
HYBRID STATE ESTIMATION APPLICATIONS FOR JOINT TRAFFIC
MONITORING AND INCIDENT DETECTION

BY

REN WANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Civil Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Daniel Work, Chair
Professor Yanfeng Ouyang
Professor Joshua Peschel
Professor Richard Sowers



ABSTRACT

This dissertation is motivated by the practical problems of highway traffic estimation and

incident detection using measurements from various sensor types. It proposes a framework to

jointly estimate the traffic state and incidents in a hybrid state estimation problem where a

continuous variable models the traffic state and a discrete model variable identifies the loca-

tion and severity of an incident. Clearly, knowledge of an incident can improve post–incident

traffic state estimates. Moreover, knowledge of the traffic state can be used to improve de-

tection of incidents, by observing when the predicted traffic state differs significantly from

the observed measurements.

Two macroscopic traffic flow models are deployed to describe the evolution of traffic.

Both the first order model and the second order model are extended to hybrid models by

embedding a model parameter to denote the number of lanes open along the highway. The

resulting traffic incident models are capable of describing traffic dynamics under both non–

incident and incident scenarios that result in lane blockages.

Next, several nonlinear filters are proposed to solve the joint traffic state estimation and

incident detection problem. First, a multiple model particle filter and an interactive multiple

model ensemble Kalman filter are proposed, where the particle filter or the ensemble Kalman

filter are used to accommodate the nonlinearity of the traffic model, and multiple model

methods are deployed to address the switching dynamics of traffic when incidents occur.

Next, the multiple model particle filter is extended to a multiple model particle smoother

to improve the estimation accuracy when data is limited. Finally, a variant of the multiple

model particle filter, called the efficient multiple model particle filter, is developed for field

implementations, which requires significantly less computation time compared to the other
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filters considered in this thesis.

To validate the framework, the proposed nonlinear filters are implemented on the first

order and second order traffic flow models, and tested in the microscopic traffic simulation

software CORSIM and on field data collected on I–880 in California, which includes density

measurements from inductive loops and speed measurements from GPS equipped vehicles.

The results show that with either traffic flow model, the proposed traffic estimation algo-

rithms are capable of jointly estimating the traffic state and detecting incidents when the

traffic flow is high (i.e., when an incident results in congestion). The proposed algorithms

are also compared with existing algorithms that independently estimate the traffic state or

incidents. The results show that jointly estimating the state and incidents in one algorithm

may perform better than two dedicated algorithms working independently, especially when

loop detectors are sparse and the penetration rate of GPS equipped vehicles is high.
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Chapter 1

Introduction

1.1 Motivation

The objective of traffic estimation is to monitor the traffic state. The traffic state (e.g.,

traffic density or velocity along the roadway) can be estimated with traffic models and

nonlinear filtering techniques, where traffic models are used to predict the traffic state given

the initial and boundary conditions, and nonlinear filters are used to adjust the predictions by

incorporating information from real time sensor measurements. Within the transportation

community, traffic is modeled at different scales. At one end of the spectrum are microscopic

traffic models, which describe the dynamics of each individual vehicle and their interactions

[2, 3, 4]. At the other end of the spectrum are macroscopic traffic models which describe

traffic as a continuum and represent the traffic state in terms of aggregate quantities such as

traffic density, flow, and average speed [4, 5, 6, 7]. Because of the reduction of the number of

state variables compared to the microscopic model, macroscopic traffic models are commonly

used for real time traffic estimation problems [8, 9, 10, 11].

Traffic estimation techniques have advanced rapidly in recent years because of develop-

ments in nonlinear filtering techniques, advances in sensing technologies such as GPS data

from cellphones, and the availability of cheap computing and communication resources to fuse
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the data and models together. Most existing traffic estimation algorithms (e.g., [8, 9, 10, 11])

assume time–invariant parameters in the traffic model and do not account for changes in the

dynamics on the highway caused by traffic incidents. While a calibrated traffic estimation

model can perform well under normal traffic operating conditions, it can provide poor traffic

state estimates when a traffic incident occurs, because the traffic model does not contain any

dynamics to describe the traffic flow evolution under incidents. On the other hand, traffic

incident detection is also a widely studied problem in the field of transportation engineering

[12, 13, 14, 15, 16]. Traffic incident detection algorithms report incidents by observing when

the sensor measurements significantly deviate from normal values. While existing incident

detection algorithms can detect incidents with reasonable detection rates and false alarm

rates, they do not offer a complete picture of the impact of the traffic incident on the traffic

conditions or the resulting congestion [16].

This thesis is motivated by the fact that jointly estimating incidents and the traffic state

can improve both incident detection capabilities and the traffic state estimates. Clearly,

knowledge of an incident can improve post–incident traffic state estimates. Moreover, knowl-

edge of the traffic state can be used to improve detection of incidents by observing when the

predicted traffic state differs significantly from the observed measurements. To address the

problem of jointly estimating incidents and the traffic state, this thesis poses the problem

as a hybrid state estimation problem. The deterministic macroscopic traffic flow models are

extended to hybrid state traffic incident models, where a continuous variable denotes the

traffic state and a discrete model variable identifies the location and severity of an incident.

Then, several nonlinear filtering techniques are proposed to solve the hybrid state estimation

problem, using either a first order or a second order traffic flow model in the filters. Finally,

the performance of the filters are compared in numerical experiments and using field data.

Figure 1.1 provides an overview of the hybrid state estimation problem for joint traffic

state estimation and incident detection. Given the roadway properties (e.g., length of the

road, number of lanes available), a traffic flow model can be constructed to describe the
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Figure 1.1: An overview of the hybrid state estimation problem for joint traffic state esti-
mation and incident detection.
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traffic evolution on the highway. In order to describe traffic dynamics under incidents, the

traffic flow model is extended to a hybrid state traffic incident model by embedding a discrete

model parameter to encode the possibility of a lane blockage. At each time step, the hybrid

traffic model predicts the traffic state for the next time step for possible models involved in

the system (i.e., both the normal traffic condition and possible incident scenarios). When

the measurements are received, the information can be used to infer the existence of traffic

incidents and improve the prediction by the traffic flow model. This step is achieved by using

nonlinear filtering techniques. Finally, the estimated traffic state for the current time step

will be used to predict the future traffic state for the next time step.

1.2 Problem statement and solution framework

In this thesis, the joint traffic state estimation and incident detection problem is posed as

a hybrid state estimation problem. The evolution and observation equations of the hybrid

system are given by:

γn = Π
(
γn−1

)
,

xn = f
(
xn−1, γn

)
+ ωn−1,

zn = hn (xn, γn) + νn.

(1.1)

The variable γ is known as the model variable, which is a time varying vector and denotes

the integer number of lanes open along the freeway during the time period (tn−1, tn]. The

first equation is known as the model transition equation, which describes the evolution of

the model variable γ. The second equation is known as the system evolution equation, which

describes the evolution of traffic. Here, the continuous variable xn denotes the traffic state

(e.g., a vector of densities and velocities along the roadway). The traffic evolution equations

are constructed from a macroscopic traffic flow model denoted by f , which evolves the traffic

state xn−1 at discrete time step n− 1 to time n. When the model variable γn is embedded
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into the traffic flow model, the traffic model f becomes capable of predicting traffic states

under incident conditions. The term zn denotes the measurements received from various

sensor types. For example, it can be a vector of speed or density measurements collected

from inductive loops or GPS equipped vehicles. The function hn is a nonlinear observation

operator that relates the system state with the measurements, and is time varying when

GPS data in vehicles are used because the sensors move in the traffic stream. The variable

ωn is a random variable representing the noise associated with the traffic model, and νn is a

random variable that describes the measurement noise. An additive noise model is used for

both the evolution and observation equations.

Given the evolution observation system (1.1), the joint traffic state estimation and inci-

dent detection problem can be posed as the problem of estimating the traffic state variable

xn and the model variable γn given measurements {z1, · · · , zn}. The hybrid state estimation

problem is challenging because of the following. First, the traffic flow model f is nonlinear

and there is a switching dynamic associated with the traffic model due to incidents. As a

result, standard linear minimal variance techniques such as the Kalman filter are not directly

applicable [8, 17]. Second, the estimation of the model parameter γn is challenging when

data is limited. For example, when two sensors are located far apart and an incident occurs

in the middle, the algorithm cannot identify the location and the severity of the incident

in real time, because it takes time for the resulting congestion to propagate to the sensors,

where derivations from typical conditions can be detected. Third, when traffic is light, a

traffic incident may not result in congestion if the remaining lanes have enough capacity to

accommodate all the traffic. In this case, the estimation algorithms are not able to detect

the model switch because the traffic conditions remain typical at the sensor locations.

In this thesis, several multiple model nonlinear filtering algorithms are proposed to solve

the hybrid state estimation problem for system (1.1), where multiple model methods are

used to address the switching dynamics of the traffic model, and nonlinear filters, such as

the particle filter (PF) and the ensemble Kalman filter (EnKF), are used to handle the
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nonlinearities of the traffic models. When data is limited, the multiple model nonlinear filter

is extended to a multiple model nonlinear smoother to improve the estimation accuracy. For

field implementation, a variation of the multiple model particle filter (MMPF), called efficient

multiple model particle filter (EMMPF), is proposed to reduce the computational cost for

solving the hybrid state estimation problem. The proposed algorithms are implemented on

both the first order traffic model and the second order traffic flow model, and tested with

incident data from a microscopic simulation software and field data collected on a segment

of I–880 in California.

1.3 Contributions of the thesis

The main contributions of this thesis are summarized as follows:

• A hybrid state estimation problem is posed to jointly estimate the traffic state and

detect incidents, where the estimate of the continuous variable indicates the traffic

state and the estimate of the discrete variable identifies the location, severity, and

duration of a traffic incident. The framework is general and can be implemented using

a variety of macroscopic traffic flow models and nonlinear filtering techniques, several

of which are developed in this thesis.

• A multiple model particle filter and an interactive multiple model (IMM) ensemble

Kalman filter are proposed to handle the nonlinearity and switching dynamics of the

traffic model with incidents. It is shown that the smoother extension to the MMPF,

called the multiple model particle smoother (MMPS), improves the estimation accuracy

when sensor data is limited.

• Another variation of the MMPF, called the efficient multiple model particle filter, is

also proposed. The EMMPF requires significantly less computation time compared to

the MMPF, the MMPS, or the IMM EnKF and is therefore more suitable for field

implementation in real time systems.
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• The proposed filtering algorithms are implemented on both first order and second order

traffic models, and tested with incident data generated by the microscopic traffic sim-

ulation software CORSIM and field data collected on a segment of I–880 in California.

It is found the proposed algorithms are capable of jointly estimating the traffic state

and detecting incidents. The estimation accuracy of the MMPF is the highest among

all algorithms but computationally the most expensive. The first and second order

models are shown to have similar performance both in terms of incident detection and

traffic state estimation. The proposed algorithms are also compared with both a par-

ticle filter and the California algorithm which independently estimate the traffic state

and the presence of an incident. The results show that jointly estimating the traffic

state and incidents in one algorithm performs at least as good as performing each task

independently.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, a literature review is given on traffic

estimation, traffic incident detection, and other estimation techniques that are closely related

to this thesis.

In Chapter 3, the first order traffic model and the second order traffic flow model used

in this work and their numerical discretizations are introduced. Next, a model parameter

is embedded into the models so that the models become capable of modeling the traffic

evolution under incidents. Since ramps need to be considered in realistic field deployments,

the junction solver for the second order traffic model with incidents is introduced. The

junction solvers for the first order model can be derived as a simplification of the solvers for

the second order traffic model.

In Chapter 4, nonlinear filters are proposed to solve the hybrid state estimation problem

associated with system (1.1). In particular, a MMPF and an IMM EnKF are proposed. The
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MMPF has also been extended to a MMPS and to an EMMPF.

In Chapter 5, the MMPF, the MMPS, the IMM EnKF, and the EMMPF are tested

with incident data generated by the microscopic simulation software CROSIM. The MMPF,

MMPS, and IMM EnKF are implemented with the first order model, while the EMMPF is

implemented with both the first and second order traffic models. The MMPF and MMPS are

tested with different penetration rates of GPS equipped vehicles, and the MMPS is shown

to improve the estimation accuracy when the penetration rate of GPS equipped vehicles

is low. The MMPF is compared with the IMM EnKF, and with a particle filter and the

California algorithm to evaluate traffic state estimation and incident detection performance

under various inflows. The performance of the first and second order models are compared

to distinguish the relative merits of the traffic flow models for joint traffic state estimation

and incident detection.

The field implementation of the estimation framework is described in Chapter 6. The

EMMPF is implemented in both the first order traffic model and the second order traffic

model on a segment of Interstate 880 in California. The density measurements from inductive

loops and speed measurements collected from GPS equipped vehicles in the Mobile Century

experiment [18] are used as measurements to the algorithm. The calibration procedures for

model parameters are described and the performance of the first and second order traffic flow

models are compared. Similar to the CORSIM experiments, the EMMPF is also compared

with a particle filter and the California algorithm to compare the traffic state estimation and

incident detection performance of the proposed framework and existing works.

In Chapter 7, the main results of the thesis are summarized and future work is discussed,

which includes the development of a calibration procedure for model parameters and deploy-

ment of parallelization approaches to improve the scalability of the proposed algorithms.
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Chapter 2

Related work

Due to the importance from an operational and safety standpoint, there is a considerable

amount of literature on both the problems of estimating traffic conditions, and on detecting

traffic incidents. In this section, a brief summary is provided on the prior work done in each

area, which serves as a basis for the proposed research in the thesis.

2.1 Traffic estimation and nonlinear filtering techniques

2.1.1 Traffic estimation

The main challenge of traffic state estimation is the integration of various types of sensor

data (flow, occupancy, speed, etc.) into a nonlinear macroscopic traffic model. The standard

state space model for traffic estimation is given as follows:

xn = f
(
xn−1

)
+ ωn−1

zn = hn (xn) + νn.

(2.1)

Note (2.1) is structurally very similar to (1.1), with the notable distinction that the

traffic flow model f and the observation equation h do not depend on a model variable.

The process of sequential traffic state estimation using experimental data and a flow model
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evolution equation began in the 1970’s with the early work of Szeto and Gazis [19], who used

an extended Kalman filter (EKF) to estimate the traffic density in the Lincoln Tunnel in New

York City. The EKF algorithm employs linearization of the system (2.1) and models the

noise processes as additive, to fit the framework of the Kalman filter. Starting in the early

1980’s, a modified version of Payne’s macroscopic model was used for a variety of estimation

and control problems through the work of Papageorgiou and his collaborators [20, 21, 22, 23].

Recently, the cell transmission model (CTM) [24, 25] has been used in state estimation

problems through increasingly advanced nonlinear filters, including the unscented Kalman

filter (UKF) [9, 26] and the particle filter (PF) [9, 10, 27]. The particle filter is shown to per-

form better than the UKF for traffic state reconstruction [9], but has a higher computational

cost. Implementation of particle filtering techniques on high dimensional systems (several

thousand states or more), is an challenging problem due to inherent scalability challenges

for particle filters [28, 29]. The parallelized particle filter [30] has been proposed for large

scale implementations. Sun et al. [31] treat the nonlinearity of the (non-differentiable) CTM

by recognizing it can be transformed into a linear switching state space model. The density

state estimation problem is then solved with a mixture Kalman filter for ramp metering

or traffic estimation [32]. Other treatments of traffic estimation include ensemble Kalman

filtering [33, 34, 35], adjoint–based control and data assimilation [36, 37], distributed local

Kalman consensus filtering [38], and direct injection into a Hamilton-Jacobi reformulation

of a scalar macroscopic traffic flow model [39, 40].

Among these techniques, the work [35] incorporates multiple models to describe the

relationship between traffic density and traffic flow using various data fitting methods. The

work [23] uses time varying parameters to jointly estimate densities and second order model

parameters, while the others assume a single density–flow relationship for the traffic model.

When time–invariant parameters are assumed, the estimation models are not able to account

for changes in the dynamics on the highway caused by traffic incidents. In order to jointly

estimate the traffic state and detect traffic incidents, a hybrid state estimation problem for
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system (1.1) is proposed. By introducing the model variable γ, the estimation model becomes

capable of modeling the traffic evolution with an incident.

2.1.2 Nonlinear filtering techniques

A number of techniques in the estimation community have been developed to solve hybrid

estimation problems for systems in the form of (1.1). A popular hybrid state estimation prob-

lem is the maneuver target tracking problem [41, 42], where a target has several operation

modes (e.g., acceleration, deceleration, constant speed) and the objective of the estimation

model is to correctly estimate the position of the target and the mode on which it operates.

The MMPF [17] solves the hybrid state estimation problem by allowing the system to

have several models. It has a model transition step that describes the switching dynamics

of the system mode, and particles are generated for likely system models. The idea of

the MMPF is that if the state xn generated by a model variable γn matches well with the

measurements, then the MMPF estimates the system is operating in model γ at time n. One

central challenge for the MMPF to work in practice is due to its large computational load.

When a system has multiple models and some models have very low probability of occurrence

(e.g., system fault detection, traffic incident detection), the estimation algorithm requires a

large sample size so as to generate enough samples for all possible models of the system.

This will lead to a large computational load and possibly prevent the algorithms from being

implemented in real time. This problem is addressed by [43], where a model–conditioned

PF algorithm is proposed as an modification to the standard MMPF. The computation time

can be significantly reduced when a hybrid state system contains rare modes.

Another group of the estimation techniques for solving the hybrid state estimation prob-

lem exploits the multiple model (MM) approach and the Kalman filter. One of the widely

used approaches is the IMM Kalman filter [44, 45, 46]. This method is a model–conditioned

Kalman filtering approach. It first computes the weights for all the models of the hybrid

system based on the switching probabilities among the models. Then, a Kalman filter is
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performed on each model. The choice of the Kalman filter (e.g., extended Kalman filter,

ensemble Kalman filter, unscented Kalman filter) is problem dependent. The system state

is estimated using the results from each model–conditioned Kalman filter and the weight of

each model computed by transition probabilities among the system models. Different from

the static MM approach where model switches are not considered, the IMM approach is able

to handle dynamical systems with model switches.

These (interactive) multiple model nonlinear filtering techniques will serve as the basis

to solve the traffic state estimation and traffic incident detection problem for system (1.1).

2.2 Traffic incident detection algorithms

The main challenge of traffic incident detection is to identify the abnormal traffic patterns

caused by traffic incidents and distinguish them from regular traffic congestion. In the past,

a number of approaches have been proposed to detect traffic incidents, including the compar-

ative methods [12, 13, 14, 15, 47, 48], time series methods [49, 50], statistical methods [51],

probe–based methods [52], and artificial intelligence based methods [53]. A comprehensive

review of incident detection studies can be found in the review articles [16, 54, 55].

One group of algorithms are variants of the well known California algorithm [12, 13, 14,

15]. These techniques exploit the idea that an incident will cause a significant increase in

the occupancy recorded by an upstream sensor and a decrease in the occupancy recorded by

a downstream sensor, where the occupancy is defined as the percent of time that vehicles

occupy the sensor detection zone (e.g., is directly above an inductive loop). The Califor-

nia algorithm requires two sensors to collect traffic occupancy values. One sensor must

be located upstream from the incident and one must be located downstream. When the

measurements are collected, a decision tree structure is used to determine the existence of

an incident by comparing the difference and relative difference between the upstream and

downstream occupancy values. These values are compared with pre–set thresholds, and if
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the values exceed the thresholds, an incident alarm is triggered. Later in the thesis, the

performance of the California algorithm will be used as a benchmark and compared with

the performance of the proposed algorithms. The California algorithm [14] deployed in this

thesis is described in Algorithm 1, where OCCi and OCCi+1 denote the occupancy of the

upstream and downstream loop detectors (e.g., collected every two minutes), and T1, T2,

and T3 are thresholds which are calibrated from historical data.

Algorithm 1 California algorithm [14]

Collect the upstream sensor occupancy data OCCi

Collect the downstream sensor occupancy data OCCi+1

if OCCi-OCCi+1 > T1 then

if (OCCi-OCCi+1)/OCCi > T2 then

if (OCCi-OCCi+1)/OCCi+1 > T3 then

report incident

end if

end if

end if

The double exponential smoothing algorithm [56] uses occupancy, volume, and speed

data to detect incident–generated shock waves. The algorithm weights the past and present

traffic measurements to predict the short term traffic conditions. The weighting is performed

by using a double exponential smoothing function. The errors between the predicted and

observed traffic variables are described by an algebraic sum. An incident is reported if the

algebraic sum exceeds a preset threshold.

The low pass filter algorithms [57, 58, 59, 60] focus on the measurement processing stage

before the data is used to detect an incident. The short-term noise data and inhomogeneities

of the measurements are removed by rejecting high frequency fluctuations in the measure-

ments and weighting present and past observations. Then, the detection algorithm traces

the spatial occupancy difference between adjacent detectors through time. If the occupancy

difference is significant over a short time period, an incident is reported.
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The high occupancy (HIOCC) and pattern recognition (PATREG) algorithms [50] are de-

veloped by the Transport and Road Research Laboratory (TRRL) for their automatic incident

detection system. The idea of the HIOCC algorithm is to identify an incident by analyzing

the traffic disturbances caused by an incident. It detects an incident by identifying station-

ary or slow moving vehicles for several consecutive seconds by using the measurements from

individual vehicle detectors. The PATREG algorithm measures the traffic speed between

upstream and downstream sensors. It estimates vehicle speeds by measuring the travel time

of vehicles between detectors. This method tracks vehicles between sensors and computes

the travel time. The speed is estimated by using the travel time and distance between

detectors. The speed estimate is compared with the thresholds for a pre-set number of con-

secutive intervals. If the speed estimate falls below the threshold, an incident is reported. A

combination of these two algorithms has been applied for traffic incident detection.

The autoregressive integrated moving–average (ARIMA) model [49] assumes the differ-

ence of traffic measurements from the current step and the previous step will follow a nor-

mal pattern. The method uses datasets from three surveillance systems in Los Angeles,

Minneapolis, and Detroit to develop a predictor model for short–term forecasts of traffic

data. The autoregressive integrated moving–average model is found to match the datasets

well. A confidence interval is established to reflect the normal difference between consecu-

tive measurements. When the difference between two consecutive measurements exceeds the

established confidence interval, the model reports an incident occurrence.

The Bayesian algorithm [51] computes the likelihood of an incident occurrence by using

Bayesian statistical techniques. This approach develops the frequency distributions of the

upstream and the downstream occupancy ratios for both incident and incident–free condi-

tions. Mathematical expressions are developed for the distribution of the ratio from incident

and incident–free data. When a measurement is collected, the algorithm computes the likeli-

hood of an incident occurrence by comparing the ratio of the occupancy measurements from

the upstream and the downstream with the frequency distributions of the occupancy ratios.
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The method has been compared with the California algorithm, where it is found that this

algorithm has higher detection rate and lower false alarm rate. However, the mean time to

detect is longer.

The catastrophe theory model [61] aims at detecting incidents and distinguishing between

incident generated congestion and recurrent congestion. It assumes there will be a sharp

change of speed when the traffic switches from free flow to congestion, and the change

of traffic flow and occupancy are smooth. The model uses historical data to determine

the relationship between flow and occupancy, and the speed variations for congested and

uncontested traffic conditions. Then, two tests are applied to determine the existence of

traffic incidents. The first test is used to identify whether the traffic is congested. If it is

congested, then the second test will evaluate whether the congestion is caused by an incident.

The artificial neural network approach [53] assumes that spatial and temporal traffic

patterns can be recognized and classified by an artificial neural network. The artificial

neural network is trained with traffic occupancy and volume data from adjacent loop detector

stations, including 31 incidents from a typical freeway in the Twin Cities Metropolitan area.

The results indicate the neural network is able to learn the main characteristics of a variety

of traffic incidents.

The Autoscope incident detection algorithm [62] is based on an image processing tech-

nique. First, a video camera is used to monitor the traffic and to collect image data. Then,

an image processing program is applied to find stationary or slow–moving vehicles. The

program extracts traffic data (e.g., speed, occupancy) from the video and compares them

with the pre–set thresholds. When the computed traffic parameters exceed the thresholds,

an incident is reported. The video detection system has been tested in Minnesota. The

benefits of this approach is that it is possible to check the existence of a traffic incident by

reviewing the video, however, more equipment (i.e., video cameras) is required to implement

this method.

Another class of approaches are probe–based algorithms. The MIT algorithm [52] exploits
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the electronic toll transponders to detect incidents. Three components are proposed to detect

incidents: the headway algorithm, the lane switches algorithm, and the lane–monitoring

algorithm. The headway algorithm collects travel time and headway data from the electronic

toll transponders. The data is compared with pre-set thresholds by applying three different

checks. The lane–switching algorithm uses toll transponder data to collect lane–specific,

vehicle–specific data from which the number of lane switches can be estimated. If the

number of lane switches exceeds a certain threshold, the algorithm reports a traffic incident.

The lane–monitoring algorithm monitors the number of vehicles on each lane. The idea is

that if more vehicles travel on one lane than another, it indicates there may be an incident on

the other lane. The performance of this group of methods depends on the probe penetration

rate, the distance between transponder readers, and the availability of lane level traffic data,

which is not currently widely available.

The wavelet–based approach [63] uses traffic occupancy and speed data to detect traffic

incidents. This approach applies wavelet transform to preprocessing the traffic measure-

ments, and to identify the sharp changes in traffic measurements caused by an incident.

Moreover, the algorithm adaptively changes the threshold for incident alarm according to

the level of traffic flow. The wavelet–based approach is tested with both simulated and

real–world incident data. The algorithm shows to have higher detection rates and lower false

alarm rates compared to the California algorithm [13] and the low pass filter algorithm [58].

The probabilistic topic model [64] approach deploys a probabilistic model to describe

the state of the traffic. An expectation–maximization algorithm is used to estimate the

traffic states parameters under normal traffic conditions. An incident is detected when

measurements from vehicles is significantly different from the normal traffic state parameters

determined from the expectation–maximization algorithm. The algorithm is tested with

data collected in Tokyo and the results show that the proposed approach is able to detect

traffic incidents and to distinguish between congestion caused by incident and non–incident

scenarios. However, measurements from fast moving vehicles also have the chance to trigger
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the incident algorithm, as the behavior of those vehicles is significantly different from normal

conditions.

2.3 Macroscopic traffic flow model based incident detection

In contrast to the large literatures on traffic state estimation and on traffic incident detection,

few approaches have been proposed to estimate both traffic conditions and the presence of

events simultaneously. These methods that rely on macroscopic flow models to describe the

traffic dynamics and to detect incidents are described next.

Macroscopic traffic flow model based incident detection approaches have been considered

previously. Different from the incident detection algorithms which only uses measurements

from the field to infer the existence of an incident, the traffic flow model based approaches

detect traffic incident by considering traffic flow dynamics.

A macroscopic traffic model based estimator is introduced in [65] to jointly estimate the

traffic state and incidents. The work shows that a traffic incident leads to a drop in the

traffic flow. A fault detection algorithm is exploited to detect the incident by comparing

the estimated residual between the prediction by the traffic model and the measurements

obtained from the field with a defined threshold. This approach is able to detect an incident,

however, the incident does not change any properties of the macroscopic model, and the

traffic estimates under an incident suffer as a result.

The dynamic model [66] approach uses the second order macroscopic traffic model pro-

posed by Payne [67, 68]. Multiple models are generated by instantiating a new equilibrium

fundamental diagram for each incident severity. Then, a multiple model extended Kalman

filtering approach is used to select the most likely model (similarly incident severity) and

to produce filtered traffic states. The main limitation of [66] is the assumption that sensors

are available in every road segment to directly measure the traffic state. While the frame-

work can certainly support a different observation equation, sparse measurements can lead
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to poor performance of multiple model filtering for traffic incident detection. Moreover, this

approach has only been tested numerically that the true state to be estimated was generated

by the same macroscopic traffic model with perturbed parameters, which is a setting known

to produce overly optimistic accuracy results [69]. Its performance on an experimental field

data set is not investigated.

Other work that are closely related to this thesis are the bi–parameter approach [70]

and the adaptive traffic state estimator approach [23], where the traffic state estimation

and incident detection problem is posed as a joint state and parameter estimation problem.

In [70], the Payne model [67, 68] is used to describe the traffic evolution. Two continuous

parameters are introduced to denote the possible capacity drop and speed drop caused by

incidents, and a moving horizon parameter estimation scheme is used to estimate the traffic

state and the two incident related parameters. In [23], an extended Kalman filter is deployed

to jointly estimate the traffic state and key model parameters (i.e., free flow speed, critical

density and capacity). Then, the estimated key parameters can be used to infer traffic

incidents. Different from [23, 70] where continuous model variables are embedded into the

traffic model to denote capacity and speed drop caused by incidents, this thesis uses a discrete

model variable to denote incidents, and the estimate of the discrete model variable indicates

exactly the location and the severity (i.e., number of lanes blocked) of an traffic incident.

Moreover, in this work, the highway is discretized into much smaller segments, as a result,

the estimates of the incident location and traffic state have a higher precision compared to

[23, 70]. Compared to the extended Kalman filter method, no linearization is needed in this

proposed estimation framework since particle filter is capable of handling non–linear models.

In additional, the generic second order traffic model [71] is deployed in this dissertation,

which has better physical interpretations compared to the Payne model. For example, the

Payne model has been criticized for its two major drawbacks [72]. First, the model has the

possibility to introduce negative velocities, and the model can propagate information faster

than the speed of the fastest vehicle, which means that drivers are influenced by drivers
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behind them. The generic second order traffic model [71] deployed in this dissertation does

not suffer from the above drawbacks.
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Chapter 3

Macroscopic traffic incident model

In this chapter, the first order traffic model and the second order traffic model are reviewed,

and the technique to extend both models to incorporate incidents is introduced. Next, the

junction solvers for the second order traffic incident model are developed to allow the second

order model to be deployed on road networks. The solvers for the first order traffic incident

model can be derived by following the solvers for the second order traffic model and fixing

the driver property parameter.

3.1 First order traffic model

The Lighthill-Whitham-Richards Partial Differential Equation (LWR PDE) [5, 73] is used

to describe the evolution of the density ρ (x, t) ∈ [0, ρmax] at location x and at time t on

a roadway. The function v is known as the velocity function, which denotes a constitutive

relationship between density and velocity. The LWR PDE expresses the conservation of

vehicles on the roadway of length L, and is given by:

∂ρ (x, t)

∂t
+
∂ (ρ (x, t) v (ρ (x, t)))

∂x
= 0,

(x, t) ∈ (0, L)× (0, T ) (3.1)
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Figure 3.1: Discretization of the highway using the cell transmission model.
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with the following initial and boundary conditions:

ρ (x, 0) = ρ0 (x) , ρ (0, t) = ρl (t) , ρ (L, t) = ρr (t) , (3.2)

where ρ0, ρl, and ρr are the initial, left, and right traffic density boundary conditions.

To close the model, the velocity function v must be specified. The choice of the velocity

function v depends on the assumptions on the relationship between density and velocity. A

possible relationship is the quadratic–linear function proposed by Smulders [74],

v (ρ) =





vmax

(
1− ρ

β

)
if ρ ≤ ρc

vmaxρc(ρm−ρ)(β−ρc)
ρβ(ρm−ρc) otherwise.

(3.3)

In (3.3), the variable vmax denotes the maximum speed that vehicles can travel on the road.

The parameter β determines the shape of the velocity function for the free flow regime. In

particular, it determines how the average vehicle speed will change when the traffic density

increases from zero to the critical density ρc, where the critical density is the traffic density

when the highway has the maximum traffic flow. The variable ρm denotes the jam density,

which corresponds the traffic density when the road is completely congested. The critical

density and jam density influence the shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [75], yielding

the Cell Transmission Model (CTM) [24, 25, 76]. Specifically, the time and space domains

are discretized by introducing a discrete time step ∆T , indexed by n ∈ {0, · · · , nmax} and a
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discrete space step ∆x (Figure 3.1), indexed by i ∈ {0, · · · , imax}. The discretized system is

given by:

ρn+1
i = ρni +

∆T

∆x

(
G
(
ρni−1, ρ

n
i

)
−G

(
ρni , ρ

n
i+1

))
. (3.4)

In (3.4), ρn+1
i denotes the value of the traffic density at time step n + 1 and in cell i.

According to equation (3.4), the traffic density at a cell in the next time step is determined

by the traffic density at the cell in the current time step, plus the traffic flow G
(
ρni−1, ρ

n
i

)

that enters from the upstream cell to the ith cell, and minus the traffic flow G
(
ρni , ρ

n
i+1

)
that

exits the ith cell to the downstream cell. The flow (flux) that crosses the cell boundaries is

determined by the numerical flux function G, given by:

G
(
ρni , ρ

n
i+1

)
= min

{
S (ρni ) , R

(
ρni+1

)}
. (3.5)

The flux G is determined by the minimum of the flow that the upstream cell can send

and the flow that the downstream cell can receive. The functions S and R are known as the

sending and receiving functions, which are given by:

S (ρ) =





q (ρ) if ρ < ρc

q (ρc) if ρ ≥ ρc ,
(3.6)

and

R (ρ) =





q (ρc) if ρ < ρc

q (ρ) if ρ ≥ ρc ,
(3.7)

where the flow q (ρ) = ρ× v (ρ) is known as the fundamental diagram in the transportation

community.

In the sending function (3.6), we can see when the traffic density in the current cell is

smaller than the critical density, the cell is able to send whatever flow it has to the next
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cell. When the traffic density is greater than the critical density, the cell is able to send the

maximum flow of the road. This makes sense because the traffic flow can never go beyond

the capacity of the road, even if there are more vehicles available to move to the downstream

cell. Similarly, in the receiving function (3.7), if the traffic density in the current cell is

smaller than the critical density, it means the cell is currently in free flow, in this case, the

cell can receive whatever flow the upstream cell will send, up to the maximum flow. If the

traffic density is greater than the critical density, the cell is currently in congestion. The

maximum flow the cell can receive is determined by the flow function q(ρ) of the downstream

cell. The update equations for (3.4) at the boundary cells are given by:

ρn+1
0 =ρn0 +

∆T

∆x
(G (ρnl , ρ

n
0 )−G (ρn0 , ρ

n
1 ))

ρn+1
imax

=ρnimax
+

∆T

∆x

(
G
(
ρnimax−1, ρ

n
imax

)
−G

(
ρnimax

, ρnr
))
,

(3.8)

where ρnl and ρnr are the traffic density boundary conditions. To ensure numerical stability,

the time and space steps are coupled through the CFL condition [77]: vmax
∆T
∆x
≤ 1.

3.2 First order traffic incident model

In this section, a model variable γ is embedded into the first order cell transmission model

to describe traffic evolution under incidents. The resulting cell transmission traffic incident

model is given by:

ρn+1
i = ρni +

∆T

∆x
G
(
ρni−1, ρ

n
i , γ

n+1
i−1 , γ

n+1
i

)

− ∆T

∆x
G
(
ρni , ρ

n
i+1, γ

n+1
i , γn+1

i+1

)
.

(3.9)

In (3.9), γn+1
i encodes the number of lanes open from time step n to time step n + 1

in cell i. Similar to equation (3.5), the numerical flux G for the first order traffic incident
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model is determined by the minimum of the sending and receiving functions:

G
(
ρni , ρ

n
i+1, γ

n+1
i , γn+1

i+1

)
= min

{
S
(
ρni , γ

n+1
i

)
, R
(
ρni+1, γ

n+1
i+1

)}
, (3.10)

with the modification to allow dependency on the model variables γn+1
i and γn+1

i+1 . The

sending and receiving functions S and R are given by:

S (ρ, γ) =





q (ρ, γ) if ρ < ρc (γ)

q (ρc (γ) , γ) if ρ ≥ ρc (γ) ,
(3.11)

R (ρ, γ) =





q (ρc (γ) , γ) if ρ < ρc (γ)

q (ρ, γ) if ρ ≥ ρc (γ) .
(3.12)

The flow function is given as q (ρ, γ) = ρ × v (ρ, γ). When the model parameter is

embedded, the incident velocity function is constructed as follows:

v (ρ, γ) =





vmax (γ)
(

1− ρ
β(γ)

)
if ρ ≤ ρc (γ)

vmax(γ)ρc(γ)(ρm(γ)−ρ)(β(γ)−ρc(γ))
ρβ(γ)(ρm(γ)−ρc(γ))

otherwise.
(3.13)

In (3.13), all parameters are a function of γ because when γ refers to an incident model,

the number of open lanes will drop, and the parameters in the traffic model will change

accordingly (e.g., maximum speed and flow will drop when there is an incident). Figure 3.2

shows the velocity function for a two–lane road. The black curve shows the velocity function

for the non–incident case, and the blue curve shows the function when one lane is blocked by

an incident. In the presence of an incident, the maximum speed will drop because vehicles

slow down near the incident. The critical density changes because the capacity (which is a

function of the number of lanes) decreases and the maximum speed drops. The jam density

drops proportionally to the lane drop because of the lane closure caused by the incident.

The flow function q (ρ, γ) = ρ× v (ρ, γ) is shown in Figure 3.3. Because the fundamental

diagram changes in the presence of an incident, the sending and receiving functions will also
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with the following initial and boundary conditions:

⇢ (x, 0) = ⇢0 (x) , ⇢ (0, t) = ⇢l (t) , ⇢ (L, t) = ⇢r (t) , (3.2)

where ⇢0, ⇢l, and ⇢r are the initial, left, and right tra�c density boundary conditions.

To close the model, the velocity function v must be specified. The choice of the

velocity function v depends on the assumptions on the relationship between density

and velocity. Here, a quadratic–linear function is used to construct the velocity

function:

v (⇢) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c

vmax⇢c(⇢m�⇢)(⇢̃m�⇢c)
⇢⇢̃m(⇢m�⇢c)

otherwise.
(3.3)

In (3.3), the variable vmax denotes the maximum speed that vehicles can travel

on the road. The parameter ⇢̃m determines the shape of the velocity function for the

free flow regime. In particular, it determines how vehicle speed will change when

the tra�c density increases from zero to the critical density ⇢c, where the critical

density is the tra�c density when the highway has the maximum tra�c flow. The

variable ⇢m denotes the jam density, which corresponds the tra�c density when the

road is completely congested. The critical density and jam density influence the

shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [35],

yielding the Cell Transmission Model (CTM) [22, 23, 47]. Specifically, the time and

space domains are discretized by introducing a discrete time step �T , indexed by
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Figure 3.2: The velocity function of the first order tra�c incident model for a two–
lane road. The black curve corresponds to the non–incident case, and the blue curve
shows the velocity function when one lane is blocked on a two–lane road. Note that
for illustration purpose, ⇢c and ⇢m in this figure denote the critical density and jam
density on the two lane road, while throughout the thesis, ⇢c and ⇢m correspond to
the critical density and jam density for a single lane. The critical density and jam
density for the incident diagram (the blue curve) are not marked due to the space
limit.

is embedded, the incident velocity function is constructed as follows:
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In (3.13), all parameters are a function of � because when � refers to an incident

model, the number of open lanes will drop, and the parameters in the tra�c model

will change accordingly (e.g., maximum speed and flow will drop when there is an

incident). Figure 3.2 shows the velocity function for a two–lane road. The black

curves show the velocity functions for the non–incident case, and the blue curves

show the functions when one lane is blocked by an incident. In the presence of

an incident, the maximum speed will drop because vehicles slow down near the

incident. The critical density changes because the capacity (which is a function of

the number of lanes) decreases and the maximum speed drops. The jam density
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the tra�c density increases from zero to the critical density ⇢c, where the critical

density is the tra�c density when the highway has the maximum tra�c flow. The

variable ⇢m denotes the jam density, which corresponds the tra�c density when the

road is completely congested. The critical density and jam density influence the

shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [35],
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Figure 3.3: The fundamental diagram of the first order traffic incident model for a two–lane
road. The black curve corresponds to the non–incident case, the blue curve shows the flow
function when one lane is blocked on the two–lane road.
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change, and this consequently influences the number of vehicles that can move from one cell

to the next. The update equations of (3.9) at the boundary cells are given by:

ρn+1
0 = ρn0 +

∆T

∆x
G
(
ρnl , ρ

n
0 , γ

n+1
l , γn+1

0

)
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(
ρn0 , ρ

n
1 , γ

n+1
0 , γn+1

1

)

ρn+1
imax

= ρnimax
+

∆T

∆x
G
(
ρnimax−1, ρ

n
imax

, γn+1
imax−1, γ

n+1
imax

)

− ∆T

∆x
G
(
ρnimax

, ρnr , γ
n+1
imax

, γn+1
r

)
,

(3.14)

where γn+1
l , γn+1

r are the left and right model variable boundary conditions.

3.3 Second order traffic model

The second order traffic incident model is introduced in this section. Compared to the first

order traffic model [5, 24, 25, 73]. where the speed is uniquely determined from the density of

traffic, the second order traffic model parameterizes the velocity function by a driver property

variable, which generates a family of curves to describe the speed–density relationship.

3.3.1 Generic framework of a second order traffic model

The second order traffic flow model that fits into the framework of the Generic second order

model (GSOM) [71] is deployed to describe the traffic evolution on the highway. The resulting

second order traffic model (in non–conservative form) is given by:

∂ρ (x, t)

∂t
+
∂ (ρ (x, t) ṽ (ρ (x, t) , w (x, t)))

∂x
= 0,

∂w (x, t)

∂t
+ ṽ (ρ (x, t) , w (x, t))

∂w (x, t)

∂x
= 0,

(x, t) ∈ (0, L)× (0, T ) ,

(3.15)
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where w represents the property of the vehicles or drivers, and ṽ denotes the velocity function

for the second order traffic model. The boundary conditions are given by:

ρ (x, 0) = ρ0 (x) , ρ (0, t) = ρl (t) , ρ (L, t) = ρr (t) ,

w (x, 0) = w0 (x) , w (0, t) = wl (t) , w (L, t) = wr (t) ,

(3.16)

where the variables w0, wl, and wr are the initial, left, and right boundary conditions for the

property variable.

In (3.15), the first equation describes the conservation of vehicles, as does the LWR PDE.

The second equation indicates that w is advected with vehicles at the speed of v, and thus

the property is conserved along vehicle trajectories. The condition ∂ṽ/∂ρ < 0 is required to

guarantee the system (3.15) is hyperbolic for ρ > 0 [6]. The conservation form of (3.15) is

given as follows:

∂ρ

∂t
+
∂ (ρṽ (ρ, w))

∂x
= 0,

∂y

∂t
+
∂ (yṽ (ρ, w))

∂x
= 0,

(x, t) ∈ (0, L)× (0, T ) ,

(3.17)

where the conserved quantity y = ρw. Since w is advected with vehicle flows, ρ is conserved

and so is y = ρw.

Note that it is important to give y a clear physical meaning to properly design a discrete

cell transmission model [24] equivalent for (3.17). A suitable definition for y = ρw is to

recognize that it is a total property, where the property w may have various meanings,

such as “aggressivity” [78], “desired spacing” [6], or “perturbations” [79]. Thus, the second

conservation equation of (3.17) expresses the conservation of the total property. For example,

imaging the property w as the average number of passengers carried by each vehicle, it is

clear that the total number of passengers is conserved on a road segment, although this would
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not necessarily influence the velocity function. The parameter w can also be interpreted as

the different behaviors among multiple classes of vehicles (e.g., trucks and passenger cars)

[80].

Note that when all drivers have the same property, the GSOM becomes the LWR PDE

[5, 73], where the velocity depends only on the density. Thus, the LWR PDE can be viewed is

a special form of the GSOM, with a uniform property w(x, t) = w̄ [81] (i.e., v (ρ) = ṽ (ρ, w̄)).

The velocity function ṽ needs to be specified in order to close the model. Different types

of velocity functions have been used based on the assumptions on the property quantity

w. The models proposed by Aw and Rascle [82] and Zhang [83] (ARZ) and the generalized

Aw–Rascle–Zhang model (GARZ) [78] allow the driver property to influence the velocity

function both in the freeflow and congested regimes. However, these models are not appro-

priate to capture distinct behaviors in the freeflow and congested regimes based on empirical

observation by Kerner [84, 85], who observed that the experimental flow data is positively

proportional to the density data in freeflow, while the flow–density data exhibits large spread

in congestion.

In this work, a quadratic–linear velocity function developed based on the collapsed GSOM

is deployed:

ṽ (ρ, w) =





vmax

(
1− ρ

β

)
if ρ ≤ ρ̃c (w)

vmaxρ̃c(w)(ρ̃m(w)−ρ)(β−ρ̃c(w))
ρβ(ρ̃m(w)−ρ̃c(w))

otherwise.
(3.18)

In (3.18), the variables vmax and β determine the shape of the velocity function for the

free flow regime. In the collapsed model, all vehicles are assumed to drive the same speed

in free flow regardless of their property w. The variables ρ̃c and ρ̃m are the critical density

and jam density for the second order traffic model, and determine the shape of the second

order velocity function in the congested regime. Since vehicles drive differently based on

their properties in congestion, these two variables depend on the vehicle property w. Letting

ρc1, ρc2, ρm1, and ρm2 denote the upper bounds and lower bounds for the critical density and
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jam density, the critical density and jam density parameterized by w can be written as:





ρ̃c (w) = ρc1ρc2
(1−w)ρc1+wρc2

,

ρ̃m (w) = ρm1ρm2

(1−w)ρm1+wρm2
.

(3.19)

The phase transition models (PTM) [79, 86, 87, 88] are also related to the collapsed

GARZ model, however in freeflow the PTM uses a first order model of the traffic dynamics,

and transitions to a second order model in the congested regime. This allows for more vari-

ability in the fundamental diagram in congestion, which matches better with the empirical

observation by Kerner [84, 85].

3.3.2 Second order cell transmission model

The numerical discretization of the PDE can be derived by tracking the evolution of the

characteristic curves on the Riemann problem, where the Riemann problem is the Cauchy

problem equation with a Heaviside initial condition of the PDE (3.1) in an infinite domain

[89]. The solution to the Riemann problem for the GSOM (3.15) is more complicated to the

Riemann problem for the LWR model and lacks an immediate physical interpretation (e.g.,

the existence of the intermediate state [6] in the construction of the Riemann solver). In

[90], a Riemann solver to the GOSM is constructed by analyzing the sending and receiving

functions, which is consistent with the original solver derived by analyzing elementary waves

[82, 83]). This equivalence makes it possible to derive a second order cell transmission model

(2CTM). In this work, a 2CTM is constructed based on a Godunov discretization of the
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GOSM (3.17). The 2CTM is given as:
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(3.20)

which provides evolution equations for both conserved quantities: the traffic density ρni and

total property yni = ρni w
n
i . Here, Gρ and Gy are numerical fluxes associated with ρ and y,

respectively.

To determine Gρ and Gy, it is important to note that these two kinds of flow are related.

Since the property w is always advected with vehicle flow Gρ, the flow of total property Gy is

computed by multiplying the average property w of the upstream cell to the flow of vehicles:

Gy

(
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n
i , w

n
i−1, w

n
i

)
= wni−1Gρ

(
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i

)
.

Thus, the update equations (3.20) simplify to
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wni Gρ
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(3.21)

Note that if we assume all vehicles have the same property, i.e., w = w̄, the update
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equation for y is identical to that of ρ:

w̄ρn+1
i = w̄ρni +

∆T

∆x
w̄Gρ

(
ρni−1, ρ

n
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n
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n
i

)

− ∆T

∆x
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ρni , ρ

n
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n
i , w

n
i+1

)
,

where w̄ can be canceled out, and w̄ only selects a single curve in the second order funda-

mental diagram to build the sending and receiving functions. Thus, the 2CTM is consistent

with the classical CTM (3.4) when the property quantity is fixed. The update equations at

the boundaries of (3.21) are given by:
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(3.22)

where wl and wr are the property variable boundary conditions.

The flow function for the second order model is given as q̃ (ρ, w) = ρ × ṽ (ρ, w). Note

that unlike the first order flow model, the property variable w is an input to the velocity

function and the flow function. In (3.21) and (3.22), the numerical flux Gρ is given as:

Gρ

(
ρni , ρ

n
i+1, w

n
i , w

n
i+1

)
= min

{
S̃ (ρni , w

n
i ) , R̃

(
ρni+1, w

n
i , w

n
i+1

)}
.
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The functions S̃ and R̃ are the sending and receiving functions for the second order traffic

model, which are given by:

S̃ (ρ, w) =





ρṽ (ρ, w) if ρ < ρ̃c (w)

ρ̃c (w) ṽ (ρ̃c (w) , w) if ρ < ρ̃c (w) ,
(3.23)

R̃
(
ρM , w

−, w+
)

=





ρ̃c (w−) ṽ (ρ̃c (w−) , w−) if ρM < ρ̃c (w−)

ρM (w−, w+) ṽ (ρM , w
−) if ρ ≥ ρ̃c (w−),

(3.24)

where ρM and wM are known as the intermediate traffic state variables. We use w− (w+) to

denote the property variable in the upstream (downstream) cell, v+ to denote the velocity in

the downstream cell, and vM to denote the velocity associated with the intermediate traffic

state. The intermediate traffic state in (3.24) can be determined by solving the following

problem:

minimize:
ρM

v+ − vM

subject to: wM = w−,

vM ≤ v+,

vM = ṽ (ρM , wM) ,

v+ = ṽ
(
ρ, w+

)
.

(3.25)

The existence of the intermediate state ρM and wM can be understood as a consequence

of the interactions among vehicles with different properties w. Consider two adjacent cells

(an upstream cell and a downstream cell) with initial states ρ−, w− and ρ+, w+, where the

variables ρ− and ρ+ denote the traffic density at the upstream cell and the downstream cell.

The traffic flow that can cross the cell interface and the existence of the intermediate state

are shown in Figure 3.4 and interpreted as follows [80]:

1. Downstream vehicles move out of way, which creates space for the upstream vehicles.
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Upstream cell 
Property:  

Downstream cell 
Property:  

Figure 3.4: Interpretation of the intermediate traffic density. From top to bottom, the
first figure shows the initial traffic condition, where the upstream vehicles and downstream
vehicles have different properties. The second figure shows the downstream vehicles create
space for the upstream vehicles. The third figure shows the upstream vehicles enter the
cell. The fourth figure shows the creation of the intermediate traffic state, because the
upstream vehicles adjust their spacing (which is the inverse of the traffic density) to reach
the downstream velocity while maintaining the upstream cell property.
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2. Upstream vehicles maintain their property as they move from the upstream cell to

the downstream cell. Thus, the property of vehicles that cross the cell interface is

determined by the upstream vehicles (i.e., wM = w−).

3. When vehicles from the upstream cell enter the downstream cell, they will drive as fast

as possible, but not faster than the downstream vehicles. This means vM is chosen

such that the velocity between vM and v+ is minimized (i.e., minρM {v+ − vM}).

4. Vehicles that cross the cell interface with the property w− adjust their spacing (density)

to reach the velocity vM, which creates an intermediate density ρM, such that vM =

ṽ (ρM, w
−).

Here, we assume the downstream vehicles create space for the upstream vehicles only to

calculate the intermediate state. The actual flow across the cell boundary is still determined

as the minimum of the sending and receiving functions. The intermediate state is required

to compute the number of vehicles the downstream cell can receive. Intuitively, the number

of vehicles that can be received by the downstream cell depends not only on the amount

of the space that the downstream vehicles can generate, but also on the willingness of the

vehicles from the upstream cell to fill the free space (determined by w−). Therefore, it is

not surprising that the receiving function (3.24) is also a function of the property of the

upstream vehicles.
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3.4 Second order traffic incident model

When the model variable γ is embedded into (3.21), the second order cell transmission

incident model is given as:
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(3.26)

Following the same arguements from (3.20) to (3.21), the update equations (3.26) for the

incident cell transmission model simplify to
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(3.27)
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The update equations for the boundary cells of (3.27) are given by:
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(3.28)

The flow function for the second order model is given as q̃ (ρ, w, γ) = ρ × ṽ (ρ, w, γ).

When the model parameter γ is embedded into (3.21), the velocity function for the second

order traffic model is given as follows:

ṽ (ρ, w, γ) =





vmax (γ)
(

1− ρ
β(γ)

)
if ρ ≤ ρ̃c (w, γ)

vmax(γ)ρ̃c(w,γ)(ρ̃m(w,γ)−ρ)(β(γ)−ρ̃c(w,γ))
ρβ(γ)(ρ̃m(w,γ)−ρ̃c(w,γ))

otherwise.
(3.29)

In (3.29), all parameters are a function of γ because when an incident occurs, the number

of open lanes will drop, and the parameters in the traffic model will change accordingly. The

velocity is a function of γ and w, where γ determines which family of curves the model

should use (i.e., the black curves when there is no incident, or the blue curves when one lane

is blocked (see Figure 3.5) and w determines which exact curve is used.

Figure 3.5 shows the velocity function for a two–lane road. The black curves are shown

for different w for the non–incident case, and the blue curves show the function when one

lane is blocked by an incident. Compared to the first order model, the second order model
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possess di↵erent properties for both free flow and congested cases. However, these

models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is

deployed:

v2nd (⇢, w) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c (w)

vmax⇢c2nd(w)(⇢m2nd(w)�⇢)(⇢̃m�⇢c2nd(w))
⇢⇢̃m(⇢m2nd(w)�⇢c2nd(w))

otherwise.
(3.18)

In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:

8
><
>:

⇢c2nd (w) = ⇢c1⇢c2

w⇢c1+(1�w)⇢c2
,

⇢m2nd (w) = ⇢m1⇢m2

w⇢m1+(1�w)⇢m2
.

(3.19)

38

Increasing with  

by:
@⇢

@t
+
@ (⇢v (⇢))

@x
= 0,

(x, t) 2 (0, L) ⇥ (0, T ) (3.1)

with the following initial and boundary conditions:

⇢ (x, 0) = ⇢0 (x) , ⇢ (0, t) = ⇢l (t) , ⇢ (L, t) = ⇢r (t) , (3.2)

where ⇢0, ⇢l, and ⇢r are the initial, left, and right tra�c density boundary conditions.

To close the model, the velocity function v must be specified. The choice of the

velocity function v depends on the assumptions on the relationship between density

and velocity. Here, a quadratic–linear function is used to construct the velocity

function:

v (⇢) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c

vmax⇢c(⇢m�⇢)(⇢̃m�⇢c)
⇢⇢̃m(⇢m�⇢c)

otherwise.
(3.3)

In (3.3), the variable vmax denotes the maximum speed that vehicles can travel

on the road. The parameter ⇢̃m determines the shape of the velocity function for the

free flow regime. In particular, it determines how vehicle speed will change when

the tra�c density increases from zero to the critical density ⇢c, where the critical

density is the tra�c density when the highway has the maximum tra�c flow. The

variable ⇢m denotes the jam density, which corresponds the tra�c density when the

road is completely congested. The critical density and jam density influence the

shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [35],

yielding the Cell Transmission Model (CTM) [22, 23, 47]. Specifically, the time and

space domains are discretized by introducing a discrete time step �T , indexed by

30

by:
@⇢

@t
+
@ (⇢v (⇢))

@x
= 0,

(x, t) 2 (0, L) ⇥ (0, T ) (3.1)

with the following initial and boundary conditions:

⇢ (x, 0) = ⇢0 (x) , ⇢ (0, t) = ⇢l (t) , ⇢ (L, t) = ⇢r (t) , (3.2)

where ⇢0, ⇢l, and ⇢r are the initial, left, and right tra�c density boundary conditions.

To close the model, the velocity function v must be specified. The choice of the

velocity function v depends on the assumptions on the relationship between density

and velocity. Here, a quadratic–linear function is used to construct the velocity

function:

v (⇢) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c

vmax⇢c(⇢m�⇢)(⇢̃m�⇢c)
⇢⇢̃m(⇢m�⇢c)

otherwise.
(3.3)

In (3.3), the variable vmax denotes the maximum speed that vehicles can travel

on the road. The parameter ⇢̃m determines the shape of the velocity function for the

free flow regime. In particular, it determines how vehicle speed will change when

the tra�c density increases from zero to the critical density ⇢c, where the critical

density is the tra�c density when the highway has the maximum tra�c flow. The

variable ⇢m denotes the jam density, which corresponds the tra�c density when the

road is completely congested. The critical density and jam density influence the

shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [35],

yielding the Cell Transmission Model (CTM) [22, 23, 47]. Specifically, the time and

space domains are discretized by introducing a discrete time step �T , indexed by

30

by:
@⇢

@t
+
@ (⇢v (⇢))

@x
= 0,

(x, t) 2 (0, L) ⇥ (0, T ) (3.1)

with the following initial and boundary conditions:

⇢ (x, 0) = ⇢0 (x) , ⇢ (0, t) = ⇢l (t) , ⇢ (L, t) = ⇢r (t) , (3.2)

where ⇢0, ⇢l, and ⇢r are the initial, left, and right tra�c density boundary conditions.

To close the model, the velocity function v must be specified. The choice of the

velocity function v depends on the assumptions on the relationship between density

and velocity. Here, a quadratic–linear function is used to construct the velocity

function:

v (⇢) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c

vmax⇢c(⇢m�⇢)(⇢̃m�⇢c)
⇢⇢̃m(⇢m�⇢c)

otherwise.
(3.3)

In (3.3), the variable vmax denotes the maximum speed that vehicles can travel

on the road. The parameter ⇢̃m determines the shape of the velocity function for the

free flow regime. In particular, it determines how vehicle speed will change when

the tra�c density increases from zero to the critical density ⇢c, where the critical

density is the tra�c density when the highway has the maximum tra�c flow. The

variable ⇢m denotes the jam density, which corresponds the tra�c density when the

road is completely congested. The critical density and jam density influence the

shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [35],

yielding the Cell Transmission Model (CTM) [22, 23, 47]. Specifically, the time and

space domains are discretized by introducing a discrete time step �T , indexed by

30

Figure 3.2: The velocity function of the first order tra�c incident model for a two–
lane road. The black curve corresponds to the non–incident case, and the blue curve
shows the velocity function when one lane is blocked on a two–lane road. Note that
for illustration purpose, ⇢c and ⇢m in this figure denote the critical density and jam
density on the two lane road, while throughout the thesis, ⇢c and ⇢m correspond to
the critical density and jam density for a single lane. The critical density and jam
density for the incident diagram (the blue curve) are not marked due to the space
limit.

is embedded, the incident velocity function is constructed as follows:

v (⇢, �) =

8
><
>:

vmax (�)
⇣
1 � ⇢

⇢̃m(�)

⌘
if ⇢  ⇢c (�)

vmax(�)⇢c(�)(⇢m(�)�⇢)(⇢̃m(�)�⇢c(�))
⇢⇢̃m(�)(⇢m(�)�⇢c(�))

otherwise.
(3.13)

In (3.13), all parameters are a function of � because when � refers to an incident

model, the number of open lanes will drop, and the parameters in the tra�c model

will change accordingly (e.g., maximum speed and flow will drop when there is an

incident). Figure 3.2 shows the velocity function for a two–lane road. The black

curves show the velocity functions for the non–incident case, and the blue curves

show the functions when one lane is blocked by an incident. In the presence of

an incident, the maximum speed will drop because vehicles slow down near the

incident. The critical density changes because the capacity (which is a function of

the number of lanes) decreases and the maximum speed drops. The jam density
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possess di↵erent properties for both free flow and congested cases. However, these

models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is

deployed:

v2nd (⇢, w) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c (w)

vmax⇢c2nd(w)(⇢m2nd(w)�⇢)(⇢̃m�⇢c2nd(w))
⇢⇢̃m(⇢m2nd(w)�⇢c2nd(w))

otherwise.
(3.18)

In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:

8
><
>:

⇢c2nd (w) = ⇢c1⇢c2

w⇢c1+(1�w)⇢c2
,

⇢m2nd (w) = ⇢m1⇢m2

w⇢m1+(1�w)⇢m2
.

(3.19)
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Figure 3.5: The velocity function for the second order tra�c incident model for
a two–lane road. The black curves correspond to the non–incident case, the blue
cures show the velocity function for an incident that blocks a single lane. When
the number of lanes open is known, the property variable w determines which exact
curve should be deployed. For illustration purposese, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 in this
figure denote the upper and lower bounds of critical density and jam density on the
two lane road, while throughout the thesis, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 correspond to the
upper and lower bounds of critical density and jam density for a single lane. The
critical densities and jam densities for the incident diagram (the blue curve) are not
marked due to the space limit.

Figure 3.5 shows the velocity function for a two–lane road. The black curves

are shown for di↵erent w for the non–incident case, and the blue curves show the

function when one lane is blocked by an incident. Compared to the first order model,

the second order model uses a family of curves to describe the density–velocity

relationship in the congestion regime, parameterized by the model parameter w.

Again, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 are used to to denote the upper bounds and lower

bounds for the critical density and jam density, the critical density and jam density

for the second order tra�c incident model can be computed as:

8
><
>:

⇢c (w, �) = ⇢c1(�)⇢c2(�)
(1�w)⇢c1(�)+w⇢c2(�)

,

⇢m (w, �) = ⇢m1(�)⇢m2(�)
(1�w)⇢m1(�)+w⇢m2(�)

.
(3.30)

The fundamental diagram for the second order tra�c model is shown in Figure

49

by:
@⇢

@t
+
@ (⇢v (⇢))

@x
= 0,

(x, t) 2 (0, L) ⇥ (0, T ) (3.1)

with the following initial and boundary conditions:

⇢ (x, 0) = ⇢0 (x) , ⇢ (0, t) = ⇢l (t) , ⇢ (L, t) = ⇢r (t) , (3.2)

where ⇢0, ⇢l, and ⇢r are the initial, left, and right tra�c density boundary conditions.

To close the model, the velocity function v must be specified. The choice of the

velocity function v depends on the assumptions on the relationship between density

and velocity. Here, a quadratic–linear function is used to construct the velocity

function:

v (⇢) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c

vmax⇢c(⇢m�⇢)(⇢̃m�⇢c)
⇢⇢̃m(⇢m�⇢c)

otherwise.
(3.3)

In (3.3), the variable vmax denotes the maximum speed that vehicles can travel

on the road. The parameter ⇢̃m determines the shape of the velocity function for the

free flow regime. In particular, it determines how vehicle speed will change when

the tra�c density increases from zero to the critical density ⇢c, where the critical

density is the tra�c density when the highway has the maximum tra�c flow. The

variable ⇢m denotes the jam density, which corresponds the tra�c density when the

road is completely congested. The critical density and jam density influence the

shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [35],

yielding the Cell Transmission Model (CTM) [22, 23, 47]. Specifically, the time and

space domains are discretized by introducing a discrete time step �T , indexed by
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possess di↵erent properties for both free flow and congested cases. However, these

models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is
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In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:
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Figure 3.5: The velocity function for the second order tra�c incident model for
a two–lane road. The black curves correspond to the non–incident case, the blue
cures show the velocity function for an incident that blocks a single lane. When
the number of lanes open is known, the property variable w determines which exact
curve should be deployed. For illustration purposese, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 in this
figure denote the upper and lower bounds of critical density and jam density on the
two lane road, while throughout the thesis, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 correspond to the
upper and lower bounds of critical density and jam density for a single lane. The
critical densities and jam densities for the incident diagram (the blue curve) are not
marked due to the space limit.

Figure 3.5 shows the velocity function for a two–lane road. The black curves

are shown for di↵erent w for the non–incident case, and the blue curves show the

function when one lane is blocked by an incident. Compared to the first order model,

the second order model uses a family of curves to describe the density–velocity

relationship in the congestion regime, parameterized by the model parameter w.

Again, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 are used to to denote the upper bounds and lower

bounds for the critical density and jam density, the critical density and jam density

for the second order tra�c incident model can be computed as:

8
><
>:

⇢c (w, �) = ⇢c1(�)⇢c2(�)
(1�w)⇢c1(�)+w⇢c2(�)

,

⇢m (w, �) = ⇢m1(�)⇢m2(�)
(1�w)⇢m1(�)+w⇢m2(�)

.
(3.30)

The fundamental diagram for the second order tra�c model is shown in Figure
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by:
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(x, t) 2 (0, L) ⇥ (0, T ) (3.1)

with the following initial and boundary conditions:

⇢ (x, 0) = ⇢0 (x) , ⇢ (0, t) = ⇢l (t) , ⇢ (L, t) = ⇢r (t) , (3.2)

where ⇢0, ⇢l, and ⇢r are the initial, left, and right tra�c density boundary conditions.

To close the model, the velocity function v must be specified. The choice of the

velocity function v depends on the assumptions on the relationship between density

and velocity. Here, a quadratic–linear function is used to construct the velocity
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In (3.3), the variable vmax denotes the maximum speed that vehicles can travel

on the road. The parameter ⇢̃m determines the shape of the velocity function for the

free flow regime. In particular, it determines how vehicle speed will change when

the tra�c density increases from zero to the critical density ⇢c, where the critical

density is the tra�c density when the highway has the maximum tra�c flow. The

variable ⇢m denotes the jam density, which corresponds the tra�c density when the

road is completely congested. The critical density and jam density influence the

shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [35],

yielding the Cell Transmission Model (CTM) [22, 23, 47]. Specifically, the time and

space domains are discretized by introducing a discrete time step �T , indexed by
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possess di↵erent properties for both free flow and congested cases. However, these

models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is

deployed:

v2nd (⇢, w) =
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In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:
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Figure 3.5: The velocity function for the second order tra�c incident model for
a two–lane road. The black curves correspond to the non–incident case, the blue
cures show the velocity function for an incident that blocks a single lane. When
the number of lanes open is known, the property variable w determines which exact
curve should be deployed. For illustration purposese, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 in this
figure denote the upper and lower bounds of critical density and jam density on the
two lane road, while throughout the thesis, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 correspond to the
upper and lower bounds of critical density and jam density for a single lane. The
critical densities and jam densities for the incident diagram (the blue curve) are not
marked due to the space limit.

Figure 3.5 shows the velocity function for a two–lane road. The black curves

are shown for di↵erent w for the non–incident case, and the blue curves show the

function when one lane is blocked by an incident. Compared to the first order model,

the second order model uses a family of curves to describe the density–velocity

relationship in the congestion regime, parameterized by the model parameter w.

Again, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 are used to to denote the upper bounds and lower

bounds for the critical density and jam density, the critical density and jam density

for the second order tra�c incident model can be computed as:

8
><
>:

⇢c (w, �) = ⇢c1(�)⇢c2(�)
(1�w)⇢c1(�)+w⇢c2(�)

,

⇢m (w, �) = ⇢m1(�)⇢m2(�)
(1�w)⇢m1(�)+w⇢m2(�)

.
(3.30)

The fundamental diagram for the second order tra�c model is shown in Figure

49

by:
@⇢

@t
+
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= 0,

(x, t) 2 (0, L) ⇥ (0, T ) (3.1)

with the following initial and boundary conditions:

⇢ (x, 0) = ⇢0 (x) , ⇢ (0, t) = ⇢l (t) , ⇢ (L, t) = ⇢r (t) , (3.2)

where ⇢0, ⇢l, and ⇢r are the initial, left, and right tra�c density boundary conditions.

To close the model, the velocity function v must be specified. The choice of the

velocity function v depends on the assumptions on the relationship between density

and velocity. Here, a quadratic–linear function is used to construct the velocity

function:
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In (3.3), the variable vmax denotes the maximum speed that vehicles can travel

on the road. The parameter ⇢̃m determines the shape of the velocity function for the

free flow regime. In particular, it determines how vehicle speed will change when

the tra�c density increases from zero to the critical density ⇢c, where the critical

density is the tra�c density when the highway has the maximum tra�c flow. The

variable ⇢m denotes the jam density, which corresponds the tra�c density when the

road is completely congested. The critical density and jam density influence the

shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [35],

yielding the Cell Transmission Model (CTM) [22, 23, 47]. Specifically, the time and

space domains are discretized by introducing a discrete time step �T , indexed by
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models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase
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for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd
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on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds
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on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:
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Figure 3.5: The velocity function for the second order tra�c incident model for
a two–lane road. The black curves correspond to the non–incident case, the blue
cures show the velocity function for an incident that blocks a single lane. When
the number of lanes open is known, the property variable w determines which exact
curve should be deployed. For illustration purposese, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 in this
figure denote the upper and lower bounds of critical density and jam density on the
two lane road, while throughout the thesis, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 correspond to the
upper and lower bounds of critical density and jam density for a single lane. The
critical densities and jam densities for the incident diagram (the blue curve) are not
marked due to the space limit.

Figure 3.5 shows the velocity function for a two–lane road. The black curves

are shown for di↵erent w for the non–incident case, and the blue curves show the

function when one lane is blocked by an incident. Compared to the first order model,

the second order model uses a family of curves to describe the density–velocity

relationship in the congestion regime, parameterized by the model parameter w.

Again, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 are used to to denote the upper bounds and lower

bounds for the critical density and jam density, the critical density and jam density

for the second order tra�c incident model can be computed as:

8
><
>:

⇢c (w, �) = ⇢c1(�)⇢c2(�)
(1�w)⇢c1(�)+w⇢c2(�)

,

⇢m (w, �) = ⇢m1(�)⇢m2(�)
(1�w)⇢m1(�)+w⇢m2(�)

.
(3.30)

The fundamental diagram for the second order tra�c model is shown in Figure
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Figure 3.5: The velocity function for the second order traffic incident model for a two–lane
road. The black curves correspond to the non–incident case, the blue cures show the velocity
function for an incident that blocks a single lane. When the number of lanes open is known,
the property variable w determines which exact curve should be deployed.

uses a family of curves to describe the density–velocity relationship in the congestion regime,

parameterized by the model parameter w. Again, ρc1 (γ), ρc2 (γ), ρm1 (γ), and ρm2 (γ) are

used to to denote the upper bounds and lower bounds for the critical density and jam

density. The critical density and jam density for the second order traffic incident model can

be computed as: 



ρc (w, γ) = ρc1(γ)ρc2(γ)
(1−w)ρc1(γ)+wρc2(γ)

,

ρm (w, γ) = ρm1(γ)ρm2(γ)
(1−w)ρm1(γ)+wρm2(γ)

.
(3.30)

The fundamental diagram for the second order traffic model is shown in Figure 3.6. In

(3.27), the numerical flux G is given as:
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)
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n
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n
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n+1
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)}
.

The functions S̃ and R̃ are the sending and receiving functions for the second order traffic
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possess di↵erent properties for both free flow and congested cases. However, these

models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is

deployed:

v2nd (⇢, w) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c (w)

vmax⇢c2nd(w)(⇢m2nd(w)�⇢)(⇢̃m�⇢c2nd(w))
⇢⇢̃m(⇢m2nd(w)�⇢c2nd(w))

otherwise.
(3.18)

In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:

8
><
>:

⇢c2nd (w) = ⇢c1⇢c2

w⇢c1+(1�w)⇢c2
,

⇢m2nd (w) = ⇢m1⇢m2

w⇢m1+(1�w)⇢m2
.

(3.19)
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by:
@⇢

@t
+
@ (⇢v (⇢))

@x
= 0,

(x, t) 2 (0, L) ⇥ (0, T ) (3.1)

with the following initial and boundary conditions:

⇢ (x, 0) = ⇢0 (x) , ⇢ (0, t) = ⇢l (t) , ⇢ (L, t) = ⇢r (t) , (3.2)

where ⇢0, ⇢l, and ⇢r are the initial, left, and right tra�c density boundary conditions.

To close the model, the velocity function v must be specified. The choice of the

velocity function v depends on the assumptions on the relationship between density

and velocity. Here, a quadratic–linear function is used to construct the velocity

function:

v (⇢) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c

vmax⇢c(⇢m�⇢)(⇢̃m�⇢c)
⇢⇢̃m(⇢m�⇢c)

otherwise.
(3.3)

In (3.3), the variable vmax denotes the maximum speed that vehicles can travel

on the road. The parameter ⇢̃m determines the shape of the velocity function for the

free flow regime. In particular, it determines how vehicle speed will change when

the tra�c density increases from zero to the critical density ⇢c, where the critical

density is the tra�c density when the highway has the maximum tra�c flow. The

variable ⇢m denotes the jam density, which corresponds the tra�c density when the

road is completely congested. The critical density and jam density influence the

shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [35],

yielding the Cell Transmission Model (CTM) [22, 23, 47]. Specifically, the time and

space domains are discretized by introducing a discrete time step �T , indexed by
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possess di↵erent properties for both free flow and congested cases. However, these

models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is
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In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:
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In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:
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same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd
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Figure 3.5: The velocity function for the second order tra�c incident model for
a two–lane road. The black curves correspond to the non–incident case, the blue
cures show the velocity function for an incident that blocks a single lane. When
the number of lanes open is known, the property variable w determines which exact
curve should be deployed. For illustration purposese, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 in this
figure denote the upper and lower bounds of critical density and jam density on the
two lane road, while throughout the thesis, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 correspond to the
upper and lower bounds of critical density and jam density for a single lane. The
critical densities and jam densities for the incident diagram (the blue curve) are not
marked due to the space limit.

Figure 3.5 shows the velocity function for a two–lane road. The black curves

are shown for di↵erent w for the non–incident case, and the blue curves show the

function when one lane is blocked by an incident. Compared to the first order model,

the second order model uses a family of curves to describe the density–velocity

relationship in the congestion regime, parameterized by the model parameter w.

Again, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 are used to to denote the upper bounds and lower

bounds for the critical density and jam density, the critical density and jam density

for the second order tra�c incident model can be computed as:

8
><
>:

⇢c (w, �) = ⇢c1(�)⇢c2(�)
(1�w)⇢c1(�)+w⇢c2(�)

,

⇢m (w, �) = ⇢m1(�)⇢m2(�)
(1�w)⇢m1(�)+w⇢m2(�)

.
(3.30)

The fundamental diagram for the second order tra�c model is shown in Figure
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with the following initial and boundary conditions:

⇢ (x, 0) = ⇢0 (x) , ⇢ (0, t) = ⇢l (t) , ⇢ (L, t) = ⇢r (t) , (3.2)

where ⇢0, ⇢l, and ⇢r are the initial, left, and right tra�c density boundary conditions.

To close the model, the velocity function v must be specified. The choice of the

velocity function v depends on the assumptions on the relationship between density

and velocity. Here, a quadratic–linear function is used to construct the velocity

function:

v (⇢) =
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otherwise.
(3.3)

In (3.3), the variable vmax denotes the maximum speed that vehicles can travel

on the road. The parameter ⇢̃m determines the shape of the velocity function for the

free flow regime. In particular, it determines how vehicle speed will change when

the tra�c density increases from zero to the critical density ⇢c, where the critical

density is the tra�c density when the highway has the maximum tra�c flow. The

variable ⇢m denotes the jam density, which corresponds the tra�c density when the

road is completely congested. The critical density and jam density influence the

shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [35],

yielding the Cell Transmission Model (CTM) [22, 23, 47]. Specifically, the time and

space domains are discretized by introducing a discrete time step �T , indexed by
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Figure 3.5: The velocity function for the second order tra�c incident model for
a two–lane road. The black curves correspond to the non–incident case, the blue
cures show the velocity function for an incident that blocks a single lane. When
the number of lanes open is known, the property variable w determines which exact
curve should be deployed. For illustration purposese, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 in this
figure denote the upper and lower bounds of critical density and jam density on the
two lane road, while throughout the thesis, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 correspond to the
upper and lower bounds of critical density and jam density for a single lane. The
critical densities and jam densities for the incident diagram (the blue curve) are not
marked due to the space limit.

Figure 3.5 shows the velocity function for a two–lane road. The black curves

are shown for di↵erent w for the non–incident case, and the blue curves show the

function when one lane is blocked by an incident. Compared to the first order model,

the second order model uses a family of curves to describe the density–velocity

relationship in the congestion regime, parameterized by the model parameter w.

Again, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 are used to to denote the upper bounds and lower

bounds for the critical density and jam density, the critical density and jam density

for the second order tra�c incident model can be computed as:

8
><
>:

⇢c (w, �) = ⇢c1(�)⇢c2(�)
(1�w)⇢c1(�)+w⇢c2(�)

,

⇢m (w, �) = ⇢m1(�)⇢m2(�)
(1�w)⇢m1(�)+w⇢m2(�)

.
(3.30)

The fundamental diagram for the second order tra�c model is shown in Figure

49

by:
@⇢

@t
+
@ (⇢v (⇢))

@x
= 0,

(x, t) 2 (0, L) ⇥ (0, T ) (3.1)

with the following initial and boundary conditions:

⇢ (x, 0) = ⇢0 (x) , ⇢ (0, t) = ⇢l (t) , ⇢ (L, t) = ⇢r (t) , (3.2)

where ⇢0, ⇢l, and ⇢r are the initial, left, and right tra�c density boundary conditions.

To close the model, the velocity function v must be specified. The choice of the

velocity function v depends on the assumptions on the relationship between density

and velocity. Here, a quadratic–linear function is used to construct the velocity

function:

v (⇢) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c

vmax⇢c(⇢m�⇢)(⇢̃m�⇢c)
⇢⇢̃m(⇢m�⇢c)

otherwise.
(3.3)

In (3.3), the variable vmax denotes the maximum speed that vehicles can travel

on the road. The parameter ⇢̃m determines the shape of the velocity function for the

free flow regime. In particular, it determines how vehicle speed will change when

the tra�c density increases from zero to the critical density ⇢c, where the critical

density is the tra�c density when the highway has the maximum tra�c flow. The

variable ⇢m denotes the jam density, which corresponds the tra�c density when the

road is completely congested. The critical density and jam density influence the

shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [35],

yielding the Cell Transmission Model (CTM) [22, 23, 47]. Specifically, the time and

space domains are discretized by introducing a discrete time step �T , indexed by
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models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is
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In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and
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Figure 3.5: The velocity function for the second order tra�c incident model for
a two–lane road. The black curves correspond to the non–incident case, the blue
cures show the velocity function for an incident that blocks a single lane. When
the number of lanes open is known, the property variable w determines which exact
curve should be deployed. For illustration purposese, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 in this
figure denote the upper and lower bounds of critical density and jam density on the
two lane road, while throughout the thesis, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 correspond to the
upper and lower bounds of critical density and jam density for a single lane. The
critical densities and jam densities for the incident diagram (the blue curve) are not
marked due to the space limit.

Figure 3.5 shows the velocity function for a two–lane road. The black curves

are shown for di↵erent w for the non–incident case, and the blue curves show the

function when one lane is blocked by an incident. Compared to the first order model,

the second order model uses a family of curves to describe the density–velocity

relationship in the congestion regime, parameterized by the model parameter w.

Again, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 are used to to denote the upper bounds and lower

bounds for the critical density and jam density, the critical density and jam density

for the second order tra�c incident model can be computed as:

8
><
>:

⇢c (w, �) = ⇢c1(�)⇢c2(�)
(1�w)⇢c1(�)+w⇢c2(�)

,

⇢m (w, �) = ⇢m1(�)⇢m2(�)
(1�w)⇢m1(�)+w⇢m2(�)

.
(3.30)

The fundamental diagram for the second order tra�c model is shown in Figure
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by:
@⇢

@t
+
@ (⇢v (⇢))

@x
= 0,

(x, t) 2 (0, L) ⇥ (0, T ) (3.1)

with the following initial and boundary conditions:

⇢ (x, 0) = ⇢0 (x) , ⇢ (0, t) = ⇢l (t) , ⇢ (L, t) = ⇢r (t) , (3.2)

where ⇢0, ⇢l, and ⇢r are the initial, left, and right tra�c density boundary conditions.

To close the model, the velocity function v must be specified. The choice of the

velocity function v depends on the assumptions on the relationship between density

and velocity. Here, a quadratic–linear function is used to construct the velocity

function:

v (⇢) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c

vmax⇢c(⇢m�⇢)(⇢̃m�⇢c)
⇢⇢̃m(⇢m�⇢c)

otherwise.
(3.3)

In (3.3), the variable vmax denotes the maximum speed that vehicles can travel

on the road. The parameter ⇢̃m determines the shape of the velocity function for the

free flow regime. In particular, it determines how vehicle speed will change when

the tra�c density increases from zero to the critical density ⇢c, where the critical

density is the tra�c density when the highway has the maximum tra�c flow. The

variable ⇢m denotes the jam density, which corresponds the tra�c density when the

road is completely congested. The critical density and jam density influence the

shape of the velocity function for the congested regime.

For numerical implementation, (3.1) is discretized using a Godunov scheme [35],

yielding the Cell Transmission Model (CTM) [22, 23, 47]. Specifically, the time and

space domains are discretized by introducing a discrete time step �T , indexed by
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possess di↵erent properties for both free flow and congested cases. However, these

models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is

deployed:

v2nd (⇢, w) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c (w)

vmax⇢c2nd(w)(⇢m2nd(w)�⇢)(⇢̃m�⇢c2nd(w))
⇢⇢̃m(⇢m2nd(w)�⇢c2nd(w))

otherwise.
(3.18)

In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:

8
><
>:

⇢c2nd (w) = ⇢c1⇢c2

w⇢c1+(1�w)⇢c2
,

⇢m2nd (w) = ⇢m1⇢m2

w⇢m1+(1�w)⇢m2
.

(3.19)
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possess di↵erent properties for both free flow and congested cases. However, these

models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is

deployed:

v2nd (⇢, w) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c (w)

vmax⇢c2nd(w)(⇢m2nd(w)�⇢)(⇢̃m�⇢c2nd(w))
⇢⇢̃m(⇢m2nd(w)�⇢c2nd(w))

otherwise.
(3.18)

In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:

8
><
>:

⇢c2nd (w) = ⇢c1⇢c2

w⇢c1+(1�w)⇢c2
,

⇢m2nd (w) = ⇢m1⇢m2

w⇢m1+(1�w)⇢m2
.

(3.19)
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possess di↵erent properties for both free flow and congested cases. However, these

models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is

deployed:

v2nd (⇢, w) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c (w)

vmax⇢c2nd(w)(⇢m2nd(w)�⇢)(⇢̃m�⇢c2nd(w))
⇢⇢̃m(⇢m2nd(w)�⇢c2nd(w))

otherwise.
(3.18)

In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:

8
><
>:

⇢c2nd (w) = ⇢c1⇢c2

w⇢c1+(1�w)⇢c2
,

⇢m2nd (w) = ⇢m1⇢m2

w⇢m1+(1�w)⇢m2
.

(3.19)
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possess di↵erent properties for both free flow and congested cases. However, these

models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is

deployed:

v2nd (⇢, w) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c (w)

vmax⇢c2nd(w)(⇢m2nd(w)�⇢)(⇢̃m�⇢c2nd(w))
⇢⇢̃m(⇢m2nd(w)�⇢c2nd(w))

otherwise.
(3.18)

In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:

8
><
>:

⇢c2nd (w) = ⇢c1⇢c2

w⇢c1+(1�w)⇢c2
,

⇢m2nd (w) = ⇢m1⇢m2

w⇢m1+(1�w)⇢m2
.

(3.19)
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possess di↵erent properties for both free flow and congested cases. However, these

models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is

deployed:

v2nd (⇢, w) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c (w)

vmax⇢c2nd(w)(⇢m2nd(w)�⇢)(⇢̃m�⇢c2nd(w))
⇢⇢̃m(⇢m2nd(w)�⇢c2nd(w))

otherwise.
(3.18)

In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:

8
><
>:

⇢c2nd (w) = ⇢c1⇢c2

w⇢c1+(1�w)⇢c2
,

⇢m2nd (w) = ⇢m1⇢m2

w⇢m1+(1�w)⇢m2
.

(3.19)
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possess di↵erent properties for both free flow and congested cases. However, these

models are not appropriate to capture distinct behaviors in the freeflow and con-

gested regimes based on empirical observation by Kerner [44, 45], who observed

that the experimental flow data is positively proportional to the density data in

freeflow, while the flow–density data exhibits large spread in congestion. The phase

transition models [5, 7, 17, 18] assumes vehicles have the same property in the free

flow condition, and allow for di↵erent properties in the congestion scenario, which

matches better with the empirical observation by Kerner [44, 45]. In this work,

a quadratic–linear velocity function developed based on phase transition models is

deployed:

v2nd (⇢, w) =

8
><
>:

vmax

⇣
1 � ⇢

⇢̃m

⌘
if ⇢  ⇢c (w)

vmax⇢c2nd(w)(⇢m2nd(w)�⇢)(⇢̃m�⇢c2nd(w))
⇢⇢̃m(⇢m2nd(w)�⇢c2nd(w))

otherwise.
(3.18)

In (3.18), the variables vmax and ⇢̃m determine the shape of the velocity function

for the free flow regime. In the collapsed model, all vehicles are assumed to drive the

same speed in free flow regardless of their property w. The variables ⇢c2nd and ⇢m2nd

determine the shape of the second order velocity function for the congested regime.

Since vehicles have di↵erence properties in congestion, these two variables depend

on the vehicle property w. We use ⇢c1, ⇢c2, ⇢m1 and ⇢m2 to denote the upper bounds

and lower bounds for the critical density and jam density, the critical density and

jam density parameterized by w can be computed as:

8
><
>:

⇢c2nd (w) = ⇢c1⇢c2

w⇢c1+(1�w)⇢c2
,

⇢m2nd (w) = ⇢m1⇢m2

w⇢m1+(1�w)⇢m2
.

(3.19)
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Figure 3.5: The velocity function for the second order tra�c incident model for
a two–lane road. The black curves correspond to the non–incident case, the blue
cures show the velocity function for an incident that blocks a single lane. When
the number of lanes open is known, the property variable w determines which exact
curve should be deployed. For illustration purposese, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 in this
figure denote the upper and lower bounds of critical density and jam density on the
two lane road, while throughout the thesis, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 correspond to the
upper and lower bounds of critical density and jam density for a single lane. The
critical densities and jam densities for the incident diagram (the blue curve) are not
marked due to the space limit.

Figure 3.5 shows the velocity function for a two–lane road. The black curves

are shown for di↵erent w for the non–incident case, and the blue curves show the

function when one lane is blocked by an incident. Compared to the first order model,

the second order model uses a family of curves to describe the density–velocity

relationship in the congestion regime, parameterized by the model parameter w.

Again, ⇢c1, ⇢c2, ⇢m1, and ⇢m2 are used to to denote the upper bounds and lower

bounds for the critical density and jam density, the critical density and jam density

for the second order tra�c incident model can be computed as:

8
><
>:

⇢c (w, �) = ⇢c1(�)⇢c2(�)
(1�w)⇢c1(�)+w⇢c2(�)

,

⇢m (w, �) = ⇢m1(�)⇢m2(�)
(1�w)⇢m1(�)+w⇢m2(�)

.
(3.30)

The fundamental diagram for the second order tra�c model is shown in Figure
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Figure 3.6: The fundamental diagram for the second order traffic incident model for a two–
lane road. The black curves correspond to the non–incident case, the blue cures show the
fundamental diagram when one lane is blocked on the two–lane road.

incident model, which are given by:

S̃ (ρ, w, γ) =





ρṽ (ρ, w, γ) if ρ < ρ̃c (w, γ)

ρ̃c (w, γ) ṽ (ρ̃c (w, γ) , w, γ) if ρ < ρ̃c (w, γ) ,
(3.31)

and

R̃
(
ρM , w

−, w+, γ
)

=





ρ̃c (w−, γ) ṽ (ρ̃c (w−, γ) , w−, γ) if ρM < ρ̃c (w−, γ)

ρM (w−, w+) ṽ (ρM , w
−, γ) if ρ ≥ ρ̃c (w−, γ) .

(3.32)

The intermediate traffic state in (3.32) can be determined by solving the following prob-
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lem:

minimize:
ρM

v+ − vM

subject to: wM = w−,

vM ≤ v+,

vM = ṽ (ρM , wM , γ) ,

v+ = ṽ
(
ρ, w+, γ

)
.

(3.33)

3.5 Network problem for the second order traffic incident model

To construct a discrete solution to a network problem, one models the road network as a

graph composed of links (edges) and junctions (vertices). Consider the discretized 2CTM

(3.21), the flux G that can go across between links depends on the solutions to the junction

problem, three types of junctions are considered: bottlenecks and lane additions, diverges,

and merges. These are the most common freeway junctions and represent lane drops and

lane additions, off–ramps, and on–ramps.

The junction solvers for traffic flow models have been widely studied [91, 92, 93, 94]. In

this dissertation, we deploy the techniques presented in earlier works [91, 92, 93, 94] and

extended the techniques to the second order traffic incident model. As pointed out in [94],

the following criteria is deployed in this dissertation to obtain a unique solution for the

junction problem: total flux is maximized under admissibility constraints, and a constraint

on the splitting of flow or on the allocation of space during merging.

Bottlenecks and lane additions: One Incoming Road and One Outgoing Road

The simplest junction contains two links labeled m = 1 (incoming) and m = 2 (outgoing)

with a different number of lanes. This includes bottlenecks (shown in Figure 3.7), and

expansion zones where a lane is added to the roadway. We use ρ−(1), w
−
(1), γ

−
(1) to denote the
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Link  1 Link  2 

Figure 3.7: Bottleneck highway, junction with one incoming link and one outgoing link.

traffic state in the last cell of the incoming link, and ρ+
(2), w

+
(2), γ

+
(2) to denote the traffic state

in the first cell of the outgoing link. The flow that can cross the junction can be determined

by solving the following optimization problem:

maximize:
G(1),G(2)

G(1)

subject to: 0 ≤ G(1) ≤ S̃(1)

(
ρ−(1), w

−
(1), γ

−
(1)

)
,

0 ≤ G(2) ≤ R̃(2)

(
ρ(2)M , w

−
(1), w

+
(2), γ

+
(2)

)
,

G(1) = G(2),

(3.34)

where G(1) and G(2) separately represent the possible flow that leaves link 1 and the flow that

enters link 2. S̃(1) is the sending function of the last cell at link 1, and R̃(2) is the receiving

function of the first cell at link 2. Here, the sending and receiving functions are the same

as those defined in equation (3.31) and equation (3.32), just with a subscript to denote each

link may have different fundamental diagram parameters. The solution G∗(1) and G∗(2) to the

optimization problem (3.34) is:

G∗(1) = G∗(2) = min{S̃(1)(ρ
−
(1), w

−
(1), γ

−
(1)), R̃(2)(ρ(2)M , w

−
(1), w

+
(2), γ

+
(2))}, (3.35)

which is the maximum flow that can go across the junction. Then, the optimal flux G∗(1) and

G∗(2) are used as the right and left flow boundary conditions for link 1 and link 2 for traffic

prediction, as shown in Algorithm 2.
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Algorithm 2 Junction solver: Bottleneck

Initialization:

Link 1 (incoming): ρ−(1), w
−
(1), γ

−
(1)

Link 2 (outgoing): ρ+
(2), w

+
(2), γ

+
(2)

Solve the junction problem (3.34) according to (3.35): G∗(1) and G∗(2).

Prediction:

In the last cell of link 1 (incoming link):

ρn+1
imax

= ρnimax
+

∆T

∆x

(
Gρ

(
ρnimax−1

, ρnimax
, wnimax−1

, wnimax

)
−G∗(1)

)

yn+1
imax

= ynimax
+

∆T

∆x

(
wnimax−1

Gρ

(
ρnimax−1

, ρnimax
, wnimax−1

, wnimax

)
− wnimax

G∗(1)

)
,

In the first cell of link 2 (outgoing link):

ρn+1
0 = ρn0 +

∆T

∆x

(
G∗(2) −Gρ (ρn0 , ρ

n
1 , w

n
0 , w

n
1 )
)
,

yn+1
0 = yn0 +

∆T

∆x

(
wnl G

∗
(2) − wn0Gρ (ρn0 , ρ

n
1 , w

n
0 , w

n
1 )
)
,

In all other cells for link 1 and link 2: apply the 2CTM (see Section 3.4)

Link  1 Link  2 

Link  3 

Figure 3.8: Diverge highway, junction with one incoming link and two outgoing links.
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Diverge: One Incoming Road and Two Outgoing Roads

A diverge road junction contains three links m = 1 (incoming), m = 2 (outgoing) and m = 3

(outgoing), as shown in Figure 3.8. We use ρ−(1), w
−
(1), γ

−
(1) to denote the traffic state in the

last cell of the incoming link, and ρ+
(2), w

+
(2), γ

+
(2) and ρ+

(3), w
+
(3), γ

+
(3) to denote the traffic state

in the first cell of each outgoing link. The flow that crosses the junction, and the flow that

enters each outgoing link can be determined by solving the following optimization problem:

maximize:
G(1),G(2),G(3)

G(2) +G(3)

subject to: 0 ≤ G(2) ≤ R̃(2)(ρ(2)M , w
−
(1), w

+
(2), γ

+
(2)),

0 ≤ G(3) ≤ R̃(3)(ρ(3)M , w
−
(1), w

+
(3), γ

+
(3)),

0 ≤ G(1) ≤ S̃(1)(ρ
−
(1), w

−
(1), γ

−
(1)),

G(1) = G(2) +G(3),

αG(2) = (1− α)G(3),

(3.36)

where α is known as the split ratio, which determines the fraction of the flow out of link 1

that travels to link 2. In this work, we assume the vehicles that diverge to each outgoing

link strictly obey the split ratio specified by α, which is a common assumption of diverge

models [94]. Also note that the upstream properties for both downstream links 2 and 3 are

the same, since all vehicles entering the outgoing links come from link 1 with property w−1 .

The solution G∗(1), G
∗
(2), and G∗(3) to the optimization problem (3.36) can be calculated as:

G∗(2) = min{R̃(2), (1− α) /αR̃(3), (1− α) S̃(1)},

G∗(3) = α/ (1− α)G∗(2),

G∗(1) = G∗(2) +G∗(3).

(3.37)

Then, the optimal flux G∗(1) is used as the right flow boundary condition for link 1, and

the flux G∗(2) and G∗(3) are used as the left flow boundary conditions for link 2 and link 3 for
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Link  1 

Link  2 

Link  3 

Figure 3.9: Merge highway, junction with two incoming links and one outgoing link.

the one step model prediction, as shown in Algorithm 3.

Merge: Two Incoming Roads and One Outgoing Road

A merge road junction contains three links m = 1 (incoming), m = 2 (incoming) and m = 3

(outgoing), as shown in Figure 3.9. We use ρ−(1), w
−
(1), γ

−
(1), and ρ−(2), w

−
(2), γ

−
(2) to denote the

traffic state in the last cells of the incoming links, and ρ+
(3), w

+
(3), γ

+
(3) to denote the traffic state

in the first cell of the outgoing link. The flow that crosses the junction, and the flow that

leaves each incoming link can be determined by solving the following optimization problem:

maximize
G(1),G(2),G(3)

G(1) +G(2)

subject to 0 ≤ G(1) ≤ S̃(1)(ρ
−
(1), w

−
(1), γ

−
(1)),

0 ≤ G(2) ≤ S̃(2)(ρ
−
(2), w

−
(2), γ

−
(2)),

0 ≤ G(3) ≤ R̃(3)

(
ρ+

(3)M , w
−
M , w

+
(3), γ

+
(3)

)
,

G(3) = G(1) +G(2),

αG(1) = (1− α)G(2),

(3.38)

where w−M denotes the property of the vehicles that cross the left boundary of the downstream

cell. Importantly, this property is determined by the properties of the flows coming from

both link 1 and link 2, so that diverge solver is more complex than the merge or one to one

junction. Since we assume the vehicles strictly follow the priority rule specified by α, the
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Algorithm 3 Junction solver: Diverge

Initialization:

Link 1 (incoming): ρ−(1), w
−
(1), γ

−
(1)

Link 2 (outgoing): ρ+
(2), w

+
(2), γ

+
(2)

Link 3 (outgoing): ρ+
(3), w

+
(3), γ

+
(3)

Solve the junction problem (3.36) according to (3.37): G∗(1), G
∗
(2), and G∗(3).

Prediction:

In the last cell of link 1 (incoming link):

ρn+1
imax

= ρnimax
+

∆T

∆x

(
Gρ

(
ρnimax−1

, ρnimax
, wnimax−1

, wnimax

)
−G∗(1)

)

yn+1
imax

= ynimax
+

∆T

∆x

(
wnimax−1

Gρ

(
ρnimax−1

, ρnimax
, wnimax−1

, wnimax

)
− wnimax

G∗(1)

)
,

In the first cell of link 2 (outgoing link):

ρn+1
0 = ρn0 +

∆T

∆x

(
G∗(2) −Gρ (ρn0 , ρ

n
1 , w

n
0 , w

n
1 ) ,
)

yn+1
0 = yn0 +

∆T

∆x

(
wnl G

∗
(2) − wn0Gρ (ρn0 , ρ

n
1 , w

n
0 , w

n
1 )
)
,

In the first cell of link 3 (outgoing link):

ρn+1
0 = ρn0 +

∆T

∆x

(
G∗(3) −Gρ (ρn0 , ρ

n
1 , w

n
0 , w

n
1 )
)
,

yn+1
0 = yn0 +

∆T

∆x

(
wnl G

∗
(3) − wn0Gρ (ρn0 , ρ

n
1 , w

n
0 , w

n
1 )
)
,

In all other cells for link 1, link 2, and link 3: apply the 2CTM (see Section 3.4)
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property variable w−M can be computed by applying the methodology introduced in [91]:

w−M = αw−(1) + (1− α)w−(2). (3.39)

The solution G∗(1), G
∗
(2), and G∗(3) to the optimization problem (3.38) can be computed

as:

G∗(1) = min{S̃(1), (1− α) /αS̃(2), (1− α) R̃(3)},

G∗(2) = α/ (1− α)G∗(1),

G∗(3) = G∗(1) +G∗(2).

(3.40)

Then, the optimal fluxes G∗(1) and G∗(2) are used as the right boundary conditions for link

1 and link 2, and the flux G∗(3) is used as the left flow boundary condition for link 3 for traffic

prediction, as shown in Algorithm 4.

The junction solvers for the first order traffic models can be derived by following the

optimization problems and numerical solvers for the second order traffic model, except that

the sending and receiving functions in the optimization problems should be replaced with

the first order sending and receiving functions.
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Algorithm 4 Junction solver: Merge

Initialization:

Link 1 (incoming): ρ−(1), w
−
(1), γ

−
(1)

Link 2 (incoming): ρ−(2), w
−
(2), γ

−
(2)

Link 3 (outgoing): ρ+
(3), w

+
(3), γ

+
(3)

Solve the junction problem (3.38) according to (3.40): G∗(1), G
∗
(2), and G∗(3).

Prediction:

In the last cell of link 1 (incoming link):

ρn+1
imax

= ρnimax
+

∆T

∆x

(
Gρ

(
ρnimax−1

, ρnimax
, wnimax−1

, wnimax

)
−G∗(1)

)

yn+1
imax

= ynimax
+

∆T

∆x

(
wnimax−1

Gρ

(
ρnimax−1

, ρnimax
, wnimax−1

, wnimax

)
− wnimax

G∗(1)

)
,

In the last cell of link 2 (incoming link):

ρn+1
imax

= ρnimax
+

∆T

∆x

(
Gρ

(
ρnimax−1

, ρnimax
, wnimax−1

, wnimax

)
−G∗(2)

)

yn+1
imax

= ynimax
+

∆T

∆x

(
wnimax−1

Gρ

(
ρnimax−1

, ρnimax
, wnimax−1

, wnimax

)
− wnimax

G∗(2)

)
,

In the first cell of link 3 (outgoing link):

ρn+1
0 = ρn0 +

∆T

∆x

(
G∗(3) −Gρ (ρn0 , ρ

n
1 , w

n
0 , w

n
1 )
)
,

yn+1
0 = yn0 +

∆T

∆x

(
wnl G

∗
(3) − wn0Gρ (ρn0 , ρ

n
1 , w

n
0 , w

n
1 )
)
,

In all other cells for link 1, link 2, and link 3: apply the 2CTM (see Section 3.4)
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Chapter 4

Multiple model nonlinear filters

In this Chapter, several nonlinear filters are introduced to solve the hybrid state estimation

problem for system (1.1). A multiple model particle filter and an interactive multiple model

ensemble Kalman filter are proposed, where the particle filter or the ensemble Kalman filter

are used to accommodate the nonlinearity of the traffic incident model, and multiple model

methods are deployed to address the switching dynamics of traffic operations. The multi-

ple model particle filter is extended to a multiple model particle smoother to improve the

estimation accuracy when data is limited. A variant of the multiple model particle filter,

called the efficient multiple model particle filter, is developed for field implementations, and

requires significantly less computation time compared to the multiple model particle filter

and the interactive multiple model ensemble Kalman filter.

The proposed algorithms all adhere to the following main ideas. First, they are each

variants of nonlinear filters which are needed to accommodate the nonlinearity of the traffic

models. Second, they are each extended using methods that incorporate multiple models to

handle the discrete model variable. Other nonlinear filters such as the unscented Kalman

filter could also be considered and extended to solve the problem if desired.
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4.1 Incident evolution equations

In the hybrid state estimation problem for (1.1), the model variable γ is used to model

incidents through changes in the fundamental diagram. Specifically, the model variable γ is

defined as an imax + 1 dimensional vector on a single stretch of roadway, where the value in

each element denotes the number of lanes open in the corresponding cell. The model variable

is modeled as a u-state first-order Markov chain [17] with transition probabilities defined by:

π(k,j) = p
{
γn = j|γn−1 = k

}
, k, j ∈ Γ, (4.1)

where the set Γ defines all possible incident conditions (γ ∈ Γ). For example, consider a

stretch of road with two lanes and four cells. Then γ = [2, 2, 2, 2] indicates there is no

incident, γ = [2, 1, 2, 2] indicates there is an incident at cell one and the incident blocks one

lane, and γ = [0, 2, 2, 2] indicates there is an incident at cell zero and the incident blocks two

lanes. If all at most one incident at a time is considered, there are a total of 4×2 + 1 models

(four cells each with two incident severities, plus the no-incident model). The transition

probability matrix is defined as Π̄ = [π(k,j)], which is a u× u matrix satisfying

π(k,j) ≥ 0 and
u∑

j=1

π(k,j) = 1. (4.2)

Equation (4.1) indicates the probability of the transition from one model to another.

Here, we use Π(·) to denote the function that returns a new model variable γ̃ given a model

variable γ according to the transition probability matrix Π̄. In the traffic incident detection

problem, it gives a realization of how many lanes will likely be open at the next time step

given the incident status at the current time step.
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4.2 Observation equation

The numerical simulations and field implementation performed in the dissertation use traffic

density measurements from inductive loops and speed measurements from GPS equipped

probe vehicles as measurements in the traffic estimation algorithms. The nonlinear operator

hn in (1.1) needs to be defined to link the system state to the measurements. When the first

order traffic model is used, the nonlinear operator is given by:

hn (ρn, γn) = Hn




ρn

v (ρn, γn)


 , (4.3)

and when the second order traffic model is used, the nonlinear operator is given by:

hn (ρn, wn, γn) = Hn




ρn

ṽ (ρn, wn, γn)


 , (4.4)

where ρn = [ρn0 , · · · , ρnimax
]. The matrix Hn is constructed based on the locations where

the measurements are acquired, and it is assumed the measurement vector is arranged with

the density measurements stacked on top of the speed measurements. Note, however, that

the observation operator hn is in general nonlinear, due to v. It is time varying because

the locations of GPS vehicles are not fixed, and the number of GPS equipped vehicles may

change over time.

The observation noise term in (1.1),

νn =



νndensity

νnspeed


 ,

is composed of two parts, νdensity and νspeed, to emphasize that different error models are

assumed for density and speed measurements. The measurement noise is assumed to follow
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a normal distribution νn ∼ N (0, V n), where V n is the measurement error covariance matrix.

4.3 Particle filter based techniques

4.3.1 Bayesian problem and particle filter

To jointly estimate the continuous state xn and the model variable γn, the augmented system

state is defined by a vector χn = [xn, γn]. When the first order traffic flow model is applied,

the system state xn is defined as the traffic density ρn along the roadway. When the second

order model is used, the state xn is composed of both the traffic density and the vehicle

property xn = [ρn, wn]. The estimation problem is formulated using the Bayesian approach

[69]. This approach estimates the posterior probability density function p (χn|Zn), where

χn is the augmented system state and Zn are the measurements from time step one to time

step n, which is defined as Zn = {z1, · · · , zn}. The system state χn is recursively updated

according to:

p
(
χn|Zn−1

)
=

∫
p
(
χn|χn−1, Π̄

)
p
(
χn−1|Zn−1

)
dχn−1,

p (χn|Zn) =
p (zn|χn) p (χn|Zn−1)

p (zn|Zn−1)
.

(4.5)

The first equation is the prediction step and it propagates the posterior distribution of

the system state from time step n− 1 to the prior distribution at n, where p (χn−1|Zn−1) is

the posterior distribution at time n−1, and p
(
χn|χn−1, Π̄

)
can be determined by the system

evolution model f . The second equation is the measurement processing step. The new

measurements zn are used to calculate the posterior distribution of the augmented system

state χ at time n, where p (zn|χn) is the likelihood function and p (zn|Zn−1) is a normalizing

constant. The likelihood function p (zn|χn) indicates how well the predicted system state
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matches the measurements. The posterior distribution is proportional to

p (χn|Zn) ∝ p (zn|χn) p
(
χn|Zn−1

)
. (4.6)

The particle filter provides an approximate solution to this Bayesian problem by using

a sequential Monte Carlo method. The basic idea behind the particle filter is as follows.

First, a number of particles are generated to represent a sample approximation of the initial

distribution of the system state. Each particle is assigned equal weight. Then, each particle

is evolved forward in time according to the system evolution equation to achieve a prior

distribution of the system state at the next time step. In the context of filtering, the prior

refers to the estimate before measurements are obtained at the current time step. After

measurements are obtained, the likelihood of each particle can be computed based on the

assumed noise model of the measurements. The particles are then weighted based on the

likelihood at this time step and their previous weights. The weights of the particles are

normalized so that the sum of the particle weights equals to one.

Note that if we repeat this procedure for a number of time steps, the algorithm may

run into the situation that all but one of the importance weights are close to zero. This is

known as the sample degeneracy problem. To avoid the sample degeneracy problem, resam-

pling is performed to remove low weight particles from the sample set. In the dissertation,

the systematic resampling algorithm [17] is used, where particles with high weights will be

multiplied and particles with low weight will be suppressed from the sample. As a result,

particles that remain in the sample match well with the measurements and they will be used

as inputs to the system evolution model for the next iteration.

Another common problem associated with particle filter is known as the sample impov-

erishment problem. Because of resampling, particles with large weights are likely to be

replicated and particles with low weights are removed. As a result, the diversity of the par-

ticles will decrease after the resampling step. When the posterior distribution is represented
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by one or a very small number of particles, the estimation accuracy will suffer [17]. In this

case, a regularized particle filter can be used, where the particles are resampled by using a

kernel density function, instead of directly replicating and removing the particles [95].

Particle filtering has been applied to solve traffic estimation problems [9, 10, 96], where

no incident dynamics are considered. The particle filtering algorithm for traffic estimation

developed in earlier work [10] is shown in Algorithm 5. In Algorithm 5, the notation l is used

to index the particles and ζl is used to denote the weight of each particle l. The variable M

denotes the total number of particles required. In the initial time step, a number of particles

are generated based on the initial knowledge of the highway traffic state. These particles

are used to predict future traffic state assuming all lanes are open. Next, the measurements

from the field (i.e., density measurements and speed measurements) are used to determine

the weight of each predicted traffic state, and resampling is performed to avoid the sample

degeneracy problem.

Algorithm 5 Particle filter [10]

Initialization (n = 0): generate M samples x0
l and assign equal weights ζ0

l = 1/M , where

l = 1, · · · ,M
for n = 1 to nmax do

State prediction: xnl = f
(
xn−1
l

)
+ ωn−1 for all l

Measurement processing:

calculate the likelihood: p (zn|xnl ) for all l

update weights: ζnl = ζn−1
l p (zn|xnl ) for all l

normalize weights: ζ̂nl = ζnl /
∑M

l=1 ζ
n
l for all l

Resampling: multiply (suppress) samples χnl with high (low) importance weights ζ̂nl

Output: posterior distribution of xn

Reassign weights: ζnl = 1/M for all l

n = n+ 1

end for
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4.3.2 Multiple model particle filter

In the hybrid state estimation problem, the model involves both continuous variables (as-

sociated with the traffic state), and discrete variables (associated with the model variable).

Thus, a variant of the particle filter, known as the multiple model particle filter [17], is used

to estimate the traffic state and model variables. The main difference between the multiple

model particle filter and the standard particle filter is that the multiple model particle filter

allows the system to have several models, and particles are randomly generated for possible

models given their probability of occurrence. The filter has a model transition step that de-

scribes the switching dynamics of the system model. The idea of the multiple model particle

filter is that if the state xn generated by a model variable γn is more likely compared to the

traffic state generated by other model variables, then the algorithm estimates the system is

operating in that model at time n.

Algorithm 6 Multiple model particle filter [17]

Initialization (n = 0): generate M samples χ0
l and assign equal weights ζ0

l = 1/M , where

l = 1, · · · ,M
for n = 1 to nmax do

Model transition: γnl = Π
(
γn−1
l

)
for all l

State prediction: xnl = f
(
xn−1
l , γnl

)
+ ωn−1 for all l

Measurement processing:

calculate the likelihood: p (zn|χnl ) for all l

update weights: ζnl = ζn−1
l p (zn|χnl ) for all l

normalize weights: ζ̂nl = ζnl /
∑M

l=1 ζ
n
l for all l

Resampling: multiply/ suppress samples χnl with high/ low importance weights ζ̂nl

Output: posterior distribution of xn and γn

Reassign weights: ζnl = 1/M for all l

n = n+ 1

end for
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The pseudocode of the multiple model particle filter is summarized in Algorithm 6. The

multiple model particle filter consists of the following steps.

• Initialization: Generate M particles from the initial distribution of χ0 and assign each

particle an equal weight. Like the particle filter, the initial state χ0, which is composed

of x0 and γ0, is given by an initial distribution reflecting the knowledge on the initial

state.

• Model transition: Calculate the model variable prediction for all particles according to

the transition matrix (4.1) and (4.2). Then, assign particles to each model. Here, the

particles assigned to each model is proportional to the model probability.

• State prediction: Calculate the prior distribution of the system state xn according to

the traffic models (e.g., (3.4) or (3.21)).

• Measurement processing : Calculate the likelihood of each particle and update the

weight of each particle based on the likelihood and its previous weight. Then, normalize

the weight for all particles.

• Resampling : Resample particles based on their weights. Similar to the standard par-

ticle filter, the systematic resampling algorithm [17] is used.

• Output : The solution to this problem is a posterior distribution of augmented system

state χn. If the distribution of the model variable γn takes a unique value at all time

steps n, it means the algorithm estimates the precise location and severity of the traffic

incident (or the lack thereof). If more than one value of γn is returned at time n, it

means that multiple locations and/or severities of incidents are consistent with the

observed data.

The MMPF Algorithm 6 has the potential to perform well when traffic sensors are dense,

but the estimation accuracy may decrease if the number of sensors is limited.
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On the one hand, when a traffic incident occurs and if there are no sensors nearby, it will

take time for the nearest sensor to detect the congestion. Consequently, the correct incident

model cannot be identified at the time when the traffic incident occurs, and the particles

generated by wrong models will be assigned with high weights. These wrong particles will

then be used as inputs to calculate the prior distribution for the next time step. If the

true model variable is not identified for several consecutive time steps, more particles in the

sample will become incorrect. Eventually, when the incident information propagates to the

sensor, the measurements may not match with any particles in the sample and the filter will

collapse.

On the another hand, when there are no incidents and the sensors are sparse, the particles

generated by incident models may match well with the measurements. If there are no

sensors near the predicted incident location, the filter cannot verify that there is actually

no congestion. Consequently, particles generated by incident models will remain in the

sample set, and the estimation accuracy of the algorithm will decrease if too many incorrect

samples are retained in the sample. To address these problems, we apply the idea of fixed-lag

smoothing [95, 97] and combine it with the multiple model particle filter.

4.3.3 Multiple model particle smoother

A smoothing algorithm estimates the posterior distribution of the system state at time n

given measurements up to some later time T (T > n). If the estimate of the system state is

not required instantly, measurements at a later time can help to provide a better estimation

of the current system state. The fixed–lag approximation [95, 97] is described by:

p
(
Ψn|ZT

)
≈ p

(
Ψn|Zmin{n+∆S,T}) , (4.7)

where Ψn = {χ0, · · · , χn}, and ∆S is a fixed time lag. In general, n + ∆S is smaller than

T . The assumption for this approximation is that measurements after time n+ ∆S bring no
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additional information about the state Ψn.

In our problem, the objective is to jointly estimate the traffic state xn and the model

variable γn at each time step. By applying smoothing, the model variable γn is identified by

its performance at ∆S time steps in the future beyond time n. In other words, an additional

∆S time steps are allowed to let the traffic information propagate to the nearest sensor

(mobile or fixed), where incorrect models can be rejected.

The fixed–lag smoothing algorithm is combined with the multiple model particle filter.

The resulting MMPS is shown in Algorithm 7. The main difference between the multiple

model particle smoother and the multiple model particle filter is the measurement processing

stage. In Algorithm 7, the variable τ is the time index of the smoothing window. Here, xnl (τ)

denotes the traffic state of particle l for time step n + τ − 1. Similarly, γnl (τ) denotes the

model variable γ and ζnl (τ) denotes the weight of each particle during the smoothing window

from time step n to time steps n + τ − 1. During the smoothing step, the weight of each

particle is determined by its previous weight and its likelihood calculated at the current time

step. In the multiple model particle smoother, the weight of each particle is determined by

its previous weight and the likelihood calculated during the time period ∆S + 1 [98]:

ζn ∝ p
(
zn+∆S|Zn+∆S−1,Γn−1

)
, (4.8)

where Γn−1 = {γ0, · · · , γn−1}. Accordingly, resampling is performed using the weight cal-

culated from the measurements up to n + ∆S. During smoothing, each particle is evolved

forward in time. Thus, the state xn generated by a model variable γn is evaluated for an

additional ∆S time steps. The choice of ∆S is up to the algorithm designer, but practically

it should be set as a function of the number of sensors available. If sensors are dense, the

value of ∆S can be small. If sensors are located far apart, it takes more time for the infor-

mation to propagate to sensors, and a larger value for ∆S is needed to see any significant

improvement in performance. Obviously, there is a price for accuracy improvement. Instead
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Algorithm 7 Fixed–lag multiple model particle smoother

Initialization (n = 0): generate M samples χ0
l and assign equal weights ζ0

l = 1/M , where

l = 1, · · · ,M
for n = 1 to nmax do

Model transition: γnl = Π
(
γn−1
l

)
for all l

State prediction: xnl = f
(
xn−1
l , γnl

)
+ ωn−1 for all l

Measurement processing and smoothing:

for τ = 1 to ∆S + 1 do

initialization:

xnl (1) = xnl , γnl (1) = γnl , and ζnl (0) = 1/M for all l

calculate the likelihood:

p (zn+τ−1|xnl (τ) , γnl (τ))

update weights:

ζnl (τ)=ζnl (τ − 1) p (zn+τ−1|xnl (τ) , γnl (τ)) for all l

normalize weights:

ζ̂nl (τ) = ζnl (τ) /
∑M

l=1 ζ
n
l (τ) for all l

ζnl (τ) = ζ̂nl (τ) for all l

if τ 6= ∆S + 1 then

γnl (τ + 1) = Π (γnl (τ)) for all l

xnl (τ + 1) = f (xnl (τ) , γnl (τ + 1)) + ωn+τ−1

end if

τ = τ + 1

end for

Resampling: multiply/ suppress samples χnl with high/ low importance weights

wnl (∆S + 1)

Output: posterior distribution of xn and γn

n = n+ 1

end for
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of real time estimation, the fixed–lag multiple model particle smoother practically estimates

traffic with a lag of ∆S ×∆T .

Another way to perform smoothing is to calculate the weight and resample at each time

step during the smoothing period. However, frequent resampling can result in a loss of

diversity of the particles which leads to the sample impoverishment problem [17].

4.3.4 Efficient multiple model particle filter

The computation time for solving the hybrid state estimation problem for system (1.1) is

proportional to the number of models involved in the system, and the number of models

involved is a function of the number of cells and lanes of the highway. For field implementa-

tion, the total number of models of the hybrid system can be large because the road network

can contain many miles of highway and may include segments with many lanes. Moreover,

the road needs to be discretized into smaller cells when ramps are considered, so that the

ramps are located at (or close to) the boundary between cells while maintaining a fixed

spatial discretization throughout the network. In this case, we show later that the proposed

MMPF (Algorithm 6) may not run in real time for even moderate network sizes.

The MMPF is computationally costly because the algorithm runs a particle filter on likely

models of the system, where particles are assigned to each model proportional to the model

transition probability matrix Π̄. Since traffic incidents are rare events and the transition

probability to an incident model is small, a very large number of particles must be drawn in

order to generate samples that cover many of the incident states.

In this section, an EMMPF is proposed to approximately solve the hybrid state estimation

problem (1.1), shown in Algorithm 8, which requires significantly less computation time

compared to the algorithms in works [99, 100]. The proposed EMMPF is essentially a

multiple model approach applied to the particle filter, where the interactive multiple model

approach is used to estimate the correct model, and the particle filter is performed on the

estimated model for traffic estimation. Different from the MMPF where the estimate is
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determined using samples from all models generated during the model transition step, the

EMMPF only uses a single sample in each model to infer the correct model. Then, all

particles are evolved forward in time using the most likely model determined in the model

selection step.

Algorithm 8 Efficient multiple model particle filter

Initialization: generate M samples x0
l and assign equal weights ζl = 1/M , where l =

1, · · · ,M . The most likely sample of x0
l is denoted by x̄0.

for n = 1 to nmax do

1. Model probability update (for all γ ∈ Γ):

Compute model probability: µn(γ) = π(γ,γn−1)

Predicted state: xn(γ) = f (xn−1, γ) + ωn−1

Calculate the likelihood: pn(γ) = p
(
zn|xn(γ), γ

)

Update the model probability: µn(γ) = µn(γ)p
n
(γ)

2. Model selection: γn = argmaxγ

(
µn(γ)

)

3. Model–conditioned particle filter:

Prediction: xnl = f
(
xn−1
l , γn

)
+ ωn−1 for all l

Calculate the likelihood: p (zn|xnl ) for all l

Update weights: ζnl = ζn−1
l p (zn|xnl ) for all l

Normalize weights: ζ̂nl = ζnl /
∑M

l=1 ζ
n
l for all l

Resampling: multiply/ suppress samples xnl with high/ low importance weights ζ̂nl

Output: selected model γn and posterior distribution of xn

Reassign weights: ζnl = 1/M for all l

n = n+ 1

end for

In Algorithm 8, step one and step two describe the effective multiple model approach,

where the model γn is selected. The term µn(γ) is the probability associated with model γ at

time step n. In step one, the model probability is reinitialized based on the model γ at the

previous time step and the transition probability. Next, the algorithm predicts the traffic

state by assuming γ is correct, and determines the likelihood of γ by evaluating how well
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the predicted system state xn(γ) matches with the measurements zn. Here, the system state

x̄n−1 is the most likely particle of the posterior distribution xn−1
l from the last time step.

The model probability µn(γ) is updated by multiplying the initial model probability and the

model likelihood. This procedure is repeated for all models defined in the system. In step

two, the algorithm selects the γ with the highest model probability as the correct model in

the current time step.

In step 3, a standard particle filter is performed on the selected model. Here, the prior

distribution of xn−1
l is the posterior distribution of the system state from the previous time

step. During the prediction step, we predict the future traffic state for all particles. Then,

we compute the likelihood of each particle and update its weights. Next, the weights of the

particles are normalized so that the total weight of all particles sums to one. Finally, the

systematic resampling algorithm [17] is performed to resample the distribution based on the

weights of the particles. The selected model γn and the resulting posterior distribution of

xn are outputted and used as inputs to the algorithm for the next time step.

Compared to the MMPF, where particles are assigned according to the transition proba-

bility and the particle filter is performed using samples from all of the realized models during

the model transition step, the proposed EMMPF runs a single sample for each model to infer

the correct model, and performs the filter only on the model that is estimated to be true. As

a result, significant amount of computation time can be saved when the number of models

is large.

4.4 Kalman filter based techniques

4.4.1 Ensemble Kalman filter

A second type of algorithm to solve the hybrid state estimation problem is constructed

based on the seminal Kalman filter [101], which is a best linear unbiased estimator (BLUE).

Compared to the particle filter, where the full statistics are represented by a distribution
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of the system state that propagates though the model and is corrected in a fully Bayesian

update step, the Kalman filter performs a linear correction that minimizes the posterior error

covariance.

The classical Kalman filter is only applicable for linear systems (e.g., with a linear evo-

lution equation and a linear observation equation, both with additive Gaussian noises). To

apply the ideas of Kalman filtering to nonlinear systems, several approaches have been de-

veloped, the most common being the extended Kalman filter [102], the unscented Kalman

filter [26], and the ensemble Kalman filter [103].

The extended Kalman filter requires linearizing the evolution and observation equations

of the system around the best estimate at each time step, and then performs the stan-

dard Kalman update equations on the linearized system. For highly nonlinear systems, the

extended Kalman filter can suffer poor performance which has in turn motivated the devel-

opment of alternative methods. The unscented Kalman filter is notable because it performs

a deterministic sampling of the posterior state error covariance matrix at the previous time

step, then evolves the deterministic samples through the nonlinear model to generate the

correct prior error covariance after propagation through the nonlinear model. This error

covariance can then be used in the minimal variance linear update step of the Kalman filter.

The ensemble Kalman filter takes a slightly different approach, and performs a Monte Carlo

integration of the posterior state error distribution through the nonlinear evolution equa-

tion before the linear minimal variance correction step is performed when measurements are

made available. When the number of samples (ensembles) is large, the EnKF converges to

the Kalman filter for linear systems [103].

In this dissertation, the EnKF is used for traffic state estimation due to its computational

efficiency and ease of implementation compared to other extensions of the Kalman filter for

nonlinear systems. The standard EnKF is described in Algorithm 9. Similar to the particle

filter, the EnKF first draws an initial distribution x
0|0
l of the traffic state based on the initial

traffic state distribution, where l = 1, · · · ,M denotes the samples (or ensembles). Each
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sample is evolved forward in time using the traffic model to predict the future traffic state

and the covariance of the predicted traffic state is computed. Next, the minimal variance

linear correction (Kalman gain) K is computed by using the predicted covariance matrix and

the measurement noise. The posterior estimate of the traffic state is calculated using the

Kalman gain correction and the measurements collected from the field. Here, the variable

νnl denotes a realization of the model noise νn for sample l. The index n|n − 1 denotes

the prior of a variable (before the measurements at time n are obtained) and the subindex

n|n denotes the posterior of a variable (after the measurements at time n are obtained).

Finally, the posterior covariance matrix is updated. Note that the form of the EnKF shown

in Algorithm 9 highlights its structural similarities with the Kalman filter, but in numerical

implementations, a variety of speedup techniques can be implemented to avoid the explicit

construction of the state error covariance matrix to compute the Kalman gain [104].

The EnKF can be used for estimation when a system is nonlinear. However, it cannot

directly be used to solve hybrid state estimation problems due to the discrete variables

involved in the state. In the next section, we introduce how the EnKF can be extended in

order to solve the joint traffic state estimation and incident detection problem.

4.4.2 Interactive multiple model Ensemble Kalman filter

In this section, an interactive multiple model ensemble Kalman filter is proposed to solve

the hybrid state estimation problem for system (1.1). This IMM EnKF is developed based

on the IMM method [46]. The EnKF is incorporated into the IMM framework, and the

resulting IMM EnKF algorithm is summarized in Algorithm 10. In the algorithm, l denotes

the ensemble index, M is the total number of ensembles for each model, µ(γ) is the probability

of model γ, x(γ,l) is the state generated by model γ and ensemble l, Σ(γ) is the predicted

covariance matrix, Kn
(γ) is the Kalman gain of model γ at time n, and L(γ) is the likelihood

of each model calculated from the EnKF.

At each time step, the algorithm first determines the probability of each model γn based
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Algorithm 9 Ensemble Kalman filter [8]

Initialization: generate M samples x
0|0
l , where l = 1, · · · ,M .

for n = 1 to nmax do

Predicted state: x
n|n−1
l = f

(
x
n−1|n−1
l

)
+ ωn−1 for all l

Predicted covariance: Σn|n−1 = 1
M−1

∑M
l=1

(
x
n|n−1
l − 1

M

∑M
l=1 x

n|n−1
l

)
(· · · )T

Kalman Gain: Kn = Σn|n−1 (Hn)T
(
HnΣn|n−1HnT + V n

)−1

Updated state: x
n|n
l = x

n|n−1
l +Kn

(
zn + νnl −Hnx

n|n−1
l

)
l = 1, · · · ,M

Updated covariance: Σn|n = Σn|n−1 −KnHnΣn|n−1

Note: when the observation equation is nonlinear, the calculation of the covariance in

the Kalman gain follows [105]:

Σn|n−1 (Hn)T = 1
M−1

(
x
n|n−1
l − 1

M

∑M
l=1 x

n|n−1
l

)(
hn
(
x
n|n−1
l

)
− 1

M

∑M
l=1 h

n
(
x
n|n−1
l

))T

(Hn) Σn|n−1 (Hn)T = 1
M−1

(
hn
(
x
n|n−1
l

)
− 1

M

∑M
l=1 h

n
(
x
n|n−1
l

))
(· · · )T

end for

on the previous system model γn−1 and the transition matrix defined in (4.1). Then, for each

model, an EnKF is performed to estimate the state. The EnKF algorithm first computes the

one step predicted state and covariance through the traffic model. After the measurements

are received, it updates the predicted state and covariance using the measurements at the

current time step and the computed Kalman gain. The probability of each model γn is

updated by considering the model probability µ
n|n−1
(γ) and the model likelihood Ln(γ), which

indicates how well the state generated by γn matches with the measurements. It is calculated

by using the mean of the estimated state
(

ΣM
l=1x

n|n
(γ,l)

)
/M , the measurements zn, and the

noise model νn. The model γn with the highest probability is used to estimate the true state.

Again, the calculation of the covariance in the Kalman gain should follow the equations at

the end of the algorithm when a nonlinear observation operator is needed (e.g., if velocity

measurements are received).

In terms of computational cost, the IMM EnKF requires less computation time compared

to the MMPF for traffic estimation and incident detection. Recall that the number of samples

assigned to each model by the MMPF is proportional to the model probability specified in
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Algorithm 10 Interactive multiple model ensemble Kalman filter

Initialization: generate M samples x
0|0
l , where l = 1, · · · ,M .

for n = 1 to nmax do

1. Model–conditioned reinitialization (for all γ ∈ Γ):

Predicted model probability: µ
n|n−1
(γ) = π(γ,γn−1|n−1)

2. Model–conditioned EnKF (for all γ ∈ Γ):

Predicted state: x
n|n−1
(γ,l) = f

(
x
n−1|n−1
(l) , γ

)
+ ωn−1 for all l

Predicted covariance: Σ
n|n−1
(γ) = 1

M−1

∑M
l=1

(
x
n|n−1
(γ,l) − 1

M

∑M
l=1 x

n|n−1
(γ,l)

)
(· · · )T

Kalman gain: Kn
(γ) = Σ

n|n−1
(γ) HnT

(
HnΣ

n|n−1
(γ) HnT + V n

)−1

Updated state: x
n|n
(γ,l) = x

n|n−1
(γ,l) +Kn

(γ)

(
zn + νnl −Hnx

n|n−1
(γ,l)

)
l = 1, · · · ,M

Updated covariance: Σ
n|n
(γ) = Σ

n|n−1
(γ) −Kn

(γ)H
nΣ

n|n−1
(γ)

3. Model probability update (for all γ ∈ Γ):

Model likelihood: Ln(γ) = p(zn|xn|n(γ,l)) l = 1, · · · ,M

Model probability: µ
n|n
(γ) =

µ
n|n−1
(γ)

Ln
(γ)∑

γ′∈Γ µ
n|n−1

(γ′) Ln
(γ′)

4. Model inference (for all γ ∈ Γ):

Model selection: γn|n = argmaxγ

(
µ
n|n
(γ)

)

State selection: x
n|n
(l) = x

n|n
(γn|n,l)

Note: When the observation equation is nonlinear, the calculation of the covariance in

the Kalman gain follows [105]:

Σ
n|n−1
(γ) (Hn)T =

1
M−1

(
x
n|n−1
(γ,l) − 1

M

∑M
l=1 x

n|n−1
(γ,l)

)(
hn
(
x
n|n−1
(γ,l) , γn

)
− 1

M

∑M
l=1 h

n
(
x
n|n−1
(γ,l) , γn

))T

(Hn) Σ
n|n−1
(γ) (Hn)T = 1

M−1

(
hn
(
x
n|n−1
(γ,l) , γn

)
− 1

M

∑M
l=1 h

n
(
x
n|n−1
(γ,l) , γn

))
(· · · )T

end for
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the transition probability matrix. As a result, a very large sample size is required in order to

generate sufficient samples in all of the possible models since traffic incidents are rare events,

and moreover, the number of severities and locations is large. In contrast, the IMM EnKF

approach specifies the model probability for all models based on the transition probability,

then runs an EnKF on each model with a fixed number of samples. The estimation results

from the filter are combined with the model probability determined from the transition

probability to infer the correct model. As a result, the total number of samples needed for

the IMM EnKF is much less than that of MMPF. Compared to the EMMPF, the IMM

EnKF requires more computation time because the IMM EnKF runs EnKF on all possible

models and then determines the correct model after the measurements are received and the

state is corrected, while the EMMPF runs a single sample on all models to select the correct

model, and only runs the particle filter on the selected model.

4.5 Summary of proposed algorithms

In this chapter, four algorithms were presented for solving the joint traffic state and incident

detection problem: i) the multiple model particle filter, ii) the multiple model particle

smoother, iii) the efficient multiple model particle filter, and iv) the interactive multiple

model ensemble Kalman filter. The multiple model particle smoother is an extension of the

multiple model particle filter, which is able to improve the estimation accuracy by allowing

a time lag during the estimation so that measurements received after time n can be used

to determine the correct model at time n. The efficient multiple model particle filter is

developed to reduce the computation time compared to the MMPF. Instead of running

particles through on all of the possible models and calculating a posterior on the model

variable, the algorithm runs a single sample on each model to determine the most likely

system model, and performs traffic estimation only on the estimated model. This efficient

multiple model particle filter can significantly reduce the computation time compared to
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the other algorithms. Later in the field implementation, we will show the efficient multiple

model particle filter runs in real time for moderate network sizes while the other algorithms

do not. The reduced run time comes at the cost of a lower accuracy on estimating the model

variable, since only a single sample is used to select the model.

It should be mentioned that the efficient multiple model particle filter can be extended to

an efficient multiple model particle smoother by applying the same methodology presented

in Section 4.3.3. Similarly, the IMM EnKF can be extended to an IMM ensemble Kalman

smoother by following the techniques introduced in [106], and an efficient multiple model

EnKF can also be developed by replacing the particle filter with an EnKF in Algorithm 8,

after the model is selected. The proposed methods developed in this chapter are designed

to give some insights of the potential implications of the various tradeoffs between accuracy

and run time by exploring two different filtering methodologies (e.g., particle filtering and

ensemble Kalman filtering), by exploring tradeoffs between filtering and smoothing, and

by exploring tradeoffs in the different multiple model formulations to handle the discrete

variables introduced when modeling incidents.
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Chapter 5

Numerical experiments in

microsimulation with CORSIM

To test whether the proposed algorithms have potential to work in practice, the CORSIM

microscopic simulation software is used to simulate traffic and congestion caused by incidents.

The simulation results from CORSIM are used as the source of the traffic measurements, and

also as the definition of the true state, to be estimated by the proposed algorithms. The main

idea is that if the algorithms are able to detect traffic incidents using the data generated by

CORSIM, which is an entirely different modeling framework from the macroscopic models

used in the estimator, it has a higher potential to perform well in the field.

The microscopic simulation software CORSIM is developed by the Federal Highway Ad-

ministration (FHWA). It models individual vehicle movements based on car following and

lane-changing theories on a second by second basis. The model also includes random pro-

cesses to model different driver, vehicle, and traffic system behaviors. This is in contrast to

the macroscopic traffic models used in the estimator, which model only conservation of ve-

hicles (and possibly conservation of total property). An important feature of this simulation

environment is that the assumed true model CORSIM has dynamics that are not directly

incorporated in the macroscopic models used in the estimator. This also occurs when one
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applies macroscopic estimators to estimate traffic in experimental field deployments.

For illustration purposes, the CORSIM simulations are performed on a four mile long,

three–lane freeway segment with a speed limit of 65 mph. The simulation is performed for

one hour (180 time steps when ∆T is chosen as 20 seconds). One incident is created in cell

four, which is 1.36 miles from the starting point of the freeway segment. The incident occurs

between time steps 60 and 120, and it blocks one lane. In CORSIM, a rubberneck factor

of 50% is given for the remaining lanes at the incident location to model the phenomenon

that drivers slow down when passing an incident on the road, even if no congestion occurs

in front of the drivers.

In this chapter, we first test the proposed MMPF and the MMPS algorithms on the

first order traffic incident model with incident data generated by CORSIM while varying the

penetration rate of GPS equipped vehicles to illustrate the potential benefits of smoothing.

Next, the MMPF and the IMM EnKF algorithms are compared with a standard macroscopic

traffic estimator based on particle filtering applied to a scalar traffic model, and the California

incident detection algorithm. This allows for comparisons between standard approaches for

traffic incident detection and traffic estimation, and also allows comparisons between the

different families of estimators (e.g., particle and Kalman filters). The traffic volume is

varied to highlight the fact that incident detection depends critically on the flow rate. Then,

the EMMPF is implemented on both the first order model and the second order model,

and tested with the incident data generated by CORSIM, again while varying the flow rate.

Finally, a sensitivity analysis is performed on the EMMPF with the first order traffic model,

to study how the estimation accuracy is affected by the model parameters.

There are several important results of the simulations. First, they show that the MMPF,

MMPS, IMM EnKF, and EMMPF are able to jointly estimate traffic state and detect inci-

dents. Second, compared to the MMPF, the MMPS can improve estimation accuracy when

data is limited due to the extra smoothing window that allows more measurements to be

used to determine the correct model variable. Third, the MMPF and the IMM EnKF can
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provide better traffic state and incident estimates than the particle filter and the California

algorithm working independently, which highlights the benefit of estimating both incidents

and the traffic state in a same algorithm compared to two separate algorithms. Fourth, it

is verified that the EMMPF requires significantly less computation time compared to the

MMPF and the IMM EnKF without a significant deterioration in the accuracy of the esti-

mates. Finally, the comparisons between the first and second order models illustrate that

similar traffic state and incident estimates are obtained when either model is used for the

traffic dynamics.

5.1 Fundamental diagram calibration for CORSIM traffic

To test the proposed algorithms in CORSIM, the fundamental diagram in the macroscopic

traffic models needs to be calibrated. In particular, the shape of the fundamental diagram for

the traffic evolution of CORSIM needs to be determined. To calibrate the model, we build

a three–lane freeway in CORSIM and conduct simulations with various inflow values and

downstream speed limits (to generate congestion). All other CORSIM parameters are set

as the default values. For each simulation, we collect the traffic occupancy data and traffic

flow data over a two minute interval by processing the vehicle trajectory data exported from

CORSIM passing over a simulated inductive loop detector. Then, the traffic occupancy

data is converted to traffic density data to construct the density–flow relationship, which is

analogous to the processing that occurs in traffic monitoring systems relying on inductive

loops. The red dots in Figure 5.1 show the resulting density–flow relationship obtained from

the CORSIM simulations, from which the fundamental diagram can be calibrated. In an

experimental deployment, the density–flow data would be obtained by using historical data

from the loop detectors collected over many days or weeks to calibrate the parameters of the

fundamental diagram.

In the CORSIM simulations, a piece-wise quadratic function is used to fit the data. The
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Figure 5.1: Density–flow relationship for the first order traffic model (equivalent to the second
order traffic model with w = 1). The red dots are measurements obtained from CORSIM
and the solid black line is the calibrated density–flow model.
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flow functions for the first order traffic model and the second order traffic model are given

by:

q (ρ, γ) =





ρvmax (γ)
(

1− ρ
β(γ)

)
if ρ ≤ ρc (γ)

a(γ)ρ2 + b(γ)ρ+ c(γ) if ρ ≥ ρc (γ),
(5.1)

and

q̃ (ρ, w, γ) =





ρvmax (γ)
(

1− ρ
β(γ)

)
if ρ ≤ ρc (w, γ)

a(w, γ)ρ2 + b(w, γ)ρ+ c(w, γ) if ρ ≥ ρc (w, γ),
(5.2)

where the function q (ρ, γ) denotes the flow function for the first order model and the function

q̃ (ρ, w, γ) is the flow function for the second order model.

For the first order traffic model, the parameters a, b, and c determine the density–flow

relationship for the congested regime, and can be computed by traffic model parameters

ρc(γ), ρm(γ), vmax(γ), and β(γ):





a (ρm (γ))2 + b (ρm (γ)) + c = 0

− b
2a

= ρc(γ)

4ac−b2
4a

= ρc(γ)vmax (γ)
(

1− ρc(γ)
β(γ)

)
.

(5.3)

Similarly, for the second order traffic model, the parameters a, b, and c can be determined

by the traffic model parameters ρ̃c(w, γ), ρ̃m(w, γ), vmax(γ), and β(γ):





a (ρ̃m(w, γ))2 + bρ̃m(w, γ) + c = 0

− b
2a

= ρ̃c(w, γ)

4ac−b2
4a

= ρ̃c(w, γ)vmax (γ)
(

1− ρ̃c(w,γ)
β(γ)

)
.

(5.4)

Next, the calibration procedures for the model parameters are described. The parameter

calibration is performed for the first order traffic model. The model parameters for the

second traffic model are determined by perturbing the first order model parameters (i.e., ρc,

ρm). The maximum flow is calibrated as 2,210 veh/hour/lane according to the calibration
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Parameters three lanes two lanes one lane unit

vmax (γ) 65 18 18 vpm

qmax (γ) 2210 1624 1127 veh/hour/lane

ρc (γ) 34 90.2 62.6 veh/mile/lane

ρm (γ) 239 239 239 veh/mile/lane

Table 5.1: Traffic model parameters

procedure described in [107], which is the highest flow value observed from the data. The

maximum speed vmax is set as 65 mph, which is also the free flow speed specified in CORSIM.

The jam density is calibrated as 239 veh/mile/lane by using a least squares fit. The variable

β controls the curve of the free flow regime. From the data shown in Figure 5.1, a linear

relationship can be observed between traffic density and traffic flow. The variable β is set

as 10,000 veh/mile/lane so that the density flow relationship is almost linear while still

maintaining a strictly decreasing velocity function. The critical density is computed as 34

veh/mile/lane. These parameters (i.e., vmax, ρc, ρm, and qmax) are subject to change when

an incident occurs. The values from the Highway capacity manual (HCM) and [108] are used

to determine the parameters used in this work. The resulting traffic model parameters for

the first order traffic incident model are summarized in Table 5.1. When the second order

model is deployed, the upper bounds of the critical density and jam density (i.e., ρc1 and

ρm1) are set as the critical density and jam density calibrated for the first order traffic model

(i.e., w = 1). The lower bounds of the critical density and jam density are set as 80 percent

of the upper bounds (i.e., w = 0).

Other parameters used for the discretized traffic model and noise models within the esti-

mation algorithms are summarized in Table 5.2. In this numerical implementation, all of the

noise models are specified by a Gaussian distribution, however, other types of distributions

are applicable since the particle filter is able to handle non–Gaussian noise.
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Link length 4 miles

Number of cells 11

∆T 20 seconds

∆x 0.36 miles

ω N (0, 5.02 × I)

νdensity N (0, 13.52 × I)

νspeed N (−4.0× 1, 4.82 × I)

Table 5.2: Setup for the macroscopic model and noise model used in the estimator, where 0
and 1 are vectors with all elements of zero and one respectively, and I is the identity matrix
of the appropriate dimensions.

5.2 Assumptions for the model variable evolution

We make several assumptions on the evolution of the model variable. First, we assume

there is a one percent probability for the occurrence of a traffic incident at next time step,

provided the freeway does not have any incidents at the current time. If an incident occurs,

it has an equal probability to occur anywhere between the two inductive loop detectors with

three possible severities: one, two, or all lanes blocked. Second, if there is an incident on

the freeway at the current time step, there is a 99% probability for the incident to remain

in the next time step, and a 1% probability for the incident to be cleared. With these

assumptions, the transition matrix Π̄ can be constructed. Note a relatively high probability

for the occurrence of a traffic incident is assumed. This is because in the multiple model

particle filtering algorithm, the number of particles in each model is proportional to the

transition probability for each model. Consequently, a relatively high transition probability

into an incident is needed in order to get particles in each model if the sample sizes are to

remain tractable. If we assume a lower probability of an incident, a much larger sample size

may be needed.
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5.3 Simulation description and error metrics

Two inductive loop detectors are assumed to be available in order to calibrate the funda-

mental diagram and they are located in cells one and nine. In the numerical simulations,

the proposed algorithms are tested by assuming different penetration rates of GPS vehicles,

and different boundary conditions. For the proposed multiple model particle filtering and

smoothing algorithms, the sample size is set as M = 2, 500. For the proposed IMM EnKF

and EMMPF, the sample size is set as 100.

The initial condition in all cells are assumed to follow a normal distribution, where the

mean is the average of the density measurements from the inductive loop detectors located

near both ends of the freeway, and the standard deviation is five percent of the mean. In

CORSIM, the simulation starts after a warm–up period, so the initial density values are

nonzero.

The estimation accuracy of the state vector xn and the model variable γn is quantitatively

evaluated by computing the average error as follows:

ex =
1

(imax + 1)(nmax + 1)

imax∑

i=0

nmax∑

n=1

|ρ̂ni − ρ̄ni |,

eγ =
1

(imax + 1)(nmax + 1)

imax∑

i=0

nmax∑

n=1

|γ̂ni − γ̄ni |,
(5.5)

where ρ̂ni is the estimated density (mean of the posterior distribution), ρ̄ni is the true density,

γ̂ni is the estimated model variable (maximum a posterior estimate), and γ̄ni is the true model

variable at each time n and location i.
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Figure 5.2: True evolution of the traffic density and the model variable.

5.4 MMPF and MMPS estimation results with different GPS pen-

etration rates

In the first set of simulations the influence of various penetration rates of GPS data on the

estimation accuracy are explored while the inflow in CORSIM is specified as 6,000 veh/hour

to maintain a high inflow and large congestion resulting from an incident. The density and

the model variable in the time and space domain for the true traffic conditions obtained from

CORSIM are shown in Figures 5.2a and 5.2b. After the incident occurs, a congestion wave is

generated and the congestion propagates to the boundary shortly after time step 100. After

the incident is removed, the congestion begins to dissipate before finally clearing just before

time step 150.

The first order traffic flow model (3.9) is assumed in the estimator using the calibrated

fundamental diagram described in Section 5.1. The left boundary condition assumed in the

estimator is 5, 900 +N (0, 1502). The right boundary condition is in free flow and therefore

does not influence the one step model prediction. The MMPF algorithm is first tested

by assuming penetration rates of four percent and one percent, and the estimation results

without smoothing are shown in Figures 5.3a, 5.3b, 5.3c, and 5.3d. As the result shows, when
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the penetration rate is four percent, the algorithm is able to correctly estimate the model

variable. When the penetration rate is decreased to one percent, the estimation accuracy

for both the traffic state and the model variable decreases, due to the reasons discussed in

Section 4.3.2.

Next, the multiple model particle smoother is tested when the GPS penetration rate is

one percent and the results are shown in Figures 5.3e and 5.3f. The ∆S for this simulation

is set as three. Compared to Figures 5.3c and 5.3d, which have the same penetration rate

(without smoothing), the accuracy of both the traffic state and model variable estimates

improves significantly with smoothing. Thus, when the penetration rate of probe vehicles is

low, smoothing might be a meaningful way to improve estimation accuracy, without the need

for additional probe data. The increased accuracy comes at the cost of a lag in the estimate.

In this experiment, the three time step lag generates a one minute delay in producing the

state estimate.

To provide a more comprehensive analysis, the MMPF and MMPS are tested by assuming

four penetration rates. For each penetration rate, five tests are conducted with the MMPF

and the MMPS with the smoothing window ∆S set as three. The results are summarized

in Figure 5.4, where the reported error is the average over the five tests. The results show

the error of both the state and model variable estimates becomes large when the penetration

rate of GPS vehicles decreases, and smoothing is able to improve the estimation accuracy.

To give a more detailed view of the performance of the multiple model particle filter,

Figure 5.5 shows the number of distinct particles in the posterior distribution of the multiple

model particle filter for each time step. The figure corresponds to an experiment when

the inflow is 6,000 veh/hour and the penetration rate is four percent. From the figure, we

can see that there are approximately 1,500 number of particles that have relatively high

weights from time step zero to time step 60. Then, the number of distinct particles drops

significantly at the moment when the incident occurs. This occurs because the relatively low

transition probability from the non-incident model to an incident model (i.e., one percent).

76



0 2 4 6 8 10
Cell Number

0

50

100

150
T
im

e
 S

te
p

0
60
120
180
240
300
360
420
480
540

(a) Density (veh/mile)

0 2 4 6 8 10
Cell Number

0

50

100

150

T
im

e
 S

te
p

0

1

2

3

(b) Model variable (lanes open)

0 2 4 6 8 10
Cell Number

0

50

100

150

T
im

e
 S

te
p

0
60
120
180
240
300
360
420
480
540

(c) Density (veh/mile)

0 2 4 6 8 10
Cell Number

0

50

100

150

T
im

e
 S

te
p

0

1

2

3

(d) Model variable (lanes open)

0 2 4 6 8 10
Cell Number

0

50

100

150

T
im

e
 S

te
p

0
60
120
180
240
300
360
420
480
540

(e) Density (veh/mile)

0 2 4 6 8 10
Cell Number

0

50

100

150

T
im

e
 S

te
p

0

1

2

3

(f) Model variable (lanes open)

Figure 5.3: Estimate of the multiple model particle filter, penetration rate of four percent
(first row) and one percent (second row). Estimate of the multiple model particle smoother,
penetration rate of one percent and ∆S = 3 (third row). The values of the traffic state (left)
and model variable (right) estimate at each time and space domain are described by the
color bar. The value shown is the mean of the posterior distribution.
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Figure 5.4: Average error (five tests) for density (left) and model variable (right) estimates
under different penetration rates. The smoothing window ∆S for these simulations is set as
three.

Moreover, the one percent of incident samples have an equal probability to occur at any of

the cell locations and for any severity. As a consequence, a very small number of particles

are actually generated with the correct model variable at the moment the incident occurs,

but those particles generated by the correct incident model are found to be consistent with

the measurements and so it receives much higher weight (and eventually more particles in

the resampling step). After the traffic model transitions to the incident model, the number

of particles that are consistent with measurement will increase due to the high probability

of staying in an incident mode, which can be observed from the figure (i.e., time steps 60 to

120).

It is also observed from Figure 5.5 that the number of distinct particles decreases again

from time steps 120 to 170. This is because when the traffic incident clears, the traffic

evolution dynamics in CORSIM are not consistent with any models defined in the traffic

model with incidents. As shown in the true traffic density evolution (i.e., Figure 5.2a), the

true traffic density can reach 240 veh/mile downstream of the incident location after the

incident is cleared. However, from the macroscopic traffic flow theory, vehicles should be in

free flow and therefore the one step ahead prediction with the model used in the estimator
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Figure 5.5: Number of different particles in the posterior distribution of the multiple model
particle filter for each time step. The inflow is 6,000 veh/hour and the penetration rate is
four percent.

has a larger model error. Regardless, it is shown in Figure 5.3a that the proposed MMPF

is able to estimate the traffic state even though the number of matched samples decreases

during this period, and the MMPF does not provide any false positive incident predictions.

This lack of false positives occurs because even the predictions by the (correct) non–incident

traffic model does not match well with the measurements, it has higher agreement compared

to the predictions generated by incident models and therefore these samples retain larger

weights.
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Figure 5.6: True evolution of traffic density. (a) Inflow 1,000 veh/hour. (b) Inflow 3,000
veh/hour.

5.5 Comparison with the particle filter, the California algorithm

and the IMM EnKF for different inflows

In this section, the performance of the MMPF and the IMM EnKF are tested with different

boundary conditions and compared with a particle filter shown in Algorithm 5 applied to the

scalar traffic flow model (3.9) and the California algorithm [14], which estimate the traffic

state and incidents independently. The penetration rate is four percent for all experiments.

The California algorithm shown in Algorithm 1 is implemented and the occupancy measure-

ments from the inductive loop detectors at cell one and cell nine are used. The thresholds

of the California algorithm T1, T2, and T3 are calibrated and set to 0.33, 2.55, and 0.0003

respectively to maximize the accuracy of the algorithm.

Table 5.3 shows the comparison between the algorithms for traffic estimation and incident

detection when the inflow ranges from 1,000 veh/hour to 6,000 veh/hour. For the MMPF,

an incident is reported if the most likely model in the model variable posterior distribution

is an incident model for consecutive three time steps. For the IMM EnKF, an incident is

reported if an incident model is selected for consecutive three time steps.
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When one lane is blocked, the remaining capacity for the three–lane road is approxi-

mately 3,300 veh/hour in CORSIM. When the remaining lanes have enough capacity to

accommodate all of the traffic (i.e., for the inflows between 1,000 to 3,300 veh/hour), the

traffic incident does not generate significant congestion that can be detected by any of the

algorithms. Figure 5.6 shows the true traffic evolution when the inflows are small and high-

lights the lack of congestion, even though in both simulations, there is an incident at cell

four between time step 60 and 120.

As a result of the lack of congestion, the predicted evolution of traffic is accurate when

the correct incident model is used, and also if the model incorrectly assumes all lanes are

open. As a consequence, all traffic estimation algorithms (the PF, the IMM EnKF, and

MMPF) have very low state estimation error as reported in Table 5.3. At the same time,

all of the incident detection algorithms (the California algorithm, the IMM EnKF, and the

MMPF) fail to detect the incident.

When the inflow exceeds the remaining capacity of the road (e.g., inflows of 4,000

veh/hour, 5,000 veh/hour, or 6,000 veh/hour), significant congestion will form after the

occurrence of an incident. The MMPF and the IMM EnKF are able to detect the incident

from the sensor data and switch to the incident model, while the PF continues to estimate

the traffic assuming all lanes are open because the scalar traffic model used in the filter does

not contain any incident dynamics. Consequently, the PF collapses and provides poor state

estimates in comparison to the IMM EnKF and in comparison to the MMPF, which has the

highest traffic state accuracy. We conclude the MMPF and IMM EnKF perform better than

a particle filter in terms of traffic estimation under incidents resulting in congestion.

To understand the performance of the algorithms, Figure 5.7 shows the density estimation

results by the IMM EnKF and the PF when the inflow is 6,000 veh/hour and the penetration

rate is four percent. Compared to the estimates of the MMPF shown in Figure 5.3a, we see

both the MMPF and the IMM EnKF are able to estimate the resulting congestion caused

by the incident. In contrast, the particle filter cannot provide a good traffic state estimate
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Figure 5.7: Density estimates of the IMM EnKF and PF, inflow = 6,000 veh/hour, penetra-
tion rate four percent.

in the presence of a traffic incident.

Figure 5.8 shows the number of distinct particles in the posterior distribution for each

time step of the particle filter (Algorithm 5) for the same simulation. We can see that the

number of distinct particles drops significantly after time step 60 when the traffic incident

occurs. Since the particle filter always estimates the traffic state assuming all lanes are open

even when there is an incident, none of the particles predict the congestion caused by the

incident. When compared to Figure 5.5 which shows the number of distinct particles in the

multiple model particle filter for the same simulation, it is clear that embedding the traffic

model with incident dynamics is critical to prevent the filter from collapsing.

Note that the estimation result of the particle filter in Figure 5.7b shows that the particle

filter still identifies some congestion in the upstream area of the incident even though the

severity of the congestion is not accurate. The particle filter is able to partially track the

congestion is due to the random model nose added to the traffic flow model at each time

step. When the model noise adds congestion in the appropriate cells, it will match the

measurements better than the particles with congestion in the wrong cells or no congestion

at all. As a result, the particles will receive higher weights (and will be replicated in the

resampling step).
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As indicated, the state estimation accuracy of the MMPF is generally higher compared

to the IMM EnKF. This is because the IMM EnKF proposed in [99] is a model conditioned

filter and the posterior distribution contains samples propagated only by the most likely

model. When the traffic model does not perfectly represent the true traffic dynamics, a

posterior distribution generated by multiple models may approximate the true traffic state

better. However, compared to the MMPF, the computation time for the IMM EnKF is

shorter. It takes the IMM EnKF eight minutes to estimate an hour of traffic for the roadway

modeled in CORSIM, while the computation time for the MMPF is 14 minutes.

The results for estimating the presence of incidents is analyzed next. The California

algorithm is not able to detect the incident when the inflow is 4,000 veh/hour or lower, even

though the IMM EnKF and the MMPF detect the incidents when the flow is as low as

4,000 veh/hour. At higher flows (i.e., 5,000 and 6,000 veh/hour), the California algorithm

detects the presence of an incident at time steps 138 and 114. Figure 5.9 shows the true

evolution of traffic density when the inflows are 4,000 and 5,000 veh/hour. From the true

density evolution shown in Figure 5.9a, it is clear the California algorithm cannot detect

the incident when the inflow is 4,000 veh/hour since the incident generated congestion does

not propagate to the upstream sensor at cell one, where the anomalous congestion can be

used to detect the presence of an incident. When the inflow increased to 5,000 veh/hour,

the California algorithm reports the incident after the congestion propagates to the sensor

at cell one. Note that the detection time by the California algorithm is faster at higher

flows, because the resulting shockwave generated by the incident travels more quickly to the

boundary when the inflow rate is higher.

In comparison, both the MMPF and the IMM EnKF are able to detect the traffic incident

nearly as soon as it occurs. The algorithms can detect the incident because they are able

to leverage the mobile measurements from GPS equipped vehicles. This also illustrates one

of the benefits of mobile sensing, namely that the sensors can move towards the congestion

to detect it earlier than if the sensor is stationary and must wait for the congestion wave to
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Figure 5.8: This figure shows the number of distinct particles in the posterior distribution
of the particle filter applied to the CTM for each time step after resampling. The inflow is
6,000 veh/hour and the penetration rate is four percent.

arrive. If the fixed sensors are densely placed on the road network, the proposed algorithms

may have similar performance with the California algorithm, but these dense fixed sensor

networks are expensive to install and maintain and consequently are currently available only

in dense urban areas in the US.

5.6 EMMPF estimation results on the first and second order traffic

flow models

In this set of experiments, the EMMPF is implemented on both the first order traffic model

and the second order traffic model to jointly estimate the traffic state and detect incidents.

The algorithm is tested with the incident data from CORSIM for various inflows ranging

from 1,000 veh/hour to 6,000 veh/hour with a fixed penetration rate of GPS equipped probe

vehicles of four percent. The estimation results are shown in Table 5.4.

85



0 2 4 6 8 10
Cell Number

0

50

100

150

T
im

e
 S

te
p

0
50
100
150
200
250
300
350
400
450
500

(a) Density (veh/mile)

0 2 4 6 8 10
Cell Number

0

50

100

150
T
im

e
 S

te
p

0
50
100
150
200
250
300
350
400
450
500

(b) Density (veh/mile)

Figure 5.9: True evolution of traffic density. (a) Inflow 4,000 veh/hour. (b) Inflow 5,000
veh/hour.
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Compared to the MMPF and the IMM EnKF (see Table 5.3), the EMMPF has a higher

state estimation error. As shown in Figure 5.10, the EMMPF estimates the incident is cleared

for a few time steps after the incident occurs, and it has several false incident predictions after

the incident is cleared. Moreover, when the inflow is 4,000 veh/hour, the EMMPF estimates

an incorrect incident severity when implemented on both the first and second order traffic

models. As a result, the reduction of computation time is at a cost of estimation accuracy,

even though the main features of the incident and resulting congestion were captured by the

filter.

From Table 5.4, it is also noted that the EMMPF has similar performance when it is

implemented with the first order traffic model and the second order traffic model, which

indicates there may not be a significant benefit to implement the second order traffic flow

model for incident detection problems when only the density estimate is desired. The high

agreement between the two modeling approaches is partially explained by the fact that both

the left and right boundary conditions are in free flow. In this case, the properties of vehicles

cannot be identified from the flow, density, and speed data, and consequently the boundary

conditions for the second order model may have larger noise than the density inputs. Second,

there is no direct mechanism to control the corresponding macroscopic property variable in

the microscopic simulation environment. Thus, it may be the case that the underlying

traffic dynamics assumed in CORSIM for the true state in this experiment do not exhibit

the dynamics that are able to be captured by the higher order traffic flow model. In this

case, the best second order model may be the one with a constant property of w = 1, in

which case the model collapses back to the first order model.

The main advantage of the efficient multiple model particle filter is clear when examining

the runtime of each of the filtering algorithms. All models and estimation algorithms are

implemented in Python and run on a 3.0GHz Intel Core i7 Macbook Pro. Each one hour

numerical experiment can be run in about 14 minutes when the MMPF is applied. When

the filter is extended to a smoother, and the smoothing window is set to three steps, the
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Figure 5.10: Density estimates of the EMMPF on the second order traffic model, inflow =
6,000 veh/hour, penetration rate of four percent.

runtime increases to approximately 36 minutes, which highlights another cost of the smoother

beyond the lag in the estimate. When the IMM EnKF is used for estimation, the experiment

completes in about 8 minutes. Finally, when the EMMPF is used, the runtime drops to

approximately 25 seconds to complete the simulation, which is significantly faster compared

to the MMPF, MMPS, or the IMM EnKF. On the experiments on larger networks using

field data, the cost of all the algorithms except the EMMPF become computationally too

expensive to run in real time.

5.7 Sensitivity analysis on the calibrated model parameters

In this section, a sensitivity analysis is performed to study how the estimation accuracy is

affected by the model parameters. The EMMPF is implemented with the first order traffic

models for traffic state estimation and incident detection. The simulations are performed

with inflow of 6000 vehicles per hour. We investigate how the critical density, jam density,

model noise, and incident transition probability impact the estimation accuracy. For the

critical density, jam density and model noise, the calibrated values are perturbed by plus

and minus 20 percent, and five values equally spaced in the plus and minus 20 percent interval
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are used for traffic estimation. For the incident transition probability, the parameter range

is specified as 0.95 to 0.9999. Similarly, five values equally spaced in this range are used.

During the simulation, the parameters are perturbed one at a time, as a result, a total of

20 simulations (i.e., four parameters, five values for each parameter) are performed for the

sensitivity analysis.

To evaluate the estimation accuracy, a receiver operating characteristic (ROC) curve

is used to show the fraction of true positive and false positive for incident detection. The

results are shown in Figure 5.11 and Figure 5.12. As Figure 5.11 shows, overall, the points are

located at the upper left of the figure, which indicates the algorithm has a good performance

(i.e., high true positive and low false positive). Figure 5.12 provides a closer view of the

ROC results, we can see the estimation accuracy is less sensitive to the critical density and

model noise. Actually, better estimation results can be achieved with some perturbation of

these parameters. The estimation algorithm is more sensitive to the transition probability

and jam density. This makes sense because the transition probability directly determines

the probability of each model, and consequently impacts when a model switch will occur.

The jam density controls the fundamental diagram curve in the congested regime. In the

presence of an incident, the traffic is in congestion, and it makes sense that the traffic dynamic

is sensitive to the jam density variable.

5.8 Summary of the main findings from experiments in CORSIM

In this chapter, we implemented the proposed MMPF, MMPS, IMM EnKF, and EMMPF

with traffic and incident data generated by CORSIM. The main findings are summarized as

follows.

The MMPF, MMPS, IMM EnKF, and EMMPF are capable of jointly estimating traffic

state and detecting incidents. Compared to the MMPF, the MMPS can improve the estima-

tion accuracy when data limited, although this improvement comes at the cost of a lag in the
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Figure 5.11: Different markers represent the results for different types of parameters. Some
of the markers overlap.

estimates equal to the smoothing window length, and an increase in the runtime that also

grows with the smoothing window. The estimation accuracy of the MMPF is the highest

when compared to the IMM EnKF and EMMPF, but it is also the most computationally

costly filtering algorithm.

On the other end of the runtime spectrum, the EMMPF requires significantly less com-

putation time compared to the other algorithms. This is achieved by using a single particle

evolved through each model to determine the correct model at the model selection step of

the algorithm. This results in a slightly higher false positive incident prediction rate which

consequently also reduces the estimation accuracy. However, the EMMPF is more suitable

for field implementation when the network sizes grow larger.

The proposed MMPF and IMM EnKF are also compared with a particle filter and the

California incident detection algorithm. It is found jointly estimating traffic state and inci-

dents in one algorithm outperforms both a particle filter for estimating the traffic state and

the California algorithm for detecting incidents, each of which work independently from the

other algorithm.
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Figure 5.12: The figures above show the ROC curves for the sensitivity analysis of the four
model parameters.
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Chapter 6

Experiments using field data obtained

from the Mobile Century experiment

In this section, the proposed EMMPF is tested with field data collected on I–880 in California

during the Mobile Century experiment [18]. Both first and second order traffic flow models

for networks are used as the model predictors. A brief overview of the network setup and

the experimental data is given. Then, the model calibration procedure and the experiment

setup are described. Finally, the implementation results of the IMMPF on both first and

second order models are presented and discussed.

Note that the MMPF and IMM EnKF were also implemented with the field data to

further compare the influence of the algorithm on the estimation results, however both

algorithms are far too slow to complete even a single experiment for analysis. The EMMPF

runs in real time and it is able to jointly estimate the traffic state and detect an incident

that occurred when the field data was collected.

6.1 Implementation overview

The proposed EMMPF algorithm is tested on a segment of I–880 in California. Density

measurements from inductive loops and speed measurements from GPS equipped vehicles
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are used as measurements in the traffic estimation algorithm, where density measurements

are obtained from the Caltrans Performance Measurement System (PeMS) and the speed

data is collected from the GPS devices deployed during the Mobile Century experiment [18].

PeMS is a highway monitoring system and it collects and records 30 second loop detector

data for all of California. Users can get access to the historical and real time loop detector

data by visiting their website [109]. The data provides a comprehensive view of the highway

performance, and enables the development of traffic control, traffic estimation, and policy

strategies to improve traffic safety and operations [110]. In the field implementation of the

traffic estimation and incident detection algorithms developed in this dissertation, the 30

second interval loop detector data from PeMS is used to provide density measurements for

the estimation algorithm.

The speed measurements used in the field implementation are collected through the Mo-

bile Century experiment [18]. The Mobile Century experiment collected speed data from

approximately 77 GPS equipped vehicles which run continuously on the segment of highway

for 6 hours (10am to 4pm) on February 8, 2008. The highway segment used in the experi-

ment is shown in Figure 6.1 [18]. While data is available on both the north and southbound

directions, the experiments performed in this dissertation focus on the traffic in the north-

bound direction due to the more interesting traffic dynamics, including the presence of an

incident. The penetration rate of GPS equipped vehicles is approximately two percent of

the total traffic flow over the course of the data collection.

The geometry of the highway segment used in this dissertation is shown in Figure 6.2.

The segment of highway is six miles long, from postmile 21.3 to postmile 27.3. The algorithm

is tested with six hours of data from 10 am to 4 pm. A unique feature of the dataset is that

it contains an incident that occurred around postmile 26.4 from 10:27 am to 11:00 am, which

serves as the benchmark incident in the experiment to be estimated by the algorithms. The

incident was also recorded in the California Highway Patrol traffic incident feed which is also

archived on PeMS and can be verified through their website [109].
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Figure 6.1: Stretch of highway I–880 in Califronia, used in the Mobile Century experiment.
The blue line shows the segment of I–880 where the experiment is performed.

21.3 27.3 

5 4 5 4 5 4 

Figure 6.2: Geometry of the segment of I–880 in California used for the field implementation.
The black squares in the figure indicate loop detectors, and the arrows denote on–ramps and
off–ramps. The numbers above each segment indicate the number of lanes of the highway.
The two numbers at the left and right denote the starting and ending post mile of the
highway segment. The traffic moves from the left to the right as indicated by the arrow.
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Link length 6 miles

Simulation length 6 hours

∆T 5 seconds

∆x 0.1 miles

Number of cells 60

Number of time steps 4,320

Table 6.1: Setup for model discretization

6.2 Model calibration

For the field implementation, there are five groups of parameters that need to be determined:

the discretization of the traffic model, the parameters (e.g., maximum flow, maximum speed,

jam density) that determine the shape of the fundamental diagram, the transition probability

between incident models and non–incident models, the model noise and measurement noise,

and the boundary conditions for the entrance and exit ramps. The calibration is more

complicated than the CORSIM implementation since the underlying traffic is more complex

and contains merging and diverging traffic, heavy congestion, and real driver behaviors.

Moreover, determination of the ramp flows is significantly more challenging because there

are no sensors at the ramps to create good historical estimates of the ramp flows. In this

section, we describe how these model parameters are determined.

The discretization of the traffic flow models is summarized in Table 6.1. The highway is

discretized into 60 cells, and each cell is 0.1 mile in length, so that the ramps are located

close to the boundaries of cells. The total experiment simulation length is six hours. The

time step ∆T is set as five seconds so that the CFL condition [77] vmax
∆T
∆x
≤ 1 is satisfied.

As a result, there are total 60 cells and 4,320 time steps in the discretization.

The velocity functions (3.13) and (3.29) described in Chapter 3 are used for the first
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order and second order traffic incident model. The fundamental diagram related parameters

for the non–incident and incident scenarios are determined as follows. For the non–incident

scenario, the density–flow data collected from inductive loops are used to calibrate the pa-

rameters. In this section, the parameter calibration is performed on the first order traffic

model for the non–incident scenario. On the highway, the maximum speed is calibrated using

a least squares fit using the density–flow data collected from inductive loops under free flow

conditions. The critical density ρc (veh/mile/lane) and the parameter β (veh/mile/lane) is

jointly determined so that the maximum flow is close to the observed maximum flow from

the data [107]. The jam density ρm (veh/mile/lane) as well as the fundamental diagram

related parameters for ramps are manually calibrated. The calibration is performed for the

first order traffic model (equivalently when w = 1 in the second order model).

For the second order traffic model, the upper bounds of the critical density and jam

density (i.e., ρc1 (γ) and ρm1 (γ)) are set as the critical density and jam density calibrated

for the first order traffic model. The lower bounds of the critical density and jam density

are set as 80 percent of the upper bounds, and the resulting parameters are summarized in

Table 6.2.

For the incident scenarios, the calibration of either model is difficult since incidents are

rare events and density–flow data for different incident severities is limited. In this work, the

parameters for incident scenarios are determined using the HCM and a previous study [108],

where the HCM values for the capacity loss are used to model the fundamental diagrams

on the multiple lane highways when different numbers of lanes are blocked (shown in Figure

6.3), and the work [108] is used to model the free flow speed under incidents [107]. It is likely

that the parameters from the references do not exactly correspond to the incident dynamics

for this specific segment of highway, however, later we show our proposed EMMPF is able

to estimate traffic state and detect incident even when the incident related parameters are

not calibrated from the field.

The assumptions associated with the transition probability matrix are described as fol-
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First order traffic model Second order traffic model

vmax ρc ρm β vmax ρc1 ρc2 ρm1 ρm2 β

mph vpmpl vpmpl vpmpl mph vpmpl vpmpl vpmpl vpmpl vpmpl

Highway 70 24 130 10,000 70 24 19 130 104 10,000

Ramp 40 40 110 10,000 40 40 32 110 88 10,000

Table 6.2: Fundamental diagram related parameters

lows. We allow four incident severities: one lane blocked, two lanes blocked, three lanes

blocked, and four lanes blocked. We assume there is at most one incident at a time, which

results in a total 241 possible system models including the non-incident model. We also

assume that if there is no incident at the current time step, there is 0.1×10−4 probability to

have an incident at the next time step, and the probability of each possible incident model

to occur is equal. If there is an incident at the current time step, then there is a 0.1× 10−4

probability for the incident to be cleared for the next time step, otherwise, the incident will

remain. In the field implementation, we give a smaller but more realistic incident probabil-

ity compared to the value (one percent probability to have an incident) for the numerical

implementation with CORSIM. This is possible because the required number of samples in

the filter and consequently the computation time of the EMMPF is not related to the tran-

sition probability. In contrast, the MMPF assigns particles to each model proportionally to

incident probabilities. When the incident model probability is very small, the MMPF will

require a very large sample size in order to generate particles for incident models, and may

not be able to run in real time.

As was mentioned previously, there are two types of sensors that are available to be used

in the estimation algorithm, namely the inductive loops which collect traffic occupancy and

traffic flow data, and the GPS equipped vehicles that provide vehicle speed measurements

along their trajectories. The inductive loops collect data every 30 seconds and as a result, the
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algorithm has density measurements (converted from the occupancy measurements) every

six time steps. Both the model noise and the measurement noises are assumed to be additive

and follow a normal distribution. The noise models are calibrated and summarized as follows:

the model noise ω follows N (0, 202×I), the density measurement noise follows N (0, 402×I)

and the speed measurement noise follows N (0, 202 × I), where I is the appropriately sized

identity matrix. Here, the unit of the density measurement noise is in vehicles per mile.

The boundary conditions for the main freeway can be estimated from historical data

from the sensors located near both ends of the highway segment. When the first order traffic

flow is used, the boundary condition is the traffic density, and when the second order traffic

model is deployed, knowledge of the traffic density and the driver property are required on

the boundaries. The traffic density and driver property w can be calculated from traffic

density and flow data. Since no sensors are located on the ramps, it is harder to generate

reasonable estimates of the boundary flows. Instead the traffic density ramp boundary

conditions are manually calibrated. When the second order traffic model is used, the diver

property parameter w is set as one. In this case, the traffic model on the ramps reduces to

a first order traffic model.

Ideally, the model parameters should be calibrated following some standard calibration

procedure. However, there is no existing calibration procedure that has been developed

for the second order traffic model (3.27) and the fundamental diagram deployed in this

dissertation. The calibration procedures for transition probabilities, incident parameters

and boundary conditions for second order models also do not exist. As a result, we manually

calibrate a subset of these parameters as a proof of concept to show the proposed algorithms

have the potential to work well with field data, and leave the development of automatic

calibration procedures for future work.
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6.3 Experiment description

The proposed EMMPF is tested with both the first order traffic flow model and the second

order traffic flow model for both traffic estimation and incident detection. At the initial time

step, the prior distribution of the traffic density is assumed to follow a normal distribution,

where the mean is set as 90 veh/mile and the standard deviation is five percent of the mean.

When the second order traffic flow model is used, the prior distribution of property values

w is assumed to follow a uniform distribution w ∼ U(0.0, 1.0).

Because the ground truth of the traffic evolution is not known, the measurements from

the inductive loops and GPS equipped vehicles are used to provide a noisy and incomplete

view of the traffic evolution, shown in Figure 6.3a and Figure 6.3b. The red area early in

the day is the congestion caused by the incident, while the high density and slow speed in

other regions correspond to non–incident related congestion.

To evaluate the performance of the proposed EMMPF algorithm, we select three loop

detectors that do not send measurements into the traffic estimation algorithm. Later the

estimated traffic state at these three locations are compared with the measurements from

the sensors to evaluate the performance of the estimation algorithms. We choose one sensor

in the upstream, one sensor in the downstream, and one sensor in the middle of the domain.

In particular, the second sensor, the twelfth sensor, and the sixteenth sensor (from left to

right in Figure 6.2) are removed during the traffic estimation, and are subsequently used to

evaluate the performance of the proposed algorithms. During the field implementation, the

number of particles M is set as 100 particles.

6.4 EMMPF estimation results

The proposed EMMPF is implemented with both the first and second order traffic flow

models and the estimation results are shown in Figure 6.4. The results show that the
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Algorithm Traffic flow model Density error (veh/mile)

EMMPF
1st order model 32.1

2nd order model 31.7

PF
1st order model 33.3

2nd order model 31.8

Table 6.4: Density error comparison between the first and second order traffic models and
between different estimation algorithms.

proposed EMMPF is capable of detecting the incident and providing a good traffic state

estimate. The traffic density error is computed following the equation (5.5). Here, the errors

are computed and averaged only at the locations of the three sensors and for the time steps

for which measurements are available, and the true state is taken to be the value recorded

by the sensor. The results are summarized in Table 6.4.

It is found the performance of the first order traffic model and the second order traffic

model are very close for traffic estimation and incident detection, which is similar to the

findings in the CORSIM experiments. Causes of the high agreement may be due to the

lack of knowledge of the property w at the boundaries which as a consequence need to be

calibrated. In this experiment all vehicles from ramps are assumed to have the same property

and behave the same as the first order traffic model, although later this is perturbed through

the additive noise model on the evolution equation for the total property. Moreover, if the

model noise is large (for example, if one models large uncertainties of the boundary value

of the property variable), then the model prediction will be more heavily influenced by the

noise model and less by the dynamical system used to propagate the state forward.

In this chapter, the algorithms are implemented in Python and run on a 3.0 GHz Intel

Core i7 Macbook Pro. The six hour experiment can be run in about four hours and 20

minutes. Thus, the proposed EMMPF is suitable for real implementation. In comparison,

the MMPF [100] requires at least 2,410,000 particles in order to expect at least one particle
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for all possible models. To update all 2,410,000 particles to the next time step alone takes

approximately two hours to complete. When the IMM EnKF [99] is used, it requires 24,100

samples to run the EnKF with 100 samples in each model. It takes about 70 seconds for

the IMM EnKF to complete one time step (5 seconds) prediction. While this is a large

improvement over the MMPF, the IMM EnKF is still an order of magnitude too slow to be

implemented in real time.

6.5 Comparison with the particle filter

The particle filter presented in Algorithm 5 is deployed to estimate the traffic state on the

same segment of highway. The simulation results are shown in Figure 6.5 and the state

errors are shown in Table 6.4. From the results, we can see with either the first order traffic

model or the second order traffic model, the standard PF is able to estimate the congestion

in the incident scenario. This contradicts with the results in CORSIM simulation, where the

particle filter is not able to track the traffic state in the presence of an incident.

The particle filter has good performance in the field implementation because of the fol-

lowing. First, compared to the numerical implementation in CORSIM, we give a much higher

model noise to the traffic model in the field implementation. This is due in part to the fact

that the boundary conditions at the ramps are unknown and therefore increases the model

prediction error. As a result of the larger model noises, the particle filter can quickly track

the congestion even through it always estimates traffic state assuming all lanes are open, and

the distinction between the one step ahead predictions of the first order traffic flow model

and the second order model are less apparent.

6.6 Comparison with the California algorithm

With either the first order model or the second order model, the EMMPF reports the incident

at 10:29 am around postmile 26.4. The EMMPF initially estimates three lanes are blocked
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by the incident. It should be noted that the EMMPF estimates the incident is cleared

after a few minutes, but reports the incident again at the same location after some time.

The EMMPF does not have any false positive incident reports during the simulation. One

possible explanation of the brief incident clearance (false negative) predicted by the EMMPF

is that the incident severity is initially overestimated. Later the algorithm may switch to the

none–incident model to reduce the congestion, but switch back to a less severe incident model

after some time steps. Since the parameters of the incident scenarios are not calibrated from

the field, it is possible to estimate a wrong incident severity during estimation.

Next, the California algorithm [14] presented in Algorithm 1 is deployed for traffic inci-

dent detection. The California algorithm is performed between every two consecutive loop

detectors and runs every two minutes. The thresholds T1, T2 and T3 are calibrated as 0.33,

2.55 and 0.0003. The California algorithm reports the incident at 10:30 am around postmile

26.4, and it does not provide any false positive incident report during the six hour simula-

tion. The California algorithm is able to detect the incident close to real time because there

happens to be two inductive loops that are near the incident location, one in the upstream

and one in the downstream (i.e., the thirteenth sensor and the fourteenth sensor). Moreover,

the distance between the sensors and the incident location is less than 0.2 miles (i.e., two

cells).

When the inductive loops are sparse, it will take the California algorithm long to detect

an incident since it takes time for the congestion to propagate to the sensors, as shown in the

CORSIM simulation and Table 5.3. As a result, we conclude that for the purpose of traffic

incident detection, the proposed hybrid state estimation techniques may require less time

to detect an incident compared to the California algorithm if the sensors are sparse and the

penetration rate of GPS equipped vehicles is high. When the inductive loops are dense, the

takes similar time for the proposed traffic estimation algorithm and the California algorithm

to detect an incident.
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6.7 Summary of the main results of the field implementation

In this chapter, the EMMPF is implemented on the first and second order traffic models

with field data on a segment of I–880 in California. The main findings are summarized as

follows.

The EMMPF runs in real time and is able to jointly estimate traffic state and detect

the incident when implemented on either the first order traffic model or the second order

traffic model. The performance of the EMMPF is similar when implemented with either

traffic model. The model noise is higher in field implementation compared to the numerical

simulation in CORSIM. In this case, the particle filter is able to provide similar traffic state

estimation accuracy compared to the EMMPF, even in the presence of incidents. Regardless

of the larger model noise, the EMMPF algorithm is still able to correctly identify the correct

location of the incident.
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(a) Density measurements
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(b) Speed measurements

Figure 6.3: Density measurements (top) and speed measurements (bottom). Missing values
appear in white.
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(a) Density (veh/mile)
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(b) Density (veh/mile)
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(c) Speed (mile/hour)
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(d) Speed (mile/hour)
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(e) Model variable (lanes open)
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(f) Model variable (lanes open)

Figure 6.4: Estimation results of the EMMPF for traffic density (first row), traffic speed
(second row) and the model variable (third row). The first column shows the results of the
first order traffic model, and the second column shows the results for the second order traffic
model.
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(b) Density (veh/mile)
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(c) Speed (mile/hour)
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(d) Speed (mile/hour)

Figure 6.5: Estimation results of the particle filter for traffic density (first row) and traffic
speed (second row). The first column shows the results of the first order traffic model, and
the second column shows the results for the second order traffic model.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This dissertation posed the traffic state estimation and incident detection problem as a

hybrid state estimation problem, where a continuous variable was used to denote the traffic

state and a discrete variable was used to denote the severity and location of incidents.

There are several benefits to the proposed hybrid state estimation framework for jointly

estimating incidents and the traffic state. First, since it is posed as a hybrid state estimation

problem, standard state estimation algorithms such as the particle filter and variants of

the Kalman filter can be modified to solve the estimation problem. In this dissertation,

several of these extensions were developed and analyzed in terms of accuracy and run time,

including a multiple model particle filter, a multiple model particle smoother, an interactive

multiple model ensemble Kalman filter, and an efficient multiple model particle filter. More

algorithms can be easily developed by incorporating other ideas in multiple model filtering to

select the appropriate model, extending the filters into smoothers, considering other nonlinear

filtering frameworks, or by leveraging alternative particle filtering algorithms with different

resampling techniques.

Second, the framework allows for the identification of both the location and severity of
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the incident, which is an improvement over other incident detection methods. For example,

the California algorithm can only localize incidents to the nearest sensor pair, which may

cover a large region (a mile or more) outside of the densest urban areas. Moreover, most

incident detection algorithms do not identify the severity of the incident, which might be

useful for control algorithms to mitigate the congestion by directing an appropriate amount

of vehicles to seek alternate routes.

Third, the framework is flexible with respect to the data types that can be incorporated

into the algorithm. If fixed sensor data such as inductive loops or radar sensors, or GPS data

from navigation devices, smart phones, or connected vehicles are available, one only needs

to change the observation equation to incorporate the measurements into the algorithm and

use them for traffic state estimates. This is in sharp contrast to many of the customized

incident detection algorithms that are designed specifically for probe data or specifically for

loop data but cannot easily accommodate new data types, or fail when the primary source

of data is not available.

Fourth, it was shown that the joint estimation of traffic states and incidents using mod-

els and algorithms that implement the framework performs at least as well as algorithms

performing each task independently. In the numerical experiments in CORSIM, the perfor-

mance improvement was large, both in terms of the accuracy of the traffic state, and in terms

of the speed of detection of the incident. In the field experiment, similar performance was

observed between the algorithms that jointly estimate incidents and traffic states, and those

that estimate one without knowledge of the other. It is not a surprising finding because the

density of fixed sensors on the experiment site was high (17 sensors on a six mile stretch of

freeway), in which case all algorithms were able to detect the incident quickly. The traffic

state estimates are also similar from all algorithms due to the larger model uncertainty re-

quired in the evolution equations associated with the traffic flow models. The larger model

noise is required in part due to the large number of entrance and exit ramps on the stretch of

highway and the lack of knowledge of the ramp boundary conditions. Even with the larger
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model noise, both the first and second order traffic flow models are able to correctly localize

and identify the severity of the incident while simultaneously providing accurate traffic state

estimates.

Finally, several important challenges were overcome to implement the algorithms in the

framework for field deployments. Both the first and second order traffic flow models were

modified to incorporate the effects of an incident on the traffic dynamics. To apply the

models to a network of freeways, the models were further extended to show how to couple

the shared boundary conditions of the roadway segments under the influence of incidents on

either segment. When larger networks are considered, the large number of possible models

combined with the low probability of incident occurrence does not allow algorithms such as

the MMPF, the MMPS, or the IMM EnKF to run in real time, even for moderate network

sizes such as the network considered for the field experiment on the Mobile Century dataset.

To overcome this challenge, an efficient multiple model particle filter was proposed, and

experiments both on field data and on microsimulation data show that the algorithm can

run in real time with a modest deterioration in the accuracy of the resulting state and

incident estimates.

7.2 Future work

While this dissertation offered new insights into the challenges and potential benefits of

jointly estimating incidents and events in a single estimation framework, several areas are

open for further exploration. As indicated throughout the dissertation, computational scala-

bility of the algorithms remains a major concern. Even for the most efficient algorithm (the

efficient multiple model particle filter), a forward prediction of a particle for each model in

the system is required. For large networks with thousands or tens of thousands of locations,

each with multiple severities, even a single forward prediction might become too costly to

implement in real time. Fortunately these predictions can be done in parallel and therefore
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might benefit from high performance or distributed computing architectures which were not

explored in this dissertation. Alternatively, the large networks might be partitioned into

smaller ones, each of which can be solved on commodity hardware. Further algorithmic

efficiencies could also be explored.

Like many model based traffic estimation problems, model calibration remains an impor-

tant but cumbersome task. If poor model parameters are selected to model the fundamental

diagram, the accuracy of both the traffic state estimates and incident estimates will suffer.

Moreover, improved methods are needed to estimate boundary flows, especially for second

order models which have twice as many boundary conditions as the first order models due

to the extra state variable. Methods to reliably estimate the incident transition matrix from

field data could also reduce the effort required to deploy the algorithms developed in this

dissertation. While it is possible to simultaneously estimate the model parameters while

jointly estimating the incidents and events, the large number of parameters in the model

coupled with the nonlinearity and switching dynamics of the models implies that a serious

research effort will be required to design algorithms that solve this problem.

Finally, it is possible to further enhance the accuracy of the incident detection capabilities

by improving the determination of when an incident has occurred. For example, a classifier

could be trained to link the posterior distribution or the best estimate of xn and γn from

the filter to the identification of an incident. Moreover, even when the algorithm switches to

an incident model, additional verification is desired to infer the existence of an incident. For

example, the estimation results from the dissertation could be combined with social media

to infer the existence of an incident. Such investigations would be essential in order to get

good practical performance in the field, without producing too many false positives or too

many missed incidents.
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