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Abstract

Parallelizing large sized problem in parallel systems has always been a challenge for pro-

grammer. This difficulty is caused by the complexity of the existing systems as well as the

target problems. This is becoming a greater issue as the data sizes are constantly growing

and as a result, larger parallel systems are required.

Graph algorithms, machine learning problems and bio-informatics methods are among

the many ever-growing problems. These group of problems are amorphous, meaning that

memory accesses are unpredictable and the application usually has a poor locality. Therefore,

synchronizations in these problems are specially costly since all-to-all communications are

required and delivering an efficient parallel algorithm becomes more challenging. Another

difficulty with these problems is that the amount of parallelism in them is limited which

naturally makes them hard to parallelize. This is due to complicated data-dependences

among the data elements in the algorithm.

Writing parallel algorithms for these problems, on the other hand, are specially difficult

since an amorphous problem can be expressed in several dramatically different ways. This

is because of complex data dependences which are statically unknown and therefore, many

unique parallel approaches exist for a single problem. Consequently, programming each

single approach requires starting from scratch which is time consuming.

This thesis introduces several ways to avoid costly communications in amorphous prob-

lems by compromising from the computation. This means that we can increase the total

amount of work done by the processors to avoid synchronizations in an algorithm. This
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is specially effective in large clusters since there is a massive computing power with very

costly communications. These approaches, clearly, have a trade off between computation

and communication and in this thesis, we study these trade offs as well. Also, we propose a

new language to express the proposed algorithms to overcome the programming difficulty of

the problems by providing tunable parameters for performance.
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Chapter 1

Introduction

1.1 Overview

Exploring parallelism efficiently in different applications on shared or distributed memory

systems has always been a challenge for programmers. This difficulty arises from heteroge-

neous architecture, synchronization and communication costs, ever-growing memory hierar-

chy complexity, and the restrictions that these systems impose on the programmer in order

to achieve an efficient performance. Also, constant changes in underlying systems make the

parallel algorithms not portable or efficient on other machines.

Distributed memory systems consist of nodes with multi-core processors in each node

sharing memory. Since each node has its own block of memory, the amount of memory on

a distributed memory system can scale linearly with the number of nodes. This enables the

programmer to utilize a large amount of memory for input data sets that cannot be fit into

a single node’s memory by distributing the data. However, accessing memory blocks from

remote nodes is costly and therefore makes it difficult for certain problems to scale.

One of the main focuses of this thesis proposal is about designing and implementing

parallel algorithms for amorphous problems that partially avoid synchronization or commu-
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nication [55]. Amorphous problems are the type of problems that have irregular memory

access pattern and it is impossible to predict memory accesses statically. Graph problems

are among the most important examples of amorphous algorithms. Avoiding communication

for amorphous problems is never for free and it is traded with extra computation. The first

problem that we studied is Single-Source Shortest Path (SSSP) which is a classical computer

science problem. SSSP is the problem of finding the shortest distances in graph from a

source vertex to every other vertex. Efficiently parallelizing SSSP for distributed memory

systems has not been extensively studied. This is because the problem of massively paral-

lelize the SSSP problem did not become important until some of its applications, such as

Betweenness Centrality, had to be applied over immense input graphs in many different area

domains [51, 43, 69, 39, 34].

There are multiple algorithms for SSSP problem including Bellman-Ford [10], Chaotic-

Relaxation [17], Dijkstra [24] and ∆-Stepping [61]. Each algorithm is suitable for a specific

type of graph as they make different balances between communication and computation.

Chapter 2 compares these algorithms and presents a new one that is a combination of different

algorithms and it avoids unnecessary communication to improve scaling. The focus of our

new algorithm is scale-free graphs with non-uniform degree distribution. Non-uniform degree

distribution makes parallelization of SSSP more challenging in several aspects including data

distribution, load balancing, and communication. However, the skew in degree distribution

allows for optimizing parallelization of SSSP in ways which will be discussed in Chapter 2.

Another set of problems that are also instances of SSSP problem are Linear Trop-

ical Dynamic Programming (LTDP) problems. LTDP are dynamic programming prob-

lems where the recursive function can be expressed with linear algebra in Tropical semi-

ring. LTDP examples are Longest Common Subsequence (LCS), Smith-Waterman [73],

Needleman-Wunsch [65] and Viterbi [78]. These problems can also have very large input

data sizes but they are not efficiently parallelizable using the current techniques due to fre-
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quent synchronizations (barriers) or communications. In other words, most of the existing

parallelizing technique respect the semantic of data dependences in a program and therefore,

a limited amount of parallelism is exposed. There are well-known substituting transforma-

tions that modify a program semantic in order to enable parallelization such as reduction

and parallel prefix sum [47] but there is not any available method that we are aware of

for parallelizing these algorithms by changing their semantics. Chapter 3 presents two new

methods to parallelize dynamic programming algorithms that breaks data-dependences to

avoid communication in the expense of extra computation.

SSSP is the kernel of all the problems we studied in this thesis proposal and our methods

avoid communications in different ways. Despite of similarities of these problems, writ-

ing parallel code for each one from scratch requires a lot of efforts from the programmer

since writing parallel algorithms using low-level languages such as MPI or OpenMP is time-

consuming and error prone. This is because reasoning about a parallel program is a lot harder

when it is expressed in low-level instructions. Therefore, designing a high-level framework

for writing parallel code for graph algorithms with user-controllable communication is a

great fit for our problems. Writing parallel programs in high-level languages is not a new

idea and there has been many approaches in the form of new libraries or languages that

provide new abstractions. Examples of these include HTA [12], PetSc [7], Charm++ [40]

and X10 [16]. Also, languages for domain specific problems, such as image processing algo-

rithms [72] and graph problems [45, 13, 52] have been recently proposed. However, none of

these languages/libraries has the features that we need to parallelize the set of algorithms

we studied for distributed memory systems. Therefore, we designed Tiled Linear Algebra

(TLA) [54] notation which is discussed in Chapter 4.
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1.2 Contributions

This thesis makes several contributions in the parallelism of amorphous problems. First, we

will present Dijkstra Strip Mined Relaxation (DSMR) algorithm for Single Source Shortest

Path (SSSP) problem which is specially effective with scale-free networks. In scale-free

networks, degree distribution is skewed, meaning that there are a lot of low-degree vertices

and a few high-degree vertices. The amount of work associated with each vertex in SSSP

algorithms is a factor of the degree of that vertex. Existing algorithms, process vertices

completely and as a result, it is likely to have idle processing time. DSMR with equal

amount of parallelism in each iteration, on the other hand, avoids this issue. It also provides

a tunable parameter, D, which reduces the total number of synchronizations in the expense

of extra work. Chapter 2 studies the impact of D and compares its performance with other

SSSP algorithms.

Another contribution of this thesis is the set of optimizations that is applied on top of

the DSMR’s algorithm. These optimizations are associated with the property that heavy

edge weights are unlikely to be used in any shortest path in scale-free networks. There are

two techniques that we studied to take advantage of this property: subgraph extraction

and pruning. Chapter 2 presents these two methods and as we will show, they improve the

performance significantly.

In this thesis, we also study parallelization of LTDP problems. LTDP problems usu-

ally have very limited parallelism in each iteration but the total amount of computation is

significant. Therefore, following the traditional parallelism methods will only provide fair

speed up. However, we need new parallelization techniques. Chapter 3 will introduce two

techniques to target LTDP problems: the Rank-1 method and the Delta method. These

two methods rely on a property associated with LTDP problems which is rank convergence.

They expose parallelism by performing extra work as overhead but as we will show these
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overheads are very limited and can benefit the overall performance greatly.

The last contribution of this thesis is Tiled Linear Algebra (TLA), a new language for

expressing parallel algorithms for amorphous problems. TLA is based on linear algebra

and expresses algorithms using matrix and vector operations in different semi-rings. We will

show what the necessary features are in TLA in order to express efficient parallel algorithms.

These features are tunable parameters that are dependent on the type of problem and the

input data as well. Chapter 4 will discuss TLA in details and provide insights about these

features.

1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 discusses Single-Source Shortest Path

problem with DSMR algorithm, subgraph extraction and pruning techniques. Chapter 3

presents parallelization of Linear Tropical Dynamic Programming problems with the Rank-

1 and the Delta methods. Chapter 4 introduces Tiled Linear Algebra notation. Finally,

Chapter 5 explains the related work, Chapter 6 discusses the future works, and Chapter 7

presents the conclusion.
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Chapter 2

Single-Source Shortest Path Problem

Parallel graph algorithms are becoming increasingly important in high performance com-

puting, as evidenced by the numerous parallel graph libraries and frameworks in existence

today [45, 33, 11, 31, 52]. The reason for this growing interest is that the input graphs are

rapidly increasing in size and as a result, their processing requires more computation power

and memory space. Scale-free networks [8] such as Twitter’s tweets graph [46] are among

the many examples of today’s large graphs.

The first problem studied in this thesis is parallelizing Single-Source Shortest Path (SSSP)

problem which is an amorphous problem. Graph problems, in general, where the structure

of the input graph is statically unknown is considered an amorphous problem. Amorphous

problems, including SSSP, have irregular memory access patterns meaning that it cannot be

predicated what memory locations will be accessed next in the algorithm. As a result, the

SSSP problem has inherently very small spatial locality. On the other hand, the amount of

computation per memory location in SSSP problem is very limited. Therefore, the running

time for a parallel SSSP algorithm is mostly dominated by the memory accesses which are

mostly remote due to the irregularity of the problem. Therefore, communication avoiding

algorithms are required in order to deliver an efficient parallel SSSP algorithm.
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This chapter presents DSMR (Dijkstra Strip Mined Relaxation), a new parallel shared

and distributed memory algorithm for Single-Source Shortest Path (SSSP) problem that is

particularly efficient on scale-free networks. Given a weighted graph G and a source vertex

s in G, the SSSP problem computes the shortest distance from s to all vertices of G. SSSP

is a classical problem and has many applications, such as transportation, robotics, and the

computation of Betweenness Centrality [28], which in turn has multiple applications [51, 43].

Several sequential and parallel algorithms and implementations for SSSP have been pro-

posed, including Dijkstra’s algorithm [24], Chaotic-Relaxation [17], Bellman-Ford’s algo-

rithm [10] and ∆-Stepping [61]. However, these algorithms target general graphs without

any specific property. In this chapter, we study the parallelization of SSSP for scale-free

networks which satisfy the power-law degree distribution property. This means that scale-

free networks have few vertices with high degrees and many vertices with low degrees [8].

Social networks in which celebrities are represented as high degree vertices and commoners

as low degree vertices is an example of this property. The skew in degree distribution is

seen in many graphs besides social networks, including internet web-graphs, and network of

citations in scientific articles.

The skew in degree distribution makes parallelization of SSSP more challenging in terms

of data distribution, load balancing, and communication. On the other hand, it is at the

same time possible to take advantage of the non-uniform degree distribution to optimize

parallelization of SSSP. The contributions of this chapter are:

1. DSMR algorithm: a partially asynchronous parallel algorithm for solving SSSP that

reduces communication without increasing the computation overhead excessively.

2. Subgraph Extraction: given an input graph G, a subgraph G′ is extracted form G

by considering edges and vertices in the intersection of most shortest paths. SSSP is

first solved for G′ and then it is solved for G\G′.
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3. Pruning: this optimization identifies edges that can be guaranteed to not be used in

any shortest path from any source vertex.

Our results show that DSMR is up-to 7.38× faster than one of the best shared-memory

implementations of ∆-Stepping algorithms and up-to 2.05× faster than our own implemen-

tation of ∆-Stepping on a distributed-memory machine. We also show that our optimization

techniques improve the performance by up-to 13×.

The rest of this chapter is organized as follows: Section 2.1 presents the background,

Section 2.2 is an overview of our approach, Section 2.3 introduces DSMR and Sections 2.4

and 2.5 explain the subgraph extraction and pruning techniques, respectively. Section 2.6

describes the environmental setup, Section 2.7 shows the results, and Section 2.8 presents

the conclusion.

2.1 Background

The SSSP problem computes the shortest distances in a weighted graph from a source vertex

to every other vertex. Figure 2.1 shows a graph used to illustrate SSSP. v0 is the source vertex.

The values on the edges represent weights, and those on the vertices represent distances. We

use the following notation: w(vivj) denotes the weight of edge vivj and d(vi) denotes the

current distance of vi. d(vi) is a dynamic value that changes as the algorithm advances in

the computation. df (vi) denotes the shortest distance computed for vi which is the final

value of d(vi). Figure 2.1a shows the initialization of the problem: for the source vertex,

v0, d(v0) is set to 0 and for the other vertices d(vi) is set to ∞. Given this initial setup,

applying a set of relaxation operations (explained next) will compute the shortest distances

for each vertex. Figure 2.1b shows the final distances with shortest paths in solid bold lines.

The shortest paths themselves are not necessarily part of the output, since only the shortest

distances may be needed.
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(d) Vertices v0 and v1 are relaxed and vertices
v2 and v3 are active.

Figure 2.1: An instance of SSSP problem with v0 as the source vertex. The values next to
vertices are the current distances of vertices.
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Relaxation: Relaxation is the basic operation of every SSSP algorithm. There are two

types of relaxations: 1) Relaxing an edge: relaxing vivj updates d(vj) to min{d(vj), d(vi) +

w(vivj)}. 2) Relaxing a vertex: relaxing vi relaxes all of the edges connected to vi (out-

going edges in directed graphs). Relaxation of a vertex becomes necessary when a vertex

becomes active, that is, when its distance is updated (updates always lower the distance).

In Figure 2.1c, relaxing vertex v0 activates its neighbors v1 and v2. SSSP starts by relaxing

the source vertex, followed by the relaxation of the subsequent active vertices, computing

the shortest distances for all vertices. However, since there could be multiple active vertices

at a time, there are multiple possible orders of relaxation, perhaps carrying out groups of

relaxations in parallel. We call the order of relaxation scheduling. This order differentiates

SSSP algorithms.

Amount of Work: Relaxation of an edge vu requires accessing the distance of the des-

tination vertex. For a parallel algorithm, the information of this destination vertex, most

likely, will not be available in the local cache of the processor doing the relaxation due to the

size of the graph and the unpredictability of memory accesses. Therefore, edge relaxations

typically require a long memory access time, which is the dominating factor in the execution

time of the SSSP algorithms. For this reason, we use number of edge relaxations as a

measurement of the amount of work.

Scheduling: Consider Figure 2.1c again where v0 is relaxed and vertices v1 and v2 are

activated by updating their distances. Active vertices v1 and v2 can be relaxed in any order

or in parallel since they have reached their final shortest distance values. In Figure 2.1d,

vertices v0, v1 and v2 have already been relaxed and vertices v3, v4 and v5 are active. If

vertex v4 is relaxed before vertex v3, value d(v4) = 9 is used to relax v4. However, when

vertex v3 is relaxed, d(v4) is updated to 5 and, consequently, v4 becomes active and needs to

be relaxed again. Similar scenario applies to v5. Therefore, relaxing a vertex whose current
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distance is not the shortest causes unnecessary work. The order in which active vertices are

relaxed is the scheduling scheme of an algorithm and is the basic difference among the SSSP

algorithms considered in this chapter.

Dijkstra’s algorithm, Bellman-Ford’s algorithm, Chaotic Relaxation and ∆-

Stepping: The Dijkstra’s algorithm [24] relaxes active vertices in current distance order

meaning that, at each iteration, the active vertex with the minimum current distance is

relaxed. For example, in Figure 2.1d v3 must be relaxed before v4 because d(v3) = 4 <

d(v3) = 9. The Dijkstra’s schedule guarantees that each vertex is relaxed at most once (in

non-negative edge-weight graphs) and therefore, it performs the minimum amount of work.

However, the only source of parallelism in the Dijkstra’s algorithm is that the vertices with

the same minimum current distance can be relaxed at the same time. But this parallelism

can be limited since not many vertices may have equal distances. We will refer to this

algorithm as the parallel Dijkstra’s algorithm.

The Bellman-Ford’s algorithm [10], on the other hand, relaxes all vertices |V (G)| (number

of vertices) times regardless of whether or not they are active. Chaotic Relaxation [17] is

an optimization of the Bellman-Ford’s algorithm and in each iteration, it only relaxes the

active vertices from the previous iteration. Both algorithms are inefficient in terms of the

amount of work they perform. For example, in Figure 2.1d, these two algorithms allow v3,

v4 and v5 to be relaxed at the same time which, as discussed before, results in unnecessary

work. On the other hand, they expose more parallelism than the Dijkstra’s algorithm. For

instance, they allow v1 and v2 to be relaxed in parallel in Figure 2.1c.

∆-Stepping [61] is a SSSP algorithm whose scheduling can be adjusted to fall between

Dijkstra’s and the Chaotic Relaxation algorithms. In ∆-Stepping, i iterates increasingly in

{0, 1, 2, . . . }. For each i, it allows relaxation of all active vertices v such that i.∆ ≤ d(v) <

(i + 1).∆ where ∆ is a constant throughout the algorithm. For example, assume ∆ = 3 in
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Figure 2.1. For i = 0, the active vertices with distances between [0 . . . 3) can be relaxed in

parallel. That means that for i = 0, v0 is relaxed first and activates v1 and v2 as shown in

Figure 2.1c. Since d(v1), d(v2) < 3, they can be relaxed in parallel when i = 0 and this order

will not introduce any overhead. Then for i = 1, vertices with distances between [3 . . . 6) can

be relaxed. In Figure 2.1d, at first, only v3 is included in the range and when it is relaxed,

d(v4) is updated to 5 and then v4 is relaxed. Similarly, relaxing v4 updates d(v5) to 6 and

v6 can be relaxed when i = 2. Therefore, ∆-Stepping provides two benefits: performing a

close-to minimum amount of work while having a reasonable amount of parallelism. Note

that ∆-Stepping with ∆ = 1 is equivalent to parallel Dijkstra’s (assume that edge weights

are integers) and with ∆ = ∞ is equivalent to Chaotic-Relaxation. Thus, ∆ is adjustable

to balance between work efficiency and parallelism. However, as shown later, ∆-Stepping

performs poorly when applied to scale-free graphs.

2.2 Overview

Figure 2.2 shows the steps of our SSSP algorithm. Here, the steps in shaded boxes are

optional with the third (Subgraph Extraction) and fifth (Fix-Up) boxes representing a single

step, broken into two parts. First the input graph is given to the Distributor engine which

breaks the graph into subgraphs and assigns each to a processor. After the distribution,

the graph may be given to the optional pre-processing engines: Pruning and Subgraph

Extraction. Pruning is an engine that detects edges that can be guaranteed not to be used

for any shortest path from any source vertex. Subgraph Extraction extracts a subgraph of

the input such that most shortest paths go through that subgraph. The output graph from

the distributor or the pre-processing engines is given to DSMR where a random source

vertex is chosen and the SSSP algorithms starts. Since the Subgraph Extraction ignores a

portion of the graph, it may cause some incorrect computation which are fixed in the Fix-Up
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Distributor Pruning
Subgraph 
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DSMR Fix-UpInput

Preprocessing

Output

Figure 2.2: Overview of the engines in our algorithm.

stage. Therefore, running the Subgraph Extraction and the Fix-Up engines are codependent.

Each engine in our algorithm is inspired by the properties of scale-free graphs which will be

discussed in details later. However, our algorithm performs well on other graphs as well.

Focus of the algorithm Our algorithm is a parallel method for SSSP which processes

one source node at a time. We can say that the algorithm exploits intra-SSSP parallelism.

However, applications of SSSP, such as Betweenness Centrality and routing, make numerous

SSSP queries and for those applications multiple SSSP executions could be done in parallel

with each other. We did not study this type of parallelism, which could in theory comple-

ment the intra-SSSP parallelism. We should, however, point out that the execution of this

embarrassingly parallel approach is limited by the need to replicate graph information which

would increase memory requirements, perhaps beyond what the target machine can sup-

port. Also, when measuring running time for intra-parallelism, we only consider the stages

of the algorithm from which the source vertex is known until it finishes computing shortest

distances which includes the DSMR and the Fix-Up (if applicable) engines. The time for

pre-processing and graph loading will be ignored since they are executed only once while the

DSMR and the Fix-Up engine are executed as many as the number of queries.

2.3 Parallelizing SSSP

This section first describes the details of DSMR (Dijkstra Strip Mined Relaxation) algorithm

and then the Distributor engine. For now, assume that Distributor breaks the input graph
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into P (total number of processors) almost equal-sized vertex-disjoint subgraphs and assigns

each subgraph to one of the processors. The owner of each vertex computes the shortest

distance to that vertex from the source. Each processor contains information on all edges

incident on the vertices it owns. Therefore, the edges joining vertices assigned to different

processors will be replicated.

2.3.1 Degree-Distance Distributions

Degree-Distance distribution is a characteristic measured after computing the shortest dis-

tances from a source vertex. The distribution function is y(x) =
∑

v:df (v)=x degree(v) where

df (v) is the shortest distance of v. In other words, y(x) is the total number of edges that

are connected to vertices with shortest distance x. Figure 2.3 shows the degree-distance

distribution from a random source vertex for Co-Author and US Roads networks, described

in Section 2.6. Co-Author network is a scale-free network while US Roads network is not.

For the US Roads network, each point x represents the accumulation of the distribution

function for range [x512 . . . (x+ 1)512) since the distance values for this network are sparse

and understanding it without accumulation is hard.

The obvious difference between the degree-distance distributions of the two networks is

that the Coauthor Network’s plot has a narrow Gaussian shape with a long tail at the end

while the US Roads network’s plot has a wide Gaussian shape with short head and tail. The

US Road network’s degree-distance distribution is natural since there are several locations

within each range of distances and the degree of vertices in US Roads network are almost

equal. On the other hand, it typically takes few edges to connect any pair of vertices in a

scale-free network as the high-degree vertices can serve as hubs [18]. Therefore, the narrow

Gaussian shape for the degree-distance distribution of the Co-Author network is because

most vertices are reached within few edges (narrow and tall part of the plot) and then,

there are few vertices that require several edges to reach (long tail of the plot). Clearly, the
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Figure 2.3: Degree-distance distribution for Co-Author and US Roads Networks.

details of the shape highly depends on the edge weights, the source vertex, and the size of

a scale-free network, but it is safe to assume that the degree-distance distribution is narrow

in scale-free networks.

2.3.2 High Level Idea

In this chapter, the superstep notion of the BSP (Bulk Synchronous Parallel) [76] model is

used. In every superstep, each processor asynchronously executes its local computation and

the remote memory accesses are buffered locally. This continues until a global synchroniza-

tion is reached and the buffers are exchanged.

Parallel Dijkstra’s (explained in Section 2.1) could, in each superstep, concurrently relax

all active vertices with the same minimum distance. Thus, the degree-distance distribution of

Co-Author network shown in Figure 2.3(a) shows the amount of parallelism available in each

superstep of the algorithm in terms of the total number of edge relaxations for the parallel

Dijkstra’s algorithm. Also, since this algorithm introduces no unnecessary relaxations, the
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area under the degree-distance distribution curve is the minimum amount of work. As

Figure 2.3(a) shows, the amount of parallelism in Co-Author network is high during the first

iterations but it drops for longer distances. Note that a synchronization is required after

relaxing vertices for each distance value. Because of the long tail, numerous synchronizations

are required for longer distances, making this algorithm inefficient. ∆-Stepping algorithm

can reduce the number of synchronizations in longer distances by allowing relaxation of

vertices in ranges of ∆ distances as explained in Section 2.1. This may, however, cause

unnecessary edge relaxations.

Figure 2.3(b) shows the amount of parallelism for US Roads network assuming that the

computation is organized as for the ∆-Stepping algorithm with ∆ = 512. Our experiments

show that there are not many unnecessary edge relaxations with this ∆. Therefore, the area

under Degree-Distance distribution for this network is almost the minimum amount of work

as well. For this ∆, the Degree-Distribution shows that the amount of parallelism for US

Roads network, unlike for the Co-Author network, is distributed roughly uniformly, making

∆-Stepping suitable for this graph.

DSMR (Dijkstra Strip Mined Relaxation), our SSSP algorithm, consists of a se-

quence of supersteps each organized into three stages: 1) Each processor applies Dijkstra’s

algorithm to the subgraph it owns relaxing its vertices in distance order until it has pro-

cessed exactly D edges. D is a parameter that can be set for different input graphs similar

to ∆ for ∆-Stepping. Processing an edge means that the edges with local destinations are

relaxed immediately and the remote edge relaxations that require access to another proces-

sor’s memory are buffered. This process happens asynchronously and consequently, different

processors may work on different distances. 2) After D edges have been processed, the pro-

cessor rendezvous with all other processors in an all-to-all communication procedure that

exchanges the buffered relaxations. 3) After the all-to-all, relaxations update the distances

of vertices and activate them. These 3-stage supersteps continue until there are no more
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active vertices. Large D values cause late distance updates and work overhead and small

D values cause frequent synchronizations increasing communication cost. To study how

DSMR’s overhead compares with ∆-Stepping’s, we studied the Overhead Distribution and

the number of synchronizations for both algorithms.

Overhead Distribution and Synchronization: The overhead of different algorithms is

measured in terms of additional edge relaxations relative to those that would be performed

by Dijkstra’s algorithm. The cause of overhead is premature vertex relaxation, i.e. a vertex

v is relaxed too soon with a d(v) that is greater than the length of the shortest path. For

example, in Figure 2.1d, relaxing vertex v5 would be premature since the final shortest path

to v5 has not been computed, that is, the current value of d(v5) is not that of the shortest

path (Figure 2.1b). This premature relaxation causes unnecessary relaxations because d(v5)

will be updated again and then, the edges incident on v5 will have to be relaxed again. The

reason for the premature vertex relaxation of v5 is the order of relaxations. If v3 and v4

had been relaxed before v5, then d(v5) would be relaxed only once which is not premature.

In general, assume that there is a premature vertex relaxation for vertex v at time t. We

denote the current shortest distances at time t by dt(u) for all u ∈ V (G). If the final shortest

path from s to v (that will be eventually computed) is s, v1, v2, . . . , vk, v, we say that the

premature vertex relaxation of v at time t is due to the first vi such that dt(vi) equals the

final shortest distance (df (vi)) and vi has not been relaxed yet at time t. In other words, vi

is the first vertex that should have been relaxed before v. For a premature vertex relaxation

of v at time t, we denote culprit vertex vi by Bt(v).

Each premature vertex relaxation performs unnecessary edge relaxations on each of the

edges incident on the vertex. As discussed in Section 2.1, the number of edge relaxations

is a measure of the amount of work. We define Overhead Distribution as follows: at point

x is y(x) =
∑

v:df (v)=x

∑
u,t:Bt(u)=v degree(u). In other words, for each vertex v, the number
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Figure 2.4: Overhead distribution of ∆-Stepping (DS) algorithm and DSMR algorithm com-
pared with degree-distance distribution.

of unnecessary edge relaxations at different times due to v are counted and this number is

accumulated to y(x) where x is the final distance of v. Therefore, overhead distribution of

an SSSP algorithm shows the amount of overhead associated with each distance.

Figure 2.4 shows the overhead distribution of ∆-Stepping (DS) and DSMR algorithms

compared with the degree-distance distributions (minimum amount of work) of Co-Author

and US Roads network. The ∆-Stepping algorithm used in this figure and the rest of this

chapter is our implementation of the original algorithm [61]. In ∆-Stepping, edges vu with

w(vu) ≥ ∆ are relaxed at most once (because of a technique explained in [61]) and therefore,

they are excluded from the overhead distribution. Our distributor engine distributes the data

for both DSMR and the ∆-Stepping algorithm. The values of ∆ for ∆-Stepping and D for

DSMR algorithms are chosen to facilitate this discussion. Table 2.1 shows the number of

synchronizations and the percentage of total amount of overhead relative to the minimum

amount of work (the area under the degree-distance distribution) for both algorithms.
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As Figure 2.4(a) shows, for the Co-Author network the overhead distribution of ∆-

Stepping is skewed towards the shorter distances. Most of the unnecessary relaxations are

due to vertices with short distances. Vertices with long distances cause negligible overhead

and can be relaxed in parallel. Therefore, ∆-Stepping cannot perform well with scale-free

networks or, at least, ∆ needs to be dynamically adjusted (small ∆s for shorter distances

and large ∆s for longer distances). On the other hand, in Figure 2.4(a), the DSMR overhead

distribution shows very small overhead relative to ∆-Stepping, while the total number of

synchronizations are almost equal in both algorithms, as Table 2.1 shows. The total amount

of overhead with respect to the minimum amount of work (sum over degree-distance dis-

tribution) is 115% and 4.8% for ∆-Stepping and DSMR, respectively. In ∆-Stepping, the

constant ∆ value causes either too much overhead for early superstar’s (short distances) or

limited parallelism for later supersteps (longer distances). With DSMR, a constant number

D of edges are relaxed in each superstep, avoiding the two problems of ∆-Stepping.

Figure 2.4(b) shows overhead distributions for US Roads network. As it can be seen

the overhead distribution for ∆-Stepping is spiky. To explain this behavior, consider range

[∆i . . .∆(i+1)). A vertex v with distance close to ∆(i+1) is unlikely to update any vertices’

distance from this range, while vertices with distances close to ∆i are. Therefore, the spiky

behavior is usually due to premature relaxations of vertices with distances close to ∆i. On

the other hand, the overhead distribution of DSMR is roughly uniform. This shows that

there is more control on the overhead with D in DSMR than with ∆ in ∆-Stepping. As

the results in Table 2.1 shows, compared to ∆-Stepping, DSMR performs significantly less

overhead work and fewer number of synchronizations (30% less).

2.3.3 The Distributor

There are two major challenges in data distribution of a graph on a distributed-memory

system: handling high-degree vertices in scale-free networks and assigning vertices to pro-
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Graphs DSMR ∆-Stepping
D OH Syncs ∆ OH Syncs

Co-Author 28 4.8% 62 28 115% 64
US Roads 25 5.4% 29, 932 217 219% 40, 855

Table 2.1: Comparison of the overhead and number of synchronizations for ∆-Stepping and
DSMR for the configurations in Figure 2.4. OH: Overhead, Syncs: Number of synchro-
nizations.

cessors.

1) Handling High-Degree Vertices: As discussed before, scale-free networks have a few

high degree vertices and many low degree vertices. Assigning a high-degree vertex to a single

processor increases the likelihood of load imbalance, which can be handled by a technique

known as Vertex Splitting [31]. The Distributor engine specifies a threshold and the vertices

with degree higher than that are identified. For each selected vertex, the Distributor copies

the vertex on each of the P processors and assigns to each processor 1
P
th of edges of the

original vertex. These P copies are connected to a unique copy by P edges with weight 0

which guarantees equal shortest distances for all P + 1 copies.

2) Assignment of Vertices: The low degree vertices are shuffled using a random permu-

tation. Then, they are assigned to processors in consecutive chunks such that the number

of edges for each processor is roughly the same. Afterwards, the vertices on the boundary of

two processors are split such that each processor has equal number of edges.

The output of the distributor engine will be P subgraphs with disjoint vertex sets. How-

ever, the edges joining these subgraphs are shared by the processors containing the subgraphs.

Each subgraph has an equal number of edges and, consequently, the number of vertices are

not necessarily equal. The owner of each vertex is responsible for the computing the shortest

distance of that vertex.
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2.3.4 Implementation of DSMR Algorithm

Figure 2.5 shows a pseudo code for our DSMR algorithm. The algorithm is written in an

SPMD model and uses MPI for communication. Therefore, all of the variables are private.

The codes related to constant D edge relaxations are shown in magenta.

Array d contains the current distance of each vertex. For any vertex u, d(u) is initially

∞. Variable relaxed, declared in line 2, tracks the number of edge relaxations in each

superstep and whenever it reaches the threshold D, an all-to-all communication is executed.

The worklist wl, declared in line 5, is a vector of sets where each set corresponds to a

distance value and contains all active vertices whose current distance is that of the set. In

this algorithm, we are assuming that all the edge values (and consequently distance values)

are integers. Therefore going through vertices in distance order locally in each processor is

straightforward. Function RelaxEdge in line 7 relaxes an edge and updates d(u) and wl in

lines 9-12. active(u) specifies if vertex u is active which means that it is in the worklist (as

checked before erasing in line 9) and needs to be relaxed using the RelaxVertex function in

line 15. Relaxation of an edge vu for which the processor owns both ends occurs immediately

in line 20 but the remote relaxations are buffered in line 19. Line 22 enforces to not have

more than D edge relaxations in a superstep.

The main DSMR algorithm’s function is in line 24 which takes a source vertex vsrc that is

non-NULL only for the processor which owns it. The initialization of vsrc occurs in line 25. In

line 29, the set with minimum distance in wl is found and active vertices from it are relaxed

in line 31. Eventually, after D edge relaxations, an MPI_Alltoall routine exchanges the

buffers in line 33 and remote relaxations from the buffers are relaxed in the loop in line 35.

At the end, relaxed is reset in line 37. The algorithm terminates when wls in all processors

are empty.

We are omitting a few parts of the algorithm for the sake of simplicity. This includes

the code for when the break in line 22 occurs in the middle of the relaxation of a vertex.
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DSMR completes the relaxation of that vertex at the beginning of the next superstep. The

other part of the algorithm that we are omitting is determining that the wls are empty. This

test is performed during the MPI_Alltoall communication without requiring additional

communication.

Although in Figure 2.5, the Dijkstra’s algorithm is used, any other sequential SSSP

algorithm could have been applied. While it is true that this implementation of Dijkstra

is not the most efficient and only works for integer distances, our experiments show that it

works well with most graphs that we have evaluated.

Since each P processor processes D edges and the graph is randomized, it is expected

that processor would buffer around D
P

remote edge relaxations to be sent to every other

processor (line 19). However, we have seen some uneven behavior with a large number of

processors. Thus, to maintain a constant amount of work for the loop in line 35, for each

P − 1 buffers in each processor, only a maximum of 1.25× D
P

of the buffered data are sent.

As a result, no processor receives more than 1.25×D edges to relax in that loop.

2.4 Graph Extraction

Graph extraction is a pre-processing technique that extracts a subgraph G′ ⊆ G from the

input graph G, such that most of the shortest paths in G go through G′. This technique runs

in two phases. First, DSMR is executed with G′ to compute the shortest distances. After

this is done, the shortest distances for most vertices would have been computed correctly.

Then, for the rest of the graph, G\G′, the Fix-Up engine corrects the distances computed

incorrectly in the first phase. Edges in G\G′ update the distances of only a few vertices and

consequently, relaxing them in any order will not cause significant overhead. Therefore, the

fix-up phase uses Chaotic Relaxation to minimize the number of synchronizations.

Graph extraction is beneficial only for certain graphs, depending on the characteristics
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1 // Number of relaxations in each superstep
2 int relaxed = 0;
3 // Worklist for active vertices
4 // Each vector index represents a distance
5 Vector <Set <Vertex > > wl;
6
7 void RelaxEdge(Vertex u, int newDist ){
8 if (d(u) > newDist ){
9 if (active(u)) // Remove u from old set
10 wl[d(u)]. erase(u);
11 d(u) = newDist;
12 wl[d(u)]. insert(u); // Insert u to new set
13 active(u) = true; }}
14
15 void RelaxVertex(Vertex v){
16 active(v) = false;
17 foreach Edge vu in edges(v) {
18 relaxed++;
19 if (IsRemote(vu)) Buffer(<u,d(v)+w(vu)>);
20 else RelaxEdge(u, d(v)+w(vu));
21 // When threshold is reached , break
22 if (relaxed >= D) break; }}
23
24 void DSMR(Vertex vsrc){
25 if (vsrc) RelaxEdge(vsrc, 0); // Initialization
26 do {
27 do {
28 // Find the minimum non -empty set
29 int ind = min i: !IsEmpty(wl[i]);
30 while (! IsEmpty(wl[ind]) && relaxed < D){
31 RelaxVertex(wl[ind].pop ()); }
32 } while (ind < ∞ || relaxed < D);
33 MPI_Alltoall(buffer ); // Exchange buffers
34 // Relax received requests
35 foreach <u,dist > in buffer:
36 RelaxEdge(u, dist);
37 relaxed = 0; // Reset
38 } while (all IsEmpty(wl)); }

Figure 2.5: Pseudo code for our DSMR algorithm.
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of the graph. When the graph extraction is not beneficial, G′ can be set to G and DSMR is

executed on the entire graph, bypassing the fix-up phase. Therefore, extraction does not hurt

performance, but it can significantly improve the performance of the algorithm for certain

graphs. Next, we will discuss the input characteristics that impact the performance with

graph extraction.

2.4.1 Graph Characteristics

Artificial or unweighted scale-free networks are typically weighted by distributing edge weights

uniformly random from [1 . . . C) where C is a constant. This approach is widely used [14,

30, 60, 53] and also adopted by the DARPA SSCA#2 benchmark [6]. One of the properties

of scale-free networks with uniformly random edge weight distribution is that heavy-weight

edges are unlikely to be used in shortest paths. There are other edge-weight distribution

such as log-uniform [53] but it is even less likely for heavy-edge weights to be used with such

a distribution. To understand this property, we studied HE (Heaviest Edge) distribution of

the vertices. Assume that SSSP is computed for a graph from a random source vertex s and

that sv0v1 . . . vkv is the shortest path from s to v. Define HE(v) to be the heaviest edge

weight in the shortest path from s to v: HE(v) = max{w(sv0), w(v0v1), . . . , w(vkv)}. The

key idea is that if all the edges with weight > HE(v) are ignored, the shortest path for v

can still be computed correctly.

Figure 2.6(a) shows two different distributions for a type-2 RMAT graph with scale = 21

(graph description in Section 2.6) with edge weight distributed uniformly from [1 . . . 256]. X

axis shows different weight values and the two distributions are: 1) Accumulative HE distri-

bution of the vertices: for weight x, y(x) shows the percentage of vertices v with HE(v) ≤ x.

2) Accumulative edge weight distribution: for weight x, y(x) shows the percentage of edges

uv with w(uv) ≤ x. This distribution is linear because of the uniform edge weight distribu-

tion. Now, consider the vertical dashed purple line (x = 48) of Figure 2.6(a). If subgraph G′
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Figure 2.6: HE and LD distributions for an RMAT graph with uniformly random edge
weight distribution from [1 . . . 256].

is extracted from G with all edges uv where w(uv) ≤ 48, G′ contains less than 20% of edges

of G (the edge-weight distribution at the vertical dashed line). However, short distances will

be computed correctly for almost 80% of the vertices in G′ (HE distribution at the dashed

vertical line in the figure). This means that by considering a small part of E(G), shortest

distance will be computed for a large set of V (G). For the remaining 80% of the edges, fix-up

phase will correct the distances for the remaining 20% of the vertices. The subtle difference

between the first phase and fix-up phase is that, fix-up phase can have less synchronizations

than DSMR while the total amount of work is not increased significantly.

Another property that is associated with scale-free graphs is that any pair of vertices can

be reached with a few edges (short diameter) [18]. This is because high-degree vertices can

serve as hubs and consequently, most of the shortest paths go through them. To understand

this property, we studied LD (Lowest Degree) distribution. Assume that the shortest path

from source vertex s to vertex v is sv1 . . . vkv. Define LD(v) = min{degree(s), degree(v1), . . . ,
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degree(vk)} which is the minimum degree of vertices in the path excluding v. The key idea

is that if G′ contains all vertices with degree greater than LD(v) and all vertices of G′ are

relaxed, distance of v will be computed correctly.

Figure 2.6(b), similar to Figure 2.6(a), shows two different distributions for the same

RMAT graph. X axis in this plot represents different degree values and the two distributions

are: 1) Accumulative distribution of LD: given a degree x, y(x) shows the percentage of

vertices v with LD(v) ≤ x. 2) Accumulative degree distribution: for degree x, y(x) shows the

percentage of vertices with degree ≤ x. The plot is truncated for degrees greater than 128.

Now, consider the dashed vertical line (x = 24) in Figure 2.6(b). If subgraph G′ is extracted

with vertices whose degree is greater than 24, G′ will contain 33% of the vertices of G since

67% of the vertices have degree ≤ 24 (degree distribution at the dashed in Figure 2.6(a)).

Thus, by relaxing the vertices of G′ (including their edges in G), the shortest distances will

be computed correctly for all vertices v with LD(v) > 24. This set of vertices are 70% of the

vertices of G since 30% of the vertices have shortest paths with LD ≤ 24 (LD distribution at

the dashed vertical line in the figure). Similar to the HE scenario, setting G′ as a small part

of G and relaxing V (G′) results in correct distances for most vertices in G. As mentioned

above, the subsequent fix-up phase relaxes the rest of vertices to fix shortest distances for

the remaining 30% vertices.

Note that for the experiments shown in Figure 2.6, the source vertex s was chosen from

G′. In the cases where s is not in G′, DSMR starts by processing the whole graph, G, and

relaxes vertices and edges in G. Once all active vertices are in G′, DSMR continues working

in G′ only. Afterwards, as before, the fix-up phase will take care of the rest of the graph.

2.4.2 Implementation of Graph Extraction and Fix-Up

Extracting subgraph G′ from input graph G is done through a function: f : G → {0, 1}

specifying whether a vertex or an edge is in G′ or not. While the graph is being loaded to
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the system, subgraph G′ can be created using f without significantly increasing the loading

time. We do not measure the time for extraction since it is a part of the graph loading time.

Figure 2.7 shows the pseudo code for the fix-up engine. This code is sequential (we discuss

later how to parallelize it). The algorithm is similar to the one from the DSMR algorithm

in Figure 2.5 with a few exceptions. wl in line 1 is just a set instead of a vector of sets. This

is because the fix-up executes Chaotic-Relaxation, where relaxations can occur in any order

whereas in Figure 2.5, DSMR relaxes vertices in distance order. Consequently, RelaxEdge

in line 2 is simpler than the one in Figure 2.5.

The FixUp function has two major loops. The first loop in line 8 goes through all the

edges in G\G’ and relaxes them. In this loop, there is an optional condition in magenta in

line 9 whose raison d’etre is discussed below. The second loop in line 11, goes through all

vertices of wl and relaxes all of their incident edges in G. The major difference between these

two loops are the graphs: G\G’ for the loops in line 8 and G for the loop in line 11. Before

the fix-up engine, DSMR computes shortest distances in G’. In the loop in line 8, edges in

G\G’ are relaxed and the incorrect distances are updated. Updating distances of vertices

causes activating them and adding them to wl in line 5. Later, vertices in wl are relaxed in

the whole graph, G, in the loop in line 11. This loop, itself, may activate other vertices in G

in line 14.

The parallelization of the fix-up algorithm is straight forward and similar to the paral-

lelization of DSMR. The remote edge relaxations are buffered and after wl is empty in all

processors, the buffers are exchanged via an MPI_Alltoall and then the remote relaxations

are performed. The processors continue until no more remote or local relaxations are left.

The magenta condition in line 9 is an optional branch and can be removed. However, it

makes a great difference in performance when the graph extraction is based on the weight of

the edges. As discussed before, an edge relaxation requires a memory look up of the distance

of the target vertex. Now assume that edge vu is accessed from the destination vertex u
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1 Set <Vertex > wl; // Set of active vertices
2 void RelaxEdge(Vertex u, int newDist ){
3 if (d(u) > newDist ){
4 d(u) = newDist;
5 wl.insert(u); }}
6
7 void FixUp (){
8 foreach vu in G\G′

9 if (d(u) > w(vu)) // Optional if
10 RelaxEdge(u, d(v)+w(vu));
11 while (! IsEmpty(wl)){
12 Vertex v = wl.pop ();
13 foreach vu in G
14 RelaxEdge(u, d(v)+ weight(vu)); }}

Figure 2.7: Pseudo code for Fix-Up engine.

where w(vu), d(u) are close in memory (spatial locality). Edge vu would update d(u) only

if the magenta condition is true: d(u)>w(vu). Otherwise, it is not required to access d(v)

which in turn improves the performance. Surprisingly, the condition is seldom true and

that comes from the fact that the shortest distances in scale-free networks with uniform

edge-weight distribution are even shorter than the length of most heavy-weight edges. Our

experiments show that this is independent of the constant C in the uniform distribution

[1 . . . C].

The idea behind this condition originated from the pull model in the SSSP algorithm

discussed in [14], but it is used in a different way in this chapter. The idea is used in the

fix-up engine in this chapter while in [14], it is used within their SSSP algorithm and there

is no post fix-up phase. However, the benefit of this condition disappears with the Pruning

engine as discussed in Section 2.5. Section 2.7 presents the performance gains with graph

extraction and pruning.
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2.5 Pruning

Pruning is another pre-processing technique that identifies edges in a graph G which can be

guaranteed not to be used in any shortest path from any source vertex. Figure 2.8 shows

a pruning scenario where edge vu, shown as a dotted line, is a candidate for pruning. The

engine chooses a random source vertex s (not necessarily the one for the DSMR engine) and

computes the shortest distances for all vertices. Figure 2.8 shows the shortest paths from

the chosen source vertex s to u and v by solid wavy lines. Assume that these two shortest

path diverge at vertex x. We call x the first common ancestor of v and u. If the condition

(d(u) − d(x)) + (d(v) − d(x)) < w(vu) is true, vu is marked useless. We call this the the

pruning test. The reason is that the paths from x to v and from x to u are of distance

d(v) − d(x) and d(u) − d(x), respectively. Therefore, if the distances of these two paths

together are less that w(vu), the edge vu will not be used in any shortest path for any pair

of vertices since the path from v to x and x to u is shorter.

A useless edge seems illogical in a road network because a long segment of a road will be

useless if there is a faster way around connecting the two points. However, in social networks,

edge weights do not represent the distance between vertices, but rather the strength of their

connectivity. For example, in the Co-Author network, the weight of an edge between two

vertices is a function of the number of articles two authors had together and the number of

participants in those publications. Therefore, it is likely to find useless edges in scale-free

networks.

The pruning engine can iterative for up-to |V (G)| number of source vertices but, obvi-

ously, that would take an excessively long time. Although the pruning algorithm, even for

only one source vertex, takes longer than running SSSP itself, it is considered a pre-processing

phase and running it for a few iterations is acceptable. Similar to graph extraction engine,

the running time for pruning is not measured as discussed in Section 2.2. Also, as discussed
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Figure 2.8: Pruning idea. x is the first common ancesstor of v and u.

in Section 2.4.1, edge weights in unweighted graphs are distributed uniformly random and

heavy edges are unlikely to be used. As our results in Section 2.7 will show, this makes up-to

90% of the dges prunable in these graphs.

2.5.1 Algorithm

The pruning algorithm is relatively complicated in spite of the simplicity of the idea. There

are two approaches to implement the idea: 1) optimized for memory, 2) optimized for running

time. The second approach can be implemented by computing shortest distances and storing

the intermediate vertices of the shortest path for each vertex. Then, for each edge vu,

intermediate vertices of shortest paths to v and u are searched for the first common ancestor

and the pruning test can be executed. However this approach requires storing the shortest

paths for each vertex, which can be excessive for large networks. Therefore, we implemented

the first approach.

Figure 2.9 shows the sequential pseudo code for our pruning algorithm. The algorithm

starts by executing DSMR in line 4. The shortest paths in a graph from a source vertex

creates a tree which we denote by T . T is computed along with our DSMR algorithm by

storing succ(v), the successor list of v for all v in T . Therefore, subtrees of T can be accessed
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by their root and following the succ lists. We denote the subtree of a vertex v as its root by

subtree(v). Set st in line 2 keeps the root of subtrees for the computation. In line 5, vsrc is

added to the set st. At anytime, st holds non-overlapping subtrees. The loop in line 7 goes

through each root w in st. w is a common ancestor for all vertices in subtree(w). Therefore,

all edges among pairs of vertices of subtree(w) are traversed in the loops in lines 8 and 9

and the pruning test is executed for them with w as their common ancestor in line 12.

After the test is done for all subtrees in st, the loop in line 15 goes through the roots in

st and replaces them with their succs. The new list of subtrees will be used for pruning in

loop in line 7. This process continues until st is empty (line 17). This is a BFS traversal of

the main subtree from vsrc. Note that in our algorithm subtree(w) is never stored anywhere

but is accessed through succ lists as discussed before. Therefore, our algorithm requires at

most O(|V (G)|) memory since T has at most |V (G)| edges, which is equal to the sum of the

length of the successor lists and the maximum size of set st is |V (G)|.

Parallelizing pruning is similar to parallelizing DSMR algorithm in Figure 2.5. Operations

requiring remote memory accesses are buffered and communicated once there is no more local

work.

2.6 Environmental Setup

Machines: Two experimental machines were used for the results: a shared-memory ma-

chine with 40 cores (4 10-core Intel Xeon E7-4860) and 128GB of memory; the distributed

memory machine Mira, a supercomputer at Argonne. Mira has 49, 152 nodes and each node

has 16 cores (PowerPC A2) with 16GB of memory. Mira is currently ranked 5th on the

TOP500 list.

Graphs: The graphs used in the experiments are:
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1 // Root vertices of subtrees
2 Set <Vertex > st;
3 void Prune(Vertex vsrc){
4 DSMR(vsrc); // Run SSSP
5 subtrees.insert(vsrc);
6 do {
7 foreach Vertex w in st
8 foreach v in subtree(w)
9 foreach Edge vu in edges(v)
10 if u in subtree(w) && !useless(vu)
11 // Pruning test
12 if d(v)+d(u)-2*d(w)<w(vu)
13 useless(vu) = true;
14 // Go to the subtrees of st
15 foreach Vertex v in sb {
16 sb.remove(v); sb.insert(succ(v)); }
17 } while(! IsEmpty(st)); }

Figure 2.9: Pseudo code for Prune engine.

1) Co-Author: Co-Author network represent the connectivity of authors in MathSciNet

(American Mathematical Society). It is considered a scale-free network. It has 391, 529

vertices and 873, 775 edges. Vertices represents authors and an article with N authors

increases the edge weight between each pairs of authors by 1/(N − 1) [66]. Consequently,

heavier edge weights in this graph represents stronger connectivity. In the experiments,

each edge weight w is replaced with 100/w so that stronger connections represent shorter

distances.

2) US Roads Network: US Roads network is the map of the United States roads. Each

edge weight represents the distance between a pair of vertices. It has 23, 947, 347 vertices

and 58, 333, 344 edges and it is not a scale-free network [21].

3) RMAT: RMAT graph model is an artificial scale-free graph generator [15]. An in-

stance of an RMAT graph has the following parameters: 1) scale: determines the vertex

set size: |V (G)| = 2scale, 2) edge factor: determines |E(G)|/|V (G)| ratio, 3) a, b, c and d:

determines the skewness of the degree distribution. Edge factor 16 was used as proposed by
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Graph500 [32]. For a, b, c and d there are two configurations: type-1 which is Graph500

setup (a = .57, b = c = .19 and d = .05) and type-2 which is SSCA#2 [6] benchmark setup

(a = .55, b = c = .1 and d = .25). Edge weights for type-1 and type-2 RMAT graphs are

chosen uniformly random from [0 . . . 256) and [1 . . . 256], respectively.

4) Orkut: Orkut is a scale-free social network website and the graph represents its users

and their friendship. This network has 3, 072, 441 nodes and 117, 185, 083 edges. It is orig-

inally unweighted and was weighted by distributing edge weights uniformly random from

[1 . . . 256].

5) Twitter: Twitter graph represents the follower/following relationship among the users

[46]. Each vertex is a user and each edge vu between two users shows v is following u.

This graph has 41.7 million users and 1.47 billion edges. This graph is unweighted and edge

weights were distributed uniformly random from [1 . . . 256].

2.7 Results

This Section evaluates strong and weak scaling of DSMR with and without the optimizations

discussed in Sections 2.4 and 2.5. We also compare our results with the Oracle algorithm

(explained next) and the best existing SSSP algorithms.

The Oracle Algorithm: The Oracle Algorithm is an impractical algorithm with minimum

amount of work and minimum number of synchronizations. The algorithm works in two

phases: 1) An SSSP algorithm such as DSMR is executed for s as the source vertex to

compute the final shortest distances for every vertex. The shortest distance for each vertex

v, df (v), is stored in another array, d′, and the values of d are reset to∞ except that d(s) = 0.

This phase is not timed. 2) Another SSSP algorithm is executed for the same source vertex s.
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A vertex v is scheduled to be relaxed exactly when d(v) = d′(v). By following this schedule,

there will be no unnecessary edge relaxations. All-to-all communication takes place not after

D relaxations but when all processors have relaxed all vertices they can relax. Therefore,

the Oracle algorithm has the minimum number of synchronizations with the schedule just

described. The running time for phase 2 is the time that is reported for this algorithm since

the time for the first phase is ignored. This algorithm does not necessarily have optimal

performance since non-uniform degree distribution may cause load imbalance. We use the

Oracle algorithm as a baseline for the evaluation.

2.7.1 Shared Memory Results

Figure 2.10 compares DSMR, our implementation of ∆-Stepping (DS), and the ∆-Stepping

from the Elixir collection [70] implemented in the Galois system [45]. This is a strong

scaling comparison in which the same input graph across all processor numbers is used. The

networks for this evaluation are: Co-Author, US Roads, Orkut and a type-2 RMAT graph

with scale 22. the experimental machine is the 40-core shared-memory machine. For each

algorithm, the best parameters (∆ in ∆-Stepping and D in DSMR) were searched from a

random source vertex. These parameters are stable when changing the source vertex and,

therefore, we executed the three algorithms with them for 100 other random source vertices.

The performance results are presented in TEPS (Traversed Edges Per Second) which is

|E(G)|/T , where T is the running time in seconds. Note that for computing TEPS, we are

not considering the number of edge relaxations but the number of existing edges.

Figure 2.10 shows the result for this evaluation. The X axis represents different number

of processors and the Y axis shows the average MTEPS (Mega TEPS) of the 100 ran-

dom source vertices. As the figure shows, DSMR is faster and scales better than both

∆-Stepping algorithms, except for the US Roads network where DSMR is slower than the

Elixir ∆-Stepping with 32 processors. Note that Elixir is a shared memory implementation
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while DSMR and our ∆-Stepping algorithms are implemented using MPI. This explains why

DSMR is slower than the Elixir ∆-Stepping in Orkut network on less than 16 processors.

The speed up of DSMR over Elixir and our ∆-Stepping with 32 processors, respectively, are:

for Co-Author 3.59× and 1.64×, for US Roads 0.75× (slow down) and 1.50×, for RMAT22

7.38× and 3.27× and for Orkut 1.74× and 3.19×. Table 2.2 (shared-memory part) shows

D, ∆, overhead (with respect to the minimum amount of work) and the number of synchro-

nizations for the experiments in Figure 2.10 with 32 processors. As shown, both DSMR and

our ∆-Stepping algorithms have similar overhead but the number of synchronizations are

significantly different. This explains the difference in performance.

As it can be seen from Figure 2.10, the Oracle algorithm performs close to DSMR for

RMAT22 and Orkut graphs even though, as Table 2.2 indicates, the Oracle algorithm has

significantly fewer synchronizations and the overhead is negligible. This is because in each

superstep for the Oracle algorithm, the power-law degree distribution causes load imbalance.

On the other hand, for US Roads and Co-Author network, the overhead and the number

of synchronizations of DSMR are larger. Therefore, the Oracle algorithm performs notably

faster than DSMR (1.91× in Co-Author and 4.41× in US Roads with 32 processors).

Now, consider the subgraph extraction results in Figure 2.10. These are shown only

for RMAT22 and Orkut since subgraph extraction is not beneficial for the US Roads and

Co-Author networks. The HE Extraction column in Table 2.2 shows the thresholds used

for the HE property (Section 2.4.1) and the value of |G′|/|G|. As it can be seen, graph

extraction significantly accelerates DSMR (1.88× in RMAT22 and 2.41× in Orkut with 32

processors). Note that DSMR+Extract is greatly faster than DS+Extract even though, as

Table 2.2 shows, G′ is a small part of G and the same fix-up code was used for G\G′ (a large

part of G). Finally, consider the pruned results in Figure 2.10 for Co-Author, RMAT22 and

Orkut. Last column of Table 2.2 shows what percentage of each graph was pruned. For

Co-Author, it took 84 iterations for the pruning algorithm (Section 2.5) to converge. For
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Graph DSMR ∆-Stepping Oracle HE Extraction Pruned
D OH Syncs ∆ OH Syncs Syncs TH |G′|/|G|

Shared-Memory Results
Co-Author 29 19% 38 27 23% 93 24 N/A 21.5%
US Roads 25 220% 28831 26 221% 47391 12078 N/A 0%
RMAT22 212 5% 262 22 5% 556 35 44 0.17 89.5%
Orkut 214 4% 120 23 4% 187 23 40 0.17 88%

Distributed-Memory Results
RMAT26 212 11% 45 25 40% 153 37 44 0.17 90.5%
Orkut 212 40% 19 27 101% 33 18 40 0.17 87.3%
Twitter 214 14% 28 26 34% 93 21 26 0.10 91.8%
Weak 216 11% 27 25 15% 79 15 32 0.125 97.1%

Table 2.2: Details of the performance evaluation in Figure 2.10 and 2.11. OH: Overhead,
Syncs: Synchronizations, TH: Threshold.

RMAT22 and Orkut, only one iteration was enough. As it can be seen, DSMR+Pruned is

better than DSMR+Extract since it removes most of the useless edges. The improvement

of DSMR with pruning over DSMR is: 1.22× for Co-Author, 3.12× for RMAT22 and 3.87×

for Orkut networks. We excluded DS+Pruned since its difference with DSMR+Pruned is

similar to the difference between DS+Extract and DSMR+Extract.

2.7.2 Distributed Memory Results

Figure 2.11 shows results to Figure 2.10 for the distributed-memory machine, Mira, with

larger graphs. Plots (a), (b) and (c) show results for three fixed-size graphs (strong scaling):

a type-2 RMAT with scale 26, Orkut and Twitter, respectively. Plots (d) and (e) show

weak scaling result of a type-1 RMAT graph compared with the results reported in [14].

Similarly, the best D and ∆ values were searched for DSMR and ∆-Stepping from a random

source vertex and used for 100 different random source vertices for our experiments. The

distributed-memory part of Table 2.2 for the maximum number of processors that DSMR

scales: 4096 for RMAT26, 2048 for Orkut, 4096 for Twitter and 8192 for the weak scaling
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Figure 2.10: Evaluation of DSMR, ∆-Stepping, Elixir and Oracle algorithms on the shared-
memory machine. For readability, we do not show some data points for Oracle US Roads
and Pruned Orkut

37



results.

First, consider the strong scaling results in plots (a), (b) and (c) in Figure 2.11. As was

the case for shared-memory, DSMR scales better than our ∆-Stepping. It is better by a factor

of 2.05 in plot (a), 1.60 in plot (b) and 1.78 in plot (c). Unlike the shared-memory results,

as Table 2.2 shows, the overhead of DSMR is noticeably less than that of ∆-Stepping (2.5

times less on average). DSMR also has significantly fewer synchronizations than ∆-Stepping.

While the overhead of DSMR and ∆-Stepping are similar in shared memory, in distributed

memory the overhead of ∆-Stepping is significantly larger. The reason is that since the

communication cost in distributed-memory machines is high, the value of ∆ that obtains the

best performance reduces the number of synchronizations, but it does that at the expense

of doing useless work. This explains why DSMR performs better than ∆-Stepping. On the

other hand, as Table 2.2 shows, the number of synchronizations for DSMR is close to that of

the Oracle algorithm, as Table 2.2 shows. The overhead is small (except for Orkut). That

explains why the Oracle algorithm and DSMR lines are close in the three plots in Figure 2.11.

Now, consider the subgraph extraction optimization results for plots (a), (b) and (c) in

Figure 2.11. As in the shared-memory results, this technique improves the performance of

DSMR significantly: up-to a factor of 2.90 in RMAT26, 4.03 in Orkut and 3.02 in Twitter.

Table 2.2 shows the thresholds used for the subgraph extraction with the HE property.

DSMR+Extract scales better than DS+Extract. This shows the impact of DSMR on per-

formance, in spite of the small ratio of G′ over G. Finally, consider the pruned results in

Figure 2.11. As in the shared-memory results, pruning improves the performance of the

algorithm significantly since many edges are identified as useless by the pruning algorithm,

as Table 2.2 shows. Only one iteration of the pruning algorithm was executed for all three

graphs in Figure 2.11. The speed-ups of DSMR+Pruned over DSMR are up-to : 5.46× for

RMAT26, 6.33× for Orkut and 5.59× for Twitter.

Plots (d) and (e) in Figure 2.11 show weak scaling results for type-1 RMAT graphs. The
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Figure 2.11: Performance comparison of ∆-Stepping, DSMR, Graph Extraction Optimiza-
tion and Pruning. Plots (a), (b) and (c) show strong scaling results and plots (d) and (e)
show weak scaling results for RMAT graphs
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RMAT scale is 17 + k for 2k processors. Plot (d) compares the performance per processor

in MTEPS for DSMR, our ∆-Stepping (DS) and the version of ∆-Stepping described in

[14] (IPDPS-DS). This is a descending plot since the communication costs increase with the

number of processors. As before, the ratio of DSMR over our ∆-Stepping increases with the

number of processors and DSMR runs up-to a factor of 1.37 faster. On the the other hand,

IPDPS-DS is faster than DSMR with 1024 processors (1.04×) but the decreasing slope of

IPDPS-DS is faster than that of DSMR, which makes it 1.66× slower than DSMR for 8192

processors.

Plot(e) in Figure 2.11 compares the absolute performance of DSMR with and without

the optimizations. The subgraph extraction for this plot includes both properties discussed

in Section 2.4, HE and LD and it improves the performance of DSMR by up-to 4.76×.

The threshold for subgraph extraction with the LD property depends on on the size of the

graph and is variable and therefore, we do not report it. Lastly, as it can be seen from

the last row of Table 2.2, pruning removes around 97% of the edges from type-1 RMAT

graphs. Consequently, DSMR+Pruned in Figure 2.11 provides a speed-up of up-to 13× over

DSMR. Authors of [14] applied a set of optimizations to their implementation of ∆-Stepping.

IPDPS-OPT in Plot (e) in Figure 2.11 shows their best result. As it can be seen, our pruning

results improve upon IPDPS-OPT by factors between 1.38− 4.26.

Given the results with shared and distributed memory systems, DSMR always scales

better and runs faster than our ∆-Stepping. DSMR is only slower than Elixir ∆-Stepping

for the US Roads network but as shown by the results of the Oracle algorithm, there is much

room for improvement in this graph and ∆-Stepping is not necessarily the best algorithm.

Also, by observing the impact of pruning and subgraph extraction, we can conclude that

either these techniques are very effective for real-world graphs or the way edge weights are

artificially distributed should be reconsidered.
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2.8 Conclusions

This chapter discussed parallelization of SSSP problem which is an amorphous problem. We

we introduced DSMR, a new parallel SSSP algorithm and showed how the parameter D can

control the balance between the number of communications and the overall overhead. We

discussed why we expect DSMR to perform better than ∆-Stepping on scale-free networks.

Our results show that, for shared memory, DSMR is faster than our own implementation of

∆-Stepping in all cases and only slower than Elixir ∆-Stepping in the case of US Roads net-

work (25% slower). However, DSMR is faster than Elixir ∆-Stepping on all the other graphs

by up-to 7.38×. For distributed-memory systems, DSMR is faster than our ∆-Stepping

implementation by up-to 2.05× and by up-to 1.66× faster than the best existing SSSP al-

gorithm for distributed-memory systems. We have also introduced subgraph extraction and

pruning techniques, which improved performance by up-to 4.76× and 13×, respectively.

Later in Chapter 4, we will use the findings from this chapter to discuss the necessary

features for a parallel framework for amorphous problems. As presented, performing com-

putation asynchronously is the key in delivering an efficient SSSP algorithm. Therefore,

having control over the asynchronous computation is an essential feature for a parallel graph

framework. Next, we will discuss another set of problems which are surprisingly instances

of SSSP except that the graphs have specific structures. We similarly try to find a balance

between communication and computation in this set of problems.
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Chapter 3

Parallelizing Dynamic Programming

Algorithms

The next set of problems that we studied in this thesis are dynamic programming algorithms.

Dynamic programming [9] is a method to solve a variety of important optimization prob-

lems in computer science, economics, genomics, and finance. Figure 3.1 describes two such

examples: Viterbi, which finds the most-likely path through a hidden-Markov model for a

sequence of observations and LCS, which finds the longest common subsequence between

two input strings. Dynamic programming algorithms proceed by recursively solving a series

of subproblems, usually represented as cells in a table as shown in the figure. The solution to

a subproblem is constructed from solutions to an appropriate set of subproblems, as shown

by the respective recurrence relation in the figure.

These data-dependences naturally group subproblems into stages whose solutions do not

depend on each other. For example, all subproblems in a column form a stage in Viterbi

and all subproblems in an anti-diagonal form a stage in LCS. A predominant method for

parallelizing dynamic programming is wavefront parallelization [62], which computes all
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a) Viterbi b) LCS

𝑝𝑖,𝑗 = max
𝑘

(𝑝𝑖−1,𝑘 ∗ 𝑡𝑘,𝑗) 𝐶𝑖,𝑗 = max 

𝐶𝑖−1,𝑗−1 + 𝛿𝑖,𝑗
𝐶𝑖,𝑗−1
𝐶𝑖−1,𝑗

Stage

Stage

𝒑𝒊,𝒋 𝑪𝒊,𝒋

𝑝𝑖−1,1

𝑝𝑖−1,2

𝑝𝑖−1,3

𝑝𝑖−1,4

𝑝𝑖−1,5

𝒕𝟏,𝒋

𝒕𝟓,𝒋

𝜹𝒊,𝒋 𝟎

𝟎

𝑪𝒊−𝟏,𝒋−𝟏

𝑪𝒊,𝒋−𝟏

𝑪𝒊−𝟏,𝒋

Figure 3.1: Dynamic programming examples with dependences between stages.

subproblems within a stage in parallel.1

In contrast, the methods in this chapter break data-dependences across stages and fix up

incorrect values later in the algorithm. This is similar to the subgraph extraction idea from

Chapter 2 where incorrect computations in the first phase are fixed in the fix-up engine. In

here, the new approaches expose parallelism for a class of dynamic programming algorithms

we call linear-tropical dynamic programming (LTDP). A LTDP computation can be viewed as

performing a sequence of matrix multiplications in the tropical semiring where the semiring

is formed with + as the multiplicative operator and max as the additive operator. This

chapter demonstrates that several important optimization problems such as Viterbi, LCS,

Smith-Waterman, and Needleman-Wunsch (the latter two are used in bioinformatics for

sequence alignment) belong to LTDP. To efficiently break data-dependences across stages,
1The definition of wavefront parallelism used here is more general and includes the common usage where

a wavefront performs computations across logical iterations as in the LCS example in Figure 3.1(a).
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the algorithm uses rank convergence, a property by which the rank of a sequence of matrix

products in the tropical semiring is likely to decrease quickly.

There are two methods that will be introduced in this chapter: the Rank-1 method and

the Delta method. The Rank-1 method is general in the sense that the data-dependences

can have arbitrary shapes. In other words, the Rank-1 method can target any amorphous

LTDP problem. However, one of the disadvantages of the Rank-1 method is that it only

works when the rank of matrix products converges to 1. The Delta method, on the other

hand, works with ranks greater than 1 but it only supports specific data-dependence shapes.

A key advantage of our parallel methods is their ability to simultaneously use both the

coarse-grained parallelism across stages and the fine-grained wavefront parallelism within a

stage. Our implementations achieve multiplicative speed ups over existing implementations.

For instance, the parallel Viterbi decoder is up-to 24× faster with 64 cores than a state-

of-the-art commercial baseline [71]. This chapter demonstrates similar speed ups for other

LTDP instances studied in this chapter.

3.1 Background

In linear algebra, a matrix-vector multiplication maps a vector from an input space to an

output space. If the matrix is of low rank, the matrix maps the vector to a subspace of the

output space. In particular, if the matrix has rank 1, then it maps all input vectors to a line

in the output space. These geometric intuitions hold even when one changes the meaning of

the sum and multiplication operators (say to max and +, respectively), as long as the new

meaning satisfies the following rules.

Semirings A semiring is a five-tuple (D,⊕,⊗, 0, 1), where D is the domain of the semiring

that is closed under the additive operation ⊕ and the multiplicative operation ⊗. The two
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operations satisfy the following properties:

• (D,⊕, 0) forms a commutative monoid with 0 as the identity

– associativity: ∀x, y, z ∈ D : (x⊕ y)⊕ z = x⊕(y⊕ z)

– identity: ∀x ∈ D : x⊕ 0 = x

– commutativity: ∀x, y ∈ D : x⊕ y = y⊕x

• (D,⊗, 1) forms a monoid with 1 as the identity

– associativity: ∀x, y, z ∈ D : (x⊗ y)⊗ z = x⊗(y⊗ z)

– identity: ∀x ∈ D : x⊗ 1 = 1⊗x = x

• ⊗ left- and right-distributes over ⊕

– ∀x, y, z ∈ D : x⊗(y⊕ z) = (x⊗ y)⊕(x⊗ z)

– ∀x, y, z ∈ D : (y⊕ z)⊗x = (y⊗x)⊕(z⊗x)

• 0 is an annihilator for ⊗

– ∀x ∈ D : x⊗ 0 = 0⊗x = 0

Tropical Semiring The semiring (R ∪ {−∞},max,+,−∞, 0) with the real numbers ex-

tended with −∞ as the domain, max as the additive operation ⊕, and + as the multiplicative

operation ⊗ is called the tropical semiring. All properties of a semiring hold with −∞ as

the additive identity 0 and 0 as the multiplicative identity 1. Alternately, one can reverse

the sign of every element in the domain and change the additive operation to min.

Matrix Multiplication Let An×m denote a matrix with n rows and m columns with

elements from the domain of the tropical semiring. Let A[i, j] denote the element of A at
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the ith row and jth column. The matrix product of Al×m and Bm×n is A�B, a l×n matrix

defined such that

(A�B)[i, j] =
⊕

1≤k≤m

(A[i, k]⊗B[k, j])

= max
1≤k≤m

(A[i, k] +B[k, j])

Note, this is the standard matrix product with multiplication replaced by + and addition

replaced by max.

The transpose of An×m is the matrix Aᵀ
m×n such that ∀i, j : Aᵀ[i, j] = A[j, i]. Using

standard terminology, we will denote a vn×1 matrix as the column vector ~v, a v1×n matrix

as the row vector ~v ᵀ, and x1×1 matrix simply as the scalar x. This terminology allows us to

extend the definition of matrix-matrix multiplication above to matrix-vector, scalar-matrix,

and scalar-vector multiplication appropriately. Also, ~v [i] is the ith element of a vector ~v. The

following lemma follows from the associativity, distributivity, and commutativity properties

of ⊗ and ⊕ in a semiring.

Lemma 3.1.1. Matrix multiplication is associative in semirings

(A�B)�C = A�(B�C)

Parallel Vectors Two vectors ~u and ~v are parallel in the tropical semiring, denoted as

~u ‖ ~v, if there exist scalars x and y such that ~u�x = ~u� y. Intuitively, parallel vectors in

tropical semiring ~u and ~v differ by a constant offset. For instance, [1 0 2]ᵀ and [3 2 4]ᵀ are

parallel vectors differing by an offset 2. Note that the definition above requires two scalars

as −∞ does not have a multiplicative inverse in the tropical semiring.
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Matrix Rank The rank of a matrix Mm×n, denoted by rank(M), is the smallest number

r such that there exist matrices Cm×r and Rr×n whose product is M . In particular, a rank-

1 matrix is a product of a column vector and a row vector. There are alternate ways to

define the rank of a matrix in semirings, such as the number of linearly independent rows

or columns in a matrix. While such definitions coincide in fields (which have inverses for ⊕

and ⊗), they are not equivalent in semirings [23].

Lemma 3.1.2. For any vectors ~u and ~v and a matrix A of rank 1, A� ~u ‖ A�~v

Intuitively, this lemma states that a rank-1 matrix maps all vectors to a line. If rank(A) = 1

then it is a product of some column vector ~c and a row vector ~r ᵀ. For any vectors ~u and ~v:

A� ~u =(~c�~r ᵀ)� ~u =~c�(~r ᵀ� ~u) =~c�xu

A�~v =(~c�~r ᵀ)�~v =~c�(~r ᵀ�~v) =~c�xv

for appropriate scalars xu and xv. As an example, consider

A =


1 2 3

2 3 4

3 4 5

 ~u =


1

−∞

3

 ~v =


−∞

2

0


A = [1 2 3]ᵀ� [0 1 2] is rank-1. A� ~u = [6 7 8]ᵀ and A�~v = [4 5 6]ᵀ which are parallel with a

constant offset 2. Also note that all rows in a rank-1 matrix are parallel to each other.

3.2 Linear-Tropical Dynamic Programming

Dynamic programming is a method for solving problems that have optimal substructure —

the solution to a problem can be obtained from the solutions to a set of its overlapping

subproblems. This dependence between subproblems is captured by a recurrence equation.
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Classic dynamic programming implementations solve the subproblems iteratively applying

the recurrence equation in an order that respects the dependence between subproblems.

LTDP Definition A dynamic programming problem is linear-tropical dynamic program-

ming (LTDP), if (a) the subproblems can be grouped into a sequence of stages such that the

solution to a subproblem in a stage only depends on the solutions in the previous stage and

(b) this dependence is linear in the tropical semiring. In other words, si[j], the solution to

subproblem j in stage i of LTDP, is given by the recurrence equation

si[j] = max
k

(si−1[k] + Ai[j, k]) (3.1)

for appropriate constants Ai[j, k]. This linear dependence allows us to view LTDP as com-

puting a sequence of vectors ~s1, ~s2, . . . , ~sn, where

~si = Ai�~si−1 (3.2)

for an appropriate matrix of constants Ai derived from the recurrence equation. In this

equation, we will call ~si as the solution vector at stage i and call Ai as the transformation

matrix at stage i. Also, ~s0 is the initial solution vector obtained from the base case of the

recurrence equation.

Predecessor Product Once all of the subproblems are solved, finding the solution to

the underlying optimization problem of LTDP usually involves tracing the predecessors of

subproblems. A predecessor of a subproblem is the subproblem for which the maximum in

Equation 3.1 is reached. For ease of exposition, we define the predecessor product of a matrix
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1 LTDP_Seq (vector s0, matrix A1..An) {
2 vector pred [1..n]; vector res;
3 // forward
4 s = s0;
5 for i in (1..n) {
6 pred[i] = Ai ? s; // pred[i] = ~pi
7 s = Ai � s; // s = ~si
8 }
9 // backward
10 res[n+1] = 0; // res = ~r
11 for i in (n..1) {
12 res[i] = pred[i][res[i+1]]; }
13 return res; }

Figure 3.2: LTDP implementation that computes the stages sequentially. An implementation
can possibly employ wavefront parallelization within a stage.

A and a vector ~s as the vector A?~s such that

(A?~s)[j] = arg max
k

(~s[k] + A[j, k])

Note the similarity between this definition and Equation 3.1. We assume that ties in arg max

are broken deterministically. The following lemma shows that predecessor products do not

distinguish between parallel vectors, a property that will be useful later.

Lemma 3.2.1. ~u ‖ ~v =⇒ ∀A : A?~u = A?~v

This follows from the fact that parallel vectors in the tropical semiring differ by a constant

and that arg max is invariant when a constant is added to all its arguments.

Sequential LTDP Figure 3.2 shows the sequential algorithm for LTDP phrased in terms

of matrix multiplications and predecessor products. This algorithm is deemed sequential

because it computes the stages one after the other based on the data-dependence in Equa-

tion 3.1. However, the algorithm can utilize wavefront parallelism to compute the solutions

within a stage in parallel.
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The inputs to the sequential algorithm are the initial solution vector ~s0 and transforma-

tion matrices A1, . . . , An, which respectively capture the base and inductive case of the LTDP

recurrence equation. The algorithm consists of a forward phase and a backward phase. The

forward phase computes the solutions in each stage ~si iteratively. In addition, it computes

the predecessor product ~pi that determines the predecessor for each solution in a stage. The

backward phase iteratively follows the predecessors computed in the forward phase. The

algorithm assumes that the first subproblem in the last stage, ~vn[0], contains the desired

solution to the underlying optimization problem. Accordingly, the backward phase starts

with 0 in Line 10. The resulting vector res is the solution to the optimization problem at

hand (e.g., the longest-common-subsequence of the two input strings).

The exposition above consciously hides a lot of details in the � and ? operators. An

implementation does not need to represent the solutions in a stage as a vector and perform

matrix-vector operations. It might statically know that the current solution depends on

some of the subproblems in the previous stage (a sparse matrix) and only accesses those.

Finally, as mentioned above, an implementation might use wavefront parallelism to compute

the solutions in a stage in parallel. All these implementation details are orthogonal to how

the parallel algorithms described in this chapter parallelize across stages.

3.3 The Parallel Rank-1 Method

This section describes an efficient algorithm for parallelizing the sequential algorithm in

Figure 3.2 across stages.

3.3.1 Breaking Data-Dependences Across Stages

Viewing LTDP computation as matrix multiplication in the tropical semiring provides a way

to break data-dependences among stages. Consider the solution vector at the last stage ~sn.
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From Equation 3.2, we have

~sn = An�An−1 . . . A2�A1�~s0

Standard techniques [48, 35] can parallelize this computation using the associativity of matrix

multiplication. For instance, two processors can compute the partial products An� . . .

�An/2+1 and An/2� . . .�A1 in parallel, and multiply their results with ~s0 to obtain ~sn.

However, doing so converts a sequential computation that performs matrix-vector mul-

tiplications to a parallel computation that performs matrix-matrix multiplications. This

results in a parallelization overhead linear in the size of the stages and thus requires linear

number of processors to observe constant speed ups. In practice, the size of stages can easily

be hundreds or larger and thus is not practical on real problems and hardware.

The key contributions of this chapter are parallel algorithms that avoid he overhead of

matrix-matrix multiplications. These algorithms rely on the convergence of matrix rank in

the tropical semiring as discussed below. Its exposition requires the following definition.

Partial Product For a given LTDP instance, the partial productMi→j, defined for stages

j ≥ i, is given by

Mi→j = Aj � . . . Ai+1�Ai

Partial product determines how a later stage j depends on stage i as ~sj = Mi→j �~si.

3.3.2 Rank Convergence

Rank of the product of two matrices is not greater than the rank of the individual matrices.

rank(A�B) ≤ min(rank(A), rank(B)) (3.3)
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This is because, if rank(A) = r, then A = C �R for some matrix C with r columns.

Thus, A�B = (C �R)�B = C �(R�B) implying that rank(A�B) ≤ rank(A). Similar

argument shows that rank(A�B) ≤ rank(B).

Equation 3.3 implies that for stages k ≥ j ≥ i

rank(Mi→k) ≤ rank(Mi→j) ≤ rank(Ai)

In effect, as the LTDP computation proceeds, the rank of the partial products will never

increase. Theoretically, there is a possibility that the ranks do not decrease. However, we

have only observed this for carefully crafted problem instances that are unlikely to occur in

practice. On the contrary, the rank of these partial products is likely to converge to 1, as

will be demonstrated in Section 3.6.1.

Consider a partial product Mi→j whose rank is 1. Intuitively, this implies a weak de-

pendence between stages i and j. Instead of the actual solution vector, ~si, say the LTDP

computation starts with a different vector ~ti at stage i. From Lemma 3.1.2, the new solution

vector at stage j, ~tj = Mi→j �~ti, is parallel to the actual solution vector ~sj = Mi→j �~si.

Essentially, the direction of the solution vector at stage j is independent of stage i. The lat-

ter stage only determines its magnitude. In the tropical semiring, where the multiplicative

operator is +, this means that the solution vector at stage j will be off by a constant if one

starts stage i with an arbitrary vector.

3.3.3 The Parallel Rank-1 Method Overview

The parallel Rank-1 method uses this insight to break dependences between stages as shown

pictorially in Figure 3.3. The figure uses three processors as an example. Figure 3.3(a)

represents the forward phase of the sequential algorithm described in Figure 3.2. Each

stage is represented as a vertical column of cells and an arrow between stages represents
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𝑠𝑛
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𝑠0 𝑠𝑎  𝑠𝑏
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a)

b)

c)

𝑃0 𝑃𝑎 𝑃𝑏

Correct Solution Parallel to Correct Incorrect Solution

Figure 3.3: Rank-1 method parallelization using rank convergence.
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a multiplication with an appropriate transformation matrix. Processor P0 starts from the

initial solution vector s0 and computes all its stages. Processor Pa waits for sa, the solution

vector in the final stage of P0, in order to start its computation. Similarly, processor Pb waits

for sb the solution vector at the final stage of Pa.

In Figure 3.3(b), processors Pa and Pb start from arbitrary solutions ra and rb respectively

in parallel with P0. Of course, the solutions for the stages computed by Pa and Pb will start

out as completely wrong (shaded dark in the figure). However, if rank convergence occurs

then these erroneous solution vectors will eventually become parallel to the actual solution

vectors (shaded gray in the figure). Thus, Pa will generate some solution vector ¯̄sb parallel

to sb and Pb will generate some solution vector ¯̄sn parallel to sn.

In a subsequent fix up phase, shown in Figure 3.3(c), Pa uses sa computed by P0 and

Pb uses ¯̄sb computed by P1 to fix stages that are not parallel to the actual solution vector

at that stage. After the fix up, the solution vectors at each stage are either the same as or

parallel to the actual solution vector at those respective stages.

For LTDP, it is not necessary to compute the actual solution vectors. As parallel vectors

generate the same predecessor products (Lemma 3.2.1), following the predecessors in Fig-

ure 3.3(c) will generate the same solution as the following the predecessors in Figure 3.3(a).

The next sections describe the parallel algorithm in more detail.

3.3.4 Parallel Forward Phase for the Rank-1 Method

The goal of the parallel forward phase in Figure 3.4 is to compute a solution vector s[i]

at stage i that is parallel to the actual solution vector ~si, as shown in Figure 3.3. During

the execution of the algorithm, we say that a stage i has converged if s[i] computed by the

algorithm is parallel to its actual solution vector ~si.

The parallel Rank-1 method splits the stages equally among P processors such that a

processor p owns stages between lp (exclusive) and rp (inclusive), as shown in line 5. While
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1 Rank1_Method(vector s0, matrix A1..An) {
2 vector s[1..n]; vector pred [1..n];
3 vector conv;
4 // proc p owns stages (lp..rp]
5 ∀p: lp = n/P*(p-1); rp = n/P*p;
6 // parallel forward phase
7 parallel.for p in (1..P) {
8 local s = (p == 1 ? s0 : nz);
9 for i in (lp+1..rp) {
10 pred[i] = Ai ? s;
11 s = s[i] = Ai � s; }}
12 ––- barrier ––-
13 do { // till convergence (fix up loop)
14 parallel.for p in (2..P) {
15 conv[p] = false;
16 // obtain final soln from prev proc
17 s = s[lp];
18 for i in (lp+1..rp) {
19 pred[i] = Ai ? s;
20 s = Ai � s;
21 if( s is parallel to s[i] ) {
22 conv[p] = true;
23 break; }
24 s[i] = s; }}
25 ––- barrier ––-

26 conv =
∧
p

conv[p];

27 } while (!conv);
28
29 // parallel backward phase is in Figure 3.5
30 return Backward_Par(pred);

Figure 3.4: Parallel algorithm for the forward Pass of Rank-1 method that relies on rank
convergence for efficiency. All inter-processor communication is shown in magenta.

processor 1 starts its computation from ~s0, other processors start from some vector nz (line 8).

This initial vector can be arbitrary except none of its entries can be 0 = −∞. Section 3.3.5

explains the importance of this constraint.

The loop starting in line 9 is similar to the sequential forward phase (Figure 3.2) except

that the parallel version additionally stores the computed s[i] needed in the convergence

loop below.

Consider a processor p 6= 1 that owns stages (lp = l . . . r = rp]. If there exists a stage
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k in (l . . . r] such that rank(Ml→k) is 1, then stage k converges, irrespective of the initial

vector nz (Lemma 3.1.2). Moreover, by Equation 3.3, rank(Ml→j) is 1 for all stages j in

[k . . . r], implying that these stages converge as well (Figure 3.3(b)). However, processor p

is not cognizant of the actual solution vectors and, thus, does not know the value of k or

whether such a k exists.

The fix up loop starting at line 13 (fix up phase in Figure 3.3(c)) fixes stages i < k.

In this loop, processor p receives the vector at stage l computed by the previous processor

p − 1. (Figure 3.4 shows all such inter-processor communication in magenta.) Processor p

then updates s[i] for all stages till the new value becomes parallel to the old value of s[i]

(line 21). This ensures that all stages owned by p have converged, under the assumption

that stage l has converged.

In addition, the Boolean variable conv[p] indicates whether processor p advertised a

converged value for its last stage to processor p+ 1 at the beginning of the iteration. Thus,

when conv (line 26) is true, all stages have converged. In the ideal case, every processor

has a partial product with rank 1, and thus, the fix up loop executes exactly one iteration.

Section 3.6 shows that we observe the best case for many practical instances.

Say, however, conv[p] is not true for processor p. This indicates that the stages (lp . . . rp]

was not large enough to generate a partial product with rank 1. In the next iteration of

the fix up phase, processor p + 1, in effect, searches for rank convergence in the wider

range (lp . . . rp+1]. The fix up loop iteratively combines the stages of the processors till all

processors converge. In the worst case, the fix up loop executes P − 1 iterations and the

parallel Rank-1 method devolves to the sequential case.

Important to note is that even though the discussion above refers to partial products,

the Rank-1 method does not perform any matrix-matrix multiplications. Like the sequential

algorithm, the presentation hides many implementation details in the ? and � operations

(in lines 10,11,19,and 20). In fact, the parallel implementation can reuse efficient imple-
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mentations of these operations, including those that use wavefront parallelism, from existing

sequential implementations. Also, the computation of conv at line 26 is a standard reduce

operation that is easily parallelized, if needed.

When compared to the sequential algorithm, the parallel Rank-1 method has to addi-

tionally store s[i] per stage required to test for convergence in the fix up loop. If space is a

constraint, then the fix up loop can be modified to recompute s[i] in each iteration, trading

compute for space.

3.3.5 All-Non-Zero Invariance

A subtle issue with the correctness of the algorithm above is that starting the LTDP compu-

tation midway with an arbitrary initial vector nz could produce a zero vector (one with all

0 = −∞ entries) at some stage. If this happens, all subsequent stages will produce a zero

vector resulting in an erroneous result. To avoid this, we ensure that nz is all-non-zero, i.e.

none of its elements are 0 = −∞.

A transformation matrix A is non-trivial, if every row of A contains at least one nonzero

entry. In Equation 3.1, the j row of matrix Ai captures how the subproblem j in stage

i depends on the subproblems in stage i − 1. If all entries in this row are −∞, then the

subproblem j is forced to be −∞ for any solution to stage i − 1. Such trivial subproblems

can be removed from a given LTDP instance. So, we can safely assume that transformation

matrices in LTDP instances are non-trivial.

Lemma 3.3.1. For a non-trivial transformation matrix A,

~v is all-non-zero =⇒ A�~v is all-non-zero

(A�~v)[i] = maxk(A[i, k] +~v [k]). But A[i, k] 6= −∞ for some k ensuring that at least one of

the arguments to max is not −∞. Here we rely on the fact that no element has an inverse
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1 Backward_Par(vector pred [1..n]) {
2 vector res; vector conv;
3 // proc p owns stages (lp..rp]
4 ∀p: lp = n/P*(p-1); rp = n/P*p;
5 // parallel backward phase
6 parallel.for p in (P..1){
7 // all processors start from 0
8 local x = 0;
9 for i in (rp..lp+1) {
10 x = res[i] = pred[i][x]; }}
11 ––- barrier ––-
12 do { // till convergence (fix up loop)
13 parallel.for p in (P -1..1) {
14 conv[p] = false;
15 // obtain final result from next proc
16 local x = res[rp+1];
17 for i in (rp..lp+1) {
18 x = pred[i][x];
19 if (res[i] == x)
20 conv[p] = true;
21 break; }
22 res[i] = x; }
23 ––- barrier ––-

24 conv =
∧
p

conv[p];

25 } while (!conv)
26 return res; }

Figure 3.5: Parallel algorithm for the backward phase of LTDP that relies on rank conver-
gence for efficiency. All inter-processor communication is shown in magenta.

under max, except −∞. As such this lemma is not necessarily true in other semirings.

Thus, starting with a all-non-zero vector ensures that none of the stages result in a zero

vector.

3.3.6 Parallel Backward Phase

Once the parallel forward phase of the Rank-1 method is done, performing the sequential

backward phase from Figure 3.2 will generate the right result, even though s[i] is not exactly

the same as the correct solution ~si. In many applications, the forward phase overwhelmingly

dominates the execution time and parallelizing the backward phase is not necessary. If this
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is not the case, the backward phase can be parallelized using the same idea as the parallel

forward phase as described below.

The backward phase recursively identifies the predecessor at stage i starting from stage

n. One way to obtain this predecessor is by iteratively looking up the predecessor prod-

ucts pred[i] computed during the forward phase. Another way to obtain this is through

repeated matrix multiplication as Mi←n ?~si, where Mi←n is the backward partial product

An� . . . Ai+1. Using the same rank convergence argument, the rank of Mi←n will converge

to 1 for large enough number of matrices (small enough i). Lemma 3.3.2 below shows that

the predecessor at stages beyond i do not depend on the initial value used for the backward

phase.

Lemma 3.3.2. For a matrix A of rank 1 and any vector ~v, all elements of A?~v are equal.

This lemma follows from the fact that the rows in a rank-1 matrix only differ by a constant

and arg max is invariant when an offset is added to all its arguments.

The algorithm in Figure 3.4 uses this insight for a parallel backward phase. Every pro-

cessor starts the predecessor traversal from 0 (line 8) on the stages it owns. Each processor

enters a fix up loop whose description and correctness mirror those of the forward phase

above.

3.3.7 Rank Convergence and SSSP Discussion

One can view solving an LTDP problem as computing Single Source Shortest/Longest Path

in a graph. In this graph, each subproblem is a node and directed edges represent the

dependences between subproblems. The weights on edges represent the constants Ai[j, k] in

Equation 3.1. In LCS for instance (Figure 3.1), each subproblem has incoming edges with

weight 0 from the subproblem above and to its left, and an incoming edge with weight δi,j

from its diagonal neighbor. Finding the optimal solution to the LTDP problem amounts to
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finding the longest path in this graph from the subproblem 0 in the last stage to subproblems

in the first stage, given initial weights to the latter. Alternately, one can negate all the weights

and change the max to a min in Equation 3.1 to view this as computing shortest paths.

Entries in the partial product Ml→r represent the cost of the shortest (or longest) path

from a node in stage l to a node in stage r. The rank of this product is 1 if these shortest

paths go through a single node in some stage between l and r. Road networks have this

property. For instance, the fastest path from any city in Washington state to any city in

Massachusetts is highly likely to go through Interstate I-90 that connects the two states.

Routes that use I-90 are overwhelmingly better than those that do not; choices of the cities

at the beginning and at the end do not drastically change how intermediate stages are routed.

Similarly, if problem instances have optimal solutions that are overwhelmingly better than

other solutions, one should expect rank convergence.

Chapter 2 presented a parallel SSSP algorithm for general scale-free networks. In this

chapter, the corresponding graph for LTDP problems can have a specific shape where the

edges are only between two consecutive stages. Since the edges can have arbitrary depen-

dences, the LTDP problems are amorphous as well. As we discussed in this chapter, we

introduced a method that increases the parallelism by compromising from the total amount

of work. This is similar to DSMR where D controls the balance between communication and

overhead of the computation. Subgraph extraction was another example where communica-

tion could be avoided by paying computation overhead.

3.4 Local Linear-Tropical Dynamic Programming

Section 3.2 described LTDP problems and Section 3.3 introduced the parallel Rank-1 method

which relies on rank-1 convergence to be efficient. This section introduces the Delta method,

an approach which relaxes the reliance of a LTDP problem converging to rank-1.
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The Delta method works on a subset of LTDP problems which are Local. Figure 3.1b

shows an example of a Local LTDP (LLTDP) where the dependences for cell Ci,j are the

three local neighbors: Ci−1,j, Ci,j−1 and Ci−1,j−1. In general, a LLTDP recursive function is

given by:

Ci,j = max


Ci−1,j + w1

i,j

Ci,j−1 + w2
i,j

Ci−1,j−1 + w3
i,j

(3.4)

where w1
i,j, w2

i,j and w3
i,j are three constant terms that come from the inputs and are inde-

pendent of the values of the cells. Local LTDP problems are a subset of LTDP problems

since Equation 3.4 only restricts Equation 3.1’s max terms to only the local neighbors (top,

left and top-left cells).

Figure 3.1a shows a LTDP example which is not local and the dependences for a cell

come from all the cells of the previous stage. This structure of a general LTDP problem

prevents from applying the Delta method which we will discuss in Section 3.4.1.

3.4.1 The Delta Method

The intuition behind the Delta method is that instead of computing a value for each cell in

a LLTDP problem, it computes the difference between local cells. For example, Figure 3.6a

shows 4 cells: Ci−1,j−1, Ci−1,j, Ci,j−1, Ci,j. The Delta method computes δi,j = Ci,j − Ci,j−1

and ∆i,j = Ci,j − Ci−1,j instead of actually computing Ci,j. Therefore, there are two delta

values associated with each cell: the horizontal delta, δ, and the vertical delta, ∆. The

whole computation only computes the deltas shown as red arrows in Figure 3.6b. The key

contribution of the Delta method is Lemma 3.4.1.

Lemma 3.4.1. δi,j, ∆i,j and predi,j can be computed given the values of δi,j−1 and ∆i−1,j

and using recursive function 3.4.

61



𝑪𝒊,𝒋

𝑪𝒊−𝟏,𝒋

𝑪𝒊,𝒋−𝟏

𝑪𝒊−𝟏,𝒋−𝟏

𝜹𝒊−𝟏,𝒋

𝜹𝒊,𝒋
𝚫
𝒊,
𝒋

𝚫
𝒊,
𝒋−

𝟏

(a) Deltas among 4 neighboring cells.

(b) All deltas of a table.

Figure 3.6: The deltas among the cells.

Proof. In Figure 3.6a, assume that the value of Ci−1,j−1 is x and consequently, the val-

ues of Ci,j−1 and Ci−1,j will be x + δi−1,j and x + ∆i,j−1, respectively. Using the re-

cursive function 3.4, Ci,j = max {x+ δi−1,j + w1
i,j, x+ ∆i,j−1 + w2

i,j, x+ w3
i,j}. Let K =

max {δi−1,j + w1
i,j,∆i,j−1 + w2

i,j, w
3
i,j} and as a result, Ci,j = x+K. K is a constant since all

of the terms are given. Therefore, δi,j = Ci,j − Ci,j−1 = x + K − (x + ∆i,j−1) = K −∆i,j−1

which is a constant. ∆i,j can be similarly proved to be constant. The maximum term in the

computation of K is independent of x and so is the maximum term in the computation of

Ci,j although the value of Ci,j itself is not. Therefore, predi,j is constant given the values of

δi,j−1 and ∆i−1,j.

Figure 3.6b shows all deltas as red arrows in the table. Given all the initial deltas on

the left and top side of the table, all other deltas can be computed using Lemma 3.4.1. Let

fδ(i, j, δi−1,j,∆i,j−1) and f∆(i, j, δi−1,j,∆i,j−1) be the functions that computes δi,j and ∆i,j

according to Lemma 3.4.1, respectively. Figure 3.7 shows the sequential algorithm for the

Delta method.
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1 DeltaSeq(delta δ0,1. . . δ0,n-1, Delta ∆1,0. . . ∆n-1,0) {
2 for i in (1..n-1) {
3 for j in (1..n-1) {
4 δi,j = fδ(i,j,δi-1,j,∆i,j-1);
5 ∆i,j = f∆(i,j,δi-1,j,∆i,j-1); }}}

Figure 3.7: Sequential Delta method for planar dynamic programming.

The inputs given to the sequential Delta method in Figure 3.7 are δ0,1, . . . , δ0,n−1,∆1,0, . . . ,

∆n−1,0 which are the initial deltas for the top and left side of the table. For the sake of sim-

plicity, we assumed that the table is squared shaped of size n×n. A lot of details are hidden

behind the fδ and f∆ functions which were described in details in Lemma 3.4.1. Next in

Section 3.4.2, we will describe the parallel version of the Delta method.

3.4.2 The Parallel Delta Method

This section describes a parallel version of the Delta method which is depicted in Figure 3.8.

Figure 3.8a shows all deltas that are desired for computation. Assume that there are three

processors available for the parallel computation: P0, P1 and P2. The set of deltas are

distributed column-wise with one column of ∆s replicated at the boundaries as shown in

Figure 3.8b. The parallel Delta method consists of two phases: i) a random phase, ii) 2

fix-up phases. In the random phase, each processor except P0 assumes random values for

the first column of ∆s as shown by dotted blue arrows in Figure 3.8b (Section 3.3.5 details

how to pick random initial vectors). The key contribution of parallel Delta method is the

following observation.

Observation 3.4.2. Starting with random (and perhaps incorrect) initial ∆s in the first

column of a processors leads to many correct deltas on subsequent columns.

For cell {i, j}, define input deltas to be δi−1,j and ∆i,j−1 and the output deltas to be δi,j

and ∆i,j. This naming comes from Lemma 3.4.1 where by taking two deltas, two other deltas
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(a) The complete set of deltas to compute.

𝑃0 𝑃1 𝑃2

(b) Random phase.
𝑃0 𝑃1 𝑃2

(c) Fix phase 1.

𝑃0 𝑃1 𝑃2

(d) Fix phase 2.

Figure 3.8: The parallel deltas method.
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can be computed. As it can be seen in Figure 3.8b, starting with all incorrect random input

deltas in the first column of P1 and P2 (shown as blue dotted arrows) leads to many correct

output deltas (shows as red solid arrows) as the processors proceed. The deltas that are

farther from the random initialization are more likely to be correct.

Denote predecessors and delta values that are computed using the random initialization

by pred′i,j, δ′i,j, ∆′i,j and C ′i,j. The intuition behind Observation 3.4.2 is that predi,j = pred′i,j

for many cells. Assume that in Figure 3.6a both δ′i−1,j 6= δi−1,j and ∆′i,j−1 6= ∆i,j−1 but

predi,j = pred′i,j = {i − 1, j}. Therefore, according to the formula 3.4, C ′i,j = C ′i−1,j + w1
i,j

and similarly Ci,j = Ci−1,j +w1
i,j which means that ∆′i,j = w1

i,j = ∆i,j. Hence, using incorrect

input deltas may lead to correct output deltas. Also, correct deltas lead to more correct

deltas because of Lemma 3.4.1.

The other observation that comes directly from Lemma 3.4.1 is that a blue dotted incor-

rect delta in Figure 3.8b has to come from another incorrect input delta. In other words,

if there are two correct input deltas the output deltas are also correct. Therefore, we can

claim the following lemma.

Lemma 3.4.3. If there is a path of solid red correct deltas from the top row of the table to

the bottom of the table in a processor, the rest of deltas after that path are solid red correct

deltas.

Proof. The top row deltas are always correct since they are a part of initialization. Therefore,

because of Lemma 3.4.1, all deltas that come immediately after the path are all correct. We

can apply the same reasoning to conclude that the rest of deltas after the path are all

correct.

Using Observation 3.4.2 and Lemma 3.4.3, rest of parallel Delta method can be described.

After each processor finishes its computation using a random initialization, P0 sends to P1

and P1 sends to P2 the column of ∆s they share as shown by black arrows in Figure 3.8b.
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This concludes the first phase of the parallel Delta method which was called the random

phase.

Next, the first fix-up phase starts which is depicted in Figure 3.8c. In this phase, P0 is

idle while P1 and P2 fix up the incorrect deltas. Since each incorrect delta only affects its

output deltas, each processors needs only recompute δi,j and ∆i,j where δi−1,j 6= δ′i−1,j or

∆i,j−1 6= ∆i,j−1. Therefore, P1 and P2 perform less work in the first fix-up phase than the

random phase. At the end of first fix-up phase, only P1 sends its correct deltas to P2. In

the second fix-up phase, P0 and P1 are both idle while P2 fixes up the incorrect deltas as

shows in Figure 3.8d. P2 performs less work than the first fix-up phase because there are

less incorrect deltas after the first fix-up phase.

Figure 3.9 shows the parallel Delta method for local LTDP problems. First, we describe

the initialization. The input arguments are given on Line 1. Assume that there are P

processors available to the system. Then, each processors p ∈ {0 . . . P − 1} on Line 4

computes the first column and the last column of the range of deltas that it is assigned

which are specified by Sp and Ep, respectively. Next, each processor p, except the first,

initialize its Sp of ∆s in the loop at Line 6. In the loop, on Line 10, we store the random

values in ∆′p,j that are going to be used later. ∆′ is one array of ∆s for the first column

of each processor p. The barrier on Line 11 makes sure that every processor is done before

continuing the algorithm.

Next, in the random phase, each processor computes the deltas it owns in the loop on

Line 14. This loop is similar to the one from the sequential Delta method in Figure 3.7 except

that it is parallel. Then, each processor p updates the ∆s for the first column of processor

p + 1. This is done by having the barrier on Line 19 and since Sp = Ep+1, processor p + 1

will have the correct ∆s after the barrier.

After the random phase, there is the fix-up phase and the main loop is on Line 21. First

processor does not need any fix-up phase since all of its deltas are correct. p1 needs one
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1 ParDeltaSeq(delta δ0,1. . . δ0,n-1, Delta ∆1,0. . . ∆n-1,0) {
2 // Initialization
3 //The start (Sp) and end (Ep) column of deltas for processor p
4 ∀p: Sp=n/P*p; Ep=n/P*(p+1);
5 // Initializing the first column of deltas
6 parallel for p in (1..P-1) {
7 local s = Sp;
8 for j in (1..n-1) {
9 ∆s,j = random ();
10 ∆′

p,j = ∆s,j; }}
11 ––- barrier ––-
12 // Random phase
13 // Parallel loop to compute deltas in the random phase
14 parallel for p in (0..P-1) {
15 for i in (Sp+1..Ep) {
16 for j in (1..n-1) {
17 δi,j = fδ(i,j,δi-1,j,∆i,j-1);
18 ∆i,j = f∆(i,j,δi-1,j,∆i,j-1); }}}
19 ––- barrier ––-
20 //Fix -up phase
21 for iter in (1..P-1) {
22 parallel for p in (iter..P-1) {
23 local s = Sp;
24 //The worklists for the current and next iterations to fix
25 local workQueue1 , workQueue2;
26 for j in (1..n-1) { // Finding wrong ∆s in the first column
27 if ∆s,j != ∆′

p,j {
28 workQueue1.add(j);
29 ∆′

p,j = ∆s,j; }}
30 // Iterating through column that processor p owns
31 for i in (Sp+1..Ep) {
32 //Only recompute the ones from the working list
33 while workQueue1.size() {
34 //If output ∆ is different ,
35 //add it to workQueue2 for the next iteration , i+1
36 local veticalDelta = f∆(i,j,δi-1,j,∆i,j-1);
37 if ∆i,j != verticalDelta {
38 ∆i,j = verticalDelta;
39 workQueue2.add(j); }
40 //If output δ is different ,
41 //add it to workQueue1 for the current iteration , i
42 local horizontalDelta = fδ(i,j,δi-1,j,∆i,j-1);
43 if δi,j != horizontalDelta {
44 δi,j = horizontalDelta;
45 if j < n-1 {
46 workQueue1.add(j+1); }}}
47 swap(workQueue1 ,workQueue2 ); }}
48 ––- barrier ––- }}

Figure 3.9: Parallel Delta method for local dynamic programming.
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phase of fix-up since it receives the completely correct deltas after the random phase. p2

needs at most two phases of fix-up since it eventually receives all correct deltas after the first

fix-up phase and in general, processor p requires p number of fix-up phases which is specified

by the parallel loop on Line 22. The main fix-up loop at Line 21 iterates for P − 1 times

since the last processor has P − 1 fix-up phases.

For each processor, there are two work lists (Line 22) that keep track of the indices

of incorrect delta inputs whose output deltas need to be recomputed: workQueue1 and

workQueue2 on Line 25. They are used for different iterations of the loop on Line 31 that

goes through all columns of processor p. workQueue1 is the work list for the current iteration

of the loop (i) and workQueue2 is the work list the for the next iteration of the loop (i+ 1).

Before the loop on Line 31, the loop on Line 26 initiates workQueue1 by comparing (Line 27)

the newly received ∆s and the ∆s used previously which were saved in ∆′s on Line 10.

The ones that do not match are added in workQueue1 for re-computation of output deltas

(Line 28). Also, ∆′ stores the new ∆s for the next fix-up phase (Line 29).

The loop on Line 31 goes through all columns of p and the while loop on Line 33 goes

through the workQueue1 and recomputes the necessary deltas. If a ∆ for the next column

is different from the previous iteration, it is added in workQueue2 for the next iteration of

the loop at Line 31 (Line 37). On the other hand, if a δ is different, it affect the current

iteration and the necessary index in added to workQueue1 (Line 43). At the end, the two

work lists are swapped in Line 47 for the next iteration of the loop on Line 26. The barrier

in Line 48 is the end of a fix-up iteration.
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3.4.3 Algorithmic Comparison between The Parallel Delta Method

and The Rank-1 Method

The parallel Rank-1 method in Section 3.3 can be explained using deltas for local LTDP.

The parallel Rank-1 method only relies on Lemma 3.4.3 and the fix-up phase is more coarse

grain than the parallel Delta method. In the Rank-1 method, every processor, similarly,

starts with a random initialization but in the fix-up phase the deltas for every column is

recomputed until a column with all correct ∆s is reached. Because of Lemma 3.4.3, after

such a column, rest of the deltas are correct and there is no need for re-computation.

The new parallel Delta method approach recomputes only a subset of the deltas in a

column are recomputed where that subset is identified using Lemma 3.4.1. Therefore, the

parallel Delta method is an improvement to the Rank-1 method and the expectation is that

it is never slower than the parallel Rank-1 method for LLTDP. Specially, in the cases where

it takes a lot of columns to converge to a column with all correct ∆s, the parallel delta

method should be significantly faster. Section 3.6 studies this comparison in practice.

3.5 LTDP Examples

This sections shows four important optimization problems as LTDP — Viterbi, Longest

Common Subsequence, Smith-Waterman, and Needleman-Wunsch. Our goal in choosing

these particular problems is to provide an intuition on how problems with different structure

can be viewed as LTDP. Other problems are LTDP, but not evaluated in this chapter, include

dynamic time warping and seam carving.

Viterbi The Viterbi algorithm [78] finds the most likely sequence of states in a (discrete)

hidden Markov model (HMM) for a given sequence of n observations. Its recurrence equation

is shown in Figure 3.1(a). Here, pi,j represents the probability of the most likely state
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sequence ending in state j of the HMM that explains the first i observations. The meaning

of the term tk,j is not important here (see [78]). The solution to a Viterbi instance is given

by the maximum value of pn,j as we are interested in the most likely sequence ending in any

HMM state.

The subproblems along a column in Figure 3.1(a) form a stage and they only depend on

the subproblems in the previous column. This dependence is not directly in the desired form

of Equation 3.1. But applying logarithm on both sides to the recurrence equation brings it

to this form. By transforming the Viterbi instance into one that calculates log-probabilities

instead of probabilities, we obtain a LTDP instance.

Invoking the LTDP parallel algorithm in Figure 3.4 requires one additional transforma-

tion. The algorithm assumes that the solution to LTDP is given by the first subproblem

in the last stage n. To account for this, we introduce an additional stage n + 1 in which

every subproblem is the maximum of all subproblems in stage n. Essentially, stage n+ 1 is

obtained from multiplying a matrix with 0 in all entries with stage n.

The Viterbi algorithm is not a local LTDP since the dependence edges are not local and

they cross. Therefore, the parallel Delta method is not applicable.

Longest Common Subsequence LCS finds the longest common subsequence of two

input strings A and B [36]. The recurrence equation of LCS is shown in Figure 3.1 (b).

Here, Ci,j is the length of the longest common subsequence of the first i characters of A

and the first j characters of B. Also, δi,j is 1 if the ith character of A is the same as the

jth character of B and 0 otherwise. The LCS of A and B is obtained by following the

predecessors from the bottom-rightmost entry in the table in Figure 3.1(b).

Some applications of LCS, such as the diff utility tool, are only interested in solutions

that are at most a width w away from main diagonal - ensuring that the LCS is still rea-

sonably similar to the input strings. For these applications, the recurrence relation can be
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Figure 3.10: Two ways of grouping the subproblems in LCS into stages such that each stage
only depends on one previous stage.

modified such that Ci,j is set to −∞ whenever |i − j| > w. Using a smaller width also re-

duces the memory requirements of LTDP as the entire table need not be stored in memory.

Smaller width limits the scope of wavefront parallelism due to smaller sizes of stages, which

emphasizes the need for parallelizing across stages as proposed by this chapter.

LCS is a local LTDP problem as it can be checked from Figure 3.10. Therefore, the

parallel Delta method from Section 3.4.2 can be applied. Although using this method instead

of the Rank-1 method requires computing two values per cell, one can show that deltas in

LCS problem are either 1 or 0. This allows compactly representing the deltas as a sequence

of bits [37]).

On the other hand, LCS is also a LTDP problem and the Rank-1 method requires defining
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stages such that a stage is only dependent on the previous stage. Grouping the subproblems

of LCS into stages can be done in two ways, as shown in Figure 3.10. In the first approach,

the stages correspond to anti-diagonals, such as the stage consisting of zis in Figure 3.10 (a).

This stage depends on two previous stages (on xis and yis) and does not strictly follow the

rules of LTDP. One way to get around this is to define stages as overlapping pairs of anti-

diagonals, like stages x-y and stage y-z in Figure 3.10 (a). Subproblems yis are replicated

in both stages, allowing stage y-z to depend only on stage x-y.

In the second approach, the stages correspond to the rows (or columns) as shown in Fig-

ure 3.10 (b). The recurrence needs to be unrolled to avoid dependences between subproblems

within a stage. For instance, yi depends on all xj for j ≤ i. In this approach, since the

final solution is obtained from the last entry, the predecessor traversal in Figure 3.2 has to

be modified to start from this entry, say by adding an additional matrix at the end to move

this solution to the first solution in the added stage.

Needleman-Wunsch This algorithm [65] finds a global alignment of two input sequences,

commonly used to align protein or DNA sequences. The recurrence equation is very similar

to the one in LCS (Section 3.5).

si,j = max


si−1,j−1 +m[i, j]

si−1,j − d

si,j−1 − d

In this equation, si,j is the score of the best alignment for the prefix of length i of the first

input and the prefix of length j of the second input, m[i, j] is the matching score for aligning

the last characters of the respective prefixes, and d is the penalty for an insertion or deletion

during alignment. The base cases are defined as si,0 = −i ∗ d and s0,j = −j ∗ d.

The Needleman-Wunsch algorithm is also a local LTDP problem as it can be checked
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from the formula. Therefore, as the LCS case, the parallel Delta method is applicable to this

algorithm. Similarly, one can show that deltas are in the range of [−d . . . (maxi,jm[i, j] + d)]

allowing compact representation.

For applying the Rank-1 method, grouping subproblems into stages can done using the

same approach as in LCS. Abstractly, one can think of LCS as an instance of Needleman-

Wunsch for appropriate values of matching scores and insert/delete penalties. However, the

implementation details differ sufficiently enough for us to consider them as two different

algorithms.

Smith-Waterman This algorithm [73] performs a local sequence alignment, in contrast

to Needleman-Wunsch. Given two input strings, Smith-Waterman finds the substrings of

the input that have the best alignment, where longer substrings have a better alignment. In

its simplest form, the recurrence equation is of the form

si,j = max



0

si−1,j−1 +m[i, j]

si−1,j − d

si,j−1 − d

Key difference from Needleman-Wunsch is the 0 term in max which ensures that alignments

“restart” whenever the score goes to zero. Because of this term, the constants in Ai matrices

in equation 3.1 need to be set accordingly. This slight change has significant difference to

the convergence properties of Smith-Waterman as we will see later in Section 3.6.1. Our

implementation uses a more complex recurrence equation that allows for affine gap penalties

when aligning sequences [26].

Also, the solution to Smith-Waterman requires finding the maximum of all subproblems

in all stages and performing a predecessor traversal from that subproblem. To account for
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this in our LTDP formulation, we add one “running maximum” subproblem per stage that

contains the maximum of all subproblems in the current stage and previous stages.

The Smith-Waterman algorithm is not a local LTDP and therefore, the parallel Delta

method is not applicable.

3.6 Evaluation

This section evaluates the Rank-1 and Delta methods on four LTDP problems discussed

in Section 3.5. Section 3.6.1 empirically evaluates the occurrence of rank convergence in

practice. Section 3.6.3 evaluates scalability, speed up and efficiency of our implementation.

Finally, Section 3.6.5 compares the parallel algorithm with wavefront parallelization.

3.6.1 LTDP Rank Convergence

Determining whether the parallel Rank-1 and Delta methods benefit a dynamic programming

problem requires: 1) the problem to be LTDP (discussed in Section 3.2); 2) rank convergence

happens in reasonable number of steps. This section demonstrates how rank convergence

can be measured and evaluates it for the 4 LTDP problems discussed in Section 3.5.

Rank Convergence is an empirical property of a sequence of matrix multiplications that

depends on both the LTDP recurrence relation in addition to the input. Table 3.1 empirically

evaluates the number of steps required for rank convergence across different algorithms and

inputs. For a LTDP instance, defined by the algorithm (Column 1) and input (Column 2),

we first compute the actual solution vectors at each stage. Then, starting from a random

all-non-zero vector at 200 different stages, we measured the number of steps required to

generate a vector parallel to the actual solution vector (i.e., convergence). Columns 3,4,

and 5 respectively show the minimum, median, and maximum number of steps needed for

convergence. For each input, Column 2 specifies the computation width (the size of a stage
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Steps to Converge to Rank-1 Min Median Max

Viterbi Decoder

Voyager: 26 22 40 104
LTE: 26 18 30 62
CDMA: 28 22 38 72
MARS: 214 46 112 414

Smith-Waterman

Query-1: 603 2 6 24
Query-2: 884 4 8 24
Query-3: 1227 4 8 24
Query-4: 1576 4 8 24

Needleman-Wunsch

Width: 1024 1, 580 19, 483 192, 747
Width: 2048 3, 045 44, 891 378, 363
Width: 4096 5, 586 101, 085 404, 4374
Width: 8192 12, 005 267, 391 802, 991

LCS

Width: 8192 9, 142 79, 530 370, 927
Width: 16384 19, 718 270, 320 −
Width: 32768 42, 597 626, 688 −
Width: 65536 86, 393 − −

Table 3.1: Number of steps to converge to rank 1.

or the size of each Ai matrices). Each algorithm has a specific definition of width: for

Viterbi decoder, width is the number of states for each decoder, in Smith-Waterman, it is

the size of each query, and in LCS and Needleman-Wunsch, it is a fixed-width around the

diagonal of each stage. LCS never converged so we leave those entries blank. The rate

of convergence is specific to the algorithm and input (i.e., Smith-Waterman converges fast

while LCS sometimes does not converge) and, generally speaking, wider widths require more

steps to converge. We will use this table later in Section 3.6.3 to explain scalability of out

approach.

3.6.2 Environmental Setup

We conducted experiments on a shared memory machine and on a distributed memory

machine. A shared memory machine favors fast communication and is ideal for wavefront

approach. Likewise, a distributed machine has a larger number of processors and so we can

better understand how our parallel algorithm scales. Next, we describe these two machines.

Distributed-Memory Machine: Stampede [74], a Dell PowerEdge C8220 Cluster with

6,400 nodes. At the time of writing this thesis, Stampede is ranked 8th on the Top500 [75]
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list. Each node contains 2 8-core Intel Xeon E5-2600 processor @ 2.70 GHz (16 cores in total)

and 32 GB of memory. The interconnect topology is a fat-tree, FDR InfiniBand interconnect.

On this cluster, we used the MPI MVAPICH 2 library [63] and the Intel C/C++ compiler

version 13.0.1 [38].

Shared-Memory Machine: an unloaded Intel 2.27GHz Xeon (E7) workstation with 40

cores (80 threads with hyper-threading) and 128GB RAM. We use the Intel C/C++ compiler

(version 13.0.1) [38] and the Intel MPI library (version 4.1) [59].

We report scalability results on Stampede but results from the shared-memory machine

are qualitatively similar. We used the shared-memory machine to compare our parallel

algorithm with wavefront parallelization. Unless specified otherwise, the reported results are

from Stampede runs.

We use MPI/OMP timer to measure process runtime. We do not measure setup costs

— only the time it takes to execute one invocation of a LTDP problem. When we compare

against a baseline, we modify that code to take the same measurements.

Finally, to get statistically significant results, we run each experiment multiple times and

report the mean and 95% confidence interval of the mean when appropriate. We do not

include confidence intervals in the graphs if they are small.

3.6.3 LTDP Benchmarks and Performance

This section evaluates the parallel algorithm on the four LTDP problems discussed in Sec-

tion 3.5. Table 3.2 overviews what algorithms are used for baseline and parallelization of

each LTDP problem. We will discuss in details about each of them in this Section.

To substantiate our scalability results, we evaluate each benchmark across a wide variety

of real-world inputs. We break the results down by the LTDP problem.
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Problem Type of LTDP Baseline Parallel
Viterbi Non-Local LTDP Spiral The Parallel LTDP
Smith-Waterman Non-Local LTDP Farrar The Parallel LTDP
LCS Local LTDP Bit-Parallelism The Parallel Delta Method
Needleman-Wunsch Local LTDP The Delta Method The Parallel Delta Method

Table 3.2: Algorithms used for each LTDP problem.

Viterbi Decoder

Viterbi decoder uses the Viterbi algorithm (Section 3.5) to communicate over noisy and

unreliable channels, such as cell phone communications [78]. Given a potentially corrupted

convolution-encoded message [67], Viterbi decoding finds the most likely decoded message.

Baseline We used Spiral’s [71] Viterbi decoder: a highly optimized (via auto-tuning) de-

coder that utilizes SIMD to parallelize decoding within a stage. To the best of our knowledge,

there is no efficient multi-processor algorithm for Viterbi decoders since the amount of par-

allelism in each stage is limited.

Our Implementation Spiral code is heavily optimized and even small changes negatively

affect performance. Therefore, the performance-critical internal loop of the Spiral code is

used as a black box. Each processor starts from an arbitrary all-non-zero vector (except the

first, which uses the initial vector) and uses Spiral to execute its set of stages. Each processor

(except the last) then communicates its result to the next processor.

Data We use four real-world convolution codes; Voyager, the convolution codes used on

NASA’s deep space Voyager. Mars, the convolution codes used to communicate with NASA’s

mars rovers, and both CDMA and LTE, two convolution codes commonly used in modern

cell-phone networks. For each of these 4 convolution codes, we investigate the impact of 4

network packet sizes (2048, 4096, 8192, and 16384), which determine the number of stages

in the computation. For each size, we used Spiral’s input generator to create 50 network
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packets.

Performance and Scalability Figure 3.11 and 3.12 shows the performance, the speed

up, and the efficiency of each 4 decoders for the parallel Rank-1 method. To evaluate the

impact of different decoder sizes, each plot has four lines (one per network packet size).

A point (x, y) in a performance/speed up plot with the primary y-axis on left, gives the

throughput y (the number of bits processed in a second) in megabits per second (Mb/S) as

a function of the number of processors x used to perform the Viterbi Decoding. The same

point with the secondary y-axis on right shows the speed up y with x number of processors

over the sequential performance. Note that Spiral sequential performance at x = 1 is almost

the same for different packet sizes. The filled data points in the plots show that convergence

occurred in the first iteration of the fix-up loop in Figure 3.4 algorithm (i.e. each processor’s

stage is large enough for convergence). The non-filled data points show multiple iterations

of the fix-up loop were required. Similarly, a point in an efficiency plot provides the speed

up of our parallel implementation over the sequential performance of Spiral generated code

divided by the number of processors. Each point is the mean of 50 random packets.

Figure 3.11 demonstrates (i) our approach provides significant speed ups over the se-

quential baseline and (ii) different convolution codes and network packet sizes have different

performance characteristics. For example, with 64 processors, our CDMA Viterbi Decoder

processing packets of size 16384 decodes at a rate of 434 Mb/S which is 24× faster than the

sequential algorithm. Note that for the same network packet size and number of processors,

our MARS decoder only processes at 4.4 Mb/S because the amount of computation per bit

(size of each stage) is significantly greater than CDMA.

The performance of our approach — and thus our speed up numbers — depend on the

rate of rank convergence for each pair of convolution codes and network size as shown in

Table 3.1. Larger network packet size provide better performance across all convolution
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Figure 3.11: Performance (Mb/S), speed up and efficiency of Voyager and LTE Viterbi
decoders with the parallel Rank-1 method. The non-filled data points demonstrates where
processors have too few iterations to converge to rank 1
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Figure 3.12: Performance (Mb/S), speed up and efficiency of CDMA and MARS Viterbi
decoders with the parallel Rank-1 method. The non-filled data points demonstrates where
processors have too few iterations to converge to rank 1
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codes (i.e., a network packet size of 16384 is always the fastest implementation, regardless of

convolution code) because the amount of re-computation (i.e., the part of the computation

that has not converged), as a proportion of the overall computation decreases with larger

network packet size.

Also, as it can be seen in Figure 3.11, efficiency plots drop as the packet sizes decrease and

this is again because the ratio of the amount of re-computation to the whole computation

decreases. Note that with 48 processors, our algorithm for CDMA can reach efficiency of

more than 0.4.

Smith-Waterman

As described in Section 3.5, Smith-Waterman is an algorithm for local sequence align-

ment [73] often used to align DNA/protein sequences.

Baseline We implemented the fastest known CPU version, Farrar’s algorithm, which uti-

lizes SIMD to parallelize within a stage [26].

Our Implementation Our parallel implementation of Smith-Waterman uses Farrar’s al-

gorithm as a black-box.

Data We aligned chromosomes 1, 2, 3 and 4 from the human reference genome hg19 as

databases and four randomly selected expressed sequence tags as queries. All the inputs are

publicly available to download from [64]. We report the average of performance across all

combinations of DNA and query (16 in total).

Performance and Scalability As before, there are the results for the parallel Rank-1

method. A point (x, y) in the performance/speed up plot in Figure 3.13 with the primary

y-axis on left, gives the performance y in Giga cell updates per second, or (GigaCUPS) as
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Figure 3.13: Smith-Waterman performance, speed up and efficiency with the parallel Rank-1
method.

a function of the number of processors used to perform the Smith-Waterman alignment.

GigaCUPS is a standard metric used in bioinformatics to measure the performance of DNA

based sequence alignment problems and refers to the number of cells (in a dynamic program-

ming table) updated per second. Similar to the Viterbi decoder plots, the secondary y-axis

on the left show the speed up for each number of processors. We run Smith-Waterman on all

combinations of 4 DNA databases and 4 DNA queries (we run each combination 5 times).

Unlike the prior Viterbi results, we do not see large variability in performance as a function

of the problem data. In other words, the DNA database and query pairs do not significantly

impact our performance numbers. This can also be confirmed from Table 3.1 where the

number of steps to converge to rank 1 is significantly smaller than a DNA database size

which is more than 100 million long. Thus, we plot the average, across all combinations of

DNA databases and queries.

The performance gain of our approach for this algorithm is significant: the efficiency

plot in Figure 3.13 demonstrates that our approach has efficiency ∼ 1 for any number of

processors which means almost linear speed up with up-to 128 processors. This can be also
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confirmed from the performance/speed up plot. Our algorithm would scale more with more

number of processors but we only report up-to 128 processors to keep Figure 3.13 consistent

with the others.

Needleman-Wunsch

In contrast to Smith-Waterman, which performs a local alignment between two sequences,

Needleman-Wunsch globally aligns two sequences and is often used in bioinformatics to align

protein or DNA sequences [65].

Baseline We utilized SIMD parallelization of the Delta method discussed in Section 3.4.1

within a stage for this benchmark. In other words, consecutive input deltas that are indepen-

dent in a stage are used to compute output deltas for the next stage. Although computing

deltas instead of the cell values requires more work (2 deltas per cell), the smaller range of

possible values for deltas (as described in Section 3.5) enables the algorithm to use smaller

data types for deltas and consequently, fits more deltas in a single SIMD vector unit. Our

experiments show that the Delta method is faster than computing cell values.

Our Implementation We implemented the parallel Delta method described in Section

3.4.2.

Data We used 4 pairs of DNA sequences as inputs: Human Chromosomes (17, 18), (19, 20),

(21, 22) and (X, Y ) from the human reference genome hg19. We only used the first 1 million

elements of the sequences since Stampede does not have enough memory on a single node

to store the cell values for the complete chromosomes. We also tried 4 different width sizes:

1024, 2048, 4096 and 8192 since we found that widths larger than 8192 do not affect the

final alignment score.
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(b) Chromosome pair (21, 22): the worst performing

Figure 3.14: Performance, speed up and efficiency results of Needleman-Wunsch with the
parallel Rank-1 method.
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Performance and Scalability Again, there are the results for the parallel Rank-1 method.

Figure 3.14 shows the performance, speed up and efficiency of Needleman-Wunsch algorithm

parallelized using our approach for two pairs of chromosomes: (X, Y ) and (21, 22). Instead

of averaging performance numbers over all 4 pairs, we separated them and reported the

best performing pair ((X, Y ) in Figure 3.14a) and the worst performing pair ((21, 22) in

Figure 3.14b). This is because the performance varies significantly between different pairs

as can be seen in Figures 3.14a and 3.14b. The figures show results for each of the width

sizes: 1024, 2048, 4096 and 8192. Similar to the Viterbi decoder benchmark, filled/non-filled

data points show whether convergence occurred in the first iteration of the fix up phase.

The figures show great variability in performance for different inputs based on the vari-

ability in convergence. Also, as it can be seen from non-filled data points and Table 3.1,

rank convergence in this benchmark is not as fast as in Viterbi decoder or Smith-Waterman.

In Figure 3.14, larger widths perform poorer than smaller ones since the convergence rate

depends on the size of each stage in a LTDP instance. Note that we used the same sequence

size (1 million element) for all plots.

LCS

Longest Common Subsequence is a method to find the largest subsequence common to two

candidate sequences [36] (See Section 3.5 for description).

Baseline We adapted the fastest known single-core algorithm for LCS that exploits bit-

parallelism to parallelize the computation within a row [22, 37]. This approach is similar

to the Delta method from Section 3.4.1 and uses the the grouping technique shown in Fig-

ure 3.10 b but only computes the horizontal deltas.

Our Implementation Similar to Needleman-Wunsch, we implemented the parallel Delta

method described in Section 3.4.2 using the bit-parallel baseline code.
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Data We used the same input data as with Needleman-Wunsch except that we used the

following width range: 8192, 16384, 32768 and 65536. We report performance numbers in

the same way as in Needleman-Wunsch.

Performance and Scalability As before, these are the results for the parallel Rank-1

method. The performance, speed up and efficiency plots in Figure 3.15 are very similar to

Figure 3.14. We used the same two pairs of chromosomes: (X, Y ) and (21, 22) as they are

the best and worst performing pairs respectively. The 4 lines in each plot corresponds to

one of following width sizes: 1024, 2048, 4096 and 8192. Likewise, the input pair has a great

impact on rank convergence as it can be seen in Figure 3.15a and Figure 3.15b.

3.6.4 The Rank-1 Method vs The Delta Method

This section shows the effectiveness of the Delta method in compare to the Rank-1 method.

For this purpose, we will compare the amount of extra work each algorithm performs along

with the timings.

The Comparison for LCS: Figure 3.16 compares the two methods: The left plot shows

the performance of the parallel Delta method over the Rank-1 method for different number of

cores using different widths. The right plot shows the ratio of the total amount of work done

in the last processor by the LTDP algorithm over by the parallel Delta method. We used

the amount of work for the last processor because it needs the most number of fix-up phases

and consequently, does the most amount of work among all. As it can be seen, the parallel

Delta method is between ∼ 5× to ∼ 15× faster than the parallel Rank-1 method with 128

cores which is compatible with the ratio of amount of work for the last processor. Also, as

it can be expected, the parallel Delta method has a greater impact with wider widths since

the Rank-1 method recomputes all deltas even if only one of them is incorrect.
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(b) Chromosome pair (21, 22): the worst performing

Figure 3.15: Performance, speed up and efficiency results of Longest Common Subsequence
with the parallel Rank-1 method.
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Figure 3.16: The speed up of the parallel Delta method over the Rank-1 method using LCS
example.

The Comparison for Needleman-Wunsch: Figure 3.17 similarly compares the two

methods for the Needleman-Wunsch algorithm and the plots show the performance speed up

and the last processor work ratio. As it can be seen, the parallel Delta method is between

∼ 2× to ∼ 10× faster than the Rank-1 method with 128 cores. This again proves the

effectiveness of the parallel Delta method.

3.6.5 Wavefront vs Rank-1 Method

Our goal in this section is to directly compare across-stage parallelism with wavefront par-

allelism. We focus on Needleman-Wunsch and LCS as the size of the stages in Viterbi and

Smith-Waterman is very small for wavefront parallelism to be viable. We should note that

the two approaches are complementary. Exploring the optimal way to distribute a given bud-

get of processors to simultaneously use across-stage parallelism and within-stage parallelism

is left for future work. Furthermore, note that we implemented the best known wavefront
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Figure 3.17: The speed up of the parallel Delta method over the Rank-1 method using NW
example.

algorithm for each of our benchmarks.

We used OpenMP for wavefront implementations and compared it with our MPI im-

plementation of the parallel Rank-1 method used in our Stampede experiments above, but

running on our shared-memory machine. This difference in implementation choice should at

the worst bias the results against our parallel algorithm.

Wavefront for Needleman-Wunsch: We used tiling to group cells of the computation

table and used SIMD in each tile. Wavefronts proceed along the anti-diagonal of these tiles.

Tiling greatly reduces the number of barriers involved [57]. On the other hand, processing

cells in a tile by utilizing SIMD has computation overhead over the baseline that we used

for our parallel approach (without tiling). Therefore, the sequential performance of the

baseline with tiling is slower than the baseline without tiling. We investigated different

tiling parameters and chose the best performing configuration.
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Figure 3.18: Performance/speed up results and comparison of the Rank-1 method and Wave-
front parallelism for Needleman-Wunsch and LCS
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Wavefront for LCS: Similar to the baseline of Needleman-Wunsch, we tiled the cells. For

computation in each cell, we used the same bit-parallelism to parallelize the computation

within a column of each tile. Likewise, we parallelized computation of tiles that are in the

same anti-diagonal.

Figure 3.18 compares the performance of our parallel Rank-1 method approach with an

optimized wavefront based approach for both LCS and Needleman-Wunsch. The plots on the

left in Figure 3.18 show the performance and speed up (over sequential non-tiled baseline)

of our approach for Needleman-Wunsch and LCS. Plots on the right, a point (x, y) gives

the speed up (y as runtime of wavefront divided by runtime of our approach) as we change

the number of processors allocated to each approach (x). We plot 4 lines, one for each of

four widths. Small widths are better for our approach (as wavefront approach incurs more

barriers per unit of compute) while large widths are better for wavefront approach (as our

approach is less likely to reach rank 1). As we add more processors, our approach utilizes

each additional processor more efficiently than a wavefront based approach, particularly so

when the width is small (i.e., our approach is ∼ 9× faster than wavefront approach with 40

processors for Needleman-Wunsch and ∼ 6× faster than wavefront approach for LCS with

width size 8192).

3.7 Conclusions

This chapter introduces two novel methods for parallelizing a class of dynamic programming

problems called linear-tropical dynamic programming problems, which includes important

optimization problems such as Viterbi and longest-common subsequence. The algorithm

uses algebraic properties of the tropical semiring to break data dependence efficiently.

Our implementations show significant speed ups over optimized sequential implementa-

tions. In particular, the parallel Viterbi decoding is up-to 24× faster (with 64 cores) than a
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highly optimized commercial baseline.

While we evaluate our approach on a large shared memory multi-core machine, we expect

equally impressive results on a wide variety of parallel hardware platforms (clusters, GPUs

and even FPGAs).

As discussed in this chapter, LTDP problems are instances of SSSP problem where the

structure of the graph between stages is the same but the weights are dynamically changing.

Since the graph can have any shape, the LTDP problems are considered amorphous problems.

The Rank-1 method avoids the overwhelming synchronizations of the wavefront parallelism

by performing extra work as overhead. This idea is similar to that of DSMR and subgraph

extraction technique from Chapter 2. Next, we will discuss a new notation to express these

problems.
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Chapter 4

Tiled Linear Algebra

Chapter 3 showed that how linear algebra and LTDP problems are tightly connected. In

this chapter, we show that other amorphous problems can be expressed with linear algebra

operators in a concise and clear manner as discussed in [13, 58]. This includes LTDP and

graph problems such as reachability and SSSP (whose parallelization was discussed in details

in Chapter 2). The use of this notation allows for rapid development of complex algorithms.

Today, the power and flexibility of using linear algebra primitives comes with drawbacks.

Standard sparse linear algebra kernels do not always take advantage of the structure of the

sparsity or parameters of the target machine and, as a result, fall short of the performance

of custom implementations. To address this, we propose Tiled Linear Algebra (TLA) that is

a multi-level parallel system with high-level linear algebra structure. In TLA, linear algebra

primitives are used to construct a correct program and then performance features controlled

by “knobs” are used to tune the kernels. These features include controlling distribution and

communication frequency.

We organize this chapter as follows. Section 4.1 describes the use of linear algebra for

graph algorithms and Section 4.2 describes our extensions. We describe the algorithms to

solve the Single Source Shortest Path (SSSP) problem and our experiments in Section 4.3.
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Section 4.4 describes how LTDP problems can be expressed in TLA. We wrap up with our

conclusions in Section 4.5.

4.1 Graph Algorithms using Linear Algebra

Using linear algebra as an abstraction for programming parallel graph algorithms is not

new. CombBLAS [13] is perhaps the best known system using this approach. This section

overviews linear algebra for representing graph algorithms.

There is a correspondence between a graph and a matrix. A graph G = (V,E) with n

vertices (set V ) and m edges (set E) can be represented by its adjacency matrix A which is

an n×n matrix such that A(i, j) = 1 if there is an edge eij from vertex vi to vertex vj and = 0

otherwise. This allows for directed and undirected graphs and can be extended to weighted

graphs by using the weight rather than 1 to represent an edge. This representation is at the

core of using linear algebra to describe graph algorithms. It should be noted that typically

this matrix will be sparse and performance efficiency will depend, just as in conventional

linear algebra, on how sparsity is handled.

Reachability Example: Reachability is the problem of finding all the reachable vertices

in a directed graph G = (V,E) from a source vertex s ∈ V . More formally, Reach(G, s) =

{v ∈ V |∃v1, v2, . . . , vk ∈ V, vivi+1 ∈ E, v1 = s, vk = v}. There exists a duality between

reachability and matrix vector multiplication. Consider a vector r with |V | elements (i.e.

one element per vertex of the graph) with values r(s) = 1 and 0 everywhere else and the

adjacency matrix A of graph G. All neighbors of s reachable in 1 step correspond to the non-

zero entries of the vector AT ·r. Consider Figure 4.1 which shows a graph with its transposed

adjacency matrix, AT , with non-zeros shown as dots. Vertex 7 is the source vertex, s, of the

reachability problem and as just mentioned, r has only one non-zero element (represented
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Figure 4.1: Matrix-vector multiplication for reachability.

by the dot in position 7 for s). The result of the matrix vector multiplication will produce a

vector r′ with non-zeros represented by dots which corresponds to the non-zeros in the matrix

shown by unfilled dots in the figure. r′ = AT · r computes the vertices that can be reached

from 7 by traversing one edge (shown by dotted arrows in the figure). r′′ = r+r′ = r+AT ·r

represents all vertices that can be reached in 1 or fewer (0) edge traversals. In general, if r0

includes 7 as a reachable vertex, an iterative matrix-vector multiplication ri+1 = ri + A · ri

will find all of the vertices which are in i+ 1 or fewer edge traversals. The algorithm would

terminate when a fixed point has been reached which in this case means that ri+1 and ri

has non-zeros in the same positions. These non-zeros in the final vector corresponds to all

vertices reachable in any number of edge traversals. Note that, the elements of ri could have

different (positive) values and these values do not have a clear meaning. However, if we had

a different algebra and replaced 1 and 0 by true and false , regular multiplication by ∧, and

regular addition by ∨, the result would have been the same except that all the non-zeros

would all have been true.
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In Section 3.1 we explained semirings and the tropical semiring. We review these concepts

here one more time. A semiring is a five-tuple (D,⊕,⊗, 0, 1), where D is the set of elements

of the semiring and D is closed under ⊕ and ⊗. 1 ∈ D is the identity for ⊗ which means

that ∀x ∈ D : x⊗ 1 = 1⊗x = x and 0 ∈ D is the identity for ⊕ which means that ∀x ∈ D :

x⊕ 0 = 0⊕x = x. Also, 0 nullifies any elements of D with ⊗: ∀x ∈ D : x⊗ 0 = 0⊗x = 0.

Given two matrices, Al,m and Bm,n, with elements from a semiring, D, their product is

denoted A�B and results in an l × n matrix defined such that

(A�B)(i, j) = A(i, 1)×B(1, j) + A(i, 2)×B(2, j) + ...+ A(i,m)×B(m, j)

In this notation, the semiring (R ∪ {∞},min,+,∞, 0) with the real numbers extended

with∞ as the domain, min as the additive operation⊕, and + as the multiplicative operation

⊗ is called the tropical semiring. Tropical semiring is specifically useful for computing single

source shortest path from a source vertex to every other vertex in a graph which is discussed

in more details below. The other useful semirings for other algorithms are the real field

(R,+,×, 0, 1) for page-rank computation or the boolean semiring ({0, 1},∨,∧, 0, 1) which,

as mentioned in the example above, is a natural algebra for reachability problems.

A directed and weighted graph G = (V,E) can be represented by its adjacency matrix

AG of size n × n where |V | = n and whose values are AG(i, j) = weight(vivj) if vivj ∈ E

and AG(i, j) = ∞ otherwise. That is, the elements of AG are from the tropical semiring.

AG is a sparse matrix where the sparsity comes from the 0 = ∞ elements in the matrix

which represent the non-existent edges in the graph. Let d be an n× 1 vector where its ith

element, d(i) is the distance to vi, then d′ = ATG � d would also be a distance vector where

d′(i) = minvjvi∈E(G)(d(j)+weight(vjvi)). d′′ = d⊕ATG�d = d⊕ d′ is another distance vector

where in the computation of d′′(i), ∀j : d(j) +w(vjvi) are considered as well d(i) itself. This

is equivalent to first, computing a new distance d′(i) for each vertex vi considering distance
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d of its incoming neighbors and the weight of corresponding edge (∀j : d(vj) + w(vjvi)) and

second, comparing this new d′(i) distance with d(i) and setting d′′(i) to the smaller one.

Using adjacency matrix representation, one can express algorithms to find the shortest

path using matrix-vector product in tropical semiring. For example, assuming that d0 is a

distance vector where d0(s) = 0 and ∀v ∈ V (G)\{s} : d0(v) =∞. At step i, the well known

Bellman-Ford algorithm computes di+1 = di⊕ATG � di and it iterates for |V (G)| − 1 times.

In Section 4.2.2, we will explain how linear algebra can be used to express other algorithms.

4.2 Tiled Linear Algebra

One of the most important aspects of linear algebra for graph algorithms is that the adjacency

matrix of a graph G, AG, is sparse and the system needs to use sparse algorithms. Otherwise,

for example, a matrix-vector multiplication will require O(|V |2) operations instead of O(|E|).

Furthermore, different ways of representing a sparse matrix can impact the performance.

Therefore, we believe that it is important for the programmer to have control over the

representation.

Papers [42] and [13] discuss how graph algorithms can be represented in terms of matrix

operations on different semirings. However, there are many ways to parallelize a matrix

operation. In particular, the parallelization of matrix operations can be represented using

tiling which partitions an array into sub-arrays by dividing each of the dimensions of the

original array into segments. Each tile is assigned to a processor which will be responsible

for the values of that tile. This assignment is done by a mapping function from tiles to

processors.

In our notation, we tile and assign tiles to processors at the same time. Let’s say matrix

A is read from file input.txt (which, for example, contains the edge list of a graph) and

we want to divide the rows and columns into two segments. We will use command A =
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ReadAndTile(’input.txt’, 2, 2, f); to read from the file and tile it accordingly. f is

a function that assigns each tile to a processor. Therefore, there are four tiles which we

denote by A1,1, A1,2, A2,1 and A2,2. Each tile is conceived as having the size equal to the

whole matrix, but contain non-0 only in the regions associated with the tile. Therefore,

A1,1⊕A1,2⊕A2,1⊕A2,2 = A. To create a vector of size n × 1 and tile it into 2 segments,

we will use command v = CreateArray(n,2,f2); where f2 is another mapping function.

Even though we explicitly ask the user for a tiling pattern, we do not explicitly use the tiling

when representing operations.

4.2.1 Delaying Updates

As is well known, we can use the tiling to control where each component of the computation

occurs and how the processors communicate. In regular parallel linear algebra, updates need

to be visible by all the processors as soon as they occur. However, the updates can be

postponed as, for example, is done in asynchronous algorithms [5, 44].

Let AG be the adjacency matrix of G andM = ATG. As discussed above, if d is a distance

vector for the vertices of G, c = d⊕M � d will be another distance vector with distances

updated by traversing 0 or 1 edges. Figure 4.2a represents the computation of c = d⊕M�d.

Let M be tiled 1 × 2 and f(x, y) = y be the tile to processor mapping function such that

tile (1, 1) is assigned to processor p1 and tile (1, 2) is assigned to processor p2. Also assume

that d and c are vectors of size n× 1 (n = |V (G)| which is 10 in Figure 4.2a) and they are

tiled 2 × 1 and f2(x, y) = x is their mapping function. Figure 4.2a shows these tilings and

distributions of M , d and c. The dots in the Figure represent the non-zeros. Processor 1

stores M1, d1 and c1 and processor 2 stores M2, d2 and c2. Notice that M1 and M2 are each

the size of the original matrix M, but with zeros outside the tile each of them represents. d1

and d2 have the same property. On the other hand, c1 and c2 are the size of the original

vector c but there are non-zeros outside of the tiles that they are representing shown by
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(a) Saving off-tile values locally to be communicated later.

(b) Communicating off-tile values.

Figure 4.2: Sparse matrix vector multiplication with delaying updates.

unfilled dots.

It is easy to see that c = d⊕M � d = (d1⊕M1,1 � d1)⊕(d2⊕M1,2 � d2). Therefore,

without any communication, p1 can compute d1⊕M1,1�d1 and p2 can compute d2⊕M2,1�d2.

However, since c1 and c2 have non-zeros everywhere, it is necessary to do a global computation

to prepare for the next iteration. The value of d in the next iteration is c = (d1⊕M1,1 �

d1)⊕(d2⊕M1,2 � d2) which requires adding c1 and c2.

To save communication time, we assign c1 to d1 and c2 to d2 before going to the next

iteration. In this way, we do not carry out a global reduction. In other words, we do not add

c1 to c2 to get c. Instead, the values in the second tile of c1 and the first tile of c2 continue

accumulating separately. At some point in time a global reduction is performed. As discussed

below, by avoiding numerous global reductions, the performance of the algorithm improves.

Postponing the reduction as just described is useful in the cases where it is not necessary to
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communicate the computed values immediately. This is the case of the reachability problem

in which a processor can compute multiple iterations locally and find more reachable vertices

before it communicates the remote reachable vertices.

To be able to postpone updates using our notation, we introduce ← as an assignment

operand which computes the linear algebra operation using only local values on the processor.

In the case where an element on the left hand side of← is assigned to a different process, that

value is only updated locally. For example, c <- d+M*d will perform the local computation

and will produce values that go to another processor. These values are the unfilled dots

shown in Figure 4.2a for both processors involved.

For communicating the values saved locally to the processor which owns the value, we

introduce the ⊕ = operation which communicates all of the saved values to the owner pro-

cessor where they are accumulated to the local copies of the elements using ⊕ as Figure 4.2b

depicts it. In the figure, b1 and b2 are the values assumed by c1 and c2 in the next iteration.

After the owner processors update their values, communicated values become 0.

4.2.2 Partial Computation

In the simple version of reachability described in Section 4.1, all the reached vertices are

processed in each iteration. Processing a vertex v in this problem means that marking all

neighbors of v as reachable. This is clearly sub-optimal since after one iteration all neighbors

of a vertex have been reached. To improve upon this, we limit the processing to only vertices

who were reached for the first time in the previous iteration. To be able to support this

feature, we propose using mask vectors with 0 representing false and 1 representing true

from the boolean semiring. Mask vectors are not different from other vectors except for the

purpose they are used. A mask vector is used with element-wise multiplication represented

by the operator “⊗.”. If a and b are two vectors in a semiring, a⊗. b is another vector where

(a⊗. b)(i) = a(i)⊗ b(i). Now if b is a mask vector, a⊗. b will be a sparse sub-vector of a

100



with some elements set to 0.

Note that mask vectors are used to avoid unnecessary computation. Therefore, the system

should be aware of the fact that a vector can be sparse. For example, in the case of A � v

where A is a sparse matrix and v is a sparse vector, only a corresponding columns of non-zero

elements of v should be considered.

Partial computation is important for many algorithms where an update to a vertex will

only affect a few neighboring vertices. For example, in the case of SSSP, if a vertex is

updated, an algorithm needs only to update its outgoing neighbors. Another example is the

PageRank problem where if an update to a vertex is higher than the threshold, it only affects

the neighbors of that vertex.

4.3 Single Source Shortest Path

The Single-Source Shortest Path (SSSP) problem finds the shortest distance from a source

vertex to every other vertex in a graph. An instance of the problem is denoted by (G,w, s)

where G = (V,E) is a graph with the set of vertices, V , and the set of edges, E, and a source

vertex, s ∈ V . Each edge vu ∈ E has a tail, v ∈ V , and a head, u ∈ V . The map w : E → R

associates a weight for each edge vu ∈ E. Vertex s ∈ V is the source whose distances to all

other vertices is desired. This section assumes that all the weights are positive. The shortest

distance from s to v is denoted by d(s, v).

As discussed in detail in Chapter 2, there are several algorithms to solve SSSP and we

will discuss about how some of them can be expressed in TLA. In spite of their differences,

the main operation in these algorithms is matrix-vector multiplication in tropical semiring.
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4.3.1 Algorithms

The four best-known algorithms to solve SSSP problem are: Dijkstra [24], Bellman-Ford [10],

Chaotic-Relaxation [17], and ∆-Stepping [61]. Bellman-Ford is the only algorithm that is

capable of solving SSSP with negative edge weights but this aspect will not be discussed

further in this chapter and we assume all the graphs have positive edge weights. As discussed

in Chapter 2, the basic operation that all four algorithm use is edge relaxation which takes

an edge vu and checks if d(s, v)+w(vu) < d(s, u) where d is not necessarily the final minimum

distance but the shortest path “so-far” in the computation. If the check condition is true,

d(s, u) is updated with d(s, v) + w(vu). The difference between the algorithms mentioned

above is in the order in which relaxations are applied which directly affects the amount of

work each algorithm performs. We measure the amount of work done by each algorithm in

terms of the number of edge relaxation (for d(s, v) + w(vy) < d(s, u)).

Below, we assume that G = (V,E) is the input graph and that the transpose of its

adjacency matrix is M . Initially, in all four algorithm d(s, v) = ∞ for all v ∈ V − {s} and

d(s, s) = 0. The values of d are stored in a tiled vector. Next, we will explain each algorithm

and express them in TLA.

Bellman-Ford:

Our implementation of the Bellman-Ford algorithm in TLA (shown in Figure 4.3) relaxes all

the vertices during each iteration. The algorithm terminates after |V | − 1 iterations. As we

discussed in Section 4.1, d+M*d which corresponds to the formula d⊕M �d computes a new

distance vector for G by relaxing all the edges. Parallelizing this algorithm is straightforward

by partitioning the vertices and having each processor relax one or more of the of the resulting

subsets. As shown in Figure 4.3, in every iteration of the for loop, each processor relaxes its

own portion of edges assignment (“<-” in line 2) and then a global communication (operation

+=) sends remote updates (line 3).
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1 for (int i = 0; i < n-1; i++){
2 d <- d + M*d;
3 d += d; }

Figure 4.3: Bellman-Ford algorithm main loop using TLA.

Chaotic-Relaxation:

The Chaotic-Relaxation algorithm is the same as the Bellman-Ford algorithm except that

at each iteration, it only relaxes those vertices which changed distances in the previous

iteration. TLA code for this algorithm is shown in Figure 4.4. This algorithm is a small

improvement over Bellman-Ford obtained by avoiding redundant relaxations. To this end,

we use the mask vector r which has one element for each vertex and is used to keep track

of the vertices whose distances did not change in the previous iteration. The vector r is

initialized so that it is false everywhere except for the position corresponding the vertex s.

The element-wise multiplication (*.) on line 2 prunes elements which did not change their

distance and sparse matrix-sparse vector multiplication (M*(d*.r)) takes advantage of it.

In the following algorithms, the scalar notDone (replicated across processors) is used to

decide when to terminate the algorithm. The last iteration is that in which d(s, v) remain

constant for all v ∈ V . In other words, the algorithm is finished when r (set on line 4) is all 0

(all false) for each tile. Note that r <- b != d sets r(i) to 1 if b(i) != d(i) and sets it to

0 otherwise. Finding out when r is all 0 is done by the local reduction notDone <- any(r)

on line 6 followed by the global reduction notDone += notDone on line 7. If notDone is 0,

it means that there was at least one 0 in one of the tiles of r.

Dijkstra’s Algorithm:

Dijkstra’s algorithm is the fastest sequential SSSP algorithm. At each iteration in this

algorithm, only one vertex is processed which is the vertex with minimum distance among

the vertices not processed before. Processing a vertex means relaxing all of its outgoing
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1 do {
2 c <- d + M*(d*.r);
3 b += c;
4 r <- (b != d);
5 d <- b;
6 notDone <- any(r);
7 notDone += notDone; /* global reduction */
8 } while (notDone != 0);

Figure 4.4: Chaotic-Relaxation main loop using TLA.

1 m <- 0;
2 for (int i = 0; i < n; i++){
3 d <- d + M*(d*.r);
4 d += d;
5 m <- m+r;
6 ind <- argmin(d*.(!m));
7 minVal <- min(d*.(!m));
8 globalMinVal += minVal; /* global reduction */
9 r <- 0;
10 if (minVal == globalMinVal)
11 r(ind) <- 1; }

Figure 4.5: Dijkstra’s algorithm main loop using TLA.

edges. The TLA code for this algorithm is shown in Figure 4.5.

The major difference between this algorithm and the previous two algorithms is that the

matrix-vector multiplication for this algorithm (line 3) is with a vector which has only one

non-0 element in it (d *. r) and that element corresponds to the vertex with the minimum

distance among the unprocessed vertices. Finding the element with minimum distance is

done with the help of vector m which keeps track of the processed vertices (line 5). Lines 6

and 7 find the index and the minimum distance vertex in each processor locally and it is

communicated globally on line 8. Lines 10 and 11 determines in each processor if the local

minimum value is equal to the global minimum value and, if so, sets r accordingly. The

algorithm terminates after all n vertices are processed.
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∆-Stepping:

∆-Stepping is another SSSP algorithm which is half way between the Dijkstra’s and the

Chaotic relaxation algorithms. ∆-Stepping processes a bucket of vertices in each iteration

not just one as in the case of Dijkstra’s algorithm nor all vertices as in the case of the

Chaotic relaxation algorithm. ∆-Stepping distributes vertices into buckets {b0, b1, b2, . . . }

where bucket bi = {v|∆i ≤ d(v) < ∆(i + 1)}. Note that d(v) is dynamic and as the

algorithm advances, it changes value. Therefore, the algorithm should update the bucket for

each vertex that is updated. In iteration i, ∆-Stepping only considers vertices from bucket

bi. Since relaxing outgoing edges of a vertex from bi may add more vertices in it, this process

has to continue until there are no more vertices in bi whose outgoing edges are not relaxed.

The algorithm terminates when there are no vertices to process. Note that if bi is completely

processed and the algorithm advances to bi+1, it will never again need to process vertices

from bi since all the weights are positive.

Our version of ∆-Stepping in TLA code is shown in Figure 4.6. It is similar to the

code in Figure 4.4 with a few modifications. First, the main matrix-vector multiplication

for relaxation is different which is shown on line 2. There are two mask vectors for this

algorithm: 1) r which is similar to r from in Figure 4.4 and it holds the vertices that needs

to be processed; 2) bucket which is set on line 6 and contains the vertices that belong to

bucket bi. Initially, it contains vertices that are in the range of [0 . . .∆). To find out whether

there are more vertices in bucket bi to relax, the scalar notDoneBucket is used on line 7.

Similar to notDone scalar from Figure 4.4, a reduction on array bucket*.r determines if i

should be incremented (line 10) and bucket is set accordingly (line 11).

None of these 4 algorithms required delaying updates and all of them could have been

done by using local computation with global communication. Next, we will describe our

parallel SSSP algorithm which takes advantage of this feature.
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1 do {
2 c <- d + M*((d*.r)*. bucket );
3 c += c;
4 r <- (c != d);
5 d <- c;
6 bucket <- d >= i*∆ & d < (i+1)*∆;
7 notDoneBucket <- any(bucket *.r);
8 notDoneBucket += notDoneBucket;
9 if (! notDoneBucket ){
10 i++;
11 bucket <- d >= i*∆ & d < (i+1)*∆;
12 }
13 notDone <- any(r);
14 notDone += notDone;
15 } while (notDone != 0);

Figure 4.6: ∆-Stepping main loop using TLA.

Dijkstra Strip Mined Relaxation:

This algorithm is the DSMR algorithm introduced in Chapter 2. As discussed before, local

relaxation occurs in a Dijkstra-like order for multiple iterations (for D iterations) and after

that a global communication exchanges the distance updates.

The TLA code for this algorithm is shown in Figure 4.7. As described above, the algo-

rithm applies a local Dijkstra for its vertices as shown in Lines 4-9. This part of the code is

similar to the one from the Dijkstra’s algorithm in Figure 4.5 except the relaxed variable

and that every computation is local (note that only <- is used). The variable relaxed keeps

track of number of edges relaxed in line 5. Since there is locally only one non-zero in r for

each processor which corresponds to the vertex with the minimum distance, the number of

non-zeros in M*r is the number of edges connected to that vertex. Therefore, the compu-

tation in Line 5 counts the number of relaxed edges in each iteration of the while loop in

Line 3. The while loop in Line 3 exits when relaxed reaches the threshold D. As discussed

in Chapter 2, D is a parameter that can be set for different graphs. A global reduction in

Line 12 updates distances in all processors.

Array m, as in the Dijkstra’s algorithm in Figure 4.5, is a bit vector for processed vertices.
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1 do {
2 int relaxed = 0;
3 while (relaxed < D){
4 d <- d + M*(d*.r);
5 relaxed += nnz(M*r);
6 m <- m+r;
7 ind <- argmin(d*.(!m));
8 minVal <- min(d*.(!m));
9 r(ind) <- 1;
10 }
11 old_d <- d;
12 d += d; /* global reduction */
13 m <- m*.( old_d != d);
14 relaxed = 0;
15 notDone <- any(r);
16 notDone += notDone;
17 } while (notDone != 0);

Figure 4.7: DSMR algorithm in TLA.

The global reduction on d may activate some vertices which should be taken into account

for m. This is done by copying the values of array d to old_d before the global reduction in

Line 11 and adjusting m in Line 13. Finally, relaxed is set to 0 after the global reduction.

The rest of the code is similar to the other SSSP algorithms.

4.3.2 Performance Comparison

This section compares the parallel performance of each of the SSSP algorithms described in

Section 4.3.1. We will also how each feature of TLA affects the performance.

Figure 4.8 shows the parallel performance of Chaotic Relaxation, Dijkstra, ∆-Stepping

and DSMR. We excluded Bellman-Ford from this figure since it is significantly slower than

the other four algorithms (∼ 2000×). The X axis in this figure represents different number

of processors and the Y axis is for running time. Each algorithms is specified by its color:

blue for Chaotic Relaxation, gray for Dijkstra, red for ∆-Stepping and purple for DSMR.

The orange color is for the communication cost. Therefore, each group of 4 bars represents

the running time for each algorithm with one specific number of processors. The input graph
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Figure 4.8: SSSP algorithms performance comparison

is an R-MAT graph with SCALE = 20.

The fact that Bellman-Ford is significantly slower than Chaotic-Relaxation (order of

2000×) shows that how crucial is partial computation for SSSP algorithms. On the other

hand, Chaotic Relaxation algorithm does not scale well because of the communication cost.

But as it can be seen, just the blue portion of running time is scaling well. This is because

the algorithm is massively parallel and the work is balanced well since each processor owns

roughly the same number of edges.

Dijkstra algorithm in Figure 4.8 has a better sequential performance than Chaotic relax-

ation but since it only processes one vertex at a time, the parallel performance is poor and

most of the communication cost is just the idle time. However, ∆-Stepping is performing

faster than both Dijkstra and Chaotic Relaxation and it is providing decent speed up. DSMR

is almost as fast as ∆-Stepping for 1, 2 and 4 processors. It is hard to see in Figure 4.8 how

they compare with higher number of processors. Therefore, Figure 4.9 directly compares
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them.

Figure 4.9 shows the speed up of DSMR over ∆-Stepping for different number of proces-

sors. As it can be seen, up to 16 processors, it does not provide significant improvement but

for larger number of processors, it is certainly effective which in this case is more than 4×

faster. This shows the importance of delaying updates feature in TLA. Next section, will

study how D itself can control the performance of our algorithm.

4.3.3 Impact of D in the DSMR Algorithm

DSMR, as discussed before, has a tunable parameter, D. D factor which impacts the total

number of edge relaxations, has different best values for different number of processors.

Again, each edge relaxation is to find whether we can reach a vertex with a shorter distance.
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We will use the number of edge relaxations as a measurement for the amount of work

the algorithm does. D is a variable, as shown in Figure 4.7, that controls the number

of edge relaxation between consecutive global reductions. In other words, it controls the

frequency of global communication which impacts the performance in two ways. If the

intercommunication interval is too long, a processor almost always computes distances of

paths that go through local vertices. This may result in useless edge relaxations for those

vertices whose shortest path goes through vertices owned by different processors. Thus, it

is better for the exchange of relaxation requests not to be too infrequent so that vertices

can reach their final distance sooner. However, updating too frequently may add significant

overhead because of the initial cost of each communication.

Figures 4.10a and 4.10b show the execution of the DSMR algorithm of Figure 4.7 with an

R-MAT graph [15] with SCALE = 20, a = 0.55, b = 0.1, c = 0.1, d = 0.25,M = 8 × N and

∆ = 216 on a shared memory machine with 40 cores as the value of D changes. Figure 4.10a

shows the number of edge relaxations and Figure 4.10b shows the running times. Each

line corresponds to a different number of processor. Numbers are computed by averaging

the running times of the algorithm for 16 randomly chosen source vertices. All axes are

logarithmic. The error bars represent the standard deviation. The marked points on the

plot in Figure 4.10b show the best performing value of D.

The number of edge relaxations, increases with D, however, it is almost constant at first

and then increases drastically. The left most points represent frequent global updates. On

the other hand, a high D has the same effect as if there were no pipelining at all. With low

D the numbers of edge relaxations is the same for all number of processors. As D increases,

there is a factor of ∼ 8 increase in the number of edge relaxations for all number of processes

(except, of course, for the case of 1 processor where it remains constant). As it can be seen in

Figure 4.10b, low values of D do not deliver the best performance because for these values,

the algorithm sends many short messages. In fact, for low values, the algorithm is 6× slower
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than the optimal. On the other hand, high values of D slows down the algorithm because of

the large number of edge relaxations. In fact, for high D values the algorithm is ∼ 8× slower

than the best execution times. This tracks the factor of 8 increase in the number of edge

relaxations. The point at which D delivers the best performance is different for each number

of processors. The best D for different graphs are different but the optimum is never at too

low or too high values. This suggests that using the idea of delaying updates is effective and

it increases the performance by multiple factors.

4.4 LTDP

Chapter 3 introduced the Rank-1 method, an approach to parallelize Linear Tropical Dy-

namic Programming (LTDP) algorithms. In this section we will review the method briefly

and show how it can be expressed in TLA.

As discussed in Section 3.2, an LTDP problem consists of a sequence of stages si with

several values in each stage to be computed. Stage si can be computed from stage si−1

by a matrix-vector multiplication in the tropical semiring: ~si = Ai�~si−1. As a result, the

computation can be represented in the following form:

~sn = An�An−1 . . . A2�A1�~s0

where s0 is the initial setup of the algorithm and Ai are matrices corresponding to the

dependences between stages si and si−1. A sequential implementation of an LTDP algorithm

works in n iterations as follows: at iteration i, ~si = Ai�~si−1 is computed.

In the Rank-1 method, matrices of the computation are distributed in consecutive chunks.

Assume that processor p owns matrices Alp+1 to Arp and stages slp to srp−1. Note that

rp = lp+1 if p + 1 exists. All processors start computation of Arp . . . Alp+1~zp where ~zp is ~s0
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for the first processor and for others, it is a non-zero initialization. After each processor p

finished its computation, it sends the locally computed ~srp , the last stage of its computation,

to the processor p + 1 since p + 1 owns it (if p + 1 exists). Then, each processor except the

first one starts to fix up the incorrect computation until it reaches a stage where the fixed

up stage is parallel to the previously computed stage. At this point, the rank has converged

to 1 and the rest of the results in the corresponding processor is correct. Note that the

fix-up algorithm either runs for P − 1 iterations or all processors converge to rank 1 and the

algorithm terminates. P is the total number of processors. A pseudo code of the Rank-1

method was presented in Figure 3.4.

Figure 4.11 presents the Rank-1 method in TLA notation. Array s in Line 1 is the array

of stages and function f1 distributes s block-wise to the processors as described above. Each

stage is of size width as declared in Line 2. A matrices are similarly declared in Lines 3 and

4 and they are distributed block-wise as well. These matrices are of size width by width.

Functions f1 and f3 are slightly different at the boundaries of the distribution. Again,

processor p owns matrices Alp+1 to Arp and stages slp to srp-1. The only exception is that the

last processor, P-1, owns the last stage srp .

Values of A matrices are dependent on the LTDP algorithm and should be initialized

accordingly in Line 5. Lines 6 and 7 set lp and rp. Note that p is the processor id ranging

from 0 to P-1 where P is the total number of processors. Line 10 initializes s[0] which

is dependent on the LTDP algorithm and only processor 0 uses this initialization. Others

processors use a non-zero initialization in Line 12.

The loop in Line 13 is the local computation for each processor in the first phase. Note

that ’<-’ is used in this loop and all of the computations are asynchronous. Since processor

p does not own stage s[rp] (which is the same as s[lp+1]), the computed values for the

last iteration of the loop in Line 13 are stored locally. Therefore, s[rp] should be sent to

processor p+1 if it exists. This is done in Line 15. Note that a ’=’ is used which means that
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the locally computed values on the right hand side should be communicated to the owner

of s[rp]. Similarly, in Line 16, s[lp] is received from processor p-1 if it exists. Since the

processor running Line 16, p, owns the left hand side of the ’=’ notation, it is expecting

updates from others processors which computed s[lp] and stored them locally.

Next, the fix up phase starts in the loop in Line 20. Note that the fix up phase runs for

at most P-1 iterations and processor p runs at most p iterations of the fix up loop which is

controlled by variable fixupIter in Line 19 and the condition in Line 21. The computation

in the loop in Line 22 is similar to the loop in Line 13 except the condition in Line 25

This condition checks whether the newly computed values of stage s[i] are parallel to the

previously computed values of the same stage. Since parallel in the tropical semiring means

that the corresponding values are different by a constant, the condition checks whether newS

(new values of the stage) and s[i] (old values of the stage) are different by difference of the

first elements, s[i][0]-newS. If the condition is true, that means that the corresponding

processor has converged to rank 1 and can break from the rest of computation of the loop

in Line 22 as indicated in Line 27.

The last stage of the computation in the loop in Line 22 is communicated similarly

in Lines 29 to 31. However, processor p = fixupIter+1 is not expecting any updates from

processor p-1 since processor p runs at most p iterations of the fix-up loop. This is controlled

by the condition in Line 30.

The fix up phase in Line 20 continues for P-1 iterations or until all processors converge

to rank 1. The rest of the code is similar to other SSSP algorithms in TLA notation.

4.5 Conclusion

In this chapter, we presented TLA, a system for representing algorithms for amorphous

problems using linear algebra. We have demonstrated the express-ability of our library with
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1 s = CreateArray(n,f1); // Distributed array of stages
2 s[:] <- CreateArray(width ,f2);
3 A = CreateArray(n,f3); // Distributed matrices of stages
4 A[:] <- Create2DSparse(width ,width ,f4);
5 A[:] <- InitializeA (); // Dependent on the LTDP algorithm instance
6 lp = n/P*p; // Starting index for p
7 rp = n/P*(p+1); // Ending index for p
8 if (p == 0)
9 // Dependent on the initialization of the LTDP algorithm
10 s[0] <- IntializeS ();
11 else
12 s[lp] <- NonZeroInitialize (); // Some non -zero initialization
13 for (int i = lp+1; i <= rp; i++;)
14 s[i] <- A[i]*s[i-1];
15 s[rp] = s[rp]; // Send the last stage to p+1
16 s[lp] = s[lp]; // Receive the first stage from p-1
17
18 isDone = false; // Flag to specify if the rank converged to 1
19 fixupIter = 0;
20 do { // till convergence (fix up phase)
21 if (fixupIter < p){
22 for (int i = lp+1; i <= rp; i++){
23 newS <- A[i]*s[i-1];
24 // If the newly computed stage is parallel to the previous one
25 if (newS+(s[i][0]- newS [0]) == s[i]) {
26 isDone = true;
27 break; } }
28 s[i] <- newS;
29 s[rp] = s[rp]; // Send the last stage to p+1
30 if (p > fixupIter +1) // processor p=fixupIter +1 should not receive
31 s[lp] = s[lp]; // Receive the first stage from p-1
32 } else {
33 isDone = true; }
34 allDone <- isDone;
35 allDone += allDone; // Global communication for global convergence
36 fixupIter ++;
37 } while (allDone < P);

Figure 4.11: The Rank-1 method in TLA notation.
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implementations of several SSSP algorithms and the Rank-1 method. Our experiments have

shown that by using the extensions in TLA, we achieve performance comparable to custom

implementations of the same algorithms.

In the future, we intend to develop TLA in to a full featured library with more included

semirings as well as support for user defined ones. We believe that as we implement more

algorithms with TLA, we will find more extensions to the underlaying liner algebra. Exten-

sions that we have considered included asynchronous messaging, control over updating, and

support for dynamic graphs.
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Chapter 5

Related Work

Trading computation for parallelism has been used widely in high-performance computa-

tion [5, 44, 79, 47, 61]. In this thesis, we have studied this approach for amorphous problems

including SSSP problem and LTDP algorithms.

As for SSSP problem, several algorithms have been developed as discussed in Chapter 2.

Bellman-Ford [10], Chaotic Relaxation [17], and Dijkstra’s algorithm [24] are among the first

algorithms. The problem with parallelizing these algorithms is that Dijkstra’s algorithm is

inherently sequential but work efficient, while Chaotic Relaxation and Bellman-Ford are

parallelizable but work inefficient. ∆-Stepping is a trade-off between Chaotic Relaxation

and Dijkstra’s algorithm. By setting the right ∆, the algorithm can have enough paral-

lelism without increasing the total amount of work significantly. However, as presented in

Chapter 2, ∆-Stepping does not perform well with scale-free networks.

There are multiple implementations of ∆-Stepping available. Chakaravarthy et al. [14]

studied parallelization of SSSP on large clusters. In this thesis, we compared our results with

theirs using the values reported in [14]. To make an accurate comparison, we used the same

graph generation algorithm (through private communication with the authors) they used and

the same machine. SSSP from the Elixir [70] benchmark is a shared-memory implementation

117



of ∆-Stepping that we have run and compared with. SSSP from Parallel Boost Graph Li-

brary [25] is an implementation of Dijkstra and ∆-Stepping for distributed-memory systems.

We found PBGL slower than the implementations considered in Chapter 2 and because of

that we did not show results for it. There is also an implementation of ∆-Stepping on Cray

MTA-2 by Madduri and Bader [53]. However, since the code was written for that machine,

we could not do a comparison. Finally, there are implementations of Chaotic Relaxation in

CombBLAS, GraphLab and PowerGraph [13, 52, 31] but this algorithm performs too much

unnecessary relaxation [54]. The DSMR algorithm presented in Chapter 2 is the fastest

SSSP algorithm for scale-free networks as our results showed in Section 2.7.

The other set of amorphous problems that we studied are Linear Tropical Dynamic

Programming (LTDP) algorithms as discussed in Chapter 3. There has been much prior

work in parallelizing dynamic programming. Predominantly, implementations use wavefront

parallelism to parallelize within a stage. In contrast, the method in this thesis exploits

parallelism across stages in addition to wavefront parallelism. For instance, Martins et al.

build a message passing based implementation of sequence alignment dynamic programs (i.e.,

Smith-Waterman and Needleman-Wunsch) using wavefront parallelism [57]. Our baseline for

Needleman-Wunsch builds on this work.

Stivala et al. use an alternate strategy for parallelizing dynamic programming. They use

a “top-down” approach that solves the dynamic programming problem by recursively solving

the subproblems in parallel. To avoid redundant solutions to the same subproblem, they use

a lock-free data structure that memorizes the result of the subproblems. This shared data

structure makes it difficult to parallelize across multiple machines.

There is also a large body of theoretical work analyzing the parallel complexity of dy-

namic programming. Valiant et al. [77] show that straight-line programs that compute

polynomials in a field, which includes classical dynamic programming, belong to NC, the

class of asymptotically efficiently parallelizable problems. Subsequent work [3, 29] has im-
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proved both the time complexity and processor complexity of this result. These studies view

dynamic programming as finding a shortest path in an appropriate grid graph, computing

all-pairs shortest paths in partitions of the graph in parallel, and combining the results from

each partition efficiently. They differ in how the structure of the underlying graph is used for

efficiency. While it is not clear if these asymptotically efficient algorithms lead to efficient

implementation, using the structure of the underlying computation for parallel efficiency was

an inspiration for the work in this thesis.

There are many dynamic programming problem-specific implementations. For example,

much like we did in this thesis, LCS can exploit bit-parallelism (e.g., [1, 19, 37]). And, Aluru

et al. describe a prefix-sum approach to LCS [2] which exploits the fact that LCS only uses

binary values in its recurrence equation.

Smith-Waterman has been studied extensively due to its importance to DNA sequencing.

The Rank-1 method presented in this thesis uses Farrar’s SIMD implementation [26] on

multi-core, however, prior work has also investigated other hardware (e.g., GPU [50] and

FPGA [49]).

Due to its importance in telecommunications, there has been lots of work on parallel

Viterbi decoding. Because this algorithm is often implemented in hardware, one simple ap-

proach to increase performance is to pipeline via systolic arrays (i.e. to get good throughput)

and increase clock frequency (i.e., to get good latency) [27]. The closest approach to us is

Fettweis and Meyr who frame Viterbi as linear operations on the tropical semiring and utilize

the associativity of matrix-matrix multiplications. However, they suffer linear overheads of

this approach which is hidden by adding more hardware.

Chapter 4 introduced Tiled Linear Algebra (TLA) and explained what are the neces-

sary features to express different amorphous problems. Our work is most similar to the

combinatorial BLAS [13] which expresses graph algorithms with BLAS-like routines. The

difference between TLA and CombBLAS is that they handle the parallelism entirely under
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the abstraction of linear algebra but we make the parallelism and distribution explicit. In

TLA, the programmer can write the same type of program that was expressible in the com-

binatorial BLAS since we are both based on the linear algebra but in TLA the programmer

can directly control distribution, communication, and grain size. These features allow an

expert programmer to take code and tune it to take advantage of hardware and algorithmic

features that are not exposed in a system.

Another model of parallel graph computation is the vertex programming model. This

model is used by PowerGraph [31], Pregl [56], and GraphLab [52]. In this model, the

programmer thinks of graph algorithms as running in parallel and interaction on the edges

between vertices. Also, the very fine grained work is aggregated by the runtime system

and not under programmer control. It also lacks the ability to restrict computation when

available under programmer control. These limitations would prevent expressing algorithms

such as ∆-Stepping or DSMR where the work does flow directly from neighboring vertices.

There are several other frameworks for parallelizing sparse numerical routines. The most

widely used one is PETSc [7] which is used for partial differential equations (PDE). Al-

though PETSc provides libraries for some parallel graph partitioning algorithms [4] such as

parMETIS [41], it is mainly used for parallelizing numerical PDEs. Charm++ [40] is another

parallel framework for amorphous problems which is a dataflow programming model. The

model fits very well for programs with load imbalance issue such as NAMD [68].
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Chapter 6

Future Work

Interest in parallelizing amorphous problems for large systems is rapidly growing due to

the increase in the size of real-world problems, namely, the graph algorithms. Also, future

machines are becoming more complex and as a result, writing efficient parallel program

is dependent on a careful use of communications. Therefore, we believe communication

avoiding algorithms for amorphous problems is not a passing fad and future problems require

similar approaches to have scalable algorithms. Below is a list of directions that can be

worked on in the future regarding the problems presented in this thesis:

Single Source Shortest Path Problem:

DSMR algorithm presented in Chapter 2 works well for scale-free networks as our result

in Section 2.7 showed how close DMSR’s performance is to the oracle algorithm’s. On the

other hand, for non-scale-free networks, neither DSMR nor ∆-Stepping perform well as our

results for US Roads network showed. In fact, the oracle algorithm is several times faster than

DSMR and ∆-Stepping. The reason for this miss in the performance is that SSSP algorithms

for roads network type of graphs have a numerous parallel steps with very limited amount

of parallelism within each step. Therefore, there is room for improvement in parallelizing

SSSP. In fact, such instances of SSSP fits very well with LTDP model but it is unclear what
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the steps are before executing the algorithm. We believe that a similar rank-1 method can

be designed to parallelize SSSP for such cases.

Another line of research could focus on understanding how the subgraph extraction and

pruning techniques impact large real-world graphs with real weights. Right now it is unclear

what the edge weights would represent in social networks and we artificially put weights on

the edges. If heavy edge weights are common in real-world graphs, our optimizing techniques

would impact them significantly.

Parallelizing Dynamic Programming Algorithms:

Rank convergence is a novel property that is observed in several problems. One of the

very important LTDP problems is the voice recognition. Despite of decades of research in

this area, this problems remains inherently sequential and difficult to parallelize. We have

observed rank convergence in this problem, but it takes a long time to converge to rank-1.

As a result, our rank-1 method does not work well for this problem. On the other hand,

the Delta method requires the dependences to be local but the voice recognition underlying

graph is amorphous which prevents us from using the Delta method. Therefore, we believe

that there is room for developing a new parallel method for voice recognition using the rank

convergence property.

An important algorithm with the rank convergence property is the Cuthill-McKee [20]

algorithm. This graph-based algorithm reduces the bandwidth of a sparse matrix. Because

of the tight dependences in the algorithm, its parallelization is challenging. Surprisingly,

starting with two different initial orders, after a few steps in the algorithm, the same output

will be generated. We believe that by using this property, we can efficiently parallelize this

algorithm.

Parallel Framework for Amorphous Problems:

The TLA notation presented in this thesis is a design which requires an implementation.

However, before implementing TLA, we need to understand more about the notation and
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try to find the necessary abstractions in the language. To do so, we have to study other

amorphous problems and express them in linear algebra notation.

On the other hand, there are several challenges in implementing TLA. For example,

there are numerous ways of representing a sparse matrix and they differ in performance

for different algorithms. The other challenge is performing linear algebra operations on

sparse matrices. This problem has been widely studied and many approaches for different

purposes are proposed. This variability needs to be controlled carefully in the notation

without exposing too much details to the programmer.
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Chapter 7

Conclusion

In this thesis, we studied new communication avoiding parallelization methods for amorphous

problems. These amorphous problems include Single-Source Shortest Problem (SSSP) and a

wide range of dynamic programming algorithms, namely, Linear Tropical Dynamic Program-

ming (LTDP) problems. For each problem, we showed what are the limitation of existing

parallelizing approaches and how the new parallelizing approaches overcome these limita-

tions. Finally, we showed that all of the parallel approaches presented in this thesis are

closely connected to linear algebra and as a result, we designed Tiled Linear Algebra (TLA)

to express all of them.

The key contributions of this thesis are:

• In Chapter 2, we presented Dijkstra Strip Mined Relaxation (DSMR) algorithm for

SSSP. In Section 2.3, we introduced degree-distance distribution and overhead distri-

butions and explained why ∆-Stepping algorithm does not scale well with scale-free

networks.

• In Section 2.4 and 2.5, we showed that heavy edges are very unlikely to be used in the

solution for SSSP in scale-free networks. As a result, we designed Subgraph Extraction

and Pruning techniques to improve performance of SSSP algorithms.
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• In Chapter 3, we presented a novel approach to parallelize LTDP problems that relies

on rank convergence in tropical semiring. In Section 3.3, we proposed the Rank-1

method which parallelizes LTDP algorithms with minimal changes and a promising

speed-up.

• In Section 3.4, we introduced the Delta method which similar to the Rank-1 method,

uses rank convergence for parallelization but it does not solely rely on rank-1 conver-

gence. The Delta method provides better speed-ups than the Rank-1 method, however,

it requires major changes in the LTDP algorithm.

• In Chapter 4, we showed the connection between linear algebra routines and amorphous

problems presented in this thesis. Then, we discussed the necessary features for a linear

algebra based parallel framework name TLA to enable expressing all of the parallel

approaches presented in this thesis.
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