 6 7

8

9 1
0 1
1

1
2

1
3

0 1

2 3 4
5

6 7

8 9

1
0 1
1

1
2

1
3

1
4

1
5

0 1

2

3

4

5

6

7

8

9 1
0

0 1

2
3

4

5 6 7

8

9

1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

F
ig

u
re

5.
11

:
D

S
A

-M
P

d
ec

om
p

os
it

io
n

ex
am

p
le

fo
r

T
P

L
.

97

5.5 Conclusion

As industry today relies heavily on multiple patterning lithography, utilizing

alternative lithography provides an attractive means to reduce the manu-

facturing cost. Directed self-assembly is shown to be a viable candidate to

complement with multi-patterning for contact layer patterning. In this work,

we discuss the DSA-MP contact layer decomposition problem, the key prob-

lem to make DSA-MP complementary lithography practical. We focus the

problem on standard cell based layout, and approach the problem in several

different ways. A color-first and a group-first algorithm are proposed as base-

line methods to study the problem. An optimal algorithm is then proposed

to solve the problem in polynomial-time. Our experiments demonstrate that

the proposed optimal algorithm can find a conflict-free solution with mini-

mum cost, while both of the color-first and group-first algorithms cannot or

use a sub-optimal cost. Furthermore, the efficiency of the optimal algorithm

is also superior, as the cell decompositions can be solved and re-used for

different designs using this library. This demonstrates the effectiveness of

the proposed algorithm for the problem, thus enabling the use of DSA with

multi-patterning for circuit manufacturing.

98

CHAPTER 6

DSA TEMPLATE VERIFICATION

6.1 Introduction

In DSA process, while the contact holes and vias are formulated by the

annealing process [10], [12] guided by the guiding templates, those guiding

templates are generated by the optical lithography process such as 193 nm

immersion lithography, which has a coarser pitch resolution. Like other li-

thography techniques, the process variation control and proximity correction

are the most important issues. The variation in the templates is very likely

to affect the final contact. Most critical defects for contact layers are usually

introduced by two types of process variations: overlay misalignment and con-

tact size inaccuracy. If contacts are misaligned with metal layers, the effective

conducting area is reduced, introducing higher contact resistance or even bro-

ken connections in more severe situations. Similarly, inaccurate contact size

control may also result in circuit performance variations or even logic errors.

Therefore, in order to enable the DSA technology in contact layer printing, it

is extremely important for the simulation tools to accurately and efficiently

verify the DSA template patterning and hole generation result during the

verification phase. We define the templates that pattern the contact holes

with undesired variation larger than a threshold value as DSA hotspots, or

infeasible templates.

Although a rigorous DSA simulation can link the guiding template gen-

eration process to the DSA pattern formation [10]–[13], the extremely low

efficiency makes it impossible to adopt in the full-chip level implementation

like DSA-aware OPC and lithography verification. For example, the DSA

simulator proposed in [61] consumes an average of 5 minutes to simulate a

2-hole template in 1/2 nm scale. It is time-prohibitive to simulate all such

templates in a real circuit.

99

On the other hand, machine learning (ML) or ML-based compact mod-

eling has demonstrated its effectiveness and efficiency in verification, such

as lithography hotspot detection [62]–[67]. In the ML-based approach, sta-

tistical models are trained by ‘learning’ from existing training data, and

predict/classify the desired property accurately and efficiently. As a result,

machine learning (ML) or ML-based compact modeling is probably the future

choice to resolve the efficiency issue in DSA template verification. In this flow,

the guiding template can be simulated with the conventional optical litho-

graphy simulation tools; then without explicitly simulating the contact/via

shapes, we use ML technique to classify whether the template shape is of

good or bad quality, the contact pitch, and contact locations. The predic-

tion can subsequently be used as a guideline for the further correction of the

guiding template design. To the best of our knowledge, this is the first work

to address this problem.

In this chapter, we propose a design automation methodology for DSA

template verification and related problems. Our framework includes a DSA

model with corresponding ML features (variables), a set of learning algo-

rithms and feature extraction techniques, and a general flow for building

classification/prediction models for practical applications. Based on the pro-

posed methodology, we further discuss the DSA hotspot detection problem

and contact pitch and location prediction problem, and propose correspond-

ing solutions.

Hotspot detection and contact pitch/location predication are the key steps

in a DSA-aware resolution enhancement flow, which is illustrated in Fig-

ure 6.1. Given a target contact layer, the first step is to group adjacent

contacts together to generate the layer of target template. Then DSA-aware

OPC is performed on the target template layer to create the post-OPC layout.

Next, template contours are simulated with 193i lithography models. Based

on the simulated contour, DSA verification is performed next to guarantee

the robustness and correctness of the DSA hole formation. In particular,

hotspot detection can help the designer quickly pinpoint suspicious locations

that are potential hotspots. Contact pitch/location prediction can be used to

compare with the target contacts and analyze overlay errors. Moreover, we

are able to detect the critical edges on the template contours that contribute

most to the overlay errors, which provides very important information for

template contour correction as well as the DSA-aware OPC process.

100

Target
Template

Target
Contacts

DSA-aware
OPC

Post-OPC
Template
Layout

Target
Contour

Simulation

Template
Contour

Hotspot Detection/
Pitch Prediction

Critical
Edge

Detection

Overlay
Error

Analysis

Figure 6.1: DSA-aware resolution enhancement flow.

The rest of this chapter is organized as follows. Section 6.2 discusses related

background information, including problem definitions, and gives overview

of our proposed methodology and DSA model. Section 6.3 introduces the

features we use in the machine learning models. Several machine learning

algorithms are briefly introduced in Section 6.4. Section 6.5 presents how

we prepare the training and evaluation data for model training. We con-

ducted extensive experiments to test the performances on different features

and learning algorithms, and we summarize them in Section 6.6. Finally,

conclusions are drawn in Section 6.7. The works presented are published in

[54], [55], [68].

6.2 ML-based DSA Verification Flow

6.2.1 Problem Definitions

According to the needs and availability of algorithms and tools, we may

encounter different types of problems in DSA verification. For example,

people may be interested in knowing whether the printed template shape

will eventually generate the desired DSA holes. Without rigorous simulation

or prior information, it will be difficult to have a one-stop solution. To

tackle this problem, we can adopt a top-down divide-and-conquer scheme

by first classifying the templates into known template shapes in the library.

This enables us to further examine the feasibility of this template with the

tailor-made algorithm, such as whether the pitch sizes of the holes are within

feasible range. In other words, the example problem can be solved by levels.

The higher level involves determining the type of a template, e.g., whether it

101

is 2×2 or 1×3. The lower level involves classifying and verifying the quality

of the identified template, i.e., whether it will produce a feasible two-hole

(1 × 2) template. In the following, we formally define the above-mentioned

problems that can be found in DSA verification.

Definition 5 (DSA Hotspot Detection). Given a DSA template shape, clas-

sify it as hotspot or non-hotspot.

An application of ML-based DSA Hotspot Detection will be the integration

with EDA tools that can help the designers detect potential hotspots on-the-

fly during the design process, or guide the EDA layout tool to avoid hotspots.

Definition 6 (Contact Pitch and Location Prediction). Given a DSA tem-

plate shape, estimate the contact pitch and locations after the DSA process.

ML-based efficient prediction of pitch and location will help the DSA res-

olution enhancement flow iterate much faster.

6.2.2 Proposed Methodology

To address these problems, we propose a machine-learning based DSA ver-

ification flow. Based on the flow, we can plug-in different tools (features,

learning algorithms etc.) to solve the problems. Our methodology consists

of two stages that include various techniques from image processing, com-

puter vision and statistical machine learning as illustrated in Figure 6.2.

Model Learning

Classifi-
cation

Regression
Analysis

Pattern
Recognition

Data Preparation

SimulationFeature
Engineering

Image
Processing

Figure 6.2: DSA verification methodology and techniques.

102

The first part is data preparation. The starting point of our flow is usually

the SEM images of template shapes. Template shapes need to be separately

extracted for the later tasks. This involves various image processing and com-

puter vision techniques such as smoothing, resizing and image calibration to

prepare high quality template patterns. Next, the template shape informa-

tion, such as the contour, holes and their pitches, needs to be extracted or

measured. Finally, for machine learning related tasks in the second part,

features need to be extracted and training data needs to be prepared.

The second part includes various model learning tasks and techniques. Us-

ing the data prepared from the first phase, we can build models for different

tasks such as template recognition, pitch size estimation and hotspot detec-

tion. Statistical techniques such as regression and machine learning can be

used for the model fitting.

A simulation-based approach is illustrated in Figure 6.3. Given an original

template mask in Figure 6.3(a), a possible DSA template will be printed

as shown in Figure 6.3(b). The contact information including pitch and

location can be obtained after simulation (Figure 6.3(c)). The problem of

this approach is that the DSA template printed is susceptible to variations,

which may be caused by the process itself or proximity effect by other nearby

templates. Thus, each template must be verified individually. Verifying

millions of such template shapes in full-chip layout efficiently is a very time-

consuming process under this approach.

p=(89.43, 164.90)

q=(89.92, 93.07)

pitch=71.84

(a) Original mask. (b) DSA template printed. (c) Contact holes after simulation.

Hotspot? No

Figure 6.3: Simulation-based approach.

Figure 6.4 shows the proposed machine-learning approaches for hotspot

detection and contact pitch and location prediction. In the Training stage, we

learn contact pitch and location regression models from the training data that

contains sample DSA templates and simulated DSA patterns. We propose

a DSA pattern model for effective learning in the following section. Three

103

types of features are outlined in Section 6.3. In the Data Preparation stage,

the template shape and features will be extracted using techniques similar

to those in the training stage. Finally, in the Prediction stage, the trained

model will be used to predict the contact pitch and locations.

Training

Model
Learning

Templates +
Sim. results

Feature
extraction

Data Prep.

Simulated
Circuit Layout

Feature
extraction

Template
extraction

Detection

Test DataTrained
Model

Learned
Model

✔ ✗ ✔

(a) Hotspot Detection

Training

Model
Learning

Templates +
DSA patterns

Feature/
contact

extraction

Data Prep.

Simulated
Circuit Layout

Feature
extraction

Template
extraction

Prediction

Test DataTrained
Model

Learned
Model

Contact pitch
and locations

(b) Pitch Prediction

Figure 6.4: Proposed machine-learning based flows.

6.2.3 DSA Template Pattern Modeling

Figure 6.5 shows a geometric model for modeling the template-contact re-

lationship. Under this model, the contact is ‘generated’ by the confining

template shape. To quantify such a relationship, various geometric proper-

ties of the template shape can be exploited. For example, if we divide the

template perimeter into discrete edges, we can consider each edge to con-

tribute a certain amount to the contact generation. More precisely, we can

define edge sensitivity wi as the significance an edge will contribute to the

contact. For example, a shift of 1 nm of edge i with large wi will cause the

contact to shift a non-linear amount, while a shift of 1 nm of edge j with

small wj will not affect too much. Let zi be the geometry information of edge

i (e.g., distance from the original mask); then we can have a linear equation

to describe the template feasibility fk for some template k: fk = [w · zk− b],
where [z] is a thresholding function with [z] = 1 if z ≥ 0 or 0 for otherwise,

b is a threshold value and · is the dot product of vectors. We can then apply

machine learning algorithms to estimate the parameters w and b.

104

Similarly, we can model contact location as a function in the form of

(x, y) = f(z), where (x, y) denotes contact coordinate, z = {z1, ..., zm} and

m is the number of edges. In the simplest scenario, (x, y) is independent and

f(·) is a linear function. We can then use linear regression to fit a model

for prediction. Clearly, it is very unlikely the model is linear, and the edge-

based variable may not perfectly reflect the relationship. Nevertheless, the

proposed model enables us to quantify and study the problem. Furthermore,

the experimental results show that the proposed model and feature sets have

high accuracy in predicting the contact pitch and location and thus validate

their effectiveness.

pitch

zi-1Mask

Template

zi

zi+1

Figure 6.5: Proposed DSA model based on edge sensitivity.

Notice that other parameters may also take effect, such as the DSA process

parameters. We assume that these parameters are fixed in a technology

library. In reality, the parameter sets should be limited and we can train

models for different sets.

Due to the complexity of the DSA process, it will be impractical to build

a unified model to verify any possible DSA template. Instead, it is more

manageable to build models for different types of templates, e.g., verification

models for 1-hole, 2-hole and 3-hole templates. To automatically choose an

appropriate model to use, we first need to identify the templates. Thus, the

verification can be done in different stages and different predictive models

can be trained as illustrated in Figure 6.6. Given a set of simulated DSA

templates in a layout (Figure 6.6(a)), we first identify the templates (Fig-

ure 6.6(b)). The template type is then recognized and fed into appropriate

models for further verification. To illustrate the idea, we use 2-hole templates

105

as an example to study the problem, as the two-hole template is the most

prevalent case in the layout. The other multiple-hole templates are natural

generalizations of the two-hole template and can be studied similarly. For

example, to verify a 3-hole template, we can design a model for predicting

the locations of three contact holes and two pitch sizes of the top-middle and

middle-bottom holes. The same set of features and learning algorithms for

training two-hole models can be reused in the other cases.

1-hole
model

2-hole
model

3-hole
model

classification
prediction

classification
prediction
classification
prediction

classification
prediction
classification
prediction

(a) DSA templates. (b) Template Identification. (c) Different models.

Figure 6.6: Stages in the proposed verification flow and different models.

6.3 Feature Extraction

Feature extraction refers to the process of transforming the input data (DSA

template) into reduced representations. A feature in the supervised learning

context is an individual measurable heuristic property that contributes to

the learning. As in any machine learning problem, choosing discriminating

and independent features is the key to accurate learning. Based on the

proposed DSA model, we present three sets of features and the corresponding

extraction algorithms:

• Matched Points feature.

• Point Distance feature.

• Edge Orientation feature.

106

6.3.1 Matched Points Feature

Given a mask and template shape, we can trace their boundaries and get two

sets of boundary points P and Q. We can find a match between P and Q

to describe the correlation between the mask and template. More formally,

let Pi and Qj be the ith and jth points in P and Q. A match M maps

points from P to Q such that M(i) = j matches Pi to Qj. Clearly, there are

exponentially many possible matches, and we are interested in finding a best

match that correctly captures the correspondence.

We propose an algorithm based on dynamic time-warping (DTW) [69].

DTW has been widely used in signal processing to align and warp time-series

data. The basic idea is to use dynamic programming to compute an optimal

match between two given sequences such that the overall distance between the

matched points is minimized. The time complexity is O(|P ||Q|). However,

applying the original DTW algorithm to the point sequence is problematic,

since the minimum distance match in this case may not be the correct match.

For example, if the template is rotated, the correct match will have larger

overall distance. An incorrect match generated by applying DTW naively

is shown in Figure 6.7(a), where the green ‘+’ markers outline the mask

and the red ‘o’ markers outline the template. We can see that almost all

the template points are matched to the mask points in close proximity. We

propose a simpler yet more robust solution in the following.

(a) Naive match. (b) Warped match. (c) Correct match.

Figure 6.7: Matched points examples.

The aforementioned problem is caused by the points in Cartesian space,

which is rotation-variant. Although there are advanced scale-invariant

keypoint features available in the computer vision literature such as scale-

invariant feature transform (SIFT), most of them are based on keypoints

107

such as corners. However, our templates are smooth perimeters in a poten-

tially low resolution image, so it is hard to find meaningful keypoints. To

mitigate this problem, we can transform the points to a ‘pseudo time-series’

by computing the angles between consecutive points (or, derivative of the

perimeter). An example of such conversion is given in Figure 6.8(a), where x-

axis denotes the point sequence as time series and y-axis denotes the angles.

Figure 6.8(b) shows the warped template series. The corresponding point

match is shown in Figure 6.7(b). After matching the angles, we convert the

match back to the correct point match as shown in Figure 6.7(c).

(t)

(θ)

0 20 40 60 80 100

−π

−π/2

0

π/2

π

Mask
Template

(a)

0 20 40 60 80 100

−π

−π/2

0

π/2

π

Mask
Warped

(t)

(θ)

(b)

Figure 6.8: (a) Converting mask and template perimeters to time-series.
(b) Time-series of mask and warped template.

Note that the DTW algorithm may not match all the points, and thus there

will be ‘gaps’ in the point sequence. We can fill the missing values for the

gaps by interpolating the values from the two sides in the point sequence.

It is reasonable to assume the unmatched points are on a continuous and

smooth curve. An example is illustrated in Figure 6.9, where point i does

not have a match, and its corresponding distance value is interpolated from

its adjacent points.

6.3.2 Point Distance Feature

Based on the matched points feature, we further propose a point distance

feature that captures the template variation. After we find the point match

108

i

No match

Interpolate

p

q

d(q, c)

d(p, c)

c

mask template

Figure 6.9: Filling missing values. Figure 6.10: HOG features of mask.

and align the template with the mask, we compute the distances for each

pair of matched points p ∈ P and q ∈ Q. We assign a sign to the distance

value to reflect the expansion or contraction of a certain template segment.

The point distance d′(p, q) of p and q is defined as:

d′(p, q) =

d(p, q), if d(c, p) ≤ d(c, q)

−d(p, q), otherwise
(6.1)

where d(p, q) is their Euclidean distance, c is the center of mass of the mask.

The concept is illustrated in Figure 6.9. Thus, a plus sign denotes the ex-

pansion, while a negative sign denotes the contraction.

Even though the point distance feature is derived from the matched points

feature, it has the advantage of being half the size of the matched points

feature, which is beneficial for the learning algorithm for not only speed but

also smaller feature dimension.

6.3.3 Edge Orientation Feature

The orientation of the shape encodes the directional information of the tem-

plate. A widely used representation is the histogram of oriented gradients

(HOG) feature [70]. The idea is to partition the image into uniform bins

and compute the local orientation magnitude over eight orientations. The

plot of HOG features of the mask is shown in Figure 6.10. Notice how the

orientation magnitudes match with the mask.

109

6.4 Learning Algorithms

For the DSA Hotspot Detection problem, we use classification algorithms

to classify whether a given input template is hotspot or not. For the Con-

tact Pitch and Location Prediction problem, we use regression algorithms to

predict the real values. We propose to use artificial neural network (ANN),

random forests with bagging (Bagging), boosting and support vector ma-

chine/regression (SVM/SVR). We review their ideas in the following sections.

6.4.1 Artificial Neural Network

ANN imitates the human brain by creating a leveled network of neurons.

At each level, the neurons take outputs of the previous level as input and

output for the next level. Each neuron i can be trained to model some

function fi : X → Y through back-propagation algorithm [71]. An ANN

with multiple levels can thus model highly non-linear functions. In our work,

we use a three-layer feedforward network shown in Figure 6.11(a). The input

layer contains neurons for each input feature, a hidden layer contains a user-

defined number of neurons that converts the output from input layer for the

last layer, i.e., output layer, which scales its input to the desired response.

Again, each layer can be viewed as a function that takes the input from the

previous layer and output to the next layer.

The advantage of ANN is that even if we have a lot of input and output data

to learn without an idea of what the actual function is, the network is still

able to learn it without explicitly specifying the function. Furthermore, ANN

is also robust to noisy data, which is our case since the training images may

contain noise or imperfect point sampling and point match. A disadvantage

is that it suffers from long training time compared to the other methods.

Nevertheless, it is usually a minor problem since training a model is an

affordable one-time effort given fixed inputs.

6.4.2 Random Forests with Bagging

Random forests [72] is an ensemble learning method, which refers to training

a ‘strong learner’ by combining a set of ‘weak learners’. A weak learner is a

classifier/regressor that is slightly correlated with the true outputs, while a

110

Input Hidden Output Sample

Random
Subset

Random
Subset

Random
Subset

Figure 6.11: (a) Neural network. (b) Random Forest.

strong learner is strongly correlated with the true outputs. Random Forests

utilize decision trees as the weak learners. In a decision tree, an input is en-

tered from the root node and traverses down to the leaves. At each tree node,

the output is split into small subsets according to a feature that provides the

best split among all unsplit features. In contrast, random forests choose

the optimal split within a subset of features at each split. An illustration is

shown in Figure 6.11(b).

Bootstrap aggregation (bagging) is a random subspace method that is

usually together with random forests. Instead of training from the whole

dataset, we generate B bootstrap samples, each by sampling b times with

replacement in the original data. The random forests with bagging algorithm

is summarized in Algorithm 8. Its major advantage lies in its ability to reduce

the correlation and variance for the weak learners and achieve a more stable

performance.

6.4.3 Boosting

Boosting is another type of ensemble learning method that also utilizes a set

of weak learners such as decision trees. At each tree, the learning samples

are weighted in such a way that whenever they are misclassified, they will

be weighted more at the next iteration to get more focus from the weak

learners. There are various kinds of boosting algorithms. We choose to use

AdaBoost [73] for its stable performance.

111

Algorithm 8 Random Forests With Bagging

Input
Training data D = {(x1, y1), . . . , (xn, yn)}
Bagging parameter k < m . m is feature dimension

Training
for b = 1, . . . , B do
Bb ← sample size n from D
Train a tree regressor Tb on Bb, where
for each split do

Select m features from feature space
Find the best split x∗i at this dimension subset

Predicting
Given an example x, predict y = 1

B

∑B
b=1 Tb(x)

6.4.4 Support Vector Machine and Regression

In support vector regression (SVR), each sample (x, z) can be viewed as a

point in m + 1 dimensional space, where m is the feature dimension, and

the last dimension corresponds to the output value z. For clarity, we discuss

the linear case first. SVR finds a hyperplane w · x − b = 0 to maximize

the number of data points to be within a distance ε to the hyperplane. The

points that are out of the range will be penalized. Pictorially, we can view

the hyperplane as a ‘band’ with width 2ε, and the penalty function forces it

to cover as many data points as possible. This type of SVR is called ‘ε-SVR’.

To handle the non-linearity, we use the famous kernel trick [74] to map

the points in space X to some higher (even infinite) dimensional space F
such that they could be ‘covered’ in a ‘band’. The mapping is referred to as

a kernel function Φ : X → F . Popular kernels include polynomial and

radial basis function (RBF). An example of non-linear SVR is shown in

Figure 6.12(a). As we can see, a linear model (red line) will not fit the

non-linear data, while a RBF model (green curve) fits them very well. To

demonstrate the kernel trick, the points above and below the RBF curve are

color-coded to blue and red. We can map these points to a high dimension

space as shown in Figure 6.12(b) and 6.12(c), where the mapped points can

be ‘covered’ by a band. We refer the readers to [74] for details.

SVR has the advantage that it is very effective in high dimensional spaces,

even when the number of dimensions is greater than the number of samples.

The kernel trick and the underlying dual optimization problem make it very

112

(a) Original space

X
2 0 2 4 6 8

Y

6
4

2
0

2
4

6

Z

1.0
0.5
0.0
0.5
1.0

(b) Map to higher dimension

X2 0 2 4 6 8 Y6420246

Z

1.0
0.5

0.0
0.5
1.0

(c) Different view

Figure 6.12: Example of non-linear support vector regression.

time-efficient in optimization.

6.5 Training and Evaluation Data

In supervised learning, a set of training data is necessary for training a model.

The quality of the training data directly impacts the performance of the

trained model. Some desired properties include:

• The training data should be accurate and contain as little noise as

possible.

• There is enough variance in the feature and output space.

• The size of the training data should be large enough to support the

model complexity, e.g., number of features.

Ideally, the training data should be obtained from simulation data or real

circuit layout after DSA process. As there is currently no publicly available

DSA circuit data, we propose to use a variation model to generate patterns.

To model the potential variation that could happen to the template, we pro-

pose two operations to vary a given mask image. The first operation includes

a subset of affine transformation: scaling, squeezing, rotation and shearing.

This operation is applied to the whole image. The second operation is a Gaus-

sian variation to the mask perimeter. In particular, for a perimeter segment,

113

we apply a Gaussian filter followed by a thresholding to model distortions

in the process. Note that these two operations can be mixed to increase the

data variety. A plot of the locations of the 1st (upper) contact hole in a

2-hole template in the generated training data is shown in Figure 6.13.

After the templates are generated, we feed them into a simulator based

on [61] and obtain DSA contact patterns. To find the contact holes, we

threshold the simulation image into a bitmap and run a boundary tracing

algorithm to find them. The contact location is then computed as the center-

of-mass of the contact hole, and the pitch is computed as the distance between

the contact holes. To generate the labels for DSA hotspot, we use a circle

detection algorithm based on Hough transform [75] to detect the holes and

an automation flow to measure the pitch size, and a threshold to generate

the labels.

120 125 130 135 140

90

92

94

96

98

100

Figure 6.13: Plot of upper contact locations in training data.

6.6 Experimental Results

The proposed flow is implemented in Matlab and the experiments are carried

out on a machine with Intel Xeon 2.4 GHz CPU and 32 GB RAM. We use

LIBSVM [76] for the SVM/SVR learning, and Matlab Machine Learning

Toolbox for boosting, bagging and ANN.

We use the procedure in Section 6.5 to generate a set of 1193 two-hole tem-

plate samples to train the model. Each of them is derived from a mask image

of size 260 × 260 pixels in 0.5 nm scale. We extract the proposed features

in these templates. Table 6.1 shows the statistics of feature dimensions. A

histogram of the pitches is shown in Figure 6.14. We simulate the templates

using a DSA simulator based on self-consistent field theory (SCFT) [61].

114

Each template costs around 5 minutes in simulation. As we can see, the

state-of-the-art simulator is still not ready for the full-chip scale verification.

Again, notice that although we are using two-hole patterns to exemplify our

proposed method, the method can be generalized for other DSA templates

and predict more than one pitch size and numerous hole locations.

Data standardization is important for many machine learning algorithms.

If a feature has a variance that is orders of magnitude larger than others, it

might dominate the objective function during the optimization and shadow

the effect of other features. Furthermore, numerical stability may also de-

grade. We subtract means from the features, then scale it by dividing the

non-constant features with their standard deviations such that they have zero

mean and unit variance to avoid the aforementioned problem. In addition,

we remove dimensions that are constant or have less than 10% nonzeros in

HOG features due to the sparsity of the template image. This effectively

cuts HOG dimensions from 1519 to 428.

Table 6.1: Training Data Statistics

Samples µ∗ σ∗ # MP† # PD‡ # HOG
1193 71.7485 4.3398 1114 557 428

∗Mean, Stdev of pitch. †Matched Points. ‡ Point distance.

60 65 70 75 80
0

100

200

300

Pitch Size

#
 S

a
m

p
le

s

Figure 6.14: Pitch histogram.

6.6.1 DSA Hotspot Detection

For DSA hotspot detection, we compare the performance of different classi-

fiers on different combinations of features. We have the following setups:

115

• For SVM, we use RBF as its kernel and run grid search to tune the

penalty parameter C and kernel variance γ.

• For ANN, we use a two-layer model, where the first layer is an input

hidden layer and second layer the output layer. We experimented on

10, 15 and 20 neurons in the hidden layer for each run, and chose the

best result.

• For AdaBoost and Bagging, we use Decision Tree as the weak learner,

and search for the optimal weak learner size from 100 to 500 at an

increment of 50.

Features are mixed and matched for comparison. Table 6.2 shows the

accuracy (%) of 10-fold cross-validations for the algorithm and feature com-

binations, where the accuracy is defined as the ratio of correctly predicted

samples over total samples. The total 1193 samples are divided into ten sets,

and at each iteration a set (119 samples) will be used as test data while

the others (1074 samples) will be used as training data. The average train-

ing time is the mean measured among all folds for the largest feature set

(MP+PD+HOG). The classifier performances are shown in Table 6.3. In

our work, sensitivity is considered more important since we want to detect

hotspots (positive) as much as possible, while we can tolerate false negative.

In other words, sensitivity reflects the ability to identify hotspots correctly. A

negative result in a high sensitivity classifier means a high probability that it

is not a hotspot. On the other hand, specificity reflects the classifier’s ability

to exclude the hotspot correctly.1 We have the following observations:

1. The average validation times on a set of 61 testing samples are short

(< 1s) for all the algorithms. Compared to the rigorous simulation

runtime that takes around 4 minutes for a single template, it is a huge

speed-up.

2. On the other hand, the average training times of ensemble methods

(AdaBoost and Bagging) are significantly longer than SVM and ANN.

However, our experiment shows that their performances are consistent

and more stable than SVM and ANN. Thus, one should consider the

trade-off between runtime and accuracy in applications.

1To fit in a statistical context, we define ‘positive’ when the classifier predicts the
sample as a ‘hotspot’.

116

3. The detection accuracy rate is over 85% from AdaBoost when all fea-

tures are combined (dimension = 1761). However, it also has a longer

runtime compared to SVM.

4. The proposed sets of features and machine learning do not have very

significant differences. It will suffice to interpret that the proposed

features can capture the template and hole relationship to a certain

extent. When combined together, the best to worst improvement is

significant. Each of the learning algorithms is improved around 5-10%.

Table 6.2: Accuracy Comparison of Learning Algorithm and Features

MP∗ PD † HOG ‡ MP+HOG MP+HOG ALL Train (s) Test (s)
SVM 89.76 86.43 87.33 90.85 88.02 93.29 0.2012 0.0052
ANN 77.23 76.13 78.55 76.22 75.91 78.71 0.4857 0.0182

AdaBoost 79.04 75.42 79.54 78.86 81.35 86.47 21.1854 0.5680
Bagging 81.35 75.43 80.86 80.34 81.35 82.18 6.9853 0.5996
∗Matched Points feature † Point Distance feature ‡HOG feature

Table 6.3: Performance Comparison of Classifiers

Algorithm Sensitivity Specificity Precision Accuracy (%)
SVM 0.9548 0.9091 0.9193 93.29
ANN 0.7778 0.7942 0.7409 78.71

AdaBoost 0.8911 0.8453 0.8092 86.47
Bagging 0.7715 0.8614 0.8142 82.18

6.6.2 Contact Pitch and Location Prediction

Table 6.4 shows the performance comparison of the algorithms with different

feature sets on predicting the pitch size. The unit of training time is second.

As the testing time is within seconds, we do not include them in the table.

We use root mean squared error (RMSE) as the metric for performance,

which is computed as:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (6.2)

where ŷi is the predicted value. It gives us an estimate of how ‘far away’

the average predicted value is from the actual value. The values in the table

117

Table 6.4: Comparison of Algorithms and Features (RMSE)

Name MP Time (s) PD Time (s) HOG Time (s) MP+PD Time (s) ALL Time (s)
ANN 0.148 388.969 0.312 251.62 0.17 33.766 0.14 713.38 0.125 446.23
RF 0.292 55.037 0.347 28.044 0.367 18.382 0.329 70.982 0.419 43.964

SVR 0.285 1.656 0.387 1.178 0.233 1.185 0.148 2.577 0.24 2.256

are obtained by running a ten-fold cross-validation for an algorithm and a

feature set. Specifically, the data is split into two equal-size sets and at each

round, we choose one set as testing data and the rest as training data. We

then average the statistics in these ten rounds as the model performance. We

have the following parameter selection schemes for different algorithms:

• For bagging, we tune the number of weak learners in the range from

1 to 200. Cross-validation results show that the variance and balance

reached a good balance at around 100 weak learners.

• For neural network, we tune the number of neurons in the hidden layers

from 1 to 20. The best performance occurs at about 8 neurons.

• For support vector regression, we use a multilevel grid search to choose

the parameters C (error penalty) and γ (RBF kernel size) from a coarse

grid to a fine grid. Our experiments show that C = 26 and γ = 2−7

works best. Figure 6.15 shows the contour plot of grid search that finds

the optimal parameters.

log(C)

lo
g
(γ

)

4 5 6 7 8
−7

−6

−5

−4

−3

Figure 6.15: Grid search contour plot.

Overall, we can see from the tables that all of the learning algorithms

work well and have an average RMSE below 0.5. The prediction accuracy is

118

Table 6.5: Contact Location Prediction Results (RMSE)

Name x1 y1 x2 y2 Mean† Pitch‡ Time (s)
ANN 0.132 0.145 0.157 0.201 0.158 0.194 64.596
RF 0.476 0.361 0.398 0.351 0.396 0.376 30.297

SVR 0.117 0.137 0.117 0.135 0.126 0.153 0.846
∗ (x1, y1) and (x2, y2) denote the 2D coordinates of the contacts.
†Mean error over all the predicted coordinates.
‡Computed as the Euclidean distance between predicted contact locations.

satisfactory enough, considering that the pitch size granularity is about 0.5,

which is decided by the image resolution.

From the tables, we have the following observations:

• ANN outperforms SVR and RF. SVR achieves very close performance

to ANN, while RF is slightly behind.

• ANN suffers from a long training time due to high feature dimension.

In comparison, SVR is extremely efficient in training, and thus it is

very suitable for studying the models for different templates.

• All of the algorithms perform prediction effectively. With a rigorously

tuned model that has high accuracy and moderate bias/variance, the

machine learning approach is practical for full-chip scale verification.

• Among the single set of features, matched points gives the best perfor-

mance and training time. While it is usually useful to combine feature

sets to improve performance, it is not the case in our experiment. Worse

still, the feature dimension and training time are both largely increased.

We have similar results for contact location prediction as shown in Ta-

ble 6.5. Note that we used an improved MP feature and data set in this

experiment, as we will introduce later.

6.6.3 SVR Performance Study and Tuning

We are particularly interested in improving the performance of SVR, as ac-

cording to the above experiments, SVR has the best balanced performance

in terms of accuracy and runtime. We further study its behavior and derive

119

a model that is more compact and efficient for practical usage. In the follow-

ing, we split the data into three sets for study: training (60%) set is used for

model training, validation (20%) set is used to tune the model parameters

and select a final model, and testing (20%) set is used for evaluating the

selected model.

Model Selection

The high feature dimension can make the model overly complicated (overfit)

and cause high variance. A common approach is to study the dimension- error

plot. We uniformly sample dimensions from MP feature, and plot the corre-

sponding training vs. validation error in Figure 6.16. We observe that the

cross-validation error hardly improves at dimension size 600. Thus, we choose

such a reduced dimension for our model. By doing this, we are effectively

down-sampling the extracted points from the mask/template perimeter, and

we achieve a simpler model that can generalize better.

0 200 400 600 800 1,000

0.2

0.25

0.3

R
M

S
E

Dimension

Training Error
Validation Error

Figure 6.16: Model selection.

Sample Size and Learning Curve

We study the relationship between the error and sample size to understand

if there are enough samples for training a highly accurate model. Moreover,

a smaller sample size will certainly improve the training time. Figure 6.17

shows the RMSE improvements for the three datasets as the training size

120

increases. The plot shows that, at around 350 samples, the errors become

stable. This indicates the SVR achieves a stable performance with only half

the training data.

0 100 200 300 400 500 600

0.2

0.4

0.6

0.8

1

R
M

S
E

samples

Training Error
Validation Error
Test Error

Figure 6.17: Learning curve.

Performance of Tuned Model

We run the simplified model with less training data on the whole dataset

and examine its performance. Figure 6.18 shows the error histogram (ẑ− z).

For all three sets, the predicted values are close to zero error, while the

maximum error is bounded within 1.0. Furthermore, we can perform hotspot

classification by setting a pitch grid value as the tolerance value. For example,

if 0.5 is used, we can see from the histogram that only a small number of

examples (37) are misclassified, and the accuracy is up to 97.15%. Figure 6.19

shows a linear regression plot between the actual and predicted values. The

closer to 1 the slope is, the more accurate the prediction is. We can see that

our tuned model is very close to a perfect line.

Table 6.5 shows the improved performance of the learning algorithms with

the simplified models. With the RMSE similar to or even better than the

previous results in Table 6.4, the training times are greatly improved. Com-

pared to the time-consuming rigorous simulation methods, our best SVR

model achieves near perfect results (RMSE = 0.135 pitch grid). Further-

more, with less than one second of training and predicting runtime overhead,

our method is very promising for full-chip scale verification, which is beyond

the limit of simulation-based methods. The high accuracy and efficiency

121

indicate that the machine-learning based approach is very promising as a

candidate for DSA verification.

0

50

100

150

200

Sa

m
pl

es

Errors

−0
.6

72
−0

.5
92

5
−0

.5
13

1
−0

.4
33

7
−0

.3
54

3
−0

.2
74

8
−0

.1
95

4
−0

.1
16

−0
.0

36
53

0.
04

29
0.

12
23

0.
20

18
0.

28
12

0.
36

06
0.

44
01

0.
51

95
0.

59
89

0.
67

83
0.

75
78

0.
83

72

Training
Validation
Testing
Zero Error

Figure 6.18: Error histogram of predicted values.

60 65 70 75 80
60

65

70

75

80

Target

O
u

tp
u

t
~=

 0
.9

9*
T

ar
g

et
 +

 0
.7

Training: R=0.99925

Data
Fit
Y = T

60 65 70 75 80
60

65

70

75

80

Target

O
u

tp
u

t
~=

 0
.9

9*
T

ar
g

et
 +

 0
.5

2

Validation: R=0.99879

Data
Fit
Y = T

60 65 70 75 80
60

65

70

75

80

Target

O
u

tp
u

t
~=

 0
.9

9*
T

ar
g

et
 +

 0
.9

6

Testing: R=0.99891

Data
Fit
Y = T

60 65 70 75 80
60

65

70

75

80

Target

O
u

tp
u

t
~=

 0
.9

9*
T

ar
g

et
 +

 0
.4

6

All: R=0.99911

Data
Fit
Y = T

Figure 6.19: Regression plot of the tuned model. Only partial samples are
shown due to density.

122

6.7 Conclusion

As the DSA provides the ability for contact/via patterning and enables it

as a candidate for 7 nm node, the EDA world should face the challenge and

unleash DSA’s potential. This chapter presents a machine learning based

approach for DSA verification. We formulated two important problems as

DSA hotspot detection and contact pitch and location prediction problems.

For the first time these problems are addressed using a machine learning

based approach. We propose various sets of feature and learning algorithms

to use, and study their performances via extensive experiments. Our experi-

ment showed very promising results for the machine learning based approach.

However, as the ML approach is in an exploratory stage, more problems and

techniques should be addressed in the future to enable its adoption in in-

dustry. For example, how to integrate the flow in a standard verification

environment and how to apply online learning algorithms to continuously

improve performance in a production environment. These are the future

directions that are worth exploring.

123

CHAPTER 7

CONCLUSIONS

In this dissertation, we have studied design automation algorithms for ad-

vanced lithography. We have covered topics on self-aligned double patterning

(SADP) and directed self-assembly (DSA). We proposed design automation

algorithms to address various issues and constraints from the advanced li-

thography technologies in order to help the designers better facilitate the

potential of these technologies during the design phase.

Like any other double patterning, layout decomposition is the most critical

problem to apply SADP in manufacturing. In this work, both general 2D

layout and row-based standard cell layout are studied.

In Chapter 2, we studied the layout decomposition problem for SADP in

general 2D layout. Although the SADP decomposition for 2D layout is NP-

hard in general, we showed that in the case where we disallow overlay, we

can derive polynomial-time solutions. We propose a graph-based algorithm

to address the problem. To the best of our knowledge, this is the first exact

algorithm that solves the problem in polynomial-time. All the previous works

are either based on expensive ILP or SAT formulation, or utilize heuristics

that cannot guarantee optimality.

In Chapter 3, we studied the layout decomposition problem for SADP in

row-based standard cell layout. Due to the special property of standard cell

based design, it is usually the case that efficient solutions can be designed

for various problems. In our work, we take advantage of the fixed width

of standard cells and power tracks on top and bottom of cells and propose

an efficient layout decomposition. The efficiency of our method is further

demonstrated by the experimental results.

Block copolymer directed self-assembly (DSA) has demonstrated great

advantages in patterning contacts/vias for the 7 nm technology node and

beyond. The high throughput and low process cost of DSA make it the

most promising candidate in patterning tightly pitched dense patterns for

124

the next-generation lithography. Since DSA is very sensitive to the shapes

and distributions of the guiding templates, it is necessary to develop new

EDA algorithms and tools to address the patterning rules and constraints of

the process.

In Chapter 4, we studied the contact layer and cut layer optimization for

DSA. To pattern the contact layer with DSA, we must ensure that all the

contacts in the layout require only feasible DSA templates. We propose a

simulated-annealing (SA) based scheme to perform full-chip level contact

layer optimization. According to the experimental results, the DSA conflicts

in the contact layer are reduced by close to 90% on average after applying

the proposed optimization algorithm. DSA has proven its success in contact

hole patterning, However, the cut layer must be optimized during design to

be DSA-friendly. We propose an efficient algorithm to optimize cut layers

without hurting the original circuit logic. Our work utilizes a technique called

‘line-end extension’ to move the cuts and extend the functional wires without

changing the original functionality of the circuit. Consequently, the cuts can

be redistributed and grouped into valid DSA templates.

In Chapter 5, we studied the decomposition problem for contact layer in

row-based standard cell layout with DSA-MP complementary lithography.

DSA is currently aiming at 7 nm technology, where the guiding template

generation needs either double patterning EUV or multiple patterning DUV

process. By incorporating DSA into the multiple patterning process, it is

possible to reduce the number of masks and achieve a cost-effective solution.

We explored several heuristic-based approaches, and proposed an algorithm

that decomposes a standard cell row optimally in polynomial-time. Our

experiments show that our algorithm is guaranteed to find a minimum cost

solution if one exists, while the heuristic cannot or only finds a sub-optimal

solution.

In Chapter 6, we studied the DSA template verification problem and pro-

posed a machine learning based method. Since the DSA technology is very

sensitive to the shapes and distributions of patterns, it is necessary for the

EDA engines to understand the patterning preferences of the DSA process,

such that layout can be optimized to be DSA-friendly, DSA templates will be

verified and more preferred patterns will be used. However, traditional rigor-

ous simulation suffers from an extremely slow simulation time. We proposed

a machine learning based design automation framework for DSA verifica-

125

tion. A novel DSA model and a set of features are presented. Following the

proposed framework, we formulate the DSA hotspot detection and contact

pitch and location prediction problems and address them using the proposed

ML-based flow. Extensive experiments are performed to compare the perfor-

mances of learning algorithms and features. Our experiments showed that

we can achieve 93% accuracy for DSA hotspot detection and an average

RMSE (root mean square error) of below 0.5 for contact pitch and location

prediction.

In conclusion, this dissertation presented two of the most promising ad-

vanced lithography techniques, SADP and DSA, and the unique constraints

and challenges associated with them. In order to fully release the potential

of the new technologies, the EDA industry must embrace the change and

follow up with corresponding solutions. Clearly, effective and efficient design

automation algorithms are a key challenge and will continue to play a critical

role in the future, during which more advanced lithography technologies will

emerge.

126

REFERENCES

[1] H. Zhang and Y. Du, “Self-aligned double patterning decomposition

for overlay minimization and hot spot detection,” Digital Automation

Conference, pp. 1–6, Nov. 2010.

[2] H. Zhang, Y. Du, M. D. F. Wong, and R. O. Topaloglu, “Self-aligned

double-patterning decomposition for overlay minimization and hot spot

detection,” in Proc. DAC, 2011.

[3] Y. Ban, A. Miloslavsky, K. Lucas, S. Choi, C.-H. Park, and D. Z. Pan,

“Layout decomposition of self-aligned double patterning for 2d random

logic patterning,” in Proc. SPIE, Jan. 2011.

[4] Y. Ban, K. Lucas, and D. Z. Pan, “Flexible 2d layout decomposition

framework for spacer-type double patterning lithography,” in Proc.

DAC, Jun. 2011, pp. 789–794.

[5] M. Mirsaeedi, J. A. Torres, and M. Anis, “Self-aligned double pat-

terning (sadp) layout decomposition,” in Quality Electronic Design

(ISQED), 2011 12th International Symposium on, IEEE, 2011, pp. 1–

7.

[6] H.-S. P. Wong, C. Bencher, H. Yi, X.-Y. Bao, and L.-W. Chang, “Block

copolymer directed self-assembly enables sublithographic patterning

for device fabrication,” in Proc. SPIE, vol. 8323, 2012, pp. 832 303–

1.

[7] H. Yi, X.-Y. Bao, J. Zhang, R. Tiberio, J. Conway, L.-W. Chang,

S. Mitra, and H.-S. P. Wong, “Contact-hole patterning for random

logic circuits using block copolymer directed self-assembly,” in Proc.

of SPIE, vol. 8323, 2012, 83230W–1.

127

[8] H. Yi, X.-Y. Bao, J. Zhang, C. Bencher, L.-W. Chang, X. Chen, R.

Tiberio, J. Conway, H. Dai, Y. Chen, et al., “Flexible control of block

copolymer directed self-assembly using small, topographical templates:

Potential lithography solution for integrated circuit contact hole pat-

terning,” Advanced Materials, vol. 24, no. 23, pp. 3107–3114, 2012.

[9] Y. Du, D. Guo, M. D. Wong, H. Yi, H.-S. P. Wong, H. Zhang, and

Q. Ma, “Block copolymer directed self-assembly (DSA) aware contact

layer optimization for 10 nm 1d standard cell library,” in IEEE/ACM

International Conference on Computer-Aided Design, 2013.

[10] D. Q. Pike, F. A. Detcheverry, M. Müller, and J. J. de Pablo, “Theo-

retically informed coarse grain simulations of polymeric systems,” The

Journal of chemical physics, vol. 131, p. 084 903, 2009.

[11] H. D. Ceniceros and G. H. Fredrickson, “Numerical solution of polymer

self-consistent field theory,” Multiscale Modeling & Simulation, vol. 2,

no. 3, pp. 452–474, 2004.

[12] A. Latypov, M. Preil, G. Schmid, J. Xu, H. Yi, K. Yoshimoto, and Y.

Zou, “Exploration of the directed self-assembly based nano-fabrication

design space using computational simulations,” in SPIE Advanced

Lithography, International Society for Optics and Photonics, 2013,

pp. 868 013–868 013.

[13] K. Yoshimoto, B. L. Peters, G. S. Khaira, and J. J. de Pablo, “Scalable

simulations for directed self-assembly patterning with the use of GPU

parallel computing,” in SPIE Advanced Lithography, International So-

ciety for Optics and Photonics, 2012, 83232P–83232P.

[14] Y. Wei and R. L. Brainard, “Advanced processes for 193-nm immersion

lithography,” in. SPIE Press Book, 2009, ch. 9, pp. 215–225.

[15] K. Yuan, J.-S. Yang, and D. Pan, “Double patterning layout decom-

position for simultaneous conflict and stitch minimization,” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, vol. 29, no. 2, pp. 185–196, Feb. 2010, issn: 0278-0070.

[16] C.-H. Hsu, Y.-W. Chang, and S. R. Nassif, “Simultaneous layout migra-

tion and decomposition for double patterning technology,” in Proceed-

ings of the 2009 International Conference on Computer-Aided Design,

ser. ICCAD ’09, San Jose, California: ACM, 2009, pp. 595–600.

128

[17] Y. Xu and C. Chu, “GREMA: Graph reduction based efficient mask

assignment for double patterning technology,” in Proceedings of the

2009 International Conference on Computer-Aided Design, ser. ICCAD

’09, San Jose, California: ACM, 2009, pp. 601–606.

[18] M. Mirsaeedi, J. Torres, and M. Anis, “Self-aligned double-patterning

(sadp) friendly detailed routing,” in Proceedings of SPIE, vol. 7974,

2011, 79740O.

[19] J. Gao and D. Pan, “Flexible self-aligned double patterning aware de-

tailed routing with prescribed layout planning,” in Proceedings of the

2012 ACM international symposium on International Symposium on

Physical Design, ACM, 2012, pp. 25–32.

[20] Y. Ma, J. Sweis, H. Yoshida, Y. Wang, J. Kye, and H. Levinson, “Self-

aligned double patterning (SADP) compliant design flow,” in SPIE

Advanced Lithography, International Society for Optics and Photonics,

2012, pp. 832 706–832 706.

[21] Y. Ma, J. Sweis, C. Bencher, H. Dai, Y. Chen, J. P. Cain, Y. Deng,

J. Kye, and H. J. Levinson, “Decomposition strategies for self-aligned

double patterning,” in Proc. SPIE, vol. 7641, 76410T, Jan. 2010.

[22] C. Bencher, “SADP: The best option,” Nanochip Technology Journal,

vol. 5, no. 2, pp. 1–6, Oct. 2007.

[23] M. C. Smayling, C. Bencher, H. D. Chen, H. Dai, and M. P. Duane,

“APF pitch-halving for 22nm logic cells using gridded design rules,”

Proc. SPIE, vol. 6925, no. 1, 69251E–69251E-8, 2008.

[24] S. Sun, C. Bencher, Y. Chen, H. Dai, M.-P. Cai, J. Jin, P. Blanco, L.

Miao, P. Xu, X. Xu, et al., “Demonstration of 32nm half-pitch electri-

cal testable nand flash patterns using self-aligned double patterning,”

in SPIE Advanced Lithography, International Society for Optics and

Photonics, 2009, pp. 72740D–72740D-7.

[25] Y.-S. Chang, J.-C. Lai, C.-C. Lin, J. Sweis, and J. Yu, “Full-area pat-

tern decomposition of self-aligned double patterning for 30nm node

nand flash process,” Proc. SPIE, Jan. 2010.

[26] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decomposition

for double patterning lithography,” in Proc. ICCAD, ser. ICCAD ’08,

San Jose, California: IEEE Press, 2008, pp. 465–472.

129

[27] Q. Li, “NP-completeness result for positive line-by-fill SADP process,”

SPIE Photomask Technology, vol. 7823, 78233P, 2010.

[28] Z. Xiao, Y. Du, H. Zhang, and M. D. Wong, “A polynomial time ex-

act algorithm for self-aligned double patterning layout decomposition,”

in Proceedings of the 2012 ACM international symposium on Interna-

tional Symposium on Physical Design, ACM, 2012, pp. 17–24.

[29] ——, “A polynomial time exact algorithm for overlay-resistant self-

aligned double patterning (SADP) layout decomposition,” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, vol. 32, no. 8, pp. 1228–1239, 2013.

[30] H. Zhang, Y. Du, M. Wong, R. Topaloglu, and W. Conley, “Effective de-

composition algorithm for self-aligned double patterning lithography,”

in Proceedings of SPIE, vol. 7973, 2011, 79730J.

[31] B. Aspvall, “A linear-time algorithm for testing the truth of certain

quantified Boolean formulas,” Inform. Process. Lett., vol. 8, pp. 121–

123, 1979.

[32] Nangate open cell library, http://www.si2.org/openeda.si2.org/

projects/nangatelib.

[33] Gurobi optimizer, http://www.gurobi.com.

[34] Z. Xiao, Y. Du, H. Tian, and M. D. Wong, “Optimally minimizing over-

lay violation in self-aligned double patterning decomposition for row-

based standard cell layout in polynomial time,” in Computer-Aided De-

sign (ICCAD), 2013 IEEE/ACM International Conference on, IEEE,

2013, pp. 32–39.

[35] H. Tian, H. Zhang, Q. Ma, Z. Xiao, and M. D. Wong, “A polynomial

time triple patterning algorithm for cell based row-structure layout,”

in Computer-Aided Design (ICCAD), 2012 IEEE/ACM International

Conference on, IEEE, 2012, pp. 57–64.

[36] H. Zhang, Y. Du, M. D. Wong, and R. O. Topaloglu, “Characteriza-

tion and decomposition of self-aligned quadruple patterning friendly

layout,” in SPIE Advanced Lithography, International Society for Op-

tics and Photonics, 2012, 83260F–83260F.

130

http://www.si2.org/openeda.si2.org/projects/nangatelib
http://www.si2.org/openeda.si2.org/projects/nangatelib
http://www.gurobi.com

[37] X.-Y. Bao, H. Yi, C. Bencher, L.-W. Chang, H. Dai, Y. Chen, P.-T.

Chen, and H.-S. Wong, “SRAM, NAND, DRAM contact hole pattern-

ing using block copolymer directed self-assembly guided by small topo-

graphical templates,” in Electron Devices Meeting (IEDM), 2011 IEEE

International, IEEE, 2011, pp. 7–7.

[38] C. Bencher, H. Dai, and Y. Chen, “Gridded design rule scaling: Tak-

ing the CPU toward the 16nm node,” in Proc. SPIE, vol. 7274, 2009,

72740G.

[39] Z. Xiao, Y. Du, M. D. F. Wong, and H. Zhang, “DSA template mask

determination and cut redistribution for advanced 1D gridded design,”

in SPIE Photomask Technology, International Society for Optics and

Photonics, 2013, p. 888 017.

[40] Z. Xiao, Y. Du, H. Tian, and M. D. F. Wong, “Dsa template optimiza-

tion for contact layer in 1d standard cell design,” in SPIE Advanced

Lithography, vol. 9049, 2014.

[41] H. Yi and H.-S. P. Wong, “Block copolymer directed self-assembly two-

hole pattern inside peanut-shaped templates,” in EIPBN, 2013, 10B–

05.

[42] S. Kirkpatrick, D. G. Jr., and M. P. Vecchi, “Optimization by simmu-

lated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[43] R. A. Rutenbar, “Simulated annealing algorithms: An overview,” Cir-

cuits and Devices Magazine, IEEE, vol. 5, no. 1, pp. 19–26, 1989.

[44] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,”

Journal of the ACM (JACM), vol. 22, no. 2, pp. 215–225, 1975.

[45] D. Hill, Method and system for high speed detailed placement of cells

within an integrated circuit design, US Patent 6,370,673, Apr. 2002.

[46] Y. Borodovsky, “Marching to the beat of Moore’s law,” in SPIE 31st

International Symposium on Advanced Lithography, International So-

ciety for Optics and Photonics, 2006, pp. 615 301–615 301.

131

[47] Y. Ma, J. A. Torres, G. Fenger, Y. Granik, J. Ryckaert, G. Vander-

berghe, J. Bekaert, and J. Word, “Challenges and opportunities in ap-

plying grapho-epitaxy DSA lithography to metal cut and contact/via

applications,” in 30th European Mask and Lithography Conference, In-

ternational Society for Optics and Photonics, 2014, 92310T–92310T.

[48] H. Tian, Y. Du, H. Zhang, Z. Xiao, and M. Wong, “Triple pattern-

ing aware detailed placement with constrained pattern assignment,”

in Computer-Aided Design (ICCAD), 2014 IEEE/ACM International

Conference on, 2014.

[49] Y. Du, H. Zhang, M. D. Wong, and K.-Y. Chao, “Hybrid lithography

optimization with e-beam and immersion processes for 16nm 1d grid-

ded design,” in Design Automation Conference (ASP-DAC), 2012 17th

Asia and South Pacific, IEEE, 2012, pp. 707–712.

[50] J.-R. Gao, B. Yu, and D. Z. Pan, “Self-aligned double patterning lay-

out decomposition with complementary e-beam lithography.,” in ASP-

DAC, 2014, pp. 143–148.

[51] H. Tian, H. Zhang, Z. Xiao, and M. D. Wong, “Hybrid lithography

for triple patterning decomposition and e-beam lithography,” in SPIE

Advanced Lithography, International Society for Optics and Photonics,

2014, 90520P–90520P.

[52] Y. Du, Z. Xiao, M. D. F. Wong, H. Yi, and H.-S. P. Wong, “DSA-aware

detailed routing for via layer optimization,” vol. 9049, 2014, 90492J–

90492J-8.

[53] J. A. Torres, K. Sakajiri, D. Fryer, Y. Granik, Y. Ma, P. Krasnova, G.

Fenger, S. Nagahara, S. Kawakami, B. Rathsack, et al., “Physical veri-

fication and manufacturing of contact/via layers using grapho-epitaxy

dsa processes,” in SPIE Advanced Lithography, International Society

for Optics and Photonics, 2014, 90530R–90530R.

[54] Z. Xiao, Y. Du, H. Tian, M. D. F. Wong, H. Yi, H.-S. P. Wong, and H.

Zhang, “Directed self-assembly (dsa) template pattern verification,” in

DAC ’14: Proceedings of the 51th Annual Design Automation Confer-

ence, Jun. 2014.

132

[55] Z. Xiao, Y. Du, M. D. Wong, H. Yi, H. Wong, and H. Zhang, “Contact

pitch and location prediction for directed self-assembly template ver-

ification,” in Design Automation Conference (ASP-DAC), 2015 20th

Asia and South Pacific, IEEE, 2015, pp. 644–651.

[56] Y. Badr, J. Torres, Y. Ma, J. Mitra, and P. Gupta, “Incorporating

dsa in multipatterning semiconductor manufacturing technologies,” in

SPIE Advanced Lithography, International Society for Optics and Pho-

tonics, 2015, 94270P–94270P.

[57] Z. Xiao, C.-X. Lin, H. Zhang, and M. D. Wong, “Contact layer decom-

position to enable dsa with multi-patterning technique for standard cell

based layout,” in Design Automation Conference (ASP-DAC), 2016

21st Asia and South Pacific, IEEE, 2016.

[58] P. Heggernes, P. V. Hof, D. Lokshtanov, and C. Paul, “Obtaining a

bipartite graph by contracting few edges,” SIAM Journal on Discrete

Mathematics, vol. 27, no. 4, pp. 2143–2156, 2013.

[59] M. Samer and S. Szeider, “Fixed-parameter tractability,” Handbook of

Satisfiability, 2009.

[60] S. Nangate, California (2008). 45 nm open cell library, http://www.

nangate.com, 2008.

[61] H. Yi, A. Latypov, and H.-S. P. Wong, “Computational simulation of

block copolymer directed self-assembly in small topographical guiding

templates,” in SPIE Advanced Lithography, International Society for

Optics and Photonics, 2013, pp. 86801L–86801L.

[62] N. Ma, J. Ghan, S. Mishra, C. Spanos, K. Poolla, N. Rodriguez, and

L. Capodieci, “Automatic hotspot classification using pattern-based

clustering,” in Advanced Lithography, International Society for Optics

and Photonics, 2008, pp. 692 505–692 505.

[63] D. G. Drmanac, F. Liu, and L.-C. Wang, “Predicting variability in

nanoscale lithography processes,” in Design Automation Conference,

2009. DAC’09. 46th ACM/IEEE, IEEE, 2009, pp. 545–550.

[64] J.-Y. Wuu, F. G. Pikus, A. Torres, and M. Marek-Sadowska, “Detecting

context sensitive hotspots in standard cell libraries,” in Proc. SPIE,

vol. 7275, 2009, p. 727 515.

133

http://www.nangate. com
http://www.nangate. com

[65] Y.-T. Yu, G.-H. Lin, I. H.-R. Jiang, and C. Chiang, “Machine-learning-

based hotspot detection using topological classification and critical fea-

ture extraction,” in DAC ’13: Proceedings of the 50th Annual Design

Automation Conference, May 2013.

[66] S.-Y. Lin, J.-Y. Chen, J.-C. Li, W.-y. Wen, and S.-C. Chang, “A novel

fuzzy matching model for lithography hotspot detection,” in DAC ’13:

Proceedings of the 50th Annual Design Automation Conference, May

2013.

[67] D. Ding, A. J. Torres, F. G. Pikus, and D. Z. Pan, “High perfor-

mance lithographic hotspot detection using hierarchically refined ma-

chine learning,” in Proceedings of the 16th Asia and South Pacific De-

sign Automation Conference, IEEE Press, 2011, pp. 775–780.

[68] Z. Xiao, D. Guo, M. D. Wong, H. Yi, M. C. Tung, and H.-S. P. Wong,

“Layout optimization and template pattern verification for directed

self-assembly (DSA),” in Proceedings of the 52nd Annual Design Au-

tomation Conference, ACM, 2015, p. 199.

[69] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization

for spoken word recognition,” Acoustics, Speech and Signal Processing,

IEEE Transactions on, vol. 26, no. 1, pp. 43–49, 1978.

[70] N. Dalal and B. Triggs, “Histograms of oriented gradients for hu-

man detection,” in Computer Vision and Pattern Recognition, 2005.

CVPR 2005. IEEE Computer Society Conference on, IEEE, vol. 1,

2005, pp. 886–893.

[71] M. T. Hagan, H. B. Demuth, M. H. Beale, et al., Neural network design.

Pws Pub. Boston, 1996.

[72] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,

pp. 123–140, 1996.

[73] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of

on-line learning and an application to boosting,” in Computational

learning theory, Springer, 1995, pp. 23–37.

[74] C. J. Burges, “A tutorial on support vector machines for pattern recog-

nition,” Data Mining and Knowledge Discovery, vol. 2, pp. 121–167,

1998.

134

[75] D. H. Ballard, “Generalizing the Hough transform to detect arbitrary

shapes,” Pattern recognition, vol. 13, no. 2, pp. 111–122, 1981.

[76] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector

machines,” ACM Transactions on Intelligent Systems and Technology,

vol. 2, 27:1–27:27, 3 2011, Software available at http://www.csie.

ntu.edu.tw/~cjlin/libsvm.

135

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 Background and Motivation
	1.2 Overview of This Dissertation

	CHAPTER 2 SADP DECOMPOSITION FOR 2D LAYOUT
	2.1 Introduction
	2.1.1 Applying SADP to Multiple Features
	2.1.2 SADP Decomposition Problem
	2.1.3 Our Contributions

	2.2 Preliminaries
	2.2.1 Overlay in SADP Process
	2.2.2 Process Rules

	2.3 Previous Work
	2.4 A Polynomial-time Exact Algorithm for SADP Decomposition
	2.4.1 Auxiliary Cores
	2.4.2 Critical Edges
	2.4.3 A Graph Formulation for SADP Decomposition
	2.4.4 Overview of Our Algorithm
	2.4.5 Decompositions for Connected Components
	2.4.6 Combining Decompositions

	2.5 Experimental Results
	2.6 Conclusion

	CHAPTER 3 SADP DECOMPOSITION FOR ROW-BASED STANDARD CELL LAYOUT
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Overlay Violation
	3.2.2 SADP Decomposition in Row-based Standard Cell Layout
	3.2.3 SADP Mask Rules
	3.2.4 SADP-compliant Design

	3.3 SADP Decomposition Algorithm for Row-based Standard Cell Layout
	3.3.1 Overview
	3.3.2 Layout Decomposition for Regions
	3.3.3 Solution Graph
	3.3.4 Standard Cell Row Partitioning
	3.3.5 Illustration of the Proposed Algorithm
	3.3.6 Complexity
	3.3.7 Decomposition for Multiple-row Layout

	3.4 Experiments
	3.5 Conclusion

	CHAPTER 4 DSA DESIGN-TECHNOLOGY CO-OPTIMIZATION
	4.1 Introduction
	4.1.1 Background
	4.1.2 Contact Layer Optimization for DSA
	4.1.3 Cut Layer Optimization for DSA

	4.2 Cost Modeling and Design Constraints
	4.2.1 Cost of DSA Template
	4.2.2 1D Design Optimization via Wire Permutation
	4.2.3 Problem Description

	4.3 DSA Contact Layer Optimization for Full-chip Layout
	4.3.1 Overall Annealing Scheme
	4.3.2 Candidate Solution Generation
	4.3.3 Solution Updating and Cost Evaluating

	4.4 DSA Cut Redistribution Problem
	4.5 Proposed Method
	4.5.1 Conflict Graph Construction
	4.5.2 Template Matching for Components
	4.5.3 Conflict Pairs
	4.5.4 Template Embedding
	4.5.5 Legalization and Detailed Placement

	4.6 Experimental Results
	4.7 Conclusion

	CHAPTER 5 CONTACT LAYER DECOMPOSITION FOR DSA-MP COMPLEMENTARY LITHOGRAPHY
	5.1 Introduction
	5.2 Problem Formulation
	5.3 Contact Layer Decomposition with DSA-MP
	5.3.1 Color-first Iterative Decomposition
	5.3.2 Group-first Iterative Decomposition
	5.3.3 Optimal Decomposition for Standard Cell Row
	5.3.4 Decomposition for Standard Cell
	5.3.5 Decomposition Graph
	5.3.6 Cell Splitting and Simplified Decomposition Graph
	5.3.7 Complexity Analysis
	5.3.8 Handling Multiple Rows

	5.4 Experimental Results
	5.5 Conclusion

	CHAPTER 6 DSA TEMPLATE VERIFICATION
	6.1 Introduction
	6.2 ML-based DSA Verification Flow
	6.2.1 Problem Definitions
	6.2.2 Proposed Methodology
	6.2.3 DSA Template Pattern Modeling

	6.3 Feature Extraction
	6.3.1 Matched Points Feature
	6.3.2 Point Distance Feature
	6.3.3 Edge Orientation Feature

	6.4 Learning Algorithms
	6.4.1 Artificial Neural Network
	6.4.2 Random Forests with Bagging
	6.4.3 Boosting
	6.4.4 Support Vector Machine and Regression

	6.5 Training and Evaluation Data
	6.6 Experimental Results
	6.6.1 DSA Hotspot Detection
	6.6.2 Contact Pitch and Location Prediction
	6.6.3 SVR Performance Study and Tuning

	6.7 Conclusion

	CHAPTER 7 CONCLUSIONS
	REFERENCES

