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ABSTRACT

This thesis studies a multi-period demand response management problem in the
smart grid where multiple utility companies compete among themselves. The
user-utility interactions are modeled by a noncooperative game of a Stackelberg
type where the interactions among the utility companies are captured through a
Nash equilibrium. It is shown that this game has a unique Stackelberg equilib-
rium at which the utility companies set prices to maximize their revenues (within
a Nash game) while the users respond accordingly to maximize their utilities sub-
ject to their budget constraints. Closed-form expressions are provided for the
corresponding strategies of the users and the utility companies. It is shown, both
analytically and numerically, that the multi-period scheme, compared with the
single-period one, provides more incentives for energy consumers to participate in
demand response programs. A necessary and sufficient condition on the minimum
budget needed for a user to participate is provided. The large population regime
is also investigated and an appropriate company-to-user ratio is provided.
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LIST OF NOTATION

N Set of users

K Set of utility companies

T Set of periods

N Number of users

K Number of utility companies

T Number of periods

dn,k(t) The demand of user n ∈ N from utility company k ∈ K at time
t ∈ T

pk(t) The price of energy announced by utility company k ∈ K at time
t ∈ T

Bn The budget of user n ∈ N

Emin
n The total minimum energy needed by user n ∈ N during the entire

time horizon

Gk(t) The power availability of utility company k ∈ K at time t ∈ T
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CHAPTER 1

INTRODUCTION

The smart grid is envisioned to be a reliable, secure, and self-healing power net-
work for the 21st century that incorporates various sources of energy [1, 2]. It
is a large-scale network of intelligent nodes that can communicate, operate, and
interact autonomously for reliable and efficient power delivery. The accommo-
dation of this vision requires the adoption of computer, sensing, communication,
and control technologies in parallel with the electric power network [3–5]. Inter-
estingly, the smart grid can be looked at as a large-scale control problem [6]. A
general overview of the smart grid can be found in [1, 2]. For a background on
systems and control challenges and opportunities in the smart grid, see [6, 7].

Demand side management (DSM) is an essential component of the smart grid
as it captures important aspects of the interactions between utility companies
(UCs) and consumers, including residential, commercial, industrial users and ve-
hicles [4]. DSM is categorized into different components, with the aim of improv-
ing the energy efficiency in both the short-term and the long-term, see [4] and [8],
respectively. These components can be technical, such as using advanced meter-
ing infrastructure to improve the reliability and efficiency of the grid [4], or social
through agreements between consumers and energy providers [5]. Examples of
DSM programs include energy efficiency, time-of-use pricing, and demand re-
sponse [8]. Energy efficiency is about the long-term solutions to improve the
overall efficiency; one example is replacing the air conditioning system of a build-
ing with a more efficient one. Through time-of-use pricing, companies can agree
with the users that different prices are to be charged at different periods; these
prices are agreed upon beforehand by both parties. A tutorial on the demand-side
view of electricity markets can be found in [9].

Demand response management (DRM) is the response of consumers’ demands
to price signals from the utility companies [10–12]. DRM allows companies to
manage the consumers’ demands, either directly or indirectly, through incentive-
based programs [11–13]. One of the main goals of demand response management
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is to provide more incentives for consumers’ participation in order to minimize
the peak-to-average consumption ratio. A comprehensive survey on the pricing
methods and optimization algorithms for demand response programs can be found
in [14]. For an overview of the methodologies and the challenges of load/price
forecasting and managing demand response in the smart grid, see [15]. It is worth
mentioning that using the framework of game theory, the idea of load adaptive
pricing goes back decades [16].

Game theory is a powerful mathematical tool that can lead to effective multi-
person decision making [17–20]. Due to the nature of the smart grid which fea-
tures different entities with conflicting objectives, applying game-theoretic meth-
ods can improve their reliability and efficiency [4, 21–42]. In this thesis, we con-
centrate on multi-period demand response management.

Game theory can be classified into two main categories: cooperative games and
noncooperative games [17,18]. A game is cooperative if it allows the participants
to cooperate in order to achieve a better outcome as a group. A game is called
noncooperative if each player takes the decisions that are in favor of his/her self-
interest, while these decisions are usually conflicting with the ones made by other
players. In this thesis, we focus on noncooperative games because of their rel-
evance to the nature of demand response management. A noncooperative game
can be either static or dynamic. In static games, the actions taken by the players
are independent of the time and information, but in dynamic games, the order in
which decisions are made and the information players have access to can influence
the outcome.

A static N -person noncooperative game consists of three components: players
set, action sets, and utility functions. Each player has an action set that he/she
wishes to maximize his/her utility function over. One key point is that the utility
function of each player depends not only on his/her actions, but also on the de-
cisions made by other players. An equilibrium concept that is suitable for such
games is the Nash equilibrium. At the equilibrium point, given the decisions made
by other players, a player cannot benefit by deviating from his/her action. More-
over, the Nash equilibrium does not necessarily always exist, and one may have
to introduce some conditions on the utility function and/or action sets to ensure
existence, or expand the strategy spaces to include probability distributions [17].

The Nash equilibrium solution concept is reasonable when the decision process
is not dominated by any of the actions taken by any of the players. Sometimes it
would be beneficial to allow for hierarchy in the decision process. In such a case,
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there are two types of players: leaders and followers. The leaders’ decisions are
more dominant, and the followers respond to the decisions taken by the leaders.
This kind of hierarchal game is called a Stackelberg game, and the corresponding
solution concept is called the Stackelberg equilibrium. For the Stackelberg equi-
librium to exist in the standard sense and not lead to ambiguity, each follower’s
optimal response to the actions taken by the leaders has to be unique.1 The lead-
ers have the privilege of choosing how to take their actions at the beginning of the
game. However, they have to take into account how the followers would respond
to these actions and how each leader’s decision is influenced by the decisions of
the other leaders.

1.1 Literature Review

There are three main components of the smart grid in which game theory provides
promising tools [4]. These are: microgrids, communications, and demand-side
management. For a comprehensive survey of game-theoretic methods for these
three components, we refer to [4]. A microgrid is located on the distribution side
of the power network and can be looked at as a collection of energy sources that
serves a particular area. An energy exchange game was developed in [22] where
the players are the microgrids. Each microgrid serves a geographical area and has
either a surplus of energy or a shortage of energy. In this game, microgrids form
coalitions and hence a local energy exchange market when they find it beneficial to
do so. The prices and the amounts of energy to be sold are determined by auction
theory and the coalitions are decided through coalition formation games (they
are cooperative). For smart grid communications, the authors of [23] designed a
network formation game to minimize the communication delay between the smart
elements and a common access point. The players in this game are the smart
elements, and each one of them selects a preferred partner to forward its packets
to, in order to minimize the overall delay. This game was found to have a Nash
equilibrium.

There are several works where game-theoretic methods have been applied to
DSM and demand response, and improved the reliability and efficiency of the
grid [25–38,43]. An autonomous DSM through scheduling of appliances has been

1Otherwise one has to extend the notion of Stackelberg equilibrium to “robust” equilibrium
where non-unique responses of followers are also accommodated [17].

3



implemented within a noncooperative game framework in [25]. The participants
in the game are energy users who are connected to the same utility company,
and the outcome of the game is the power consumption schedule of appliances
that minimizes the overall energy cost. Two kinds of appliances were considered:
shiftable and non-shiftable. Each user selects the schedule of appliances while
meeting his/her energy needs. Users play a noncooperative game and each user
aims to minimize his/her payment to the utility company. Interestingly, simulation
results show that this energy scheduling game can provide solutions that are close
to the solution of the peak-to-average ratio minimization problem. This is not
always the case as the pricing can vary depending on the time of the day. A
recent extension adds energy storage into the picture [28], where a Stackelberg
game was developed between the utility company and the end-users. The leader
of the game is the utility company, which aims to maximize its profits by selecting
optimal prices. End-users are the followers in this hierarchical game. This work
also shows that the Stackelberg game is actually a generalization of the peak-
to-average ratio problem. These energy storage and scheduling works [25, 28]
are important because they cover different aspects. However, each of them is
somewhat restrictive. For example, the scheduling of appliances game [25] did
not consider the case when the end-users are able to have energy storage. Energy
scheduling and storage are usually co-related [4]. In [29], a noncooperative game
to reduce peak-to-average ratio has been proposed. Users decide when to charge
their batteries, so that the overall peak-to-average ratio is minimized. Accordingly,
a single utility company updates the prices. A Nash equilibrium exists for this
game and the computation of the equilibrium was done by a distributed algorithm.
Although these works are limited to the single company case, they show how game
theory can be useful and provides an appropriate framework when it comes to the
multi-period consideration for demand-side management.

Plug-in hybrid electric vehicles can sometimes have a surplus of energy, and it
can be more beneficial to sell energy quickly instead of holding onto it. This mo-
tivates the work of [26] in which an energy trading noncooperative game between
vehicle groups and distribution grids has been studied. In [27], joint consumers
discomfort and billing costs minimization within a repeated game framework has
been shown to lead to an optimal DSM mechanism.

Because of the two-way communication infrastructure in the smart grid [5],
there are numerous interactions between utility companies and the end-users. In
order to take this fact into account, utilizing a multi-level framework such as
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Stackelberg games would be very useful [28, 30–33, 35–38]. A multi-level game-
theoretic framework has been developed for demand response management, where
consumers choose their optimal demands in response to prices announced by dif-
ferent utility companies [30]. This Stackelberg game was shown to have a unique
Stackelberg equilibrium at which utility companies maximize their revenues and
end-users maximize their payoff functions. In this framework, utility companies
were the leaders of the game and users were the followers. In [31], a Stackelberg
game for demand response management in a large population regime has been
proposed. In this game, the leaders are the utility companies and they aim to max-
imize their profits, and the followers are the end-users who wish to maximize their
welfare. It was shown that a unique number of utility companies exists at which
profits are being maximized. These works, though they effectively capture user-
utility interactions, are limited to the single-period scenario. In the smart grid,
users are expected to be able to schedule their energy consumption, store or sell
surplus energy, based on their self-interest. With energy scheduling and storage,
users might have flexibility on when to receive a certain amount of energy, partic-
ularly for shiftable appliances [25]. Some energy consumption can be scheduled
and some cannot. For example, users might be flexible about doing the laundry,
but not much flexibility is there for refrigerators.

It is worth mentioning that multi-level games for DRM have been studied in a
limited context in the literature. For example, a four-stage Stackelberg game has
been studied where three stages are at the leader-level (the utility retailer), and the
fourth stage is at the consumer level [32]. Retailers choose the amount of energy
to procure, and the sources to produce it, in addition to deciding on the price.
Consumers respond to these prices through demand selection. This game is also a
single-period game and it does not take into account the competition between the
utility companies, but it incorporates other aspects of the decision making at the
company-level. Additionally, a noncooperative Stackelberg game between plug-
in electric vehicle groups such as parking lots and the smart grid was formulated
in [33] and a socially optimal equilibrium has been obtained. A two-level game
(a noncooperative game between multiple utility companies and an evolutionary
game for the users at the lower level) has been proposed in [34], but this game is
also limited to the single-period case. In [35], a Stackelberg game for three-party
energy management was shown to have a unique equilibrium. The leader of the
game is a shared facility controller, and the followers are energy users, and each
user is equipped with distributed energy resources, with no storage capacity. The
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computation of the Stackelberg equilibrium used a distributed algorithm. Further-
more, a Stackelberg game between a demand response aggregator (the leader) and
electricity generators (the followers) has been proposed in [37].

Motivated by the limitations of existing works above, this thesis aims to propose
a multi-period-multi-company game-theoretic framework for demand response
management in the smart grid. Such a generalization can consider the market
competition between utility companies, along with the multi-period considera-
tions at the user and the utility sides. Our goal is to have the generalization flexible
enough so that the effects of energy scheduling and storage on a market with mul-
tiple utility companies can be studied analytically. Moreover, one of the goals of
the demand response management is to minimize the peak-to-average ratio; such
a goal is clearly a multi-period issue, which cannot be studied in a single-period
model.

There is a need to develop an analytical multi-period, multi-utility, and a multi-
level framework. By introducing multi-period inter-temporal constraints, we could
study a generalization of [30] to the multi-period case. Our work differs from the
work in [30] at both the user-side and the company-side. At the user-side, we have
an additional minimum energy constraint that needs to be satisfied across all peri-
ods, while at the company-side, we provide an alternative computationally cheap
closed-form solution for the prices. Having such a multi-period framework can
make it possible to accommodate numerous extensions, such as energy schedul-
ing and storage, and peak-to-average ratio minimization.

Accordingly, we formulate in this thesis a Stackelberg game for multi-period-
multi-company demand response management. We derive solutions in closed
form and find precise expressions for the maximizing demands at the users’ level,
and the revenue-maximizing prices for the utility companies. We also prove the
existence and uniqueness of the Stackelberg equilibrium, and propose a distributed
algorithm to compute it using only local information. Furthermore, we exploit
the closed-form expressions to formulate a new power allocation game, study the
asymptotic behavior when the number of periods is large, and find an appropri-
ate company-to-user ratio for the large population regime. This work captures
the competition between utility companies, budget limitations at the consumer-
level, energy need for the entire time-horizon, and details opportunities for future
directions.
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1.2 Overview of Chapters

The balance of this thesis is organized as follows. The problem is formulated in
chapter 2 for both energy users and utility companies. In chapter 3, the Stack-
elberg game is analyzed and solutions in closed form are derived. Additionally,
the existence and uniqueness of the equilibrium point is shown, and a distributed
algorithm is proposed to compute it using only local information. Furthermore,
a new power allocation game at the companies side is proposed. In chapter 4,
the asymptotic behavior is studied when the number of periods or the number of
users is large. Numerical results illustrating the effectiveness of the multi-period
Stackelberg framework and the distributed algorithm are included in chapter 5.
We conclude the thesis in chapter 6 with a recap of main points and identification
of future directions.
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CHAPTER 2

PROBLEM FORMULATION

The system consists of K ≥ 1 UCs and N ≥ 1 end-users. We consider a finite
time horizon with T ≥ 1 periods. Let K = {1, 2, . . . , K} be the set of UCs,
N = {1, 2, . . . , N} be the set of end-users, and T = {1, 2, . . . , T} be the finite
set of time slots. The unit of time can be an hour, a day, a week, or a month.
Mathematically speaking, it does not matter which unit the set T represents.

We model the interaction between UCs and end-users as a Stackelberg game.
Thus, the DRM problem is formulated as two optimization problems, one for the
followers of the game and the other one for the leaders of the game. The followers
of the game are the consumers, who can be residential, commercial, or industrial,
and the leaders of the game are the UCs. On the followers (users) side, each user
has a certain amount of energy demand to meet and we assume that the users have
flexibility in scheduling their consumption of energy. It is also assumed that users
have limited budgets. The goal of each user is to maximize her utility without
exceeding the budget while meeting the minimum energy demand. On the leaders
(UCs) side, the goal of each UC is to maximize its revenue while its price setting
is influenced by both the competition against other UCs and the behavior of the
users. In the game considered here, the UCs announce their prices for each period
to the users, and then the users respond accordingly by scheduling their demands.
We discuss the underlying models for both sides separately below.

2.1 User-Side

Because of energy scheduling and storage, users may have some flexibility on
when to receive a certain amount of energy. In our analysis, we are concerned
about the total amount of shiftable energy. For non-shiftable energy, one can add
some period-specific constraints. Additionally, each user has a budget constraint
that she cannot exceed for the entire time horizon.
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The demand of user n ∈ N from UC k ∈ K at time t ∈ T is denoted by dn,k(t),
and pk(t) denotes the price of energy announced by UC k at time t. Each end-user
n has a budget of Bn, and a minimum amount of energy to be met, denoted by
Emin
n . The value of Emin

n can be thought of as the total energy needed by user
n during the considered total period (for example, one day or one week). User
payoff functions are increasing functions of the available energy. The utility of
user n is defined as

Uuser,n = γn
∑
k∈K

∑
t∈T

ln(ζn + dn,k(t)) (2.1)

where γn and ζn (typically, ζn = 1) are user specific parameters. The logarithmic
function is well known to provide a good demand response [30, 44–47]. Users
aim to end up with high payoffs while meeting the threshold of minimum amount
of energy and not exceeding a certain budget. To be more precise, given Bn ≥ 0,
Emin
n ≥ 0, and pk(t) > 0, the user-side optimization problem is formulated as

follows:

maximize
dn,k

Uuser,n

subject to
∑
k∈K

∑
t∈T

pk(t)dn,k(t) ≤ Bn (2.2)∑
k∈K

∑
t∈T

dn,k(t) ≥ Emin
n (2.3)

dn,k(t) ≥ 0, ∀k ∈ K, ∀t ∈ T (2.4)

Note that there is no game played among the users. Each user responds to the
price signals using only her local information. These price signals depend on all
the demands selected by the users and hence users indirectly affect each other’s
decisions, that is, they are coupled through the prices picked by the companies.

2.2 Company-Side

Given the prices of other UCs, denoted by p−k, the total revenue for UC k is given
by

Ugen,k(pk,p−k) =
∑
t∈T

pk(t)
∑
n∈N

dn,k(t) (2.5)
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Let Gk(t) denote the power availability of UC k at period t. The utility-side
optimization problem for each company is then described for each set of fixed
prices of other companies, p−k, as follows:

maximize
pk

Ugen,k(pk,p−k)

subject to
∑
n∈N

dn,k(t) ≤ Gk(t), ∀ t ∈ T (2.6)

pk(t) > 0, ∀ t ∈ T (2.7)

The goal of each UC is to maximize its revenue and hence maximize its profit.
Also, companies want to meet the consumers’ demands without exceeding the
maximum power availability (overloading the system can cause contingencies).
Additionally, because of the market competition, the prices announced by other
companies also affect the determination of the price at company k. So, company
k’s price selection is actually a response to what other UCs in the market have
announced; this response is also constrained by the availability of power. Thus,
what we have is a Nash game among the utility companies.
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CHAPTER 3

THE STACKELBERG GAME

In this chapter, we first solve the optimization problems introduced in the previous
chapter in closed form. Then, we study the existence and uniqueness of Nash
equilibrium at the UC-level and the Stackelberg equilibrium for the entire two-
level game and show their connection to the closed-form solutions. Furthermore,
we devise a distributed algorithm to compute the equilibrium point using only
local information. Finally, we further extend the results by formulating a power
allocation game at the UC-level that aims to answer the following question: Given
a number of periods T , how can each UC allocate its available power across the
periods to maximize its revenue?

3.1 Followers-Side Analysis

The user-side utility function is strictly concave and the constraints are linear;
see [48, 49] for details about analyzing and solving such problems. We start by
relaxing the minimum energy constraint (2.3) and then find the necessary budget
that makes the maximizing demands feasible. For each user n ∈ N , the associated
Lagrange function is given as follows:

Luser,n = γn
∑
k∈K

∑
t∈T

ln(ζn + dn,k(t))

−λn,1

(∑
k∈K

∑
t∈T

p(t)kdn,k(t)−Bn

)
+
∑
k∈K

∑
t∈T

λn,2(k, t)dn,k(t)
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where λn,i’s are the Lagrange multipliers. For optimality, by Krush-Kuhn-Tucker
necessary conditions [49], we need

∂Luser,n
∂dn,k(t)

= 0 ∀ t ∈ T , k ∈ K (3.1)

λn,1

(∑
k∈K

∑
t∈T

pk(t)dn,k(t)−Bn

)
= 0 (3.2)

λn,2(k, t)dn,k(t) = 0 ∀ t ∈ T , k ∈ K (3.3)

λn,1, λn,2(k, t) ≥ 0 ∀ t ∈ T , k ∈ K (3.4)

The above conditions are also sufficient because of the concavity of the opti-
mization problem [48]. In the sequel, we derive the solution in closed form by
considering two separate cases.

Case 1: dn,k(t) > 0, k ∈ K, t ∈ T

In this case, λn,1 > 0 (constraint (2.2) is active [49]), and λn,2(k, t) = 0 ∀t ∈
T , k ∈ K. Thus,

∂Luser,n
∂dn,k(t)

=
γn

ζn + dn,k(t)
− λn,1pk(t) = 0

which implies that

dn,k(t) =
γn

λn,1pk(t)
− ζn ∀ t ∈ T , k ∈ K (3.5)

Plugging (3.5) into (3.2) leads to∑
k∈K

∑
t∈T

(
γn
λn, 1

− pk(t)ζn) = Bn

So,

λn,1 =
KTγn

Bn +
∑

k∈K
∑

t∈T pk(t)ζn

Thus,

dn,k(t) =
Bn +

∑
k∈K

∑
t∈T pk(t)ζn

KTpk(t)
− ζn ∀ t ∈ T , k ∈ K (3.6)

which is a generalization of the single-period case considered in [30].
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Case 2: at least one dn,k(t) is zero

We show that the expression (3.6) also holds for

dn,k(t) ≥ 0, k ∈ K, t ∈ T

Without loss of generality, suppose that dn,1(1) = 0 and dn,e(f) > 0 for e ∈
K, f ∈ T , except when (e, f) = (1, 1). Following a similar analysis as in the
previous case,

dn,e(f) =
Bn +

∑
e∈K
∑

f∈T pe(f)ζn

(KT − 1)pe(f)
− ζn

Note that since dn,1(1) = 0, we have

ζn =
Bn +

∑
k∈K

∑
t∈T pk(t)ζn

KTp1(1)

and hence
Bn = ζn(KTp1(1)−

∑
k∈K

∑
t∈T

pk(t))

So,

dn,e(f) =
ζn(KTp1(1)−

∑
k∈K

∑
t∈T pk(t) +

∑
e∈K
∑

f∈T pe(f))

(KT − 1)pe(f)
− ζn

=
(KT − 1)ζnp1(1)

(KT − 1)pe(f)
− ζn

=
Bn +

∑
k∈K

∑
t∈T pk(t)ζn

KTpe(f)
− ζn (3.7)

which matches the expression (3.6). By the budget constraint∑
k∈K

∑
t∈T

pk(t)dn,k(t) ≤ Bn

we can see that when dn,k(t) = 0 ∀ k ∈ K, t ∈ T , user n has a zero budget
(i.e., Bn = 0). The announced prices cannot be infinite because of the nature of
the Stackelberg equilibrium, as we discuss later. The following theorem states the
necessary and sufficient condition forBn so that the above dn,k(t)’s are guaranteed
to be feasible.
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Theorem 1 For every user n ∈ N , dn,k(t) given by (3.6) is feasible if and only if

Bn ≥ max{fn,1, fn,2}

where

fn,1 = ζn(KTpk(t)−
∑
k∈K

∑
t∈T

pk(t)) ∀k ∈ K, t ∈ T

fn,2 =
Emin
n + ζnKT∑

k∈K
∑

t∈T
1

KTpk(t)

− ζn
∑
k∈K

∑
t∈T

pk(t)

Proof: Suppose first that Bn ≥ fn,1. Then,

Bn ≥ ζn(KTpk(t)−
∑
k∈K

∑
t∈T

pk(t)) ∀k ∈ K, t ∈ T

With little re-arrangements, we have

Bn + ζn
∑

k∈K
∑

t∈T pk(t)

KTpk(t)
− ζn ≥ 0 ∀k ∈ K, t ∈ T

Thus, the inequality Bn ≥ fn,1 implies that the non-negativity condition is satis-
fied. Next suppose that Bn ≥ fn,2. Then,

Bn ≥
Emin
n + ζnKT∑

k∈K
∑

t∈T
1

KTpk(t)

− ζn
∑
k∈K

∑
t∈T

pk(t)

Thus,

Bn + ζn
∑
k∈K

∑
t∈T

pk(t) ≥
Emin
n + ζnKT∑

k∈K
∑

t∈T
1

KTpk(t)

from which we have∑
k∈K

∑
t∈T

Bn + ζn
∑

k∈K
∑

t∈T pk(t)

KTpk(t)
−
∑
k∈K

∑
t∈T

ζn ≥ Emin
n

This leads to ∑
k∈K

∑
t∈T

dn,k(t) ≥ Emin
n
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With this, the inequality Bn ≥ fn,2 implies that the minimum energy need is
satisfied. Combining both conditions, we conclude that the condition

Bn ≥ max{fn,1, fn,2}

guarantees that the maximizing demand in (3.6) is feasible.
Now suppose that

Bn + ζn
∑

k∈K
∑

t∈T pk(t)

KTpk(t)
− ζn ≥ 0 ∀k ∈ K, t ∈ T

It follows that

Bn ≥ ζn(KTpk(t)−
∑
k∈K

∑
t∈T

pk(t)) ∀k ∈ K, t ∈ T

which implies that Bn ≥ fn,1. Finally, suppose that

∑
k∈K

∑
t∈T

dn,k(t) =
∑
k∈K

∑
t∈T

(
Bn + ζn

∑
k∈K

∑
t∈T pk(t)

KTpk(t)
− ζn)

≥ Emin
n

Then, ∑
k∈K

∑
t∈T

Bn + ζn
∑

k∈K
∑

t∈T pk(t)

KTpk(t)
≥ Emin

n +KTζn

By re-arranging, we have

Bn ≥
Emin
n + ζnKT∑

k∈K
∑

t∈T
1

KTpk(t)

− ζn
∑
k∈K

∑
t∈T

pk(t) = fn,2

from which it follows that Bn ≥ max{fn,1, fn,2} when the demand is feasible.

3.2 Leaders-Side Analysis

Given the prices set by the other companies and subject to the power availability
constraint (2.6), each UC (leader) aims to determine its most profitable prices. At
the leaders level, there is a noncooperative game in which each UC chooses its op-
timal prices in response to the prices set by the other UCs. The revenue function
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of company k is an increasing function of the consumers’ demands
∑

n∈N dn,k(t).
Thus, the optimality is reached when equality holds in (2.6). We apply the solu-
tions derived in the users-side analysis (which was a function of the prices) here
and show that in the case when we have equality in (2.6), the corresponding prices
constitute the best response of UC k subject to the prices set by the other UCs.

With equality in (2.6) and relation (3.6), there holds∑
n∈N Bn +

∑
n∈N ζn

∑
k∈K

∑
t∈T pk(t)

KTpk(t)

=
∑
n∈N

ζn +Gk(t), ∀ t ∈ T

Let Z =
∑

n∈N ζn and B =
∑

n∈N Bn. Then, for each company k ∈ K,

B + Z
∑
k∈K

∑
t∈T

pk(t) = KTpk(t)(Gk(t) + Z), ∀ t ∈ T

Note that the double summation includes pk(t) and all the other prices. Thus,

B + Z
∑
e∈K

∑
h∈T

pe(h) = KTpk(t)(Gk(t) + Z)− pk(t)Z,

∀ t ∈ T , ∀ k ∈ K, (e, h) 6= (k, t)

(3.8)

Note that the equations in (3.8) can be written in the form of a larger dimensional
linear equation

AP = Y

where A is a KT ×KT matrix whose diagonal entries are KT (Gk(t) + Z)− Z,
k ∈ K, t ∈ T , and off-diagonal entries are all equal to −Z, P is a vector in RKT

stacking pk(t), k ∈ K, t ∈ T , and Y a vector in RKT whose entries all equal B.
Specifically,

A =
KT (G1(1) + Z)− Z −Z . . . −Z

−Z KT (G1(2) + Z)− Z . . . −Z
... . . .

−Z . . . −Z KT (GK(T ) + Z)− Z
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and

P =
(
p1(1) · · · p1(T ) p2(1) · · · p2(T ) · · · pK(T )

)T
Y =

(
B B · · · B

)T
The following theorem shows that matrixA is invertible and the revenue-maximizing

prices are positive and unique.

Theorem 2 The following statements are true.

(i) The matrix A is nonsingular and the prices announced by company k ∈ K
at time t ∈ T are uniquely given by

pk(t) =
B

Gk(t) + Z
(

1

KT −
∑

k∈K
∑

t∈T
Z

Gk(t)+Z

) (3.9)

(ii) The above prices are always positive.

(iii) The price given by (i) constitutes the best response of company k to the

prices set by the other companies.

Proof:

(i) The matrix A can be represented as

A =


KT (G1(1) + Z) 0 . . . 0

0 KT (G1(2) + Z) . . . 0
... . . .

0 . . . 0 KT (GK(T ) + Z)



+


−Z
−Z

...
−Z


(
1 . . . 1

)
:= Â+ uvT

Note that Â is invertible (diagonal matrix with nonzero diagonal elements).
By the Sherman-Morrison formula [50], if Â is invertible and 1+vT Â−1u 6=
0, then

(Â+ uvT )−1 = Â−1 − Â−1uvT Â−1

1 + vT Â−1u

17



Note that

1 + vT Â−1u = 1−

(
1 . . . 1

)


1
KT (G1(1)+Z)

0 . . . 0

0 1
KT (G1(2)+Z)

. . . 0
... . . .

0 . . . 0 1
KT (GK(T )+Z)



Z

Z
...
Z


= 1− 1

KT

∑
k∈K

∑
t∈T

Z

Gk(t) + Z

Gk(t)’s are nonnegative and for each participating company k at least one
Gk(t) is positive. Also, Z > 0 and hence the overall value of the summation
is less than KT , and this clearly leads to 1 + vT Â−1u 6= 0. Note that

Â−1uvT Â−1 =
−Z

(KT )2
×

1
(G1(1)+Z)2

. . . . . . 1
(G1(1)+Z)(GK(T )+Z)

1
(G1(1)+Z)(G1(2)+Z)

1
(G1(2)+Z)2

. . . 1
(G1(2)+Z)(GK(T )+Z)

... . . .
1

(G1(1)+Z)(GK(T )+Z)
. . . . . . 1

(GK(T )+Z)2


Thus,

A−1 =


1

KT (G1(1)+Z)
0 . . . 0

0 1
KT (G1(2)+Z)

. . . 0
... . . .

0 . . . 0 1
KT (GK(T )+Z)


+

Z

(KT )2 −KT
∑

k∈K
∑

t∈T
Z

Gk(t)+Z

×
1

(G1(1)+Z)2
. . . . . . 1

(G1(1)+Z)(GK(T )+Z)
1

(G1(1)+Z)(G1(2)+Z)
1

(G1(2)+Z)2
. . . 1

(G1(2)+Z)(GK(T )+Z)
... . . .
1

(G1(1)+Z)(GK(T )+Z)
. . . . . . 1

(GK(T )+Z)2
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Since P = A−1Y , the price selection is uniquely given by

pk(t) =
B

KT (Gk(t) + Z)
(1 +

∑
k∈K

∑
t∈T

Z
Gk(t)+Z

KT −
∑

k∈K
∑

t∈T
Z

Gk(t)+Z

) (3.10)

which simplifies to the expression (3.9).

(ii) Suppose that to the contrary, pk(t) ≤ 0, this leads to

B

KT (Gk(t) + Z)
(1 +

∑
k∈K

∑
t∈T

Z
Gk(t)+Z

KT −
∑

k∈K
∑

t∈T
Z

Gk(t)+Z

) ≤ 0

for some t and k. Note that since B
KT (Gk(t)+Z)

is non-negative, there holds

1 +

∑
k∈K

∑
t∈T

Z
Gk(t)+Z

KT −
∑

k∈K
∑

t∈T
Z

Gk(t)+Z

≤ 0

This implies that

∑
k∈K

∑
t∈T

Z

Gk(t) + Z
≤ −(KT −

∑
k∈K

∑
t∈T

Z

Gk(t) + Z
)

and hence KT ≤ 0. But K ≥ 1 and T ≥ 1. Thus, this is a contradiction.
Therefore, we conclude that pk(t) > 0 ∀ t ∈ T , k ∈ K.

(iii) Given the prices announced by other UCs, suppose that a UC k announces
a price of p′k(t) = pk(t) + ε at a fixed time t. If ε < 0, the company will
decrease its price. But, the total demand from all users from UC k cannot
exceed the power availability (recall that the solution in (i) happens when
all the available power is being sold). Since the revenue at time t is the total
demand multiplied by the price, UC k does not achieve a higher revenue
when ε < 0. Now suppose that ε > 0; this leads to

Ugen,k(p
′
k(t),p−k(t))− Ugen,k(pk(t),p−k(t))

= (pk(t) + ε)
B + Z

∑
t∈T pk(t) + Zε

KT (pk(t) + ε)

− (pk(t) + ε)Z − pk(t)
B + Z

∑
t∈T pk(t)

KTpk(t)
+ Zpk(t)

= −ZεKT − 1

KT
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But KT ≥ 1 and Z ≥ 1. Thus, if ε > 0, the UC does not achieve a higher
revenue. Therefore, for every period t, company k does not benefit from
deviating from (3.9). Since this applies to every period, it applies for the
entire time horizon because of the linearity of the revenue function (it is a
linear combination of the demands multiplied by the prices).

In practice, due to production costs and market regulations, pk(t) cannot be
outside the range of some lower and upper bounds [pmin

k (t), pmax
k (t)] for all t ∈

T and k ∈ K, as in [30]. If pk(t) < pmin
k (t), then pk(t) is set to pmin

k (t), and
similarly for the upper-bound, if pk(t) > pmax

k (t), then we set pk(t) = pmax
k (t).

The expression (3.9) will still hold for the other prices because of the concavity of
the problem.

Remark 1 Using the expression (2.5), it can be verified that the revenue function

for UC k is

Ugen,k(pk,p−k) =
∑
t∈T

pk(t)
∑
n∈N

dn,k(t)

=
∑
t∈T

pk(t)(

∑
n∈N Bn +

∑
n∈N ζn

∑
k∈K

∑
t∈T pk(t)

KTpk(t)
−
∑
n∈N

ζn)

=
∑
t∈T

B + Z
∑

k∈K
∑

t∈T pk(t)

KT
− Z

∑
t∈T

pk(t)

=
B

K
+
Z(
∑

k∈K
∑

t∈T pk(t)−K
∑

t∈T pk(t))

K
(3.11)

We can see that the revenue function of each company depends on the price se-

lections of other companies and thus it is appropriate to use the notion of Nash

equilibrium.

Remark 2 Since Z =
∑

n∈N ζn and ζn is typically 1, the value of Z typically

equals N . In this case, by (3.9), we observe that for any given Gk(t)’s,

pk(t)(Gk(t) + Z) = pk(t)(Gk(t) +N)

which is a constant for all t ∈ T and k ∈ K. Thus, the power availability is

inversely proportional to the prices.
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Remark 3 Theorem 2 provides a computationally cheap expression for the prices.

Since pk(t) can be directly computed using (3.9), there is no need to numerically

compute A−1 or |A|. This enables us to deal with a large number of periods or

UCs, without worrying about computational complexity.

3.3 Existence and Uniqueness of the Stackelberg
Equilibrium

Companies play a noncooperative game at the market level and announce their
prices to the consumers. As discussed above, consumers optimally respond to
these prices and the response of user n ∈ N is uniquely given by (3.6). We assume
that the participants of the game at the followers level have a sufficient budget to
participate (derived in Theorem 1). Denote the strategy space of user (follower in
the game) n ∈ N by Fn and the strategy space of all users by F = F1×· · ·×FN .
Denote the strategy space of UC (a leader in the game) k ∈ K at t ∈ T by
Lk,t := [pmin

k (t), pmax
k (t)]. Note that pk(t) ∈ Lk,t for all t ∈ T and k ∈ K. The

strategy space of UC k for the entire time horizon isLk = Lk,1×· · ·×Lk,T and the
composite strategy space of all companies is L = L1 × · · · × LK . Before stating
our main theorem, we need the following game-theoretic concepts from [17].

The vector of prices p∗ ∈ L constitutes a Nash equilibrium for the price selec-
tion game at the UCs-level if

Ugen,k(p
∗
k,p

∗
−k) ≥ Ugen,k(pk,p−k

∗), ∀ pk ∈ Lk

For given price selections (p1, . . . , pK) ∈ L1 × · · · × LK , the optimal response
from all users is

d∗(p) = {d∗1(p), d∗2(p), . . . , d∗N(p)}

where for each n ∈ N , d∗n(p) is the unique maximizer for Uuser,n(dn,p) over
dn ∈ Fn. For the game considered here, the Stackelberg equilibrium is defined as
(d∗(p),p∗).

In general, in Stackelberg games, the response from the followers has to be
unique for the equilibrium to be well defined [17]. In the game here, due to mar-
ket competition, leaders aim to choose their prices in the most profitable way
while taking into account what other leaders are doing. We capture the compe-
tition on the leaders’ level through a Nash game. We note that in the parlance
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of dynamic game theory [17], we are dealing here with open-loop information
structures, with the corresponding equilibrium at the utilities level being open-
loop Nash equilibrium. Therefore, this is a one-shot game at which all the prices
for the all periods are announced at the beginning of the game, and the followers
respond to these prices by solving their local optimization problems. We have the
following theorem:

Theorem 3 The following statements are true.

(i) There exists a unique (open-loop) Nash equilibrium for the noncooperative

game at the leaders’ level.

(ii) There exists a unique (open-loop) Stackelberg equilibrium.

(iii) The maximizing demands given by (3.6) and the revenue-maximizing prices

given in Theorem 2 constitute the (open-loop) Stackelberg equilibrium for

the demand response management game.

Proof:

(i) Note that the set Lk,t := [pmink (t), pmaxk (t)] ∈ R is compact (closed and
bounded) ∀ t ∈ T , k ∈ K. Thus, L = L1× · · · ×LK is a compact subset of
RKT . Furthermore,

∂2Ugen,k(pk(t),p−k)

∂p2k(t)
= 0 ∀ t ∈ T , k ∈ K

So, the revenue function is concave in pk(t). Hence, there exists a Nash
equilibrium for the noncooperative game at the leaders level [17]. By The-
orem 2, pk(t) that constitutes the best response of company k ∈ K to prices
set by other companies is uniquely given by (3.9). Thus, the Nash equilib-
rium is unique.

(ii) From (i), a unique Nash equilibrium exists at which the maximizing prices
are announced to the consumers. Since the maximizing demands were
uniquely given by (3.6), then there exists a unique Stackelberg equilibrium.

(ii) Immediately follows from Theorem 2 and parts (i)-(ii).
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Algorithm 1 Distributed algorithm for computing the prices with local informa-
tion

1: Arbitrarily choose p(1)k (t), ∀t ∈ T , ∀k ∈ K
2: Repeat for i = 2, 3, . . .

3: For each user n ∈ N , compute d(i)n,k(t) from k ∈ K at t ∈ T by (3.6), then
update utility companies with demand signals

4: For each un-updated price p(i+1)
k (t) announced by k ∈ K at t ∈ T , use (3.15)

5: If p(i+1)
k (t) 6= p

(i)
k (t), update users and go to 3

6: Else, send a no-change signal to users and go to 4
7: If p(i+1)

k (t) = p
(i)
k (t) ∀t ∈ T , ∀k ∈ K, stop

8: Else, go to 2

3.4 Distributed Algorithm

It can be seen from (3.6) that in the computation of user n’s optimal demand se-
lection, no information from other users is needed, and user n’s local information
would suffice for optimal response (recall that there is no game played among
the users). However, the closed-form solution for pk(t) given by (3.9) requires
each company to know consumers’ budgets and the power availability of all the
other companies. Utility companies might not want to share such information
with each other. To avoid such a conflict, we propose a distributed algorithm that
allows companies to compute their revenue-maximizing prices using only local
information and show that this algorithm converges to the optimal prices given by
(3.9). This algorithm, combined with utility-maximizing demands given by (3.6),
leads to the computation of the equilibrium point of the open-loop Stackelberg
game with only local information at both the company level and the user level.

For iteration i = 1, 2, 3, . . . , denote the demand from user n at time t from
company k by d

(i)
n,k(t), and the price announced by company k and time t by

p
(i)
k (t) (the demands are non-negative and the prices are strictly positive). In our

algorithm, p(1)k (t) is chosen arbitrarily for each company k ∈ K and time t ∈ T .
Based on the initial price selection, d(1)n,k is computed using (3.6). Based on these
demands, each company k updates its price at time t as follows:

p
(i+1)
k (t) = p

(i)
k (t) +

∑
n∈N d

(i)
n,k(t)−Gk(t)

εk,t
(3.12)

where εk,t is an appropriately selected positive adjustment parameter for company
k at time t. When company k updates its price at time t, it transmits the price to
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each user n ∈ N and they change their demands accordingly. Then, the prices
are sequentially updated for the other periods and for other companies as well in
a similar fashion. Once all the prices converge to their optimal values, users opti-
mally respond by (3.6) and the Stackelberg equilibrium is reached (see Theorem
3). To find an appropriate εk,t that leads to the convergence of the above algorithm,
recall that the prices must be positive. So, the algorithm diverges whenever one
of the p(i)k (t)’s is negative, which might happen when∑

n∈N

d
(i)
n,k(t) < Gk(t)

for any company k ∈ K at any time t ∈ T in iteration i. To avoid this, it suffices
to require

p
(i)
k (t) > |

∑
n∈N d

(i)
n,k(t)−Gk(t)

εk,t
|

whenever we have
∑

n∈N d
(i)
n,k(t) < Gk(t). This translates into requiring

εk,t >
Gk(t)−

∑
n∈N d

(i)
n,k(t)

p
(i)
k (t)

for every company k at time t in iteration i. By (3.6), it suffices to have

εk,t >
Gk(t)−

∑
n∈N (

Bn+
∑

e∈K
∑

h∈T p
(i)
e (h)ζn

KTp
(i)
k (t)

− ζn)

p
(i)
k (t)

=
Gk(t)− (

B+Z
∑

e∈K
∑

h∈T p
(i)
e (h)

KTp
(i)
k (t)

− Z)

p
(i)
k (t)

=
KTp

(i)
k (t)(Gk(t) + Z)−B − Z

∑
e∈K
∑

h∈T p
(i)
e (h)

KT (p
(i)
k (t))2

Note that in this case we have

p
(i+1)
k (t) < p

(i)
k (t)

whenever ∑
n∈N

d
(i)
n,k(t) < Gk(t)
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and
p
(i+1)
k (t) > p

(i)
k (t)

whenever ∑
n∈N

d
(i)
n,k(t) > Gk(t)

The algorithm terminates when the equality of the power availability constraint
(2.6) is satisfied, that is,∑

n∈N

d
(i)
n,k(t) = Gk(t) ∀t ∈ T , ∀k ∈ K

Recall that in Theorem 2 the optimal price selection happens at the equality of the
power availability constraint (2.6), and since the optimal response for the follow-
ers of the game given by (3.6) only requires local information, we conclude that
Algorithm 1 converges to the Stackelberg equilibrium when the above inequality
is satisfied using only local information at both the leaders level and the followers
level.

The above bound on εk,t is the tightest bound, but checking it beforehand is not
possible. By the above discussion, we can see that choosing

εk,t ≥
Gk(t) + Z

p
(i)
k (t)

(3.13)

would still lead to the convergence of the algorithm. By (3.13) and (3.12), the
algorithm converges if the update rule satisfies

p
(i+1)
k (t) ≤ p

(i)
k (t)(1 +

∑
n∈N d

(i)
n,k(t)−Gk(t)

Gk(t) + Z
) (3.14)

Theorem 4 For each company k ∈ K at time t ∈ T in iteration i = 1, 2, . . . , if

the prices are sequentially updated such that

p
(i+1)
k (t) = p

(i)
k (t)(

1

δ
+

∑
n∈N d

(i)
n,k(t)−Gk(t)

Gk(t) + Z
) (3.15)

where δ ≥ 1, then the distributed algorithm converges to the unique Stackelberg

equilibrium.

Proof: Immediately follows by the above discussion in view of also the condition

25



(3.14).

3.5 Formulation of a Power Allocation Game

The analysis we have in the previous sections is for the case when the power avail-
ability for company k at time t is fixed and denoted by Gk(t) (see chapter 2 for
complete problem formulation). In practice, each company has a certain produc-
tion capacity it cannot exceed. For the entire time horizon, for each company
k ∈ K, denote the power availability by Gtotal

k . In this case, we have∑
t∈T

Gk(t) ≤ Gtotal
k , ∀ k ∈ K (3.16)

Now, the question is: How can each company allocate its power so that it max-
imizes its revenue?

In this section, we use the closed form solutions obtained from the above anal-
ysis to formulate a noncooperative power allocation game between utility com-
panies. Studying the existence and uniqueness of the Nash equilibrium for this
power allocation game is left for future work. By (3.11), the revenue function for
company k is

Ugen,k(pk,p−k) =
B

K
+
Z
∑

k∈K
∑

t∈T pk(t)− ZK
∑

t∈T pk(t)

K

By summing over k’s, we get

∑
k∈K

Ugen,k(pk,p−k) =
∑
k∈K

(
B

K
+
Z
∑

k∈K
∑

t∈T pk(t)− ZK
∑

t∈T pk(t)

K
)

= B + Z
∑
k∈K

∑
t∈T

pk(t)− Z
∑
k∈K

∑
t∈T

pk(t)

= B

hence ∑
k∈K

Ugen,k(pk,p−k) =
∑
n∈N

Bn (3.17)

So, the sum of all revenues equals the sum of all budgets. This is not surprising
because the utility maximizing demands given by (3.6) happen at equality of the
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budget constraint ∑
k∈K

∑
t∈T

pk(t)dn,k(t) ≤ Bn

for each user n ∈ N .
The results in the next chapter, along with the numerical results, show that

as the number of periods increases when the total power availability is fixed, end-
users always benefit in terms of their utility functions. However, utility companies
in this case either gain or lose, and whenever a company k gains in terms of
revenue, at least one other company must lose. Thus, our multi-period framework
will always provide more incentives for consumer participation, compared to the
single-period one (see [30]). But, because of the conflict of objectives that can
arise between utility companies in such a framework, it would be interesting to
see how each company can distribute its available power over a given number of
periods T . This conflict of objectives is due to the fact that the sum of all the
revenues is a constant that is equivalent to the sum of all budgets, as in (3.17).

Recall that at the Stackelberg equilibrium, we have∑
n∈N

dn,k(t) = Gk(t) ∀ t ∈ T , ∀ k ∈ K (3.18)

For each company k ∈ K, stack all the power availabilities Gk(t)’s into a vector
Gk. Denote the power availability from other companies by G−k, and by (3.9)
and (3.18), the revenue function of company k can be represented as

Ugen,k(Gk,G−k) =
∑
t∈T

pk(t)Gk(t)

= B
∑
t∈T

Gk(t)

(Gk(t) + Z)(KT −
∑

k∈K
∑

t∈T
Z

Gk(t)+Z
)

Denote the strategy space of company k at time t by Pk,t. By (3.16), eachGk(t)

cannot exceed Gtotal
k , and since Gk(t)’s are non-negative, we can see that

Pk,t := [0, Gtotal
k ], ∀t ∈ T , ∀k ∈ K

For the entire time horizon, the strategy space of company k ∈ K is

Pk = Pk,1 × · · · × Pk,T
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Thus, given G−k, the optimization problem for company k is as follows:

maximize
Gk∈Pk

Ugen,k(Gk,G−k)

subject to
∑
t∈T

Gk(t) ≤ Gtotal
k (3.19)
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CHAPTER 4

ASYMPTOTIC BEHAVIOR

In this chapter, we study what happens when the number of periods and the num-
ber of users are large. Particularly, we study how the equilibrium prices, demands,
and utilities are affected as T,N →∞.

For the remaining of this chapter, we set ζn = 1 ∀n. Note that in this case,

Z =
∑
n∈N

ζn = N

This provides more insights about the influence of the number of followers on
demand selection, utility functions, and the revenue-maximizing prices, without
conceptually affecting the analysis, since ζn is typically 1. Particularly, (3.6) be-
comes

dn,k(t) =
Bn +

∑
k∈K

∑
t∈T pk(t)

KTpk(t)
− 1 ∀ t ∈ T , k ∈ K (4.1)

and the price announced by company k ∈ K at time t ∈ T is

pk(t) =
B

Gk(t) +N
(

1

KT −
∑

k∈K
∑

t∈T
N

Gk(t)+N

) (4.2)

Also, the utility function of user n becomes

Uuser,n = γn
∑
k∈K

∑
t∈T

ln(1 + dn,k(t)) (4.3)

4.1 When the Number of Periods is Large

Numerical results (see chapter 5) indicate that with the same total power availabil-
ity for each company, the multi-period demand response management provides
more incentives for consumer participation compared to the single-period case.
Particularly, the utility function of user n ∈ N increases significantly without
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increasing the budget, while the total power available from company k ∈ K is
distributed among the periods. Such incentives are of practical importance and
would encourage more consumers to participate in demand response management
and hence improve the overall reliability of the grid [5]. Here, we analyze what
happens as T increases when consumers’ budgets and total power availabilities
for each company are fixed.

Suppose that all companies have the same total power availability and the to-
tal power availability of each company k ∈ K is equally distributed among all
periods. In this case, we have

Gk(t) =

∑
t∈T Gk(t)

T
, t ∈ T , k ∈ K (4.4)

and ∑
k∈K

∑
t∈T

Gk(t) = KTGk(t) (4.5)

which implies ∑
k∈K

∑
t∈T

N

Gk(t) +N
= KT

N

Gk(t) +N
(4.6)

∑
k∈K

∑
t∈T

pk(t) = KTpk(t) (4.7)

By plugging-in (4.6) in (4.2), we have

pk(t) =
B

Gk(t) +N
(

1

KT −KT N
Gk(t)+N

) (4.8)

=
B

KTGk(t)
(4.9)

=
B∑

k∈K
∑

t∈T Gk(t)
(4.10)

which is a constant since the numerator is the sum of all users’ budgets and the
denominator is the sum of the total power availability for all companies. Note that
in this case the utility of user n simplifies to

Uuser,n = γnKT ln(1 + dn,k(t)) (4.11)
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where

dn,k(t) =
Bn +

∑
k∈K

∑
t∈T pk(t)

KTpk(t)
− 1 (4.12)

=
Bn +KTpk(t)

KTpk(t)
− 1 (4.13)

=
Bn

KTpk(t)
(4.14)

By plugging-in (4.14) in (4.11), we have

Uuser,n = γnKT ln(
Bn

KTpk(t)
+ 1) (4.15)

By (4.4) and (4.9), we get

Uuser,n = γnKT ln(
BnGk(t)

B
+ 1) (4.16)

= γnKT ln(

∑
t∈T Gk(t)Bn/B

T
+ 1) (4.17)

where the term
∑

t∈T Gk(t)Bn/B is positive. Thus, as T increases, the multi-
plicative term γnKT of the logarithmic function increases at a faster rate than the
decrease of ln(Bn

∑
t∈T Gk(t)/B

T
+ 1). Hence, as T increases, the equilibrium utility

of each user n ∈ N monotonically increases. Taking the limit,

lim
T→∞

Uuser,n(T ) = lim
T→∞

γnKT ln(

∑
t∈T Gk(t)Bn/B

T
+ 1)

= lim
T→∞

γnK ln(

∑
t∈T Gk(t)Bn/B

T
+ 1)T

By the continuity of the logarithmic function,

lim
T→∞

Uuser,n(T ) = γnK ln( lim
T→∞

(

∑
t∈T Gk(t)Bn/B

T
+ 1)T )

= γnK ln e
∑

t∈T Gk(t)Bn/B

= γn
K
∑

t∈T Gk(t)Bn

B

where the second equality follows from the limit definition of e. Furthermore, note
that the demand dn,k(t) from user n ∈ N from company k ∈ K at time t ∈ T
converges to zero as T →∞. We further note that the revenues are constants. To
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see this, recall

Ugen,k(pk,p−k) =
∑
t∈T

pk(t)
∑
n∈N

dn,k(t)

= Tpk(t)
∑
n∈N

dn,k(t)

= Tpk(t)Gk(t)

=
B

K

which is a constant since both the number of companies and the budgets of the
users are fixed.

Remark 4 The monotonicity of the equilibrium utilities of the users shows that in-

creasing the number of periods and partitioning the total power among them leads

to providing more incentives for consumers’ participation. However, it might not

be very beneficial to increase the number of periods to a very high value. Firstly,

the rate of increase in terms of users’ utilities gets smaller and smaller. Secondly,

having a high number of periods lead to smaller demands for each period and that

might violate the minimum energy need at the users’ level. So, it is beneficial to

increase the number of periods up to a certain point (compared to having T = 1),

but it might not be beneficial to let T become arbitrarily large. It would be inter-

esting to study what would be the appropriate number of periods that keeps users

motivated to participate in DRM while being practical.

Remark 5 Note that the limit point of the utility function of user n is the propor-

tion of his budget to the total budgets times the total power availability. So if a

particular user has 1% of the sum of all the budgets, he gets 1% of the available

power. Furthermore, the revenue for each company is the proportion of the sum

of the budgets to the number of companies. Additionally, the demand by user n

from company k at time t is the proportion of his budget to the total budgets times

the total power availability at t from k.

Remark 6 The numerical results in the next chapter show that even when the

above assumptions are relaxed, the equilibrium utilities of the consumers still

increase as T increases. For example, when T = 4 and the power availabil-

ity for each company is distributed as follows: 25%, 40%, 25%, and 10%, con-

sumers’ utility functions increase significantly, compared to the single-period case
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in [30]. So, irrespective of how the total power availability is distributed, con-

sumers would still benefit from increasing the number of periods.

Remark 7 When the above assumptions are relaxed, companies are affected in

different ways as T grows. Some companies gain as T increases and other compa-

nies lose, and the sum of the revenues is always a constant that is equivalent to the

sum of all the budgets. This motivates us to formulate a power allocation game in

section (3.5) at the companies-level to study how each company can allocate its

power availability across a given number of periods. Relaxing the assumptions

can also lead to varying prices as T increases.

4.2 When the Number of Users is Large

In this section, we study the large population regime. Particularly, we analyze
what happens when there is a large number of followers with T fixed. In the
above results and discussions the number of users N ≥ 1 was a given. Here,
we are interested in analyzing the influence of increasing N on both users and
utility companies. When the number of users increases, each additional user has
some budget Bn, and since the power availability is fixed, more competition be-
tween users arises on the same amount of power and hence utility companies will
increase their revenue-maximizing prices.

We start by assuming that the budget for each user n ∈ N is the same, and then
increase the number of users N and see what happens as N → ∞. We further
assume that Gk(t)’s are the same for all companies at each t. Going back to (4.2),
in this case we have

pk(t) =

∑
n∈N Bn

Gk(t) +N
(

1

KT −
∑

k∈K
∑

t∈T
N

Gk(t)+N

) (4.18)

=
NBn

Gk(t) +N
(

1

KT −KT N
Gk(t)+N

) (4.19)

=
NBn

KTGk(t)
∈ Lk,t (4.20)

The price company k at time t announces is the proportion of the total budget
to the power availability. We can see that pk(t) → ∞ as N → ∞. Denote the
maximum price company k at time t can announce by pmax. To avoid divergence
of the revenue-maximizing prices and to accommodate the large population needs,
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we would like to analytically find the appropriate number of companies the needs
to be added to achieve this goal so that each pk(t) does not exceed pmax. To do
this, we first analyze how the demands, users’ utilities, and revenues are affected
at equilibrium.

By (4.1), we can see that ∀ t ∈ T and ∀k ∈ K, the demand is

dn,k(t) =
Bn +

∑
k∈K

∑
t∈T pk(t)

KTpk(t)
− 1 (4.21)

=
Bn +KTpk(t)

KTpk(t)
− 1 (4.22)

=
Bn

KTpk(t)
(4.23)

=
Bn

KT NBn

KTGk(t)

(4.24)

=
Gk(t)

N
(4.25)

where the fourth equality follows from (4.20). Note that dn,k(t)→ 0 as N →∞.
When the population is large and the power availability is fixed, it is not surprising
that dn,k(t) → 0 because the portion each user can get from the available power
gets smaller and smaller as N increases. Thus, a balance between the supply and
demand needs to be achieved, and we do this by finding an appropriate company-
to-user ratio K

N
. We further note the utility function of user n will also converge

to zero in the large population regime. To see this, recall (4.3) and plug-in (4.25)

Uuser,n = γn
∑
k∈K

∑
t∈T

ln(1 + dn,k(t)) (4.26)

= γnKT ln(1 +
Gk(t)

N
) (4.27)

by the continuity of the logarithmic function, we can see that

lim
N→∞

Uuser,n(N) = lim
N→∞

γnKT ln(1 +
Gk(t)

N
)

= γnKT ln(1 + lim
N→∞

Gk(t)

N
)

= γnKT ln(1)

= 0
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The revenue for company k is

Ugen,k(pk,p−k) =
∑
t∈T

pk(t)
∑
n∈N

dn,k(t) (4.28)

= Tpk(t)Gk(t) (4.29)

=
NBn

KTGk(t)
TGk(t) (4.30)

=
NBn

K
(4.31)

where the second equality follows from the observation that∑
n∈N

dn,k = Gk(t), ∀ t ∈ T , ∀ k ∈ K (4.32)

at the revenue-maximizing prices. The supply-demand balance (4.32) is achieved
at the Stackelberg equilibrium. Note that Ugen,k grows as N grows. The revenue-
maximizing prices balance the demand and supply in way that makes users exploit
all of their available budgets (they use all the available budgets to maximize their
utilities, and the sum all these budgets will eventually go to utility companies as
revenues). When the population is large, the sum of the budgets

∑
n∈N Bn →∞

as N →∞ and hence it is natural to have

lim
N→∞

Ugen,k(N) =∞

Now, for a given maximum allowable price pmax, what is the appropriate company-
to-user ratio K

N
that allows us to achieve the supply-demand balance in (4.32) with

the condition
pk(t) ≤ pmax, ∀ t ∈ T , ∀ k ∈ K (4.33)

being satisfied? The following theorem answers this question.

Theorem 5 Suppose

(a.i) The power availability from company k ∈ K at t ∈ T is the same for all

companies

(a.ii) All users have the same budget

Then, the following statements are true.
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(i) If the number of users N is bounded by

N ≤
pmax

∑
k∈K

∑
t∈T Gk(t)

Bn

(4.34)

then the revenue-maximizing pk(t)’s given by (4.20) are feasible and the

supply-demand balance (4.32) is satisfied

(ii) If the number of users N is larger than a specific threshold,

N >
pmax

∑
k∈K

∑
t∈T Gk(t)

Bn

, (4.35)

then, the optimal company-to-user ratio that maximizes the revenues with-

out exceeding pmax is

K

N
=

Bn

pmax
∑

t∈T Gk(t)
(4.36)

Proof:

(i) Upon re-arrangements we can see that

pk(t) =
NBn

KTGk(t)
=

NBn∑
k∈K

∑
t∈T Gk(t)

≤ pmax, ∀ t ∈ T , ∀ k ∈ K

which implies that pk(t)’s are feasible and the supply-demand balance is
automatically satisfied by the Stackelberg equilibrium in Theorems 2-3.

(ii) Suppose
K

N
<

Bn

pmax
∑

t∈T Gk(t)
=

Bn

pmaxTGk(t)

This implies

pmax <
NBn

KTGk(t)
= pk(t), ∀ t ∈ T , ∀ k ∈ K

which leads to the infeasibility of revenue-maximizing prices. In this case,
companies’ best response is to charge pmax because of the concavity of their
revenue-maximization problems. This implies that∑

k∈K

Ugen,k =
∑
k∈K

∑
t∈T

pmaxGk(t) = pmaxKTGk(t) < NBn =
∑
n∈N

Bn
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which means that the sum of the revenues is strictly less than the sum of the
budgets. But, the equality must hold at the Stackelberg equilibrium as in
(3.17). Hence, the ratio K

N
must increase to

K

N
=

Bn

pmaxTGk(t)
=

Bn

pmax
∑

t∈T Gk(t)

Finally, note that if
K

N
>

Bn

pmaxTGk(t)
,

then
pmax >

NBn

KTGk(t)
= pk(t), ∀ t ∈ T , ∀ k ∈ K

so the revenue-maximizing prices will be feasible. However, it can be seen
from (4.31) that each company k ∈ K will lose in-terms of revenue as there
are more companies than necessary in the market.
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CHAPTER 5

NUMERICAL RESULTS

there isWe conducted numerical computations capturing different scenarios. In
the first case, we set T = 1 and compute the results with the same parameter
values as in the single-period case [30]. Here, for n ∈ N , we have ζn = 1 and
γn = 1. Additionally, K = 3, N = 5, B1 varies from 2 to 42, B2 = 10, B3 = 15,
B4 = 20, and B5 = 25. The power availabilities are G1(1) = 10, G2(1) = 15,
andG3(1) = 20. Figure 5.1 shows that the results match those in the single-period
case given in [30]. This is expected since the multi-period Stackelberg game is a
generalization of the single-period one.

5.1 Influence of the Number of Periods

Now, we let T = 4, an interpretation for which can be the following: morning, af-
ternoon, evening, and late night. The budgets of consumers are kept the same, and
as before, B1 still varies from 2 to 42. The total power availability for each com-
pany is also kept at the same level, but distributed across the 4 periods as follows:
25%, 40%, 25%, and 10%. Figure 5.2 shows that with the same total power avail-
ability for each company, and without increasing any of the consumers’ budgets,
the utilities for users increase significantly (almost doubles for user 1). The to-
tal demands for the users do not change, since they match the power availability.
The trend for the revenues is similar to the single-period case. One key obser-
vation is that the multi-period scheme provides more incentives for consumers’
participation (shown analytically), which is quite important and a key issue [5].

Additionally, we now increase the number of users and study the behaviors with
a varying T . Here, T varies from 1 to 50, N = 50, K = 1, G1(t) =

300
T
∀ t ∈ T

(so, the power availability is equally distributed among all periods). B1−10 = 5,
B11−20 = 10, B21−30 = 15, B31−40 = 20, and B41−50 = 25. Figure 5.3 shows that
the previous observation again holds, and increasing the number of the periods
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provides more incentives for users’ participation. The revenue is constant since
the budgets are fixed and they are exploited at the revenue-maximizing prices and
utility-maximizing demands.

Finally, with the same budgets for the 50 users, we increase the number of
companies and let K = 3. Letting G1(t) = 300

T
∀ t ∈ T , G2(t) = 150

T
∀ t ∈

T , and G3(t) = 200
T
∀ t ∈ T . Figure 5.4 shows a similar behavior for users.

However, it illustrates that some companies actually lose in terms of revenues
when T increases. But, the sum of revenues is always a constant (equals the
sum of budgets). This illustrates the importance of the power allocation game
formulated in section 3.6.

5.2 Convergence of the Distributed Algorithm

We simulate the performance of the distributed algorithm for different scenarios.
In the first case the parameter values are as in the first figure (T = 1,K = 3,N =

5, with the following power availabilities and budgets: G1(1) = 10, G2(1) = 15,
G3(1) = 20, B1 = 5, B2 = 10, B3 = 15, B4 = 20, and B5 = 25). We simulate
the algorithm’s convergence with εk,t = 40 ∀t,∀k and εk,t = 10 ∀t,∀k. Figures
5.5 and 5.6 show that the algorithm converges to the optimal values as in [30].
When εk,t is smaller, the algorithm converges in a faster rate. But, there is a trade-
off between the convergence and the speed of convergence. To elaborate on this,
we let εk,t = 2 ∀t, ∀k (this value violates the condition Theorem 4) and note that
the algorithm diverges as in Figure 5.7. Note that for these figures, we are using
the update rule (3.12).

Now, with the same values of the adjustment parameter, we increase the number
of periods to T = 4 with a single utility company and study the convergence
of the prices. The power availability is as follows: G1(1) = 6, G1(2) = 12,
G1(3) = 11.25 and G1(4) = 4.5. Figures 5.8-5.10 illustrate its performance when
T increases and show that there is a similar pattern.
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Figure 5.1: Computations with 5 users, T = 1, and varying B1
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Figure 5.2: Computations with 5 users, T = 4, and varying B1
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Figure 5.6: Distributed algorithm’s performance with T = 1, K = 3, and
εk,t = 10 ∀t,∀k

43



Iteration
0 5 10 15 20 25 30 35 40 45 50

P
r
ic

e
s

-800

-600

-400

-200

0

200

400

600

Company 1
Company 2
Company 3

Iteration
0 5 10 15 20 25 30 35 40 45 50

D
e

m
a

n
d

s
 
(
t
o

t
a

l 
f
o

r
 
e

a
c
h

 
u

s
e

r
)

-50

0

50

100

150

200

250

300

User 1
User 2
User 3
User 4
User 5

Iteration
0 5 10 15 20 25 30 35 40 45 50

R
e

v
e

n
u

e

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

Company 1
Company 2
Company 3

Iteration
0 5 10 15 20 25 30 35 40 45 50

U
s
e

r
 
U

t
il
it
y

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

User 1
User 2
User 3
User 4
User 5

Figure 5.7: Distributed algorithm’s divergence with T = 1, K = 3, and
εk,t = 2 ∀t,∀k

Iteration

0 5 10 15 20 25 30 35 40 45 50

P
ric

es

0

0.5

1

1.5

2

2.5

3

3.5

t=1
t=2
t=3
t=4

Figure 5.8: Distributed algorithm’s performance with T = 4, K = 1, and
ε1,t = 40 ∀t

44



Iteration

0 5 10 15 20 25 30 35 40 45 50

P
ric

es

0

1

2

3

4

5

6

7

8

t=1
t=2
t=3
t=4
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CHAPTER 6

CONCLUSION

In this thesis, the multi-period demand response problem through game-theoretic
methods has been studied. In particular, we have developed a Stackelberg game to
capture the interactions between utility companies and energy consumers. These
consumers can be commercial, residential, or industrial. In this game, utility com-
panies are the leaders and the users are the followers. The leaders play a nonco-
operative Nash game, which was shown to have a unique equilibrium at which
companies maximize their revenues in response to price decisions made by the
other companies. Then, the users optimally respond to the price selection made
by utility companies by choosing their utility maximizing demands. Each user
has a limited budget and a minimum amount of energy to meet for the entire time
horizon. A budget condition has been derived for consumers’ participation and
the maximizing demands have been shown to be unique. The overall hierarchal
interaction admits a unique Stackelberg equilibrium at which the revenues are
maximized and the demands are utility maximizing. Furthermore, closed form
solutions have been derived for the Stackelberg equilibrium, and a distributed al-
gorithm to compute the equilibrium point using only local information was shown
to converge to the Stackelberg equilibrium. A new power allocation game at the
companies-level has been formulated by exploiting the closed form expressions.
Moreover, the asymptotic behavior of user-utilities, demands, prices, and revenues
has been analyzed as the number of periods increases. This thesis shows, both an-
alytically and numerically, that the multi-period scheme provides more incentives
for the participation of energy consumers in demand response management. In
the large population regime, an appropriate company-to-user ratio was derived to
maximize the revenue of each individual utility company.

There are plenty of opportunities for future work. Studying the optimal power
allocation at the companies-level is one possible direction. In this thesis, it was
assumed that the minimum energy need at the users-level has to be satisfied for the
entire time horizon, so incorporating period-specific constraints is another possi-

46



ble direction for future work. Furthermore, it would be interesting to add energy
scheduling and storage at the users-level and/or companies-level and study their
influence on demand selections and the revenue-maximizing prices. The game
developed in this thesis is static with open-loop information structures. There-
fore, using tools from dynamic game theory to deal with closed-loop information
structures is another direction for future work.
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