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Abstract

Methods and computing hardware advances have enabled accurate predictions of complex compressible

turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited

understanding of underlying physical mechanisms restricts the utility of such predictions since they do not,

by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can

circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active

control of turbulence at engineering flow conditions by providing gradient information at computational cost

comparable to that of simulating the flow. They accelerate convergence of numerical design optimization

algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow

equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical

use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify

any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids

such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used

for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact

adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale

turbulence simulations.

We analyze the compressible flow equations as discretized using the same high-order workhorse meth-

ods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time

discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular

discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an

efficient Runge–Kutta-like scheme, with finite-difference spatial operators for the adjoint system. Its com-

putational cost only modestly exceeds that of the flow equations. We confirm that its accuracy is limited

only by computing precision, and we demonstrate it on the aeroacoustic control of a mixing layer with a

challengingly broad range of turbulence scales. For comparison, the error from a corresponding discretization

of the continuous-adjoint equations is quantified to potentially explain its limited success in past efforts to

control jet noise. The differences are illuminating: the continuous-adjoint is shown to suffer from exponential
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error growth in (reverse) time even for the best-resolved largest turbulence scales.

Though the gradient from our fully discrete adjoint is formally exact, it does include sensitivity to

numerical solutions that are only an artifact of the discretization. These are typically saw-tooth type

features, such as seen in under-resolved numerical simulations. Since these have no physical analog, for

physical analysis or design of realistic actuators, such solutions are in a sense spurious. This has been

addressed without sacrificing accuracy by redesigning the basic discretization to be dual-consistent, for which

the discrete-adjoint is consistent with the adjoint of the continuous system, and thus, free from spurious

numerical sensitivity modes. We extend our exact discrete-adjoint to a spatially dual-consistent discretization

of the compressible flow equations and demonstrate its practical application for aeroacoustic control of a Mach

1.3 turbulent jet. The formulation admits a broad class of finite-difference schemes that satisfy a summation

by-parts rule, and extends to multi-block curvilinear grids for efficient handling of complex geometries. The

formulation is developed for several boundary conditions commonly used in simulation of free-shear and

wall-bounded flows. In addition, the proposed discretization leads to superconvergent approximations of

functionals, and can be tailored to achieve global conservation up to arbitrary orders of accuracy. We again

confirm that the sensitivity gradient for turbulent jet noise computed using our dual-consistent method is

only limited by computing precision.
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ûi Component of primitive velocity along the outward normal to the surface B±i

U Subspace of S whose elements satisfy the linearized boundary conditions

Uj Jet velocity at nozzle-exit

V Space of all L2-functions over the space–time field

Vh Space of all semi-discrete vectors, or the N3-th Cartesian power of the space of all L2-
functions over the field of non-negative reals (time), where N3 is the number of points in
the computational grid

xii



WΓ In three dimensions, a quintuple whose elements correspond to the space–time mollifying
support functions that provide compact support over a control region (in space), and a
control horizon (in time), for the control forcing term in the governing equations, see (2.17)

WΩ Scalar-valued space–time mollifying support function that provides compact support over a
target region (in space), and a control horizon (in time), for the volume contribution to the
objective functional, see (2.14)

WΩ′ Scalar-valued space–time mollifying support function that provides compact support over a
target region (in space), and a control horizon (in time), for the surface contribution to the
objective functional, see (2.14)

xi Physical coordinate vector, in Einstein notation, see Figure 2.1

Xi Mapping function that transforms the computational coordinate vector ξ to the physical
coordinate xi, see Figure 2.1

x̃⊥i Distance from the boundary B±i to a grid point located in a sponge zone adjacent to it,
measured along the curve perpendicular to the isosurfaces of ξi and normalized so that
0 ≤ x̃⊥i ≤ 1 across the sponge layer, see (5.7)

~Y Penalty vector operator used in the construction of an SAT for enforcing the impermeable
wall and isothermal wall boundary conditions, see (5.9) and (5.16)

Subscripts and Superscripts

? Dimensional quantity

∞ Reference state, usually the ambient state

b Conserved state or adjoint variable that satisfies the corresponding boundary conditions on
ξ ∈ ∂D (but may not necessarily solve the corresdponding PDE)

int. Interface condition (e.g., ~Qint. denotes the semi-discrete vector of conserved state variables
at which the eigenvalues of the first partial Jacobian of the inviscid fluxes with respect to
it are evaluated, or the Roe-average of the “left” and “right” states), see (5.21)

I Inviscid contribution

j Nozzle-exit condition

L “Left” computational block in a multi-block grid consisting of two non-overlapping blocks,
see Figure 5.1

n, s For n positive integer and s = 1, 2, 3, 4 for the RK4 scheme, the approximation of a semi-
discrete vector at time t = tn + cs∆t, where c1 = c2 = 1/2 and c3 = c4 = 1

R “Right” computational block in a multi-block grid consisting of two non-overlapping blocks,
see Figure 5.1

t Target solution that supplies boundary data for inflow/outflow boundaries

V Viscous contribution

w Wall condition

xiii



Mathematical Symbols

◦ Elementwise multiplication, or Hadamard product

⊗ Kronecker product

δ Differential, or first variation operator (identical to the Fréchet derivative in this study
which only considers Banach spaces), see (2.12)

diag Operator that yields a diagonal matrix whose diagonal is the vector on which it acts

dom Domain of an operator

proj Operator that acts on a continuous function of space and yields a semi-discrete vector whose
elements represent the semi-discrete approximation of the function at the corresponding grid
points

xiv



Chapter 1

Introduction

Predictive numerical simulations compute a quantity of interest, say a functional that depends on the

flow solution, but do not by themselves provide any sensitivity information. Control parameters or design

variables that influence the quantity of interest do so through the equations governing the flow. If there

are more than a handful of independent parameters, the brute-force one-at-a-time approach to sensitivity

analysis based on repeated predictions becomes prohibitively computationally expensive. Adjoint-based

methods provide the sensitivity gradient of a functional with respect to an arbitrarily large number of control

parameters, incurring only marginally more computational cost than a single predictive simulation [33]. Their

applications in computational fluid dynamics include optimal flow control [6, 90, 37], aerodynamic shape

design [33, 51], adaptive grid refinement [3], uncertainty quantification [48, 86], history matching [47], and

stability and global mode analysis [32, 49, 18]. Our specific efforts are directed towards control optimization

of turbulent aeroacoustic flows, and our demonstration simulations are motivated by this application, which

we discuss in some detail.

The control of sound generation by turbulence provides a particularly challenging target application due

to its complexity and the relative subtlety of its noise-generation mechanisms. In aeroacoustic simulations,

the computational challenge of representing a range of turbulence scales simultaneously with relatively low-

amplitude fluctuations is well documented [15, 85]. Without a reduced model of noise generation mechanisms

to provide guidance, predictions by themselves do not indicate routes to design improvement. Adjoint-based

optimization methods used in conjunction with predictive simulations have been proposed and demonstrated

to circumvent this complexity by providing gradient information that can be harnessed to achieve noise

reductions [23]. In essence, the adjoint carries sensitivity information with respect to an arbitrarily large

number of control parameters, which enables the optimization of noise-controlling actuation or geometries.

Building on efforts in aerodynamic optimization [33] and incompressible turbulence control [6], Wei and

Freund [90] achieved 11 dB noise reduction of far-field sound of a direct numerical simulation (DNS) of a

two-dimensional compressible shear layer with control applied near a nominal splitter plate.
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1.1 Comparison of Adjoint Methods

In the continuous-adjoint approach, the adjoint equations are derived using the extended Green’s identity

after linearizing the partial differential equations (PDEs) and boundary conditions [43]. The flow and adjoint

equations are then independently discretized with no guarantee that the duality relationship continues to hold

for their discrete counterparts [2]. This duality condition is mathematically defined in Definition 5.1. The

incompatibility can degrade the accuracy of the sensitivity gradient, which has been extensively analyzed [83].

In the discrete-adjoint approach, the linearized PDEs and boundary conditions are first discretized and then

linearized, such that they are formally representable as a matrix. The discrete-adjoint equations are obtained

from the conjugate transpose of this matrix. A practical method that does not necessitate storing this matrix

explicitly ensues from the fact that its sparsity structure for the particular discretization employed is known

beforehand. Thus, the discrete-adjoint approach is tied to a particular discretization of the PDE, boundary

conditions and functional, but provides the exact sensitivity of the discrete functional up to floating-point

induced roundoff errors.

Though the continuous-adjoint approach has been used extensively for optimal flow control, it has not

been so remarkably successful for turbulent flows. For aeroacoustic control of a DNS turbulent mixing layer,

Vishnampet et al. [83] observed 2.2× more reduction using a space–time discrete-adjoint method compared

to the continuous-adjoint approach. When a non-local turbulence model is employed, approximation errors

in discretizing the true continuous-adjoint system further deteriorates its usefulness in providing an accurate

sensitivity gradient. Using an approximate adjoint based on the unfiltered continuous PDE, Kim et al. [37]

reduced the noise from a Mach 1.3 large-eddy simulation (LES) turbulent jet by 3.5 dB, a relatively modest

amount given the flexibility of their actuation. It is not possible in this case to decouple the limits of control

from numerical imprecision. Similarly, with an SST k-ω turbulence model, Carnarius et al. [13] showed that

the continuous-adjoint based gradient leads to a 10% over-prediction of the minimum drag coefficient for

flow over a rotating cylinder.

For the chaotic Lorenz system, Lea et al. [44] showed that the adjoint-based gradient suffers from cu-

mulative growth when the cost functional is a time-averaged quantity over an interval longer than the

predictability time scales of the system. This is expected to be an important factor for the turbulent flow

we consider, both because turbulence is chaotic and because efficient simulations usually employ resolu-

tions close to the limits of the discretization. Thus, the resulting truncation errors will thus be relatively

large to start with, even before they amplify via the chaotic character of the system. In such situations,

the discrete-adjoint method is expected to significantly accelerate and improve optimization. Developing a

practical discrete-adjoint method, in the sense that it does not require operation counts or memory much
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beyond direct discretization of the continuous-adjoint, and demonstrating it on a challenging large-scale tur-

bulent flow simulation are our goals. An inherent limitation of conventional continuous- and discrete-adjoint

based formulations is their inability to overcome the chaos of turbulence indefinitely. Fortunately, they can

be useful for finite-time-horizon control, and means of reformulating the overall problem to overcome this

limitation is a subject of ongoing investigation [86].

Despite the relative success of the discrete-adjoint approach for minimization problems, it is not the

natural choice in applications such as functional error estimation, which require the adjoint solution to

be well-behaved and non-oscillatory [57]. In general, the discrete-adjoint equation admits solutions with

spurious numerical waves corresponding to the highest wavenumber supported by the grid, which have been

attributed to the sensitivity corresponding to computational modes supported by the discretization of the

flow equations [72]. Further, these spurious waves are retained in the sensitivity gradient in optimization

problems, and consequently affect the optimal actuator forcing suggested by the discrete-adjoint approach,

making it an impractical tool for designing real actuators.

1.2 Dual Consistency

The limitations of the continuous- and discrete-adjoint approaches can be overcome, and their advantages

simultaneously leveraged, by using a dual-consistent discretization of the flow equations. A dual-consistent

discretization is one for which the discrete-adjoint equations are also a consistent approximation of the

continuous-adjoint equations. The importance of dual-consistency seems to have first been analyzed by

Harriman et al. [27] in conjunction with optimal convergence rates of linear functionals using the discon-

tinuous Galerkin finite-element method. It was later extended to a class of finite-difference discretizations

using operators that satisfy a summation-by-parts (SBP) rule in conjunction with weakly enforced boundary

conditions using simultaneous approximation terms (SATs) [29].

There is an extensive body of literature on SBP–SAT schemes [41, 75, 53, 77, 34, 19, 79, 78, 59], which

are attractive mainly because they lead to accurate and provably stable discretizations. Thus, the selection

of SATs for enforcing specific boundary conditions is based on consistency and stability. While consistency

is easily demonstrated, stability requires the existence of an energy estimate for the combined semi-discrete

problem. An equivalence class of consistent and stable SATs have been proposed for various physical bound-

ary conditions, including subsonic/supersonic inflows and outflows [79], and isothermal and adiabatic no-slip

walls [78], as well as for enforcing conservation conditions at a non-physical C0-boundary between multiple

adjoining blocks in semi-structured grids commonly employed for discretizing complex geometries. Here, we
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discuss a third important criteria — dual-consistency, which requires that the adjoint of the semi-discrete

problem including the SAT be consistent with the continuous-adjoint boundary conditions. Specifically, we

address whether there exist dual-consistent SATs within the set of consistent and stable SATs. For example,

Svärd et al. [79] constructed an SAT for enforcing an inflow/outflow condition with two free parameters σI

and σV , and derived the stability condition: σI ≥ 1
2 and σV = 1. In the inviscid limit, Hicken and Zingg

[29] showed that for σI = 1, the SAT also becomes dual-consistent.

When used in conjunction with SBP schemes, dual-consistent SATs lead to a dual-consistent spatial

discretization of the flow equations, which have two important consequences. First, their discrete-adjoint

is free from spurious numerical sensitivities and are high-order accurate solutions of the continuous-adjoint

equations. Second, they lead to superconvergent functionals [29]. This is an attractive property for a finite-

difference discretization since it guarantees approximate global conservation up to the order of accuracy of

the interior scheme.

1.3 Accomplishments

This section summarizes the two principal contributions of this dissertation. A key feature of both is their

application to turbulence simulation, and include as examples DNS of a mixing layer and high-fidelity LES

of a Mach 1.3 turbulent jet, respectively.

1.3.1 Practical space–time exact adjoint formulation

We formulate an exact space–time adjoint formulation that is practical in that it incurs a computational

cost comparable to the flow equations or a direct discretization of the continuous-adjoint. Our formulation

is compatible with the same high-order finite-difference schemes that are the “workhorse” methods for a

wide range of compressible flow simulations, including turbulent free-shear flows [24, 62, 39], boundary

layer flows [92], and combustion [28]. These schemes are not locally conservative, but are attractive and

effective for the class of flows we consider, particularly because of their resolution. We show that an exact

adjoint is surprisingly important for accurately predicting the sensitivity at all turbulence scales, and that

our formulation is computationally efficient and extensible. To do this, we make some key advances that

facilitate implementation for such discretizations. This is an important step beyond the algorithms that

have been developed to do this for aerodynamic simulations.

For example, Rumpfkeil and Zingg [68] derived the discrete-adjoint equation for unsteady flows governed

by the Euler equations integrated using implicit Euler and second-order backward difference (BDF2) meth-
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ods; Yamaleev et al. [91] formulated a discrete-adjoint method for optimization using the three-dimensional

Reynolds-averaged Navier–Stokes (RANS) equations on dynamic unstructured grids; Wang et al. [84] de-

rived the discrete-adjoint equation for the two-dimensional compressible Euler equations with high-order

discontinuous Galerkin discretization and an implicit fourth-order Runge–Kutta scheme; Roth and Ulbrich

[67] developed a discrete-adjoint approach based on the sparse forward mode of automatic differentiation for

a shape optimization problem incorporating various turbulence models; and Nielsen and Diskin [58] tested

the accuracy of the unsteady discrete-adjoint for the incompressible Navier–Stokes equations discretized on

composite grids using a complex-variable approach and demonstrated its utility for shape optimization of a

wind turbine geometry.

None of the discretizations used in these examples are commonly used for aeroacoustic predictions of

compressible turbulence because their resolution is typically deemed to be inadequate. The motivation for

choosing discretization schemes in these examples has been to facilitate a straightforward derivation of the

discrete-adjoint; we instead employ the same high-resolution numerics commonly used for aeroacoustic and

compressible turbulence simulations. de Pando et al. [17] outlined an algorithm for efficiently evaluating the

semi-discrete-adjoint operator from a modular implementation of a high-order nonlinear flow solver. While

this modular approach is attractive, there is a lost opportunity for combining operations in the adjoint

evaluation which we exploit to save on computational cost. We shall also see that our approach requires

even fewer modifications to the code than their formulation. Moreover, our formulation can provide a

gradient that is compatible with the space–time discrete equations at no additional computational cost.

Its accuracy is therefore not limited by either spatial or temporal resolution. The implementation is built

directly from operations already available for solving the flow equations with important but remarkably few

changes required to the algorithm.

Though it is well known that tools are available for automatic differentiation of discrete systems [25, 50],

these tools have rarely been used in flow simulations because they do not yield code with sufficient efficiency

for use with large-scale simulations. Moreover, the underlying linear systems can be large and can become

stiff or otherwise ill-conditioned on stretched grids or in the presence of complex source terms [20]. A fully

discrete adjoint method has not yet been reported for this class of high-resolution schemes, perhaps due to

their formidable complexity. The simplifications we identify are essential for its practical implementation.

We verify that our fully discrete adjoint method provides an exact (aside from finite-precision errors)

gradient of the cost functional for the sound radiated by a compressible turbulent mixing layer.
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1.3.2 Dual-consistent high-fidelity discretization

We design a spatially dual-consistent discretization of the viscous compressible flow equations, in a manner

that will be useful for high-fidelity simulation of compressible turbulent flows on multi-block meshes for

complex flow domains. We do this while retaining the generality of our approach for a broad class of explicit

finite-difference operators that satisfy an SBP rule. Such operators have been constructed for arbitrary orders

of accuracy and are proven to work well for the class of flows we wish to study [19]. The dual-consistent

formulation we develop here for the same workhorse high-order methods often used in high-fidelity flow and

turbulence simulations constitutes an important advance of our work.

By combining a spatially dual-consistent approach with a fully discrete adjoint method for multi-stage

explicit time integration, we obtain adjoint-based sensitivities that are compatible with the space–time

discrete forward model, without contamination from the numerical or spurious spatial sensitivity modes

supported by traditional discrete-adjoint approaches [72, 13]. We demonstrate practical application of our

formulation for turbulence by determining the adjoint-based sensitivity of the noise radiated by a Mach 1.3

turbulent jet with respect to a thermal actuation, modeled for simplicity as a source term with compact

support in the jet’s initial shear layers. We confirm that the proposed dual-consistent discretization is an

accurate model for the jet by validating turbulence statistics and far-field sound spectra with experiment.

Further, we verify that its adjoint provides the exact sensitivity gradient of the aeroacoustic cost functional up

to finite-precision errors. Implications for controllability of turbulent noise and limitations of adjoint-based

methods for sensitivity analysis of time-averaged functionals in chaotic turbulence are discussed.
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Chapter 2

Predictive Model

This chapter describes the predictive model, which consists of an initial boundary value problem (IBVP)

for density, momentum and energy, and integral expressions for the objective functional in terms of these

variables. The predictive model yields an estimate of the (scalar-valued) objective functional as output,

with initial and boundary conditions as input. Examples of objective functionals presented here include

aeroacoustic noise and drag/lift forces. The predictive model is discussed as implemented in the numerical

solver. Later chapters that describe specific applications will include some minor variations of the model

presented here. Discretization of the predictive model is discussed in Chapter 3. Boundary conditions and

their dual-consistent implementation are discussed separately in Chapter 5.

2.1 Computational Domain

We take the physical domain Dp to be a non-empty bounded open subset of the three-dimensional∗ Euclidean

space R3. Many flows of interest, particularly in aeroacoustics, are best modeled by domains with infinite

extent. However, for practical implementations, we use a truncated physical domain, which introduces

artificial boundaries. The infinite extent of the physical domain can be effectively simulated by padding

the artificial computational boundaries with a sponge layer, where a damping term is added to the right-

hand-side (RHS) of the governing equations that drives the solution towards a known target state [22].

Section 5.1 describes this in more detail. We assume that Dp contains no internal holes. This assumption

merely simplifies the formulation and can be relaxed without significant difficulty. Further, we assume that

Dp = Dp ∪ ∂Dp is diffeomorphic to the unit cube D, where D = (0, 1)
3, and Dp and D denote the closures

of Dp and D, respectively. We refer to D as the computational domain. The formulation is later extended

to include physical domains that violate this property, but can be written as the union of multiple disjoint

non-empty bounded open subsets of R3 (blocks) such that their closures are each diffeomorphic to D = [0, 1]
3.

Our analysis for the “single-block” problem presented here is integral to the formulation for the “multi-block”
∗Throughout the formulation, we consider a three-dimensional physical domain; the formulation is easily extendable to one-

and two-dimensional problems.
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J = det

(
∂Ξ

∂x

)
Mij = J−1 ∂Ξi

∂xj

xi = Xi (ξ)

ξi = Ξi (x)

D

ξ1

ξ 2

0 1

1

Figure 2.1: Example of a diffeomorphic transformation between a two-dimensional curvilinear physical
domain and a unit square.

case discussed in Section 5.4.

The transformation between physical coordinates x = (x1, x2, x3) and computational coordinates ξ =

(ξ1, ξ2, ξ3) is written as ξi = Ξi (x) with inverse xi = Xi (ξ), for i = 1, 2, 3 (see Figure 2.1). The Jacobian

matrix ∂Ξ
∂x is assumed to be positive-definite. Thus, the Jacobian

J ≡ det

(
∂Ξ

∂x

)
> 0, ∀x ∈ Dp. (2.1)

We define normalized metrics

Mij = J−1 ∂Ξi
∂xj

. (2.2)

If closed-form expressions for Xi (ξ) are available, the metrics may be determined using the transformation

identity, which gives:

Mij =
1

2
εjmnεipq

∂Xm

∂ξp

∂Xn

∂ξq
. (2.3)

In the absence of closed-form expressions for Xi (ξ), the metrics are evaluated numerically as discussed in

Section 3.3.

The boundary of the computational domain can be split as ∂D =
⋃3
i=1

(
B−i ∪B

+
i

)
, where

B−1 = {ξ : ξ1 = 0, 0 ≤ ξ2, ξ3 ≤ 1} , B+
1 = {ξ : ξ1 = 1, 0 ≤ ξ2, ξ3 ≤ 1}

B−2 = {ξ : ξ2 = 0, 0 ≤ ξ1, ξ3 ≤ 1} , B+
2 = {ξ : ξ2 = 1, 0 ≤ ξ1, ξ3 ≤ 1}

B−3 = {ξ : ξ3 = 0, 0 ≤ ξ1, ξ2 ≤ 1} , B+
3 = {ξ : ξ3 = 1, 0 ≤ ξ1, ξ2 ≤ 1} . (2.4)

Based on this definition, the boundary surfaces are not disjoint. A consequence of this is that penalty terms

for enforcing boundary conditions weakly with support on, say, B−1 and B−2 , are added for ξ ∈ B−1 ∩ B
−
2 .
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The unit normal vector to the surface B±α is M̂αi = Mαi/M̃α, where M̃α =
√

MαiMαi, for α = 1, 2, 3 (no

summation is implied for Greek indices, repeated or otherwise).

Let V = H0
(
R+

0

)
× H0

(
D
)
be the space of L2-functions from [0,∞) × D to R. For m field variables,

m ∈ N, V m admits the inner product

〈f, g〉 =

ˆ ∞
t=0

ˆ
ξ∈D

f T (ξ, t) g (ξ, t)
1

J (ξ)
d3ξdt, f, g ∈ V m, (2.5)

and a corresponding norm ‖f‖ =
√
〈f, f〉. Equipped with this inner product, V is a Hilbert space. For the

compressible flow equations, we will analyze and manipulate the state variable as a vector field Q ∈ V 5,

where Q =

[
ρ ρu1 ρu2 ρu3 ρE

]T

is the non-dimensional state vector.

2.2 Governing Equations

The equations governing three-dimensional compressible viscous flow of an ideal gas are expressed as con-

servation laws for the state variable

Q? =

[
ρ? ρ?u?1 ρ?u?2 ρ?u?3 ρ?E?

]T

,

where ρ?E? = ρ?C?vT
?+ 1

2ρ
?u?i u

?
i is the total energy, and the superscript ? indicates a dimensional quantity.

The equation of state is p? = ρ?R?T ?, where R? = (γ − 1)C?v is the specific gas constant and the ratio of

specific heats γ = 1.4. For a Newtonian fluid obeying Fourier’s law of heat conduction,

τ?ij = µ?

(
∂u?i
∂x?j

+
∂u?j
∂x?i

)
+ λ?

∂u?k
∂x?k

δij , and q?i = −κ? ∂T
?

∂x?i
.

Variables are non-dimensionalized using a reference length L? and reference scales denoted by the subscript

∞. The non-dimensional variables are

xi =
x?i
L?
, t =

t?

L?/a?∞
, ui =

u?i
a?∞

,

ρ =
ρ?

ρ?∞
, p =

p?

ρ?∞a
?2
∞
, T =

T ?

a?2∞/C
?
p∞

,

µ =
µ?

µ?∞
, λ =

λ?

µ?∞
, κ =

κ?

µ?∞
,

E =
E?

a?2∞
, τij =

τ?ij
µ?∞a

?
∞/L

?
, qi =

q?i
µ?∞a

?2
∞

PrL?

.
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With no control action yet included, the transformed non-dimensional governing equations are

∂Q

∂t
+ J

∂

∂ξi

[
Mij

(
F Ij − FVj

)]
= 0, ξ ∈ D, t > 0, (2.6)

where

F Ii =




ρui

ρu1ui + pδi1

ρu2ui + pδi2

ρu3ui + pδi3

ui (ρE + p)




and FVi =




0

τ1i

τ2i

τ3i

ujτji − qi




(2.7)

are the inviscid and viscous contributions to the fluxes, respectively and Mij are the normalized metrics

defined in (2.2). The non-dimensional stress tensor and heat flux are:

τij =
µ

Re

(
∂ui
∂xj

+
∂uj
∂xi

)
+

λ

Re

∂uk
∂xk

δij and qi = − µ

RePr

∂T

∂xi
, (2.8)

where viscosity is modeled as a power law

µ = [(γ − 1)T ]
n
, (2.9)

with n = 0.666 as a model for air. The second coefficient of vicosity λ = µB− 2
3µ, where µB = 0.6µ is chosen

as a model for bulk viscosity of air [37]. The Reynolds number is Re =
ρ?∞a

?
∞L

?

µ?∞
and the Prandtl number is

Pr =
µ?C?p
κ? (assumed constant), where κ? is the thermal conductivity.

Following Wei and Freund [90], the left-hand side of (2.6) is written using a compact operator notation

N [Q] (ξ, t) =
∂Q

∂t
−R [Q] (ξ, t) , (2.10)

where

R [Q] (ξ, t) = −J (ξ)
∂

∂ξi

[
Mij (ξ)

{
FIj [Q] (ξ, t)−FVj [Q] (ξ, t)

}]
. (2.11)

N [Q], R [Q], FIi [Q], and FVi [Q] are vector field-valued operators. We will use the compact form N [Q]

to denote a vector-field-valued operator N [Q] (ξ, t) wherever this more compact notation is unambiguous.

R [Q] is a nonlinear operator that maps the state space S to V 5, where S =
[
H1 (R+)×H2 (D)

]5. In order

to formulate the continuous-adjoint equations in Chapter 4, we will require the Fréchet derivative of R [Q],
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which is obtained in the usual way by linearizing (2.11):

δR [Q; δQ] ≡ R [Q+ δQ]−R [Q] , ‖δQ‖ � 1. (2.12)

The derivation of δR [Q; δQ] is included in Appendix A; we only compactly represent the final result here:

δR [Q; δQ] = −J ∂

∂ξi

{
Ai [Q] δQ− Bij [Q]

∂

∂ξj
(C [Q] δQ)

}
, (2.13)

where Ai [Q] = AIi [Q]−AVi [Q], for i = 1, 2, 3, and AIi [Q], AVi [Q], Bij [Q] and C [Q] are tensor-field-valued

operators defined in (A.4).

2.3 Objective Functional and Control Action

We consider a specific form of the objective functional J [Q] : S → R that can be expressed as

J [Q] =

ˆ ∞
t=0

ˆ
ξ∈D
KV [Q]WΩ

1

J
d3ξdt+

ˆ ∞
t=0

ˆ
∂D
KS [Q]WΩ′d

2ξdt, (2.14)

where at least one of KV [Q] (ξ, t) or KS [Q] (ξ, t) is a non-trivial scalar-field-valued operator and KV [Q]

is not a function of the differentiation operators ∂
∂ξi

for i = 1, 2, 3. WΩ (ξ, t) and WΩ′ (ξ, t) are mollifying

compact support functions that define a (possibly non-stationary) target region of interest Ω (t)∪Ω′ (t) ⊆ D.

In this work, we only consider stationary target regions and all of our examples of J [Q] are such that

only one of KV [Q] or KS [Q] is non-trivial. Further, we design mollifying support functions with a factor

H (t0)−H (t1), where t1 > t0 and H (x) is the Heavyside function. This restricts the measurement of J [Q]

to a finite control time horizon [t0, t1]. We also define the instantaneous objective functional

I [Q] (t) =

ˆ
D
KV [Q]WΩ

1

J
d3ξ +

ˆ
∂D
KS [Q]WΩ′d

2ξ.

We consider two examples of objective functionals that are useful for our target applications:

1. Aeroacoustic noise

For our noise-suppression demonstrations, we use the acoustic intensity

KV [Q] (ξ, t) = |p (ξ, t)− p (ξ)|2 , KS [Q] (ξ, t) = 0, (2.15)

where p (ξ, t) is the instantaneous pressure field and p (ξ) is the time-averaged mean pressure field.
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In addition, we ensure that Ω is chosen sufficiently far away from the nominal acoustic source region,

where the pressure fluctuations are nonlinear and hydrodynamic.

2. Drag force

For simplicity, we consider here a solid body whose boundary is aligned with a computational boundary

surface B±α for α = 1, 2, 3 under the transformation described in Section 2.1. For instance, consider an

O-grid where one of the computational boundaries coincides with the boundary of a cylindrical solid

body. The time-averaged force exerted by the fluid on the solid body due to hydrodynamic pressure

along a fixed direction with unit vector k̂ is proportional to J [Q] defined according to (2.14) with

KV [Q] (ξ, t) = 0, KS [Q] (ξ, t) = − [p (ξ, t)− p∞] Mαik̂i, (2.16)

where Mαid
2ξ represents the components of the infinitesimal area vector on the surface B±α . Drag and

lift forces may be quantified in this manner by choosing the unit vector k̂ appropriately.

Using (2.14), we can calculate a baseline value of the objective functional as the result of a predictive

simulation that solves (2.6) for Q (ξ, t). In optimal control theory, the objective is to minimize J [Q] using

a control action, assumed here to be a body force added to the right-hand side of (2.6):

∂Q

∂t
= R [Q] +WΓ (ξ) ◦ f (ξ, t) , ξ ∈ D, t0 ≤ t ≤ t1, (2.17)

where WΓ (ξ) is a (vector-valued) mollifying compact support that defines a control region Γ ⊆ D in which

the control forcing term is active, and ◦ denotes the elementwise product. This choice for modeling the

control action is flexible, since its space–time discretized representation consists of as many independent

control parameters as the number of grid points contained in Γ times the number of sub-steps involved in

marching through the control time horizon [t0, t1]. The motivation behind choosing such a control is two-fold:

1. It serves as a model for an array of plasma actuators, which act as momentum and heat sources and

can be designed to provide flexible actuation [69].

2. It gives an estimate of the maximal reduction of the objective functional that is possible through active

control (subject to the fidelity of our predictive model), which provides a benchmark for designing real

actuators with relatively limited flexibility.

The forced governing equations are compactly written as

M [Q, f ] = 0, (2.18)
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where

M [Q, f ] ≡ N [Q]−WΓ ◦ f (2.19)

is called the forward or primal operator and N [Q] is defined in (2.10). The control forcing function f (ξ, t)

alters the value of the objective functional by changing the flow solution Q (ξ, t) of (2.18). We denote

Jf [Q] = J [Q :M [Q, f ] = 0, ξ ∈ D, t0 ≤ t ≤ t1] .

2.4 Accuracy of the Adjoint-based Gradient

The total variation of the objective functional is

δJ [Q, f ; δf ] = Jf+δf [Q]− Jf [Q] , ∀δf ∈ V 5.

The adjoint solution, denoted as Q† (ξ, t), provides a sensitivity gradient G
[
Q†
]

(ξ, t) — the Fréchet deriva-

tive of Jf [Q] — the precise formulation for which is provided in Chapter 4. Solving (2.17) with f (0) (ξ, t) = 0

provides a baseline solution Q(0) (ξ, t). In our target applications, the sensitivity gradient sets the initial

search direction along which better controls f (ξ, t) are sought by determining an αmin such that

f (1) (ξ, t) = f (0) (ξ, t)− αminG
[
Q†(0)

]
(ξ, t) , αmin ∈ R+

0 , (2.20)

minimizes Jf(1) [Q]. As discussed in Chapter 1, it is understood that adjoint formulations potentially have

inherent inconsistencies that limits their accuracy. To quantify these errors in order to assess the quality

of gradient predictions and validate our discrete-adjoint implementation, we compare the adjoint-based

sensitivity with a finite-difference derived estimate of the gradient. To measure these errors, we consider the

variation in the control forcing, which is thus related to the gradient as

δf (ξ, t) ≡ f (ξ, t)− f (0) (ξ, t) = −αG
[
Q†(0)

]
(ξ, t) ,

where α ∈ R+
0 is a distance measure in the control space. Expanding the cost functional using a Taylor

series, we obtain

Jf+δf [Q] = Jf
[
Q(0)

]
+
〈
G
[
Q†(0)

]
, δf
〉

+O
(
‖δf‖2

)
,

13



or equivalently,

Jf+δf [Q]− Jf
[
Q(0)

]
= −α

∥∥∥G
[
Q†(0)

]∥∥∥
2

+O
(
α2
)
. (2.21)

This leads to an error measure

E =

∣∣∣∣∣
Jf+δf [Q]− Jf

[
Q(0)

]

α
+
∥∥∥G
[
Q†(0)

]∥∥∥
2
∣∣∣∣∣ , (2.22)

where J and G are computed by solving the discretized forward and adjoint equations. Therefore,

E = O (α) +O
(

1

Na
i

,∆tb
)

+O
(
εc, Nd

i ,
1

∆te

)
, (2.23)

where Ni is the number of grid points used to discretize the computational domain along the ξi-direction,

∆t is the time step size (assumed constant), and ε represents precision of floating-point operations (machine

epsilon), which takes into account the effect of roundoff errors in finite-precision floating-point arithmetic.

In (2.23):

1. O (α) is the error due to a first-order finite-difference approximation of the gradient embodied in (2.22),

2. O
(

1
Nai
,∆tb

)
, a, b > 0 is due to numerical discretization reflecting the order of accuracy of the numerical

differentiation and quadrature schemes used to obtain the solutions Q (ξ, t) and Q† (ξ, t), and the

objective functional (2.14), and

3. O
(
εc, Nd

i ,
1

∆te

)
, c, d, e > 0, is an upper bound for the accumulation of roundoff errors due to the

finite-precision arithmetic employed when solving the discretized forward and adjoint equations.

In general, it is not possible to anticipate how these errors accumulate for a turbulent flow, which is our

primary target application, or which of the terms on the RHS of (2.23) will dominate. This is important to

understand since it directly affects the utility of the adjoint solution in providing an approximate gradient.

Since turbulence is well understood to be chaotic, even having the nominally exact adjoint in its discrete

formulation does not guarantee its utility for any control objective due to the effect of finite-precision

arithmetic and how it can be amplified by the chaos. Nadarajah and Jameson [56] used an alternate error

measure based on a complex-step derivative of the objective functional. We do not use this approach since it

is computationally three times more expensive than the finite-difference approach, and its advantages over

the current approach do not adequately justify the added computational cost for turbulence simulations.
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Chapter 3

Discretization

In this chapter, we introduce the discretization of the predictive model. We will also use the same numerical

schemes for approximating spatial and temporal derivatives in the continuous-adjoint equations, although

this is not a requirement. On the other hand, the discrete-adjoint equations are inherently tied to the

numerical schemes employed in the discretization of the predictive model. Therefore, it is important to

address the discretization first before formulating the discrete-exact adjoint in Chapter 4. We will use the

term “semi-discrete” to refer to the form of the governing equations after spatial discretization has been

applied, which produces a system of ODEs in time. Likewise, we use “fully discrete” to refer to the algebraic

system of equations obtained from spatial and temporal discretization.

3.1 Summation-by-parts Operators

Recall the definition of V from Section 2.1. We consider a computational grid {0, h, 2h, . . . , (N − 1)h}3,

where h = 1
N−1 , which maps each element of V to Vh =

[
H0
(
R+

0

)]N3

. We denote this mapping as

~f (t) = proj [f (ξ, t)], where f ∈ V m is a vector-valued function of space and time, and ~f ∈ V mh is the

corresponding semi-discrete vector. We have taken the number of grid points in all directions to be equal

to simplify the discussion. Let P̂ be a symmetric positive-definite matrix. For m ∈ N, V mh admits the inner

product
〈
~f,~g
〉

P̂
=

ˆ ∞
t=0

~f T (t)
{
Im ⊗

(
Ĵ−1P̂

)}
~g (t) dt, ~f,~g ∈ V mh , (3.1)

where Ĵ = diag
(
~J
)
, Im is the m×m identity matrix, and ⊗ is the Kronecker product [82].

Let D̂i be a finite-difference operator that approximates a partial first-derivative with respect to the

computational coordinate ξi. In one dimension, D̂i is a banded matrix. In two dimensions, we assume that

D̂1 is a block-diagonal matrix with N2 × N2 blocks, such that each block is an N1 × N1 banded matrix,

resulting in a total of N1N2 × N1N2 entries. Likewise, D̂2 is block-banded with N2 × N2 blocks where

each block is an N1 × N1 diagonal matrix. In three dimensions, the sparsity structure of D̂i is even more
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complicated. To describe this using a straightforward formula, we use the Kronecker product, to write

D̂1 = D̂ ⊗ IN ⊗ IN

D̂2 = IN ⊗ D̂ ⊗ IN

D̂3 = IN ⊗ IN ⊗ D̂, (3.2)

where D̂ ∈ RN×N satisfies the SBP rule [41, 75]:

P̂ D̂ +
(
P̂ D̂

)T

= diag

[
−1 0 . . . 0 1

]T

, (3.3)

with P̂ ∈ RN×N a symmetric positive-definite matrix. We emphasize that the Kronecker product is merely

a mathematical tool to facilitate certain proofs involving the operators D̂i in three dimensions. For practical

implementation, the matrices D̂i are not actually formed, i.e., all the non-zero entries of D̂i are never

simultaneously stored in memory. Instead, the operation D̂1
~f , for example, is implemented as if it were

a one-dimensional matrix-vector product along the ξ1-direction, within a loop that iterates through the

elements of ~f in the ξ2- and ξ3-directions. In (3.3), P̂ defines a quadrature rule and is called the norm

matrix [30]. Naturally, we use P̂ = P̂ ⊗ P̂ ⊗ P̂ to define the inner product (3.1).

We only consider a diagonal norm P̂ , since this preserves the SBP property under a coordinate trans-

formation for arbitrary orders of accuracy [77]. Diagonal-norm SBP operators consist of 2s-order accurate

centered-difference stencils at interior points and s-order accurate biased stencils near boundaries. The

global accuracy with respect to the norm defined by P̂ is s + 1. The operator is unique for s = 2, has one

free parameter for s = 3, and three free parameters for s = 4. For s = 4 we use the coefficients derived

by Diener et al. [19], which are optimized to have minimum largest eigenvalue of the amplification matrix.

The SBP operators for s = 2, 3, 4 used in this paper are refered to as the SBP 2–4, 3–6, and 4–8 schemes,

respectively. Figure 3.1 shows a plot of the modified wavenumber of the interior stencil corresponding to

these operators.

In three dimensions, the SBP property leads to

P̂D̂i +
(
P̂D̂i

)T

= ∆̂i, (3.4)
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Figure 3.1: Modified wavenumber k∗h = 2
∑
j aj sin (jkh) of the interior stencil corresponding to the SBP

2–4, 3–6, and 4–8 schemes.

with ∆̂i = ∆̂
−
i − ∆̂

+

i for i = 1, 2, 3,

∆̂
±
1 = E± ⊗ P̂ ⊗ P̂

∆̂
±
2 = P̂ ⊗ E± ⊗ P̂

∆̂
±
3 = P̂ ⊗ P̂ ⊗ E±, (3.5)

E+ = diag

[
1 0 . . . 0

]T

∈ RN×N and E− = diag

[
1 0 . . . 0

]T

∈ RN×N . Thus, when P̂−1∆̂
±
α

multiplies a semi-discrete vector ~f ∈ Vh, it zeros out the components of ~f corresponding to nodes that are

not located on the computational surface B±α , and scales the remaining components by 1/P̂11, where P̂11 is

the first entry on the diagonal of P̂ .

Lemma 3.1. Let f ∈
[
H0
(
R+

0

)
×H1

(
D
)]m

and ~f = proj (f). If D̂i is an SBP operator defined according

to (3.2), where D consists of 2s-order accurate interior stencils, then

∥∥∥∥
(
Im ⊗ D̂i

)
~f − proj

(
∂f

∂ξi

)∥∥∥∥
∞

= O (hs) . (3.6)

We denote D
(m)
i = Im ⊗ D̂i, P(m) = Im ⊗ P̂, etc., and simply write Di, P, etc., whenever the value of m

can be infered from the semi-discrete vector it multiplies. Further, if P̂ = P̂ ⊗ P̂ ⊗ P̂ , in (3.1), then (3.1) is

a 2s-order accurate approximation of (2.5).

Proof. Eqn. (3.6) follows from the definition of D̂i. The proof for P̂ as a 2s-order accurate quadrature

scheme is due to Hicken and Zingg [30].
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3.2 Artificial Dissipation

Second and mixed derivatives are discretized using repeated first-derivative SBP operators defined in (3.2),

resulting in a wide-stencil approximation. This necessitates the use of artificial dissipation, since the wide-

stencil approximation does not damp the highest wavenumber supported by the grid. An attractive approach

for doing this, which is generally succesful [45] is the application of low pass filters, which damp in effect

only the high wavenumbers of the solution to maintain stability. However, these are incompatible with the

dual-consistent formulation to be developed in Chapter 5. Mattsson et al. [54] proposed dissipation operators

of the form D̂Iα = −P̂−1
(
D̂

(s)
α

)T

B̂D̂
(s)
α , where

D̂
(s)
1 = D̂(s) ⊗ IN ⊗ IN

D̂
(s)
2 = IN ⊗ D̂(s) ⊗ IN

D̂
(s)
3 = IN ⊗ IN ⊗ D̂(s),

D̂(s) ∈ RN×N is a minimal stencil-width approximation of a partial s-th derivative, and B̂ is a positive

semi-definite matrix, assumed to be the identity matrix in the diagonal-norm case. With this choice, we

obtain a “composite” operator of the form −P̂−1
(
D̂

(s)
α

)T

D̂
(s)
α that is formally 2s-order accurate at interior

points and s-order accurate near boundaries, and which can be applied in the usual manner of explicit

finite-difference schemes. The resulting interior stencils are 2s+1 points wide and are identical to a selective

filter whose coefficients are determined for maximum formal order of accuracy [9]. Such schemes have been

optimized to make their damping function more selective, and used successfully for predicting the sound

generated by a Mach 0.9 jet with ReD = ρjUjD/µj up to 4× 105 [10]. Bogey and Bailly [11] compared this

LES approach with a dynamic Smagorinsky model, and showed that selective filtering is better suited for

aeroacoutstic simulations since its contribution to the energy dissipation at large scales of the flow, which are

primarily responsible for sound generation, is relatively small. However, they noted that this dissipation still

exceeds dissipation due to physical viscosity, particularly at smaller resolved scales. Here, we will address

this concern for our jet simulation, to be discussed in detail in Chapter 8 in two ways.

First, for our simulations with non-uniform curvilinear meshes we allow the filtering strength to vary

spatially by taking B̂ = σdiss.M̃α:

D̂Iα = σdiss.P̂
−1
(
D̂(s)
α

)T

M̃αD̂(s)
α , (3.7)

where M̃α = diag
(

proj
(

M̃α

))
and M̃α is the area of an infinitesimal surface element whose normal is along
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the ξα-direction. σdiss. is a positive constant that affords further control over the dissipation strength. Since

M̃α > 0 by definition, this ensures that B̂ is positive-definite. For instance, M̃3 which corresponds to the

streamwise direction for our jet simulation, varies from about 3× 10−5 near the end of the potential core to

about 2 × 10−1 at the far-field boundaries, or about four orders of magnitude. Second, our computational

grid uses minimum mesh spacings that are an order of magnitude smaller than the values corresponding

to the LES of Bogey and Bailly [10]. In fact, the minimum mesh spacings for the current simulation are

comparable to the values used for a DNS of a Mach 1.92 jet at ReD = 2000 [24]. This is expected to increase

the filtering cutoff frequency, which is inversely proportional to the minimum mesh spacing.

Another subtle, but important, difference between the proposed artificial dissipation and the selective

filtering approach of Bogey and Bailly [9] is the manner in which they are implemented. The dissipation

operators satisfy

P̂D̂Iα =
(
P̂D̂Iα

)T

, (3.8)

which makes them self-adjoint under the inner product defined by (3.1). This facilitates crafting a dual-

consistent discretization. They are implemented using the projection method [61], and appear on the RHS

of the semi-discrete approximation of the governing equations. This ensures that the addition of artificial

dissipation does not violate provable stability and dual-consistency of our discretization. The operator on

either side of the equality sign in (3.8) is an approximation of σdiss.
∂s

∂ξsα

(
M̃α

∂s

∂ξsα

)
, for α = 1, 2, 3. Thus,

the dissipation term along the ξα-direction behaves like an artificial viscosity based on a 2s-order derivative,

with a local diffusion coefficient that depends on the local grid resolution.

3.3 Discretization of Transformation Metrics

Recall the transformation between physical and computational coordinates described in Section 2.1. In

Cartesian coordinates, the non-dimensional governing equations (without any control action) are

∂Q

∂t
+

∂

∂xi

(
F Ii − FVi

)
= 0, x ∈ Dp, t > 0,

where F Ii and FVi are the inviscid and viscous contributions to the fluxes defined in (2.7). Transforming to

computational coordinates yields

∂Q

∂t
+ J

∂

∂ξi

[
Mij

(
F Ij − FVj

)]
= J

∂Mij

∂ξi

(
F Ij − FVj

)
, ξ ∈ D, t > 0. (3.9)
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If closed-form expressions are available for Xi (ξ) for i = 1, 2, 3, then from (2.3)

∂Mij

∂ξi
= 0, j = 1, 2, 3, (3.10)

which leads to the transformed equations (2.6). In the absence of closed-form expressions for Xi (ξ), care

must be taken in discretizing the metrics Mij because violation of the identity (3.10) leads to a grid-dependent

forcing term in (3.9), which usually causes numerical instability. Thomas and Lombard [81] modified the

analytical form (2.3) so that the metrics satisfy (3.10) when evaluated discretely. Their modification can be

expressed using the discrete derivative operators defined in (3.2) as:

~Mij =
1

4
εjmnεipq

[
D̂q

(
~xn ◦ D̂p~xm

)
+ D̂p

(
~xm ◦ D̂q~xn

)]
, (3.11)

where ~Mij are the semi-discrete vectors corresponding to the metrics Mij (ξ), ~xi are the semi-discrete vectors

corresponding to the physical grid coordinates, and ◦ is the Hadamard product. It can be easily shown

that (3.11) is a consistent approximation of (2.3). Further, it can be shown using (3.2) and the properties of

the Kronecker product, that for 1 ≤ i, j ≤ 3, the operators D̂i and D̂j commute. This leads to a semi-discrete

equivalent of (3.10):

D̂i
~Mij = 0, j = 1, 2, 3.

3.4 Spatial Discretization

The semi-discrete approximation of (2.11) is written as

~R
[
~Q
]

= −JDiMij

(
~FIj

[
~Q
]
− ~FVj

[
~Q
])

+ J
∑

i

DIi ~Q+ ~RSAT

[
~Q
]
, (3.12)

for ~Q ∈ V 5
h , where Mij = I5 ⊗ diag

(
~Mij

)
, and

~RSAT

[
~Q
]

= JP−1
3∑

i=1

(
~R−SAT,i

[
~Q
]

+ ~R+
SAT,i

[
~Q
])

(3.13)

is a simultaneous approximation term (SAT) that enforces the boundary conditions in a weak sense. The

specific forms of the SATs used for enforcing various types of boundary conditions are discussed in Chapter 5.

In (3.12), ~R
[
~Q
]

(t) : V 5
h → V 5

h , etc.

When linearizing R [Q] in (A.3) in Appendix A, we have deliberately avoided using the product rule of
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differentiation, which is not satisfied by our discrete derivative operators. This allows us to reuse the result

derived there for the semi-discrete RHS operator, and write

δ~R
[
~Q; δ ~Q

]
= −JDi

(
Ai

[
~Q
]
δ ~Q−Bij

[
~Q
]

DjC
[
~Q
]
δ ~Q
)

+ J
∑

i

DIiδ ~Q+ δ~RSAT

[
~Q; δ ~Q

]
, (3.14)

where

δ~RSAT

[
~Q; δ ~Q

]
= JP−1

3∑

i=1

(
S−SAT,i

[
~Q
]

+ S+
SAT,i

[
~Q
])
δ ~Q,

and S±SAT,i

[
~Q
]
δ ~Q ≡ δ~R±SAT,i

[
~Q; δ ~Q

]
for ~Q, δ ~Q ∈ V 5

h . In (3.14), Ai

[
~Q
]
, Bij

[
~Q
]
and C

[
~Q
]
are projections

of the tensor-field-valued operators Ai [Q], Bij [Q] and C [Q] in (2.13) from V 5 onto V 5
h .

3.5 Temporal Discretization

Our approach for formulating the fully discrete adjoint equations in Chapter 4 remains generic to the broad

class of popular high-order explicit multi-stage methods. As an example, we consider here a standard

fourth-order Runge–Kutta (RK4) scheme. The semi-discrete approximation of the governing equations is

~M
[
~Q, ~f

]
(t) ≡ d~Q

dt
− ~R

[
~Q
]

(t)− ~WΓ ◦ ~f (t) = 0, t0 ≤ t ≤ t1. (3.15)

where ~R
[
~Q
]
is defined in (3.12). We take the initial condition ~Q (t0) = ~Q0. Let tn = t0 + ∆t (n− 1) for

n = 1, 2, . . . , Nt + 1, where ∆t = (t1 − t0) /Nt is the time step size (assumed to be uniform for convenience

of presentation), and Nt is the number of time steps. Integrating (3.15) using the seemingly most common

RK4 scheme leads to the following system of algebraic equations:

~Mn,1 =
2 ~Qn,1 − 2 ~Qn−1,4

∆t
− ~Rn−1,4 − ~WΓ ◦ ~fn,1

~Mn,2 =
2 ~Qn,2 − 2 ~Qn−1,4

∆t
− ~Rn,1 − ~WΓ ◦ ~fn,2

~Mn,3 =
2 ~Qn,3 − 2 ~Qn−1,4

∆t
− ~Rn,2 − ~WΓ ◦ ~fn,3

~Mn,4 =
6 ~Qn,4 + 2 ~Qn−1,4 − 2 ~Qn,1 − 4 ~Qn,2 − 2 ~Qn,3

∆t
− ~Rn,3 − ~WΓ ◦ ~fn,4, (3.16)

each stage of which has a single unknown semi-discrete vector ~Qn,s, which can be solved for in the usual

way for explicit RK schemes given the ~M
[
~Q, ~f

]
= 0 condition of (3.15). This particular form is useful for
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our objectives. In (3.16), ~Q0,4 is the known initial state ~Q0 with ~R0,4 = ~R
[
~Q0
]

(t0). For n > 1, ~Qn−1,4 is

the numerical approximation of ~Q (tn), and the sub-step values are ~Qn,s for n = 1, 2, . . . , Nt and s = 1, 2, 3.

~Rn,s denotes ~R
[
~Qn,s

]
(tn + cs∆t), where c1 = c2 = 1/2 and c3 = c4 = 1.

To derive the fully discrete analog of (2.5), we introduce the notation f̃ for a vector with components

~f1,1, . . . , ~fNt,4. In total, f̃ consists of 20N3N
t
elements for a three-dimensional problem with 5 state variables

and our choice of a 4-stage time-integration scheme. Thus, for f̃ , g̃ ∈ R20N3Nt , we define the inner product

〈
f̃ , g̃
〉

P̂
=

Nt∑

n=1

4∑

s=1

βn,s∆t
(
~fn,s

)T {
I5 ⊗

(
Ĵ−1P̂

)}
~gn,s, (3.17)

and the corresponding norm
∥∥∥f̃
∥∥∥

2

P̂
=
〈
f̃ , f̃

〉
P̂
. The values of βn,s are derived in Section 4.4 such that (3.17)

defines a positive-definite inner product and is a consistent approximation of (2.5). The final result is

βn,1 = βn,4 = 1/6 and βn,2 = βn,3 = 1/3 for n = 1, 2, . . . , Nt. In general, this choice would lead to an

O (∆t) integration scheme in time, which would obviously not be favorable if used simply as such, but as

used it provides the exact adjoint. It is obvously different than application of a time-reversed analoge of the

same time-forward Runge–Kutta scheme.

We emphasize that the notation f̃ for a fully discrete vector is simply a mathematical tool to express

the algebraic equations resulting from spatial and temporal discretization of the predicive model IBVP. In

practice, the numerical solver does not store all components of f̃ simultaneously in memory. The fully

discretized governing equations have been written in the form (3.16), but are solved for in the usual manner

of explicit multi-stage time marching schemes. We later show how the fully discrete adjoint equations can

also be written in the same way. With this notation, the fully discretized equations can be compactly

expressed as

M̃
[
Q̃, f̃

]
≡ Ñ

[
Q̃
]
− W̃Γ ◦ f̃ = 0. (3.18)

22



Chapter 4

Adjoint Formulations

This chapter describes in detail the adjoint formulations corresponding to the continuous, semi-discrete and

fully discrete flow equations. A fully discrete adjoint is derived using the RK4 scheme as an example for

integrating the semi-discrete flow equations. The approach for the continuous and semi-discrete adjoint

formulations is similar, with the main difference arising due to the following property.

Property 4.1. Let U be the subspace of S whose elements satisfy the linearized boundary conditions. We

restrict the domain of δR [Q; δQ] to
[
H1
(
R+

0

)
×H2

(
D
)]5 × U . Then, δR [Q; δQ] : dom (δR) → V 5 is a

densely defined unbounded operator. On the other hand, δ~R
[
~Q; δ ~Q

]
is local in time, and is essentially a

bounded linear operator defined on R5N3 × R5N3

at each t ∈ [0,∞).

A consequence of this property is that while the semi-discrete adjoint operator is always well-defined for

the system of ODEs obtained after spatial discretization of the equations governing the flow, the continuous-

adjoint operator may not be defined for some choices of functionals. For example, consider the functional

J [Q] =

ˆ ∞
t=0

ˆ
x∈Dp

∂2ωi
∂x2

i

WΩd
3xdt, (4.1)

which represents the vorticity diffusion integrated over a target region of interest. There is no continuous-

adjoint equation corresponding to this functional.

4.1 Continuous-adjoint Formulation

Definition 4.1. For a functional J [Q] defined according to (2.14), the continuous-adjoint operator is

R†
[
Q,Q†

]
: dom

(
R†
)
→ V 5, where

dom
(
R†
)

=
{

(Q,Q∗) ∈
[
H1
(
R+

0

)
×H2

(
D
)]5 × V 5 :

there exists R∗ [Q,Q∗] ∈ V 5 so that

〈R∗ [Q,Q∗] , δQ〉 = 〈Q∗, δR [Q; δQ]〉+ δJ [Q; δQ] , ∀δQ ∈ U} . (4.2)
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If such an R∗ [Q,Q∗] exists, then it is unique and we define

R†
[
Q,Q†

]
:= R∗

[
Q,Q†

]
, ∀Q† ∈ dom

(
R†
)
.

Q† is called the adjoint variable.

This definition automatically restricts the domain of the continuous-adjoint operator to a subspace of
[
H1
(
R+

0

)
×H2

(
D
)]5

in which the continuous-adjoint boundary conditions are satisfied. Expanding the

inner product in (4.2) using (2.5), integrating by parts, and using the definition of J [Q] from (2.14), we

obtain the following condition for the existence of R∗ [Q,Q∗]:

Q∗T
(
Aα [Q] δQ− Bαi [Q]

∂

∂ξi
(C [Q] δQ)

)

+

(
∂Q∗

∂ξi

)T

Biα [Q] C [Q] δQ = ±δKS [Q; δQ] , ξ ∈ B±α , t ≥ 0, (4.3)

where Aα [Q], Bαi [Q] and C [Q] are defined in (A.4). The continuous-adjoint operator is

R†
[
Q,Q†

]
= J

{
AT
i [Q]

∂Q†

∂ξi
+ CT [Q]

∂

∂ξj

(
BT
ij [Q]

∂Q†

∂ξi

)}
+

(
δKV
δQ

[Q]

)T

, (4.4)

where δKV
δQ [Q] is the Fréchet derivative of KV [Q] defined implicitly using

δKV [Q; δQ] =
δKV
δQ

[Q] δQ.

The choice of the quantity of interest J [Q] is key to the existence of the continuous-adjoint operator.

Boundary conditions for Q† are obtained by substituting the corresponding flow boundary conditions for Q

into (4.3). A detailed discussion and the specific procedures used to implement these are given in Chapter 5.

In Table 4.1, we summarize the minimal set of boundary conditions for Q† obtained when KS [Q] = 0,

such that the quantity of interest can be expressed as a volume integral over the computational domain.

Under this assumption, δR [Q; δQ] and R†
[
Q,Q†

]
satisfy a generalized Green’s identity, and it can be easily

verified that the surface term becomes identically zero due to (4.3). The boundary conditions for Q† are

homogeneous, and the non-trivial forcing term δKV
δQ [Q] triggers the unsteady evolution of the adjoint field.

An example that we consider in some detail measures radiated noise as

J [Q] =

ˆ ∞
t=0

ˆ
ξ∈D

[p (ξ, t)− p (ξ)]
2
WΩ (ξ, t)

1

J (ξ)
d3ξdt,
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Boundary type Flow boundary condition Adjoint boundary conditions
ξ ∈ B±α , t ≥ 0 ξ ∈ B±α , t ≥ 0

Impermeable wall ûα ≡
∑3
i=1 M̂αiui = 0

∑3
i=1 M̂αiQ

†
i+1 = 0

Isothermal no-slip
wall

u1 = u2 = u3 = T = 0 Q†2 = Q†3 = Q†4 = Q†5 = 0

Inflow/outflow
AI∓α [Qt] (Q−Qt)
−Mαi

(
FVi [Q]−FVi [Qt]

)
= 0

(
AI±α [Qt]

)T
Q†

+CT [Q]BT
iα [Q] ∂Q

†
∂ξi

= 0

Table 4.1: Physical boundary conditions and corresponding continuous-adjoint boundary conditions for a
functional of the form (2.14) with KS [Q] = 0.

where p (ξ) is the time-averaged mean pressure, and WΩ (ξ, t) has support in a target region where the

acoustic intensity is of interest Ω ⊆ D over a time horizon 0 ≤ t0 ≤ t ≤ t1. In this case, the forcing term is

(
δKV
δQ

[Q]

)T

= 2 [p (ξ, t)− p (ξ)]




γ−1
2 uiui

− (γ − 1)u1

− (γ − 1)u2

− (γ − 1)u3

γ − 1




WΩ (ξ, t) .

On the other hand, if KV [Q] = 0, the forcing term vanishes and the boundary conditions for Q† are inho-

mogeneous due to a non-trivial KS [Q]. We will consider two examples of such a functional with application

to wall-bounded flows.

First, we look at pressure-induced force exterted by the flow on a boundary surface B±α projected along

a fixed vector k:

J [Q] = −
ˆ t1

t=t0

ˆ
B±α

[p (ξ, t)− p∞] kiMαid
2ξdt, (4.5)

where B±α is defined in (2.4). Drag and lift forces can be measured in this way, for example, by choosing k

to be oriented along and normal to an ambient flow direction, respectively. If B±α is an impenetrable wall

and we drop the viscous terms in (4.3), this leads to a single boundary condition

3∑

i=1

M̂αiQ
†
i+1 = ∓

3∑

i=1

M̂αik̂i, ξ ∈ B±α , t0 ≤ t ≤ t1. (4.6)

If B±α is a no-slip wall, there are no boundary conditions for Q† that satisfy (4.3). Hence, the continuous-

adjoint operator is not defined for this choice of flow boundary conditions and functional.
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Next, we examine viscous drag measured on B±α projected along the k direction:

J [Q] =

ˆ t1

t=t0

ˆ
B±α

τijkiMαjd
2ξdt. (4.7)

If B±α is a no-slip wall, the continuous-adjoint operator is defined iff kiMαi = 0. For this choice of k, the

continuous-adjoint boundary conditions are

Q†i+1 = ∓ki, and Q†5 = 0. (4.8)

4.2 Optimal Control Theory

As a specific example of the application of our adjoint formulations, we consider the optimization of a control

that minimizes a functional, such as (2.14). To do this, we pose the problem as a constrained minimization

of the objective functional J [Q] by determining vector fields Q (ξ, t) and f (ξ, t) such that M [Q, f ] = 0,

the constraint that enforces adherence to the governing equations. This is most easily formulated using

Lagrange multipliers. We define the Lagrangian

L
[
Q,Q†, f

]
= J [Q]−

〈
Q†,M [Q, f ]

〉
, ∀Q,Q†, f ∈

[
H1
(
R+

0

)
×H2

(
D
)]5

where the adjoint variable Q† (ξ, t) serves as the Lagrange multiplier, and the inner product is defined

in (2.5). The extrema of the Lagrangian are obtained by setting its partial variations with respect to the

independent variables Q (ξ, t), f (ξ, t) and Q† (ξ, t) to zero. This leads to the system of equations

δLQ
[
Q,Q†, f ; δQ

]
≡ δJ [Q]−

〈
Q†, δN [Q; δQ]

〉
= 0 (4.9a)

δLQ†
[
Q,Q†, f ; δQ†

]
≡ −

〈
M [Q, f ] , δQ†

〉
= 0 (4.9b)

δLf
[
Q,Q†, f ; δf

]
≡
〈
WΓ ◦Q†, δf

〉
= 0, (4.9c)

where (4.9b) and (4.9a) are the weak forms of the forward and adjoint equations, respectively, and (4.9c) is

the condition that the gradient becomes identically zero at the extrema of the Lagrangian. This can be seen

by linearizing (2.10) and using Definition 4.1 in (4.9a). The usual procedure for solving (4.9) involves first

solving the forward equations for Q (ξ, t) using an initial guess f (0) (ξ, t), then solving the adjoint equations

for Q† (ξ, t) using as adjoint coefficients, the forward solution Q(0) (ξ, t) obtained, followed by an iterative

procedure to converge the residual of (4.9c) to zero by progressively improving the guess f (n) (ξ, t) for n > 0.
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We define the sensitivity gradient

G
[
Q†
]

(ξ, t) = WΓ (ξ, t) ◦Q† (ξ, t) . (4.10)

Thus, converging the residual of (4.9c) to zero is equivalent to converging the norm of the sensitivity gradient
∥∥G
[
Q†
]∥∥ to zero.

In our demonstration simulations, we use the Fletcher-Reeves-Polak-Ribiere conjugate gradient algorithm

along with Brent’s algorithm to optimize the control f (ξ, t) [64]. During each iteration of the optimization,

the conjugate gradient algorithm identifies a direction along which a line search is performed to determine

the local minimum of J [Q] along that direction. Brent’s algorithm accelerates this procedure. For the first

iteration, the direction of line search is chosen along the negative gradient direction.

4.3 Semi-discrete Adjoint Formulation

Definition 4.2. The semi-discrete adjoint operator is defined using

〈
~R†
[
~Q, ~Q†

]
, δ ~Q

〉
P

=
〈
~Q†, δ~R

[
~Q; δ ~Q

]〉
P

+ δJ
[
~Q; δ ~Q

]
, (4.11)

where the inner product is defined in (3.1).

Using (3.14), (2.14) and (4.11), we get

~R†
[
~Q, ~Q†

]
= JA T

i

[
~Q
]

Di
~Q† + JC T

[
~Q
]

DjB
T
ij

[
~Q
]

Di
~Q†

+ J
∑

i

DIi ~Q
† + ~R†SAT

[
~Q, ~Q†

]
+
δKV

δ ~Q

[
~Q
]
, (4.12)

where

~R†SAT

[
~Q, ~Q†

]
= JP−1

3∑

α=1

{(
S+

SAT,α

[
~Q
]

+ S−SAT,α

[
~Q
])T

~Q†

+
(
AV
α

[
~Q
]

+ Bαi

[
~Q
]

DiC
[
~Q
])T

∆α
~Q†

−∆α

(
AI
α

[
~Q
])T

~Q† −∆αC T
[
~Q
]

B T
iα

[
~Q
]

Di
~Q†

+
(
∆+
α + ∆−α

) δKS
δ ~Q

[
~Q
]}

. (4.13)

We remark that ~R†SAT

[
~Q, ~Q†

]
was not independently constructed as a penalty term to enforce the continuous-
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adjoint boundary conditions. Rather, it is obtained automatically as the result of Definition 4.2. It is

therefore, important to assess whether ~R†SAT

[
~Q, ~Q†

]
is consistent with the continuous-adjoint boundary

conditions. This forms the topic of Chapter 5.

4.4 Fully Discrete Adjoint Formulation

Recall the definition of the fully discrete inner product (3.17). As an example, we will demonstrate the

formulation of a fully discrete adjoint using the RK4 scheme for integrating (3.15). To start with, we

write (3.16) compactly as

M̃
[
Q̃, f̃

]
≡ Ñ

[
Q̃
]
− W̃Γ ◦ f̃ = 0.

The corresponding fully discrete adjoint equations are

M̃†
[
Q̃, Q̃†, g̃Ω

]
≡ Ñ†

[
Q̃, Q̃†

]
− W̃Ω ◦ g̃Ω = 0, (4.14)

which are obtained using
〈
Q̃†, δÑ

[
Q̃, δQ̃

]〉
P

=
〈
Ñ†
[
Q̃, Q̃†

]
, δQ̃

〉
P
. (4.15)

The gradient of the objective functional is

G̃
[
Q̃†
]

= W̃Γ ◦ Q̃†. (4.16)

Using (3.16) and (3.17), we get

~M†n,4 =
6βn,4 ~Q†n,4 + 2βn+1,4 ~Q†n+1,4 − βn+1,3 ~Q†n+1,3 − 2βn+1,2 ~Q†n+1,2 − 2βn+1,1 ~Q†n+1,1

βn,4∆t

− βn+1,1

βn,4
P−1Sn,4P ~Q†n+1,1 − ~Wn,4

Ω ◦ ~gn,4Ω

~M†n,3 =
βn,3 ~Q†n,3 − 2βn,4 ~Q†n,4

βn,3∆t
− βn,4

βn,3
P−1Sn,3P ~Q†n,4 − ~Wn,3

Ω ◦ ~gn,3Ω

~M†n,2 =
2βn,2 ~Q†n,2 − 4βn,4 ~Q†n,4

βn,2∆t
− βn,3

βn,2
P−1Sn,2P ~Q†n,3 − ~Wn,2

Ω ◦ ~gn,2Ω

~M†n,1 =
2βn,1 ~Q†n,1 − 2βn,4 ~Q†n,4

βn,1∆t
− βn,2

βn,1
P−1Sn,1P ~Q†n,2 − ~Wn,1

Ω ◦ ~gn,1Ω (4.17)

for n = 1, . . . , Nt − 1, where Sn,s is a matrix operator defined implicitly using

δ~Rn,s =
(
S
[
~Qn,s

])T

δ ~Qn,s. (4.18)
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For n = Nt, (4.17) holds except for the final sub-step of the final timestep ~Q†Nt,4 = (∆t/6) ~WNt,4
Ω ◦ ~gNt,4Ω .

In (4.17), S
[
~Qn,s

]
is the adjoint coefficient matrix and can be determined from (3.14). The superscripts on

the adjoint coefficient matrix in (4.17) indicate that it is evaluated at the physical time at the end of the

time-reversed sub-step, which is not restrictive since it only depends on the state variable available from the

forward simulation. Hence, it is known at all times t0 ≤ t ≤ t1, though it may pose a data management

challenge in practice.

As formulated, the coefficients βn,s provide a family of adjoint equations per the norm based on (3.17).

However, to be useful for the control problem that we have formulated (or any corresponding objective), the

fully discrete inner product (3.17) should provide a consistent approximation of an objective functional such

as (2.14) with inner product such as (2.5). Note that in applications where it is more suitable to choose a

discrete cost functional, this step is unnecessary. For our aeroacoustic demonstrations, the control and target

mollifying support functions WΓ and WΩ, respectively, defined in Section 2.3, and their derivatives in time

are chosen to be zero at the start and end of the control interval. Hence, we choose β1,s = β2,s = . . . = βNt,s

while retaining enough flexibility to craft a fully discrete inner product (3.17) that is formally at least

an O (∆t) approximation of the continuous inner product (2.5), but for the essentially homogeneous end

conditions imposed by the specific WΓ and WΩ chosen for our demonstrations, its accuracy is effectively the

same as pseudo-spectral integratrion. With this assumption, for the fully discrete norm to be consistent,
∑4
s=1 β

n,s = 1. Additionally, we require βn,s > 0 to retain positive-definiteness.

Within the subset of discrete-adjoint time-marching schemes that satisfy the constraints imposed on the

coefficients βn,s, there is only one choice that is leads to an O (∆t) accurate quadrature rule: βn,1 = βn,4 =

1/6 and βn,2 = βn,3 = 1/3. The resulting fully discrete-adjoint time-marching scheme is

~M†n,4 =
6 ~Q†n,4 + 2 ~Q†n+1,4 − 2 ~Q†n+1,3 − 4 ~Q†n+1,2 − 2 ~Q†n+1,1

∆t

− P−1Sn,4P ~Q†n+1,1 − ~Wn,4
Ω ◦ ~gn,4Ω

~M†n,3 =
2 ~Q†n,3 − 2 ~Q†n,4

∆t
− P−1Sn,3P ~Q†n,4 − 2 ~Wn,3

Ω ◦ ~gn,3Ω

~M†n,2 =
2 ~Q†n,2 − 2 ~Q†n,4

∆t
− P−1Sn,2P ~Q†n,3 − ~Wn,2

Ω ◦ ~gn,2Ω

~M†n,1 =
~Q†n,1 − ~Q†n,4

∆t
− P−1Sn,1P ~Q†n,2 − 1

2
~Wn,1

Ω ◦ ~gn,1Ω (4.19)

for n = 1, . . . , Nt except ~Q†Nt,4 = (∆t/6) ~WNt,4
Ω ◦ ~gNt,4Ω .

Some terms are boxed in (4.19) to emphasize the difference from approximating the time derivative
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in (3.15) with the RK4 method directly,

~M†n,4 =
6 ~Q†n,4 + 2 ~Q†n+1,4 − 2 ~Q†n+1,3 − 4 ~Q†n+1,2 − 2 ~Q†n+1,1

∆t

− Sn+1,1 ~Q†n+1,1 − ~Wn,4
Ω ◦ ~gn,4Ω

~M†n,3 =
2 ~Q†n,3 − 2 ~Q†n,4

∆t
− Sn,4 ~Q†n,4 − ~Wn,3

Ω ◦ ~gn,3Ω

~M†n,2 =
2 ~Q†n,2 − 2 ~Q†n,4

∆t
− Sn,3 ~Q†n,3 − ~Wn,2

Ω ◦ ~gn,2Ω

~M†n,1 =
~Q†n,1 − ~Q†n,4

∆t
− Sn,2 ~Q†n,2 − ~Wn,1

Ω ◦ ~gn,1Ω (4.20)

for n = 1, . . . , Nt except ~Q†Nt,4 = 0. Our choice of the coefficients βn,s in (4.17) facilitates a straightforward

implementation, requiring only these changes from an RK4 discretization of the continuous-adjoint equations.

This similarity is a key advance of our formulation. We anticipate that these differences can be eliminated

by using an SBP time integration scheme [59]. All SBP time integration schemes are implicit schemes, and

their efficient practical implementation poses additional challenges including potentially significant memory

overhead, and designing effective preconditioners that are parallelizable.

4.5 Checkpointing

A practical matter when implementing an adjoint solver involves data management. The conserved variables

appear in the adjoint equations as coefficients and must be stored when the forward problem is solved. For

large problem sizes, some sort of checkpointing approach is necessary to provide sufficient storage space [26].

The explicit formulation for the flow state coefficients at the sub-steps is a key result; there is no such

specification in the continuous adjoint formulation. The RK4 scheme (for example) does not provide a

fourth-order estimate of the state at fractional sub-steps such as tn+1/2. In this case, a consistent approach

is to regard the stored values as available data points and interpolate to obtain the sub-step values of the

state variable. For our demonstrations, when solving the continuous-adjoint equations, ~Q (tn), ~Q (tn + ∆t),
d~Q
dt (tn), and d~Q

dt (tn + ∆t) are interpolated with cubic Hermite polynomials.

For solving the discrete-adjoint equations (4.19), we use a uniform checkpointing approach. In this

approach, we choose a fixed checkpointing interval or frequency, say Nc timesteps, at which the conserved

variables are written to disk during the forward simulation. During the adjoint simulation, the conserved

variables at time t = tn−Nc are read from disk, and used as initial condition to integrate the forward

equations from t = tn−Nc to t = tn, with all intermediate sub-step values stored in memory. The adjoint
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equations are then integrated in reverse time from t = tn to t = tn−Nc by computing the adjoint coefficients

from the conserved variables that are available in memory. In this way, the adjoint simulation proceeds

backwards in time up to t = t0. Thus, our checkpointing strategy effectively involves repeating the same

operations involved in solving the forward equations, during the adjoint simulation. Additional care is

required in situations where random numbers are generated during the forward simulation, for example,

to generate disturbances at an inflow. Our strategy is to generate pseudo-random numbers using a seed

value, and ensure that the same seed value is used again when re-solving the forward equations during the

checkpointing procedure.

An advantage of this checkpointing approach is that it involves the least possible number of re-evaluations

of the primal RHS, which is typically relatively more expensive than a single read-write operation of a semi-

discrete vector ~Qn,s from memory. The numerical solver used for our demonstration simulations is designed

for scalability and is based on a distributed memory model, so that the number of elements of ~Qn,s that

are locally owned by a single process for n = 1, 2, . . . , Nc and s = 1, 2, 3, 4 typically fits in the L1 cache,

further reducing the overhead of a read-write operation from memory. On the other hand, evaluating the

primal RHS involves communication of data corresponding to ghost or halo points between all neighboring

processes, which is an expensive operation. In situations where evaluating the primal RHS is relatively

less expensive, or the total available disk storage is low, Griewank and Corliss [26] proposed an optimal

checkpointing schedule that may be more suitable. Wang et al. [88] proposed a dynamic checkpointing

algorithm which is applicable in situations where the total number of time steps is not known beforehand.

There is a tradeoff in the choice of Nc, the frequency at which the conserved variables are written to disk

during the forward simulation. Writing a semi-discrete vector ~Qn,s to disk is an expensive operation and

frequently writing the conserved variables to disk requires more storage, both of which suggest that choosing

a larger value of Nc is more efficient. However, a large value of Nc may cause frequent cache misses when the

intermediate sub-steps are read from memory during the adjoint simulation. Due to lack of proper guidance

in optimizing the value of Nc for specific computing architectures, we set its value for individual simulations

based on experience.
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Chapter 5

Boundary Conditions and Dual
Consistency

In this chapter, we consider the selection of dual-consistent SATs for enforcing boundary conditions. First,

we provide a formal definition of dual-consistency.

Definition 5.1. The semi-discrete approximation (3.12) is called strongly dual-consistent up to order q ∈ N

iff
∥∥∥~R†

[
~Qb, ~Q

†
b

]
− proj

(
R†
[
Qb, Q

†
b

])∥∥∥
∞

= O (hq) , (5.1)

for all Qb, Q
†
b ∈

[
H1
(
R+

0

)
×H2

(
D
)]5

such that Qb (ξ, t) and Q†b (ξ, t) satisfy the boundary conditions on

∂D. It is called weakly dual-consistent up to order q ∈ N iff

〈
~R†
[
~Qb, ~Q

†
b

]
− proj

(
R†
[
Qb, Q

†
b

])
, δ ~Qb

〉
P

= O (hq) , (5.2)

for all δQb ∈
[
H1
(
R+

0

)
×H2

(
D
)]5

such that δQb (ξ, t) satisfies the linearized boundary conditions on

∂D. A discretization that is strongly dual-consistent is also weakly dual-consistent, but the converse is not

necessarily true.

The following lemma simplifies the analysis of dual-consistency.

Lemma 5.2. Let s be the order of accuracy of boundary stencils used in the SBP derivative operators

in (3.12). The semi-disrcetization (3.12) is strongly dual-consistent up to order s ∈ N according to (5.1) if

∥∥∥~R†SAT

[
~Qb, ~Q

†
b

]∥∥∥
∞

= O (hs) .

It is weakly dual-consistent according to (5.2) if

〈
~R†SAT

[
~Qb, ~Q

†
b

]
, δ ~Qb

〉
P

= O (hs) .

Proof. The proof is straightforward and we only provide an outline here. For proving strong dual-consistency,

we add and subtract ~R†SAT

[
~Qb, ~Q

†
b

]
inside the norm in (5.1) and use the triangle inequality. For weak dual-
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consistency, we add and subtract ~R†SAT

[
~Qb, ~Q

†
b

]
to ~R†

[
~Qb, ~Q

†
b

]
in (5.2) and invoke linearity of the inner

product. The proof for both cases then follows from use of Lemma 3.1.

Remark 5.3. The use of SBP discrete derivative operators and the artificial dissipation operator (3.7) allows

us to pose the dual-consistency requirement in Definition 5.1 as a condition on the SATs used to enforce the

boundary conditions only. This would not have been possible, for example, with discrete derivative operators

that do not satisfy an SBP rule or with artificial dissipation based on low pass filters.

For the following analysis, we assume that a specific boundary condition is enforced on the ξ ∈ B±α

face of the unit cube computational domain D, and ignore the other faces without loss of generality. The

superscript ± allows us to simultaneously write the boundary conditions for both B+
α and B−α using a single

equation.

5.1 Inflows and Outflows

To model inflows and outflows, we use approximate characteristic boundary conditions based on a lineariza-

tion of the governing equations. In our simulations, we will supply boundary data through a stationary

target solution Qt (x), selected such that when transformed to characteristic variables, the perturbation

Q (x, t)−Qt (x) satisfies the condition

AI∓α [Qt] (Q−Qt)−Mαi

(
FVi [Q]−FVi [Qt]

)
= 0, ξ ∈ B±α , t ≥ 0, (5.3)

which is accurate up to O (‖Q−Qt‖). This is common practice for highly non-reflecting boundary condi-

tions [24, 37], but has the obvious challenge of properly selecting the target solution. Linearizing (5.3) with

respect to Q (ξ, t), we obtain

(
AI∓α [Qt]−AVα [Q]

)
δQ− Bαj [Q]

∂

∂ξj
(C [Q] δQ) = 0, ξ ∈ B±α , t ≥ 0. (5.4)

A consistent SAT that enforces (5.3) is

~R±SAT,α

[
~Q
]

= ±σI∆±α
(
AI∓
α

[
~Qt

]
+ Ã∓α

[
~Qt

])(
~Q− ~Qt

)

∓ σV ∆±αMαi

(
~FVi

[
~Q
]
− ~FVi

[
~Qt

])
, ∀ ~Q ∈ V 5

h (5.5)
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where AI±
α

[
~Q
]

= proj
(
ÃI±α [Q]

)
, Ã±α

[
~Q
]

= proj
(
Ã±α [Q]

)
,

Ã+
α [Q] =





Tα [Q] Λ̃+
α [Q] T −1

α [Q] , 0 < −ûα < a

0 , otherwise

Ã−α [Q] =





Tα [Q] Λ̃−α [Q] T −1
α [Q] , 0 < ûα < a

0 , otherwise,

Λ̃
+

α

[
~Q
]

= −proj





M̃α




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 ûα + a 0








Λ̃
−
α

[
~Q
]

= −proj





M̃α




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 ûα − a

0 0 0 0 0








,

and the condition for stability is, σI > 1
2 and σV = 1 [79]. The columns of Tα [Q] are the right eigenvectors

of AIα [Q], and the rows of T −1
α [Q] are the left eigenvectors of AIα [Q]. Their full expressions are given

by Pulliam and Chaussee [65]. Similarly, linearizing (5.5) yields

S±SAT,α

[
~Q
]

= ±σI∆±α
(
AI∓
α

[
~Qt

]
+ Ã±α

[
~Qt

])

∓ σV ∆±α

(
AV
α

[
~Q
]

+ Bαi

[
~Q
]

DiC
[
~Q
])
, (5.6)

Svärd et al. [79] showed the existence of an energy estimate for the continuous and discrete problems with

this approach using the principle of frozen coefficients, which indicates that it is well-posed for the continuous

IBVP and stable for the discrete problem with respect to small-amplitude fluctuations, respectively.

A special case of (5.3) is a “far-field” physical boundary to model an infinite domain. In this case, the

known ambient conditions are used to supply boundary data and the viscous term in (5.3) can be neglected.

The result is the well-known locally one-dimensional inviscid (LODI) characteristic boundary conditions [63],
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which have been successfully used in aeroacoustic simulations [14]. Additionally, we pad the boundary with

a sponge layer, which serves as compact support for a forcing term

R±sponge,α [Q] = −σsponge

∣∣1− x̃⊥α
∣∣2 (Q−Qt) , (5.7)

that is added to the RHS of (2.6). The role of this forcing is to drive the solution near the boundaries towards

the target state [22], thereby improving the asymptotic convergence of (5.3) for a nonlinear problem. In (5.7),

σsponge > 0 is a constant scaling factor and x̃⊥α is the distance from the boundary measured along the curve

perpendicular to the isosurfaces of ξα, and normalized so that 0 ≤ x̃⊥α ≤ 1 across the sponge layer. Thus,

the damping strength is maximum for ξ ∈ B±α and decreases quadratically to zero away from the boundary.

Theorem 5.4. Let J [Q] be a functional of the form (2.14) with KS [Q] = 0. The semi-discrete approx-

imation (3.12) with the SAT (5.5) for enforcing an inflow/outflow boundary condition (5.3) is strongly

dual-consistent of order s′ for some s′ > 0 if σI = σV = 1. If ~Qt = proj (Qt) and ~Qb = proj (Qb), where Qt

is the prescribed target state in (5.3) and Qb is a solution of (5.3), then s′ is the maximum value for which

∥∥∥∆±α
(
~Qb − ~Qt

)∥∥∥
∞
∼ O

(
hs
′)
,

where ∼ denotes asymptotic equality.

Proof. Using the continuous-adjoint boundary conditions corresponding to an inflow/outflow physical bound-

ary condition on ξ ∈ B±α , we get

(
AI±
α

[
~Qt

]
− Ã∓α

[
~Qt

])T
~Q†b + CT

[
~Qb

]
BT
iα

[
~Qb

]
Di

~Q†b = 0.

From (5.6) and (4.13), we get

~R†SAT

[
~Qb, ~Q

†
b

]
= ∓

(
σV − 1

)
JP−1

(
AV
α

[
~Qb

]
+ Bαi

[
~Qb

]
DiC

[
~Qb

])T

∆±α
~Q†b

±
(
σI − 1

)
JP−1∆±α

(
AI∓
α

[
~Qt

]
+ Ã∓α

[
~Qt

])T
~Q†b

∓ JP−1∆±α

(
AI
α

[
~Qb

]
−AI

α

[
~Qt

])T
~Q†b.

For σI = σV = 1, the first two terms vanish. Further, ∆±αAI
α

[
~Qb

]
= ∆±αAI

α

[
~Qe

]
. Using a Taylor expansion

of AI
α

[
~Qe

]
about AI

α

[
~Qt

]
leads to

∥∥∥~R†SAT

[
~Qb, ~Q

†
b

]∥∥∥
∞

= O
(
hs
′)
,
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The proof follows from Lemma 5.2.

5.2 Impermeable Wall

At an impermeable wall, the normal component of velocity is set to zero:

ûα (ξ, t) ≡ M̂αi (ξ)ui (ξ, t) = 0, ξ ∈ B±α , t ≥ 0. (5.8)

This is a well-posed boundary condition for the compressible Euler equations [40], which are obtained

from (2.6) by setting FVi = 0, i = 1, 2, 3. Svärd and Nordström [78] derived an SAT to enforce (5.8) and

showed the existence of an energy estimate for the discrete problem. They noted that their specific form

chosen for the construction of the penalty term is not unique. We will use a different form,

~R±SAT,α

[
~Q
]

= ±σI∆±α ~YIα
[
~Q
]
, ∀ ~Q ∈ V 5

h , (5.9)

where

~YIα

[
~Q
]

= proj




M̃α




ρûα

ρûαu1

ρûαu2

ρûαu3

ρûαh







. (5.10)

Our choice will be motivated by the discussion to follow in Theorem 5.5, where we show that the SAT 5.9

leads to a strongly dual-consistent discretization for functionals of the form (2.14) with KS [Q] an arbitrary

function of pressure. To prove stability for the SAT (5.9), we consider the linearized compressible Euler

equations
∂

∂t
(δQ) = δR [Q; δQ] , δR [Q; δQ] = −J ∂

∂ξi

(
AIi [Q] δQ

)
.

We will follow the approach of Svärd and Nordström [78] and consider a single boundary B−α where an

impermeable wall boundary condition ûα ≡ M̂αiui = 0 is to be enforced. The overall linearized semi-discrete

problem is

J−1 d

dt

(
δ ~Q
)

= −DiA
I
i

[
~Q
]
δ ~Q+ σdiss.

∑

i

DIiδ ~Q+ P−1S−SAT,α

[
~Q
]
δ ~Q, (5.11)
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where S−SAT,α

[
~Q
]
is given by (5.13). Using the principle of frozen coefficients [40], we set ~Q = ~Q0 and

symmetrize (5.11) to obtain

J−1 d

dt

(
δ ~W
)

= −DiÂ
I
i

[
~Q0

]
δ ~W + σdiss.

∑

i

DIiδ ~W + P−1Ŝ−SAT,α

[
~Q0

]
δ ~W,

where δ ~W = Σ
[
~Q0

]
δ ~Q,

ÂI
i

[
~Q
]

= Σ
[
~Q
]

AI
i

[
~Q
] (

Σ
[
~Q
])−1

Ŝ−SAT,α

[
~Q
]

= Σ
[
~Q
]

S−SAT,α

[
~Q
] (

Σ
[
~Q
])−1

,

and Σ
[
~Q
]

=
(
Σ
[
~Q
])T

is the symmetrizer. From the linearized boundary condition δûα = 0, we can show

that
(
Ŝ−SAT,α

[
~Q0

])T

δ ~W = −σIÂI
α

[
~Q0

]
∆−α δ ~W.

To assess the stability of the SAT (5.9), we consider the energy estimate

d

dt

∥∥∥δ ~W
∥∥∥

2

P
=

〈
d

dt

(
δ ~W
)
, δ ~W

〉

P

+

〈
δ ~W,

d

dt

(
δ ~W
)〉

P

= −
(
δ ~W
)T

ÂI
i

[
~Q0

]
∆iδ ~W + 2σdiss.

(
δ ~W
)T
(

P
∑

i

DIi

)T

δ ~W

+ 2
(
δ ~W
)T (

Ŝ−SAT,α

[
~Q0

])T

δ ~W.

The term
(
δ ~W
)T

(P
∑
i DIi)

T
δ ~W is dissipative and can be safely ignored. Dropping the terms in ÂI

i

[
~Q0

]
∆i

on all other boundaries and retaining only −ÂI
α

[
~Q0

]
∆−α , we get

d

dt

∥∥∥δ ~W
∥∥∥

2

P
=
(
1− 2σI

) (
δ ~W
)T

ÂI
α

[
~Q0

]
∆−α δ ~W.

An energy estimate exists for σI > 1
2 , which is the condition for stability.

Linearizing (5.8) and (5.9) yields

δûα (ξ, t) = 0, ξ ∈ B±α , t ≥ 0, (5.12)
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and

S±SAT,α

[
~Q
]

= ±σI∆±α





AI
α

[
~Q
]
− proj







0

Mα1

Mα2

Mα3

0







γ−1
2 uiui

− (γ − 1)u1

− (γ − 1)u2

− (γ − 1)u3

γ − 1




T






, (5.13)

respectively.

Theorem 5.5. Let J [Q] be a functional of the form (2.14) where KV [Q] is arbitrary and KS [Q] is a

function of pressure only. Then, the semi-discrete approximation (3.12) with the SAT (5.9) for enforcing an

impermeable wall boundary condition (5.8) is strongly dual-consistent of order s for σI = 1, where s is the

order of accuracy of the boundary stencils of the diagonal-norm SBP operators in (3.12).

Proof. Let KS [Q] = K̃S [p], where K̃S [p] is a (possibly trivial) nonlinear scalar-field valued functional of pres-

sure. The continuous-adjoint boundary conditions corresponding to an impermeable wall physical boundary

condition on ξ ∈ B±α can be obtained from (4.3), and written

Q†iMαi = ±δK̃s
∂p

[p] , ξ ∈ B±α , t ≥ 0. (5.14)

Using (5.13) and retaining only the inviscid terms in (4.13) yields

~R†SAT

[
~Q, ~Q†

]
= ±

(
σI − 1

)
JP−1∆±α

(
AI
α

[
~Q
])T

~Q†

∓ σIJP−1∆±αproj







γ−1
2 uiui

− (γ − 1)u1

− (γ − 1)u2

− (γ − 1)u3

γ − 1







0

Mα1

Mα2

Mα3

0




T


~Q†

+ JP−1∆±αproj







γ−1
2 uiui

− (γ − 1)u1

− (γ − 1)u2

− (γ − 1)u3

γ − 1




δK̃s
∂p

[p]




for all ~Q, ~Q† ∈ V 5
h . For σ

I = 1, the first term vanishes. Using (5.14), it is easily shown that ~R†SAT

[
~Q, ~Q†b

]
= 0
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for all ~Q ∈ V 5
h , where ~Q

†
b = proj

(
Q†b

)
and Q†b (ξ, t) satisfies (5.14). Again, the proof follows from Lemma 5.2.

5.3 Isothermal Wall

For viscous flows, the fluid velocity at a wall satisfies a no-slip condition. We consider the case of a stationary

isothermal wall, where the velocity components are zero and the temperature distribution is specified:

ui (ξ, t) = 0, and T (ξ, t) = Tw (ξ) , ξ ∈ B±α , t ≥ 0. (5.15)

Using the principle of frozen coefficients [41], Svärd and Nordström [78] showed that this boundary condition

leads to an energy estimate for the linearized problem. To enforce (5.15), we use an SAT of the form

~R±SAT,α

[
~Q
]

= ±σI∆±α ~YIα
[
~Q
]
− σV ∆±α

~YV
[
~Q
]
, ∀ ~Q ∈ V 5

h , (5.16)

where ~YIα
[
~Q
]
is defined in (5.10) and

~YV
[
~Q
]

= proj

[
0 ρu1 ρu2 ρu2 ρE − ρTw

γ

]T

.

Svärd and Nordström [78] derived a stability condition for an SAT whose form is identical to (5.16) except

the inviscid contribution. Based on their analysis for the viscous penalty term, the condition for stability

of the SAT (5.16) is σI > 1
2 and σV > 1

4Re max

([
γ
Pr

5
3

]T

⊗ ĴP̂−1∆̂
±
αproj

(
µ
ρ

))
, where max ~f denotes

the largest component of the semi-discrete vector ~f .

Linearizing (5.15) and (5.16) yields

δui (ξ, t) = 0, and δT (ξ, t) = 0 ξ ∈ B±α , t ≥ 0, (5.17)
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and

S±SAT,α

[
~Q
]

= ±σI∆±α





AI
α

[
~Q
]
− proj







0

Mα1

Mα2

Mα3

0







γ−1
2 uiui

− (γ − 1)u1

− (γ − 1)u2

− (γ − 1)u3

γ − 1




T






− σV ∆±αproj




0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−Twγ 0 0 0 1




, (5.18)

respectively.

Theorem 5.6. Let J [Q] be a functional of the form (2.14) where KV [Q] is arbitrary and KS [Q] is a

(possibly trivial) function of the flux function along the xα-direction: F̂α [Q] = Mαi

(
FIi [Q]−FVi [Q]

)
.

Then, the semi-discrete approximation (3.12) with the SAT (5.16) for enforcing an isothermal no-slip wall

boundary condition (5.15) is weakly dual-consistent of order s for σI = 1 and σV arbitrary, where s is the

order of accuracy of the boundary stencils of the diagonal-norm SBP operators in (3.12).

Proof. Linearizing KS [Q] leads to an expression of the form

δKS [Q; δQ] = −δKS
δF̂α

[Q]

(
Aα [Q] δQ− Bαi [Q]

∂

∂ξi
(C [Q] δQ)

)
,

where δKS
δF̂α

[Q] is a vector-field valued functional with at most 4 non-trivial components since the flux function

corresponding to density is zero at the wall. From (4.3), the continuous-adjoint boundary condition at the

wall is [
0 1 1 1 1

]
Q† = ∓

(
δKS
δF̂α

[Q]

)T

, ξ ∈ B±α , t ≥ 0. (5.19)

There are 4 linearly independent boundary conditions in (5.19), which is as expected given the well-

known characteristic structure of the flow equaitons. Let ~Q†b = proj
(
Q†b

)
, where Q†b (ξ, t) satisfies (5.19).
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From (4.13) and (5.18), we get

~R†SAT

[
~Qb, ~Q

†
b

]
= ±

(
σI − 1

)
JP−1

(
AI
α

[
~Q
])T

∆±α
~Q†b

∓ σIJP−1proj







0

0

0

0

γ − 1







0

Mα1

Mα2

Mα3

0




T


∆±α ~Q
†
b

∓ JP−1∆±αCT
[
~Q
]

BT
iα

[
~Q
]

Di
~Q†b.

For σI = 1, the first term vanishes. Taking an inner product with δ ~Qb = proj (δQb), where δQb (ξ, t)

satisfies the linearized boundary conditions (5.17) yields
〈
~R†SAT

[
~Qb, ~Q

†
b

]
, δ ~Qb

〉
= 0. The result follows from

Lemma 5.2.

5.4 Interface Treatment for Multi-Block Grids

For simulations of flows involving complex geometries, discretization using a single structured mesh may

be inefficient despite the existence of sophisticated grid generation techniques. This can be addressed us-

ing a semi-structured approach, in which the computational domain is divided into sub-domains that are

individually more amenable to such a discretization. In this paper, we restrict ourselves to non-overlapping

sub-domains which can intersect on a common interface, and require that grid lines passing through the

interface are C0 continuous. To simplify the discussion, we consider two sub-domains DL and DR with the

properties described in Section 2.1, such that ∂DL ∩ ∂DR = BL+
1 = BR−1 . Figure 5.1 shows a schematic of

such a configuration.

Let NL
1 and NR

1 denote the number of grid points along the ξ1-direction for the sub-domains DL and

DR, respectively. Per our requirements, the number of grid points along the ξ2- and ξ3-directions are equal

for both sub-domains and are denoted as N2 and N3, respectively. The semi-discretization formulated in

Chapter 3 can be readily extended to this multi-block configuration by defining a semi-discrete vector

~f (t) =




~f L (t)

~f R (t)


 , (5.20)

where ~f L (t) ∈
[
H0
(
R+

0

)]NL1 N2N3 and ~f R (t) ∈
[
H0
(
R+

0

)]NR1 N2N3 . Thus, ~f (t) is an
(
NL

1 +NR
1

)
N2N3 ×
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Figure 5.1: Schematic of a multi-block grid. DLp and DRp are the physical sub-domains; DL and DR are the
corresponding computational sub-domains. There are a duplicate set of nodes on the interface ∂DL ∩ ∂DR
corresponding to the computational boundary surfaces BL+

1 and BR−1 , respectively.

1 column vector, whose components are the semi-discrete approximations of f (x, t) on the grid points

corresponding to the sub-domains DL and DR.

Nordström et al. [60] proposed an interface penalty term, which can be expressed using our notation as

~Rint.
SAT,1

[
~Q
]

= σIL




∆L+
1 −∆̃1

0 0


AI−

1

[
~Qint.

]
~Q+ σIR




0 0

∆̃
T

1 −∆R−
1


AI+

1

[
~Qint.

]
~Q

− σV




∆L+
1 −∆̃1

∆̃
T

1 −∆R−
1


M1i

~FVi

[
~Q
]
, (5.21)

where ∆L+
1 = I5 ⊗ EL+

1 ⊗ P2 ⊗ P3, ∆R−
1 = I5 ⊗ ER−1 ⊗ P2 ⊗ P3, and ∆̃1 = I5 ⊗ Ẽ1 ⊗ P2 ⊗ P3. This

form of expression will be useful for our objectives. We define EL+
1 = diag

[
0 0 . . . 1

]T
NL1 ×NL1

and

ER−1 = diag
[

1 0 . . . 0
]T
NR1 ×NR1

as before, so that ∆L+
1 and ∆R−

1 zero the components of a semi-

discrete vector corresponding to nodes not located on the surfaces BL+
1 and BR−1 , respectively. Ẽ1 is defined

as an NL
1 ×NR

1 matrix with entry 1 at position
(
NL

1 , 1
)
and zero everywhere else. Thus, when ∆̃1 multiplies

a semi-discrete vector of the form (5.20), it takes components of ~f R (t) corresponding to nodes located on

BR−1 , scales them by a constant, and re-positions them so that they correspond to nodes located on BL+
1 .

Implementing this operator in a numerical solver involves a transfer of data from between sub-domains

and poses a challenge to our otherwise highly parallelizable multi-block stencil-based semi-discretization.

Additional care is required when the sub-domains are oriented differently from the configuration shown in

Figure 5.1. For instance, the sub-domains may be oriented such that the BL+
1 computational surface of DL

intersects the BR−2 computational surface of DR. In practice, this may require reshaping of the data received

by a sub-domain so that the ordering of the semi-discrete vectors ~f L (t) and ~f R (t) in (5.20) is preserved.
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In (5.21), Qint. is the Roe-average of QL and QR defined as

ρint. =
√
ρLρR

uint.,i =

√
ρLuLi +

√
ρRuRi√

ρL +
√
ρR

, for i = 1, 2, 3,

hint. =

√
ρLhL +

√
ρRhR√

ρL +
√
ρR

,

where h denotes the enthalpy. Using the Roe-average for Qint. is necessary for conservation of inviscid

fluxes across the interface — an arithmetic average, for example, doesn’t guarantee conservation [66]. The

first term in (5.21) penalizes the difference at the interface, of the inviscid fluxes corresponding to the

characteristics entering DL and those corresponding to characteristics leaving DR, the second term penalizes

the difference between inviscid fluxes corresponding to characteristics leaving DR and those corresponding

to characteristics entering DL, and the last term penalizes the difference in viscous fluxes. The SAT (5.21)

is stable for σIL ≥ 1
2 , σ

I
R ≥ 1

2 and σV = 1
2 [60]. The condition for fluxes at the interface to be conserved is

σIL = σIR = 1. We will show shortly that these conditions also lead to dual-consistency.

Theorem 5.7. Let J [Q] be a functional of the form (2.14), where D = DL ∪ DR, and DL and DR are

non-overlapping sub-domains as shown in Figure 5.1. Then, the semi-discrete approximation (3.12) with

the SAT (5.21) is weakly dual-consistent of order s if σIL = σIR = 1 and σV = 1
2 , where s is the order of

accuracy of the boundary stencils of the diagonal-norm SBP operators in (3.12).

Proof. We ignore all other computational boundary surfaces except the interface ∂DL ∩∂DR. An equivalent

expression to (4.13) for the present multi-block grid is

~R†SAT

[
~Q, ~Q†

]
= −




∆L+
1 0

0 −∆R−
1


JP−1

{(
AI

1

[
~Q
])T

~Q† −CT
[
~Q
]

BT
i1

[
~Q
]

Di
~Q†
}

+ JP−1
(
AV

1

[
~Q
]

+ B1i

[
~Q
]

D1C
[
~Q
])T




∆L+
1 0

0 −∆R−
1


 ~Q†

+ JP−1
(
Sint.

SAT,1

[
~Q
])T

~Q† +




∆L+
1 0

0 ∆R−
1


JP−1 δKS

δ ~Q

[
~Q
]

= 0, (5.22)

for all ~Q, ~Q† ∈ V
5NL1 N2N3

h × V
5NR1 N2N3

h , where Sint.
SAT,1

[
~Q
]
is defined implicitly using Sint.

SAT,1

[
~Q
]
δ ~Q =

δ~Rint.
SAT,1

[
~Q; δ ~Q

]
. Let ~Qb = proj (Qb), where Qb (x, t) is C0 continuous across the interface ∂DL ∩ ∂DR.

Since the computational surfaces BL+
1 and BR−1 are topologically equivalent in the physical domain, the
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Roe-averaged state in (5.21) is computed using “left” and “right” states that are both equal to Qb. Lineariz-

ing (5.21), we get

Sint.
SAT,1

[
~Qb

]
= σIL




∆L+
1 −∆̃1

0 0


AI−

1

[
~Qb

]
+ σIR




0 0

∆̃
T

1 −∆R−
1


AI+

1

[
~Qb

]

− σV




∆L+
1 −∆̃1

∆̃
T

1 −∆R−
1



(
AV

1

[
~Qb

]
+ B1i

[
~Qb

]
DiC

[
~Qb

])
. (5.23)

The surface integral in (2.14) does not have any contribution from nodes located on the interface. Hence,

the last term in (5.22) vanishes. Using σIL = σIR = 1 and σV = 1
2 , and combining (5.22) and (5.23) leads to

~R†SAT

[
~Qb, ~Q

†
]

= JP−1







0 0

−∆̃
T

1 ∆R−
1



(
AI−

1

[
~Qb

])T

+



−∆L+

1 ∆̃1

0 0



(
AI+

1

[
~Qb

])T


 ~Q†

+
1

2
JP−1

(
AV

1

[
~Qb

]
+ B1i

[
~Qb

]
D1C

[
~Qb

])T




∆L+
1 −∆̃1

∆̃
T

1 −∆R−
1


 ~Q†

+ JP−1




∆L+
1 0

0 −∆R−
1


CT

[
~Q
]

BT
i1

[
~Q
]

Di
~Q†.

Rewriting (4.4) in a conservation form, it can be shown that the interface condition for the continuous-

adjoint requires C0 continuity of
(
AI±1 [Q]

)T
Q† (x, t) and

{
−
(
AV1 [Q]

)T
+ CT [Q]BT

i1 [Q]
}
∂Q†/∂ξi. Let

~Q†b = proj
(
Q†b

)
and δ ~Qb = proj (δQb), where Q

†
b (x, t) satisfies this interface condition and δQb (x, t) is C0

continuous across the interface. Then, we get

〈
~R†SAT

[
~Qb, ~Q

†
b

]
, δ ~Qb

〉
= 0,

and the proof follows from Lemma 5.2.

We defined diagonal-norm SBP operators in Section 3.1 and showed that they consist of 2s-order accurate

stencils at interior points and s-order accurate boundary closures, resulting in an overall order of accuracy

of s+ 1 with respect to the diagonal norm associated with the operator. Hicken and Zingg [29] showed that

when such schemes are combined with SATs that lead to a dual-consistent discretization, functional estimates

can be obtained that are 2s-order accurate, a property known as superconvergence. This result is proven for

linear functionals of a scalar variable that satisfies a linear hyperbolic or elliptic PDE in one dimension, with a
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seemingly direct extension to nonlinear functionals and PDEs discretized using three-dimensional curvilinear

multi-block grids with interfaces. As a consequence of superconvergence, dual-consistent discretizations

approximate the integral form of conservation laws upto the order of accuracy of the interior stencils of

the SBP scheme used. Fisher et al. [21] constructed diagonal-norm SBP operators that can be cast as a

telescoping operator consistent with the divergence form of conservation laws, which leads to discrete-exact

global conservation even in the presence of shocks. For s = 2, their scheme is identical to the SBP 2–4

scheme used here. The SBP 3–6 and SBP 4–8 schemes used here do not satisfy a telescoping property.

The interface dual-consistency condition proved in Theorem 5.7 is key to be able to use such schemes on

multi-block grids with interfaces.
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Chapter 6

Verification

Due to the complexity of the formulation, it is important to provide detailed verification that both the

formulation and its implementation are correct. In this chapter, we consider two examples, including adjoint-

based sensitivity of drag force for steady inviscid flow over a NACA0012 airfoil, and unsteady aeroacoustic

control of a two-dimensional viscous shear layer. The examples have been chosen to test different aspects of

the formulation and demonstrate the theorems presented in Chapter 5.

6.1 Drag Sensitivity of a NACA0012 Airfoil

First, we consider steady inviscid two-dimensional flow over a NACA0012 airfoil at 2◦ angle of attack. The

freestream Mach number is 0.5. The shape of the top and bottom surfaces of the airfoil are described by

x2 = ±5c′tf (x1/c
′) , 0 ≤ x1 ≤ c′,

where c′ is the chord length, t = 0.12, and

f (η) = 0.2969
√
η − 0.126η − 0.3516η2 + 0.2843η3 − 0.1015η4.

Since this profile is not differentiable at x =
(
c′,±2.52× 10−3c′

)
, we regularize it with a smooth curve using

x2 =





±5c′tf (x1/c
′) , 0 ≤ x1 ≤ c′

±c′
√
β (x1 − c) /c′ , c′ < x1 ≤ c.

(6.1)

Enforcing C1-continuity at x1 = c′, we get β = −1.2729×10−4, and the modified chord length c = 1.00449c′.

Hereafter, we will use c as the reference chord length for non-dimensionalization. An O-grid with 512× 448

points in the directions tangential and normal to the airfoil surface, respectively, is generated by extruding

the profile (6.1) outwards using the commercial software Gridgen [74]. The freestream flow is assumed to be
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Figure 6.1: Convergence history of the normalized residuals for the density, momentum and energy equations.

along the x1-direction and the grid is rotated to account for the angle of attack. In the direction normal to

the airfoil surface, the physical domain extends to a distance of about 65c. The mesh is stretched along this

direction, with a maximum point-to-point stretching of 2%.

The flow is initialized with ρ = ρ∞, u1 = u∞ = 0.5a∞, u2 = 0, and p = p∞. An SBP 2–4 scheme

with fourth-order accuracy at interior points and second-order accuracy near boundaries is used in the semi-

discrete approximation (3.12) excluding viscous terms. Artificial dissipation is included per (3.12) and (3.7)

with σdiss. = 0.012. At the surface of the airfoil, an SAT of the form (5.9) with σI = 1 enforces the

impermeable wall condition. This effectively handles the initial transient introduced by using an initial

condition that violates the impermeable wall condition on the airfoil surface. The outer far-field boundary

is padded with a sponge layer of size 20c, where the procedure described in Section 5.1 is used to model a

far-field boundary condition.

Starting from the initial condition, the semi-discrete approximation of the compressible Euler equations

are integrated in time using the fourth-order Runge–Kutta (RK4) scheme (3.16) until the residual
∥∥~R
[
~Q
]∥∥
∞

becomes zero up to floating-point roundoff. Figure 6.1 shows the convergence history of the residuals for

the density, momentum and energy equations, respectively. For this steady-state problem, the time history

of the flow solution is not required to solve the steady adjoint equations. Hence, alternate approaches for

solving the nonlinear system ~R
[
~Q
]

= 0, such as Newton–Krylov methods are perfectly valid, and may even

be more efficient. Our decision to use the RK4 method is motivated mainly by its ease of implementation

and the popularity of it and related multi-stage methods in high-fidelity flow physics simulations.

Figure 6.2 visualizes the contours of p − p∞ at steady state. Figure 6.3 shows a comparison of the

present numerical results for the pressure coefficient Cp = p−p∞
1
2ρ∞u

2
∞

on the airfoil surface with the experiment
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Figure 6.2: Contours of p− p∞ at steady state.

of Ladson et al. [42] at Ma = 0.5054, α = 2.0264◦ and Rec = 3.025 × 106. A good qualitative agreement

with the experiment is observed, which is sufficient for the purpose of this demonstration. Agreement is

imperfect, as typically seen for this inviscid model [35, 71].

The drag force on the airfoil is

J [Q] = −
ˆ
B−2

[p (ξ, t)− p∞] M21dξ1,

where M21dξ1 is the area of an infinitesimal surface along the airfoil, and the integration is over the airfoil

surface, which in our case maps to the computational boundary B−2 . The corresponding continuous-adjoint

boundary condition is M21

(
Q†2 − 1

)
+M22Q

†
3 = 0. To solve the semi-discrete adjoint equations to obtain the

sensitivity of J [Q], we use the same procedure and convergence criterion as the flow equations. Figure 6.4

shows the convergence history of the residuals of the adjoint density, momentum and energy equations,

respectively.

From Theorem 5.5, the choice σI = 1 for the SAT at the airfoil surface leads to a dual-consistent

scheme. Thus, we may anticipate the semi-discrete adjoint to be smooth and free from spurious oscillations.

Figure 6.5 compares the Q†3 adjoint field obtained using σI = 1 and σI = 2. At each point in physical space,

the magnitude of Q†3 represents the linear response of the drag functional to an impulse-like forcing applied

at that point to the x2-momentum equation. A negative sign indicates that a forcing in the +x2-direction

at that location is favorable, or leads to a reduction in drag, and vice-versa. The results in Figure 6.5 agree

with the usual expectation that a suction force applied at the upper surface of the airfoil near the leading
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Figure 6.5: Comparison of the Q†3 adjoint field obtained by solving the semi-discrete adjoint equations with:
(a) a dual-consistent (σI = 1), and (b) a dual-inconsistent (σI = 2) discretization.

edge results in drag reduction. Further, the Q†3 field in Figure 6.5a is similar to that obtained by Hicken and

Zingg [31]. The steady-state dual-inconsistent adjoint solution is oscillatory and contains 2δ-waves, whose

amplitude is maximum at the airfoil surface. We emphasize that this is still the discrete-exact adjoint of a

valid and high-resolution space–time discretization of the flow equations. The spurious modes in the dual-

inconsistent adjoint solution cannot be removed by increasing the amount of artificial dissipation, since this

is not set independently but is constrained by the amount of dissipation added to the primal discretization

through (4.11).

The dual-consistent adjoint field in Figure 6.5a is free from 2δ-waves and oscillatory behavior, but has

a sharp gradient over a layer close to the airfoil surface. Tests revealed that the thickness of this layer is

proportional to the amount of artificial dissipation σdiss. in (3.12). To investigate this further, we discretized

the continuous-adjoint equations using the same numerics and the same adjoint coefficients, but instead of

adding an artificial dissipation, we used an explicit five-point stencil fourth-order accurate filter [45] with

strength σf = 0.01 applied every 20 timesteps. Figure 6.6 shows a comparison of the steady-state Q†3

adjoint field obtained from the two approaches. Since Theorem 5.5 guarantees that (4.12) is a consistent

and accurate discretization of the continuous-adjoint equations for σI = 1, we conclude that the sharp

gradient in the adjoint field in Figure 6.6a is the sensitivity contribution to J [Q] of the artificial dissipation

term in the primal system. We do not expect the impact of this to be significant in our viscous Navier–

Stokes demonstrations, where the artificial viscosity due to numerical dissipation is relatively small compared

to physical viscosity. If the numerical model of the viscous flow is deemed to be a sufficiently accurate

representation of the physics, this then is the adjoint that is both consistent with its formulation for the
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Figure 6.6: Comparison of the Q†3 adjoint field obtained by solving the continuous-adjoint equations with:
(a) an SAT artificial dissipation scheme, and (b) an explicit five-point stencil fourth-order accurate filter,
which would not yield a dual-consistent form.

continuous problem and exact for its discretization.

6.2 Finite-Precision Effect on Discrete-Adjoint Accuracy

In Section 2.4, we showed that the accuracy of the discrete-adjoint-based gradient is limited by the finite-

precision arithmetic employed when solving the discretized forward and adjoint equations. The effect of

accumulation of roundoff errors becomes significant, especially when combined with the amplification of

sensitivity due to the inherent chaos of turbulence. This will be discussed in some detail in Chapter 7,

where we compare the accuracy of the continuous- and discrete-adjoint-based sensitivities based on the

gradient error (2.22) for a turbulent mixing layer. Verifying the limit at which roundoff errors dominate

the balance (2.23) for the discrete-adjoint method is in general, computationally expensive, since it requires

simulations with multiple precisions that may not be natively supported at the computer hardware level. At

the time of writing, quadruple-precision arithmetic, which involves operations on IEEE 754 128-bit floating

point numbers [1] is only supported through software emulation on all computing architectures. Here,

we demonstrate this roundoff error limit for a relatively computationally inexpensive simulation of a two-

dimensional mixing layer using single-, double- and quadruple-precision arithmetic. This is a nonlinear, but

relatively deterministic solution of the flow equations, for which we do not expect the amplification of errors

to occur via the chaotic mechanisms available in the turbulent flows we consider subsequently in Chapters 7

and 8.

Figure 6.7 shows a schematic of this flow. It is a mixing layer between two streams of velocities 0.9a∞
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and 0.2a∞. It is simulated with a mesh with 961× 641 grid points in the x1- and x2-directions, respectively.

The target and control mollifying support functions from (2.14) and (2.19), respectively, are such that

WΩ (ξ) ∼ B0,2

(
xΩ

2

) {
tanh

[
160

(
xΩ

1 − 0.035
)]
− tanh

[
160

(
xΩ

1 − 0.965
)]}

WΓ (ξ) ∼
{

tanh
[
40
(
xΓ

1 − 0.2
)]
− tanh

[
40
(
xΓ

1 − 0.8
)]} {

tanh
[
40
(
xΓ

2 − 0.2
)]
− tanh

[
40
(
xΓ

2 − 0.8
)]}

,

and
´
ξ∈DWΩ (ξ) 1

J(ξ)d
2ξ =

´
ξ∈DWΓ (ξ) 1

J(ξ)d
2ξ = 1, where

xΩ
1 =





x1

100δ0w
,
∣∣∣ x1

δ0w
− 50

∣∣∣ ≤ 50

0, otherwise

xΩ
2 =





1
8

(
x2

δ0w
+ 74

)
,
∣∣∣ x2

δ0w
+ 70

∣∣∣ ≤ 4

0, otherwise

xΓ
1 =





1
6

(
x1

δ0w
− 1
)
,
∣∣∣ x1

δ0w
− 4
∣∣∣ ≤ 3

0, otherwise

xΓ
2 =





1
6

(
x2

δ0w
+ 3
)
,
∣∣∣ x2

δ0w

∣∣∣ ≤ 3

0, otherwise.

Full details of this flow are available [89, 90], and are not reported here. The mixing layer is advanced in

time using a constant time step size ∆t = 0.03δ0
w/a∞ using the RK4 scheme (3.16). Starting from the initial

condition

ρ = ρ∞

u1 = U2 +
1

2
(U1 − U2)

[
1 + tanh

(
2x2

δ0
w

)]

u2 = 0

p = p∞,

where U1 = 0.9a∞ and U2 = 0.2a∞, the flow is simulated from t = 0 to t = t0 = 840δ0
w/a∞, which

marks the beginning of the control interval. Following this, 20, 800 timesteps are taken from t = t0 to

t = t1 = 1464δ0
w/a∞.
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Figure 6.8: Gradient accuracy per (2.22) for different arithmetic precisions for the two-dimensional mixing
layer.

Figure 6.8 shows a comparison between the accuracy of the discrete-exact gradients obtained from sim-

ulations performed with single 32-bit (single-precision), 64-bit (double-precision), and 128-bit (quadruple-

precision) floating-point arithmetic. As α→ 0, the gradient error E = O (α) upto a limit that is proportional

to the computing precision. This indicates that the discrete-adjoint formulation as implemented in the nu-

merical solver is compatible with the space–time discretization of the flow equations since any incompati-

bility would be expected to contribute to the O
(

1
Nai
,∆tb

)
term in (2.23) that dominates the floating-point

roundoff errors for the spatial and temporal resolutions employed in this simulation. Figure 6.9 shows the

discrete-adjoint Q†4 (ξ, t) field, which corresponds to the energy equation in a two-dimensional formulation.

Theorem 5.4 guarantees that the discretization (3.12) is dual-consistent for σI = σV = 1 in the SATs (5.5)

that enforce the boundary conditions. Thus, we anticipate the corresponding Q†4 (ξ, t) field to be free from

sensitivities that are an artifact of the discretization . Figure 6.9a demonstrates this. In contrast, a different

value σI = 10 that meets the stability condition for the SATs, leads to a non-smooth adjoint field which is

still discrete-exact and compatible with the corresponding space–time discretization of the forward model.

Vishnampet et al. [83] reported this quantity for the same mixing layer using a slightly different formulation

with additional incompatibilities in the discretization that degrade the approximation (5.1) further. Their

discretization violates Lemma 5.2, and leads to errors in (5.1) that have support both at the boundaries

of the computational domain as well as at interior points. Consequently, their result showed significantly

higher-amplitude saw-tooth type features in the Q†4 (ξ, t) field. Figure 6.9b shows similar saw-tooth type

features, but to a much smaller extent.
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Figure 6.9: Comparison of the Q†4 adjoint field obtained by solving the discrete-adjoint equations with:
(a) σI = 1 which leads to a dual-consistent discretization, and (b) σI = 10 which leads to a stable, but
dual-inconsistent discretization.
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Chapter 7

Adjoint Errors in Turbulence

In this chapter, we derive the specific fully discrete adjoint equations corresponding to the three-dimensional

compressible flow equations discretized with high-order schemes commonly used in aeroacoustic simulations.

The spatial discretization considered here is different from that disucssed in Chapter 3 and does not have the

same conservation properties, but is commonly used and effective for the class of flows we wish to study. The

sensitivity gradient from the fully discrete adjoint formulation is shown to provide an exact gradient∗ of the

cost functional for the sound radiated by a compressible turbulent mixing layer. Further, some key advances

are made that make implementation of the fully discrete adjoint practical for such discretizations. This is

an important step beyond the algorithms that have been developed to do this for aerodynamic simulations

so far. Application of the fully discrete adjoint method to an important category of free-shear flows will

highlight differences from the continuous-adjoint approach and facilitate an adjoint-field error analysis.

7.1 Flow Configuration

The fully discrete adjoint method is demonstrated on a three-dimensional temporally developing mixing

layer shown in Figure 7.1, which is almost identical to the “ML2” mixing layer studied by Kleinman and

Freund [39]. A temporally developing mixing layer is studied here because it captures the essential features

of an inhomogeneous turbulent flow, while its periodicity in the streamwise and spanwise directions makes

it computationally convenient. The initial mean flow is

u1 =
∆U

2
tanh

(
x2

2δ0
m

)

u2 = u3 = 0

p = p∞, (7.1)

∗Aside from roundoff errors introduced due to floating-point arithmetic.
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Figure 7.1: The three-dimensional temporally developing mixing layer at t = t0 with turbulence visualized
by vorticity magnitude isosurfaces colored by the value of x2/δ

0
m.

with velocity difference ∆U = 0.9a∞,where a∞ is the ambient speed of sound. The initial mean density

is obtained using the Crocco-Busemann relation assuming that upper and lower streams have the same

temperature:

ρ = ρ∞

[
1 +

γ − 1

2a2
∞

(
∆U2

4
− u2

1

)]−1

. (7.2)

The momentum thickness is used throughout as a length scale and is defined

δm (t) =
1

ρ∞∆U2

ˆ ∞
−∞

ρ

(
∆U2

4
− ũ2

1

)
dx2,

where · and ·̃ denote Reynolds and Favre averages, respectively [46]. The initial momentum thickness is

defined as δ0
m = δm (t = 0). For the present flow configuration, the Reynolds average ϕ (x2, t) is obtained by

averaging ϕ (x, t) in the homogeneous x1- and x3-directions. The corresponding Favre average is

ϕ̃ =
ρϕ

ρ
.

Perturbations from the Reynolds and Favre averages are denoted as ϕ′ and ϕ
′′
, respectively.
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7.2 Discretization

The governing equations discussed in Section 2.2 are rewritten here in the same form used for the semi-

discrete approximation. The fluid is assumed to be a constant-viscosity Newtonian perfect gas with zero

bulk viscosity µB = 0 and the same non-dimensionalization described in Section 2.2 is used. In Cartesian

coordinates, the expanded component-form of the governing equations (without any control action) is

N1 [Q] (x, t) =
∂ρ

∂t
+

∂

∂xi
(ρui)

Ni+1 [Q] (x, t) =
∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij)−

∂τij
∂xj

, for i = 1, 2, 3

N5 [Q] (x, t) =
∂

∂t
(ρE) +

∂

∂xi
[ui (ρE + p)]− 1

RePr

∂2T

∂xi∂xi
− ∂

∂xi
(τijuj) , (7.3)

where

τij =
1

Re

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
.

For this demonstration simulation, the governing equations (7.3) are discretized on a grid with N1 ×

N2 × N3 = 680 × 425 × 168 points in the streamwise (x1), cross-stream (x2) and spanwise (x3) directions,

respectively. The computational domain extends from −1000δ0
m to 1000δ0

m in the streamwise and cross-

stream directions, and from −375δ0
m to 375δ0

m in the spanwise direction. The mesh is uniform in the x1-

and x3-directions. The transformation between the physical and computational domains is

X1 (ξ) = 2000δ0
m (ξ1 − 0.5)

X2 (ξ) = 1000δ0
mg (ξ2) /g (1)

X3 (ξ) = 750δ0
m (ξ3 − 0.5) , (7.4)

where

g (s) = (s− 0.5) (1 + 2b) + bσ

(ˆ s−0.5−c
σ

− c
σ

erf (x) dx−
ˆ s−0.5+c

σ

c
σ

erf (x) dx

)
, 0 ≤ s ≤ 1.

The parameters b = 12, c = 0.6 and σ = 0.21 give a minimum spacing ∆x2,min = 2.29δ0
m and a maximum

point-to-point relative change in spacing of 2% at x2 = ±578δ0
m. Figure (7.2) shows the mesh spacing

∆x2 and its point-to-point relative change in percentage as a function of the computational coordinate ξ2.

Derivatives in the xi-direction are computed as
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Figure 7.2: Mesh spacing ∆x2 = x2,i+1 − x2,i and its point-to-point relative change ∆2x2/∆x2 in the
cross-stream direction for the three-dimensional temporally developing mixing layer.

∂ϕ

∂xi
= JMji

∂ϕ

∂ξj

∂2ϕ

∂xi∂xj
= J2MliMkj

∂2ϕ

∂ξl∂ξk
+ JMli

∂

∂ξl
(JMkj)

∂ϕ

∂ξk
. (7.5)

Using (7.4) and (3.11), we can rewrite (7.5) as:

∂ϕ

∂xα
=





1

X ′α

∂ϕ

∂ξα
, α = 2

1

hα

∂ϕ

∂ξα
, otherwise

(7.6a)

∂2ϕ

∂x2
α

=





1

X ′2α

∂2ϕ

∂ξ2
α

− X
′′
α

X ′3α

∂ϕ

∂ξα
, α = 2

1

h2
α

∂2ϕ

∂ξ2
α

, otherwise ,

(7.6b)

respectively, where h1 and h3 are the (constant) mesh spacings in the ξ1- and ξ3-directions, respectively.

Explicit narrow-stencil SBP 3–6 finite-difference schemes are used to approximate first- and second-

derivatives in the ξ1- and ξ2-directions. The schemes are fourth-order accurate with respect to a diagonal

norm. The ξ1-direction is periodic and therefore amenable to Fourier methods, but we use a finite-difference

scheme to approximate derivatives along this direction because it facilitates efficient parallelization and

better illustrates the methods as they would be used more generally. Mixed derivatvies are computed

using a repeated application of two discrete first-derivative operators. The derivatives in the ξ3-direction

are computed using a Fourier transform. A Fourier filter removes the contribution of the highest 15% of

wavenumbers in the ξ3-direction to suppress aliasing errors. No other artificial dissipation such as discussed

59



in Section 3.2, or filtering is used.

Some additional definitions are required to construct the semi-discrete approximation of (7.3). Following

the notation introduced in Section 3.1, we define

D̂ix1
= Dix1

⊗ IN2
⊗ IN3

D̂ix2 = IN1 ⊗Dix2 ⊗ IN3

D̂ix3 = IN1 ⊗ IN2 ⊗Dix3 , (7.7)

for i = 1, 2, where Dixα approximates an i-th derivative along the xα-direction, i.e., ∂i

∂xiα
according to (7.6).

Additionally, semi-discrete operators for a mixed derivative and a Laplacian are defined as

Êij =





D̂1xiD̂1xj , i 6= j

D̂2xi , i = j,

and

L̂ = D̂2x1
+ D̂2x2

+ D̂2x3
,

respectively. The semi-discrete approximation of (7.3) can be written as

~N1

[
~Q
]

(t) =
d~ρ

dt
+ D̂1xj

−→ρuj

~Ni+1

[
~Q
]

(t) =
d

dt
(−→ρui) + D̂1xj (−→ρui ◦ ~uj + ~pδij)−

1

Re

(
L̂~ui +

1

3
Êij~uj

)
, for i = 1, 2, 3,

~N5

[
~Q
]

(t) =
d

dt

(−→
ρE
)

+ D̂1xj

[
~uj ◦

(−→
ρE + ~p

)]
− 1

RePr
L~T − 1

Re
~uj ◦

(
L̂~uj +

1

3
Êjk~uk

)
− 1

Re
~Φ,

where

~Φ =
(
D1xj~ui

)
◦ (D1x1

~uj) + (D1xi~uj) ◦ (D1x1
~uj)−

2

3
(D1xi~ui) ◦

(
D1xj~uj

)
.

7.3 Initial and Boundary Conditions

To initialize the flow, the procedure described by Kleinman and Freund [39] is used, where an auxiliary

simulation (denoted in that reference as “ML3”) provides the initial condition for the present mixing layer.

The auxiliary simulation is performed using the same physical domain discretized on a grid with N1×N2×

N3 = 1710× 1043× 420 in the streamwise (x1), cross-stream (x2) and spanwise (x3) directions, respectively.

Using the same analytical transformation (7.4) gives a minimum spacing ∆x2,min = 0.93δ0
m and a maximum
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point-to-point relative change in spacing of 0.8% at x2 = ±580δ0
m. The auxiliary simulation is initialized

according to (7.1) and (7.2). To seed the turbulence, a velocity perturbation of the form:

u′1 (x) =
∑

i,j

ε

4π2kjx3

e−σx
2
2 (sinx2 + 2σx2 cosx2) sin

(
kix1

x1 + θi1
)

cos
(
kjx3

x3 + θj3

)

u′2 (x) = −
∑

i,j

ε

4π2kix1
kjx3

e−σx
2
2 cosx2 cos

(
kix1

x1 + θi1
)

cos
(
kjx3

x3 + θj3

)

u′3 (x) =
∑

i,j

ε

4π2kix1

e−σx
2
2 (sinx2 + 2σx2 cosx2) cos

(
kix1

x1 + θi1
)

sin
(
kjx3

x3 + θj3

)
,

is used, where ε = 0.05, σ = 1.125, kix1
= 2πi/2000δ0

m, kjx3
= 2πj/750δ0

m, and θi1 and θj3 are random phases

in [0, 2π), for i = 333, . . . , 395 and j = 122, . . . , 182. This corresponds to a longest wavelength of about 6δ0
m

in the streamwise (x1) direction and 6.15δ0
m in the spanwise (x3) direction.

Starting from this initial condition, the auxiliary simulation was run from t = 0 to t = 864δ0
m/∆U . The

solution from the auxiliary simulation is then interpolated onto the relatively coarser grid employed for the

present mixing layer using a Fourier transform in the x1- and x3-directions, and cubic spline interpolation

in the x2-direction. To allow sufficient time for transients introduced due to the interpolation to exit the

domain, the present mixing layer is simulated from t = 0 to t = t0 = 810δ0
m/∆U , which corresponds to the

control onset time (though the effect of the control on the sound field is delayed due to the finite speed of

sound propagation). Starting from t = t0 = 810δ0
m/∆U , the flow is simulated up to t = t1 = 2610δ0

m/∆U .

The mixing layer grows linearly in time. The instantaneous vorticity thickness of the mixing layer is

δw (t) =
∆U

|∂u2/∂x2|max

.

Momentum and vorticity thickness growth for t0 ≤ t ≤ t1 are shown in Figure 7.3. During this interval, the

momentum thickness increases from δm (t0) = 19δ0
m to δm (t1) = 53δ0

m, or a factor of 2.8. The rate of growth

of momentum thickness is δ̇m (t) = 0.019∆U , which is identical to the value obtained by Kleinman [38].

7.4 Turbulence Statistics

Figure 7.4 shows a comparison of the mean streamwise velocity at t = t0 with previous experiments and

simulation. There is no laboratory equivalent of a temporally developing mixing layer. Hence, mean flow

statistics are compared with expermients of spatially developing mixing layers. For a temporally developing

mixing layer, the similarity variable is x2/δw (t), where δw (t) is the instantaneous vorticity thickness.
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Figure 7.3: Evolution of momentum and vorticity thickness scaled by the initial thicknesses δ0
m and δ0

w,
respectively for the three-dimensional temporally developing mixing layer.

−1 −0.5 0 0.5 1

x2/δw (t)

−0.5

−0.25

0

0.25

0.5

ũ
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Figure 7.4: Comparison of Favre-averaged streamwise velocity versus cross-stream coordinate scaled by
instantaneous vorticity thickness at t = t0 with experiments [73, 4] and the DNS of Pantano and Sarkar [62].
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Figure 7.5: Visualization showing contours of vorticity magnitude and dilatation along x3/δ
0
m = 0 (top)

and x2/δ
0
m = 0 (bottom) at t = t0 (left) and t = t1 (right) for the three-dimensional temporally developing

mixing layer. The solid black lines are the boundaries of finiteWΩ defined in (7.9), where the radiated sound
is measured.

Figure 7.5 visualizes the flow at t = t0 and t = t1. A realistic turbulence field appears to have developed

by t = t0. Reynolds stress statistics shown in Figure 7.6 support this, as do the turbulence spectra shown in

Figures 7.7 and 7.8. The Reynolds stress profiles show a collapse in terms of the width, but a considerable

disagreement exists between the peak values at various times. This is similar to the behavior observed

by Kleinman [38], who suggested that the largest spatial structures may be influenced by the size of the

computational domain at later times.

Figure 7.7 shows the one-dimensional kinetic energy and pressure spectra along the streamwise (x1)

direction during various times throughout the control horizon. Figure 7.8 shows the corresponding spectra

along the spanwise (x3) direction. Our goal was to challenge the control by applying it on a realistically

broad-banded turbulent flow. The streamwise and spanwise spectra show significant energy over a broad

range of wavenumbers, which drops at high wavenumbers due to viscosity, though a distinct k ∝ −5/3

inertial range is not expected for Reδm(t0) = 926. To assess the effect of the size of the computational

domain, the correlations of velocity and pressure are shown in Figures 7.9 and 7.10. These are defined as

Rϕ′ϕ′ (x2, t) =

ˆ
ϕ′ (x, t)ϕ′ (x + x, t) dx1dx3,
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Figure 7.6: Reynolds stress profiles versus cross-stream coordinate scaled by instantaneous momentum
thickness for the three-dimensional temporally developing mixing layer.
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Figure 7.7: One-dimensional streamwise (x1) kinetic energy and pressure spectra at x2/δ
0
m = 0 for the

three-dimensional temporally developing mixing layer.

65



10−2 10−1 1

kx3δ
0
m

10−4

10−3

10−2

10−1

1

101

E
u

(k
x
3
)
/
( a2 ∞

δ
0 m

) ,E
p

(k
x
3
)
/
( ρ2 ∞

a
4 ∞
δ
0 m

)

Kinetic Energy
Pressure

(a) (t− t0) ∆U/δ0
m = 0

10−2 10−1 1

kx3δ
0
m

10−4

10−3

10−2

10−1

1

101

E
u

(k
x
3
)
/
( a2 ∞

δ
0 m

) ,E
p

(k
x
3
)
/
( ρ2 ∞

a
4 ∞
δ
0 m

)
Kinetic Energy
Pressure

(b) (t− t0) ∆U/δ0
m = 594

10−2 10−1 1

kx3δ
0
m

10−4

10−3

10−2

10−1

1

101

E
u

(k
x
3
)
/
( a2 ∞

δ
0 m

) ,E
p

(k
x
3
)
/
( ρ2 ∞

a
4 ∞
δ
0 m

)

Kinetic Energy
Pressure

(c) (t− t0) ∆U/δ0
m = 1188

10−2 10−1 1

kx3δ
0
m

10−4

10−3

10−2

10−1

1

101

E
u

(k
x
3
)
/
( a2 ∞

δ
0 m

) ,E
p

(k
x
3
)
/
( ρ2 ∞

a
4 ∞
δ
0 m

)

Kinetic Energy
Pressure

(d) (t− t0) ∆U/δ0
m = 1782

Figure 7.8: One-dimensional spanwise (x1) kinetic energy and pressure spectra at x2/δ
0
m = 0 for the three-

dimensional temporally developing mixing layer.
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where xi = x1δi1 for streamwise autocorrelations and xi = x3δi3 for spanwise autocorrelations. The cor-

relations are normalized by their maximum values, which occurs for x = 0. For large x1, the streamwise

correlations decay to zero, which indicates that the streamwise domain size is sufficient for simulating the

present mixing layer. The spanwise correlations do not show the same decay and a finite, but a small

correlation is observed even for x3 & 500δ0
m.

7.5 Control Implementation

The objective is to suppress the noise generated by the mixing layer, so the cost functional J [Q, f ] is defined

per (2.14) and (2.15). The target mollifying support function WΩ (ξ, t) in (2.14) is selected to have support

in the target region shown in Figure 7.1. The specific form of WΩ (ξ, t) is such that

WΩ (ξ, t) ∼ B0,2

(
xΩ

2

)
rΩ (t) , (7.9)

where

xΩ
2 =

1

70δ0
m

(
x2 + 800δ0

m

)
,

rΩ (t) =
1

2

[
tanh

{
(t− t0) / (t1 − t0)− 0.01

0.001

}
+ tanh

{
(t1 − t) / (t1 − t0)− 0.01

0.001

}]
,

and B0,2 is the B-spline basis function of degree 2

B0,2 (x) =





9
2x

2 , 0 ≤ x ≤ 1
3

− 9
2x

2 + 9x− 3
2 , 1

3 ≤ x ≤
2
3

9
2 (1− x)

2
, 2

3 ≤ x ≤ 1

0 , otherwise.

The B-spline basis function provides a compact support that blends smoothly to zero at the boundaries of

the target region. To control radiated sound, the target region must be located in the acoustic field. To

confirm that its support is sufficiently far from the turbulence to achieve this, the residual of the linearized

Euler equations is computed for the uniform free-stream flow, which should become small in the acoustic

field. Figure (7.11) shows this is so even at the control interval when the mixing layer has spread furthest.

From its peak value at the mixing layer, the residual drops significantly suggesting that non-linearity is

indeed negligible in the target region around x2 = −765δ0
m.
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Figure 7.9: Normalized streamwise (x1) autocorrelations of velocity and pressure at x2/δ
0
m = 0 for the

three-dimensional temporally developing mixing layer.
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Figure 7.10: Normalized spanwise (x3) autocorrelations of velocity and pressure at x2/δ
0
m = 0 for the

three-dimensional temporally developing mixing layer.
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Figure 7.11: Residual of the linearized Euler equation applied to the pressure computed from the DNS
data at t = t1 for the three-dimensional temporally developing mixing layer. The target mollifying support
WΩ (ξ) is also shown.

The control for this demonstration is an energy source term with compact support in the control region

shown in Figure 7.1. The control mollifying support function WΓ (ξ, t) in (2.19) is selected to have support

in the control region shown in Figure 7.1. The specific form of WΓ (ξ, t) is such that

WΓ (ξ, t) ∼ B0,2

(
xΓ

2

) [
tanh

{
60
(
xΓ

1 − 0.1
)}

+ tanh
{

60
(
0.9− xΓ

1

)}]
rΓ (t)




0

0

0

0

1




, (7.10)

where

xΓ
1 =

1

800δ0
m

(
x1 + 400δ0

m

)

xΓ
2 =

1

32δ0
m

(
x2 + 16δ0

m

)
,

and rΓ (t) = rΩ (t). The mollifying support functions (7.9) and (7.10) are further scaled by the inverse

of their norm based on the inner product (3.1). The target region extends fully across the computational

domain in the periodic x1- and x3-directions. rΓ (t) and rΩ (t) ensure that the control forcing in (2.19) and

the target forcing in the adjoint equations increase gradually from zero. The control region is located in

the shear layer, so that the control will alter the turbulence that makes the sound. Wei and Freund [90]

explored different types of controls for a two-dimensional compressible mixing layer and achieved maximum
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noise reduction using a thermal actuation, which is used for the present simulation.

7.6 The Adjoint and its Accuracy

Because a different semi-discrete approximation (7.8) is used to simulate the present mixing layer than the

one for which the adjoint was formulated in Chapter 4, the corresponding semi-discrete adjoint operator

is derived here. For subsequent comparisons and to provide context, we start with the continuous-adjoint

equations. From the governing equations (7.3) and Definition 4.1, we get

N †1
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Q,Q†
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=
∂Q†1
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. (7.11)

These equations are identical to those reported by Kleinman [38], who report non-reflecting adjoint boundary

conditions that are compatible with the radiation condition for the adjoint at the cross-stream boundaries.

Although the formulation does not require this, to numerically solve (7.11), the derivatives are discretized

using the same schemes as for the flow equations discussed in Section 7.2, including the same fourth-order

Runge–Kutta scheme for time-integration. The boundary conditions for Q† on the cross-stream boundaries

ξ ∈ B±2 are implemented using the SAT

~R±SAT,2

[
~Q
]

= ±σI∆±2 AI±
2

[
~Qt

] (
~Q− ~Qt

)
.
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To derive the semi-discrete adjoint operator, we use the identity (4.11), which leads to
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with the following notation for adjoint discrete derivative operators:

D†ixj = P−1DT
ixjP

L† = P−1LTP

E†ij = P−1ET
ijP.

The computational cost of the fully discrete adjoint method is connected to the choice of discretization of

the forward model. Our fully discrete adjoint method is modestly more computationally expensive than the

continuous-adjoint method, which we quantify for discussion here based upon the number of field derivatives,

since these constitute most of the computational effort. For a three-dimensional problem, there are 72
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derivative operators in (7.12), compared to the discretization of (7.11), which requires only 54. The additional

terms are not in the corresponding continuous formulation because continuous first- and second-derivative

operators are skew-Hermitian and Hermitian, respectively, which affords cancellation of certain combinations

of terms that result from the integration-by-parts procedure. The same cancellation is not exact for discrete

operators, which leads to (7.12), and a modest increase in required operations. The expression has been

simplified to exploit the linearity and distributive properties of the adjoint discrete derivative operators.

It can be further simplified in some obvious ways to exploit the properties of SBP operators, but we do

not pursue this in detail since we wish to retain the generality of (7.12) for a broader class of explicit

finite-difference operators.

Figures 7.12 to 7.16 show visualizations of the fully discrete adjoint fields. The adjoint equations are

forced in the target region, which is in the acoustic field. Since the flow equations are self-adjoint in the

acousic limit, these quantities are expected to behave approximately like a sound wave until they interact

with the mixing layer.
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(a) (b)

(c) (d)

Figure 7.12: Visualization of Q†1 (ξ, t) from the fully discrete adjoint method along x3/δ
0
m = 0 (top) and

x2/δ
0
m = 0 (bottom) at times (a) (t− t0) ∆U/δ0

m = 1620, (b) (t− t0) ∆U/δ0
m = 1080, (c) (t− t0) ∆U/δ0

m =
540, and (d) (t− t0) ∆U/δ0

m = 0. The solid black lines are the boundaries of finite WΩ defined in (7.9),
where the otherwise homogeneous adjoint equations are forced.
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(a) (b)

(c) (d)

Figure 7.13: Visualization of Q†2 (ξ, t) from the fully discrete adjoint method along x3/δ
0
m = 0 (top) and

x2/δ
0
m = 0 (bottom) at times (a) (t− t0) ∆U/δ0

m = 1620, (b) (t− t0) ∆U/δ0
m = 1080, (c) (t− t0) ∆U/δ0

m =
540, and (d) (t− t0) ∆U/δ0

m = 0. The solid black lines are the boundaries of finite WΩ defined in (7.9),
where the otherwise homogeneous adjoint equations are forced.
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(a) (b)

(c) (d)

Figure 7.14: Visualization of Q†3 (ξ, t) from the fully discrete adjoint method along x3/δ
0
m = 0 (top) and

x2/δ
0
m = 0 (bottom) at times (a) (t− t0) ∆U/δ0

m = 1620, (b) (t− t0) ∆U/δ0
m = 1080, (c) (t− t0) ∆U/δ0

m =
540, and (d) (t− t0) ∆U/δ0

m = 0. The solid black lines are the boundaries of finite WΩ defined in (7.9),
where the otherwise homogeneous adjoint equations are forced.
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(a) (b)

(c) (d)

Figure 7.15: Visualization of Q†4 (ξ, t) from the fully discrete adjoint method along x3/δ
0
m = 0 (top) and

x2/δ
0
m = 0 (bottom) at times (a) (t− t0) ∆U/δ0

m = 1620, (b) (t− t0) ∆U/δ0
m = 1080, (c) (t− t0) ∆U/δ0

m =
540, and (d) (t− t0) ∆U/δ0

m = 0. The solid black lines are the boundaries of finite WΩ defined in (7.9),
where the otherwise homogeneous adjoint equations are forced.
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(a) (b)

(c) (d)

Figure 7.16: Visualization of Q†5 (ξ, t) from the fully discrete adjoint method along x3/δ
0
m = 0 (top) and

x2/δ
0
m = 0 (bottom) at times (a) (t− t0) ∆U/δ0

m = 1620, (b) (t− t0) ∆U/δ0
m = 1080, (c) (t− t0) ∆U/δ0

m =
540, and (d) (t− t0) ∆U/δ0

m = 0. The solid black lines are the boundaries of finite WΩ defined in (7.9),
where the otherwise homogeneous adjoint equations are forced.
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Figure 7.17: Comparison of gradient accuracy from the continuous and fully discrete adjoint formulations
for the three-dimensional temporally developing mixing layer.

We now make an assessment based on the procedure described in Section 2.4 of the accuracy of the

continuous and fully discrete formulations. Figure 7.17 shows the gradient error E from (2.22) for the

three-dimensional temporally developing mixing layer. As α → 0, the continuous-adjoint formulation leads

to an approximately constant E , indicating that the dominant contribution to the gradient error is the

O
(

1
Nai
,∆tb

)
term for the selected resolution. For the fully discrete adjoint simulation, E = O (α) up to

an apparent round-off level. Based upon validation for a two-dimensional spatially developing mixing layer

presented in Section 1, we can anticipate that the full discrete adjoint provides accuracy up to the point

where finite-precision effects become important. Though such discrepancies are expected to grow relatively

slowly for the relatively deterministic two-dimensional flow, a precise assessment of this is not possible.

Given that the shape of the cost functional in the control variable space is in general unknown, it is

difficult to anticipate in detail the implications of an erroneous gradient for the convergence to the correct

optimal control of the discrete model system. At best, errors will slow convergence by providing an erroneous

amplitude in approximately the correct direction, but in general they will lead to the wrong optimal solution,

which is more consequential. Thus, the error in gradient direction is specifically assessed via

ϕ (t) = cos−1




〈
proj

(
G
[
Q†c
])
, ~G
[
~Q†d

]〉
P∥∥∥proj

(
G
[
Q†c
])∥∥∥

P

∥∥∥~G
[
~Q†d

]∥∥∥
P


 , (7.13)

where proj
(
G
[
Q†c
])

is the projection of the continuous-adjoint based sensitivity gradient on to the com-

putional domain, and ~G
[
~Q†d

]
is the full discrete adjoint-based sensitivity gradient (evaluated at the discrete

sub-steps). Figure 7.18 shows a plot of this angle as a function of time. At around (t− t0) ∆U/δ0
m = 1000,

79



0 200 400 600 800 1000

(t− t0) ∆U/δ0
m

0

5

10

ϕ
(t

)
(i
n
◦ )

Figure 7.18: Time-dependent gradient direction error (7.13) for the three-dimensional temporally developing
mixing layer.

the adjoint encounters the mixing layer and excites instabilities. Until this time, the magnitude of the

sensitivity gradient, which has support in the control region located in the mixing layer, is trivially small.

For (t− t0) ∆U/δ0
m < 1000, the error in the direction of the continuous-adjoint based sensitivity gradient

increases until it reaches its maximum value of about 10◦ at t = t0., For the two-dimensional mixing spatially

developing mixing layer demonstration in Section 1, the maximum value of ϕ (t) was determined to be 1.2◦,

which supports the rapid convergence of the continuous-adjoint based noise optimization achieved for that

flow by Wei and Freund [90].

It is expected that any gradient errors will increase in time due to the usual sensitivity to initial conditions

of a chaotic system. However, just how this occurs and how it affects the utility of any formulation for optimal

flow control is unclear. Sound generation is primarily by the energetic large scales in a flow, and controlling

these can be anticipated to be most important for its mitigation. So a gradient that is accurate for only low

wavenumbers might still be able to provide the essential information for control optimization. Without a

fundamental theory of turbulence, it is unlikely that general conclusions can be drawn in this regard, but

an empirical assessment can be made for our model turbulent flow. Since proj
(
G
[
Q†c
])

is obtained from

an accurate discretization of (7.11), errors will be most pronounced at small scales. By comparison with

the exact adjoint of the discretized system ~G
[
~Q†d

]
, we can measure how these grow in time, as expected

for a chaotic flow, and more importantly how they affect the accuracy of the arguably more important

large-scale components of the gradient. Of course, this is an exercise rather than a direct concern since the

fully discrete adjoint method we have derived will be preferable for this flow. However, not all models will

be so amenable to a fully discrete adjoint formulation, so this specific question may be a practical concern

in some circumstances. It is unclear, for example, that a general sub-grid-scale model of viscous dissipation

or scalar transport for large-eddy simulation will necessarily be so easily expressed such that its discrete-
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Figure 7.19: Streamwise wavenumber distribution of the error in the continuous-adjoint based sensitivity
gradient and its exponential growth in reverse-time.

adjoint is efficient or even tractable. Thus, the accuracy of the continuous-adjoint is evaluated against the

discrete-adjoint to anticipate challenges when the discrete-adjoint is unavailable.

To quantify the scale-dependence of the adjoint solution errors, the one-dimensional streamwise and

spanwise energy spectra of the continuous and fully discrete adjoint fields Q†5 (ξ, t) are shown in Figure 7.19a

and 7.20a, respectively. The magnitude of this difference averaged between the largest wavenumber and

kx1 = 2π/40δ0
m in the streamwise direction, and kx3 = 2π/50δ0

m in the spanwise direction, are shown in

Figures 7.19b and 7.20b, respectively. This quantity increases exponentially in reverse-time. It is clear that

despite the initiation of errors at small scales, over the course of this simulation forcing of even the largest

turbulence scales would be affected by continuous-adjoint errors (note that based on Figure 7.17, the error in

the discrete-adjoint should be significantly smaller than any discretization errors). By separating turbulent

fluctuations in flow quantities in (7.11) from their mean values, it can be shown that adjoint variables are

transported like a passive scalar by the turbulent mean flow. This suggests the existence of an energy cascade

mechanism for the energy norm for Q†5, which is transported by the mean flow velocity. Since the adjoint

equations are integrated in reverse-time, we should expect the cascade to transport energy from small to

large spatial scales as the adjoint simulation proceeds. This is evident from Figures 7.19a and 7.20a, which

show that the energy norm for the discrete-adjoint Q†5 is consistently higher than the continuous-adjoint, and

the difference is significant even at the largest spatial scales, against the nominal expectation that the exact
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(a) Comparison of one-dimensional spanwise (x3) energy
spectra of Q†5 (ξ, t0) at x2/δ0

m = 0 obtained from the con-
tinuous and fully discrete adjoint methods.
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(b) Temporal evolution of the difference shown by the
shaded region in (a) integrated with respect to the span-
wise wavenumber kx3 .

Figure 7.20: Spanwise wavenumber distribution of the error in the continuous-adjoint based sensitivity
gradient and its exponential growth in reverse-time.

sensitivity of the largest spatial scales are accurately captured by the continuous-adjoint method. Thus,

even if the sound generation and its control is expected to be relatively large-scale, the accumulation of

discretization errors will potentially hinder efficacy. For longer simulation times, finite numerical precision

errors are also anticipated to similarly propagate to all scales, though this would require longer simulation

times than this particular flow is set up for.

7.7 Controlled Mixing Layer

Though the continuous-adjoint is clearly less accurate, the consequences of its errors cannot be completely

anticipated because of the complexity of the turbulence. We therefore also analyze the beginning of a control

optimization. A steepest descent line-search was performed with the sensitivity gradient obtained from the

continuous- and discrete-adjoint methods to determine the effect of the error in sensitivity gradient on noise

reduction. To find the local minimum along the descent direction, a minimum bracket is evaluated followed

by a modification of Brent’s method [64] that uses derivatives to isolate the minimum to a fractional precision

of 0.01. Table 7.1 shows the values of the baseline cost functional, and the cost functional with a control

corresponding to the local minimum obtained using this procedure with the continuous- and discrete-adjoint

methods for one line-search. The gradient errors previously quantified are indeed important by this measure.
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J × 105 from (2.15)

Baseline (no control) 11.0

Continuous-adjoint control 10.2

Discrete-adjoint control 9.23

Table 7.1: Noise reduction for the turbulent temporally developing mixing layer after one line search based
upon a single gradient.

The discrete-adjoint method achieves more than twice the reduction.
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Chapter 8

Turbulent Jet Noise Control

To demonstrate the utility of the proposed dual-consistent formulation for high-fidelity discretizations, we

now examine its application to turbulence control. We consider active control of the noise radiated by a

Mach 1.3 turbulent jet using a thermal actuation. Figure 8.1 shows a schematic of the jet. Kim et al.

[37] reduced the noise for an LES of this configuration by 3.5 dB in a loudest direction using a continuous-

adjoint approach. Though this is a relatively modest reduction compared to what has been achieved for

a two-dimensional mixing layer [90], it is understood that the chaotic nature of turbulence diminishes its

controllability using even a flexible nozzle actuation. Moreover, adjoint-field errors due to the incompatibility

of a continuous-adjoint with the discretization can potentially slow convergence to the optimal control, and

more importantly, misdirect gradient-based optimizations [83]. It is not clear whether a space–time discrete-

exact adjoint can provide better guidance, or by doing so, lead to greater reductions — developing and

demonstrating the methods required for addressing this is the main objective of the current study.

8.1 Discretization

The computational domain for the jet simulation is divided into 5 non-overlapping blocks. Each block

is discretized using a structured curvilinear mesh such that the grid lines are C0 continuous across the

interface between blocks. The computational grid is generated by extrusion of the two-dimensional section

shown in Figure 8.2, along the x3-direction. In total, there are 8 pairs of computational boundaries on

which the interface condition described in Section 5.4 is enforced. We use an explicit RK4 scheme (3.16) for

integrating the flow equations in time, for which the maximum allowed time step size is restricted by the

maximum value of the local CFL number

CFL = J∆t




3∑

i=1

|ûi|+ a

√√√√
3∑

i=1

M̃2
i


 .
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Figure 8.1: The Mach 1.3 turbulent jet with visualized using contours of vorticity magnitude and on the
x1/D = 0 plane. The target region Ω and control region Γ are the supports of WΩ (ξ) and WΓ (ξ) defined
in (8.5) and (8.6), respectively.

Figure 8.2: Axial cross-section of the computational grid used for the jet simulation. The interfaces between
the blocks are shown ( ). The maximum CFL number occurs on the 4 corners ( ), where nodes from
three blocks are duplicated.
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the computational grid employed for the jet simulation.

For our desired distribution of grid points, this typically occurs at the intersection of three blocks shown in

Figure 8.2. To permit greater flexibility in designing the grid, the interface between the “inner” block, which

contains the centerline of the jet, and the remaining “outer” blocks is prescribed as

r (|cos θ|p + |sin θ|p)1/p
= 0.12D, −9D ≤ x3 ≤ 34D, (8.1)

where r = |x1 + ix2| and θ = arg (x1 + ix2) are the radial and azimuthal coordinates, respectively, and

p = 1.086 is set heuristically to limit sharp changes in the CFL number across the block interfaces. This

justifies the selection of a constant time step size for integrating the equations on all blocks. Each block

is discretized using 512 points in the x3-direction, with the mesh spacing and mapping function shown in

Figure (8.3). The minimum spacing in this direction is ∆x3 = 0.01D at x3 ≈ 8D. The outer blocks are

each discretized using Nr ×Nθ = 256× 33 points in the radial and azimuthal directions, respectively. Grid

points are distributed uniformly in the azimuthal direction, and the grid lines in this direction satisfy (8.1),

where p varies smoothly from 1.086 at the interface with the inner block, to 2 at r = 0.5D. For r ≥ 0.5D,

the grid lines are concentric circular arcs, so designed to facilitate post-processing. Within the inner block,

33× 33 grid points are distributed smoothly by solving a Laplace equation for the transformation functions

Xi (ξ1, ξ2) using a second-order central-difference approximation, for i = 1, 2. In total, the computational

grid consists of approximately 18 million points.

An SBP 2–4 scheme is employed for the spatial discretization per (3.12). Mild artificial dissipation is

included per (3.12) and (3.7) with σdiss. = 0.1. The Reynolds number based on the nozzle exit velocity is

Rej = ρjUjD/µj = 1× 106, and the Prandtl number is 0.72.
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8.2 Simulation Details

In the axial direction, inflow/outflow boundary conditions are enforced on the computational domain bound-

aries at x3/D = −9 and x3/D = 34 using the procedure described in Section (5.1). A damping term per (5.7)

with strength σsponge = 0.5 has support in sponge zones: −9 ≤ x3/D ≤ 0 (inflow) and 24 ≤ x3/D ≤ 34 (out-

flow). In the radial direction, the computational domain boundary at r/D = 12.5 is treated using the same

procedure with a damping term with identical strength that has support in a sponge zone 10 ≤ r/D ≤ 12.5.

The target state for the damping term is

u1 = u2 = 0

u3 =
1

2
U0

{
1 + tanh

[
1

4θ0

(
r

r0
− r0

r

)]}

ρ = ρ∞

[
γ − 1

2

u3

a∞

(
U0 − u3

a∞

)
T∞
T0

+
u3

U0
+
T∞
T0

(
1− u3

U0

)]−1

, (8.2)

where density is related to streamwise velocity through the Crocco–Busemann relation. In (8.2), U0, T0,

θ0 and r0 are empirical functions of the axial coordinate x3/D, obtained by a least-squares curve-fit of the

Reynolds-averaged Navier–Stokes (RANS) solution from Kim et al. [37], which explicitly includes the nozzle.

This is prefered to directly interpolating the RANS solution onto the present computational grid since the

RANS solution is available at a significantly coarser resolution. The specific form of these empricial functions
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are:

U0 =





Uj , −9 ≤ x3/D ≤ 2.65

Uj exp
[
−
(
x3/D−2.65

25

)]
, 2.65 ≤ x3/D ≤ 34

θ0/D =





0.04, −9 ≤ x3/D ≤ 0

0.04 + 0.46x3/24D, 0 ≤ x3/D ≤ 24

0.5, 24 ≤ x3/D ≤ 34

r0/D =





0.5, −9 ≤ x3/D ≤ 0

0.5 + 0.04125x3/D, 0 ≤ x3/D ≤ 24

0.075x3/D − 0.31, 24 ≤ x3/D ≤ 34

T∞/T0 =





1 + γ−1
2 Ma2, −9 ≤ x3/D ≤ 0

1 + γ−1
2 Ma2 exp (−0.078x3/D) , 0 ≤ x3/D ≤ 34,

where Uj is the streamwise nozzle-exit velocity and Ma = 1.3.

To achieve realistic transition to turbulence, we add small-amplitude instability modes of the form

Q′ (x, t) = Q̂ (r) exp [i (αx3 + nθ − ωt+ φ)] in the inflow sponge zone. The procedure for doing this is

documented in detail by Kim et al. [37]. Figure 8.4 shows the dispersion relations for the instability modes

used.

8.3 Uncontrolled Jet Validation

Starting from an initial condition identical to the target state (8.2), the semi-discrete form of the governing

equations (3.15) are advanced using the RK4 scheme (3.16) from ta∞/D = 0 to ta∞/D = 480. This

corresponds to 20× the time taken for acoustic waves to travel across the streamwise length of the domain.

We use a constant time step size ∆ta∞/D = 1.2 × 10−3, which results in a maximum CFL number of

approximately 0.5. By ta∞/D = 480, the jet has reached a statistically stationary state. Statistics are then

collected from ta∞/D = 480 to ta∞/D = 1320 at a frequency StD ≈ 21.4, which provides sufficiently high

temporal resolution for resolving the jet turbulence [37]. Overall, 20000 samples are collected.

The Reynolds average of a quantity ϕ (ξ, t) is denoted as ϕ (ξ). For r < 0.5D, it is obtained by averaging
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Figure 8.4: (a) Streamwise growth rate −αiθj and (b) phase speed (ω/αr) /Uj of instability modes. αr and
αi are the real and imaginary parts of the complex streamwise wavenumber α, respectively, and θj = 0.04D
is the momentum thickness.

only in time. For r ≥ 0.5D, the grid lines form concentric circles with uniform mesh spacing in the azimuthal

direction. Hence, the Reynolds average for r ≥ 0.5D is obtained by averaging both in time and the azimuthal

coordinate θ. The Favre average is φ̃ = ρφ/ρ.

Figure 8.5 shows a comparison of centerline statistics with other numerical and experimental data for

similar jet conditions. Since our simulation does not employ a nozzle, an approximate nozzle exit location

is determined by shifting the axial coordinate such that the jet potential core length, defined by the axial

location where the mean streamwise velocity is 0.95Uj , matches the value x3/D ≈ 8.5 measured by Samimy

et al. [70]. The resulting shifting distance is xs/D = 1.8. Figure 8.5a shows excellent agreement between the

Favre-averaged centerline streamwise velocity for the present jet with experimental data [70]. Root-mean-

square fluctuations of the streamwise velocity along the centerline are shown in Figure 8.5b. Reasonable

agreement is observed as is typical for simulations that do not include a nozzle [7, 11, 37], but instead the

inflow excitation is modeled using instability waves.

Figure 8.6 shows a comparison of ũ3 along the r/D = 0.5 nozzle lipline. The agreement with experimental

data is imperfect in the potential core region, presumably due to the fact the prescribed inflow disturbances

do not precisely represent the behavior of an actual nozzle. However, the agreement improves considerably

downstream suggesting that this is a sufficiently realistic model for the important downstream turbulence.

Before using the proposed adjoint formulation for suppressing jet noise, it is important to validate the

predictive model. We do this by comparing far-field sound spectra with experiment for the baseline jet

simulated without any control forcing. The acoustic field of the jet, where the decay of acoustic intensity
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ũ
3
/
U
j

Current, xs = 1.8

Kim et al. [37]
Bodony and Lele [7]
Mendez et al. [55]
Bridges and Wernet [12]
Samimy et al. [70]

(a)

3 6 9 12 15

(x3 + xs) /D

0

0.1

0.2

( u
′′ 3
u
′′ 3

)1 2
/
U
j

Current, xs = 1.8

Kim et al. [37]
Bodony and Lele [7]
Mendez et al. [55]
Bridges and Wernet [12]
Samimy et al. [70]

(b)

Figure 8.5: Comparison of centerline turbulence statistics: (a) Favre-averaged streamwise velocity ũ3 =
ρu3/ρ, and (b) root-mean-square of fluctuations u

′′
3 = u3 − ũ3, for the current simulation ( ) with Kim

et al. [37] ( ), Bodony and Lele [7] ( ), Mendez et al. [55] ( ), Bridges and Wernet [12] ( ), and
Samimy et al. [70] ( ), where xs/D = 1.8 for the current simulation, 2.3 for Kim et al. [37], and 4.0 for
Bodony and Lele [7].
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Figure 8.6: Comparison of Favre-averaged streamwise velocity ũ3 = ρu3/ρ on the r/D = 0.5 nozzle lipline
for the current simulation ( ) with Kim et al. [37] ( ), Mendez et al. [55] ( ), and Bridges and
Wernet [12] ( ), where xs/D = 1.8 for the current simulation, 2.3 for Kim et al. [37], and 4.0 for Bodony
and Lele [7].

follows an inverse-square law, is located outside our finite-size simulation domain. The location of the

experimental measurements of sound spectra from Samimy et al. [70] are also well beyond the radial extent

of the domain r/D = 10. Far-field sound outside the computational domain can be measured from near-field

simulation data using the Ffowcs-Williams-Hawkings (FWH) integral surface method. The method and its

application to this jet are documented in detail by Kim [36]. The present implementation of the FWH

method has been verified by reproducing the far-field pressure fluctuation and sound pressure level (SPL)

for point monopole and dipole sources (not shown here). The SPL for the present jet is

SPL (dB) = 10 log10

p̂p̂∗

p2
ref

− 10 log10

(
de
d

)2

− 10n log10

(
Uj
a∞

)
+ 10 log10 ∆f, (8.3)

where p̂ is the Fourier transform of the far-field pressure fluctuation obtained using the FWH method and p̂∗

is its complex conjugate; pref = p?ref/ρ
?
∞a

?2
∞, where p?ref = 20µPa is the usual reference pressure corresponding

to the acoustic pressure audible to the human ear; de = 80D is a common measurement location used for

scaling the SPL for different directivity angles φ; d = 94D for φ = 30◦ and d = 44D for φ = 90◦ are the

distances from the nozzle exit to the location of the microphones used in the experiment; n = 8 is the

exponent of velocity in Lighthill’s U8
j law for acoustic intensity, which normalizes the effect of different jet

velocities; and ∆f is the sampling frequency f ≈ 23.8a∞/D divided by the number of samples (= 20000).

Figure 8.7 shows a comparison of the SPL (8.3) for the present simulation with the experiment of Samimy
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Figure 8.7: Sound pressure level for the perfectly-expanded Mach 1.3 jet. Spectra are projected to a common
distance 80D.

et al. [70] and the LES of Kim et al. [37]. The agreement for φ = 30◦ is within 1 dB for up to StD ≈ 2

beyond which it falls off due to the finite temporal resolution of the measurement. Similarly, good agreement

is obtained for φ = 90◦, for which the present method correctly predicts the peak at StD ≈ 0.8. These results

and the agreement of turbulence statistics shown earlier indicate that the predictive model (3.12) is a high-

fidelity representation of the jet’s turbulence and is able to accurately predict its far-field sound.

8.4 Cost Functional and Control Implementation

A cost functional that measures the radiated jet noise from (2.14) and (2.15) is

J [Q] =

ˆ t1

t=t0

ˆ
ξ∈D
|p (ξ, t)− p (ξ)|2WΩ (ξ)

1

J (ξ)
d3ξdt, (8.4)

where p (ξ) is the time-averaged pressure, and the control time horizon extends from t0a∞/D = 1140 to

t1a∞/D = 1190.4. During this time horizon, acoustic waves can travel across the streamwise length of the

domain twice, and between the control and target regions 4 times. This is long enough to include about

12 jet column mode periods [16], but a relatively small interval compared to the one used by Kim et al.

[37]. Figure 8.8 visualizes the jet using contours of vorticity magnitude and dilatation along a longitudinal

section of the cylindrical computational domain at the beginning and end of the control horizon. In (8.4),
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Figure 8.8: Visualization showing contours of vorticity magnitude and dilatation along x1/D = 0 at t =
t0 = 1140D/a∞ (top) and t = t1 = 1190.4D/a∞ (bottom) for the Mach 1.3 perfectly-expanded jet. The
solid black lines are the boundaries of finite WΩ defined in (8.5), where the radiated sound is measured.
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the target mollifying support function WΩ (ξ) is

WΩ (ξ) ∼ B0,2

(
rΩ
) {

tanh
[
80
(
xΩ

3 − 0.05
)]
− tanh

[
80
(
xΩ

3 − 0.95
)]}

, (8.5)

where

rΩ =





1
2

(
r
D − 7

)
,
∣∣ r
D − 8

∣∣ ≤ 1

0, otherwise,

xΩ
3 =





x3

24D ,
∣∣x3

D − 12
∣∣ ≤ 12

0, otherwise,

and
´
ξ∈DWΩ (ξ) 1

J(ξ)d
3ξ = 1.

The control for this demonstration is a thermal actuation that appears on the RHS of the governing

equations (2.19). The control mollifying support function is

WΓ (ξ) ∼
{

tanh
[
40
(
rΓ − 0.05

)]
− tanh

[
40
(
rΓ − 0.95

)]} {
tanh

[
32
(
xΓ

3 − 0.05
)]
− tanh

[
32
(
xΓ

3 − 0.95
)]}

,

(8.6)

where

rΓ =





1
0.4

(
r
D − 0.3

)
,
∣∣ r
D − 0.5

∣∣ ≤ 0.2

0, otherwise,

xΓ
3 =





1
2

(
x3

D − 1
)
,
∣∣x3

D − 2
∣∣ ≤ 1

0, otherwise,

and
´
ξ∈DWΓ (ξ) 1

J(ξ)d
3ξ = 1. Overall, the control region spans about 4.2 × 105 grid points across all the

blocks. The total number of independent control parameters is about 71 billion. Some grid points on the

control region lie on the interfaces between blocks, and thus, are duplicated. We do not explicitly constrain

the control forcing on the duplicated nodes to be equal — aside from the interface adjoint conditions imposed

weakly by the adjoint SAT (4.13).

For convenience in documenting results, we define the instantaneous cost functional

I [Q] (t) =

ˆ
ξ∈D
|p (ξ, t)− p (ξ)|2WΩ (ξ)

1

J (ξ)
d3ξ, (8.7)

so that (8.4) is J [Q] =
´ t1
t=t0
I [Q] (t), which is the area under the I [Q] (t) versus t curve between t = t0
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Figure 8.9: Instantaneous cost functional I [Q] (8.7) versus time for the entire simulation history for the
turbulent jet. The horizontal dash-dot line indicates the mean value of I [Q].

10−9 10−8 10−7

α

10−4

10−3

10−2

E 1

1

Figure 8.10: Gradient accuracy based on (2.22) for the jet simulation using a discrete-exact and consistent
formulation.

and t = t1. Figure 8.9 shows the instantaneous cost functional versus time for the entire simulation, where

the area under the shaded region gives the value of J [Q]. The profile is characterized by intermittent peaks

of high acoustic intensity with periods of relatively low acoustic energy. This observation is consistent with

previous studies [37, 7].

8.5 Gradient Accuracy

We assess the accuracy of the gradient using the error E introduced in Section 2.4. Figure 8.10 shows a plot

of E versus α for the present jet. For the highest value of α shown, the amplitude of the control forcing is
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presumably too high for the asymptotic expansion (2.21) to hold. This is followed by about three decades

of change in α where E = O (α) until an apparent roundoff limit is reached. Without significantly more

computational effort, it is difficult to establish this precisely as discussed in Section 6.2.

The quadruple-precision result for the unsteady simulation of a two-dimensional mixing layer shown in

Figure 6.8 tests the same numerical solver for correctness including nonlinear terms and transient behavior,

but excluding the interface SAT (5.21). We therefore repeated that simulation using a grid consisting of two

blocks and an interface along the x1/δ
0
w = 50 line, with otherwise the same setup shown in Figure 7.1. At

the interface, the SAT (5.21) enforces conservation. Figure 8.11 shows the gradient error E (2.22) for the

simulation performed using 64-bit (double-precision) arithmetic. For comparison, the gradient error for the

single-block simulation using the same configuration is also shown. The results indicate that the formulation

including the interface penalty SAT yields a discrete-exact gradient as expected for a multi-block problem.
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Chapter 9

Conclusions

The potential advantages of a discrete-adjoint formulation for the three-dimensional compressible flow equa-

tions were well understood at the outset. The advance of our new formulation is that it provides the exact

(precision-limited) gradient for the same highly accurate workhorse methods commonly used for simulating

compressible turbulence, particularly in aeroacoustics simulations. The formulation is crafted such that it

exploits the properties of adjoint discrete derivative operators in algebraic combinations that produce an

efficient computational code. Such opportunities are generally missed by current automatic differentiation

tools because they involve combinations that are not easy for such tools to identify based upon a numerical

implementation. At the same time, the operations mirror those that would be followed for a comparable

discretization of the continuous-adjoint equations, and thus do not demand any intricate operations be-

yond those already available for the flow solution or its adjoint if a discretization of it is already available.

Although our demonstrations are oriented around aeroacoustics applications, the utility of the adjoint for-

mulation presented in Chapter 4 extends to other high-fidelity applications, since it is independent of the

choice of cost functional.

The dual-consistent discretization we have designed leads to a smooth discrete-exact adjoint field because

its discrete-adjoint is consistent with the adjoint of the continuous system. In addition, it conserves global

quantities including the total mass, momentum and energy of the system up to the order of accuracy of

the interior stencil of the discrete derivative operators. Many industrial codes that solve the compressible

flow equations choose to employ finite-volume methods, mainly because of their ability to exactly preserve

conserved quantities in a global sense. Our dual-consistent formulation offers the traditional advantages of a

finite-difference method, including low dispersion errors, and relatively easy, efficient and scalable implemen-

tation, while simultaneously offering high-order approximation of the integral form of the conservation laws.

The SBP property we require for the discrete derivative operators is key to this result and is sufficient for

periodic domains, but we have shown how to achieve this through dual-consistent SATs derived in Chapter 5

that weakly enforce boundary conditions most commonly used for simulations of compressible flows.

To be useful for DNS of turbulence, the discretization (3.12) must be modified to employ a narrow-stencil

97



second-derivative approximation, which damps the highest wavenumber mode supported by the computa-

tional grid. An example of such a discretization is given in Section 7.2 and has been demonstrated for

a turbulent mixing layer, but it is not dual-consistent. Mattsson [52] recently proposed SBP operators

that approximate second derivatives with variable coefficients and efficiently damp the highest wavenumber

modes. Thus, they can be used for discretizing the viscous term in (3.12) without the addition of artificial

dissipation. Their SBP property and Lemma 5.2 ensure that the dual-consistency conditions derived for the

SATs in Chapter 5 hold, and the SATs we derived may be used in conjunction with a discretization based

on these narrow-stencil operators.

Our dual-consistent formulation is valid for multi-block structured grids that intersect on a C0-interface.

The main advantage of such grids is that they require minimal communication of data between blocks and

can be efficiently parallelized. The interface SAT (5.21) only requires data from the duplicate nodes shown

in Figure 5.1. However, generating such grids can be challenging because the resolution of different blocks

cannot be specified independently. An overset grid approach [5], also known as a Chimera approach, can

address this by allowing multiple overlapping structured grids, whose resolution can be optimized indepen-

dently. Communication between grids is handled through interpolation using coefficients that, for stationary

grids, can be computed as a preprocessing step. This, however, is based on the injection method, and is

not guaranteed to preserve the energy estimate of the discrete problem [76]. For strictly hyperbolic systems,

Bodony et al. [8] developed a stable and accurate interpolation scheme using the overset grid approach,

including examples of moving grids. Our formulation is readily extensible to overset grids, since stability

requirements dictate that the interpolation operator must be based on the projection method and will appear

as an SAT on the RHS of (3.12). The conditions for dual-consistency derived in Chapter 5 for commonly

used boundary conditions are independent of this. However, corresponding conditions for dual-consistency

will impose conditions on parameters in the interpolation penalty term, and must be established by prov-

ing Lemma 5.2 for the interpolation operator. Crafting such provably stable interpolation operators for

incompletely parabolic IBVPs, e.g., the compressible flow equations, is a subject of ongoing research.

The fully discrete adjoint method we have derived is compatible with flexible multi-stage temporal

discretizations of the flow equations (3.16), such as the fourth-order Runge–Kutta scheme we employ in our

demonstrations. de Pando et al. [17] proposed a modular procedure for the evaluation of the semi-discrete-

adjoint, which is advantageous for application to different governing equations, though it does not seem so

easily extendable to include time discretization. The present formulation is time-exact, though more tied to

the specific flow equations.

In Chapter 7, we presented a fully discrete adjoint method for a workhorse discretization of the com-
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pressible flow equations by contrasting it with a discretization of the continuous-adjoint method to highlight

the fact that it can be practically implemented with only a few changes. Though not dual-consistent, the

formulation is modestly (∼ 1.5 ×) computationally more expensive than the continuous-adjoint method,

and more effective in controlling aeroacoustic noise (∼ 2.2 × for our model mixing layer flow). It is similarly

only ∼ 1.85× more expensive than computing the flow solution. Practical implementation of this discrete-

adjoint formulation relies on the fact that the discrete operators in (7.8) are local, and the bandwidth of

the interior stencils do not change when transposed as in (7.12). The discrete-Fourier operators we use

in x3 are an exception, since their transpose yields also a discrete-Fourier operator. Thus (7.12) is useful

for finite-differences, artificial dissipation based on high-order even derivatives, polynomial interpolation be-

tween overset grids and so on. However, spatially nonlocal operators such as dynamic large-eddy simulation

(LES) models are not of this form. In this case, (7.12) will be most useful in a hybrid adjoint approach [80], in

which a continuous formulation can be used for nonlocal operators, while retaining the discrete approach for

the remaining terms in lieu of its compatibility with the discretized flow equations. Such an implementation

would be straightforward since our choice of coefficients βn,s in (4.17) provide a fully-discrete adjoint (4.19)

that is consistent with an RK4 discretization of the continuous-adjoint equations (4.20). Alternatively, for

complicated nonlinear but relatively local operations, (7.12) can be used effectively in conjunction with

automatic differentiation, which is less burdensome for such small sub-problems.

The error in the sensitivity gradient predicted by the adjoint formulations has been assessed in three

different ways. First, we defined an error measure E (2.22) that quantifies the difference between the

sensitivity gradient predicted by our adjoint methods and a finite-difference approximation of it. As α→ 0,

we observed that the gradient error E → O (α) up to round-off errors using the discrete-adjoint method,

which is the expected behavior for the exact sensitivity gradient. The actual error is the result of finite

computing precision plus a degree of amplification via the nonlinearity in the chaotic flow. However, its

sensitivity to arithmetic precision was ascertained in the case of a two-dimensional shear layer, for which

case the gradient accuracy was shown to be proportional to the precision of the underlying arithmetic.

Second, we quantified the error of the continuous-adjoint method in a generalized gradient direction ϕ,

which is anticipated to be particularly important for seeking a local optimum. In our compressible turbulent

mixing layer demonstration, we showed that ϕ increases throughout the duration of the control interval for

which the adjoint Q†5 waves interact with the mixing layer, and reaches a maximum value of about 10◦ for

the time simulated. This time horizon was practical for our turbulence simulation since it corresponds to

the time over which the turbulence could be realistically simulated in the computational box. For longer

simulations of other flows, there is every expectation that this error would continue to increase due to the
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chaotic character of the flow.

Finally, we considered the spatial scales of the error. The difference between the discrete- and continuous-

adjoint formulations is of the order of the truncation error of the numerical approximation, and will therefore

for any particular field be larger for shorter and therefore more challenging-to-resolve wavelengths. However,

our results for the evolution equations show that the error in the sensitivity gradient becomes large across

the entire range of scales. The broad-banded difference is not a direct consequence of nonlinearity, since the

adjoint equations are linear, but is a manifestation of the nonlinearity of the flow equations, which appears

in the adjoint as space and time dependent coefficients with a similar effect of coupling the adjoint solution

across all scales. Further, the difference grows exponentially in reverse-time. Many efforts in optimal flow

control have focused on laminar flows or two-dimensional flows, where high accuracy is relatively easy to

achieve and the flows are often relatively deterministic because they lack of all the mechanical features of

true three-dimensional turbulence. How such errors in a continuous-adjoint formulation contaminate the

large-scale components of the gradient is important for two reasons. The first is physical: the large scales

are the more likely points of flow control. The second involves modeling and the challenge of developing

sub-grid-scale (or other) turbulence models for which practical exact adjoints are available. If errors are

incurred, say, by using a hybrid formulation [80], they can be anticipated to contaminate the solution at

many scales. This study shows what effects might be anticipated by the inherent approximations.

Our results have implications for some recent flow control simulations. Using a continuous-adjoint for-

mulation, Kim et al. [37] found that even with a general control, the overall noise reduction achieved for a

turbulent Mach 1.3 jet was significantly lower than in a previous two-dimensional study [90]. Taking our

plane, temporally developing turbulent mixing layer as a model for the initial shear layers of a turbulent

jet, we can estimate the deleterious effects of the continuous-adjoint used in that study. We see a significant

error for the continuous formulation as the momentum thickness increases from about 19δ0
m to 53δ0

m, a

factor of 2.8, during the control interval. This growth is comparable to the momentum thickness growth of

2.75× along the potential core length of their simulated turbulent jet. This suggests that the instantaneous

continuous-adjoint-based sensitivity for a nozzle control will entail a similar 10◦ error by x/D ∼ 6, which

is the region of peak noise generation. Given the reduced effectiveness even in the present simpler flow, we

can anticipate that the errors in the gradient might be more significant in the jet.

It should also be noted that convergence was slow and not pursued through to completion by Kim

et al. [37]. Significant slowing of convergence, relative to the earlier two-dimensional flows [90], might

have also masked the potential success of the control. To assess this, at least indirectly, we have applied a

dual-consistent discrete-exact formulation to this flow configuration for demonstration and verification of the
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multi-block interface dual-consistency condition derived in Theorem 5.7. The discrete-adjoint is smooth with

no apparent artifacts due to discretization near the interfaces between blocks, where it would be expected in

a dual-inconsistent formulation. In addition, the gradient error E defined in (2.22) converges to O (α) upto

an apparent roundoff limit. The norm of adjoint quantities grow exponentially in reverse time, which has

been previously observed for a chaotic Lorenz system [44], and indicates the sensitivity to initial condition

of turbulence. We have not quantified the rate of this exponential growth, though it appears to be related

to the first Lyapunov exponent as shown for the drag-adjoint field of a circular cylinder wake by Wang and

Gao [87]. The discrete-adjoint-based gradient leads to an 8% reduction in the cost functional based on (2.14)

and (2.15), but it is unclear whether the mechanism for control suggested by our numerical simulation can

be applied to design realistic actuators, and if so whether they would lead to similar reductions.

An important result here is that the discrete-adjoint formulation was found to be sufficiently accurate

(e.g., Figure 7.17) for the control horizons needed for our aeroacoustic objectives. However, for longer

times the fidelity would eventually succumb to the accumulation of round-off errors, amplified by the chaotic

character of the turbulence. The amplification of the difference between the discrete- and continuous-adjoints

in Figures 7.19b and 7.20b shows how this will occur. These round-off errors are complicated functions of the

coefficients of our finite-difference schemes and the adjoint coefficient matrix, and are neither uncorrelated,

nor uniformly distributed on either side of zero on the real line. However, they are roughly proportional to

the number of floating point operations and will undoubtedly accumulate to the point of overwhelming the

exactness of the discrete formulation for sufficiently long times. Estimating or designing numerical methods

to reduce or eliminate such round-off errors is beyond the scope of this work.
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Appendix A

Linearization of the Compressible Flow
Equations

Recall the compressible flow equations (2.6):

∂Q

∂t
+ J

∂

∂ξi

[
Mij

(
F Ij − FVj

)]
= 0, ξ ∈ D, t0 ≤ t ≤ t1,

and the corresponding operator (2.11):

R [Q] = −J ∂

∂ξi

[
Mij

(
FIj [Q]−FVj [Q]

)]
.

Here, we will derive the Fréchet derivative of R [Q] as defined in (2.12). The result is derived for a three-

dimensional problem, with straightforward extension to one and two dimensions. We assume the constitutive

relations (2.8) for the fluid, and a power law dependence of the coefficients of viscosity on the temperature

as per (2.9).

First, we express the inviscid fluxes defined in (2.7) as

FIi [Q] = ρui




1

u1

u2

u3

h




+ (ρh− ρE)




0

δi1

δi2

δi3

0




,

where h = ρE+p
ρ is the enthalpy. To derive the Fréchet derivative of FIi [Q], we will employ the following

expressions for the linearization of the velocity and enthalpy with respect to the state variable:

δui =
1

ρ

[
−ui δi1 δi2 δi3 0

]
δQ

δh =
1

ρ

[
φ2 − h (γ − 1)u1δi1 (γ − 1)u2δi2 (γ − 1)u3δi3 γ

]
δQ,
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where φ2 = γ−1
2 uiui. Retaining only terms up to O (‖δQ‖), we obtain the result

δFIi [Q; δQ] = Â I
i [Q] δQ, (A.1)

where

Â I
i [Q] =




0 δi1 δi2

φ2δi1 − u1ui ui − (γ − 2)u1δi1 u1δi2 − (γ − 1)u2δi1

φ2δi2 − u2ui u2δi1 − (γ − 1)u1δi2 ui − (γ − 2)u2δi2

φ2δi3 − u3ui u3δi1 − (γ − 1)u1δi3 u3δi2 − (γ − 1)u2δi3

ui
(
φ2 − h

)
hδi1 − (γ − 1)u1ui hδi2 − (γ − 1)u2ui

δi3 0

u1δi3 − (γ − 1)u3δi1 (γ − 1) δi1

u2δi3 − (γ − 1)u3δi2 (γ − 1) δi2

ui − (γ − 2)u3δi3 (γ − 1) δi3

hδi3 − (γ − 1)u3ui γui




is the Jacobian of the inviscid fluxes with respect to the state variable.

To linearize FVi [Q], we first consider the primitive variables

Qp =

[
ρ u1 u2 u3 T

]T

.

The Jacobian of the primitive variables with respect to the conservative variables is defined as

C [Q] ≡ ∂Qp
∂Q

,

and will be expanded shortly. The viscous fluxes defined in (2.7) can be written as

FVi [Qp] =
JMjk

Re





µ




0

δki
∂u1

∂ξj
+ δk1

∂ui
∂ξj

δki
∂u2

∂ξj
+ δk2

∂ui
∂ξj

δki
∂u3

∂ξj
+ δk3

∂ui
∂ξj

ul

(
δki

∂ul
∂ξj

+ δkl
∂ui
∂ξj

)
+ 1

Prδki
∂T
∂ξj




+ λ
∂uk
∂ξj




0

δ1i

δ2i

δ3i

ui








.

Our strategy will be to derive the Fréchet derivative of FVi [Qp] with respect to the primitive variables
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and use the chain rule of Gâteaux differentiation for functionals: δFVi [Q; δQ] = δFVi [Qp; C [Q] δQ]. The

coefficients of viscosity are temperature-dependent, and can be linearized as

δµ =
nµ

T
δT, δλ =

nλ

T
δT,

respectively. In deriving the Fréchet derivative of FVi [Qp], we will deliberately refrain from combining terms

using the product rule of differentiation for partial derivatives in ξ1, ξ2, and ξ3. This allows us to re-use

the result with discrete derivative operators, which are not guaranteed to mimic the product rule (locally).

After some algebra, we obtain

δFVi [Qp; δQp] =




0 0 0 0 0

0 0 0 0 nτ1i
T

0 0 0 0 nτ2i
T

0 0 0 0 nτ3i
T

0 τ1i τ2i τ3i
1
T (ujτji − qi)




δQp + B̂ij [Qp]
∂

∂ξj
(δQp) , (A.2)

where

B̂ij [Qp] =
JMjk

Re




0 0 0

0 µδki + (µ+ λ) δk1δi1 µδk1δi2 + λδk2δi1

0 µδk2δi1 + λδk1δi2 µδki + (µ+ λ) δk2δi2

0 µδk3δi1 + λδk1δi3 µδk3δi2 + λδk2δi3

0 µu1δki + µukδi1 + λuiδk1 µu2δki + µukδi2 + λuiδk2

0 0

µδk1δi3 + λδk3δi1 0

µδk2δi3 + λδk3δi2 0

µδki + (µ+ λ) δk2δi2 0

µu3δki + µukδi3 + λuiδk3
µ
Prδki




.

Using A.1 and A.2, we can now write the Fréchet derivative of R [Q] as

δR [Q; δQ] = −J ∂

∂ξi

{(
AIi [Q]−AVi [Q]

)
δQ− Bij [Q]

∂

∂ξj
(C [Q] δQ)

}
, (A.3)
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where

AIi [Q] =




0 Mi1 Mi2

φ2Mi1 − u1ûi ûi − (γ − 2)u1Mi1 u1Mi2 − (γ − 1)u2Mi1

φ2Mi2 − u2ûi u2Mi1 − (γ − 1)u1Mi2 ûi − (γ − 2)u2Mi2

φ2Mi3 − u3ûi u3Mi1 − (γ − 1)u1Mi3 u3Mi2 − (γ − 1)u2Mi3

ûi
(
φ2 − h

)
hMi1 − (γ − 1)u1ûi hMi2 − (γ − 1)u2ûi

Mi3 0

u1Mi3 − (γ − 1)u3Mi1 (γ − 1) Mi1

u2Mi3 − (γ − 1)u3Mi2 (γ − 1) Mi2

ûi − (γ − 2)u3Mi3 (γ − 1) Mi3

hMi3 − (γ − 1)u3ûi γûi




, (A.4a)

AVi [Q] =
1

ρ




0 0

nγ
T

(
φ2

γ−1 −
T
γ

)
τ̂i1 −nγT u1τ̂i1

nγ
T

(
φ2

γ−1 −
T
γ

)
τ̂i2 −nγT u1τ̂i2

nγ
T

(
φ2

γ−1 −
T
γ

)
τ̂i3 −nγT u1τ̂i3

nγ
T

(
φ2

γ−1 −
T
γ

)
(uk τ̂ik − q̂i)− uk τ̂ik τ̂i1 − nγ

T u1 (uk τ̂ik − q̂i)

0 0 0

−nγT u2τ̂i1 −nγT u3τ̂i1
nγ
T τ̂i1

−nγT u2τ̂i2 −nγT u3τ̂i2
nγ
T τ̂i2

−nγT u2τ̂i3 −nγT u3τ̂i3
nγ
T τ̂i3

τ̂i2 − nγ
T u2 (uk τ̂ik − q̂i) τ̂i3 − nγ

T u3 (uk τ̂ik − q̂i) nγ
T (uk τ̂ik − q̂i)




, (A.4b)

Bij [Q] =
J

Re




0 0 0

0 µMikMjk + (µ+ λ) Mi1Mj1 µMi2Mj1 + λMi1Mj2

0 µMi1Mj2 + λMi2Mj1 µMikMjk + (µ+ λ) Mi2Mj2

0 µMi1Mj3 + λMi3Mj1 µMi2Mj3 + λMi3Mj2

0 µu1MikMjk + µûjMi1 + λûiMj1 µu2MikMjk + µûjMi2 + λûiMj2
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0 0

µMi3Mj1 + λMi1Mj3 0

µMi3Mj2 + λMi2Mj3 0

µMikMjk + (µ+ λ) Mi3Mj3 0

µu3MikMjk + µûjMi3 + λûiMj3
1
PrµMikMjk




, (A.4c)

C [Q] =
1

ρ




ρ 0 0 0 0

−u1 1 0 0 0

−u2 0 1 0 0

−u3 0 0 1 0

γφ2

γ−1 − T −γu1 −γu2 −γu3 γ




, (A.4d)

where ûi = Mijuj are the components of the contravariant velocity, q̂i = Mijqj , and τ̂ij = Mikτkj . The oper-

ators AIi [Q] and Bij [Q] are related to ÂIi [Q] and B̂ij [Q] as AIi [Q] = MijÂIj [Q], and Bij [Q] = MikB̂Ikj [Q],

respectively.
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