
c© 2015 Yun Li



UNIVERSAL OUTLIER HYPOTHESIS TESTING WITH APPLICATIONS TO ANOMALY
DETECTION

BY

YUN LI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Venugopal V. Veeravalli, Chair
Professor Pierre Moulin
Associate Professor Prashant Mehta
Assistant Professor Lav R. Varshney



ABSTRACT

Outlier hypothesis testing is studied in a universal setting. Multiple sequences of observa-

tions are collected, a small subset (possibly empty) of which are outliers. A sequence is

considered an outlier if the observations in that sequence are distributed according to an

“outlier” distribution, distinct from the “typical” distribution governing the observations in

the majority of the sequences. The outlier and typical distributions are not fully known,

and they can be arbitrarily close. The goal is to design a universal test to best discern the

outlier sequence(s). Both fixed sample size and sequential settings are considered in this

dissertation. In the fixed sample size setting, for models with exactly one outlier, the gen-

eralized likelihood test is shown to be universally exponentially consistent. A single letter

characterization of the error exponent achieved by such a test is derived, and it is shown

that the test achieves the optimal error exponent asymptotically as the number of sequences

goes to infinity. When the null hypothesis with no outlier is included, a modification of the

generalized likelihood test is shown to achieve the same error exponent under each non-null

hypothesis, and also consistency under the null hypothesis. Then, models with multiple

outliers are considered. When the outliers can be distinctly distributed, in order to achieve

exponential consistency, it is shown that it is essential that the number of outliers be known

at the outset. For the setting with a known number of distinctly distributed outliers, the

generalized likelihood test is shown to be universally exponentially consistent. The limiting

error exponent achieved by such a test is characterized, and the test is shown to be asymp-

totically exponentially consistent. For the setting with an unknown number of identically

distributed outliers, a modification of the generalized likelihood test is shown to achieve a

positive error exponent under each non-null hypothesis, and consistency under the null hy-

pothesis. In the sequential setting, a test with the flavor of the repeated significance test is

proposed. The test is shown to be universally consistent, and universally exponentially con-

sistent under non-null hypotheses. In addition, with the typical distribution being known,

the test is shown to be asymptotically optimal universally when the number of outliers is

the largest possible. In all cases, the asymptotic performance of the proposed test when

none of the underlying distributions is known is shown to converge to that when only the
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typical distribution is known as the number of sequences goes to infinity. For models with

continuous alphabets, a test with the same structure as the generalized likelihood test is

proposed, and it is shown to be universally consistent. It is also demonstrated that there is a

close connection between universal outlier hypothesis testing and cluster analysis. The per-

formance of various proposed tests is evaluated against a synthetic data set, and contrasted

with that of two popular clustering methods. Applied to a real data set for spam detection,

the sequential test is shown to outperform the fixed sample size test when the lengths of

the sequences exceed a certain value. In addition, the performance of the proposed tests is

shown to be superior to that of another kernel-based test for large sample sizes.
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CHAPTER 1

INTRODUCTION

We consider the following inference problem, which we term outlier hypothesis testing.

Among a fixed number of independent and memoryless observation sequences, it is assumed

that there is a small subset (possibly empty) of outlier sequences. Specifically, most of the

sequences are assumed to be distributed according to a “typical” distribution, while an out-

lier sequence is distributed according to an “outlier distribution,” distinct from the typical

distribution. We are interested in universal settings of this problem, where the outlier and

typical distributions are not fully known, and can be arbitrarily close. The goal is to design

a test, which does not depend on any unknown distribution, to best identify all the out-

lier sequences. Outlier hypothesis testing finds possible applications in fraud and anomaly

detection in large data sets [1, 2], severe weather prediction, environment monitoring in

sensor networks [3], network intrusion and voting irregularity analysis. It also finds appli-

cations where the term “outlier” has a positive connotation, such as spectrum sensing and

high-frequency trading.

We study both fixed sample size (FSS) and sequential settings of universal outlier hy-

pothesis testing. In the FSS setting, the number of observations that are taken before a

final decision is made is determined at the outset, and the goal is to identify the outlier

sequences with a certain accuracy using as few observations as possible. In the sequential

setting, observations are collected sequentially over a period of time. At each time, a test

either decides to continue taking one more observation, or to stop and make a final decision.

As a result, the number of observations that are collected before the test terminates is not

fixed, but rather a random value. The goal in the sequential setting is to achieve a certain

accuracy using the fewest observations on average.

1.1 Related Problems

Universal outlier hypothesis testing is related to a broader class of composite hypothesis

testing problems in which there is uncertainty in the probabilistic laws associated with some

or all of the hypotheses. To solve these problems, a popular approach is to apply the
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generalized likelihood (GL) test [4, 5]. For example, in the simple-versus-composite case,

the goal is to make a decision in favor of either the null distribution, which is known to

the tester, or a family of alternative distributions. A fundamental result concerning the

asymptotic optimality of the generalized likelihood ratio test (GLRT) in this case was shown

in [6]. When some uncertainty is present in the null distribution as well, i.e., the composite-

versus-composite setting, the optimality of the GLRT has been examined under various

conditions [5].

Universal outlier hypothesis testing is also related to homogeneity testing and classification

[7–11]. In homogeneity testing, one wishes to decide whether or not two samples come from

the same probabilistic law. In classification problems, a set of test data is classified into

one of multiple streams of training data with distinct labels. Metrics that are commonly

used to quantify the performance of a test are consistency and exponential consistency. A

universal test is consistent if the error probability approaches zero as the sample size goes

to infinity, and is exponentially consistent if the decay is exponential with sample size. In

[10, 11], a classifier based on the principle of the GL test was shown to be optimal under

the asymptotic Neyman-Pearson criterion. In particular, in [10], the classifier is designed

to minimize the error probability under the inhomogeneous hypothesis, under a predefined

constraint on the exponent for the error probability under the homogeneous hypothesis. And,

in [11], the classifier is designed to minimize the probability of rejection, under a constraint

on the probability of misclassification. However, the aforementioned optimality is achieved

only when the length of the training data grows at least linearly with that of the test data,

and the distribution of the test data is separated enough from those of all unmatched training

data.

There is a close connection between universal outlier hypothesis testing and cluster analy-

sis. In fact, we can show that our proposed FSS test in Chapter 3 is equivalent to a clustering

algorithm that performs cluster analysis over the probability simplex (cf. Chapter 6). The

goal of cluster analysis is to partition a data set into subgroups, or clusters, such that data

points within the same cluster are more closely related to one another than to those in

different clusters [12–15]. A diverse collection of algorithms has been proposed for cluster

analysis. For instance, the K-means algorithm (and also the K-medoids algorithm) is a clas-

sic prototype-based clustering technique that creates a one-level partition of the data set

[16–18]. In contrast, hierarchical clustering produces nested clusters that can be organized

as a tree. Methods for hierarchical clustering may be divided into two basic paradigms: ag-

glomerative [13, 14] and divisive [19, 20]. Density-based clustering methods define a cluster

as a dense region of data points, which is surrounded by a region of low density [21, 22].

Graph-based clustering techniques are appropriate if the closeness between different data
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points can be represented by the edge structure of a (weighted) proximity graph [15, 23].

And the task of graph clustering is to group the vertices into disjoint components in such

a way that there should be many more edges within each component compared with those

between components.

It is to be noted that outlier hypothesis testing is distinct from statistical outlier detection

[24, 25]. In outlier detection, the goal is to efficiently winnow out a few outlier observations

from a single sequence of observations. The outlier observations are assumed to follow a

different generating mechanism from that governing the normal observations. Statistical

outlier detection is typically used to preprocess large data sets, to obtain clean data that

is used for purposes such as inference and control. The main differences between statistical

outlier detection and outlier hypothesis testing are: (i) in the former problem, the outlier

observations constitute a much smaller fraction of the entire observations than in the latter

problem, and (ii) these outlier observations can be arbitrarily spread out among all observa-

tions in the outlier detection problem, whereas all the outlier observations are concentrated

in a fixed subset of sequences in the outlier hypothesis testing problem.

1.2 Dissertation Outline

We now provide a brief overview of each chapter.

• In Chapter 2, we introduce notations, and provide some useful identities and well-

known technical facts.

• The FSS setting is studied in Chapter 3, where we show that the GL test is far more

efficient for universal outlier hypothesis testing than for the other inference problems,

such as homogeneity testing and classification [7–11]. In particular, the GL test is

universally exponentially consistent as long as the outlier distributions are distinct from

the common typical distribution, and there is indeed an outlier among the sequences.

Furthermore, we prove that the GL test is asymptotically efficient in the limit of a

large number of sequences in certain settings. When it is also possible that there is

no outlier present, a modification of the GL test is shown to be consistent under all

hypotheses, and exponentially consistent under every non-null hypothesis.

• In Chapter 4, we generalize our findings in the FSS setting to the sequential setting.

We propose a sequential test that has the flavor of the Multihypothesis Sequential

Probability Ratio Test [26, 27] and the repeated significance test [28, 29]. The sequen-

tial test is shown to be universally consistent, and universally exponentially consistent
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conditioned on an outlier being present. In addition, when the outliers are identically

distributed, it is shown to be asymptotically optimal when the number of outliers is

the largest possible, and with the typical distribution being known.

• In Chapter 5, we extend our results to models with continuous alphabets. We pro-

pose an FSS test that is of the same spirit as the GL test, and uses non-parametric

estimates of the Kullback-Leibler (KL) divergence. The proposed test is shown to be

universally consistent for various settings. In addition, we compare the performance

of the proposed test with that of a kernel-based test against a synthetic data set.

• In Chapter 6, we elaborate on our discussion on the connection between universal

outlier hypothesis testing and cluster analysis. We evaluate the performance of the

FSS test and two other clustering algorithms on a synthetic data set, where it is

discovered that the FSS test outperforms the clustering algorithms when the sample

size is sufficiently large.

• In Chapter 7, we apply the proposed tests to a real data set for spam detection. The

performance of another kernel-based universal test is also evaluated for contrast. The

FSS test outperforms three different versions of the kernel-based test for large sample

size. And the performance of the sequential test is superior to that of the FSS test

when the average stopping time is sufficiently large.

• We provide concluding remarks and comment on future work in Chapter 8.
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CHAPTER 2

PRELIMINARIES

Throughout the dissertation, random variables are denoted by capital letters, and their

realizations are denoted by the corresponding lower-case letters. All random variables are

assumed to take values in finite sets if not specified otherwise, and all logarithms are the

natural ones.

For a finite set Y , let Ym denote the m Cartesian product of Y , and P(Y) denote the

set of all probability mass functions (pmfs) on Y . The empirical distribution of a sequence

y = ym = (y1, . . . , ym) ∈ Ym, denoted by γ = γy ∈ P(Y), is defined as

γ(y) ,
1

m

∣∣ {k = 1, . . . ,m : yk = y}
∣∣,

y ∈ Y .

Our results will be stated in terms of various distance metrics between a pair of dis-

tribution p, q ∈ P (Y) . In particular, we shall consider two symmetric distance metrics:

the Bhattacharyya distance and Chernoff information, denoted respectively by B(p, q) and

C(p, q), and defined as (see, e.g., [30])

B(p, q) , − log

(∑
y∈Y

p(y)
1
2 q(y)

1
2

)
(2.1)

and

C(p, q) , max
s∈[0,1]

− log

(∑
y∈Y

p(y)sq(y)1−s

)
, (2.2)

respectively. Another distance metric, which will be key to our study, is the relative entropy,

denoted by D(p‖q) and defined as

D(p‖q) ,
∑
y∈Y

p(y) log
p(y)

q(y)
. (2.3)
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Unlike the Bhattacharyya distance (2.1) and Chernoff information (2.2), the relative entropy

in (2.3) is a non-symmetric distance [30].

The following technical facts will be useful; their derivations can be found in [30, Theorem

11.1.2]. Consider random variables Y n which are i.i.d. according to p ∈ P(Y). Let yn ∈ Yn

be a sequence with an empirical distribution γ ∈ P(Y). It follows that the probability of

such sequence yn, under p and under the i.i.d. assumption, is

p(yn) = exp
{
− n

(
D(γ‖p) +H(γ)

)}
, (2.4)

where D(γ‖p) and H(γ) are the relative entropy of γ and p, and entropy of γ, defined as

D(γ‖p) ,
∑
y∈Y

γ(y) log
γ(y)

p(y)
,

and

H(γ) , −
∑
y∈Y

γ(y) log γ(y),

respectively. Consequently, it holds that for each yn, the pmf p that maximizes p(yn) is

p = γ, and the associated maximal probability of yn is

γ(yn) = exp
{
− nH(γ)

}
. (2.5)

Next, for each n ≥ 1, the number of all possible empirical distributions from a sequence

of length n in Yn is upper bounded by (n+ 1)|Y| , where |Y| denotes the (finite) size of Y .
Using this fact, (2.4) and a bound on the size of the set of sequences with the same empirical

distribution (see, e.g., [30, Theorem 11.1.3] for details), it can be shown that the probability

that the i.i.d. sequence Y n that is distributed according to p has the empirical distribution

γ = q, (for a feasible q) satisfies

P {γ = q} ≤ e−nD(q‖p). (2.6)

We shall also find the following “sum centroid” inequality and its consequence useful. Con-

sider any collection C of distributions on Y : pi, i ∈ C. Then, for any arbitrary distribution

q,

∑
i∈C

D

(
pi

∥∥∥∑j∈C pj

|C|

)
≤
∑
i∈C

D (pi‖q) . (2.7)
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The proof of (2.7) follows from the fact that for any distribution q,

∑
i∈C

D

(
pi

∥∥∥∑j∈C pj

|C|

)
=
∑
i∈C

D (pi‖q)− |C|D
(∑

i∈C pi

|C|

∥∥∥q) .
Now for a pair of distributions p, p̄ on Y , particularizing (2.7) to the special case, where C
comprises one p distribution and L copies of the p̄ distribution, and with q in (2.7) being p̄,

we have that

D

(
p
∥∥∥p+ Lp̄

L+ 1

)
+ LD

(
p̄
∥∥∥p+ Lp̄

L+ 1

)
≤ D(p‖p̄). (2.8)

The proofs in future sections rely on the following lemmas.

Lemma 1. Let Y (1), . . . ,Y (J) be mutually independent random vectors with each Y (j),

j = 1, . . . , J , being n i.i.d. repetitions of a random variable distributed according to pj ∈
P (Y). Let An be the set of all J tuples

(
y(1), . . . ,y(J)

)
∈ YJn whose empirical distributions

(γ1, . . . , γJ) =
(
γy(1) , . . . , γy(J)

)
lie in a closed set E ∈ P (Y)J . Then, it holds that

lim
n→∞

− 1

n
logP

{(
Y (1), . . . ,Y (J)

)
∈ An

}
=

min
(q1,...,qJ )∈E

J∑
j=1

D (qj‖pj) . (2.9)

Proof. Let E be the set of all joint distributions in P
(
YJ
)

with the tuple of their corre-

sponding marginal distributions lying in E. It now follows from the closeness of E in P (Y)J

and the compactness of P
(
YJ
)

that E is also closed in P
(
YJ
)
. Let An be the set of all

J tuples
(
y(1), . . . ,y(J)

)
=
((
y

(1)
1 , . . . , y

(1)
n

)
, . . . ,

(
y

(J)
1 , . . . , y

(J)
n

))
∈ YJn whose joint empir-

ical distribution lies in a closed set E ∈ P
(
YJ
)
. The lemma then follows by observing

that P
{(

Y (1), . . . ,Y (J)
)
∈ An

}
= P

{((
y

(1)
1 , . . . , y

(1)
n

)
, . . . ,

(
y

(J)
1 , . . . , y

(J)
n

))
∈ An

}
, and by
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invoking Sanov’s theorem to compute the exponent of the latter probability, i.e.,

lim
n→∞

− 1

n
logP

{(
Y (1), . . . ,Y (J)

)
∈ An

}
= lim

n→∞
− 1

n
logP

{((
y

(1)
1 , . . . , y(1)

n

)
, . . . ,(

y
(J)
1 , . . . , y(J)

n

))
∈ An

}
= min

q ∈E
D (q‖p1 × . . . × pJ)

= min
(q1,...,qJ )∈E

J∑
j=1

D (qj‖pj) .

Lemma 2. For any two pmfs p1, p2 ∈ P(Y) with full supports, it holds that

2B (p1 , p2) = min
q ∈P(Y)

(
D (q‖p1) +D (q‖p2)

)
. (2.10)

In particular, the minimum on the right side of (2.10) is achieved by

q? =
p

1
2
1 (y)p

1
2
2 (y)∑

y∈Y
p

1
2
1 (y)p

1
2
2 (y)

, y ∈ Y . (2.11)

Proof. It follows from the concavity of the logarithm function that

D (q‖p1) +D (q‖p2) =
∑
y∈Y

q(y) log
q2(y)

p1(y)p2(y)

= −2
∑
y∈Y

q(y) log
p

1
2
1 (y)p

1
2
2 (y)

q(y)

≥ −2 log

(∑
y∈Y

p
1
2
1 (y)p

1
2
2 (y)

)
(2.12)

= 2B(p1, p2).

In particular, equality is achieved in (2.12) by q(y) = q?(y) in (2.11).

It is interesting to note that from (2.10), we recover the known inequality discovered in

[31]:

2B (p1 , p2) ≤ min (D (p2‖p1) , D (p1‖p2)) , (2.13)
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by evaluating the argument distribution q on the right side of (2.10) by p1 and p2, respectively.

Lemma 3. For any two pmfs p1, p2 ∈ P(Y) with full supports, it holds that

C (p1, p2) ≤ 2B (p1, p2) .

Proof. The proof follows from an alternative characterization (instead of (2.2)) of the C (p1, p2)

as (cf. [32])

C (p1, p2) = min
q∈P(Y)

max (D (q‖p1) , D (q‖p2)) , (2.14)

and upon noting that the objective function for the optimization problem in (2.14) is always

no larger than that for the one in (2.10).
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CHAPTER 3

FIXED SAMPLE SIZE SETTING

3.1 Exactly One Outlier

Consider M ≥ 3 independent sequences of observations, each of which consists of n indepen-

dent and identically distributed (i.i.d.) observations. We denote the k-th observation of the

i-th sequence by Y
(i)
k , which takes values in a finite set denoted by Y . It is assumed that only

one sequence is the “outlier,” i.e., the observations in that sequence are uniquely distributed

(i.i.d.) according to the “outlier” distribution µ ∈ P(Y), while all the other sequences are

commonly distributed according to the “typical” distribution π ∈ P(Y). We are interested

in a non-parametric setting, in which µ and π are not fully known and can be arbitrarily

close. We further assume that both µ and π have full support over the finite alphabet Y. The

assumption of µ, π having full support rules out trivial cases where it is straightforward to

identify the outlier sequence. Clearly, if M = 2, either sequence can be considered as an

outlier; hence, it becomes degenerate to consider outlier hypothesis testing in this case.

It is assumed throughout this section that the outlier distribution is unknown but is

independent of the identity of the outlier. In certain applications, it may be natural to

consider the model where the outlier distribution can vary depending on the identity of the

outlier. This scenario can be viewed as a special case (with the number of outlier sequences

being exactly one) of the multiple outlier hypothesis testing problem studied in Section 3.3.

Conditioned on the hypothesis that the i-th sequence is the outlier, the joint distribution

of all the observations is

pi
(
yMn

)
= pi

(
y(1), . . . ,y(M)

)
=

n∏
k=1

{
µ
(
y

(i)
k

) ∏
j 6=i

π
(
y

(j)
k

)}
, Li

(
yMn, µ, π

)
, (3.1)
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where

y(i) =
(
y

(i)
1 , . . . , y(i)

n

)
, i = 1, . . . ,M.

The test for the outlier sequence is done based on a universal rule δ : YMn → {1, . . . ,M}.
In particular, the test δ is not allowed to be a function of (µ, π).

For a universal test, the maximal error probability, which will be a function of the test

and (µ, π), is

e
(
δ, (µ, π)

)
, max

i=1,...,M

∑
yMn: δ(yMn) 6= i

pi
(
yMn

)
,

and the corresponding error exponent is defined as

α
(
δ, (µ, π)

)
, lim

n→∞
− 1

n
log e

(
δ, (µ, π)

)
. (3.2)

Throughout the dissertation, we consider the error exponent as n goes to infinity, while M ,

and hence the number of hypotheses, is kept fixed. Consequently, the error exponent in (3.2)

also coincides with the one for the average probability of error.

A test is termed universally consistent if the maximal error probability converges to zero

as the number of samples goes to infinity, i.e.,

e
(
δ, (µ, π)

)
→ 0, (3.3)

for any (µ, π), µ 6= π as n → ∞. It is termed universally exponentially consistent if the

exponent for the maximal error probability is strictly positive, i.e.,

α
(
δ, (µ, π)

)
> 0, (3.4)

for any (µ, π), µ 6= π.

3.1.1 Generalized Likelihood Test

We now describe the generalized likelihood test in two setups when only π is known, and

when neither µ nor π is known, respectively.

For each i = 1, . . . ,M , denote the empirical distributions of y(i) by γi. When π is known

and µ is unknown, conditioned on the i-th sequence being the outlier, i = 1, . . . ,M, we

compute the generalized likelihood of yMn by replacing µ in (3.1) with its maximum likelihood

11



(ML) estimate µ̂i , γi, as

p̂typ
i

(
yMn

)
= Li

(
yMn, µ̂i, π

)
. (3.5)

Similarly, when neither µ nor π is known, we compute the generalized likelihood of yMn

by replacing the µ and π in (3.1) with their ML estimates µ̂i , γi, and π̂i ,
∑
k 6=i γk
M−1

, i =

1, . . . ,M , as

p̂univ
i

(
yMn

)
= Li

(
yMn, µ̂i, π̂i

)
. (3.6)

Finally, we decide upon the sequence corresponding to the largest generalized likelihood to

be the outlier. Using (3.5), (3.6), the GL tests in the two cases can be described respectively

as

δ
(
yMn

)
= argmax

i=1,...,M
p̂typ
i

(
yMn

)
(3.7)

when only π is known, and

δ
(
yMn

)
= argmax

i=1,...,M
p̂univ
i

(
yMn

)
(3.8)

when neither µ nor π is known. In (3.7) and (3.8), should there be multiple maximizers, we

pick one of them arbitrarily. Using the identity in (2.4), it is straightforward to show that

when only π is known, the GL test in (3.7) is equivalent to

δ
(
yMn

)
= argmin

i=1,...,M
H (γi) +

∑
j 6=i

[H (γj) +D (γj‖π)]

= argmax
i=1,...,M

D(γi‖π), (3.9)

and when neither π nor µ is known, the test in (3.8) is equivalent to

δ
(
yMn

)
= argmin

i=1,...,M
H (γi) +

∑
j 6=i

[
H (γj) +D

(
γj
∥∥∑k 6=i γk

M−1

)]
= argmin

i=1,...,M

∑
j 6=i

D
(
γj
∥∥∑k 6=i γk

M−1

)
. (3.10)
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3.1.2 Performance of Generalized Likelihood Test

Our first theorem for models with one outlier characterizes the optimal exponent for the

maximal error probability when both µ and π are known, and when only π is known.

Theorem 1. When µ and π are both known, the optimal exponent for the maximal error

probability is equal to

2B(µ, π). (3.11)

Furthermore, the error exponent in (3.11) is achievable by the GL test in (3.7), which uses

only the knowledge of π.

Proof. Since we consider the error exponent as n goes to infinity, while M and hence the

number of hypotheses is fixed, the ML test, which maximizes the error exponent for the

average error probability (averaged over all hypotheses), will also achieve the best error

exponent for the maximal error probability. In particular, for any yMn =
(
y(1), . . . ,y(M)

)
∈

YMn, with γy(i) = γi, i = 1, . . . ,M , conditioned on the i-th sequence being the outlier,

applying the identity in (2.4), it now follows from (3.1) that the ML test is

δ(yMn) = argmin
i=1,...,M

Ui(y
Mn),

where for each i = 1, . . . ,M ,

Ui(y
Mn) , D (γi‖µ) +

∑
j 6=i

D (γj‖π) . (3.12)

By the symmetry of the problem, it is clear that Pi {δ 6= i} is the same for every i =

1, . . . ,M ; hence,

max
i=1,...,M

Pi {δ 6= i} = P1 {δ 6= 1} .

It now follows from

P1 {δ 6= 1} = P1 (∪j 6=1{U1 ≥ Uj}) , (3.13)

that

P1 {U1 ≥ U2} ≤ P1 {δ 6= 1} ≤
M∑
j=2

P1 {U1 ≥ Uj} . (3.14)
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Next, we get from (3.12) that

P1 {U1 ≥ U2} = P1{D (γ1‖µ) +D (γ2‖π)

≥ D (γ1‖π) +D (γ2‖µ)}.

Applying Lemma 1 with J = 2, p1 = µ, p2 = π, and

E =
{

(q1, q2) : D (q1‖µ) +D (q2‖π)

≥ D (q1‖π) +D (q2‖µ)
}
,

we get that the exponent for P1 {U1 ≥ U2} is given by the value of the following optimization

problem

min
q1,q2 ∈P(Y)

(
D (q1‖µ) +D (q2‖π)

)
, (3.15)

where the minimum above is over the set of q1, q2 such that

D (q1‖µ) +D (q2‖π) ≥ D (q1‖π) +D (q2‖µ) .

Note that the objective function in (3.15) is convex in (q1, q2), and the constraint is linear

in (q1, q2). It then follows that the optimization problem in (3.15) is convex. Consequently,

strong duality holds for the optimization problem (3.15) [33]. Then by solving the Lagrangian

dual of (3.15), its solution can be easily computed to be 2B(µ, π).

By the symmetry of the problem, the exponents of P1 {U1 ≥ Ui}, i 6= 1, are the same, i.e.,

for every i = 2, . . . ,M, we get

lim
n→∞

− 1

n
logP1 {U1 ≥ Ui} = 2B(µ, π). (3.16)

From (3.14) and (3.16), using the union bound and that limn→∞
logM
n

= 0, we get that

lim
n→∞

− 1

n
logP1 {δ 6= 1} = 2B(µ, π). (3.17)

It is now left to prove that when only π is known, the GL test in (3.7) and (3.9) also

achieves the optimal error exponent 2B(µ, π).

For each i = 1, . . . ,M, denote the test statistic in (3.9) as

U typ
i , D(γi‖π).
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It follows from the same argument leading to (3.17) that

lim
n→∞

− 1

n
logP1{δ′ 6= 1}

= lim
n→∞

− 1

n
logP1

{
U typ

1 ≤ U typ
2

}
. (3.18)

The exponent on the right side of (3.18) can be computed by applying Lemma 1 with

J = 2, p1 = µ, p2 = π, and

E =
{

(q1, q2) : D(q2‖π) ≥ D(q1‖π)
}

to be

min
q1,q2∈P(Y)

D(q2‖π) ≥ D(q1‖π)

(
D (q1‖µ) +D (q2‖π)

)
(3.19)

The optimal value of (3.19) can be computed as follows:

min
q1,q2∈P(Y)

D(q2‖π)≥D(q1‖π)

(
D (q1‖µ) +D (q2‖π)

)
(3.20)

≥ min
q1

(
D (q1‖µ) +D (q1‖π)

)
(3.21)

= 2B(µ, π), (3.22)

where the inequality in (3.21) stems from substituting the constraint in (3.20) into the

objective function, and the equality in (3.22) follows from Lemma 2. Since the minimum in

(3.21) is achieved by q1 = q? in (2.11) with p1 = µ, p2 = π, and q1 = q2 = q? satisfy the

constraint in (3.20), the inequality in (3.21) is in fact an equality.

Remark 1. It is interesting to note that when only µ is known, one can also achieve the

optimal error exponent in (3.11) using a different test that will be presented in Section 3.5.

However, we do not yet know if the corresponding version of the GL test, wherein the π in

(3.1) is replaced with π̂i =
∑
k 6=i γk
M−1

, i = 1, . . . ,M, is optimal.

Consequently, in the completely universal setting, when nothing is known about µ and π

except that µ 6= π, and both µ and π have full supports, it holds that for any universal test

δ,

α
(
δ, (µ, π)

)
≤ 2B(µ, π). (3.23)
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Given the second assertion in Theorem 1, it might be tempting to think that it would be

possible to design a test to achieve the optimal error exponent of 2B (µ, π) universally when

neither µ nor π is known. Our first example shows that such a goal cannot be fulfilled, and

hence we need to be content with a lesser goal.

Example 1: Consider the model with M = 3, and a distinct pair of distributions p 6= p on

Y with full supports. We now show that there cannot exist a universal test that achieves

the optimal error exponent of 2B (µ, π) even just for the two models when µ = p, π = p,

and when µ = p, π = p, both of which have 2B (µ, π) = 2B (p, p) . To this end, let us

look at the region when a universal test δ decides that the first sequence is the outlier,

i.e., A1 = {y3n : δ (y3n) = 1}. Let Pp,p,p denote the distribution corresponding to the first

hypothesis of the first model, i.e., when y(1) are i.i.d. according to p, and y(2) and y(3) are

i.i.d. according to p. Similarly, let Pp,p,p denote the distribution corresponding to the second

hypothesis of the second model, i.e., when y(2) are i.i.d. according to p, and y(1) and y(3)

are i.i.d. according to p. Suppose that δ achieves the best error exponent of 2B (p, p) for the

first model when µ = p, π = p. Then, it must hold that

lim
n→∞

− 1

n
logPp,p,p {Ac1} ≥ 2B (p, p) . (3.24)

It now follows from (3.24) and the classic result of Hoeffding [6] in binary hypothesis testing

(see, e.g., [34][Exercise 2.13 (b)]) that

lim
n→∞

− 1

n
logPp,p,p {A1}

≤
[

min
q(y1,y2,y3)

D (q (y1) ‖p) +D (q (y2) ‖p)

+D (q (y3) ‖p)
]+

≤
[

min
q(y1,y2,y3)

2B (p, p) +D (q (y3) ‖p)

−D (q (y3) ‖p)
]+

≤
(
2B (p, p)−D (p‖p)

)+
= 0, (3.25)

where each minimum on the right side above is taken over the set of q(y1, y2, y3) such that

D (q (y1) ‖p)+D (q (y2) ‖p)+D (q (y3) ‖p) ≤ 2B (p, p) .

The last equality in (3.25) follows from Lemma 2 in Chapter 2. Consequently, the test cannot

yield even a positive error exponent for the second model when µ = p, π = p.

16



Remark 2. It is interesting to contrast this example for outlier hypothesis testing with the

results (Theorems 2 and 3 in [35]) for universal coding over discrete memoryless channels

(DMCs). Specifically, Theorems 2 and 3 in [35] establish that the optimal error exponent at

zero rate is universally achieved for all DMCs, whereas the optimal error exponent 2B (µ, π)

for outlier hypothesis testing here cannot be universally achieved. The difference between

these two results stems from the following distinctions between the nature of these two

problems. First, in universal coding, the encoder and decoder are jointly optimized to achieve

universality. On the other hand, in outlier hypothesis testing, when properly interpreted,

only the decoding is allowed to be optimized, while the encoding scheme is fixed by the

structure of the distributions of observations among all hypotheses, and cannot be chosen.

Second, the zero-rate error exponent in [35] applies only for the case when the number of

messages grows to infinity with the blocklength sub-exponentially. In contrast, the number

of hypotheses in outlier hypothesis testing is fixed and does not grow with the number of

observations in each sequence.

To summarize, the results in [35] cannot be applied to our problem. Had the results in

[35] been applicable, Theorems 2 and 3 in [35] would have implied that the optimal error

exponent 2B (µ, π) is achieved universally for outlier hypothesis testing as well. However,

Example 1 proves otherwise.

Example 1 shows explicitly that when neither µ nor π is known, it is impossible to construct

a test that achieves 2B (µ, π) universally. In fact, the example shows that had we insisted

on achieving the best error exponent of 2B (µ, π) for some pairs of µ, π, it might not be

possible to achieve even positive error exponents for some other pairs of µ, π. This motivates

us to seek instead a test that yields just a positive (no matter how small) error exponent

α (δ, (µ, π)) > 0 for every µ, π, µ 6= π, i.e., achieving universally exponential consistency.

One of our main contributions in this chapter is to show that GL tests are indeed universally

exponentially consistent under various settings, including the current single outlier setting

for every fixed M .

Theorem 2. The GL test δ in (3.8) is universally exponentially consistent. Furthermore,

for every pair of distributions µ, π, µ 6= π, it holds that

α
(
δ, (µ, π)

)
= min

q1,...,qM
D (q1‖µ) +D (q2‖π)

+ . . .+D (qM‖π) , (3.26)

17



where the minimum above is over the set of (q1, . . . , qM) such that∑
j 6=1

D
(
qj

∥∥∥ ∑k 6=1 qk

M−1

)
≥
∑
j 6=2

D
(
qj

∥∥∥ ∑k 6=2 qk

M−1

)
. (3.27)

Proof. For each i = 1, . . . ,M, denote the test statistic in (3.10) as

Uuniv
i ,

∑
j 6=i

D
(
γj
∥∥∑k 6=i γk

M−1

)
. (3.28)

The same argument leading to (3.17) yields that

lim
n→∞

− 1

n
logP1{δ 6= 1}

= lim
n→∞

− 1

n
logP1

{
Uuniv

1 ≥ Uuniv
2

}
. (3.29)

By applying Lemma 1 with J = M, p1 = µ, pj = π, j = 2, . . . ,M , and

E =

{
(q1, . . . , qM) :

∑
j 6=1

D
(
qj

∥∥∥ ∑k 6=1 qk

M−1

)
≥
∑
j 6=2

D
(
qj

∥∥∥ ∑k 6=2 qk

M−1

)}
, (3.30)

the exponent on the right side of (3.29) can be computed to be

min
(q1,...,qM )∈E

D (q1‖µ) +D (q2‖π) + . . .+D (qM‖π) . (3.31)

Unlike the convex optimization problems in (3.15) and (3.19), the optimization problem

in (3.31) for the completely universal setting is much more complicated, and a closed-form

solution is not available. However, we show that the value of (3.31) is strictly positive for

every µ 6= π. In particular, it is not hard to see that the objective function is continuous in

q1, . . . , qM and the constraint set E is compact. Therefore the minimum in (3.31) is achieved

by some (q?1, . . . , q
?
M) ∈ E. Note that the objective function in (3.31) is always non-negative.

In order for the objective function in (3.31) to be zero, the minimizing (q?1, . . . , q
?
M) has to

satisfy that q?1 = µ, q?i = π, i = 2, . . . ,M . Since this collection of distributions is not in

the constraint set E in (3.30), we get that the optimal value of (3.31) is strictly positive for

every µ 6= π.

Note that for any fixed M ≥ 3, ε > 0, regardless of which sequence is the outlier, it holds
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that the random empirical distributions (γ1, . . . , γM) satisfy

lim
n→∞

Pi
{ ∥∥∥ 1

M

∑M
j=1 γj −

(
1
M
µ+ M−1

M
π
)∥∥∥

1
> ε
}

= 0, (3.32)

where ‖ · ‖1 denotes the 1-norm of the argument distribution. Since 1
M
µ + M−1

M
π → π as

M →∞, heuristically speaking, a consistent estimate of the typical distribution can readily

be obtained asymptotically in M from the entire observations before deciding upon which

sequence is the outlier. This observation and the second assertion of Theorem 1 motivate

our study of the asymptotic performance (achievable error exponent) of the GL test in (3.8)

when M →∞ (after having taken the limit as n goes to infinity first).

Our last result for models with one outlier shows that for the completely universal setting,

the GL test in (3.8) is asymptotically efficient, i.e., as M →∞, it achieves the optimal error

exponent in (3.11) corresponding to the case in which both µ and π are known.

Theorem 3. For each M ≥ 3, the exponent for the maximal error probability achievable by

the GL test δ in (3.8) is lower bounded by

min
q ∈P(Y)

D(q‖π)≤ 1
M−1

(
2B(µ,π)+Cπ

) 2B(µ , q) , (3.33)

where Cπ , − log
(

min
y∈Y

π(y)
)
<∞ by the fact that π has a full support.

The lower bound for the error exponent in (3.33) is nondecreasing in M ≥ 3. Furthermore,

as M →∞, this lower bound converges to the optimal error exponent 2B(µ, π); hence, the GL

test δ in (3.8) achieves the optimal error exponent asymptotically as the number of sequences

approaches infinity, i.e.,

lim
M→∞

α
(
δ, (µ, π)

)
= 2B(µ, π), (3.34)

which from Theorem 1 is equal to the optimal error exponent when both µ and π are known.

Proof. By the continuity of the objective function on the right side of (3.26) and the com-

pactness of the constraint set (3.27), for each M ≥ 3, the optimal value on the right side

of (3.26), denoted by V ?, is achieved by some (q?1, . . . , q
?
M). It then follows from (3.26) and

(3.27) that
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V ? ≥ D(q?1 ‖µ) +
∑
j 6=1

D
(
q?j ‖ π

)
−
∑
j 6=1

D
(
q?j

∥∥∥ ∑k 6=1 q
?
k

M−1

)
+
∑
j 6=2

D
(
q?j

∥∥∥ ∑k 6=2 q
?
k

M−1

)
= D(q?1 ‖µ) +

∑
j 6=2

D
(
q?j

∥∥∥ ∑k 6=2 q
?
k

M−1

)
+
∑
j 6=1

∑
y∈Y

q?j (y) log

( 1
M−1

∑
k 6=1 q

?
k(y)

π

)
= D(q?1 ‖µ) +

∑
j 6=2

D
(
q?j

∥∥∥ ∑k 6=2 q
?
k

M−1

)
+ (M − 1)D

(∑
k 6=1 q

?
k

M−1

∥∥∥π)
≥ D(q?1 ‖µ) +D

(
q?1

∥∥∥ ∑k 6=2 q
?
k

M−1

)
≥ 2B

(
µ ,

∑
k 6=2 q

?
k

M−1

)
= 2B

(
µ ,

q?1
M−1

+ M−2
M−1

(∑M
k=3 q

?
k

M−2

))
, (3.35)

where the last inequality follows Lemma 2.

On the other hand, it follows from (3.23) that the value on the right side of (3.26), V ?,

satisfies

2B(µ, π) ≥ V ?

= D (q?1 ‖µ) +
∑
j 6=1

D
(
q?j ‖ π

)
≥

M∑
j=3

D
(
q?j ‖ π

)
≥ (M − 2)D

(
1

M−2

∑M
k=3 q

?
k

∥∥∥π), (3.36)

where the last inequality follows from the convexity of relative entropy.

Combining (3.35) and (3.36), we get that the value V ? on the right side of (3.26) is lower

bounded by

min
q1,q ∈P(Y)

(M−2)D(q‖π)≤ 2B(µ,π)

2B
(
µ , 1

M−1
q1 + M−2

M−1
q
)
. (3.37)
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Note that the constraint in (3.37) can be equally written as

D (q1‖π) + (M − 2)D (q‖π) ≤ 2B(µ, π) +D (q1‖π) .

Also by the convexity of relative entropy, it follows that

D (q1‖π) +(M − 2)D (q‖π) ≥

(M − 1)D
(
q1+(M−2)q

M−1

∥∥∥π).
As a result, the optimal value of (3.37) is further lower bounded by the optimal value of

min
q1,q ∈P(Y)

(M−1)D( 1
M−1

q1+M−2
M−1

q‖π)
≤ 2B(µ,π)+D(q1‖π)

2B
(
µ , 1

M−1
q1 + M−2

M−1
q
)
. (3.38)

By the fact that π has full support, it holds that

D (q1‖π) ≤ − log
(

min
y∈Y

π(y)
)

= Cπ ≤ ∞. (3.39)

Proceeding from (3.38), by using (3.39), we get that the optimal value of (3.26) is lower

bounded by

min
q′ ∈P(Y)

D(q′‖π)≤ 1
M−1

(2B(µ,π)+Cπ)

2B (µ , q′) . (3.40)

For any µ, π ∈ P(Y) with full supports, it holds that

lim
M→∞

1

M − 1

(
2B(µ, π) + Cπ

)
= 0.

This and the continuity of D (q‖π) in q (π has a full support) establish (3.34): the asymptotic

optimality of the GL test in the regime of large number of sequences.

Furthermore, for any µ, π ∈ P(Y), µ 6= π, the value of 1
M−1

(2B(µ, π) + C(π)) is strictly

decreasing with M . Consequently, the feasible set in (3.33) is nonincreasing with M , and

hence the optimal value of (3.33) is nondecreasing with M .

Example 2: We now provide some numerical results for an example with Y = {0, 1}.
Specifically, the three plots in Figure 3.1 are for three pairs of outlier and typical distributions

being µ = (p(0) = 0.3, p(1) = 0.7), π = (0.7, 0.3); µ = (0.35, 0.65), π = (0.65, 0.35); and
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µ = (0.4, 0.6), π = (0.6, 0.4), respectively. Each horizontal line corresponds to 2B(µ, π), and

each curve line corresponds to the lower bound in (3.33) for the error exponent achievable

by the GL test in (3.8). As shown in these plots, the lower bounds converge to 2B(µ, π) as

M →∞, i.e., the GL test in (3.8) is asymptotically optimal for all three pairs of µ, π, and,

indeed, for all µ 6= π.
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Figure 3.1: Lower and upper bounds for the achievable error exponent of the GL test

3.2 At Most One Outlier Sequence

A natural question that arises at this point is what would happen if it is also possible that

no outlier is present. To answer this question, we now consider models that append an

additional null hypothesis with no outlier to the previous models consider in Section 3.1. In

particular, under the null hypothesis, the joint distribution of all the observations is given

by

p0

(
yMn

)
=

n∏
k=1

M∏
i=1

π
(
y

(i)
k

)
.

A universal test δ : YMn → {0, 1, . . . ,M} will now also accommodate for an additional

decision for the null hypothesis. Correspondingly, the maximal error probability is now
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computed with the inclusion of the null hypothesis according to

e
(
δ, (µ, π)

)
, max

i=0,1,...,M

∑
yMn: δ(yMn) 6= i

pi
(
yMn

)
.

With just one additional null hypothesis, contrary to the previous models with one outlier,

it becomes impossible to achieve universally exponential consistency even with the knowledge

of the typical distribution.

Proposition 4. For the setting with the additional null hypothesis, there cannot exist a

universally exponentially consistent test even when the typical distribution is known.

Proof. The proposition follows as a special case of the second assertion of Theorem 10, the

proof of which is deferred to Section 3.4

In typical applications such as environment monitoring and fraud detection, the conse-

quence of a missed detection of the outlier can be much more catastrophic than that of a

false positive. In addition, Proposition 4 tells us that there cannot exist a universal test that

yields exponential decays for both the conditional probability of false positive (under the

null hypothesis) and the conditional probabilities of missed detection (under all non-null hy-

potheses). Consequently, it is natural to look for a universal test fulfilling a lesser objective:

attaining universally exponential consistency for conditional error probabilities under all the

non-null hypotheses, while seeking only universal consistency for the conditional error prob-

ability under the null hypothesis. We now show that such a test can be obtained by slightly

modifying the GL test in (3.8). Furthermore, in addition to achieving universal consistency

under the null hypothesis, this new test achieves the same exponent as in (3.26), (3.27) in

Theorem 2 for the conditional error probabilities under all non-null hypotheses.

3.2.1 Proposed Universal Test

We modify the previous test in (3.8) to allow for the possibility of deciding for the null

hypothesis as follows:

δ(yMn) =


arg max
i=1,...,M

p̂univ
i (yMn), if max

j 6=k
1
n

(
log p̂univ

j (yMn)

− log p̂univ
k (yMn)

)
> λn,

0, otherwise,

(3.41)

where λn = Θ( logn
n

) and the ties in the first case of (3.41) are broken arbitrarily. Using the

identity in (2.4), it is straightforward to show that test in (3.41) can be equivalently written
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as

δ(yMn) =


arg min
i=1,...,M

∑
k 6=i

D
(
γk

∥∥∥∑l 6=i γl
M−1

)
, if max

j 6=j′

[ ∑
k 6=j

D
(
γk

∥∥∥∑l 6=j γl
M−1

)
−
∑
k 6=j′

D
(
γk

∥∥∥∑l 6=j′ γl
M−1

)]
> λn,

0, otherwise.

(3.42)

3.2.2 Performance of Proposed Test

Theorem 5. For every pair of distributions µ, π, µ 6= π, the test in (3.41) yields a pos-

itive exponent for the conditional probability of error under every non-null hypothesis i =

1, . . . ,M , and a vanishing conditional probability of error under the null hypothesis. In par-

ticular, the achievable error exponent under every non-null hypothesis is the same as that

given in (3.26), (3.27), i.e., for each i = 1, . . . ,M, the test in (3.41) achieves

lim
n→∞

− 1

n
log (Pi {δ 6= i})

= min
q1,...,qM

D (q1‖µ)+D (q2‖π)+ . . .+D (qM‖π) , (3.43)

where the minimum above is over the set of (q1, . . . , qM) satisfying (3.27). In addition, the

test also yields that

lim
n→∞

P0 {δ 6= 0} = 0. (3.44)

Proof. We start by establishing universal consistency of the test under the null hypothesis.

Applying the identity in (2.4) to the test statistics in (3.41), it holds that

P0{δ 6= 0} ≤ P0

(
∪Mj=1 {Uuniv

j ≥ λn}
)

≤
M∑
j=1

P0

{
Uuniv
j ≥ λn

}
= MP0

{
Uuniv

1 ≥ λn
}
, (3.45)

where Uuniv
j is defined in (3.28), and the last equality follows from the fact that all y(i),

i = 1, . . . ,M , are identically distributed according to π.
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We now proceed to bound P0{Uuniv
1 ≥ λn} as follows:

P0{Uuniv
1 ≥ λn}

= P0

{∑
j 6=1

D
(
γj

∥∥∥∑k 6=1 γk

M−1

)
≥ λn

}
= P0

{∑
j 6=1

D (γj‖π)− (M − 1)D
(∑

k 6=1 γk

M−1

∥∥∥π) ≥ λn

}
≤ P0

{∑
j 6=1

D (γj‖π) ≥ λn

}
≤ P0

(
∪j 6=1

{
D (γj‖π) ≥ 1

M − 1
λn

})
≤ (M − 1)P0

{
D (γ2‖π) ≥ 1

M − 1
λn

}
, (3.46)

where the first inequality follows from the non-negativity of the relative entropy, and the

last inequality follows from the fact that all y(j), j 6= 1, are identically distributed according

to π. By the fact that the set of all possible empirical distributions of (y1, . . . , yn) is upper

bounded by (n+ 1)|Y| (cf. [30][Theorem 11.1.1]), and (2.4), we get that

P0

{
D (γ2‖π) ≥ 1

M − 1
λn

}
≤ (n+ 1)|Y| exp(− n

M − 1
λn). (3.47)

It then follows from (3.45), (3.46) and (3.47) that

P0{δ 6= 0} ≤M2 exp
{
− n

M − 1
λn + |Y| log(n+ 1)

}
. (3.48)

By choosing λn = 2(M − 1)|Y| log (n+1)
n

, we get from (3.48) that

lim
n→∞

P0{δ 6= 0} = 0.

Next we treat the exponent for the conditional probability of error under every non-

null hypothesis. In particular, by the symmetry of the test (3.41) among all the M non-

null hypotheses, it suffices to consider the conditional error probability under just the first
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hypothesis, which can be upper bounded as follows:

P1 {δ 6= 1} ≤ P1

(
∪j 6=1

{
Uuniv

1 ≥ Uuniv
j − λn

})
≤
∑
j 6=1

P1

{
Uuniv

1 ≥ Uuniv
j − λn

}
≤ (M − 1)P1

{
Uuniv

1 ≥ Uuniv
2 − λn

}
. (3.49)

For an arbitrary λ0 > 0, as λn → 0, it holds that λn ≤ λ0 for n sufficiently large and hence

that

P1

{
Uuniv

1 ≥ Uuniv
2 − λn

}
≤ P1

{
Uuniv

1 ≥ Uuniv
2 − λ0

}
. (3.50)

The exponent of the right side of (3.50) can be computed by applying Lemma 1 with J = M ,

p1 = µ, pj = π, j = 2, . . . ,M and (cf.(3.28))

E(λ0) ,

{
(q1, . . . , qM) :

∑
j 6=1

D
(
qj

∥∥∥ ∑k 6=1 qk

M−1

)
≥
∑
j 6=2

D
(
qj

∥∥∥ ∑k 6=2 qk

M−1

)
− λ0

}

to be

min
(q1,...,qM )∈E(λ0)

D (q1‖µ) +D (q2‖π) + . . .+D (qM‖π) . (3.51)

Since λ0 can be arbitrarily close to zero, the exponent for the left side of (3.50) is lower

bounded by

lim
λ0→0

min
(q1,...,qM )∈E(λ0)

D (q1‖µ) +D (q2‖π)

+ . . .+D (qM‖π) .

Let

E ,

{
(q1, . . . , qM) :

∑
j 6=1

D
(
qj

∥∥∥ ∑k 6=1 qk

M−1

)
≥
∑
j 6=2

D
(
qj

∥∥∥ ∑k 6=2 qk

M−1

)}
.

By the fact that E(λ0) is closed and compact for any λ0 > 0, and that the objective function
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in (3.51) is continous, the exponent for the left side of (3.50) is lower bounded by

min
(q1,...,qM )∈E

D (q1‖µ) +D (q2‖π) + . . .+D (qM‖π) , (3.52)

as required.

Since under every non-null hypothesis, the modified test in (3.41) achieves the same ex-

ponent (the value of the optimization problem in (3.26) and (3.27)) for the conditional error

probability as the GL test in (3.8) when the null hypothesis is absent, we get the following

corollary by just observing that Theorem 3 was proved by finding a suitable lower bound for

the value of the optimization problem in (3.26) and (3.27).

Corollary 6. For each M ≥ 3 and under every non-null hypothesis i = 1, . . . ,M, the

exponent for the conditional error probability achievable by the test in (3.41) is lower bounded

as

lim
n→∞

− 1

n
log (Pi {δ 6= i}) ≥ min

q ∈P(Y)
2B(µ , q) , (3.53)

where the minimum above is over the set of q such that

D(q‖π) ≤ 1

M − 1

(
2B(µ, π) + Cπ

)
,

and Cπ , − log
(

min
y∈Y

π(y)
)
<∞. Consequently, as M →∞, this lower bound converges to

the optimal error exponent 2B(µ, π), i.e., for every i = 1, . . . ,M, the test in (3.41) achieves

lim
M→∞

lim
n→∞

− 1

n
log (Pi {δ 6= i}) = 2B(µ, π),

while also yielding that

lim
n→∞

P0 {δ 6= 0} = 0.

3.3 Multiple Distinctly Distributed Outliers

We now generalize our results in the previous sections to models with multiple outlier se-

quences. With more than one outlier sequence, it may be more natural to consider models

for which the different outlier sequences are distinctly distributed, and therefore our models

will allow for this possibility.
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We start by describing a generic model with possibly distinctly distributed outliers, the

number of which is not known exactly. Specifically, it is assumed that there are up to

K ≥ 1 outliers. Note that the current model with K = 1 corresponds to the single

outlier setting where the outlier distribution can vary according to the index of the out-

lier sequence. As in Section 3.1, we denote the k-th observation of the i-th sequence by

Y
(i)
k ∈ Y , i = 1, . . . ,M, k = 1, . . . , n. Most of the sequences are commonly distributed ac-

cording to the “typical” distribution π ∈ P(Y) except for a small (possibly empty) subset

S ⊂ {1, . . . ,M} of “outlier” sequences, each of which is assumed to be distributed according

to an outlier distribution µi, i ∈ S. Nothing is known about {µi}Mi=1 and π except that each

µi 6= π, i = 1, . . . ,M, and that all µi, i = 1, . . . ,M, and π have full supports. In the follow-

ing presentation, we sometimes consider the special case when all the outlier sequences are

identically distributed, i.e., µi = µ, i = 1, . . . ,M .

For the hypothesis corresponding to an outlier subset S ⊂ {1, . . . ,M} , |S| < M
2

, the joint

distribution of all the observations is given by

pS
(
yMn

)
= pS

(
y(1), . . . ,y(M)

)
=

n∏
k=1

∏
i∈S

µi

(
y

(i)
k

)∏
j /∈S

π
(
y

(j)
k

) , (3.54)

where

y(i) =
(
y

(i)
1 , . . . , y(i)

n

)
, i = 1, . . . ,M.

We refer to the unique hypothesis corresponding to the case with no outlier, i.e., S = ∅, as

the null hypothesis. In the following subsections, we shall consider different settings, each

being described by a suitable set S comprising all possible outlier subsets.

The test for the outlier subset is done based on a universal rule δ : YMn → S. In

particular, the test δ is not allowed to be a function of
(
{µi}Mi=1 , π

)
.

For a universal test, the maximal error probability, which will be a function of the test

and
(
{µi}Mi=1 , π

)
, is

e
(
δ,
(
{µi}Mi=1 , π

))
, max

S∈S

∑
yMn: δ(yMn) 6= S

pS
(
yMn

)
, (3.55)
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and the corresponding error exponent is defined as

α
(
δ,
(
{µi}Mi=1 , π

))
, lim
n→∞
− 1

n
log e

(
δ,
(
{µi}Mi=1 , π

))
.

A universal test δ is termed universally exponentially consistent if for every µi, i = 1, . . . ,M, µi 6=
π, it holds that

α
(
δ,
(
{µi}Mi=1 , π

))
> 0.

3.3.1 Necessary Condition for Existence of Universally Exponentially
Consistent Test

Our first result concerns the necessary condition for the existence of a universally exponen-

tially consistent test when the outliers can be distinctly distributed in an arbitrary manner.

In our model for this section, the assumption of a known number of outliers is in fact critical,

as a lack thereof would make it impossible to construct a universally exponentially consistent

test even when there are always some outliers.

Theorem 7. When the outliers can be distinctly distributed, with the number of outliers

being unknown, there cannot exist a universally exponentially consistent test, even when the

typical distribution is known and when the null hypothesis is excluded, i.e., there is at least

one outlier regardless of the hypothesis.

Proof. Without loss of generality, we can consider the following two hypotheses. The first

hypothesis has S1 as the set of outliers, and the second hypothesis has S2, where S1 ⊂ S2. It

suffices to prove that even when π and {µi}i∈S1 are known, there cannot exist a universally

exponentially consistent test in differentiating such two hypotheses.

For any test δ : YMn → {1, 2}, let δ = 1 denote a decision in favor of the hypothesis

with S1 being the outliers, and 2 the hypothesis with S2. We first show that in order to

distinguish between S1 and S2, the empirical distributions of all the sequences γ1, . . . , γM , π

and {µi}i∈S1 are sufficient statistics for the error exponent. In particular, we now show that

given any test, there is another test that achieves the same error exponent with its decision

being made based only on the empirical distributions of all M sequences, π and {µi}i∈S1 . To

this end, for feasible empirical distributions (for certain n) γ1, . . . , γM , let us denote the set

of all M sequences conforming to these empirical distributions by T(γ1,...,γM ). Among these

observation sequences, let us denote the set of M sequences for which δ decides for S1 by

T 1,π
(γ1,...,γM ), which may depend on π and {µi}i∈S1 . Now consider another test δ′ which decides

on one of the two hypotheses based only on γ1, . . . , γM , π and {µi}i∈S1 . Specifically, this new
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test is such that for all M sequences with empirical distributions γ1, . . . , γM , it decides for

S1 if |T 1,π
(γ1,...,γM )| ≥

1
2
|T(γ1,...,γM )|, and for S2 otherwise. It follows from this construction of δ′

that for any {µi}Mi=1 and π,

max (PS1 {δ′ 6= S1} ,PS2 {δ′ 6= S2})

≤ 2 max (PS1 {δ 6= S1} ,PS2 {δ 6= S2}),

where PS1 and PS2 are the distributions under the hypothesis with S1 and S2 being the set

of outliers, respectively. Consequently, the error exponent achievable by δ′ is the same as

that achievable by δ for any {µi}Mi=1 and π, where µi 6= π, i = 1, . . . ,M .

We now consider tests that only depend on the empirical distributions of all the sequences

γ1, . . . , .γM , π and {µi}Mi=1. Let assume that for any fixed π and {µi}i∈S1 , there exists

ε = ε (π, {µi}i∈S1) > 0 such that

lim
n→∞

− 1

n
logP1 {δ 6= 1} > ε, (3.56)

where P1 is the distribution under the hypothesis with S1 being the outliers. It now follows

from (3.56) and Lemma 1 that the set A of all M tuples
(
y(1), . . . ,y(M)

)
∈ YMn whose

empirical distributions (γ1, . . . , γM) lie in the following set

E ,
{

(q1, . . . , qM) :
∑
i∈S1

D (qi‖µi) +
∑
j /∈S1

D (qi‖π) ≤ ε

2

}
(3.57)

must be such that

A ⊆ {δ = 1} . (3.58)

By applying Lemma 1 again, but now with respect to the hypothesis with S2 being the

outliers, we get that

lim
n→∞

− 1

n
logP2 {δ 6= 2}

≤ min
(q1,...,qM )∈E

∑
i∈S1

D (qi‖µi) +
∑

j∈S2\S1

D (qj‖µj)

+
∑
k/∈S2

D (qk‖π) , (3.59)

where P2 is the distribution under the hypothesis with S2 being the outliers. Since ε is

independent of {µj}j∈S2\S1 , we can pick {µj}j∈S2\S1 to be such that
∑

j∈S2\S1

D (µj‖π) < ε
2
. It
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now follows from the definition of E, (3.59) and Lemma 1 that

lim
n→∞

− 1

n
logP2 {δ 6= 2} = 0,

which establishes the assertion.

Remark 3. The negative result in Theorem 7 should not be considered as overly pessimistic.

It should be viewed as a theoretical result that holds only when each of the outliers can be

arbitrarily distributed. In practice, there will likely be modeling constraints that would

confine the set of all possible tuples of the distributions of all outliers. An extreme case

of such constraints is when all the outliers are forced to be identically distributed, which

is when universally exponential consistency is indeed attained (cf. Theorem 10) if the null

hypothesis is excluded. An interesting future research direction would be to characterize the

“least” stringent joint constraint on the distributions of the outliers that still allows us to

construct universally exponentially consistent tests.

For the rest of this section, we restrict our attention to the case in which the number of

outliers, denoted by K ≥ 1, is known at the outset, i.e., |S| = K, for every S ∈ S. Unlike

the models in Sections 3.1 and 3.2 where the outlier sequence is always distributed according

to a fixed distribution µ 6= π regardless of its identity i = 1, . . . ,M, in our model for this

section, the distributions of different outlier sequences µi, i ∈ S, can vary across the indices

of the sequences, i ∈ S.
To contrast with the universal setting, the next result characterizes the optimal error

exponent for the maximal error probability when both µ and π are known.

Proposition 8. For every fixed number of outliers K ≥ 1, when all the µi, i = 1, . . . ,M,

and π are known, the optimal error exponent is equal to

min
1≤i<j≤M

C (µi (y) π (y′) , π (y)µj (y′)) . (3.60)

When all outlier sequences are identically distributed, i.e., µi = µ 6= π, i = 1, . . . ,M, this

optimal error exponent is independent of M and is equal to

2B (µ, π) . (3.61)

Proof. The proposition follows from a well-known result in detection and estimation in the

context of the multihypothesis testing problem[36]. In particular, the optimal error exponent

for testing M hypotheses with i.i.d. observations with respect to p1, p2, . . . , pM is character-

ized as min
1≤i<j≤M

C (pi, pj).
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When all the {µi}Mi=1 and π are known, the underlying outlier hypothesis testing prob-

lem is just a multihypothesis testing problem based on i.i.d. vector observations (with M

independent components) and consequently, the optimal error exponent can be computed as

min
S 6=S′

C

(∏
i∈S

µi (yi)
∏
j /∈S

π (yj) ,
∏
i∈S′

µi (yi)
∏
j /∈S′

π (yj)

)
= min

S 6=S′
C
( ∏
i∈S\S′

µi (yi)
∏

j∈S′\S

π (yj) ,
∏

i∈S\S′
π (yi)

∏
j∈S′\S

µj (yj)
)

= min
S 6=S′

max
s∈[0,1]

− log

[ ∑
yi, i∈S\S′
yj , j∈S′\S

( ∏
i∈S\S′

µi (yi)
1−s π (yi)

s
∏

j∈S′\S

π (yj)
1−s µj (yj)

s

)]
(3.62)

= min
1≤i<j≤M

max
s∈[0,1]

− log

[∑
yi,yj

(
µi (yi)

1−s π (yi)
s π (yj)

1−s µj (yj)
s
)]

(3.63)

= min
1≤i<j≤M

C (µi (y) π (y′) , π (y)µj (y′)) ,

where the equality in (3.63) follows by virtue of fact that the outer minimum in (3.62) is

attained among the pairs of S, S ′, with the largest number of sequences in their intersections:

K − 1.

When all the outliers are identically distributed, i.e., µi = µ, i = 1, . . . ,M , this optimal

error exponent can be further simplified to be

min
1≤i<j≤M

C (µi (y) π (y′) , π (y)µj (y′))

= C (µ (y) π (y′) , π (y)µ (y′)) = 2B(µ, π). (3.64)

3.3.2 Generalized Likelihood Test

We now give a summary of the GL test for the current models with a known number of

outliers for both the setting when only π is known and for the completely universal setting.

Conditioned on the outlier subset being S ∈ S, the likelihood of yMn is a function of the

outlier indices, and the typical and outlier distributions (cf. (3.54)), i.e.,

pS
(
yMn

)
= L

(
yMn, {µi}i∈S, π

)
. (3.65)

When only π is known, we compute the generalized likelihood of yMn by replacing µi in
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(3.65) with its ML estimate µ̂i , γi, i ∈ S, as

p̂typ
S

(
yMn

)
= L

(
yMn, {µ̂i}i∈S, π

)
. (3.66)

Similarly, for the completely universal setting, we compute the generalized likelihood of

yMn by replacing the µi and π in (3.65) with their ML estimates µ̂i , γi, i ∈ S, and

π̂S ,
∑
k/∈S γk
M−K , as

p̂univ
S

(
yMn

)
= L

(
yMn, {µ̂i}i∈S, π̂S

)
. (3.67)

The test then selects the hypothesis under which the generalized likelihood is maximized

(ties are broken arbitrarily), i.e.,

δ
(
yMn

)
= argmax

S⊂{1,...,M}, |S|=K
p̂typ
S (3.68)

for the setting when only π is known, and

δ
(
yMn

)
= argmax

S⊂{1,...,M}, |S|=K
p̂univ
S (3.69)

for the completely universal setting, respectively. It is straightforward to show using (2.4)

that when only π is known, the GL test in (3.68) is equivalent to

δ
(
yMn

)
= argmin

S⊂{1,...,M}, |S|=K

∑
j /∈S

D(γj‖π), (3.70)

and when neither π nor {µi}Mi=1 is known, the test in (3.69) is equivalent to

δ
(
yMn

)
= argmin

S⊂{1,...,M}, |S|=K

∑
j /∈S

D
(
γj
∥∥ ∑k/∈S γk

M−K

)
. (3.71)

3.3.3 Performance of Generalized Likelihood Test

Theorem 9. For every fixed number of outliers K ≥ 1, when only π is known but none of

µi, i = 1, . . . ,M is known, the error exponent achievable by the GL test in (3.66) is equal to

min
1≤i≤M

2B (µi, π) . (3.72)
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When all outlier sequences are identically distributed, i.e., µi = µ, i = 1, . . . ,M, this

achievable error exponent is equal to

2B (µ, π) , (3.73)

which, from Proposition 8, is the optimal error exponent when µ is also known.

Proof. For each S ⊂ S, denote the test statistic in (3.70) as

U typ
S ,

∑
j /∈S

D(γj‖π). (3.74)

Consider the test δ in (3.68) and (3.70). It follows from the fact that for every S ∈ S,

PS {δ 6= S} = PS
{
∪

S′ 6=S

{
U typ
S ≥ U typ

S′

}}
that

max
S 6=S′

PS
{
U typ
S ≥ U typ

S′

}
≤ max

S∈S
PS {δ 6= S}

≤ max
S∈S

∑
S′ 6=S

PS
{
U typ
S ≥ U typ

S′

}
≤ (|S| − 1) max

S 6=S′
PS
{
U typ
S ≥ U typ

S′

}
. (3.75)

Next, we get from (3.74) that for any S 6= S ′ ∈ S,

PS
{
U typ
S ≥ U typ

S′

}
= PS

{∑
i/∈S

D(γi‖π) ≥
∑
i/∈S′

D(γi‖π)

}
.

Applying Lemma 1 with J = M, pi = µi, i ∈ S, pj = π, j /∈ S, and

E =

{
(q1, . . . , qM) :

∑
i/∈S

D(qi‖π) ≥
∑
i/∈S′

D(qi‖π)

}
, (3.76)

we get that the exponent for PS
{
U typ
S ≥ U typ

S′

}
is given by the value of the following
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optimization problem:

min
{qi}i∈S\S′ , {qj}j∈S′\S

∑
i∈S\S′

D (qi‖µi) +
∑
j∈S′\S

D (qj‖π) , (3.77)

where the minimum above is over the set of {qi}i∈S\S′ , {qj}j∈S′\S, such that

∑
j∈S′\S

D(qj‖π) ≥
∑
i∈S\S′

D(qi‖π).

We now show that the optimum value in (3.77) is equal to
∑

i∈S\S′
2B (µi, π) . First, we show

that the latter is a lower bound for the former. Substituting the constraint in (3.77) into the

objective function, we get that the value of (3.77) is lower bounded by

min
{qi}i∈S\S′

∑
i∈S\S′

D (qi‖µi) +D (qi‖π) =
∑
i∈S\S′

2B (µi, π) , (3.78)

where the equality follows from Lemma 2. Second, note that |S\S ′| is always equal to

|S ′\S|, and, hence, we can make a suitable correspondence between elements of S\S ′ to

those of S ′\S. The converse implication now follows by assigning for every i ∈ S\S ′, and

the corresponding j ∈ S ′\S, qi = qj = µi(y)1/2π(y)1/2∑
y′∈Y

µi(y′)
1/2π(y′)1/2

, and note that this assignment

trivially satisfies the constraint in (3.77) and gives rise to the objective function being equal

to
∑

i∈S\S′
2B (qi, π).

Lastly, it follows from (3.75) that

lim
n→∞

− 1

n
log

(
max
S∈S

PS {δ 6= S}
)

= min
S 6=S′

∑
i∈S\S′

2B (µi, π) = min
1≤i≤M

2B (µi, π) .

When µi = µ, i = 1, . . . ,M ,

min
1≤i≤M

2B (µi, π) = 2B(µ, π).

Remark 4. Since the tester in Proposition 8 is more capable (with the typical and outlier

distributions known) than that in Theorem 9, the optimal error exponent in (3.60) must be

no smaller than that in (3.72). This is verified simply by noting that for every i, j, 1 ≤ i <
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j ≤M, we get from (2.2) that

C (µi (y) π (y′) , π (y)µj (y′))

= max
s∈[0,1]

− log

[ ∑
y,y′∈Y×Y

(
µi (y)π (y′)

)s(
π (y)µj (y′)

)1−s
]

≥ B (µi, π) +B (µj, π)

≥ min (2B (µi, π) , 2B (µj, π)) . (3.79)

As in Section 3.1, for the current models, a test δ is universally exponentially consistent if

for every µi, i = 1, . . . ,M, µi 6= π, it holds that α
(
δ,
(
{µi}Mi=1 , π

))
> 0.

Theorem 10. For every fixed number of outliers 1 ≤ K < M
2

, the GL test δ in (3.69)

is universally exponentially consistent. Furthermore, for every {µi}Mi=1 , π, µi 6= π, i =

1, . . . ,M , it holds that

α
(
δ,
(
{µ}Mi=1 , π

))
= min
S,S′⊂{1,...,M}
|S|=|S′|=K

min
q1,...,qM

(∑
i∈S

D (qi‖µi) +
∑
j /∈S

D (qj‖π)
)
, (3.80)

where the inner minimum above is over the set of (q1, . . . , qM) such that∑
i/∈S

D
(
qi

∥∥∥ ∑k/∈S qk
M−K

)
≥
∑
i/∈S′

D
(
qi

∥∥∥ ∑k/∈S′ qk
M−K

)
. (3.81)

Proof. For each S ⊂ S, denote the test statistic in (3.71) as

Uuniv
S ,

∑
j /∈S

D
(
γj
∥∥ ∑k/∈S γk

M−K

)
.

Consider the test δ specified by (3.69) and (3.71). It now follows in the manner similar to

(3.75) that

max
S 6=S′

PS
{
Uuniv
S ≥ Uuniv

S′

}
≤ max

S∈S
PS {δ 6= S}

≤ max
S∈S

∑
S′ 6=S

PS
{
Uuniv
S ≥ Uuniv

S′

}
≤ (|S| − 1) max

S 6=S′
PS
{
Uuniv
S ≥ Uuniv

S′

}
. (3.82)
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The assertion (3.80) now follows from (3.82) upon noting that the application of Lemma

1 with J = M, pi = µi, i ∈ S, pj = π, j /∈ S, and

E =

{
(q1, . . . , qM) :

∑
i/∈S

D
(
qi

∥∥∥ ∑k/∈S qk
M−K

)
≥
∑
i/∈S′

D
(
qi

∥∥∥ ∑k/∈S′ qk
M−K

)}
, (3.83)

gives that the exponent for PS
{
Uuniv
S ≥ Uuniv

S′

}
is equal to the value of the following

optimization problem:

min
q1,...,qM

∑
i∈S

D (qi‖µi) +
∑
j /∈S

D (qj‖π) , (3.84)

where the minimum is over the set of {q1, . . . , qM} such that∑
i/∈S

D
(
qi

∥∥∥ ∑k/∈S qk
M−K

)
≥
∑
i/∈S′

D
(
qi

∥∥∥ ∑k/∈S′ qk
M−K

)
.

Lastly, the assertion of universally exponential consistency of the GL test in (3.69) and

(3.71) follows from the compactness of the the feasible set of (3.84), continuity of the objective

function in (3.84), and the fact that the objective function of (3.84) can only be zero at a

collection (qi = µi, i ∈ S, qj = π, j /∈ S) , which is not in the constraint set.

Note that universally exponential consistency does not imply that

lim
M→∞

α
(
δ,
(
{µi}Mi=1 , π

))
> 0. (3.85)

Furthermore, it follows from Proposition 8 that (3.85) is not possible if
(
{µi}Mi=1 , π

)
satisfies

that

lim
M→∞

min
1≤i<j≤M

C (µi (y) π (y′) , π (y)µj (y′)) = 0. (3.86)

Consequently, a natural question that arises is whether there exists a test that achieves

a positive limiting error exponent as M approaches infinity whenever the optimal error

exponent does not vanish with M , i.e., its achievable error exponent satisfies (3.85) whenever

(3.86) does not hold. Such a test is said to be asymptotically exponentially consistent.

Theorem 11. For every M ≥ 3, and every fixed number of outliers 1 ≤ K < M
2

, the error
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exponent achievable by the GL test in (3.69) is lower bounded by

min
q ∈P(Y)

min
i=1,...,M

2B(µi , q) , (3.87)

where the outer minimum above is over the set of q such that

D(q‖π) ≤ 1

M −K

(
min

1≤i<j≤M
C (µi(y)π(y′), π(y)µj(y

′)) + KCπ

)
,

and Cπ , − log
(

min
y∈Y

π(y)
)
<∞.

Furthermore, as M →∞, the error exponent achievable by the test in (3.69) converges as

lim
M→∞

α
(
δ,
(
{µi}Mi=1 , π

))
= lim

M→∞
min

i=1,...,M
2B(µi, π), (3.88)

which from (3.72) of Theorem 9 is also the limit of the achievable error exponent of the test

in (3.68) using the knowledge of the typical distribution. The limiting error exponent on the

right side of (3.88) is always positive whenever (3.86) does not hold.

When all outlier sequences are identically distributed, i.e., µi = µ 6= π, i = 1, . . . ,M, the

test in (3.69) achieves the optimal error exponent asymptotically as the number of sequences

approaches infinity, i.e.,

lim
M→∞

α (δ, (µ, π)) = 2B (µ, π) . (3.89)

Proof. First let denote the minimizing S and S ′ in the outer minimum of (3.80) by S? and

S ′? respectively, and the minimizing tuple q1, . . . , qM in the inner minimum of (3.80) by

q∗1, . . . , q
∗
M . Then, we get that the achievable error exponent in (3.80) is lower bounded as

≥
∑
i∈S?

D (q?i ‖µi) +
∑
j /∈S?

D
(
q?j‖π

)
−
∑
j /∈S?

D
(
q?j

∥∥∥ ∑k/∈S? q
?
k

M−K

)
+
∑
j /∈S′?

D
(
q?j

∥∥∥ ∑k/∈S′? q
?
k

M−K

)
=
∑
i∈S?

D (q?i ‖µi) +
∑
j /∈S′?

D
(
q?j

∥∥∥ ∑k/∈S′? q
?
k

M−K

)
+ (M − T )D

(∑
k/∈S? q

?
k

M−K

∥∥∥π)
≥ D (q?t ‖µt) +D

(
q?t

∥∥∥ ∑k/∈S′? q
?
k

M−K

)
≥ 2B

(
µt ,

∑
k/∈S′? q

?
k

M−K

)
, (3.90)
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where t is an arbitrarily chosen element in S?\S ′?.
On the other hand, it follows from Proposition 8 that

min
1≤i<j≤M

C (µi(y)π(y′), π(y)µj(y
′))

≥
∑
i∈S?

D (q?i ‖µi) +
∑
j /∈S?

D
(
q?j ‖ π

)
≥

∑
j /∈S?∪S′?

D
(
q?j ‖ π

)
≥ (M −K − |S?\S ′?|)D

( ∑
j /∈S?∪S′? q?j

(M−K−|S?\S′?|)

∥∥∥π) . (3.91)

It now follows from (3.91) that

(M −K)D
(∑

k/∈S′? q
?
k

M−K

∥∥∥ π)
≤ (M −K − |S?\S ′?|)D

( ∑
j /∈S?∪S′? q?j

(M−K−|S?\S′?|)

∥∥∥π)
+ (|S?\S ′?|)D

(∑
i∈S?\S′? q?i
|S?\S′?|

∥∥∥π)
≤ min

1≤i<j≤M
C (µi(y)π(y′), π(y)µj(y

′)) + |S?\S ′?|Cπ

≤ min
1≤i<j≤M

C (µi(y)π(y′), π(y)µj(y
′)) + KCπ. (3.92)

The lower bound in (3.87) now follows from (3.90) and (3.92).

The assertion (3.88) now follows from (3.87), Proposition 8 and the continuity of B (µ, q)

and D (q‖π) in the argument q. The assertion (3.89) follows as a special case of (3.88).

It is now left only to prove the asymptotically exponential consistency of the test. Having

proved (3.88), this assertion now follows upon noting that for every i, j, 1 ≤ i < j ≤ M, it

holds that

C (µi (y) π (y′) , π (y)µj (y′))

≤ 2B (µi (y) π (y′) , π (y)µj (y′))

= −2 log

( ∑
y,y′∈Y×Y

(µi (y) π (y′))
1
2 (π (y)µj (y′))

1
2

)
= 2B (µi, π) + 2B (µj, π) ,

where the first inequality above follows from Lemma 3.
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3.4 Multiple Identically Distributed Outliers

In this section, we look at the setting where there is uncertainty in the number of outliers,

i.e., not all hypotheses in S have the same number of outliers. It is also assumed that for a

fixed number of outliers k = 0, 1, 2, . . ., S either contains all hypotheses with k outliers, or

none of them. Considering the result in Theorem 7, it is assumed throughout this section

that all outliers are identically distributed.

3.4.1 Generalized Likelihood Test

Now with the assumption of identically distributed outliers being taken strictly, we compute

the generalized likelihood of yMn by replacing the µi, i ∈ S, and π in (3.65) with their ML

estimates µ̂S = µ̂i ,
∑
k∈S γk
|S| , and π̂S ,

∑
k/∈S γk
M−|S| , as

p̂univ
S

(
yMn

)
= L

(
yMn, µ̂S, π̂S

)
. (3.93)

The test then selects the hypothesis under which the generalized likelihood in (3.93) is

maximized (ties are broken arbitrarily), i.e.,

δ(yMn) = argmax
S∈S

p̂univ
S

(
yMn

)
. (3.94)

It is straightforward to show using (2.4) that the GL test in (3.94) is equivalent to

δ
(
yMn

)
= argmin

S∈S

∑
i∈S

D
(
γi
∥∥∑k∈S γk

K

)
+
∑
j /∈S

D
(
γj
∥∥∑k/∈S γk

M−K

)
. (3.95)

3.4.2 Performance of Proposed Test

Theorem 12. When there are at most K, 1 ≤ K < M/2, number of outliers in each

hypothesis, and all the outlier sequences are identically distributed, the GL test in (3.94) is

universally exponentially consistent for every hypothesis set excluding the null hypothesis.

On the other hand, when the hypothesis set contains the null hypothesis, there cannot exist

a universally exponentially consistent test even when the typical distribution is known.

Proof. We first prove that for every hypothesis set excluding the null hypothesis, the GL

test in (3.94) is universally exponentially consistent.
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For each S ⊂ S, denote the test statistic in (3.95) as

Ūuniv
S ,

∑
i∈S

D
(
γi
∥∥∑k∈S γk

K

)
+
∑
j /∈S

D
(
γj
∥∥∑k/∈S γk

M−K

)
.

Following the same argument leading to (3.75), it suffices to show that for any S, S ′ ∈ S, S ′ 6=
S,

lim
n→∞

− 1

n
log
(
PS
{
Ūuniv
S ≥ Ūuniv

S′

})
> 0. (3.96)

Applying Lemma 1 with J = M, pi = µ, i ∈ S, pj = π, j /∈ S, and

E(S,S′) =
{

(q1, . . . , qM) :
∑
i∈S

D
(
qi

∥∥∥ ∑k∈S qk
K

)
+
∑
j /∈S

D
(
qj

∥∥∥∑k/∈S qk
M−K

)
≥
∑
i∈S′

D
(
qi

∥∥∥ ∑k∈S′ qk
K

)
+
∑
j /∈S′

D
(
qj

∥∥∥ ∑k/∈S′ qk
M−K

)}
,

we get that the exponent for PS
{
Ūuniv
S ≥ Ūuniv

S′

}
is given by the value of the following

optimization problem:

min
{q1,q2,...,qM}∈E(S,S′)

∑
i∈S

D(qi‖µ) +
∑
j /∈S

D(qj‖π). (3.97)

The solution to
∑
i∈S

D (qi‖µ) +
∑
j /∈S

D (qj‖π) = 0 is uniquely given by qi = µ for i ∈ S,

qj = π for j /∈ S. Because |S| < M/2, |S ′| < M/2, there is no S, S ′ ∈ S, such that

S = {1, 2, . . . ,M} \ S ′. Let qi = µ for i ∈ S, qj = π for j /∈ S, it then follows that

0 =
∑
i∈S

D
(
qi

∥∥∥ ∑k∈S qk
K

)
+
∑
j /∈S

D
(
qj

∥∥∥ ∑k/∈S qk
M−K

)
<
∑
i∈S′

D
(
qi

∥∥∥ ∑k∈S′ qk
K

)
+
∑
j /∈S′

D
(
qj

∥∥∥ ∑k/∈S′ qk
M−K

)
for any S, S ′ ∈ S, S ′ 6= S. In other words, the objective function in (3.97) is strictly positive

at any feasible (q1, q2, . . . , qM). By the continuity of the objective function in (3.97) and the

fact that E(S,S′) is compact for any S, S ′ ∈ S, it holds that the value of the optimization

function in (3.97) is strictly positive for every pair of S, S ′ ∈ S, S 6= S ′. This establishes the

exponential consistency of the GL test in (3.94).
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Next to prove the second assertion, it suffices to prove that even when the typical distribu-

tion is known, there cannot exist a universally exponentially consistent test in differentiating

the null hypothesis from any other hypothesis with a positive number of outliers. To this

end, let S ⊂ {1, 2, . . . ,M}, |S| ≥ 1 denote an arbitrary set of outliers. To distinguish be-

tween the null hypothesis and S, a test is done based on a decision rule δ : YMn → {0, 1},
where 0 corresponds to the null hypothesis and 1 the hypothesis with S being the outliers.

It should be noted that δ can only be a function of π and the observations YMn.

We first show that in order to distinguish between the null hypothesis and S, the em-

pirical distributions of all the sequences γ1, . . . , γM and π are sufficient statistics for the

error exponent. In particular, we now show that given any test, there is another test that

achieves the same error exponent with its decision being made based only on the empirical

distributions of all M sequences and π. To this end, for feasible empirical distributions (for

certain n) γ1, . . . , γM , let us denote the set of all M sequences conforming to these empirical

distributions by T(γ1,...,γM ). Among these observation sequences, let us denote the set of M

sequences for which δ decides for the null hypothesis by T 0,π
(γ1,...,γM ), which may depend on

π. Now consider another test δ′ which decides on one of the two hypotheses based only on

γ1, . . . , γM and π. Specifically, this new test is such that for all M sequences with empirical

distributions γ1, . . . , γM , it decides for the null hypothesis if |T 0,π
(γ1,...,γM )| ≥

1
2
|T(γ1,...,γM )|, and

for S otherwise. It follows from this construction of δ′ that for any µ and π,

max (P0 {δ′ 6= 0} ,P1 {δ′ 6= 1})

≤ 2 max (P0 {δ 6= 0} ,P1 {δ 6= 1}),

where P0,P1 are the distributions under the null hypothesis, and under the hypothesis with

S being the outliers, respectively. Consequently, the error exponent achievable by δ′ is the

same as that achievable by δ for any µ, π, µ 6= π.

Having shown that the empirical distributions of the M sequences and π are sufficient

statistics, it suffices to consider tests that depend only on γ1, . . . , γM , and π. In particular,

for any such δ, let assume that for any π, there exists ε = ε(π) > 0 such that

lim
n→∞

− 1

n
logP0 {δ 6= 0} > ε. (3.98)

Let E be the set of empirical distributions

E ,
{

(q1, . . . , qM) :
∑
i∈S

D (qi‖π) +
∑
j /∈S

D (qj‖π) ≤ ε

2

}
.
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For an arbitrary element (q1, . . . , qM) ∈ E, consider the setA of allM tuples
(
y(1), . . . ,y(M)

)
∈

YMn conforming to the empirical distributions (q1, . . . , qM). It then follows from Lemma 1

that

lim
n→∞

− 1

n
logP0

{(
y(1), . . . ,y(M)

)
∈ A}

=
∑
i∈S

D (qi‖π) +
∑
j /∈S

D (qj‖π) ≤ ε

2
.

It now follows from (3.98) that

E ⊆ {δ = 0} .

By applying Lemma 1 again, but now with respect to the hypothesis with S being the

outliers, we get that

lim
n→∞

− 1

n
logP1 {δ 6= 1}

≤ min
(q1,...,qM )∈E

∑
i∈S

D (qi‖µ) +
∑
j /∈S

D (qj‖π) . (3.99)

Since ε is independent of µ, and µ can be chosen arbitrarily close to π, we can pick µ to be

such that
∑

i∈S D (µ‖π) < ε
2
. It now follows from the definition of E, (3.99) and Lemma 1

that

lim
n→∞

− 1

n
logP1 {δ 6= 1} = 0,

which establishes the assertion, since if (3.98) did not hold, the error exponent for δ would

also have been zero.

Remark 5. When the null hypothesis is present, we can make a suitable modification to the

test in (3.94) similar to (3.41) to get a universal test that achieves a positive exponent for

every conditional error probability, conditioned on any non-null hypothesis, and additional

consistency under the null hypothesis.

3.5 Optimal Test When Only µ Is Known

Now we address the issue raised in Remark 1. In particular, when only µ is known, instead

of using the corresponding version of the GL test in Section 3.1.1, we adopt the following
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test δ̃:

δ̃(yMn) = arg min
i=1,...,M

D(γi‖µ), (3.100)

where γi denotes the empirical distribution of y(i), i = 1, . . . ,M, and the ties in (3.100) are

broken arbitrarily.

It now follows from (3.100) that

P1{δ̃ 6= 1} ≤ (M − 1)P1

{
D(γ1‖µ) ≥ D(γ2‖µ)

}
.

Applying Lemma 1 with J = 2, p1 = µ, p2 = π, and

E =
{

(q1, q2) : D (q1‖µ) ≥ D (q2‖µ)
}
,

we get that the exponent for P1{δ̃ 6= 1} is given by the value of the following optimization

problem:

min
q1,q2 ∈P(Y)

D(q1‖µ) ≥ D(q2‖µ)

D (q1‖µ) +D (q2‖π)

≥ min
q2

D (q2‖µ) +D (q2‖π) ,

= 2B(µ, π),

where the inequality follows by substituting the constraint into the objective function and

the equality follows from Lemma 2.

3.6 Conclusion

In this chapter, we formulated and studied the problem of outlier hypothesis testing in the

fixed sample size setting. Our main contribution was in proving that GL tests yield exponen-

tially decaying probability of error with the number of observations under various universal

settings. In particular, for the case with exactly one outlier, the GL test was shown to be uni-

versally exponentially consistent. We also provided a characterization of the error exponent

achievable by the GL test for each M ≥ 3. Surprisingly the GL test is not only universally

exponentially consistent, but also asymptotically optimal as the number of sequences goes

to infinity. Specifically, as M goes to infinity, the error exponent achievable by the GL test

converges to the absolutely optimal error exponent when both the outlier and typical distri-
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butions are known. When it is also possible that there is no outlier among the sequences,

a suitable modification of the GL test was shown to achieve exponential consistency under

each non-null hypothesis, and consistency under the null hypothesis universally. We then

extended our models to cover the case with more than one outlier. For models with a known

number of outliers, the distributions of the outliers could be distinct as long as each of them

differs from the typical distribution. The GL test was shown to be universally exponentially

consistent. Furthermore, we characterized the limiting error exponent achieved by such a

test, and established its universally asymptotically exponential consistency. When the num-

ber of outliers is not known, it was shown that the assumption of the outliers being identically

distributed and the exclusion of the null hypothesis were both essential for existence of uni-

versally exponentially consistent test. In particular, for models with an unknown number of

identically distributed outliers, the GL test is universally exponentially consistent when the

null hypothesis is excluded. When the null hypothesis is included, a slight modification of

the GL test was shown to achieve a positive error exponent under every non-null hypothesis,

and also consistency under the null hypothesis universally.
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CHAPTER 4

SEQUENTIAL SETTING

In Chapter 3, we studied universal outlier hypothesis testing in a fixed sample size setting.

The main finding therein was that the generalized likelihood (GL) test is far more efficient

for universal outlier hypothesis testing than for the other inference problems, such as ho-

mogeneity testing and classification [7, 10, 11]. In particular, the GL test was shown to be

universally exponentially consistent for outlier hypothesis testing, whereas it is impossible to

achieve universally exponential consistency for homogeneity testing or classification without

training data [10, 11]. We also showed that the GL test is asymptotically optimal in the limit

of the large number of sequences. In this chapter, we generalize the scope of these previous

findings to the sequential setting.

Sequential hypothesis testing has a rich history going back to the seminal work of Wald [37].

A majority of the results on sequential hypothesis testing have been for the case where the

conditional distributions of the observations under the hypotheses are completely known (see,

e.g., [26, 27, 37–40]). For the case where the distribution of the observations is not completely

specified, there have been a number of results for composite sequential hypothesis testing

with parametric families of distributions. There are two general approaches for constructing

sequential tests for such parametric settings, one based on a weighted (or mixture) likelihood

function for each hypothesis (see, e.g., [41]), and the other based on a maximum (generalized)

likelihood function for each hypothesis (see, e.g., [42]). There have also been a limited number

of papers on non-parametric approaches to sequential hypothesis testing where the functional

form of the distribution is unknown, but it is known, for example, that the conditional

distributions under the various hypotheses are rigid translations of each other (see, e.g.,

[43]). Sequential outlier hypothesis testing is closely related to the so called slippage problem

studied in the sequential setting (see, e.g., [44]). In the slippage problem, N populations are

identically distributed except possibly for one. The goal is to decide whether or not one of the

populations has “slipped”, and if so, which one. However, prior work on the slippage problem

has concerned the situation when the typical and “slipped” distributions are tightly coupled,

for example, when they are mean-shifted versions of each other. In universal sequential

outlier hypothesis testing, we have no information regarding the outlier distribution, or we
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have no information regarding both the outlier and typical distributions. In particular, the

outlier and typical distributions can be arbitrarily close to each other. In addition, we have

no training data to learn the unknown distributions before the test is performed. To the best

of our knowledge, there has been no prior work on sequential outlier hypothesis testing in

such a fully non-parametric setting that we study in this dissertation. On the other hand, we

make the simplifying assumption that each instantaneous observation takes value in a finite

common (known) alphabet. Under this assumption, we show that it is possible to construct

an efficient universal test that will be proven to be universally consistent, and to sometimes

be asymptotically optimal universally or in the limit as the number of sequences goes to

infinity. The proposed universal test has the flavor of the repeated significance test [28, 29],

where the test stops when the GL for the most likely hypothesis is larger than that for all

the competing hypotheses by a time-dependent threshold, if that event happens before a

predetermined deadline.

Sections 4.1 and 4.2 concern models with at most one outlier and up to K > 1 identi-

cally distributed outliers, respectively. We discuss the extension to the model with multiple

distinct outliers in Section 4.3.

4.1 At Most One Outlier

In this section, we consider models where there is at most one outlier among the M sequences.

We assume that the outlier distribution is independent of the identity of the outlier. In

particular, the observations in an sequence are distributed (i.i.d.) according to the outlier

distribution µ ∈ P (Y) . When the i-th sequence is the outlier, the joint distribution of the

first n observations is given by the same expression as in (3.1). Under the hypothesis with

no outlier, namely, the null hypothesis, all sequences are commonly distributed according to

the typical distribution. The joint distribution of the first n observations is given in (3.2).

A sequential test for the outlier consists of a stopping rule and a final decision rule.

The stopping rule defines a random (Markov) time, denoted by N , which is the number of

observations that are taken until a final decision is made. At the stopping time N = n, a

decision is made based on a decision rule δ : YMn → {0, 1, . . . ,M}. The overall goal in the

sequential testing is to achieve a certain level of accuracy for the final decision using the

fewest number of observations on average.

We consider the sequential outlier hypothesis testing problem in two settings: the setting

where only π is known, and the completely universal setting where neither µ nor π is known.

Consequently, a universal test is not allowed to be a function of µ, and of µ or π, in the
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respective settings.

Similar to the fixed sample size setting, the accuracy of a sequential test is gauged using

the maximal error probability Pmax, which is a function of both the test and (µ, π) and is

defined as

Pmax , max
i=0,1,...,M

Pi
{
δ
(
Y N

)
6= i
}
,

where Pi, i = 0, 1, . . . ,M, are the probabilities under the null hypothesis and the non-null

hypotheses when the i-th sequence, i = 1, . . . ,M, is the outlier. We say that a sequence

of tests is universally consistent if the maximal error probability converges to zero for any

µ, π, µ 6= π. Further, we say that it is universally exponentially consistent if the exponent

for the maximal error probability with respect to the expected stopping time under each

hypothesis is strictly positive, i.e., there exists αi > 0 such that for any µ, π, µ 6= π as

Pmax → 0,

Ei [N ] ≤ − logPmax

αi
(1 + o(1)) , (4.1)

where o(1) denotes a term that vanishes as Pmax → 0.

We first consider the setting where both the typical and outlier distributions are known. In

this non-universal setting, the Multihypothesis Sequential Probability Ratio Test (MSPRT)

was shown to be asymptotically optimal in the limit as the error probability goes to zero [27].

For a given threshold T > 1 and with î (yn) , argmax
i=0,1,...,M

pi (y
n) , denoting the instantaneous

maximum likelihood (ML) estimate of the hypothesis at time n, the stopping time N∗ and

the final decision rule δ∗ of the MSPRT are defined as follows:

N∗ = argmin
n≥1

 pî (Y n)

max
j 6=î

pj (Y n)
> T

 , (4.2)

δ∗ = î
(
Y N∗

)
. (4.3)

The following proposition (cf.[26, 27]) characterizes the asymptotic optimality of the

MSPRT when the distributions of the observations are known.

Proposition 13. As the threshold T in (4.2) approaches infinity, the MSPRT in (4.2) and

(4.3) satisfies

Pmax ≤ O

(
1

T

)
.
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In addition, for each i = 1, . . . ,M, as T →∞,

Ei [N∗] =
log T

D (µ‖π)
(1 + o(1)) =

− logPmax

D (µ‖π)
(1 + o(1)),

and

E0 [N∗] =
log T

D (π‖µ)
(1 + o(1)) =

− logPmax

D (π‖µ)
(1 + o(1)).

Furthermore, the MSPRT is asymptotically optimal. In particular, for any sequence of

tests (N, δ) with vanishing maximal error probability, it holds for every i = 1, . . . ,M, that

Ei[N ] ≥ − logPmax

D (µ‖π)
(1 + o(1)), (4.4)

and that

E0[N ] ≥ − logPmax

D (π‖µ)
(1 + o(1)). (4.5)

Now we consider the universal settings where the outlier distribution is unknown, and

where neither the outlier nor typical distribution is known. For the fixed sample size prob-

lem with at most one outlier, it was proved in Chapter 3 that a universally exponentially

consistent test cannot exist. Therefore, we proposed a test therein that fulfilled a lesser

objective of attaining universally exponential consistency under all the non-null hypotheses,

while satisfying only universal consistency under the null hypothesis. We now describe a

universal sequential test satisfying a similar objective tailored to the sequential setting.

4.1.1 Proposed Universal Test

Our universal test has stopping and final decision rules similar to those of the MSPRT in (4.2)

and (4.3), but with the unknown likelihood functions pi(y
n), i = 1, . . . ,M , being replaced

with the appropriate GL functions. Specifically, when only π is known, the GL of yn can

be computed as in (3.5). When neither π nor µ is known, the GL of yn is given by (3.6).

Another key idea in the test is the adoption of a time-dependent threshold similar to that

in [28, 29].

When only π is known and with î , argmax
i=1,...,M

p̂typ
i (yn) = argmax

i=1,...,M
D(γi‖π), denoting the

instantaneous estimate of the non-null hypothesis (using the GL) at time n, consider the
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following (stopping) time:

Ñ , argmin
n≥1

 p̂typ

î
(yn)

max
j 6=î

p̂typ
j (yn)

> T (n+ 1)M |Y|


= argmin

n≥1

[
min
j 6=î

n
(
D(γî‖π)−D(γj‖π)

)
> log T +M |Y| log(n+ 1)

]
. (4.6)

Our test stops at this time or at bT log T c, depending on which one is smaller, i.e.,

N∗ = min
(
Ñ , bT log T c

)
, (4.7)

and correspondingly, the final decision is made according to

δ∗ =

{
î
(
Y N∗

)
if Ñ ≤ T log T ;

0 if Ñ > T log T.
(4.8)

Similarly, when neither µ nor π is known, the test can be described by the following

stopping and final decision rules:

N∗ = min
(
Ñ , bT log T c

)
, (4.9)

δ∗ =

{
î
(
Y N∗

)
if Ñ ≤ T log T ;

0 if Ñ > T log T,
(4.10)

where

Ñ , argmin
n≥1

[
min
j 6=î

n
[∑
k 6=j

D
(
γk
∥∥∑` 6=j γ`

M−1

)
−
∑
k 6=î

D
(
γk
∥∥∑` 6=î γ`

M−1

) ]
> log T +M |Y| log(n+ 1)

]
, (4.11)

and î = î (yn) , argmin
i=1,...,M

∑
k 6=i

D
(
γk
∥∥∑ 6̀=i γ`

M−1

)
. This proposed universal test has the flavor

of the repeated significance test [28, 29], where the test stops when the GL for the most

likely hypothesis is larger than those for all the competing hypotheses by a time-dependent

threshold, if that event happens before a predetermined deadline.

50



4.1.2 Performance of Proposed Test

Theorem 14. When only π is known, for every M and any µ 6= π, the proposed test in

(4.6), (4.7), (4.8) is universally consistent, and yields for every T that

Pmax ≤ O

(
1

T

)
, (4.12)

where the constant in the term O
(

1
T

)
in (4.12) depends only on M,µ, π, but not on T . In

addition, for each i = 1, . . . ,M, as T →∞,

Ei [N∗] =
log T

D(µ‖π)
(1 + o(1)) =

− logPmax

D(µ‖π)
(1 + o(1)). (4.13)

First define for each i = 1, . . . ,M ,

Ñi , argmin
n≥1

[
min
j 6=i

n (D (γi‖π)−D (γj‖π)) > log T +M |Y| log(n+ 1)

]
. (4.14)

The proof relies on the following two lemmas.

Lemma 4. Under every non-null hypothesis i = 1, . . . ,M, it holds that

Pi{Ñi ≥ n} ≤ MTn(M+2)|Y|e−(n−1)2B(µ,π).

Proof. We get by the definition of Ñi in (4.14) that

Pi{Ñi ≥ n}

≤
∑
j 6=i

Pi
{

(n− 1)
[
D(γ

(n−1)
i ‖π)−D(γ

(n−1)
j ‖π)

]
≤ log T +M |Y| log n

}
≤
∑
j 6=i

Pi
{
D(γi‖µ) +D (γj‖π) ≥ − 1

n− 1
(log T +M |Y| log n) + (D(γi‖µ) +D(γi‖π))

}
≤
∑
j 6=i

Pi
{
D (γi‖µ) +D (γj‖π) ≥ − 1

n− 1
(log T +M |Y| log n) + 2B(µ, π)

}
, (4.15)

where the last inequality follows from Lemma 2. Continuing from (4.15) by using (2.6) upon

noting the independence of the i-th and j-th sequences and that the numbers of feasible

empirical distributions γi, γj, each from sequences of length (n−1), are both upper bounded
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by n|Y| (cf. Chapter 2), we get that

Pi{Ñi ≥ n} ≤ M
(
TnM |Y|

)
n2|Y|e−(n−1)2B(µ,π) (4.16)

≤ MTn(M+2)|Y|e−(n−1)2B(µ,π).

Lemma 5. Under each non-null hypothesis i = 1, . . . ,M,

lim
T→∞

Ei

[∣∣∣∣ Ñi

log T
− 1

D (µ‖π)

∣∣∣∣
]

= 0. (4.17)

Proof. First observe that under hypothesis i = 1, . . . ,M , we obtain by the strong law of

large numbers that for every y ∈ Y , 1
n

n∑
k=1

I
{
Y

(i)
k = y

}
converges to µ(y) a.s. Consequently,

it follows that γi → µ a.s. Similarly under hypothesis i and for every j 6= i, γj → π a.s.

For each i = 1, . . . ,M, and any fixed T , it holds by Lemma 4 that Ñi is finite a.s. under

Pi, i.e.,

Pi{Ñi ≥ n} → 0 as n→∞. (4.18)

It then follows from this a.s. finiteness and the definition of Ñi in (4.14) that with probability

1 under Pi,

min
j 6=i

(
D
(
γ

(Ñi)
i ‖π

)
−D

(
γ

(Ñi)
j ‖π

))
>

log T +M |Y| log(Ñi + 1)

Ñi

; (4.19)

min
j 6=i

(
D
(
γ

(Ñi−1)
i ‖π

)
−D

(
γ

(Ñi−1
j ‖π

))
≤ log T +M |Y| log Ñi

Ñi − 1
. (4.20)

Next, by observing that for any distribution q, D(q‖π) ≤ log
(

1
miny π(y)

)
<∞ (π has a full

support), we get from (4.19) that

Pi{Ñi ≤ n} ≤ Pi
{
ÑiD

(
γ

(Ñi)
i

∥∥π) > log T ; Ñi ≤ n

}

≤ Pi

n log

 1

min
y
π(y)

 > log T


= 0, for every n <

log T

log

(
1

min
y
π(y)

) ,
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thereby yielding that Ñi → ∞, as T → ∞ a.s. under Pi. Consequently, we conclude from

the continuity of D (·‖π) and the a.s. convergences of γ
(n)
i to µ and γ

(n)
j , j 6= i, to π that

under Pi,

min
j 6=i

(
D
(
γ

(Ñi)
i ‖π

)
−D

(
γ

(Ñi)
j ‖π

))
,min
j 6=i

(
D
(
γ

(Ñi−1)
i ‖π

)
−D

(
γ

(Ñi−1)
j ‖π

))
→ D (µ‖π) ,

a.s., as T → ∞. It now follows from this, (4.19) and (4.20) that under Pi, Ñi
log T

converges

a.s. and, hence, in probability to 1
D(µ‖π)

.

To go from the convergence in probability to convergence in mean, it now suffices to prove

that the sequence of random variables Ñi
log T

is uniformly integrable as T →∞. To this end,

for any ν > 0 sufficiently large, we upper bound the following quantity using Lemma 4 as

follows:

Ei

[
Ñi

log T
I{

Ñi
log T

≥ν
}
]

≤ Ei

[ (
Ñi − bν log T c+ ν log T

)
log T

I{Ñi≥bν log T c}

]
≤ 1

log T
Ei
[ (
Ñi − bν log T c

)
I{Ñi−bν log T c ≥ 0}

]
+

ν log T

log T
Pi
{
Ñi ≥ bν log T c

}
=

1

log T

∞∑
`=1

Pi
{
Ñi ≥ bν log T c+ `

}
+ νPi

{
Ñi ≥ bν log T c

}
≤ MT

log T

∞∑
`=1

e−(ν log T+`−2)2B(µ,π) (bν log T c+ `)(M+2)|Y|

+ νMTe−(ν log T−2)2B(µ,π) (bν log T c)(M+2)|Y| . (4.21)

Continuing from (4.21), it then follows that for all T sufficiently large so that bν log T c ≥ 1,

Ei

[
Ñi

log T
I{

Ñi
log T

≥ν
}
]

≤ MT

log T

∞∑
`=1

e−(ν log T+`−2)2B(µ,π) (2bν log T c`)(M+2)|Y|

+ νMTe−(ν log T−2)2B(µ,π) (bν log T c)(M+2)|Y| .

=
MT

log T
(2bν log T c)(M+2)|Y| e−2νB(µ,π) log T ×

(
e4B(µ,π)

∞∑
`=1

e−2B(µ,π)` `(M+2)|Y|
)

+ νMT (bν log T c)(M+2)|Y| e−2νB(µ,π) log T × e4B(µ,π), (4.22)
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which vanishes as T →∞, for any ν > 1
2B(µ,π)

, thereby establishing the uniform integrability

and, hence, (4.17).

Proof. We start by proving (4.12). It follows from the description of the test in (4.6), (4.7)

and (4.8) that for any i, j = 1, . . . ,M, i 6= j,

Pi {δ∗ = j} ≤
∞∑
n=1

Pi
{
N∗ = Ñ = n, δ∗ = j

}
≤

∞∑
n=1

Pi {n (D (γj‖π)−D (γi‖π)) > log T +M |Y| log(n+ 1)}

≤
∞∑
n=1

Pi {nD (γj‖π) > log T +M |Y| log(n+ 1)}

≤ 1

T

∞∑
n=1

(n+ 1)−(M−1)|Y| (4.23)

≤ C ′(|Y|,M)

T
, (4.24)

where (4.23) follows from (2.6) and the polynomial upper bound on the number of empirical

distributions.

In addition, for each i = 1, . . . ,M,

Pi {δ∗ = 0} = Pi
{
Ñ > T log T

}
≤ Ei[Ñ ]

T log T
(4.25)

≤ Ei[Ñi]

T log T
(4.26)

≤ C ′ (µ, π, |Y|,M)

T
, (4.27)

where (4.25), (4.26), and (4.27) are from the Markov inequality, the fact that for each

i = 1, . . . ,M , Ñ ≤ Ñi with probability 1, and Lemma 5, respectively.
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Next, it follows from the definition of Ñ in (4.6), and that of N∗ in (4.7) that

P0 {δ∗ 6= 0} = P0

{
N∗ = Ñ

}
= P0

{
Ñ ≤ T log T

}
≤ P0

{
Ñ is finite

}
=

∞∑
n=1

P0

{
Ñ = n

}
≤

∞∑
n=1

M∑
i=1

P0 {nD (γi‖π) > log T +M |Y| log(n+ 1)}

≤ M

T

∞∑
n=1

(n+ 1)−(M−1)|Y|

≤ C ′ (|Y|,M)

T
. (4.28)

The combination of (4.24), (4.27), and (4.28) constitutes (4.12).

The first equality in (4.13) now follows from that for each i = 1, . . . ,M, the limit in

probability of N∗

log T
(under Pi) is the same as that of Ñi

log T
, which is 1

D(µ‖π)
(cf. (4.17)) by

virtue of the fact that (cf. (4.24) and (4.27)) for every ε > 0,

Pi
{∣∣∣∣ N∗log T

− 1

D (µ‖π)

∣∣∣∣ > ε

}
= Pi

{∣∣∣∣ N∗log T
− 1

D (µ‖π)

∣∣∣∣ > ε, δ = i

}
+ Pi {δ 6= i}

= Pi

{∣∣∣∣ Ñi

log T
− 1

D (µ‖π)

∣∣∣∣ > ε, δ = i

}
+ Pi {δ 6= i} ,

and the uniform integrability of N∗

log T
, which, in turn, follows from N∗ ≤ Ñi with probability

1, and the uniform integrability of Ñi
log T

, as in the proof of Lemma 5.

Remark 1. While attaining universal consistency under the null hypothesis, the proposed

test in (4.6), (4.7) and (4.8) not only achieves universally exponential consistency under

all non-null hypotheses, but also yields the optimal asymptote for the expected stopping time

under each of those hypotheses universally (cf. (4.4)).

Theorem 15. When neither µ nor π is known, for every M and any µ 6= π, the proposed

test in (4.9), (4.10) and (4.11), is universally consistent, and yields for every T that

Pmax ≤ O

(
1

T

)
. (4.29)
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In addition, for each i = 1, . . . ,M, as T →∞,

Ei [N∗] =
log T

D
(
µ
∥∥ 1
M−1

µ+ M−2
M−1

π
)

+ (M − 2)D
(
π
∥∥ 1
M−1

µ+ M−2
M−1

π
)(1 + o(1))

≤ − logPmax

D
(
µ
∥∥ 1
M−1

µ+ M−2
M−1

π
)

+ (M − 2)D
(
π
∥∥ 1
M−1

µ+ M−2
M−1

π
)(1 + o(1)). (4.30)

First define for each i = 1, . . . ,M ,

Ñi , argmin
n≥1

[
min
j 6=i

n

[∑
k 6=j

D
(
γk
∥∥∑ 6̀=j γ`

M−1

)
−
∑
k 6=i

D
(
γk
∥∥∑ 6̀=i γ`

M−1

)]
> log T +M |Y| log(n+ 1)

]
.

(4.31)

The proof relies on the following two lemmas.

Lemma 6. Under every non-null hypothesis i = 1, . . . ,M, and every n ≥ 1, it holds that

Pi{Ñi ≥ n} ≤
(
M2 − 1

)
Tn2M |Y|e−(n−1)b, (4.32)

where b is a function of µ, π that is always positive.

Proof. It follows from the definition of Ñi in (4.31) that

Pi
{
Ñi ≥ n

}
≤
∑
j 6=i

Pi

{
(n− 1)

[∑
k 6=j

D

(
γ

(n−1)
k

∥∥∑` 6=j γ
(n−1)
`

M−1

)
−
∑
k 6=i

D

(
γ

(n−1)
k

∥∥∑` 6=i γ
(n−1)
`

M−1

)]

≤ log T +M |Y| log n

}

=
∑
j 6=i

Pi

{∑
k 6=i

D
(
γk
∥∥∑ 6̀=i γ`

M−1

)
≥ − 1

n− 1
(log T +M |Y| log n) +

∑
k 6=j

D
(
γk
∥∥∑` 6=j γ`

M−1

)}

≤
∑
j 6=i

Pi

{∑
k 6=i

D (γk‖π) ≥ − 1

n− 1
(log T +M |Y| log n) +

∑
k 6=j

D
(
γk
∥∥∑` 6=j γ`

M−1

)}
, (4.33)

where (4.33) follows from the sum centroid inequality (2.7) with C = {γk|k = 1, . . . ,M, k 6=
i}, and q = π.
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Continuing from (4.33), we have

Pi
{
Ñi ≥ n

}
≤
∑
j 6=i

Pi


∑
k 6=i

D
(
γk
∥∥π) ≥ − 1

n−1
(log T +M |Y| log n) +

∑
k 6=j

D
(
γk

∥∥∥∑ 6̀=j γl
M−1

)
D (γi‖µ) ≤ ε, and D (γj‖π) ≤ ε, for all j 6= i


+
∑
j 6=i

Pi {D (γi‖µ) > ε, or D (γj‖π) > ε, for some j 6= i}

≤
∑
j 6=i

Pi


∑
k 6=i

D
(
γk
∥∥π) ≥ − 1

n−1
(log T +M |Y| log n) +

∑
k 6=j

D
(
γk

∥∥∥∑ 6̀=j γl
M−1

)
D (γi‖µ) ≤ ε, and D (γj‖π) ≤ ε, for all j 6= i

 (4.34)

+ (M − 1)Mn|Y|e−(n−1)ε,

where (4.34) is by (2.6). Note that
∑
k 6=j

D
(
γk
∥∥∑` 6=j γ`

M−1

)
in (4.34) is zero only if for all k 6= j,

γk = γ for some γ. This cannot happen if the ε in (4.34) is chosen to be sufficiently small,

because it also holds for the event in (4.34) that µ 6= π, D (γi‖µ) ≤ ε, and for any j 6= i

that D (γj‖π) ≤ ε. We then conclude that when the ε is chosen to be sufficiently small (as

a function of µ, π), it follows that
∑
k 6=j

D
(
γk
∥∥∑ 6̀=j γ`

M−1

)
≥ a(µ, π) > 0. Continuing from (4.34)

with the ε chosen sufficiently small and upon noting that the number of feasible empirical

distributions γ
(n−1)
k for each k 6= i, is upper bounded by n|Y|, we obtain

Pi
{
Ñi ≥ n

}
≤

∑
j 6=i

Pi


∑
k 6=i

D
(
γk
∥∥π) ≥ − 1

n−1
(log T +M |Y| log n) + a (µ, π)

D (γi‖µ) ≤ ε, and D (γj‖π) ≤ ε, for all j 6= i


+ (M − 1)Mn|Y|e−(n−1)ε

≤ (M − 1)
(
TnM |Y|e−(n−1)a(µ,π)

)
n(M−1)|Y| + (M − 1)Mn|Y|e−(n−1)ε

≤
(
M2 − 1

)
Tn2M |Y|e−(n−1) min(a(µ,π),ε)

=
(
M2 − 1

)
Tn2M |Y|e−(n−1)b. (4.35)

Lemma 7. Under each non-null hypothesis i = 1, . . . ,M,

lim
T→∞

Ei

[∣∣∣∣ Ñi

log T
− 1

D
(
µ
∥∥ 1
M−1

µ+ M−2
M−1

π
)

+ (M − 2)D
(
π
∥∥ 1
M−1

µ+ M−2
M−1

π
)∣∣∣∣
]

= 0. (4.36)
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Proof. Under hypothesis i = 1, . . . ,M, the strong law of large numbers yields that as n →
∞, γi → µ a.s., and γj → π a.s. for every j 6= i. Hence, we get from the continuity of the

relative entropy in both its arguments (jointly) [30] that under Pi,

min
j 6=i

[∑
k 6=j

D

(
γ

(n)
k

∥∥∑ 6̀=j γ
(n)
`

M−1

)
−
∑
k 6=i

D

(
γ

(n)
k

∥∥∑ 6̀=i γ
(n)
`

M−1

)]
a.s.→

D
(
µ
∥∥ 1
M−1

µ+ M−2
M−1

π
)

+ (M − 2)D
(
π
∥∥ 1
M−1

µ+ M−2
M−1

π
)
, (4.37)

as n→∞.
By Lemma 6, we see that Ñi is finite a.s. under Pi, i = 1, . . . ,M . It then follows from

this a.s. finiteness and the definition of Ñi in (4.31) that with probability 1 under Pi,

min
j 6=i

[∑
k 6=j

D

(
γ

(Ñi)
k

∥∥∑ 6̀=j γ
(Ñi)
`

M−1

)
−
∑
k 6=i

D

(
γ

(Ñi)
k

∥∥∑` 6=i γ
(Ñi)
`

M−1

)]
>

log T +M |Y| log(Ñi + 1)

Ñi

;

(4.38)

min
j 6=i

[∑
k 6=j

D

(
γ

(Ñi−1)
k

∥∥∑` 6=j γ
(Ñi−1)
`

M−1

)
−
∑
k 6=i

D

(
γ

(Ñi−1)
k

∥∥∑ 6̀=i γ
(Ñi−1)
`

M−1

)]
≤ log T +M |Y| log Ñi

Ñi − 1
.

(4.39)

The a.s. convergence of Ñi
log T

to 1

D
(
µ

∥∥ 1
M−1

µ+ M−2
M−1

π
)

+ (M − 2)D
(
π
∥∥ 1
M−1

µ+ M−2
M−1

π
) under

hypothesis i will follow from (4.37), (4.38) and (4.39) by an argument based on sample-paths

similar to that in the proof of Lemma 5 if we establish that under hypothesis i, Ñi → ∞,

a.s., as T → ∞. To this end, we note that for any j 6= i,
∑
k 6=j

D

(
γ

(Ñi)
k

∥∥∑` 6=j γ
(Ñi)
`

M−1

)
≤

M log (M − 1), and, hence, we get from (4.38) that for any n ≥ 1 and any j 6= i,

Pi
{
Ñi ≤ n

}
≤ Pi

{
Ñ i

[∑
k 6=j

D

(
γ

(Ñi)
k

∥∥∑ 6̀=j γ
(Ñi)
`

M−1

)]
> log T ; Ñi ≤ n

}
≤ Pi {nM log (M − 1) > log T}

= 0, for every n <
log T

M log (M − 1)
,

thereby yielding that Ñi → ∞ a.s. as T → ∞, and, hence, the aforementioned a.s. con-

vergence of Ñi
log T

to 1

D
(
µ

∥∥ 1
M−1

µ+ M−2
M−1

π
)

+ (M − 2)D
(
π
∥∥ 1
M−1

µ+ M−2
M−1

π
) under hypothesis

i.

The main claim (4.36) follows by using the exponential tail bound for Ñi in Lemma 6
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to establish the uniform integrability of the sequence Ñi
log T

as in the argument leading to

(4.22).

Proof. We start by proving (4.29). First, note that for any i, j = 1, . . . ,M, i 6= j,

Pi {δ∗ = j}

≤
∞∑
n=1

Pi
{
N∗ = Ñ = n, δ∗ = j

}
≤

∞∑
n=1

Pi

{
n

[∑
k 6=i

D
(
γk
∥∥∑` 6=i γ`

M−1

)
−
∑
k 6=j

D
(
γk
∥∥∑ 6̀=j γ`

M−1

)]
> log T +M |Y| log(n+ 1)

}

≤
∞∑
n=1

Pi

{
n
∑
k 6=i

D
(
γk
∥∥∑ 6̀=i γ`

M−1

)
> log T +M |Y| log(n+ 1)

}

≤
∞∑
n=1

Pi

{
n
∑
k 6=i

D
(
γk
∥∥π) > log T +M |Y| log(n+ 1)

}
(4.40)

≤ 1

T

∞∑
n=1

(n+ 1)−|Y| (4.41)

=
C ′(|Y|)
T

, (4.42)

where (4.40) follows from (2.7) and (4.41) follows from (2.6) and the polynomial upper bound

on the number of empirical distributions.

In addition, for each i = 1, . . . ,M, it follows from (4.36), the Markov inequality and the

fact that Ñ ≤ Ñi with probability 1, that

Pi {δ∗ = 0} = Pi
{
Ñ > T log T

}
≤ C ′ (µ, π, |Y|,M)

T
. (4.43)
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Next, it follows from the definitions of Ñ ,N∗ in (4.11), (4.9) and (2.7) that

P0 {δ∗ 6= 0} = P0

{
N∗ = Ñ

}
= P0

{
Ñ ≤ T log T

}
≤ P0

{
Ñ is finite

}
=

∞∑
n=1

P0

{
Ñ = n

}
≤

∞∑
n=1

M∑
i=1

P0

{
n

[∑
k 6=i

D
(
γk
∥∥∑ 6̀=i γ`

M−1

)]
> log T +M |Y| log(n+ 1)

}

≤
∞∑
n=1

M∑
i=1

P0

{
n
∑
k 6=i

D
(
γk
∥∥π) > log T +M |Y| log(n+ 1)

}

≤ M

T

∞∑
n=1

(n+ 1)−|Y|

≤ C ′ (|Y|,M)

T
. (4.44)

The combination of (4.42), (4.43), and (4.44) constitutes (4.29).

The proof of (4.30) follows similar steps as in the proof of (4.13): first, under Pi, i =

1, . . . ,M, the limit in probability of N∗

log T
is identical to that of Ñi

log T
(cf. (4.42), (4.43));

and second, the uniform integrability of N∗

log T
follows from the uniform integrability of Ñi

log T
,

which was already established, by virtue of the fact that for each i = 1, . . . ,M, N∗ ≤ Ñi

with probability 1.

Remark 2. Applying (2.8) with L = M − 2, p = µ, and p̄ = π, we get that

D
(
µ
∥∥ 1
M−1

µ+ M−2
M−1

π
)

+ (M − 2)D
(
π
∥∥ 1
M−1

µ+ M−2
M−1

π
)
≤ D(µ‖π). (4.45)

This is consistent with (4.30) and (4.4). It also follows from (4.45) that

lim
M→∞

D
(
µ
∥∥ 1
M−1

µ+ M−2
M−1

π
)

+ (M − 2)D
(
π
∥∥ 1
M−1

µ+ M−2
M−1

π
)

= D(µ‖π),

i.e., as M → ∞, the asymptotic performance of the test in (4.9), (4.10) and (4.11) un-

der each non-null hypothesis (cf. (4.30)) when neither µ nor π is known, approaches the

(optimal) asymptotic performance of the test in (4.6), (4.7) and (4.8) under each of those

hypotheses (cf. (4.13) and (4.4)) when only π is known.

Remark 3. The particular functional forms of the time-dependent thresholds in (4.6) and
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(4.11), and of the deterministic time horizons in (4.7) and (4.9) are chosen solely for the

simplicity of exposition. In fact, it follows from our proofs that the results in Theorems

14 and 15 continue to hold when the stopping time takes a more general form as follows.

Consider

Ñ , argmin
n≥1

 p̂î (y
n)

max
j 6=î

p̂j (yn)
> C

(
T (n+ 1)M |Y|

) , (4.46)

where for each i = 1, . . . ,M , p̂i = p̂typi for the setting where π is known, and p̂i = p̂univi for the

completely universal setting, and logC is a constant offset to the time-dependent threshold

that does not depend on T . The test stops at this time or bf(T )c, depending on which one

is smaller, i.e.,

N∗ = min
(
Ñ , bf(T )c

)
,

and correspondingly, the final decision is made according to

δ∗ =

{
î
(
Y N∗

)
if Ñ ≤ f(T );

0 if Ñ > f(T ),

where f(T ) is any function increasing at least as fast as T log T .

4.2 Multiple Identically Distributed Outliers

We now generalize our results in Section 4.1 to models with multiple outliers. It was shown

in Chapter 3 that for the fixed sample size setting, the assumption of the outliers being

identically distributed is essential for the existence of a test that is universally exponentially

consistent (under all the non-null hypotheses) when the number of outliers is not completely

specified (anything from 1 to K). Therefore, we start by considering the setting where there

are up to K outliers among the M sequences with K < M
2

, and that all the outliers are

identically distributed according to µ. In Section 4.3, we shall look at the extension with

possibly distinctly distributed outliers but with their total number being known.

The test for the outliers is done based on a universal rule δ
(
Y N

)
∈ S, where S denotes

the set of all subsets of {1, . . . ,M} of size at most K (including the empty subset), and N
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is a stopping time. The maximal error probability will now be defined as

Pmax , max
S∈S

PS
{
δ
(
Y N

)
6= S

}
. (4.47)

A sequence of tests is universally consistent if the maximal error probability converges to

zero for any µ, π, µ 6= π. The notion of universally exponential consistency can be defined in

the same manner as that in (4.1).

As in Section 4.1, for the setting with both the typical and outlier distributions being

known and with Ŝ (yn) , argmax
S∈S

pS (yn) , the MSPRT with the stopping and final

decision rules being

N∗ = argmin
n≥1

 pŜ (Y n)

max
S 6=Ŝ

pS (Y n)
> T

 , (4.48)

δ∗ = Ŝ
(
Y N∗

)
, (4.49)

is asymptotically optimal (cf.[26, 27]).

Proposition 16. As the threshold T in (4.48) approaches infinity, the MSPRT in (4.48)

and (4.49) satisfies

Pmax ≤ O

(
1

T

)
.

In addition, as T →∞, for each S ∈ S, |S| = K,

ES [N∗] =
log T

D (µ‖π)
(1 + o(1)) =

− logPmax

D (µ‖π)
(1 + o(1));

for each S ∈ S, 1 ≤ |S| < K,

ES [N∗] =
log T

min (D (µ‖π) , D (π‖µ))
(1 + o(1)) =

− logPmax

min (D (µ‖π) , D (π‖µ))
(1 + o(1));

and

E0 [N∗] =
log T

D (π‖µ)
(1 + o(1)) =

− logPmax

D (π‖µ)
(1 + o(1)).

Furthermore, the MSPRT is asymptotically optimal. In particular, for any sequence of
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tests (N, δ) with vanishing maximal error probability, it holds for each S ∈ S, |S| = K, that

ES[N ] ≥ − logPmax

D (µ‖π)
(1 + o(1));

for each S ∈ S, 1 ≤ |S| < K, that

ES[N ] ≥ − logPmax

min {D (µ‖π) , D (π‖µ)}
(1 + o(1));

and that

E0[N ] ≥ − logPmax

D (π‖µ)
(1 + o(1)).

4.2.1 Proposed Universal Test

When only π is known, we compute the GL of yn under each non-null hypothesis corre-

sponding to a non-empty subset S ⊂ {1, . . . ,M} by replacing the unknown µ in (3.54) with

its ML estimate µ̂S ,
∑
i∈S γi
|S| . Similarly, when neither π nor µ is known, we compute the

GL of yn under each non-null hypothesis corresponding to a non-empty S ∈ S by replacing

the unknown µ and π in (3.54) with their ML estimates µ̂S ,
∑
i∈S γi
|S| , and π̂S ,

∑
j /∈S γj

M−|S| ,

respectively.

When only π is known and with

Ŝ (yn) , argmax
S∈S,S 6=∅

p̂typ
S (yn) = argmin

S∈S,S 6=∅

[∑
i∈S

D
(
γi‖

∑
k∈S γk
|S|

)
+
∑
j /∈S

D(γj‖π)
]

denoting the instantaneous estimate of the non-null hypothesis (using the GL) at time n,

our proposed universal test can be described by the following stopping and final decision

rules:

N∗ = min
(
Ñ , bT log T c

)
, (4.50)

δ∗ =

{
Ŝ
(
Y N∗

)
if Ñ ≤ T log T

0 if Ñ > T log T,
(4.51)
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where

Ñ , argmin
n≥1

min
S′ 6=Ŝ
S′ 6=∅

n

∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D
(
γj
∥∥π)

−
∑
i∈Ŝ

D
(
γi
∥∥∑k∈Ŝ γk

|Ŝ|

)
−
∑
j /∈Ŝ

D
(
γj
∥∥π)

 > log T + (M + 1)|Y| log(n+ 1)

 . (4.52)

Similarly, when neither µ nor π is known, the test can be written as in (4.50) and (4.51)

but with

Ŝ (yn) , argmax
S∈S,S 6=∅

p̂univ
S (yn) = argmin

S∈S,S 6=∅

[∑
i∈S

D
(
γi‖

∑
k∈S γk
|S|

)
+
∑
j /∈S

D
(
γj‖

∑
k/∈S γk
M−|S|

)]
,

(4.53)

and

Ñ , argmin
n≥1

min
S′ 6=Ŝ
S′ 6=∅

n

∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D
(
γj
∥∥∑k/∈S′ γk

M−|S′|

)

−
∑
i∈Ŝ

D
(
γi
∥∥∑k∈Ŝ γk

|Ŝ|

)
−
∑
j /∈Ŝ

D
(
γj
∥∥∑k/∈Ŝ γk

M−|Ŝ|

) > log T + (M + 1)|Y| log(n+ 1)

 .
(4.54)

4.2.2 Performance of Proposed Test

Theorem 17. When only π is known, the test in (4.50), (4.51), (4.52) is universally con-

sistent, and yields for every T that

Pmax ≤ O

(
1

T

)
. (4.55)
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In addition, for each non-null hypothesis S ∈ S, S 6= ∅, as T →∞,

ES[N∗] =
log T

αS
(1 + o(1)) (4.56)

≤


− logPmax

D(µ‖π)
(1 + o(1)), |S| = K;

− logPmax

min(D(µ‖π),ηS(µ‖π))
(1 + o(1)), 1 ≤ |S| < K,

(4.57)

where

αS , min
S′ 6=S
S′ 6=∅

[
|S ∩ S ′|D

(
µ
∥∥∥ |S∩S′|µ+|S′\S|π

|S′|

)
+
∣∣S\S ′∣∣D(µ‖π)

+
∣∣S ′\S∣∣D (π∥∥∥ |S∩S′|µ+|S′\S|π

|S′|

) ]
> 0, (4.58)

and

ηS(µ‖π) , |S|D
(
µ
∥∥∥ |S|µ+ π

|S|+ 1

)
+D

(
π
∥∥∥ |S|µ+ π

|S|+ 1

)
. (4.59)

First define for each S ∈ S, S 6= ∅,

ÑS , argmin
n≥1

min
S′ 6=S
S′ 6=∅

n

∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D
(
γj
∥∥π)

−
∑
i∈S

D
(
γi
∥∥∑k∈S γk

|S|

)
−
∑
j /∈S

D
(
γj
∥∥π)

 > log T + (M + 1)|Y| log(n+ 1)

 .

(4.60)

The proof relies on the following two lemmas.

Lemma 8. Under every non-null hypothesis S ∈ S, S 6= ∅, and each n ≥ 1, it holds that

PS{ÑS ≥ n} ≤ (M + 1)MKTn(2M+1)|Y|e−(n−1)b, (4.61)

where b > 0 is a function only of µ and π.

65



Proof. It follows by the definition of ÑS in (4.60) and (2.7) that

PS{ÑS ≥ n}

≤
∑
S′ 6=S

PS


(n− 1)

[∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D (γj‖π)

−
∑
i∈S

D
(
γi
∥∥∑k∈S γk

|S|

)
−
∑
j /∈S

D
(
γj
∥∥π)] ≤ log T + (M + 1)|Y| log n


≤
∑
S′ 6=S

PS


∑
i∈S

D
(
γi
∥∥∑k∈S γk

|S|

)
+
∑
j /∈S

D (γj‖π)

≥ − 1
n−1

(log T + (M + 1)|Y| log n) +
∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D (γj‖π)


≤
∑
S′ 6=S

PS


∑
i∈S

D (γi‖µ) +
∑
j /∈S

D (γj‖π)

≥ − 1
n−1

(log T + (M + 1)|Y| log n) +
∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D (γj‖π)


(4.62)

≤
∑
S′ 6=S

PS



∑
i∈S

D (γi‖µ) +
∑
j /∈S

D
(
γj
∥∥π)

≥ − 1
n−1

(log T + (M + 1)|Y| log n) +
∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D (γj‖π)

D(γi‖µ) ≤ ε for every i ∈ S, and D(γj‖π) ≤ ε for every j /∈ S


+
∑
S′ 6=S

PS
{
D(γi‖µ) > ε for some i ∈ S, or D(γj‖π) > ε for some j /∈ S

}

≤
∑
S′ 6=S

PS



∑
i∈S

D (γi‖µ) +
∑
j /∈S

D (γj‖π)

≥ − 1
n−1

(log T + (M + 1)|Y| log n) +
∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D (γj‖π)

D(γi‖µ) ≤ ε for every i ∈ S, and D(γj‖π) ≤ ε for every j /∈ S


+MKMn|Y|e−(n−1)ε. (4.63)

Note that the term
∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D (γj‖π) is zero only if γi = γ for all i ∈ S ′, for

some γ and γj = π for all j /∈ S ′. As in the event whose probability is concerned in (4.63),

it also holds that D(γi‖µ) ≤ ε for all i ∈ S, and D(γj‖π) ≤ ε for all j /∈ S, attaining this

zero value cannot happen if ε in (4.63) is chosen sufficiently small, since S ′ 6= S, S ′ 6= ∅.
We conclude that when ε is chosen to be sufficiently small (as a function of (µ, π)), it holds

therein that
∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D
(
γj
∥∥π) > a(µ, π) > 0. Continuing from (4.63)
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with the ε chosen sufficiently small, we get that

PS{ÑS ≥ n}

≤
∑
S′ 6=S

PS


∑
i∈S

D(γi‖µ) +
∑
j /∈S

D(γj‖π) ≥ − 1
n−1

(log T + (M + 1)|Y| log n) + a
(
µ, π

)
D(γi‖µ) ≤ ε for every i ∈ S, and D(γj‖π) ≤ ε for every j /∈ S


+MK+1n|Y|e−(n−1)ε

≤ MKTn(2M+1)|Y|e−a(n−1) +MK+1n|Y|e−(n−1)ε

≤ (M + 1)MKTn(2M+1)|Y|e−(n−1) min(a,ε). (4.64)

Lemma 9. Under each non-null hypothesis S ∈ S, S 6= ∅,

lim
T→∞

ES

[∣∣∣∣ ÑS

log T
− 1

αS

∣∣∣∣
]

= 0, (4.65)

where αS is defined in (4.58).

Proof. Under hypothesis S ∈ S, S 6= ∅, the strong law of large numbers yields that as

n → ∞, γ(n)
i → µ a.s. for every i ∈ S, and γ

(n)
j → π a.s. for every j /∈ S, hence, we obtain

that under PS,

∑
i∈S′

D

(
γ

(n)
i

∥∥∑k∈S′ γ
(n)
k

|S′|

)
+
∑
j /∈S′

D
(
γ

(n)
j ‖π

)
a.s.→

|S ∩ S ′|D
(
µ
∥∥ |S∩S′|µ+|S′\S|π

|S′|

)
+ |S\S ′|D(µ‖π)+|S ′\S|D

(
π
∥∥ |S∩S′|µ+|S′\S|π

|S′|

)
, (4.66)

as n→∞. Taking minimum over S ′ 6= S on both sides of (4.66), we see that under PS,

min
S′ 6=S

∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D (γj‖π) → αS a.s.,

as n→∞, where αS is defined in (4.58).

By Lemma 8, we see that ÑS is finite a.s. under PS, S ∈ S, S 6= ∅. It then follows from
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this a.s. finiteness and the definition of ÑS in (4.60) that with probability 1 under PS,

min
S′ 6=S

[∑
i∈S′

D

(
γ

(ÑS)
i

∥∥∑k∈S′ γ
(ÑS)
k

|S′|

)
+
∑
j /∈S′

D

(
γ

(ÑS)
j

∥∥π)

−
∑
i∈S

D

(
γ

(ÑS)
i

∥∥∑k∈S γ
(ÑS)
k

|S|

)
−
∑
j /∈S

D

(
γ

(ÑS)
j

∥∥π)] > log T + (M + 1)|Y| log(ÑS + 1)

ÑS

;

(4.67)

min
S′ 6=S

[∑
i∈S′

D

(
γ

(ÑS−1)
i

∥∥∑k∈S′ γ
(ÑS−1)
k

|S′|

)
+
∑
j /∈S′

D

(
γ

(ÑS−1)
j

∥∥π)

−
∑
i∈S

D

(
γ

(ÑS−1)
i

∥∥∑k∈S γ
(ÑS−1)
k

|S|

)
−
∑
j /∈S

D

(
γ

(ÑS−1)
j

∥∥π)] ≤ log T + (M + 1)|Y| log ÑS

ÑS − 1
.

(4.68)

The claim in (4.65) now follows from (4.66), (4.67) and (4.68) if we can establish that under

PS, ÑS → ∞, a.s., as T → ∞, and the uniform integrability of the sequence ÑS
log T

. To this

end, we have from (4.67) that for any n ≥ 1, and any S ′ 6= S, S ′ 6= ∅,

P{ÑS ≤ n}

≤ PS
{
ÑS

[∑
i∈S′

D

(
γ

(ÑS)
i

∥∥∑k∈S′ γ
(ÑS)
k

|S′|

)
+
∑
k/∈S′

D

(
γ

(ÑS)
j

∥∥π) > log T ; ÑS ≤ n

}

≤ PS
{
n
(
M max

logM, log

 1

min
y
π(y)

) > log T
}

= 0, for every n <
log T

M max

(
logM, log

(
1

min
y
π(y)

)) , (4.69)

thereby yielding that ÑS →∞ a.s. as T →∞. Using the exponential tail bound in Lemma 8

to establish the uniform integrability of the sequence ÑS
log T

similarly as in the previous proofs

(details skipped), we obtain (4.65).

Proof. We now proceed to prove (4.55). First, note that for any S, S ′ ∈ S, S 6= S ′, S, S ′ 6= ∅,
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we get from (2.7) that

PS{δ∗ = S ′}

≤
∞∑
n=1

PS{N∗ = n, δ∗ = S ′}

≤
∞∑
n=1

PS

 n

[∑
i∈S

D
(
γi
∥∥∑k∈S γk

|S|

)
+
∑
j /∈S

D (γj‖π)−
∑
i∈S′

D
(
γi

∥∥∥∑k∈S′ γk
|S′|

)
+
∑
j /∈S′

D (γj‖π)

]
> log T + (M + 1)|Y| log(n+ 1)


≤

∞∑
n=1

PS
{
n

[∑
i∈S

D
(
γi
∥∥∑k∈S γk

|S|

)
+
∑
j /∈S

D (γj‖π)

]
> log T + (M + 1)|Y| log(n+ 1)

}

≤
∞∑
n=1

PS
{∑

i∈S

D (γi‖µ) +
∑
j /∈S

D (γj‖π) >
1

n
(log T + (M + 1)|Y| log (n+ 1))

}
(4.70)

≤
∞∑
n=1

1

T
(n+ 1)−|Y|

=
1

T
C ′(|Y|). (4.71)

In addition, for each S ∈ S, S 6= ∅, we obtain from (4.65), the Markov inequality, and that

Ñ ≤ ÑS with probability 1, that

PS{δ∗ = 0} = PS{Ñ > T log T} ≤ C ′(µ, π, |Y|,M,K)

T
. (4.72)

Next, it follows from the definitions of Ñ and N∗ in (4.52), (4.50) and (2.7) that

P0{δ∗ 6= 0}

= P0{N∗ = Ñ}

= P0{Ñ ≤ T log T}

≤ P0{Ñ is finite}

=
∞∑
n=1

P0{Ñ = n}

≤
∞∑
n=1

∑
S

P0

 n

[∑
i∈S

D
(
γi
∥∥∑k∈S γk

|S|

)
+
∑
j /∈S

D (γj‖π)

]
> log T + (M + 1)|Y| log(n+ 1)


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≤
∞∑
n=1

∑
S

P0

{∑
i∈S

D (γi‖π) +
∑
j /∈S

D (γj‖π) >
1

n
(log T + (M + 1)|Y| log (n+ 1))

}
(4.73)

≤ 1

T
MK

∞∑
n=1

(n+ 1)−|Y|

=
1

T
C ′(|Y|,M,K). (4.74)

The claim in (4.55) now follows from (4.71), (4.72) and (4.74).

The claim in (4.56) follows as previously from (4.65), (4.71), (4.72) and from the fact that

for each S ∈ S, S 6= ∅, N∗ ≤ ÑS with probability 1.

It is now left to prove (4.57). First observe that when |S| = K, it holds for any S ′ ∈
S, S ′ 6= S, S ′ 6= ∅, that |S\S ′| ≥ 1. Consequently, we get when |S| = K that

αS = min
S′ 6=S
S′ 6=∅

[
|S ∩ S ′|D

(
µ
∥∥∥ |S∩S′|µ+|S′\S|π

|S′|

)
+
∣∣S\S ′∣∣D(µ‖π)

+
∣∣S ′\S∣∣D (π∥∥∥ |S∩S′|µ+|S′\S|π

|S′|

) ]
= D(µ‖π), (4.75)

where the last equality above is attained by selecting S ′ to be S but one (any) element.

We next consider the case with 1 ≤ |S| < K. Then, for any S ′ ∈ S, S ′ 6= ∅, such that

S\S ′ 6= ∅, the term inside the minimum on the right side of (4.75) is still lower bounded by

D(µ‖π). Now for any other S ′ 6= S, S ′ 6= ∅, such that S ′ ⊃ S, it follows that

|S ∩ S ′|D
(
µ
∥∥∥ |S∩S′|µ+|S′\S|π

|S′|

)
+
∣∣S\S ′∣∣D(µ‖π) +

∣∣S ′\S∣∣D (π∥∥∥ |S∩S′|µ+|S′\S|π
|S′|

)
≥ |S|D

(
µ
∥∥∥ |S|µ+|S′\S|π

|S′|

)
+D

(
π
∥∥∥ |S|µ+|S′\S|π

|S′|

)
≥ min

p∈P(Y)
|S|D(µ‖p) +D(π‖p)

= |S|D
(
µ
∥∥∥ |S|µ+ π

|S|+ 1

)
+D

(
π
∥∥∥ |S|µ+ π

|S|+ 1

)
= ηS(µ‖π), (4.76)

where (4.76) follows from (2.7) with C therein comprising |S| copies of µ and one π. The

combination of (4.75) and (4.76) constitutes the claim in (4.57).

Theorem 18. When neither µ nor π is known, the universal test in (4.50), (4.51) and

(4.54) is universally consistent, and yields for every T that

Pmax ≤ O

(
1

T

)
. (4.77)
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In addition, for each non-null hypothesis S ∈ S, S 6= ∅, as T →∞,

ES [N∗] =
log T

αS
(1 + o(1)) (4.78)

≤


− logPmax

η(µ‖π)
(1 + o(1)), |S| = K;

− logPmax

min(η(µ‖π),ηS(µ‖π))
(1 + o(1)), 1 ≤ |S| < K,

(4.79)

where

αS , min
S′ 6=S
S′ 6=∅

[∣∣S ∩ S ′∣∣D(µ∥∥∥ |S∩S′|µ+|S′\S|π
|S′|

)
+
∣∣S\S ′∣∣D(µ∥∥∥ |S\S′|µ+|Sc∩S′c|π

M−|S′|

)
+
∣∣S ′\S∣∣D(π∥∥∥ |S∩S′|µ+|S′\S|π

|S′|

)
+
∣∣Sc ∩ S ′c∣∣D(π∥∥∥ |S\S′|µ+|Sc∩S′c|π

M−|S′|

)]
> 0,

(4.80)

and

ηS (µ‖π) , D

(
µ
∥∥∥µ+ (M −K − |S|) π

M −K − |S|+ 1

)
+ (M −K − |S|)D

(
π
∥∥∥µ+ (M −K − |S|) π

M −K − |S|+ 1

)
,

(4.81)

and ηS (µ‖π) is as in (4.59).

First define for each S ∈ S, S 6= ∅

ÑS , argmin
n≥1

min
S′ 6=S
S′ 6=∅

n

∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D
(
γj
∥∥∑k/∈S′ γk

M−|S′|

)

−
∑
i∈S

D
(
γi
∥∥∑k∈S γk

|S|

)
−
∑
j /∈S

D
(
γj
∥∥∑k/∈S γk

M−|S|

) > log T + (M + 1)|Y| log(n+ 1).


(4.82)

The proof relies on the following two lemmas.

Lemma 10. Under every non-null hypothesis S ∈ S, S 6= ∅, and each n ≥ 1,

PS{ÑS ≥ n} ≤ (M + 1)MKTn(2M+1)|Y|e−(n−1)b, (4.83)

where b > 0 is a function only of µ and π.
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Proof. We get from (2.7) and (4.82) that

PS{ÑS ≥ n}

≤
∑
S′ 6=S

PS


(n− 1)

[∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D
(
γj
∥∥∑k/∈S′ γk

M−|S′|

)
−
∑
i∈S

D
(
γi
∥∥∑k∈S γk

|S|

)
−
∑
j /∈S

D
(
γj
∥∥∑k/∈S γk

M−|S|

)]
≤ log T + (M + 1)|Y| log n


≤
∑
S′ 6=S

PS


∑
i∈S

D (γi‖µ) +
∑
j /∈S

D (γj‖π) ≥ − 1
n−1

(log T + (M + 1)|Y| log n)

+
∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D
(
γj
∥∥∑k/∈S′ γk

M−|S′|

)


(4.84)

≤
∑
S′ 6=S

PS



∑
i∈S

D (γi‖µ) +
∑
j /∈S

D
(
γj
∥∥π) ≥ − 1

n−1
(log T + (M + 1)|Y| log n)

+
∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D
(
γj
∥∥∑k/∈S′ γk

M−|S′|

)
D(γi‖µ) ≤ ε for every i ∈ S, and D(γj‖π) ≤ ε for every j /∈ S


+
∑
S′ 6=S

PS
{
D(γi‖µ) > ε for some i ∈ S, or D(γj‖π) > ε for some j /∈ S

}

≤
∑
S′ 6=S

PS



∑
i∈S

D (γi‖µ) +
∑
j /∈S

D
(
γj
∥∥π) ≥ − 1

n−1
(log T + (M + 1)|Y| log n)

+
∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D
(
γj
∥∥∑k/∈S′ γk

M−|S′|

)
D(γi‖µ) ≤ ε for every i ∈ S, and D(γj‖π) ≤ ε for every j /∈ S


+MKMn|Y|e−(n−1)ε. (4.85)

Similar to the previous proofs, since S ′ 6= S, S ′ 6= ∅,
∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D
(
γj
∥∥∑k/∈S′ γk

M−|S′|

)
is zero only if γi = γ for all i ∈ S ′, for some γ and γj = γ′ for all j /∈ S ′, for some γ′. For

sufficiently small ε, in the event whose probability is concerned in (4.85), attaining this zero

value cannot happen, because it also holds that D(γi‖µ) ≤ ε for all i ∈ S, and D(γj‖π) ≤ ε

for all j /∈ S. We conclude that when ε is chosen to be sufficiently small (as a function

of (µ, π)), it holds that
[ ∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D
(
γj
∥∥∑k/∈S′ γk

M−|S′|

) ]
≥ a(µ, π) > 0.
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Continuing from (4.85) with ε chosen sufficiently small, we get that

PS{ÑS ≥ n}

≤
∑
S′ 6=S

PS


∑
i∈S

D(γi‖µ) +
∑
j /∈S

D(γj‖π) ≥ − 1
n−1

(log T + (M + 1)|Y| log n) + a
(
µ, π

)
D (γi‖µ) ≤ ε for every i ∈ S, and D (γj‖π) ≤ ε for every j /∈ S


+MK+1n|Y|e−(n−1)ε

≤ MKTn(2M+1)|Y|e−a(n−1) +MK+1n|Y|e−(n−1)ε

≤ (M + 1)MKTn(2M+1)|Y|e−(n−1) min(a,ε). (4.86)

Lemma 11. Under each non-null hypothesis S ∈ S, S 6= ∅,

lim
T→∞

ES

[∣∣∣∣ ÑS

log T
− 1

αS

∣∣∣∣
]

= 0, (4.87)

where αS is defined in (4.80).

Proof. Since under hypothesis S ∈ S, S 6= ∅, γi → µ a.s., for every i ∈ S, and γj → π a.s.,

for every j /∈ S, we get that under PS,

∑
i∈S′

D

(
γ

(n)
i

∥∥∑k∈S′ γ
(n)
k

|S′|

)
+
∑
j /∈S′

D

(
γ

(n)
j

∥∥∑k/∈S′ γ
(n)
k

M−|S′|

)
a.s.→

∣∣S ∩ S ′∣∣D (µ∥∥ |S∩S′|µ+|S′\S|π
|S′|

)
+
∣∣S\S ′∣∣D (µ∥∥ |S\S′|µ+|Sc∩S′c|π

M−|S′|

)
+
∣∣S ′\S∣∣D (π∥∥ |S∩S′|µ+|S′\S|π

|S′|

)
+
∣∣Sc ∩ S ′c∣∣D (π∥∥ |S\S′|µ+|Sc∩S′c|π

M−|S′|

)
, (4.88)

as n→∞. Taking minimum over S ′ ∈ S on both sides of (4.88), we get that under PS,

min
S′ 6=S

∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
+
∑
j /∈S′

D
(
γj
∥∥∑k/∈S′ γk

M−|S′|

)
→ αS a.s.

as n→∞.
By Lemma 10, we get that ÑS is finite a.s. under PS, S ∈ S, S 6= ∅. It then follows from
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this a.s. finiteness and the definition of ÑS in (4.82) that with probability 1 under PS,

min
S′ 6=S

[∑
i∈S′

D

(
γ

(ÑS)
i

∥∥∑k∈S′ γ
(ÑS)
k

|S′|

)
+
∑
j /∈S′

D

(
γ

(ÑS)
j

∥∥∑k/∈S′ γ
(ÑS)
k

M−|S′|

)

−
∑
i∈S

D

(
γ

(ÑS)
i

∥∥∑k∈S γ
(ÑS)
k

|S|

)
−
∑
j /∈S

D

(
γ

(ÑS)
j

∥∥∑k/∈S γ
(ÑS)
k

M−|S|

)]

>
log T + (M + 1)|Y| log(ÑS + 1)

ÑS

; (4.89)

min
S′ 6=S

[∑
i∈S′

D

(
γ

(ÑS−1)
i

∥∥∑k∈S′ γ
(ÑS−1)
k

|S′|

)
+
∑
j /∈S′

D

(
γ

(ÑS−1)
j

∥∥∑k/∈S′ γ
(ÑS−1)
k

M−|S′|

)

−
∑
i∈S

D

(
γ

(ÑS−1)
i

∥∥∑k∈S γ
(ÑS−1)
k

|S|

)
−
∑
j /∈S

D

(
γ

(ÑS−1)
j

∥∥∑k/∈S γ
(ÑS−1)
k

M−|S|

)]

≤ log T + (M + 1)|Y| log ÑS

ÑS − 1
. (4.90)

The a.s. convergence of ÑS
log T

to 1
αS

follows from (4.88), (4.89) and (4.90) if we can establish

that under each hypothesis S ∈ S, ÑS →∞, a.s. This can be established similarly as in the

previous proofs upon noting for any S ′ 6= S, S ′ 6= ∅,

∑
i∈S′

D

(
γ

(ÑS)
i

∥∥∑k∈S′ γ
(ÑS)
k

|S′|

)
+
∑
j /∈S′

D

(
γ

(ÑS)
j

∥∥∑k/∈S′ γ
(ÑS)
k

M−|S′|

)
≤ M logM.

The proof of (4.87) follows as previously from using Lemma 10 to prove the uniform inte-

grability of the sequence ÑS
log T

.

Proof. We now proceed to prove (4.77). First, note that for any S, S ′ ∈ S, S 6= S ′, S, S ′ 6= ∅,
we get from (2.7) that

PS{δ∗ = S ′}

≤
∞∑
n=1

PS{N∗ = Ñ = n, δ∗ = S ′}
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≤
∞∑
n=1

PS
{
n

[∑
i∈S

D
(
γi
∥∥∑k∈S γk

|S|

)
+
∑
j /∈S

D
(
γj
∥∥∑k/∈S γk

M−|S|

)
−
∑
i∈S′

D
(
γi
∥∥∑k∈S′ γk

|S′|

)
−
∑
j /∈S′

D
(
γj
∥∥∑k/∈S′ γk

M−|S′|

)]
> log T + (M + 1)|Y| log(n+ 1)

}

≤
∞∑
n=1

PS
{
n

[∑
i∈S

D
(
γi
∥∥∑k∈S γk

|S|

)
+
∑
j /∈S

D
(
γj
∥∥∑k/∈S γk

M−|S|

)]
> log T + (M + 1)|Y| log(n+ 1)

}

≤
∞∑
n=1

PS
{∑

i∈S

D (γi‖µ) +
∑
j /∈S

D (γj‖π) >
1

n
(log T + (M + 1)|Y| log (n+ 1))

}

≤ 1

T

∞∑
n=1

(n+ 1)−|Y|

=
1

T
C ′(|Y|). (4.91)

Also, for each S ∈ S, S 6= ∅, we get from (4.87), the Markov inequality, and that Ñ ≤ ÑS

with probability 1, that

PS{δ∗ = 0} = PS{Ñ > T log T} ≤ C ′(µ, π, |Y|,M,K)

T
. (4.92)

Next, it follows from the definitions of N∗, Ñ in (4.50), (4.54), and (2.7) that

P0{δ∗ 6= 0}

= P0{N∗ = Ñ}

= P0{Ñ ≤ T log T}

≤ P0{Ñ is finite}

≤
∞∑
n=1

P0{Ñ = n}

≤
∞∑
n=1

∑
S

P0

{
n

[∑
i∈S

D
(
γi
∥∥∑k∈S γk

|S|

)
+
∑
j /∈S

D
(
γj
∥∥∑k/∈S γk

M−|S|

)
≥

log T + (M + 1)|Y| log(n+ 1)

}
≤

∞∑
n=1

∑
S

P0

{∑
i∈S

D (γi‖π) +
∑
j /∈S

D (γj‖π) ≥ 1

n
(log T + (M + 1)|Y| log (n+ 1))

}
(4.93)
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≤ 1

T
MK

∞∑
n=1

(n+ 1)−|Y|

=
1

T
C ′(|Y|,M,K). (4.94)

The combination of (4.91), (4.92) and (4.94) constitutes (4.77).

The claim in (4.78) follows as previously from (4.87), (4.91), (4.92) and from the fact that

for each S ∈ S, S 6= ∅, N∗ ≤ ÑS with probability 1.

It is now left to prove (4.79). First observe that when |S| = K, it holds for any S ′ ∈
S, S ′ 6= S, S ′ 6= ∅, that |S\S ′| ≥ 1, and |Sc ∩ S ′c| ≥M −K − |S|. It then follows that

αS = min
S′ 6=S
S′ 6=∅

[∣∣S ∩ S ′∣∣D(µ∥∥∥ |S∩S′|µ+|S′\S|π
|S′|

)
+
∣∣S\S ′∣∣D(µ∥∥∥ |S\S′|µ+|Sc∩S′c|π

M−|S′|

)
+
∣∣S ′\S∣∣D(π∥∥∥ |S∩S′|µ+|S′\S|π

|S′|

)
+
∣∣Sc ∩ S ′c∣∣D(π∥∥∥ |S\S′|µ+|Sc∩S′c|π

M−|S′|

)]
(4.95)

≥ D
(
µ
∥∥ |S\S′|µ+|S′c∩Sc|π

M−|S′|

)
+ (M −K − |S|)D

(
π
∥∥ |S\S′|µ+|S′c∩Sc|π

M−|S′|

)
≥ min

p∈P(Y)
D(µ‖p) + (M −K − |S|)D(π‖p)

= D

(
µ
∥∥∥µ+ (M −K − |S|) π

M −K − |S|+ 1

)
+ (M −K − |S|)D

(
π
∥∥∥µ+ (M −K − |S|) π

M −K − |S|+ 1

)
= ηS(µ‖π), (4.96)

where (4.96) follows from (2.7) with C therein comprising M −K − |S| copies of π and one

µ.

We continue for the case with 1 ≤ |S| < K. For any S ′ ∈ S, S ′ 6= ∅, such that S\S ′ 6= ∅,
the term inside the minimum on the right side of (4.95) is still lower bounded by η(µ‖π).

Now for any other S ′ 6= S, such that S ′ ⊃ S, we obtain that[∣∣S ∩ S ′∣∣D(µ∥∥∥ |S∩S′|µ+|S′\S|π
|S′|

)
+
∣∣S\S ′∣∣D(µ∥∥∥ |S\S′|µ+|Sc∩S′c|π

M−|S′|

)
+
∣∣S ′\S∣∣D(π∥∥∥ |S∩S′|µ+|S′\S|π

|S′|

)
+
∣∣Sc ∩ S ′c∣∣D(π∥∥∥ |S\S′|µ+|Sc∩S′c|π

M−|S′|

)]
≥
∣∣S|D (µ∥∥ |S∩S′|µ+|S′\S|π

|S′|

)
+D

(
π
∥∥ |S∩S′|µ+|S′\S|π

|S′|

)
≥ min

p∈P(Y)
|S|D(µ‖p) +D(π‖p)

= |S|D
(
µ
∥∥∥ |S|µ+ π

|S|+ 1

)
+D

(
π
∥∥∥ |S|µ+ π

|S|+ 1

)
= ηS(µ‖π). (4.97)

We conclude from (4.96) and (4.97) that (4.79) holds.
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Remark 4. It follows from (4.81) and (2.8) that as M →∞ (while K is kept fixed),

ηS (µ, π) → D(µ‖π), (4.98)

i.e., the asymptotic performance for the test in (4.50), (4.51) and (4.54) when neither µ nor

π is known (cf. (4.79)) converges to that for the test in (4.50), (4.51) and (4.52) when π is

known (cf. (4.57)) as M →∞.

Remark 5. Similar to Remark 3, the results in Theorems 17 and 18 continue to hold when

the deterministic time horizon T log T in (4.50) is replaced with a more general form f(T )

as long as f(T ) increases at least as fast as T log T , and a constant offset logC is added to

the time-dependent thresholds in (4.52) and (4.54) on the right side of the inequalities.

4.3 Multiple Distinctly Distributed Outliers

We now extend the results to the setting with multiple distinctly distributed outliers. In the

fixed sample size setting, we prove in Chapter 3 that when the outliers can be arbitrarily

distinctly distributed, the assumption of the number of outliers being known is essential for

the existence of a universally exponentially consistent test. Therefore, for the sequential set-

ting, we assume that the number of outliers is known when they can be distinctly distributed

outliers. Since the proofs of the results in this section are similar to those for the results in

the previous sections, we present the proposed universal test and the results pertaining to

its asymptotic performance without proofs.

Let S ⊂ {1, . . . ,M} , |S| = K, denote the set of K outliers. Each of the i-th outlier, i ∈ S,
is distributed according to µi, which can be arbitrarily distinct from one another as long as

each µi 6= π. Conditioned on S being the set of outliers, the joint distribution of the first n

observations under the hypothesis with the outlier subset being S is given in (3.54).

The test for the outliers is done based on a rule δ
(
Y N

)
∈ SK , for an appropriate stopping

time N and where SK will now denote the set of all subsets of {1, . . . ,M} of size exactly

K. Notice that unlike in the previous sections, the current model does not include the null

hypothesis with no outlier. The maximal error probability is defined as previously in (4.47)

but with the maximum being over SK instead.

As previously, for the setting with both the typical and outlier distributions being known

and with Ŝ (yn) , argmax
S∈SK

pS (yn) , the MSPRT has stopping and final decision rules as

in (4.48) and (4.49), but with the joint distribution pS (yn) instead as in (3.54), and with

the maximum in the denominator in (4.48) being over SK\
{
Ŝ
}

instead. This MSPRT is
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asymptotically optimal (cf.[26, 27]).

Proposition 19. As the threshold T in (4.48) approaches infinity, the MSPRT in (4.48)

and (4.49), with pS (yn) as in (3.54), Ŝ being computed over SK , and the maximum in the

denominator in (4.48) being over SK\
{
Ŝ
}

) satisfies

Pmax ≤ O

(
1

T

)
.

In addition, for each S ∈ SK , as T →∞,

ES [N∗] =
log T (1 + o(1))(

min
i∈S

D (µi‖π)

)
+

(
min
j /∈S

D (π‖µj)
) =

− logPmax(1 + o(1))(
min
i∈S

D (µi‖π)

)
+

(
min
j /∈S

D (π‖µj)
) .

(4.99)

Furthermore, the MSPRT is asymptotically optimal. In particular, for any sequence of tests

(N, δ) with vanishing maximal error probability, for each S ∈ SK ,

ES [N ] ≥ − logPmax(
min
i∈S

D (µi‖π)

)
+

(
min
j /∈S

D (π‖µj)
)(1 + o(1)).

4.3.1 Proposed Universal Test

When only π is known, we can compute the corresponding GL of yn under each hypothesis

S ∈ SK by replacing the unknown µi, i ∈ S, in (3.54) with its ML estimate µ̂i , γi, i ∈ S.
In particular, with Ŝ (yn) = argmin

S∈SK

∑
j /∈S

D(γj‖π) denoting the instantaneous estimate of the

hypothesis (using the GL) at time n, the proposed universal test can be described by the

following stopping and final decision rules:

N∗ = argmin
n≥1

 min
S′ 6=Ŝ
S′∈SK

n

∑
j /∈S′

D
(
γj
∥∥π)−∑

j /∈Ŝ

D
(
γj
∥∥π)

 > log T + (M + 1)|Y| log(n+ 1)

 ;

(4.100)

δ∗ = Ŝ
(
Y N∗

)
. (4.101)
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Similarly, when neither µ nor π is known, the test can be written as

N∗ = argmin
n≥1

[
min
S′ 6=Ŝ
S′∈SK

n
[∑
j /∈S′

D
(
γj
∥∥∑k/∈S′ γk

M−|S′|

)
−
∑
j /∈Ŝ

D
(
γj
∥∥∑k/∈Ŝ γk

M−|Ŝ|

) ]

> log T + (M + 1)|Y| log(n+ 1)

]
; (4.102)

δ∗ = Ŝ
(
Y N∗

)
, (4.103)

but with Ŝ (yn) = argmin
S∈S

∑
j /∈S

D
(
γj‖

∑
k/∈S γk
M−|S|

)
. Note that since the null hypothesis is not

present in this case, there is no need to truncate the stopping time by a predefined horizon

as in (4.50).

4.3.2 Performance of Proposed Test

Using techniques as in the proofs of the results in the the previous sections, it is easy to

verify that the proposed test achieves the following performance.

Theorem 20. With the number of outliers K being known and when only π is known, the

test in (4.100) and (4.101) is universally exponentially consistent, and yields for every T

that

Pmax ≤ O

(
1

T

)
.

In addition, for each non-null hypothesis S ∈ SK as T →∞,

ES [N∗] =
log T

min
i∈S

D (µi‖π)
(1 + o(1)) ≤ − logPmax

min
i∈S

D (µi‖π)
(1 + o(1)). (4.104)

Theorem 21. With the number of outliers K being known, but neither µ nor π being known,

the test in (4.102) and (4.103) is universally exponentially consistent, and yields for every

T that

Pmax ≤ O

(
1

T

)
.
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In addition, for each non-null hypothesis S ∈ SK as T →∞,

ES [N∗] ≤ − logPmax

min
i∈S

(
D
(
µi‖µi+(M−2K)π

M−2K+1

)
+ (M − 2K)D

(
π‖µi+(M−2K)π

M−2K+1

))(1 + o(1)). (4.105)

Remark 6. As M → ∞, the denominator of (4.105) converges to min
i∈S

D (µi‖π) , which is

the asymptotic performance of the universal test in (4.100) and (4.101) when π is known (cf.

(4.104)). It is also clear from (3.8), (4.104) and (4.105) that our proposed test in (4.102)

and (4.103) is asymptotically exponentially consistent, i.e., as M → ∞, its limiting error

exponent is positive whenever that of the MSPRT is.

4.4 Numerical Results

We now provide some numerical results for an example with |Y| = 4. We compare the

performance of the sequential test with that of the fixed sample size (FSS) test studied

in Chapter 3. In this example, we assume that there are at most two outliers among five

sequences with the pair of outlier and typical distributions being µ = (0.4, 0.05, 0.5, 0.05)

and π = (0.07, 0.42, 0.1, 0.41). The plots in Figure 4.1 are for the case where the underlying

hypothesis has one outlier, and those in Figure 4.2 for two outliers. Depending on the nature

of the test, the horizontal axis corresponds to the average stopping time for the sequential

testing, and the length of each sequence for the FSS test. In both figures, the vertical

axis corresponds to the conditional error probabilities incurred by each test conditioned

on the underlying hypothesis. It follows from the result in Chapter 3 that there cannot

exist a universally exponentially consistent FSS test with respect to Pmax primarily because

the conditional error probability under the null hypothesis is the bottleneck. Hence, we

consider only the two conditional error probabilities under hypotheses with one outlier and

two outliers, respectively, with respect to which the FSS test is universally exponentially

consistent. When comparing the FSS test to our sequential test, it is natural to compare

the fixed sample size of the FSS test to the expected stopping time under a hypothesis for

which the conditional error probability is considered. It should be noted that although our

result concerning the achievable asymptote of the expected stopping time of the sequential

test in (4.79) is with respect to the maximum error probability, Pmax, the same asymptote is

still achievable when Pmax is replaced by a conditional error probability. For the sequential

test, the thresholds are chosen to be T = {1.3, 1.35, 1.4, . . . , 2.55}, and the corresponding

deterministic time horizon f(T ) = {170, 175, 180, . . . , 300}. The constant offset in (4.46) is

set to be C = 15.05. For the FSS test, the lengths of each of the sequences are chosen such
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that they are within the same range as the average stopping times of the sequential test.

As shown in both figures, the sequential test starts to outperform the FSS test when the

average stopping time is sufficiently large. Replacing Pmax with the corresponding conditional

error probability, the result in (4.79) suggests that to achieve the same level of conditional

error probability, the expected stopping time under a hypothesis with two outliers should be

less than that under a hypothesis with one outlier. The simulation results in Figures 4.1 and

4.2 corroborate such theoretical findings. It is also interesting to note that in both figures,

there is a drastic drop in the conditional error probability incurred by the sequential test when

the average stopping time exceeds a certain value. The same phenomenon is not observed in

the simulation results of the FSS test. The drop in the conditional error probability can be

explained by that fact that the sequential test is more adaptive compared with the FSS test.

The parameters of the sequential test, i.e., the threshold T , the corresponding deterministic

time horizon f(T ), and the constant offset C, are chosen independent of the true hypothesis

and the underlying distributions. As a result, these parameters may not be optimal for

the true hypothesis, and the distributions associated with it. Despite the arbitrary choice

of the test parameters, as the average stopping time increases with T , the sequential test

quickly adapts to the true hypothesis and the unknown distributions, and yields a drastic

improvement in its performance.

Sequential test: average stopping time
GL test: length of each sequence
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Figure 4.1: Performance of proposed FSS and sequential tests, with one outlier
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Sequential test: average stopping time
GL test: length of each sequence
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Figure 4.2: Performance of proposed FSS and sequential tests, with two outliers

4.5 Discussion

In practice, it would be of interest to determine how to set the value of the threshold T of

the universal test to satisfy a predefined level of error probability. By carefully inspecting

(4.24), (4.27) and (4.28) in the proof of Theorem 14, we see that although arbitrarily small

probabilities of Pi {δ∗ 6= i, δ∗ 6= 0} , i = 1, . . . ,M, P0 {δ∗ 6= 0} can be achieved with a suitably

large T universally for every µ, the same cannot be achieved universally for the probability

Pi {δ∗ = 0} , i = 1, . . . ,M, unless we are given a lower bound on the distance between

µ and π. This complication arises because of the nature of the universal setting under

consideration, and is not a drawback of our test. Specifically, given any test, there will

always be µ, π sufficiently close to each other, that will incur large error probability. To put

it differently, in the considered universal setting, we need to be content with a sequence of

tests indexed, say, by T rather than a single test, that will guarantee a certain level of error

probability for a sufficiently large T. Note that throughout we have assumed that we are

working with only one set of (test) data. Additional training data for the typical and outlier

distributions, when available separately from the test data, could be used to facilitate setting

an appropriate threshold value to be used for the test data.
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CHAPTER 5

EXTENSION TO CONTINUOUS ALPHABETS

The theoretic results in Chapters 3 and 4 only hold when the underlying alphabet is finite.

In this chapter, we generalize our results to the fixed sample size setting with continuous

alphabets.

In a recent work, Zou et al. [45] proposed a kernel-based test for universal outlier hypoth-

esis testing in the fixed sample size setting. Such a test is based on the mean embedding of

distributions into a reproducing kernel Hilbert space (RKHS) [46], and it is applicable when

the underlying distributions are continuous. The test is based on estimates of the maximum

mean discrepancy (MMD) between the distributions underlying the observation sequences.

The MMD test has the same structure as that of the fixed sample size GL tests in Chapter

3. Specifically, when there is exactly one outlier, the MMD test selects the sequence such

that the estimate of the MMD between the underlying distribution of the selected sequence,

and that of (possibly a mixture distribution) the other sequences, is maximized. The MMD

test is appropriate for the universal setting because the MMD between two distributions can

be estimated using the observations in a completely non-parametric manner. It is shown in

[45] that the MMD test is universally consistent, and sometimes universally exponentially

consistent for various models. However, it is not known whether the MMD test is opti-

mal asymptotically as the number of sequences goes to infinity, and it is not clear how to

generalize the MMD test to the sequential setting.

We now propose a test for continuous alphabets that is similar to the GL test for finite

alphabets. The proposed test is based on a non-parametric estimate of the Kullback-Leibler

(KL) divergence, and it is applicable to the universal setting. We show that such a test is

universally consistent for outlier hypothesis testing. We also provide numerical results that

compare the proposed test and the MMD test.

5.1 Divergence Estimator for Continuous Probability Measures

Let P and Q be continuous probability measures on a measurable space (Ω,F). We say that

P is absolutely continuous with respect to Q, denoted as P � Q, if for any set A ∈ F such
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that P (A) = 0, it also holds that Q(A) = 0. The KL divergence between P and Q is defined

as

D(P‖Q) ,
∫

Ω

dP log
dP

dQ

when P � Q, and +∞ otherwise. For simplicity of the exposition, we assume that P and

Q are absolutely continuous (w.r.t the Lebesgue measure) probability measures defined on

(R,BR) that have D(P‖Q) <∞.

If P � Q, the Radon-Nykodym derivative dP
dQ

can be approximated by 4P4Q as 4Q dimin-

ishes, where 4P (or 4Q) denotes the measure of a small segment in BR. Next we discuss

two estimators for the KL divergence of continuous probability measures, which all have as

an intermediate step an estimate of the Radon-Nykodym derivative dP
dQ

.

5.1.1 Naive Plug-in Estimator

Let X = {X1, X2, . . . , Xm} and Y = {Y1, Y2, . . . , Yn} be i.i.d. observations drawn from P

and Q, respectively. Let {Ii}Ti=1, Ii ⊂ R be a collection of intervals, the union of which

constitutes the whole real line, i.e., ∪i=1,...,T Ii = R. Note that the location of the intervals

in {Ii}Ti=1 is independent of the observations X and Y. Let ki and li be the number of

observations in x and y that take values in the interval Ii, i = 1, . . . , T , respectively. For

a fixed partition {Ii}Ti=1, the corresponding empirical probability measure induced by the

observations X and Y are

Pm(Ii) =
ki
m
, i = 1, . . . , T, (5.1)

and

Qn(Ii) =
li
n
, i = 1, . . . , T, (5.2)

respectively. The naive plug-in estimator for D(P‖Q) is obtained by simply plugging Pm

and Qn into the expression for the KL divergence, i.e.,

D̂plug-in(x‖y) =
T∑
i=1

Pm(Ii) log
Pm(Ii)

Qn(Ii)

=
T∑
i=1

ki
m

log
ki/m

li/n
. (5.3)
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The term “naive” is used to contrast the above estimator with the following estimator where

the partition is a function of the observations in Y.

5.1.2 Estimator Based on Data-Dependent Partition

A drawback of the naive plug-in estimator is that D̂plug-in(X‖Y) may be infinite even though

it holds that P � Q. We now introduce a estimator using a data-dependent partition that

resolves this issue [47].

We see from an alternative definition of D(P‖Q)

D(P‖Q) =

∫
R

dQ
dP

dQ
log

dP

dQ
(5.4)

that the density of P can be estimated with respect to Q by 4P
4Q , which is finite as long as

P � Q. Then the resulting estimate of D(P‖Q) is also guaranteed to be finite when P � Q.

Denote the order statistics of Y by {Y(1), Y(2), . . . , Y(n)}, which satisfies that Y(1) ≤ Y(2) ≤
. . . ≤ Y(n). We now partition the real line into empirically equiprobable intervals (except for

possibly the last one) with respect to Y. In particular, let

{Ini }Tni=1 =
{

(−∞, Yln ] , (Yln , Y2ln ], . . . , (Yln(Tn−1),∞)
}
, (5.5)

where ln ∈ N ≤ n is the number of points in each intervals (except for possibly the last one),

and Tn = bn/lnc is the number of such intervals. Let ki denote the number of observations

from P that belong to the interval Ini , i = 1, . . . , Tn. We approximate dP
dQ

in each segment

Ini , i = 1, . . . , Tn− 1, by ki/m
ln/n

, and in InTn by
kTn/m

ln/n+δn
. Then the KL divergence between P and

Q can be estimated as

D̂m,n(x‖y) =
Tn−1∑
i=1

ki
m

log
ki/m

ln/n
+

kTn/m

ln/n+ δn
, (5.6)

where δn = (n − lnTn) is the correction term for the last segment InTn . In contrast to the

naive plug-in estimator in (5.3), the density of P is now estimated with respect to Q (cf.

(5.4)), which is guaranteed to be finite as long as P � Q.

It can be shown (cf. Theorem 1 in [47]) that the divergence estimator in (5.6) is strongly

consistent.

Proposition 20. Let P and Q be absolutely continuous probability measures defined on

(R,BR). Assume that the divergence between P and Q is finite. Let X = {X1, . . . , Xm} and
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Y = {Y1, . . . , Yn} be i.i.d. observations drawn from P and Q, respectively. Let ln and Tn

be defined as in (5.5). If ln, Tn → ∞ as n → ∞, then the estimator in (5.6) is strongly

consistent, i.e., it holds that

D̂m,n(X‖Y)→ D(P‖Q) a.s. (5.7)

as m,n→∞.

Remark 7. It is suggested by the numerical results (cf. Section V in [47]) that the estimator

based on the data-dependent partition outperforms the plug-in estimator in the case of small

sample sizes, i.e., the former converges much faster to the true KL divergence as the sample

size increases.

5.2 Proposed Universal Test for Continuous Alphabets

Recall that for a finite alphabet, when there is exactly one outlier (cf. Chapter 3), the GL

test can be equivalently written as (cf. (3.10))

δ
(
yMn

)
= argmin

i=1,...,M

∑
j 6=i

D
(
γj
∥∥∑k 6=i γk

M−1

)
. (5.8)

The GL test can be interpreted alternatively as follows. It starts by estimating the dis-

tribution underlying each individual sequence. For each hypothesis, it then computes an

estimate of the KL divergence between each typical sequence and that of the collection of all

typical sequences. In particular, conditioned on sequence i being the outlier, D
(
γj
∥∥∑k 6=i γk

M−1

)
is indeed the naive plug-in estimate (for a finite alphabet) of the KL divergence between

sequence j, j 6= i, and the collection of all typical sequences. Then the GL test decides on

the hypothesis such that the sum of all such estimates is minimized. In other words, the GL

test selects the hypothesis under which there is the least amount of “divergence” among all

typical sequences.

A straightforward generalization of the GL test to settings with continuous alphabets is

to replace the plug-in estimator for finite alphabets in (5.8) with an estimator appropriate

for continuous alphabets, i.e., the estimator in (5.3) or (5.6).

Recall that y(i) =
(
y

(i)
1 , . . . , y

(i)
n

)
denotes the i-th sequence. Let yMn \ y(i) denote the

collection of all sequences except for the i-th one, i = 1, . . . ,M . When there is exactly one
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outlier, using the estimator based on data-dependent partition, the proposed test is

δ
(
yMn

)
= argmin

i=1,...,M

∑
j 6=i

D̂n,(M−1)n

(
y(j)

∥∥ yMn \ y(i)
)
, (5.9)

where D̂n,(M−1)n

(
y(j)

∥∥ yMn \ y(i)
)

is defined in (5.6). For models with at most one outlier,

the proposed test is (cf. (3.42))

δ(yMn) =


arg min
i=1,...,M

∑
k 6=i

D̂
(
y(k)

∥∥ yMn \ y(l)
)
, if max

j 6=j′

[ ∑
k 6=j

D̂
(
y(k)

∥∥ yMn \ y(l)
)

−
∑
k 6=j′

D̂
(
y(k)

∥∥ yMn \ y(l)
) ]

> λn,

0, otherwise,

(5.10)

where λn = Θ( logn
n

), and the ties in the first case of (5.10) are broken arbitrarily. Similarly,

for models with multiple outliers, the proposed tests are obtained by replacing the plug-in

estimates of the KL divergence in (3.71) and (3.95) with those based on data-dependent

partition, respectively.

Remark 8. An alternative test can be constructed using the naive plug-in estimator in (5.3)

in place of the one based on a data-dependent partition. As we shall see in the simulation

result, the test using a data-dependent partition outperforms the one using the naive plug-in

estimator by a large margin on a synthetic data set for outlier hypothesis testing.

5.3 Performance of Proposed Test

The following theorem establishes that our proposed test in (5.9) is universally consistent

for outlier hypothesis testing when there is exactly one outlier.

Theorem 22. Let both µ and π be absolutely continuous probability measures defined on

(R,BR). When there is exactly one outlier, the proposed test in (5.9) is universally consistent

for all µ, π, µ 6= π.

Proof. For i = 1, . . . ,M , denote the test statistics in (5.9) as

Ui ,
∑
j 6=i

D̂n,(M−1)n

(
Y(j)‖ Y Mn \Y(i)

)
. (5.11)

By the symmetry of the problem, it is clear that Pi{δ 6= i} is the same for every i = 1, . . . ,M ;
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hence

max
i=1,...,M

Pi{δ 6= i} = P1{δ 6= 1}. (5.12)

It now follows from

P1{δ 6= 1} = P1{∪j 6=1U1 ≥ Uj}

that

P1{U1 ≥ U2} ≤ P1{δ 6= 1} ≤
M∑
j=2

P1{U1 ≥ Uj}. (5.13)

Next, we get from the definition of the test in (5.9) that

P1 {U1 ≥ U2} = P1

{∑
j 6=1

D̂n,(M−1)n

(
Y(j) ‖ Y Mn \Y(1)

)
≥

∑
j 6=2

D̂n,(M−1)n

(
Y(j) ‖ Y Mn \Y(2)

) }
.

Conditioned on H1 being the true hypothesis, the first sequence is distributed according

to µ, and all other sequences are distributed according to π. It simply follows from (5.11),

and the strong consistency of the estimator in (5.6) that under H1,

U1 → 0 a.s.,

and

U2 → (M − 2)D

(
π
∥∥∥ µ+ (M − 2)π

M − 1

)
+D

(
µ
∥∥∥ µ+ (M − 2)π

M − 1

)
a.s.

as n→∞. We then obtain that

P1 {U1 ≥ ε} → 0, (5.14)
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and

P1

{ ∣∣∣∣ U2 − (M − 2)D

(
π
∥∥∥ µ+ (M − 2)π

M − 1

)
−D

(
µ
∥∥∥ µ+ (M − 2)π

M − 1

) ∣∣∣∣ ≥ ε

}
→ 0 (5.15)

for any ε > 0 as n → ∞. Now by choosing ε > 0 to be sufficiently small, i.e., 0 < ε <
1
2

[
(M − 2)D(π‖ µ+(M−2)π

M−1
) +D(µ ‖ µ+(M−2)π

M−1
)
]
, it holds by (5.14) and (5.15) that

P1{U1 ≥ U2} → 0 (5.16)

as n→∞. Since M is fixed and finite, the universal consistency of the test in (5.9) follows

from (5.12), (5.13) and (5.16).

Remark 9. Using the same arguments as in the proof of Theorem 22, we can show that

the proposed test is universally consistent for models with at most one outlier, and for the

models in Theorem 10 and Theorem 12 with multiple outliers.

5.4 Numerical Results

We now compare the performance of the MMD based test in [45], the test based on data-

dependent partition in (5.9), and the test using the naive plug-in estimator in (5.3), on

a synthetic data set with a continuous alphabet. The number of quantization intervals is

chosen to be
√
n for the test based on data-dependent partition, and the test using the naive

plug-in estimator. In this example, we consider a fixed sample size setting with exactly

one outlier among M = 5 sequences. The outlier and typical observations are Gaussian

random variables with different parameters. Specifically, we have µ = N (0, 2) as the outlier

distribution, and π = N (1, 2) as the typical distribution.

In Figure 5.1, the horizontal axis corresponds to the length of each sequence, and the

vertical axis corresponds to the maximum error probability incurred by each test. As shown

in Figure 5.1, the MMD test yields the best performance among all three tests. It is proved

in [45] that the MMD test is universally exponentially consistent for models with exactly one

outlier. Our simulation results corroborate such theoretical findings. Although not proved

in this dissertation, the test based on data-dependent partition, and the one using naive

plug-in estimator both seem to be exponentially consistent as suggested by the numerical

results. And the test based on data-dependent partition outperforms the one using naive

plug-in estimator by a large margin.
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Figure 5.1: Comparison between different tests for continuous alphabets
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CHAPTER 6

CONNECTION TO CLUSTER ANALYSIS

The goal of cluster analysis is to segment a collection of data objects into homogeneous sub-

sets or “clusters”, such that objects assigned to the same cluster are more closely related to

one another than objects assigned to different clusters [12–15]. Cluster analysis is also con-

cerned with exploring the data objects to determine if they can be meaningfully represented

by a relatively small number of groups. Similar to classification, cluster analysis creates

labeling of the objects with class (cluster) labels. The labels are derived from the data in

cluster analysis, whereas for classification, unlabeled objects are assigned a class label using

a model developed from training objects with known labels.

Of central importance to a majority of clustering algorithms is the notion of proximity, or

sometimes referred to as similarity or dissimilarity, which is a quantitative measurement that

characterizes how “close” two objects are [12–15]. In cluster analysis, an object is usually

described by a set of measurements. The similarity between a pair of objects is often given

by an appropriately chosen distance metric, which can be computed using such measure-

ments. For instance, a popular choice of the distance metric is the Euclidean distance for

continuous measurements, and Jaccard coefficient for binary measurements [48, 49]. The

similarities (dissimilarities) between pairs of objects are summarized in a similarity (dissim-

ilarity) matrix, where the (i, j)-th entry of the matrix is the similarity between the i-th and

the j-th objects.

Generally speaking, the objective of a clustering algorithm is to minimize the heterogeneity

within clusters while maximizing the separation between clusters [12–15]. The greater the

similarity within clusters and the greater the differences between clusters, the better or

more distinct the clustering assignment is. The heterogeneity of a particular cluster can be

defined as the sum over all the dissimilarities between pairs of objects within such a cluster.

The separation between clusters can be defined in a similar manner, i.e., it is the sum over

all the dissimilarities between pairs of objects belonging different clusters. Having chosen

appropriate measures of heterogeneity and separation, a clustering algorithm seeks to either

minimize the heterogeneity within clusters, or to maximize the separation between clusters,

or a combination of both.
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6.1 Cluster Analysis Techniques

Some popular categories of clustering methods are summarized as follows. Parametric clus-

tering methods such as the EM algorithm estimate a mixture density from the collection

of observations. And observations generated by the same mixture component are assigned

to the same cluster. In prototype-based methods such as K-means [13, 16, 17], a cluster is

represented by its corresponding prototype, which is often a centroid, i.e., the average of

all the data objects in the cluster. In situations where a centroid is not meaningful, e.g.,

when the data has categorical values, a popular choice of cluster prototype is a medoid [18].

Density-based methods define a cluster as a dense region of objects, which is surrounded by

a region of low density [21, 22]. Density-based methods are most appropriate when noise is

present in the observations. In graph-based cluster analysis, a graph is constructed where

each node in the graph represents a data object, and edges are assigned using the similar-

ity matrix of these data objects [23]. For instance, in contiguity-based graphs, an edge is

assigned to a pair of nodes if the similarity between them is greater than a threshold [15].

No single definition of a cluster in graphs is universally accepted [23]. For example, in the

loosest sense, a graph cluster can be defined as a connected component [23], and strictest

definition is that each cluster should be a maximal clique [50].

In the following sections, we discuss two popular clustering algorithms that are relevant

to this chapter. A widely used algorithm is the K-means algorithm [13, 16, 17] mentioned

previously. Another modern clustering method is the so-called spectral clustering, which is a

graph-based technique. Spectral clustering algorithms partition the data space by performing

cluster analysis over the spectrum (eigenvectors) of the similarity matrix [51–53].

6.1.1 K-Means Clustering

Let xi, i = 1, . . . , n, be vector observations that take values in Rp. Let the dissimilarity

between a pair of observations xi and xi′ be given by the Euclidean distance

d(xi, xi′) =

p∑
j=1

(xij − xi′j)2 = ‖xi − xi′‖2.

The number of clusters, denoted by K, is predetermined and satisfies K < n. Each cluster

is uniquely indexed by an integer k ∈ {1, . . . , K}. Let C be a many-to-one mapping where

for each observation xi, k = C(i) is the cluster membership of the i-th observation. The
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total heterogeneity of a particular cluster assignment C is

H(C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

‖xi − xi′‖2

=
K∑
k=1

nk
∑
C(i)=k

‖xi − x̄k‖2, (6.1)

where nk ,
∑n

i=1 I(C(i) = k) is the number of observations belonging to the k-th cluster,

and x̄k , 1
nk

∑
C(i)=k xi is the center of the k-th cluster.

The optimal cluster assignment C?, which minimizes the total heterogeneity defined in

(6.1), solves the following optimization problem

C? = arg min
C

K∑
k=1

nk
∑
C(i)=k

‖xi − x̄k‖2. (6.2)

Note that given the members associated with the k-th cluster, k = 1, . . . , K, it also holds

that

x̄k = arg min
m

∑
C(i)=k

‖xi −m‖2.

As a result, the optimization problem in (6.2) can be equivalently written as

C? = arg min
C,{mk}Kk=1

K∑
k=1

nk
∑
C(i)=k

‖xi −mk‖2. (6.3)

The K-means algorithm is an iterative descent algorithm to solve for the cluster assignment

C? in (6.3). In particular, it iterates between the following two steps until the cluster

assignment does not change.

1. For a given cluster assignment C, the total heterogeneity in (6.3) is minimized with

respect to {m1, . . . ,mK}, which yields the cluster centers of the current cluster assign-

ment C.

2. Given a set of cluster centers {m1, . . . ,mK}, (6.3) is minimized by assigning each

observation to the most proximate cluster, i.e.,

C(i) = arg min
1≤k≤K

‖xi −mk‖2.
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6.1.2 Spectral Clustering

An effective approach to achieve an aggregation of vertices in a graph is through spectral

theory. Spectral graphical theory has been applied to a number of problems including model

reduction for complex Markov chain models [54], load balancing in parallel computation [55],

and cluster analysis [52]. Spectral clustering refers to a family of graph-based algorithms,

which achieve a partition over a data set by partitioning the vertices of the graph that is

associated with such a data set. In particular, the partition is obtained by analyzing the

eigen-structure of the adjacency matrix of the graph. As a result, spectral clustering captures

the global information encoded in such a graph, and often outperforms traditional algorithms

such as K-means or single linkage clustering.

Let xi, i = 1, . . . , n, be a set of observations. The similarity between each pair of obser-

vations xi, xj is denoted by si,j, i 6= j, i, j = 1, . . . , n, which is either given, or that it can

be computed using a certain similarity function. An example for such a similarity function

is the Gaussian similarity function si,j = exp{−‖xi − xj‖2/(2σ2)}, where the parameter σ

controls the width of the neighborhood.

The similarity structure of the observations can be represented by a (weighted) undirected

graph G = (V,E), where V is the vertex set, and E the edge set. The vertex vi ∈ V

represents the observation xi, i = 1, . . . , n. There are several popular methods to encode the

similarity structure of the observations into a graph G. For example, in the ε-neighborhood

method, we connect all pairs of nodes such that the pairwise similarity between them exceeds

a certain thresholds ε, producing an unweighted graph. To construct fully connected graphs,

we simply connect all pairs of nodes that have a positive similarity between them. Then we

assign the edge ei,j that connects vi and vj with a weight equal to si,j, i 6= j, i, j = 1, . . . , n.

This method produces a weighted graph.

Given a (weighted) undirected graph G, we can construct the corresponding adjacency

(similarity) matrixW = (wi,j)i,j=1,...,n. For both unweighted and weighted graphs, let wi,j = 0

for all pairs of nodes that are not connected by an edge. For each vi, vj that are connected

by an edge, i 6= j, i, j = 1, . . . , n, we can set wi,j = 1 if G is unweighted, and wi,j = si,j if G

is weighted.

The sum of all edges connected to vertex vi is called the degree of a vertex, i.e.,

di =
n∑
j=1

wi,j,

i = 1, . . . , n. The degree matrix D is an n×n diagonal matrix with its diagonal entries being

d1, d2, . . . , dn.
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Most spectral clustering algorithms start with the notion of a graph Laplacian [56, 57],

which is defined as

L = D −W. (6.4)

The corresponding normalized symmetric graph Laplacian is given by

Lsym , D−1/2LD−1/2. (6.5)

To measure the “size” of a subset A ⊂ V , we use

vol(A) ,
∑
i∈A

di.

For two subset of vertices A and B, A,B ⊂ V , the cut between the two sets is

W (A,B) ,
∑

i∈A,j∈B

wi,j.

The goal of cluster analysis is to partition a collection of data objects to subgroups such

that different groups are well “separated.” Given the similarity matrix of a data set, a

natural way to construct such a partition is to solve the so-called mincut problem, which for

a given number of K subsets, one solves for the partition A1, A2, . . . , AK such that

(A?1, A
?
2, . . . , A

?
K) = arg min

A1,A2,...,AK

1

2

K∑
i=1

W (Ai, A
c
i),

where Aci = V \ Ai is the complement of Ai, i = 1, . . . , K.

In practice, the mincut approach may lead to clusters that are of imbalanced sizes [51].

To avoid this, an alternative objective is to minimize the so-called “Ncut”, i.e.,

Ncut (A1, A2, . . . , AK) ,
1

2

K∑
i=1

W (Ai, A
c
i)

vol(Ai)
. (6.6)

Unfortunately, the minimization problem in (6.6) was shown to be intractable (NP hard)

in [58]. Spectral clustering algorithms circumvent the problem of NP hardness by solving

relaxed versions of (6.6). We now introduce one particular spectral clustering algorithm due

to Ng, Jordan, and Weiss [53], which we compare with the FSS test in Section 3.1 in the

next section. In particular, for a given number of K clusters, the algorithm consists of the

following steps.
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1. Compute the first K eigenvectors u1, u2, . . . , uK of Lsym defined in (6.5).

2. Let U ∈ Rn×K be the matrix containing u1, u2, . . . , uK as column vectors.

3. Normalize the rows of U to produce the matrix T ∈ Rn×K .

4. Let yi ∈ RK be the vectors corresponding to the i-th row of T , i = 1, . . . , K.

5. Cluster the vectors yi, i = 1, . . . , n, with the K-means algorithm to produce clusters

C1, C2, . . . , CK .

6. Assign observation xi to cluster Cj if yi ∈ Cj, i = 1, . . . , n.

It is shown in [51] that this algorithm solves a relaxed version of the Ncut problem in (6.6).

6.2 Fixed Sample Sizes Test as Clustering Algorithm

There is an interesting connection between universal outlier hypothesis testing and cluster

analysis. In universal outlier hypothesis testing, an entire sequence can be considered a

data object. Typical sequences are more closely related to one another than to an outlier

sequence in the sense that the observations in them are distributed according to the same

typical distribution. The same holds for outlier sequences when the outliers are identically

distributed. In this case, outliers can be identified by clustering the sequences (objects) into

two clusters, where the cluster with more members contains all typical sequences, and the

other outliers. When the outliers are distinctly distributed, it is sufficient to identify one

“dense region” among the sequences, and any sequence outside such a region is considered

an outlier.

In fact, the FSS test in Section 3.4 can be interpreted as performing cluster analysis over

the probability simplex. For instance, for the multiple outlier setting where the outliers are

identically distributed and the number of outliers known, the decision of the FSS test is

given by

δ(yMn) = arg min
S∈{1,...,M},|S|=K

∑
i∈S

D

(
γi

∥∥∥ ∑k∈S γk

|S|

)
+
∑
j /∈S

D

(
γj

∥∥∥ ∑k/∈S γk

|Sc|

)
. (6.7)

First, by taking the empirical distribution of each sequence, the original data objects (se-

quences of n observations) that take values in Rn are transformed into the probability sim-

plex. The center of a particular cluster is defined as the average of all objects belonging to

the cluster, which is the same as in the K-means algorithm. In particular, in (6.7), the center

96



for the outlier cluster is
∑
k∈S γk
|S| , and

∑
k/∈S γk
|Sc| for the typical cluster. However, distinct from

the K-means algorithm, instead of using the Euclidean distance, we use the KL divergence

as the dissimilarity measure in the FSS test. Then for every possible cluster assignment,

the corresponding total heterogeneity is computed as the sum of dissimilarities between each

object and its cluster center. It is easy to see that the first sum in (6.7) corresponds to the

heterogeneity of the outlier cluster, and the second sum the typical cluster. Lastly, the test

decides on the cluster assignment that yields the minimal total heterogeneity as in (6.7).

Our technical contributions are as follows. First, by transforming the sequences into the

probability simplex, the dimension of the objects to be clustered becomes |Y|, which does

not scale with the number of observations n. In addition, our theoretical results suggest

the use of the KL divergence as the dissimilarity measure in clustering sequences of i.i.d.

observations. Specifically, when the outliers are identically distributed, and the number of

outliers is known, the achievable error exponent of the FSS test converges to the optimal

one when both µ and π are known as the number of sequences goes to infinity.

6.3 Numerical Results

We compare the performance of the FSS test in Section 3.1 with two other clustering al-

gorithms on a synthetic data set for outlier hypothesis testing. In particular, we com-

pare the FSS test with the spectral clustering algorithm outlined in Section 6.1.2. For the

spectral clustering algorithm, for two sequences of observations Y (i) = (Y
(i)

1 , . . . , Y
(i)
n ), and

Y (j) = (Y
(j)

1 , . . . , Y
(j)
n ), i 6= j, i, j ∈ {1, . . . ,M}, we adopt the pairwise Hamming distance as

the similarity measure, i.e.,

w(i, j) ,
n∑
k=1

n∑
l=1

I(Y (i)
k = Y

(j)
l ).

We also applied a combinatorial clustering algorithm using the L2 distance as the dissim-

ilarity measure [13]. Specifically, the combinatorial clustering algorithm solves the same

optimization problem as in (6.7), but with the KL divergence replaced by the L2 distance.

The particular choice of typical and outlier distributions are π = (0.25, 0.41, 0.34) and

µ = (0.1, 0.55, 0.35). There is exactly one outlier among M = 5 sequences. For different

sample size n, we evaluate the probabilities of error incurred by the FSS test, the spectral

clustering algorithm, and the combinatorial clustering algorithm, respectively. As we can see

from the results in Figure 6.1, the spectral clustering algorithm using the pairwise Hamming

distance outperforms the FSS test when n is small. For sufficiently large n, for this synthetic
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data set, the FSS test outperforms the other two algorithms. The result suggest that it may

be beneficial to use spectral clustering when the number of observations is limited, and when

n is sufficiently large, the simulation results corroborate our theoretical findings in Theorem

3.
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Figure 6.1: Performance of the FSS test, the spectral clustering algorithm, and the
combinatorial clustering algorithm
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CHAPTER 7

APPLICATION TO ANOMALY DETECTION

In this chapter, we evaluate the performance of the various proposed tests in Chapters 3, 4

and 5 on a spam detection data set. Multiple sequences of emails are collected. One of the

sequences contains only spams, while the rest non-spams. The goal is to identify the outlier

sequence that consists of only spams.

The data set contains information from 4610 emails (each being labeled as a spam or non-

spam) addressed to an employee at Hewlett-Packard (HP)[13]. The information for each

email consists of relative frequencies of a set of 48 words and 6 punctuation marks. We shall

refer to the relative frequencies of such words and punctuation marks as features. There are

1813 spams among the 4601 emails.

The specific application that we envision pertains to identifying spam sources of an in-

dividual email account. Consider the situation where an email account may be spammed

by a few vicious IP addresses, which constitute a small fraction of all possible IP addresses.

Cast into the formulation of outlier hypothesis testing, each sequence consists of emails from

a certain IP address. When an account is compromised, a small subset of the sequences

are outliers that contain only spams, while the majority of the sequences are typical with

non-spams. The goal is to decide whether an email account is compromised, and if so, which

are the sources of spams.

The experiment is designed such that there is exactly one outlier sequence among M = 6

number of sequences. The outlier sequence contains only spams, and typical sequences non-

spams. It is known that the values of certain features, such as the relative frequencies of

“RE”, “FREE”, the name of the recipient, and the name of the company where the recipient

is employed (“HP” and HP laboratory (“HPL”)), tend to vary greatly between spams and

non-spams [13]. In this experiment, we choose the relative frequencies of “HP”, “HPL” and

“RE” as the observations. Specifically, the k-th observation of sequence i, i = 1, . . . ,M ,

is y
(i)
k =

(
y

(i)
k,1, y

(i)
k,2, y

(i)
k,3

)
, where y

(i)
k,1 is the relative frequency of “HP” in the corresponding

email, y
(i)
k,2 of “HPL”, and y

(i)
k,3 of “RE.” It is assumed that the coordinates of an observation

are mutually independent, and identically distributed across the observations.

In the original data set, the features take continuous values in the finite interval of [0, 100].
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The tests described in Chapters 3 and 4 are only applicable when the observations take values

in finite alphabets. In order to apply our proposed tests, the observations are first quantized,

where the quantization intervals of a certain feature are appropriately chosen based on the

distribution of the feature values over all emails, regardless of their labels. Specifically, for a

certain feature, the region in [0, 100] which finds the majority of the values of said feature is

quantized more finely than other regions. There are five levels in the quantizations for “HP”

and “HPL”, and six levels for “RE”. The value of each quantization interval is chosen to be

the midpoint of that interval.

We first compare the fixed sample size GL test (3.41), and the MMD-based tests in [45].

One advantage of the MMD-based test is that it is applicable when the underlying distri-

butions are continuous. In this experiment, we implement the MMD-based test using the

original data (continuous), the quantized data, and the indices of the quantization intervals,

respectively. The numerical results are obtained by averaging over a number of trials. It is

shown in Figure 7.1 that the GL test outperforms all three MMD-based tests for large enough

n, which agrees with the optimality result of the GL test in Theorem 3. In particular, the

GL test outperforms the MMD-based tests when the length of the sequences n is larger than

20. This is due to the fact that an intermediate step of the GL test is to estimate the KL

divergence between the underlying distributions (cf. (3.10)), which becomes more accurate

as n increases.

FSS setting: length of each sequence
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Figure 7.1: Comparison between various fixed sample size tests
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The sequential test in (4.9) – (4.11) has a stopping time that depends on a deterministic

time horizon, which is appropriately chosen to accommodate the null hypothesis. In this

experiment, there is exactly one outlier sequence among M sequences. So the stopping time

can be simplified to be

N , argmin
n≥1

[
min
j 6=î

n
[∑
k 6=j

D
(
γk
∥∥∑ 6̀=j γ`

M−1

)
−
∑
k 6=î

D
(
γk
∥∥∑ 6̀=î γ`

M−1

) ]
> log T +M |Y| log(n+ 1)

]
. (7.1)

At the stopping time, the test decides on the most probable hypothesis, i.e.,

δ = î(Y MN), (7.2)

where î(Y Mn) , arg min
i=1,...,M

p̂univ
i (Y Mn).

We then apply the sequential test in (7.1) and (7.2) to the quantized data with a series of

increasing thresholds T . For each T , the sequential test is repeated a number of trials using

bootstrap samples (we randomly permute the emails when we run out of data, and reuse the

permuted data). The comparison between the sequential test and the fixed sample size GL

test is shown in Figure 7.2. We see that the sequential test starts to outperform the fixed

sample size GL test (and all different versions of the MMD tests) when the average stopping

time exceeds 30.
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Fixed sample size setting: length of each sequence
Sequential setting: average stopping time
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Figure 7.2: Comparison between the sequential test and fixed sample size GL test
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CHAPTER 8

CONCLUSION AND FUTURE WORK

We formulated and studied the problem of outlier hypothesis testing in various universal

settings. Our main contribution was in proposing tests that yield exponentially decaying

probability of error with the number of observations for both the fixed sample size (FSS)

and the sequential settings.

In the FSS setting, for the case with exactly one outlier, we showed that the generalized

likelihood (GL) test is universally exponentially consistent. We also provided a characteri-

zation of the error exponent achievable by the GL test for each M ≥ 3. Surprisingly the GL

test is not only universally exponentially consistent, but also asymptotically optimal as the

number of sequences goes to infinity. Specifically, as M goes to infinity, the error exponent

achievable by the GL test converges to the absolutely optimal error exponent when both the

outlier and typical distributions are known. When there is an additional null hypothesis, we

showed that a suitable modification of the GL test achieves exponential consistency under

each hypothesis with the outlier, and consistency under the null hypothesis universally. Un-

der every non-null hypothesis, this modified test achieves the same error exponent as that

achievable when the null hypothesis is excluded. We then extended our models to cover

the case with more than one outlier. When the outliers can be distinctly distributed, even

with the typical distribution being known, we proved that there cannot exist a universally

exponentially consistent test if the number of outliers is not completely known. For models

with a known number of outliers, the distributions of the outliers could be distinct as long as

each of them differs from the typical distribution. We showed that The GL test is universally

exponentially consistent for such a setting. Furthermore, we characterized the limiting error

exponent achieved by the GL test, and established its universally asymptotically efficiency.

For models with an unknown number of identically distributed outliers, we proved that the

GL test is universally exponentially consistent when the null hypothesis is excluded. When

the null hypothesis is included, we showed that a slight modification of the GL test achieves

a positive error exponent under every non-null hypothesis, and also consistency under the

null hypothesis universally. We also extended our theoretical findings to the setting with

continuous alphabets. We proposed a test similar to the GL test for finite alphabets to
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accommodate continuous alphabets, and proved that such a test is universally consistent.

In the sequential setting, we proposed a sequential test with the flavor of the repeated

significance test and showed that it is universally consistent. With at most one outlier and

with the typical distribution being known, we showed that the achievable error exponent of

the proposed sequential test is the same as the absolutely optimal one when the outlier is

present. The test is also asymptotically optimal in the limit of the large number of sequences

when neither the outlier nor typical distribution is known. When there might be multiple

outliers, we established that the test is asymptotically optimal universally when the number

of outliers is the largest possible and when the typical distribution is known. We also char-

acterized the asymptotic performance of the test when the typical distribution is not known

either. We then extended our findings to the model with multiple distinct outliers. In all

cases, we proved that as the number of sequences goes to infinity, the asymptotic perfor-

mance of the proposed sequential test when neither the outlier nor the typical distribution

is known converges to that when the typical distribution is known.

We end with a discussion of possible future work. In the case with multiple outliers,

although the proposed test was shown to be asymptotically optimal, the complexity of its

implementation scales exponentially with the number of outliers. When the number of

outliers can be large, it is desirable to seek a more practical sub-optimal test that sequentially

picks out one outlier at a time and terminates when it is determined that there are no outliers

left. It is suggested by the numerical results in Section 6.3 and Chapter 7 that although

the proposed tests are shown to be asymptotically optimal in the limit as the number of

sequences goes to infinity in various universal settings, when the number of observations is

limited, there may exist other tests that outperform the proposed tests (cf. Figures 6.1, 7.1

and 7.2). A direction for future research is to study tests that are more appropriate for small

sample size. Toward this end, an intermediate step is to derive the exact asymptotics for the

proposed tests, since such asymptotics can often be much more precise for small to moderate

sample size as compared to the standard exponential approximation that we studied in this

dissertation [59]. Another interesting extension is to study feature selection methods for

universal outlier hypothesis testing. In applications such as cancer screening and telematics

analysis, the observations can have a large number of dimensions. An individual dimension is

usually referred to as a feature. It is possible that only a few of the large number of features

are relevant in detecting outliers. Our proposed test may not perform well if all features

are regarded as equally important in detecting outliers. If that is the case, before applying

the proposed tests, a critical step is to identify relevant features and “filter” out irrelevant

ones. Numerous feature selection methods have been proposed for supervised and semi-

supervised learning problems including methods for subset selection, shrinkage methods,
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and cross-validation [13]. However, the aforementioned techniques require training samples

with known class labels (for classification) or prediction values (for regression). It remains

to investigate how one can perform feature selection in the completely universal setting that

is considered here.

105



REFERENCES

[1] R. J. Bolten and D. J. Hand, “Statistical fraud detection: A review,” Statistical Science,
vol. 17, pp. 235–249, 2002.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Com-
put. Surv., vol. 41, pp. 15.1–15.58, 2009.

[3] J. Chamberland and V. V. Veeravalli, “Wireless sensors in distributed detection appli-
cations,” IEEE Signal Process. Mag., vol. 24, pp. 16–25, 2007.

[4] V. H. Poor, An Introduction to Signal Detect and Estimation. Springer, 1994.

[5] O. Zeitouni, J. Ziv, and N. Merhav, “When is the generalized likelihood ratio test
optimal?” IEEE Trans. Inf. Theory, vol. 38, pp. 1597–1602, 1992.

[6] W. Hoeffding, “Asymptotically optimal tests for multinomial distributions,” Ann. Math.
Statist., vol. 36, no. 2, pp. 369–401, Apr. 1965.

[7] K. Pearson, “On the probability that two independent distributions of frequency are
really samples from the same population,” Biometrika, vol. 8, pp. 250–254, 1911.
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