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Abstract

There are a wide range of computational modeling challenges associated with structures subjected to sharp, local

heating effects. Problems of this nature are prevalent in diverse engineering applications such as structural analysis

of hypersonic flight vehicles in extreme environments, computational modeling of weld processes, and development

of semiconductor processing technology. Complex temperature gradients in the materials cause three-dimensional,

localized, intense thermomechanical stress/strain variation and residual deformations, making multiphysics analysis

necessary to accurately predict structural response. Localized damage or deformation may impact global structural

behavior, yet bridging spatial scales between local- and structural-scale response is a nontrivial task. Because of

these issues, standard finite element analysis techniques lead to cumbersome and prohibitively expensive numerical

simulations for this class of problems.

This study proposes a Generalized or eXtended Finite Element Method (G/XFEM) for analyzing three-dimensional

solid, coupled physics problems exhibiting localized heating and thermomechanical effects. The method is based on

the GFEM with global–local enrichment functions (GFEMgl), which involves the solution of interdependent coarse-

(global) and fine-scale (local) problems. The global problem captures coarse-scale behavior, while local problems

resolve sharp solution features in regions where fine-scale phenomena may govern the overall structural response. To

address the intrinsic coupling of scales, local solution information is embedded in the global solution space via a par-

tition of unity approach. This method extends the capabilities of traditional hp-adaptive FEM or GFEM—consisting

of heavy mesh refinement (h) and local high-order polynomial approximations (p)—to one-way coupled thermo-

structural problems, providing meshing flexibility while remaining accurate and efficient. Linear thermoelasticity and

nonlinear thermoplasticity problems are considered, involving both steady-state and transient heating effects.

The GFEMgl is further extended to capture multiscale thermal and thermomechanical effects induced by material-

scale heterogeneity, which may also impact structural behavior at the coarse scale. Due to the extraordinary level of

fidelity required to resolve fine-scale effects at the global scale, strategies for distributing large workloads on a parallel

computer and improving the computational efficiency of the proposed method are needed. Studies have shown that the

GFEMgl benefits from straightforward parallelism. However, inexact, coarse-scale boundary conditions on fine-scale

may lead to large errors in global solutions. Traditional strategies aimed at improving or otherwise lessening the effect
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of poor local boundary conditions in the GFEMgl may be impractically expensive in the problems of interest, such as

transient or nonlinear simulations involving many time or load steps. Thus, inexpensive and optimized approaches for

improving boundary conditions on local problems in both linear and nonlinear problems are identified.

The performance of the method is assessed on representative, large-scale, nonlinear, coupled thermo-structural

problems exhibiting phenomena spanning global (structural) and local (component or even material) scales.
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Chapter 1

Introduction

1.1 Background

A growing number of problems encountered in engineering practice today require consideration of phenomena encom-

passing multiple spatial scales of interest. This work considers a current challenge in several engineering disciplines,

which is the computational modeling of localized, intense structural heating effects. Rapid variations in thermome-

chanical stresses can arise from localized, external heat sources, sharp geometrical features in the structure, or material

interfaces. Application areas of special interest are thermo-structural modeling of hypersonic aircraft as well as pre-

diction of residual stress fields in laser welding, but problems of this nature also exist in areas such as semiconductor

manufacturing technology and composite materials.

Engineering solutions in these application areas first require high-fidelity numerical models which can accurately

depict structural response under representative loading scenarios. However, realistic thermal and mechanical loadings

for this class of problems are in general quite complex and potentially difficult to characterize because of extreme vari-

ations of physical quantities of interest in both space and time. Effective analysis tools and methods must incorporate

multiphysics capabilities to capture interactions between temperature and stress gradients, and simultaneously bridge

spatial scales between local and structural-level response.

The hp-adaptive version of the finite element method (hp-FEM), which controls solution quality through mesh

refinement (h) and high-order polynomial enrichment (p), has been identified as optimal for problems of interest

[108, 126]. Commercial finite element analysis (FEA) software packages are commonly used for traditional design

practice in the engineering areas of interest. Unfortunately, performing hp-adaptivity in available FEA software is

often prohibitively difficult or, in many cases, even impossible. Additionally, treatment of sharp, localized thermal

loads requires special attention; if these loadings are applied on meshes designed to capture only the global response

of the structure, the error of the finite element solution may be large even far away from the localized features due

to well-known pollution error [3, 90]. Finite element models may also be very large in order to accurately represent

structural geometry, making further adaptive global mesh refinement too expensive. Complications arise in transient

regimes, where solution reliability can be very sensitive to global remeshing, and localized refinement may necessitate
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Figure 1.1: Illustration of shock wave interaction on a hypersonic leading edge, from [102].

prohibitively small time steps, bottlenecking solution time. Localized thermal gradients may also induce nonlinear,

elasto-plastic behavior in the material. Although plasticity may be confined to just a small region, the global structural

model must be treated as nonlinear, and multiple computationally expensive nonlinear solution iterations—involving

reassembly and refactorization of the resulting linearized global system of equations—are typically necessary under

hp-adaptive methods. hp-adaptive remeshing in nonlinear analyses with history-dependent materials presents another

challenge, since material state variables and three-dimensional solutions must be transferred from one mesh to the

next in time for convergence of the nonlinear solution scheme [67, 95, 104].

1.1.1 Thermo-structural modeling of hypersonic flight vehicles

One example of particular interest, which is a large part of the motivation behind this work, lies in the structural

analysis of hypersonic flight vehicles. At very high airspeeds, rapid variations in the density and temperature of the

compressible flow lead to shock wave impingements on the skin of the vehicle. Interactions between shock waves,

as illustrated in Figure 1.1, typically occur most severely on leading edges and have been shown to lead to very

intense, localized temperature gradients and pressure loadings. An example of the intense nature of the temperature

fields experienced by hypersonic air vehicles is depicted in Figure 1.2, which shows results from a NASA concept

hypersonic vehicle at Mach 8.0. Characterization of these complicated aerodynamic effects itself has been an active

research topic [16, 41, 42, 87, 131, 137, 138]. A comprehensive, historical overview of the challenges posed by

aero-thermomechanical effects in hypersonic structures and their importance can be found in [127].

Based on experimental investigations, intense, localized heat fluxes may be concentrated on an area just microns in

width—that is, many orders of magnitude smaller than the structure. However, the sharp thermomechanical gradients

have been known to cause localized failures and instabilities, thereby drastically impacting the global behavior of

the structural system; thus, the two disparate spatial scales may not, in general, be considered separately. It has also
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Figure 1.2: Temperatures on the skin of a NASA concept hypersonic vehicle flight at Mach 8.0, from [53].

been shown that aerodynamic heating on hypersonic vehicles may reach such extreme levels that thermomechanical

properties of the structural materials are significantly altered, and in some cases viscoplastic behavior can be observed

[101, 102, 128, 129]. Thus, many additional modeling challenges are presented by the highly nonlinear behavior of

the structure.

1.1.2 Computational welding mechanics

Computational modeling of laser welding processes is another interesting and challenging potential application of

the work presented herein. Residual stress prediction is critical in determining the fatigue life of welded structures,

and the very localized nature of welding heat sources necessitates a multiphysics analysis coupling heat transfer and

thermomechanical response.

Furthermore, extreme temperature gradients near the heat source cause complex, highly nonlinear thermo-viscoplastic

behavior in the material [12, 85]. Adding to this challenge is a phase change in the material directly under the laser

heating, leading to a so-called ‘keyhole,’ which is yet another example of a localized, nonlinear, rapidly evolving

phenomenon that may potentially govern the overall behavior of the welded structure [69]. Figure 1.3 shows typical

plastic regions in a specimen undergoing laser welding.

In practice, as in the case of hypersonic vehicles, quasistatic analysis is usually considered to be sufficient [69];

however, fast-moving heat sources lead to highly transient heat transfer phenomena. Recent examples of computa-

tional modeling efforts include work by Moraitis and Labeas [86], Tsirkas et al. [130], and Carmignani et al. [12].

In traditional approaches, heavy finite element mesh refinement along the weld is required to resolve the localized

thermal and thermomechanical effects of interest, making transient analysis difficult and extraordinarily expensive. A

comprehensive summary of the multiphysics computational modeling challenges inherent in this class of problems is

given by Lindgren in [69].
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shrinkage plastic zone

compressive plastic zone

heat source

Figure 1.3: Typical distribution of plastic regions in laser welding process, from [85].

1.1.3 Modeling of material-scale thermomechanical effects

In many applications, for instance, in the field of materials science, even smaller physical scales must be considered

to obtain an accurate picture of system behavior. Highly localized thermomechanical behavior in structures may often

arise in the presence of heterogeneous materials and fine-scale material interfaces due to material property mismatch,

which is a very common problem in semiconductor manufacturing [117, 125] and other various composite materials

applications [134]. Structural failure is caused by the onset of localized damage at a scale orders of magnitude

smaller than the overall structural dimensions, such as delamination, cracking, or shear banding. Fine-scale material

characteristics like heterogeneities and inclusions may interact with these localized phenomena, affecting structural

behavior and patterns of damage evolution. Material- and structural-level phenomena may be intrinsically coupled, but

the fidelity required to capture physics at each scale is extraordinarily expensive under traditional analysis techniques.

1.2 Available approaches

A summary of current methods relevant to the issues examined in this study is loosely broken into three categories:

(i) methods developed to bridge solution characteristics from fine to structural (or micro to macro) scales, or so-

called ‘multiscale’ methods,

(ii) methods for multiphysics problems and applications related to the localized effects of interest in this study, and

(iii) methods which incorporate both coupled physics and fine-scale features on global, structural-scale problems.

The latter two categories are grouped together in the following sections.
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1.2.1 Multiscale methods

A well-known method for capturing localized behavior in structural-scale models is the global–local finite element

method [19, 88]. This procedure consists of two basic steps. First, a coarse-scale, global structural analysis is per-

formed. A subdomain containing a feature of interest, such as a fracture, is extracted from the global model, which

is then analyzed independently, subject to boundary conditions from the coarse-scale solution. This local solution is

taken as a better approximation of the global solution over the local subdomain. However, local solutions can be highly

variable in quality as a result of inaccuracies in local boundary conditions from the initial, coarse-scale analysis. Also,

local solution characteristics can potentially impact the global behavior of the system, which cannot be considered in

the global–local FEM. Iterative improvement of the global–local FEM is proposed in [136]. A similar global–local

coupling strategy for capturing localized nonlinear behavior is proposed by Gendre et al. [44].

Several superposition-based methods for capturing fine-scale approximations in the neighborhood of localized

features on a structural-scale model have been proposed, such as the s-version of the FEM proposed by Fish [39]

as well as the hp-d method of Krause and Rank [112]. In these methods, coarse, structural-scale meshes are used

to represent the smooth, global solution behavior (in the hp-d method, this is termed the ‘base’ approximation),

while localized solution features are captured over heavily refined, fine-scale domains (the ‘overlay’ approximation,

in hp-d terminology). However, both methods experience several limitations. In order to guarantee C0 continuity

of the solution at the interface between coarse-scale and fine-scale approximations, homogeneous Dirichlet boundary

conditions must be applied on the fine-scale boundaries. Furthermore, the global model comprises coarse-scale or base

in addition to all fine-scale or overlay degrees of freedom, leading to very large systems of equations. The hp-d method

leverages a block Gauss-Seidel iterative solution scheme to treat the linear system of equations, but convergence issues

have been observed in this strategy.

The hp-d method has been extended to handle several problems of interest exhibiting localized phenomena. Düster

also introduced the idea of incorporating fully three-dimensional effects into two-dimensional structural models (so-

called ‘dimensionally reduced modeling’ or DRM) using the hp-d method [33, 34]. The goal of this method is to

be able to capture structural response in a computationally efficient manner, since three-dimensional finite element

models are quite often prohibitively expensive for large-scale, structural problems of interest; however, important

localized phenomena generally exhibit fully three-dimensional characteristics, and must be considered in regions of

interest. Aspects of the hp-d method as well as partition of unity methods [2, 4, 80] are also borrowed in the framework

of the Finite Cell Method presented in [58] in order to model material interfaces on non-matching meshes.

The Generalized or eXtended Finite Element Method (GFEM or XFEM) [7, 24, 82, 89, 123], based on the addition

of special enrichment functions to the FEM approximation, has also seen extensions to multiscale application. For

instance, in [139], a special XFEM enrichment function is adopted for yield line analysis in plates. The primary goal
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of the enrichment is to capture high gradient zones (HGZs) within plates, while maintaining C1 continuity of the

solution. Liu et al. [71] have presented an XFEM enrichment strategy for heat transfer problems in composites which

exhibit both weak (heat flux) and strong (temperature) discontinuities across internal material interfaces. The GFEM

based on concepts of the global–local FEM presented for localized fracture and transient heat transfer applications

[23, 26, 90, 91] is a multiscale method which is studied in detail in this work, and is discussed extensively in subsequent

chapters of this dissertation.

The Variational Multiscale (VMS) method proposed by Hughes et al. [56] is an example of a method adopting a

separation of fine-scale and coarse-scale solution features, in which the fine-scale approximation involves residual-free

‘bubble’ functions. The VMS has been applied to challenging multiphysics problems, as well, such as fluid-structure

interaction (FSI) [60].

The Multiscale FEM (MsFEM) of Hou and Wu [54] is a parallelizable technique for predicting macro-scale re-

sponse without resolving fine-scale effects, often used in porous media applications. The fine-scale is resolved by

shape functions obtained from the numerical solution of fine-scale boundary value problems; however, boundary

conditions on these problems pose an issue. Efendiev and others [31, 35] have extended this work and attempted

to address these challenges. Additional work by Zhang et al. [143] proposes the extended MsFEM (EMsFEM) for

modeling heterogeneous materials.

Multigrid and domain decomposition techniques have also seen use in multiscale problems. For instance, multigrid

techniques have been applied to finite element problems with localized hp-adaptive mesh refinement [6, 55, 81], and

the domain decomposition-based FETI-DP method of Farhat et al. [36] has been developed and used for multiscaling.

However, local nonlinearities may pose a challenge in traditional multigrid and domain decomposition approaches

[11, 15]. Pebrel et al. [103] present a domain decomposition technique specifically aimed at problems with nonlinear

behavior.

Yet another class of methods, homogenization-based techniques have also been immensely popular tools in the

modeling of multiscale problems. De Borst [17] gives a broad overview of the state-of-the-art in computational meth-

ods for resolving multiscale features, primarily with application to materials science. It is important to mention the

FE2 and related methods of Feyel, Chaboche, Unger, Özdemir, et al. [37, 38, 99, 100, 133], which derive homogenized

macro-scale material properties from the solution of micro-scale boundary value problems at integration points in the

macro-scale model. Many additional homogenization approaches are reviewed in Chapter 3. However, homogenized

properties cannot adequately characterize fine-scale behavior in the neighborhood of localized solution features such

as sharp gradients and singularities; thus, homogenization approaches may not be applicable in the problems of interest

in this study, which exhibit very localized temperature and stress/strain gradients.
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1.2.2 Coupled physics and multiscale approaches to coupled physics problems

In the application area of laser welding, Montalvo-Urquizo et al. [85] employ an adaptive FEM for transient modeling

of the sharp laser flux and resulting thermoplastic effects. By refining and unrefining the three-dimensional finite

element mesh over the course of the simulation, the sharp temperature gradients as well as the highly localized,

nonlinear effects around the laser heating can be captured effectively. However, adaptive refinement on the structural-

scale domain leads to expensive computations at each time step of the laser welding analysis, and the tradeoff between

solution quality and computational expense is highly sensitive to the adaptive FEM error estimation scheme. The

authors also note that post-welding cooling stages are much simpler to model, since there is no additional adaptivity

effort required to track the sharp, rapidly evolving laser heat source. Runnemalm and Hyun [115] similarly apply

an adaptive FEM strategy aimed at solving the challenging problem of localized thermo-viscoplastic effects due to

laser welding. These authors further note that adaptive methods are complicated by the fact that error estimates

must account for localized evolution of both thermal and mechanical behavior. Souloumiac et al. [122] and Duan

et al. [21] acknowledge the large computational cost of using a fully three-dimensional model to bridge localized,

residual post-welding deformations to the structural scale in order to predict residual global distortions. Instead, they

propose a global–local technique based on local three-dimensional approximations in the neighborhood of localized

thermomechanical phenomena, while adopting plate or shell elements to model the global structure away from the

weld.

A number of multiscale methods have also been extended to coupled physics problems. The previously mentioned

VMS [56] has been adapted by Oskay [97, 98], leading to so-called Variational Multiscale Enrichment (VME), the

goal of which is accurate resolution of fine-scale effects in regions of interest in multiphysics problems. This method

has been applied to the coupled mechano-diffusion problem for modeling the multiscale diffusion of oxygen into

titanium, as well as diffusion and elasticity problems featuring material microstructures and inclusions. In VME, the

microscale ‘enrichment domains’ coincide with global (macroscale) elements, and in order to enforce continuity of the

global solution, in [97], homogeneous boundary conditions must be applied on the microscale problems (leading to

the residual-free bubble functions of VMS fame). The sensitivity of VME solutions to microscale boundary conditions

is acknowledged in [98], which proposes the use of so-called ‘canopy functions’ to relax the homogeneous Dirichlet

requirement, and introduces mixed-type boundary conditions on microscale problems. However, the mixed boundary

conditions have been shown to lead to complications in the parallelization of the method. Similarly, building on the

MsFEM and the EMsFEM of Zhang et al. previously described, Yang et al. [140] introduce the EMsFEM methodology

for nonlinear, coupled thermoelastic problems.

Several methods have been presented in the literature within the framework of the XFEM for addressing challeng-

ing localized thermomechanical and other multiphysics effects relevant to this work. The majority of these methods
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are based upon analytically defined enrichment functions in order to accurately represent localized solution charac-

teristics on non-matching meshes, which greatly reduces manual effort in finite element mesh generation. Duflot

[30] introduces analytical enrichment functions for representing fractures in thermoelasticity, treating (i) the adiabatic

crack, where the temperature field in general experiences a jump across the crack surface, and the heat flux exhibits

singularities at the crack tip; as well as (ii) the isothermal crack, where the temperature is held constant over the crack

surface, and thus Dirichlet boundary conditions must be applied over the crack surface. Each of these cases is analyzed

using specially tailored enrichment functions, and localized solution gradients surrounding the discontinuities are ef-

fectively resolved. This work is extended by Zamani et al. [142], who adopt similar enrichment strategies, and are

especially concerned with the computation of stress intensity factors (SIFs) in thermoelastic fracture mechanics prob-

lems of interest. Khoei et al. [59] present an XFEM approach for coupled, time-dependent thermo-hydro-mechanical

modeling of porous media exhibiting discontinuities.

Also worth mentioning are several homogenization methods for resolving fine-scale thermomechanical effects.

A homogenization technique based on the FE2 method is proposed for heat transfer in heterogeneous materials by

Özdemir et al. in [99]. These authors extend their work on heat transfer to the multiphysics problem of thermome-

chanical coupling in [100]. It is important to note that the authors assume a scale separation, and thus they also note

that the method may not be valid in applications where the macro-scale temperature gradients are extremely sharp

and may be significant even at the micro-scale. Macri and Littlefield [76] also present a work based on the multiscale

enriched partition of unity method developed in [40, 75] which adopts principles from homogenization theory as well

as partition of unity methods to generate special enrichment functions to transfer microscale thermomechanical effects

to the macroscale.

1.3 Research objectives

The Generalized or eXtended Finite Element Method (G/XFEM) [7, 24, 82, 89, 123], a traditional finite element

formulation augmented with custom-designed enrichment functions to capture specific solution features of interest,

is presented in this work as a candidate to alleviate many of the aforementioned difficulties with present approaches

to problems of interest. Specifically, this study presents a GFEM aimed at resolving the challenging multiscale,

multidisciplinary, nonlinear phenomena within the framework of the GFEM with global–local enrichment functions

(GFEMgl) [23, 26]. The GFEMgl hybridizes standard global–local analysis and GFEM; custom shape functions are

generated numerically from the solution of hp-adapted GFEM local or fine-scale boundary value problems subject to

boundary conditions from a coarse-scale, initial global analysis of the structure. These custom, fine-scale, so-called

‘global–local’ shape functions are embedded in the global approximation space via a partition of unity approach,
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thereby enabling localized solution features to be represented on a regular, coarse global mesh. The method has

already been shown to provide effective solutions to both steady-state and transient heat transfer problems exhibiting

localized, sharp temperature gradients [90–93].

In the scope of this work GFEM and the GFEMgl are extended to handle coupled physics (thermomechanical)

problems, which introduces an additional set of challenges due to the special enrichment functions, heavy mesh

refinement, and high-order polynomial approximations inherent in typical GFEM simulations. Sharp temperature

and stress/strain gradients may be present within elements in the GFEM mesh, represented by numerically generated

GFEM enrichment functions from fine-scale problems. Thus, typical thermomechanical coupling techniques adopted

in the industry, such as transferring interpolated or nodal temperatures to the global structural model, as well as other

ad-hoc approaches, are insufficient to accurately resolve the sharp, localized features of interest. Because of the high

level of mesh adaptivity, the exchange of information between physics problems may be very expensive. This work

presents a novel coupling scheme which takes advantage of special features of the GFEMgl to make multiphysics

solutions both feasible and efficient.

The GFEMgl is also adapted for the analysis of localized thermo-structural effects due to material-scale hetero-

geneity, or multiscale problems. In contrast to many typical multiscale methods, the use of a partition of unity affords

this method no restrictions on inter-compatibility and continuity among micro or local solutions, which is a primary

concern in many existing multiscale techniques. Studies have shown that GFEMgl local problems are intrinsically and

rapidly parallelizable [63], which is especially beneficial when intense levels of mesh refinement are required, as is

the case in the presence of material-scale heterogeneity. Some analysis of the parallel performance of the method as it

is applied to this class of problems is included in the scope of this work. However, the quality of global–local enrich-

ments for this class of problems is sensitive to the accuracy of local problem boundary conditions from coarse-scale,

global solutions, especially when hundreds or thousands of local problems are analyzed in parallel; thus, efficient

boundary condition improvement strategies are also discussed.

Furthermore, in order to address the nonlinear nature of many problems within the target application areas, the

GFEM and GFEMgl are also extended to handle localized thermoplastic effects. The GFEMgl has effectively modeled

problems exhibiting confined plastic behavior in [52, 64]. These previous applications focused on structures subjected

to uniform, monotonic loading scenarios, where nonlinear behavior is confined to a single region (e.g., around a crack

tip or other localized stress concentration) and evolves only moderately and, moreover, proportionally in between time

or load steps. In application areas of interest, however, localized thermomechanical loads generally evolve in both

time and space. Furthermore, predicting residual stress and strain fields in the material is paramount in determining

the damaged state, or, in the case of laser welding, the initial state of the structure, so consideration of time-dependent

cooling effects is necessary. Leveraging the previously cited work on the GFEMgl for transient heat transfer and
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nonlinear applications, this work presents an extension of the GFEMgl to nonlinear, thermoplastic problems utilizing

time-dependent global–local shape functions to characterize the highly localized thermo-elasto-plastic features of

interest on the coarse-scale, global structural problem.

The primary goal these extensions of the GFEMgl is therefore the computational simulation of realistic, industrial-

scale multiphysics problems under extreme, localized thermomechanical loading scenarios in a parallel and computa-

tionally efficient manner, with particular emphasis on generality and extensibility of the methods presented.

1.4 Outline

In Chapter 2, the extension of the GFEM and GFEMgl to coupled, multidisciplinary problems—in this case, thermo-

structural interaction—is presented. This chapter also gives a detailed introduction to the GFEM and GFEMgl. Chap-

ter 3 discusses in detail the modeling of localized thermal and thermomechanical effects due to material-scale het-

erogeneity using the GFEMgl. Chapter 4 presents the GFEMgl for modeling localized, nonlinear elasto-plastic and

multiphysics thermoplastic effects as well as residual thermomechanical stresses and strains, considering the effects of

time-dependent loading scenarios. Chapters 3 and 4 also provide some discussion on the parallel computing aspects

of the GFEMgl, since computational efficiency is extremely important in representative problems, which are generally

quite large and expensive to solve when using traditional direct analysis methods to achieve a comparable level of

fidelity. Finally, overall conclusions and a proposal of future work is given in Chapter 5.
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Chapter 2

A GFEM approach for capturing localized
thermomechanical effects

The goal of this work is to provide an efficient means of analyzing thermo-structural interaction problems while main-

taining compatibility with the proposed Generalized Finite Element Method (GFEM) approach. The most common

solution techniques used in the industry involve decoupling thermal and structural analyses, pre-designing a mesh

for each discipline, and often then solving using separate software packages tailored for each physics discipline, for

instance, as in [114] for the case of composite structures. The heat transfer problem may generally be discretized with

3D solid finite elements, while the mechanical model may be meshed using more efficient, dimensionally reduced

plate or shell finite elements. Interfacing the disparate models is nontrivial, as it requires interpolation or assumptions

about variation of the temperature field through the thickness dimension of the plate or shell. However, sharp temper-

ature gradients in the presence of intense heat sources, internal material interfaces, or complicated structural geometry

cannot always be adequately characterized by interpolated or smoothed quantities, or analytical polynomial expres-

sions through the thickness. In traditional software packages detailed redesign of each mesh may also be required to

accommodate all critical load cases. All of these issues increase both computational and manual effort in exchanging

information between and analyzing multiphysics problems.

The GFEMgl [23, 26, 90] is an established method in the modeling of localized heating and structural effects based

on the use of enrichment functions generated from the solution of high-fidelity local problems in the global GFEM

approximation. This work presents the first extension of the GFEMgl to multiphysics (thermomechanical) problems,

as presented in [107]. Because special or numerical-generated enrichment functions are used in GFEM, detailed, lo-

calized information about variation of multiphysics solution fields of interest is required within individual elements

in the domain, making multiphysics analysis under these methods potentially very expensive. To address this, this

chapter presents an optimized approach for exchanging information in the analysis of thermo-structural problems

discretized using hp-adaptive GFEM (hp-GFEM) and, moreover, the GFEMgl, which avoids computational expense

related to expensive searching and mapping between physics meshes. Additionally, the approach takes advantage

of features of the GFEMgl to enable multiphysics analysis under this method while incurring little to no additional

cost compared to single-physics analysis. These extensions of the GFEM to one-way-coupled thermo-structural prob-

lems provide meshing flexibility at both local—component- or material-level—and structural scales while remaining
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competitive with traditional approaches. Furthermore, the straightforward parallelism of the GFEMgl is exploited to

provide efficient, high-fidelity solutions to multiphysics problems of interest. The method is applied to several coupled

thermomechanical problems highlighting its potential applications, and its computational benefits are also discussed.

2.1 Problem definition

The problem of interest in this chapter is one-way-coupled, steady-state, linear thermoelasticity in three dimensions,

though the approach presented is extensible to other physics as well as transient and nonlinear problems (demonstrated

in Chapter 4). The problem is defined over a domain Ω ∈ R3. The formulation is presented in a staggered sense, as is

typical of analyses carried out in the target application areas.

2.1.1 Steady-state heat transfer

The steady-state heat transfer problem is defined over a domain Ωθ ∈ R3, Ωθ = Ω, with boundary ∂Ωθ = Γθ ∪ Γ f ∪ Γc,

where Γθ∩Γ f = ∅, Γθ∩Γc = ∅, and Γc∩Γ f = ∅. Although this is a coupled thermo-structural problem, in the problems

of interest, the heating contribution due to mechanical deformation can be neglected [127, 128]. The strong form of

the governing partial differential equation is given by

∇ · (κ∇θ) = −Q(x) in Ωθ, (2.1)

where θ = θ(x) is the temperature field, κ = κ(x) the thermal conductivity tensor, and Q(x) the internal heat source.

Boundary conditions on ∂Ωθ are given by

θ = θ̄ on Γθ

−κ∇θ · n = f̄ on Γ f

−κ∇θ · n = hc(θ − θ∞) on Γc, (2.2)

where n is the outward unit normal to Γ f and Γc, and f̄ and θ̄ are prescribed normal heat flux and temperature,

respectively, hc is the convective coefficient, and θ∞ is the ambient temperature.

2.1.2 Thermoelasticity

The linear elastic problem is also defined over a three-dimensional domain Ωu ∈ R3, Ωu = Ω, with boundary ∂Ωu =

Γu ∪ Γt, where Γu ∩ Γt = ∅. In the problems of interest, quasistatic response is expected; that is, inertial effects can be
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neglected [127]. The steady-state governing equations are

∇ · σ = −b(x) in Ωu

σ = C : εm

εm = ε − εθ

ε =
1
2

(
∇u + ∇uT

)
εθ = αθ(θ − θ∞), (2.3)

with σ the Cauchy stress tensor, and b the body force. C = C(x) is Hooke’s tensor of material moduli,

C(x) = B1 ⊗ 1 + 2µ
[
I +

1
3

1 ⊗ 1
]
,

where B = B(x) is the material bulk modulus, µ = µ(x) the shear modulus, and 1 and I signify the second- and fourth-

order identity tensors, respectively. ε, εm, εθ represent the total, mechanical, and thermal strain tensors, respectively,

u = u(x) the displacement field, and αθ the tensor of thermal expansion coefficients. In all cases, isotropic thermal

expansion is assumed, that is, αθ = αθ1.

Boundary conditions on ∂Ωu are

u = ū on Γu

σ · n = t̄ on Γt, (2.4)

where ū is the prescribed displacement, n is the outward unit normal to Γt, and t̄ is the specified traction.

2.2 GFEM approximations

The Generalized Finite Element Method (GFEM) is adopted in this study to discretize the partial differential equations

formulated in the above section. The Generalized or eXtended Finite Element Method [7, 24, 82, 89, 123] is an

instance of the Partition of Unity Method (PUM) of Babuška et al. [2, 4, 80] and Duarte and Oden [27–29, 89]. A

history of Generalized/eXtended FEMs is given in [9].

The standard Lagrangian finite element shape functions Nα, α ∈ Ih = {1, · · · , k}, in a mesh with k nodes covering
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Nα

Lαi

φαi

(a) Polynomial enrichment

Nα

uL

φgl
α

(b) Numerical enrichment

Figure 2.1: Construction of a GFEM shape function—from top to bottom, the FEM partition of unity ϕα, an enrichment
function, and the resulting shape function.

a domain Ω, are chosen as the partition of unity in GFEM, since

∑
α∈Ih

Nα(x) = 1 ∀ x ∈ Ω.

The GFEM hinges on the idea that the partition of unity can then be enriched, or combined with local function

approximation spaces built around a priori knowledge of a given problem’s solution behavior. A generalized finite

element shape function φαi(x) is constructed as

φαi(x) = Nα(x)Lαi(x) (no summation on α), (2.5)

where Nα(x) is a finite element shape function and Lαi(x) is an enrichment function, α ∈ Ie
h ⊂ Ih is the index of a node

in a FE mesh, and i ∈ I(α) = {1, · · · ,mα} is the index of the enrichment at the node. Figure 2.1a illustrates shape

function construction using a standard polynomial enrichment. Nodes not in Ie
h have only the linear FE shape function

Nα. The support of Nα(x), denoted by cloud or patch ωα, is simply the union of all finite elements sharing node α, and
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enrichment functions {Lαi}
mα

i=1 form a basis of patch space χα(ωα).

The test and trial GFEM space SGFEM is obtained by hierarchically augmenting the standard FEM space SFEM

with the global enrichment space SENR; that is,

SGFEM = SFEM + SENR, (2.6)

where

SFEM =
∑
α∈Ih

ûαNα, ûα ∈ R,

and SENR =
∑
α∈Ie

h

Nαχα, χα = span{Lαi}
mα

i=1. (2.7)

Patch spaces χα(ωα), α ∈ Ih, use the orthotropic polynomial enrichment functions presented in [22, 24, 89]. The

polynomial degree of FEM or GFEM shape functions in the coordinate directions {x, y, z} is denoted by p = {px, py, pz}.

For instance the shape functions at a node α ∈ Ih with polynomial degree p = {2, 2, 1} are given by

φα0 = Nα

φα1 = Nα
x − xα

hα

φα2 = Nα
y − yα

hα
,

where hα is a scaling factor taken as the diameter of the largest element sharing the node and xα = (xα, yα, zα) are the

nodal coordinates. In this example, then, patch enrichment space χα(ωα) = span{ x−xα
hα
, y−yα

hα
}. A node with only the

standard FEM shape function Nα has a polynomial degree p = {1, 1, 1}.

The shape functions in SENR are computed using (2.5). The GFEM approximation, θhp, of a scalar field θ (e.g.,

temperature) can thus be written as

θhp(x) =
∑
α∈Ih

θ̂αNα(x)︸        ︷︷        ︸
Standard FEM approximation

+
∑
α∈Ie

h

Nα(x)
mα∑
i=1

θ̃αiLαi(x)

︸                       ︷︷                       ︸
GFEM enriched approximation

, θ̂α, θ̃αi ∈ R. (2.8)

A GFEM approximation uhp of vector field u (e.g., displacement) is exactly analogous:

uhp(x) =
∑
α∈Ih

ûαNα(x) +
∑
α∈Ie

h

Nα(x)
mα∑
i=1

ũαiLαi(x), ûα, ũαi ∈ R
3. (2.9)
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The GFEM has been utilized successfully in the simulation of fracture mechanics [25, 83], polycrystalline [119] and

fiber-reinforced [109, 110] microstructures, heat transfer with sharp temperature gradients [90], and several other

examples where closed-form, analytical enrichment functions are available.

2.2.1 GFEMgl

Although traditional GFEM applications have relied on analytical enrichments designed around prior knowledge of

problem physics, convenient analytical functions do not exist for all classes of problems. Combining aspects of GFEM

with the global–local FEM [19, 88], the GFEM with global–local enrichment functions (GFEMgl) [23, 26] enables the

user to automatically generate special, numerical enrichments φgl
α for the structural-scale problem through the solution

of hp-adapted local problems designed to capture localized features of interest. Thus, expensive mesh refinement and

high-order polynomial enrichment are restricted to the local mesh, and only a few degrees of freedom are added to the

global problem in the form of numerically built enrichment functions, making the method especially useful in large

problems where concentrated global mesh refinement proves too computationally expensive. The GFEMgl has seen

several applications, including transient heat transfer [91], fracture [61, 62], and localized plasticity [64].

GFEMgl analyses of steady-state, single-physics problems consist of three essential steps:

(i) solution of the coarse, global boundary value problem, termed the initial global problem,

(ii) extraction and solution of local problems using the initial global solution as a boundary condition, and

(iii) reanalysis of the enriched global problem based on local solutions.

Detailed formulation of these steps for the more complex case of coupled heat transfer and thermoelasticity is included

in Section 2.3. Figure 2.2 illustrates the exchange of information between global and local domains.

2.2.1.1 Global–local enrichment improvement strategies

An important issue pertaining to the GFEMgl procedure is that discretization error in coarse-scale initial global so-

lutions in both heat transfer and thermoelastic problems leads to inexact boundary conditions on local problems, the

effect of which has been a topic of recent study [51, 106]. In some cases boundary conditions may be poor, leading to

poor-quality global–local enrichments. To obtain higher-quality local solutions (leading to better enrichment functions

for the global problem), one such strategy used in this work is carrying out multiple global–local iterations:

(i) local problem boundary conditions from coarse-scale, initial global solutions are updated based on improved,

enriched global solutions,

(ii) local problems are solved again, and
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Boundary
conditions from
global solution Enrichment

functions from
local solution

Global domain

Local domain

Global-local
cycles (if
necessary)

Figure 2.2: Typical single-physics coarse-scale global domain and hp-adapted local problem which encloses a local-
ized solution feature like a singularity, sharp gradient, or material interface.

(iii) global–local enrichments are updated.

This procedure is also illustrated pictorially in Figure 2.2, denoted by dashed arrows.

2.3 GFEMgl formulation for coupled heat transfer and thermoelasticity

In contrast to the single-physics version of GFEMgl, the one-way-coupled thermo-structural problem involves addi-

tional steps and complexity, summarized as follows:

A. Heat transfer problem

(i) Solution of the coarse, initial global heat transfer problem,

(ii) extraction and solution of heat transfer local problems using the initial global heat transfer solution as a

boundary condition, and

(iii) reanalysis of the enriched global heat transfer problem based on local heat transfer solutions.

B. Thermoelasticity problem

(i) Solution of the initial global thermoelastic problem based on thermal stresses computed from the enriched

global temperature,

(ii) extraction and solution of thermoelastic local problems using the initial global thermoelastic solution as a

boundary condition, computing thermal stresses from the enriched global temperature, and

17



(iii) reanalysis of the enriched global thermoelastic problem based on local thermoelastic solutions.

Detailed formulation of the GFEMgl for coupled heat transfer and thermoelasticity is included in Section 2.3. Figure

2.3 illustrates this exchange of information between global and local domains. While the above procedure designates

one potential GFEMgl coupling scheme in which thermal stresses in the elastic problem are based on the enriched

global temperature field (the coupling sequence adopted in all examples shown), other sequences are possible; for

instance, the coarse, initial global or local temperature solutions could be used to compute thermal stresses in initial

global and local thermoelastic problems, respectively.

2.3.1 Steady-state heat transfer

Adopting (2.8) to approximate temperature field θ using GFEM and rewriting in matrix form,

θ(x) ≈ θhp(x) = N̄θ(x)dθ (2.10)

where

N̄θ
=

[
N̄θ

1 · · · N̄θ
n

]
, N̄θ

α =
[
Nα φα1 · · · φαmα

]
.

The temperature gradient ∇θ, as it appears in (2.1), can then be approximated in a straightforward manner using (2.10)

as

∇θ(x) ≈ ∇θhp(x) = B̄θ(x)dθ, (2.11)

where

B̄θ(x) = ∇ ⊗ N̄θ(x).

2.3.1.1 Initial global problem

On the coarse-scale, global domain Ω̄θ = Ωθ ∪ ∂Ωθ, the initial global problem is formulated as: Find θ0 ∈ S0
G(Ωθ) ⊂

SGFEM(Ωθ) such that for all δθ0 ∈ S0
G(Ωθ),

∫
Ωθ

∇θ0κ∇δθ0 dΩ + η

∫
Γθ
θ0δθ0 dΓ +

∫
Γc

hcθ
0δθ0 dΓ

=

∫
Ωθ

Qδθ0 dΩ +

∫
Γ f

f̄ δθ0 dΓ + η

∫
Γθ
θ̄δθ0 dΓ +

∫
Γc

hcθ∞δθ
0 dΓ, (2.12)

where η is a penalty parameter for enforcement of Dirichlet boundary conditions.

Introducing (2.10) and (2.11) for the temperature field θ0 in (2.12), the discrete form of the problem may be written
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1. Boundary
conditions from
global solution 2. Enrichment

functions from
local solution

Global heat transfer

Local heat transfer

Global-local
cycles (if
necessary)

4. Boundary
conditions from
global solution 5. Enrichment

functions from
local solution

Global thermoelasticity

Local thermoelasticity

Global-local
cycles (if
necessary)

3. Temperature field θE

Figure 2.3: The GFEMgl for sequentially-coupled thermo-structural problems, as detailed in Section 2.3. The coarse-
scale global problem and hp-adapted local problem which resolves localized solution features such as singularities,
sharp gradients, or material interfaces are shown in each discipline.

19



as

Kθdθ = fθext, (2.13)

where

Kθ =

∫
Ωθ

B̄θ T
κ B̄θdΩ + η

∫
Γθ

N̄θ T N̄θ dΓ +

∫
Γc

hcN̄θ T N̄θ dΓ,

fθext =

∫
Ωθ

N̄θ T Q dΩ +

∫
Γ f

N̄θ T f̄ dΓ + η

∫
Γθ

N̄θ T
θ̄ dΓ +

∫
Γc

hcN̄θ T
θ∞ dΓ.

2.3.1.2 Local problem(s)

The local domain Ω̄L = ΩL ∪ ∂ΩL, where ΩL ⊆ Ω, is selected from Ω as the support of a set of ‘seed’ patches, Igl, or

Ωθ
L =

⋃
α∈Igl

ωα. (2.14)

A sample local mesh is shown in Figure 2.2.

Using the initial global solution θ0 obtained from (2.12) as a coarse boundary condition on ∂ΩL, each local problem

is solved independently of all other local problems, so that no communication among local problems is required, and

local solutions are used only to generate enrichment functions φgl
α for the global solution space. This condition also

allows for enforcement of the boundary condition as Dirichlet, Neumann, or Cauchy [62], since there are no constraints

on solution continuity among local problems.

The initial global and local problem steps are equivalent to standard global–local analysis [19, 88].

The local heat transfer problem is formulated as follows: Find θL ∈ SL(Ωθ
L) ⊂ SGFEM(Ωθ

L) such that for all

δθL ∈ SL(Ωθ
L),

∫
Ωθ

L

∇θLκ∇δθL dΩ + η

∫
∂Ωθ

L\(∂Ωθ
L∩(Γ f∪Γc))

θLδθL dΓ +

∫
∂Ωθ

L∩Γc
hcθLδθL dΓ

= η

∫
∂Ωθ

L\(∂Ωθ
L∩∂Ωθ)

θ0δθL dΓ + η

∫
∂Ωθ

L∩Γθ
θ̄δθL dΓ +

∫
Ωθ

L

qδθL dΩ +

∫
∂Ωθ

L∩Γ f
f̄ δθL dΓ

+

∫
∂Ωθ

L∩Γc
hcθ∞δθL dΓ. (2.15)

As in the global problem, using (2.10) and (2.11) for the temperature field θL in (2.15), the discrete form of the

problem may be written as

Kθ
LdθL = fθext,L, (2.16)
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where

Kθ
L =

∫
Ωθ

L

B̄θ T
L κB̄θ

L dΩ + η

∫
∂Ωθ

L\(∂Ωθ
L∩(Γ f∪Γc))

N̄θ T
L N̄θ

L dΓ +

∫
∂Ωθ

L∩Γc
hcN̄θ T

L N̄θ
L dΓ,

fθext,L = η

∫
∂Ωθ

L\(∂Ωθ
L∩∂Ωθ)

N̄θ T
L θ0 dΓ + η

∫
∂Ωθ

L∩Γθ
N̄θ T

L θ̄ dΓ +

∫
Ωθ

L

N̄θ T
L Q dΩ +

∫
∂Ωθ

L∩Γ f
N̄θ T

L f̄ dΓ

+

∫
∂Ωθ

L∩Γc
hcN̄θ T

L θ∞ dΓ.

2.3.1.3 Enriched global problem

Traditional global–local methods may suffer from the limitation that local solutions may not satisfactorily represent

true solution behavior over the local region Ω ∩ ΩL due to inaccurate boundary conditions from the initial, coarse-

scale solution. In general, localized solution characteristics resolved in local problems may also impact the overall

structural-scale behavior. Thus, in GFEMgl, local problem solutions θL are used directly as numerical enrichments in

the global problem (2.12),

φ
gl
α (x) = Nα(x)θL(x), (2.17)

and the global GFEM space hierarchically enriched with global–local shape functions is given by

SE
GFEM = S0

GFEM +
{
Nαθ

gl
α (no summation on α), α ∈ Igl

}
, (2.18)

where S0
GFEM is the GFEM space of the initial global problem,

θ
gl
α (x) = θ̃αθL(x), θ̃α ∈ R

is an approximation defined over patch ωα, α ∈ Igl, θ̃α is a global degree of freedom. The solution of the enriched

global heat transfer problem is denoted hereafter θE .

2.3.2 Thermoelasticity

Adopting (2.9) and rewriting in matrix form, the GFEM approximation uhp of a displacement field u can be written as

u(x) ≈ uhp(x) = N̄u(x)du, (2.19)

where

N̄u
=

[
N̄u

1 · · · N̄u
k

]
, N̄u

α =

 Nu
α0︸︷︷︸

PoU

Nu
α1 · · · Nu

αmα︸          ︷︷          ︸
Enrichment

 ,
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and

Nu
α0 =


Nα 0 0

0 Nα 0

0 0 Nα

 , Nu
αi =


φαi 0 0

0 φαi 0

0 0 φαi

 .

Applying the fourth equation in (2.3) to (2.19), it then follows that the approximation εhp of the strain tensor ε is given

by

ε(u) ≈ εhp(uhp) = B̄u(x)du (2.20)

where B̄u denotes the strain operator in Voigt notation,

B̄u
=

[
B̄u

1 · · · B̄u
k

]
,

with

B̄u
α =

 Bu
α0︸︷︷︸

PoU

Bu
α1 · · · Bu

αmα︸          ︷︷          ︸
Enrichment


and

Bu
α0 =



Nα
,x 0 0

0 Nα
,y 0

0 0 Nα
,z

Nα
,y Nα

,x 0

Nα
,z 0 Nα

,x

0 Nα
,z Nα

,y



, Bu
αi =



φαi
,x 0 0

0 φαi
,y 0

0 0 φαi
,z

φαi
,y φαi

,x 0

φαi
,z 0 φαi

,x

0 φαi
,z φαi

,y



.

The GFEMgl formulated for thermoelasticity follows analogously to the heat transfer case.

2.3.2.1 Initial global problem

The variational formulation of the global linear thermoelasticity problem is as follows:

Find u0 ∈ S0
G(Ωu) ⊂ SGFEM(Ωu) such that, ∀δu0 ∈ S0

G(Ωu),

∫
Ωu
σ(u0) : ε(δu0) dΩ + η

∫
Γu

u0 · δu0 dΓ =

∫
Γt

t̄ · δu0 dΓ + η

∫
Γu

ū · δu0 dΓ, (2.21)
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where η is a penalty parameter. As this is a linear problem, in practice the Cauchy stress σ is decomposed as

σ = σ̃ − σθ

σ̃(u0) = C : ε(u0)

σθ(θE) = C : εθ(θE). (2.22)

The thermal stress contributions, σθ, are then treated on the right-hand side of (2.21).

Introducing (2.19) and (2.22) in (2.21), the discrete form of the problem may be written as

Kudu = fu
ext − fu

int, (2.23)

where

Ku =

∫
Ωu

B̄u T CB̄u dΩ + η

∫
Γu

N̄u T N̄u dΓ,

fu
ext =

∫
Γt

N̄u T t̄ dΓ + η

∫
Γu

N̄u T ū dΓ,

fu
int = −

∫
Ωu

B̄u T CαθθE dΩ,

and θE is known and may be obtained directly from (2.10).

The enriched global temperature field θE from the GFEMgl analysis of the global heat transfer problem (2.12)

provides the best estimate of the global temperature field. Thus, θE is used to compute the thermal stress contribution

even in the coarse, initial elasticity problem. In general, θE ∈ SE
GFEM , and SE

GFEM has numerical enrichment functions

defined on a refined, local mesh; thus, extra care must be taken to accurately integrate the thermal stress contribution

in the coarse-scale, global thermoelasticity problem, which is described in Section 2.4.3.

2.3.2.2 Local problem(s)

Local domain Ωu
L denotes a subdomain of Ωu, constructed precisely analogously to local problems in the heat transfer

case described in Section 2.3.1.

The local thermoelasticity problem is formulated as follows:
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Find uL ∈ SL(Ωu
L) ⊂ SGFEM(Ωu

L) such that, ∀δuL ∈ Xhp
L (Ωu

L),

∫
Ωu

L

σ(uL) : ε(δuL) dΩ + η

∫
∂Ωu

L\(∂Ωu
L∩Γt)

uL · δuL dΓ

= η

∫
∂Ωu

L\(∂Ωu
L∩∂Ωu)

u0 · δuL dΓ + η

∫
∂Ωu

L∩Γu
ū · δuL dΓ +

∫
∂Ωu

L∩Γt
t̄ · δuL dΓ. (2.24)

The same decomposition of the stress field σ for analyzing thermal stress contributions given in (2.22) is applied.

Just as in the heat transfer case, a key aspect of problem (2.24) is the use of the generalized FEM solution of the

coarse-scale, global problem, u0, as a displacement boundary condition on ∂Ωu
L \ (∂Ωu

L ∩ ∂Ωu). Enforcement of the

global solution boundary condition as tractions or springs is also permitted on ∂Ωu
L \ (∂Ωu

L ∩ ∂Ωu).

Introducing (2.19) and (2.22) in (2.24), the discrete form of the problem may be written as

Ku
Ldu

L = fu
ext,L − fu

int,L, (2.25)

where

Ku
L =

∫
Ωu

L

B̄u T
L CB̄u

L dΩ + η

∫
∂Ωu

L\(∂Ωu
L∩Γt)

N̄u T
L N̄u

L dΓ

fu
ext,L = η

∫
∂Ωu

L\(∂Ωu
L∩∂Ωu)

N̄u T
L u0 dΓ + η

∫
∂Ωu

L∩Γu
N̄u T

L ū dΓ +

∫
∂Ωu

L∩Γt
N̄u T

L t̄ dΓ,

fu
int,L =

∫
Ωu

L

B̄u T
L CαθθE dΩ,

and again θE may be obtained directly from (2.10).

2.3.2.3 Enriched global problem

The global thermoelasticity problem (2.21) is reanalyzed, hierarchically adding global–local enrichments generated

from the local problem solution,

φgl
α (x) = Nα(x)uL(x), (2.26)

where the GFEM space SE
GFEM is defined just as in the heat transfer case (2.18), noting, however, that the spaces of

the heat transfer and thermoelasticity problems may be entirely different and independent of one another.
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2.4 A coupled physics framework for efficient thermomechanical analysis

2.4.1 Current approaches and limitations

In target applications of this method—that is, modeling of thermomechanical effects due to local heating—engineers

typically adopt a sequential or one-way-coupled solution scheme due to the weakly coupled nature of the physics of

interest. While under certain circumstances heating effects due to rapid mechanical deformations may be significant,

the intensity of localized temperature gradients due to thermal loadings (e.g., from fluids or other external heat sources)

is generally orders of magnitude higher [127, 128]. This allows for the use of separate software packages tailored to

heat transfer and structural analysis of each separate problem, as well as different, specially designed finite element

meshes for heat transfer and structural models. Coupling between thermal and structural problems is often achieved

by passing nodal or interpolated temperature information from the heat transfer solver to the structural analysis code.

The GFEM has shown promise in capturing localized heating effects [90, 91]. However, when considering multi-

physics coupling, the use of high-order polynomial, numerical, or otherwise special enrichment functions to describe

the solution in GFEM means smoothed or nodally interpolated temperature fields may not be sufficient to describe the

high solution gradients in the neighborhood of, for example, thermal shocks or other sharp heat sources, which may

be localized within a single element in the mesh.

2.4.2 GFEM coupling

Adaptive GFEM solutions typically employ high-order polynomial approximations (p-refinement) and heavy mesh

refinement (h-refinement) in the neighborhood of localized solution features. Thus, when modeling thermomechanical

effects, physical quantities defined at a physical point in the domain must be shared between heat transfer and structural

models. However, if different mesh geometries are adopted in each physics problem, mapping of physical coordinates

between physics meshes can be expensive and potentially problematic due to heavy localized mesh refinement.

In order to avoid expensive mappings between physics problems for the one-way coupled case, in the GFEM

approach identical mesh geometries are used in both heat transfer and structural problems. This simplification allows

for increased efficiency in exchanging information between physics problems due to the one-to-one correspondence

of finite elements, as well as exact numerical integration of the thermal stress contribution over the structural mesh.

Furthermore, only one instance of the mesh geometry needs to be stored. Although the mesh geometries are identical,

no such restriction is imposed on the GFEM enrichment spaces, as defined in Section 2.2, in each physics discipline,

so the desired solution fidelity can be achieved in each physics problem via, for instance, p-refinements.
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2.4.3 GFEMgl coupling

The GFEMgl introduces additional complexities into the multiphysics coupling framework. Because a sequential

coupling is adopted, the most accurate, enriched global heat transfer solution θE computed from (2.12) is used to

compute thermal stress contributions in each of the initial global, local, and enriched global structural problems, as

described previously in Section 2.3.2. However, θE is represented using global–local shape functions (2.17) generated

by the solution of hp-adapted heat transfer local problems (2.15), which are defined over refined local meshes. Thus,

additional assumptions are necessary in the GFEMgl to maintain computational efficiency and compatibility with the

framework design.

Under the GFEMgl, in order to avoid expensive mappings between meshes, not only are the global heat transfer

and structural mesh geometries identical, but the local problem meshes must also have the same one-to-one correspon-

dence. Just as in the hp-GFEM, only the geometry of the mesh must be the same, however, and arbitrary choice of

enrichment functions is possible.

2.4.4 Coupling implementation

A detailed description of the specific computational issues related to the coupling of physics problems within the

GFEM framework as well as diagrams illustrating the important exchange of multiphysics information is available in

Appendix A.

2.5 Numerical examples

2.5.1 L-shaped domain

A three-dimensional L-shaped domain is subjected to uniform temperatures applied at the right and top faces, as

shown in Figure 2.4. The domain is restricted only against rigid body motion. In this example, fine-scale solution

features or sharp gradients are introduced by the reentrant inner corner. Thus, it primarily serves to verify that the

GFEM and coupled physics framework are able to handle sharp solution features without the need to resolve complex

and localized applied loadings.

This problem was solved using the hp- or adaptive version of the GFEM with geometric mesh refinement at the

inner corner. A uniform polynomial approximation in the heat transfer problem of the degree pθ = {2, 2, 1} and in the

thermoelasticity problem of pθ = {3, 3, 2} was used.

It is clear from Figure 2.5 that both heat flux and stress singularities exist at the reentrant corner, despite the smooth

nature of the temperature distribution and boundary conditions.
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θt = 150

θr = −150

Figure 2.4: Geometry and hp-GFEM mesh of the L-shaped domain.

2.5.2 Laser-heated beam

The second example presented is a small, three-dimensional coupon beam of dimensions 12 in × 0.5 in × 0.24 in with

uniform conductivity κ = 2.92 ft-lbf
s-in-◦F and elastic properties E = 55 ksi, ν = 0.3, and αθ = 2.75 × 10−6 ◦F−1. The beam

is subjected to localized, steady-state Gaussian laser heating on its front surface, given by

f̄ (x) =
I0

2πa2 exp
(
−(x − b)2

2a2

)
, 8.0 ≤ x ≤ 10.0.

Here, parameter I0 = 295 ft-lbf
s is the laser flux intensity, a = 0.025 in is the laser focus, or width, and b = 9.3 in dictates

the x-coordinate of the center of the flux. Convection boundary conditions are applied elsewhere on the domain at an

ambient temperature θ∞ = 70 ◦F, and the ends of the beam are fixed against axial deformation. The flux function is

shown in Figure 2.6.

The sharply varying laser flux necessitates high solution fidelity close to the laser heating in order to adequately

characterize local as well as global solution behavior in both the heat transfer and thermoelastic problem.

2.5.2.1 GFEMgl

The problem is first solved using the GFEMgl and a coarse structural mesh (global element size H = 0.5), while mesh

refinement and polynomial enrichment are carried out in a local problem enclosing the localized laser flux. The global

mesh size remains coarse and regular throughout, while local problem mesh refinement is carried out to obtain a

sufficient level of fidelity locally surrounding the sharp flux. In the global heat transfer problem, a uniform polynomial

order pθ = {2, 2, 2} is used. The local problem is selected as a small region surrounding the sharp laser flux between

8.0 ≤ x ≤ 10.5, which has 10 levels of adaptive mesh refinement and pθL = {3, 2, 2}. The enriched global problem
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(a) Heat flux

(b) von Mises stress

Figure 2.5: hp-GFEM solutions of a thermoelastic L-shaped domain showing localized effects due to a singularity.
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Figure 2.6: Gaussian laser flux applied to the surface of the laser-heated beam.

has the same polynomial order as the initial global problem plus global–local enrichments in the neighborhood of the

thermal spike. Accordingly, the thermoelastic problem has pu = {3, 3, 3}, and the corresponding local problem uses

pu
L = {4, 3, 3}, one order higher than the heat transfer problem in order to be able to represent the thermal strain due to

the numerical solution for the temperature field. The geometry, boundary conditions, and GFEMgl local problem and

global problem meshes are shown in Figure 2.7.

The adaptive or hp-GFEM, on the other hand, which involves both mesh refinement and higher-order polynomial

enrichment of the solution in regions of interest, is optimal for this type of problem, and is thus used to generate an

equivalent solution (also denoted the hp-GFEM DFEA solution hereafter). This solution has 10 levels of localized

global mesh refinement, a global polynomial order of approximation in the heat transfer (thermoelasticity) problem of

pθ = {2, 2, 2} (pu = {3, 3, 3}), and a polynomial order pθ = {3, 3, 3} (pu = {4, 4, 4}) in the neighborhood of the sharp

heating. This DFEA solution is thus equivalent to the GFEMgl solutions detailed above for direct comparison. The

heavy, localized refinement necessary to resolve the spike on the global mesh is demonstrated in Figure 2.8 (cf. the

coarse mesh in Fig. 2.7a).

Solution contours from DFEA and GFEMgl simulations of the laser-heated beam problem are shown in Figure 2.9.

Qualitatively, the GFEMgl enriched with the numerically generated local problem solution compares very favorably

with DFEA. Quantitative measures of the GFEMgl solution accuracy compared to DFEA are also provided in Table

2.1. Since GFEMgl solutions are compared to an equivalent DFEA using hp-GFEM, the global accuracy of the solution
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(a) GFEMgl global problem

(b) GFEMgl local problem

Figure 2.7: Meshes used to solve the laser-heated beam problem with the GFEMgl.

Figure 2.8: hp-GFEM mesh of the laser-heated beam problem.
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(a) GFEMgl, temperature (b) GFEMgl, von Mises stress

(c) DFEA, temperature (d) DFEA, von Mises stress

Figure 2.9: GFEMgl and hp-GFEM DFEA solution contours of the laser-heated beam problem.

Table 2.1: Comparison of global and pointwise thermoelasticity quantities under each method for the laser-heated
beam.

Method Max. von Mises % difference Strain energy er,diff
E,u

DFEA (hp-GFEM) 1198.0 — 4.588 × 10−3 —
GFEMgl global 943.5 21.2% 12.23 × 10−3 1.291

local 1198.6 0.05% — —
enriched 1198.7 0.05% 4.587 × 10−3 0.014

is measured as relative difference in the energy norm,

er,diff
E,θ =

√∣∣∣∣B(θeq
hp, θ

eq
hp) − B(θgl, θgl)

∣∣∣∣√∣∣∣∣B(θeq
hp, θ

eq
hp)

∣∣∣∣ (2.27)

in the heat transfer case, and

er,diff
E,u =

√∣∣∣∣B(ueq
hp,u

eq
hp) − B(ugl,ugl)

∣∣∣∣√∣∣∣∣B(ueq
hp,u

eq
hp)

∣∣∣∣ (2.28)

for the elasticity problem, where ( )eq
hp denotes the equivalent hp-GFEM DFEA solution, and ( )gl denotes a GFEMgl

solution, while B( , ) indicates the bilinear form associated with each problem. Despite the relatively poor qual-

ity of the initial global solution in both local and global measures—maximum von Mises stress and strain energy,

respectively—the enriched global problem effectively resolves the localized thermal stress spike on the coarse mesh,

which has a drastic impact on global error in the solution, as well. Furthermore, the GFEMgl achieves a high level
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Table 2.2: Comparison of degrees of freedom (dofs) used in each method for the laser-heated beam.

Problem size

Method Heat transfer Thermoelasticity

DFEA (hp-GFEM) 22,376 151,374
GFEMgl global 400 3,000

local 22,216 149,958
enriched 416 3,048

Table 2.3: Comparison of physics coupling methods for assembly of the laser-heated beam thermoelasticity problem
(wall time) on a serial computer.

Assembly time (s)

Brute force Optimized Time savings (%)

Initial global 1.629 0.184 88.7%
Local 5.972 1.607 73.1%
Enriched global 8.247 1.311 84.1%

Total 15.848 3.102 80.4%

of accuracy while maintaining substantial computational savings in the global problem, adding only a few degrees

of freedom to the problem in the form of global–local enrichments; the numbers of degrees of freedom used in each

method are summarized in Table 2.2.

Finally, the efficiency of the proposed framework to couple each physics problem under the GFEMgl is exam-

ined. The ‘optimized’ framework described in Section 2.4.3, which leverages identical mesh geometry and nested

descendant information in order to efficiently transfer solution information between disciplines and accurately inte-

grate multiphysics contributions, is compared to the alternative, or the ‘brute force’ method, where the solution is ob-

tained using only the physical or global coordinate information. In the latter instance, there is no reliance on identical

mesh geometry or highly refined, nested local problem mesh information; instead, expensive searching for the correct

element in the heat transfer global problem is necessary. To account for this increase in computational effort, the

following results were obtained using lower-order polynomial approximations in the GFEM solutions, pθ = {1, 1, 1},

pθL = {2, 2, 2}, pu = {2, 2, 2}, and pu
L = {3, 3, 3}.

Table 2.3 summarizes the serial wall time spent assembling the thermoelasticity problem in GFEMgl simulations of

the laser-heated beam problem using both the brute force method and the optimized coupling framework. In all cases,

the optimized framework provides a noticeable time savings compared to brute force searching, especially in initial and

enriched global problems. Additionally, Figure 2.10 shows assembly times from each enriched global thermoelasticity

problem for various levels of mesh refinement in the local problem. For minimal levels of mesh refinement in the local

problem relative to the global mesh, obtaining the temperature field from the heat transfer problem using the global

coordinate is nearly as efficient as the optimized framework. However, it is clear that computational effort increases
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Figure 2.10: Enriched global thermoelasticity assembly time of brute force versus optimized coupling methods at
various global-to-local mesh size ratios (H/h) for the laser-heated beam.

drastically as the local mesh is refined, and brute force searching/mapping between local and global domains becomes

prohibitively expensive; at the highest level of local mesh refinement, the optimized framework yields a time savings

of over 93%.

2.5.3 Laser-heated stiffened panel

The final example presented in this chapter is a larger, more representative problem exhibiting complicated geometrical

features, and comprising many degrees of freedom in the global problem in order to accurately represent the structure.

In this type of problem, several different critical load cases might need examining. The GFEMgl allows for great

flexibility in analyzing multiple localized load cases because the same global, structural mesh can be used in each

analysis. In each case, only the location of the local problem enclosing the localized feature changes, and heavy mesh

refinement and higher-order polynomial enrichment are restricted to the local problems. Because the global model

does not change, a partitioning of the GFEM system of equations Ku = f of the form

 K0 K0,gl

Kgl,0 Kgl


 ũ0

ugl

 =

 f0

fgl

 (2.29)

where ( )0 corresponds to degrees of freedom from the global model, ( )gl corresponds to degrees of freedom as-

sociated with the GFEMgl, and ( )0,gl or ( )gl,0 correspond to coupling terms between the global and global–local

dofs. This reanalysis algorithm is detailed in [23, 62]. In cases where the global problem is very large, direct finite
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Figure 2.11: Critical loading locations on the stiffened panel.

element analysis, which requires high levels of localized mesh refinement, is prohibitively expensive. Furthermore,

because global–local enrichments are hierarchical, the initial factorization of the global stiffness matrix can be saved

and reused for each case, reducing the computational expense when many cases are necessary.

This example is a 600 × 600 mm thin panel with stiffener beams along each edge. Three different sharp, Gaussian

flux loading cases are analyzed in this problem, as illustrated, along with the geometry of the panel, in Figure 2.11.

The sharp fluxes are applied on the top of the panel, near a stiffener beam, and temperature boundary conditions are

applied on the panel edges perpendicular to the spike. The domain is insulated elsewhere. In case “A,” the flux lies

on the interior of the panel, in case “B,” directly on top of the edge stiffener beam, and case “C,” on the outside of the

panel, close to the edge. In the structural analysis, the panel is allowed to expand freely, and is only constrained against

rigid body motion. The effect of varying the location of the spike on the resulting thermal and structural quantities of

interest is examined.

Figure 2.12 shows the von Mises stress fields resulting from each analysis case. The stress as well as temperature

magnitude are affected significantly by the location of the sharp laser heating with respect to the stiffener beam. Just as

in the case of the laser-heated beam, the stress field in the vicinity of each thermal load case is still intense, regardless

of the lack of global structural constraints. Furthermore, it is noteworthy that the resolution of the intense, localized

loading is critical to the global behavior of the system in all cases.
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(a) Load case A

(b) Load case B

(c) Load case C

Figure 2.12: GFEMgl solution contours of von Mises stress in the stiffened panel problem.
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Table 2.4: Wall times (in seconds) in each solution phase for all load cases in the stiffened panel problem.

Initial Local Enriched

Load case Assemble Solve Assemble Solve Assemble Solve Total

Heat transfer
A

0.32 1.16
1.34 5.82 5.47 3.98

121.03B 4.89 58.89 16.88 6.34
C 1.27 5.32 4.94 4.41

Thermoelasticity
A

18.78 151.56
27.86 91.10 19.79 222.20

2954.63B 104.93 1345.95 74.76 516.56
C 26.16 83.16 18.43 253.40

Table 2.4 summarizes computation times for each aspect of the problem—initial global, local, and enriched global

stages for both heat transfer and thermoelasticity. It is very noticeable that the expense associated with resolving

localized stress/strain fields due to sharp heating is orders of magnitude higher than the effort required for the heat

transfer solution. It is also clear that the parallelization of local computations based on techniques developed in

[63, 106] is necessary to reduce computational effort in local problems. However, reuse of the initial global solution

via the system partitioning (2.29) and reanalysis algorithm above provides some savings in this large example.

2.6 Summary

This chapter presents the extension of the hp-GFEM and GFEMgl to thermomechanical problems exhibiting challeng-

ing localized solution characteristics. The framework presented for coupling the multidisciplinary problems exploits

special features of the method to accomplish an efficient and reliable exchange of information. Traditional coupling

techniques often involve communication between separate analysis codes requiring interpolation of the solution or

nodal quantities, which is impractical for problems of interest with very high, localized gradients contained within

individual mesh elements. This framework has been shown to lead to vastly improved efficiency in the class of prob-

lems of interest where extremely high levels of local mesh refinement are required to resolve sharp solution gradients,

compared to traditional coupling techniques.

The robust combination of accuracy and computationally efficient physics coupling enables high-fidelity simula-

tion of three-dimensional, localized thermomechanical effects on the coarse, structural scale, yielding results which

are comparable to direct finite element analysis (DFEA) for the problems examined.

The extremely high temperatures and temperature gradients in problems of interest in this study, however, quite

often lead to localized plasticity and damage evolution in the material. Thus, an analogous extension of this method to

thermoplasticity problems is required to obtain realistic and useful results in the prediction of residual deformations

of structures in relevant application areas; this extension of the method to nonlinear problems is detailed in Chapter 4.
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Chapter 3

A GFEM for resolving fine-scale material
heterogeneity

Another important class of problems exhibiting multiscale thermomechanical features discussed in the introductory

segment of this study is those problems with internal material interfaces and fine-scale heterogeneity. The primary

class of methods aimed at bridging between micro- and macro-level effects has historically been homogenization-

based methods. It is therefore necessary to mention quite a few additional methods beyond those described in Section

1.2 detailed in the literature which attempt to solve this problem. Among recent works, representative examples are

coupled hierarchical multiscale approaches like the previously discussed FE2 (Feyel, Chaboche, Unger, Özdemir et

al.) [37, 38, 99, 100, 133]. The gradient-enhanced FE2 of Kouznetsova, Geers, and Brekelmans [65] addresses some

of the limitations of the original FE2 related to the presence of discontinuities in the analysis domain. Belytschko et

al. [8, 74] present the multiscale projection method, another example of a continuous–discontinuous homogenization

scheme where the XFEM [7, 82] is used to incorporate discontinuities at the macro-scale. The Multiscale Aggregating

Discontinuities (MAD) method introduced by Belytschko et al. [10, 120] is an extension of the FE2 which is able to

model macro cracks, in which cohesive forces on crack faces are calculated from the fine scale problems. Similarly

Matouš et al. [77] propose a multiscale FE2 which is also able to consistently handle macro-scale cohesive cracks.

Concurrent embedded multiscale methods, in which two disparate scales are discretized simultaneously, include

the Voronoi Cell Finite Element Method of Ghosh et al. [45–48, 111], the multiscale approach of Liu et al. [72, 78, 79],

and the method of Cloirec et al. [14]. Lagrange multiplier methods are typically used to couple the macro- and micro-

scale discretizations in this class of methods, such as the Mortar method [66] or the Arlequin method of Ben-Dhia

[18].

Additional examples of multiscale methods proposed in recent years include domain decomposition methods, like

the FETI-DP method of Farhat et al. [36], the variation of this method proposed by Lloberas-Valls et al. [73], the

domain decomposition-based method of Guidault et al. [49], and the multigrid method proposed in [113]; the method

of Fish et al. based on a decomposition of the fine scale displacement field into eigenstrains and eigenseparations

[96, 141]; the variational multiscale enrichment method (VME) of Oskay [97, 98]; and the Multiscale FEM of Tom

Hou et al. [35, 54].

The above list of multiscale methods is far from exhaustive; a recent review of the state-of-the-art in multiscale
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computational homogenization techniques is available in [43].

Nearly all hierarchical multiscale approaches achieve coupling between scales of interest by the numerical solution

of a macroscale boundary value problem using homogenized or upscaled properties from micro-scale problem solu-

tions. A persistent limitation in these approaches is that homogenized parameters may misrepresent complex solution

behavior in the vicinity of localized phenomena such as stress raisers, fractures or sharp temperature gradients. The

solution of the homogenized equations uH has been shown to be a good approximation to the solution u of the original

problem in the L2 norm, but not, in general, in the energy norm [5]. Thus, quantities such as strains and stresses com-

puted from uH may be inaccurate, since the derivatives of u are large and oscillatory in regions containing localized

effects, yet understanding the behavior of local stress and strain fields around sharp solution gradients is necessary to

quantify failure initiation and evolution in heterogeneous materials and structures.

For a detailed description of GFEM and the GFEMgl, please refer to Section 2.2. In Section 3.1 the GFEMgl is

extended for the case of heterogeneous materials, as presented in [106], in which the global problem resolves the

overall structural response, while local problems are solved in parallel to capture and bridge information about fine-

scale material heterogeneities back to the coarse scale. This method is demonstrated on several three-dimensional heat

transfer problems which have fine-scale material features combined with localized solution behavior in Section 3.2 to

explore its accuracy, computational efficiency, and flexibility relative to a direct analysis approach.

3.1 Scale-bridging with GFEMgl

To resolve localized solution effects due to material microstructural features, the particular application of this work,

local problems typically require extensive mesh refinement, and physical regions of the global domain where global–

local enrichments are necessary may also be large. In this instance, local problems enclosing the solution behavior of

interest comprise prohibitively many degrees of freedom and the cost of a GFEMgl analysis becomes comparable to a

DFEA. Since DFEA is widely regarded as an unrealistic option for this class of problems featuring highly disparate

spatial scales, an approach which has been identified to drastically reduce the computational cost per GFEMgl local

problem is dividing large local problems into smaller, ‘sub-local’ domains [63].

3.1.1 GFEMgl with sub-local domains

Just as in the standard GFEMgl approach described previously, a local problem domain ΩL is selected according to

(2.14) which encloses a region or localized solution feature of interest, and mesh adaptivity is performed. However, in

the GFEMgl with sub-local problems, this local domain is automatically subdivided into smaller, more computationally
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Figure 3.1: Coarse global mesh and four sample sub-local domains used to generate GFEMgl enrichment functions for
each global patch—50 sub-local domains are used in the actual analysis of this problem. The boundaries of sub-local
domains are indicated with dashed lines.

manageable sub-local problems, each of which corresponds to a global patch ωα used to seed the local problem, i.e.,

ΩLα = ωα, α ∈ Igl. (3.1)

This concept is demonstrated in Figure 3.1, which shows just a few example sub-local domains (though 50 sub-local

problems are actually extracted and solved in the illustrated example).

In the context of multiscale problems, each sub-local domain could be viewed as a sort of ‘unit cell’ to represent

a single microstructural feature. However, a key difference is that, inherently, sub-local domains of adjacent global

patches overlap, as in Figure 3.2, which shows two global patches used to generate a local problem. This overlap leads

to some additional computational effort compared to the traditional GFEMgl with monolithic local problems, since the

same physical region in the global domain may be solved multiple times in several independent sub-local problems.

However, since each sub-local problem is solved independently of each other, the cost of solving all sub-local problems

on a parallel computer is smaller than solving a single large local problem (cf. Section 3.1.2). Furthermore, because

sub-local solutions are inserted into the global approximation space using a partition of unity, continuity at sub-local

boundaries is trivially enforced in the GFEMgl.

3.1.2 Parallelization of sub-local computations

Each sub-local problem depends only upon the initial global solution for boundary conditions and, therefore, is solved

independently of and free of communication with all other sub-local problems, which allows for efficient and straight-
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ω1

ω2

ΩL

∂ΩL2

∂ΩL1

Figure 3.2: Global mesh and overlapping patches ω1 and ω2 used to generate sub-local problems. Part of the boundary
∂ΩL1 is interior to ω2, while part of ∂ΩL2 is also interior to ω1. The overlapping region is shaded. The equivalent local
problem domain ΩL is also denoted by a dotted outline, constructed according to (2.14).

Algorithm 3.1 Parallel solution of GFEMgl sub-local problems.

create nloc sub-local problems (as in Section 3.1.1), collect and sort in a list;
initialize number of problems solved i← 0;
while i < nloc in parallel do

select next problem i from list;
i← i + 1;
solve sub-local problem i;

end while

forward parallelization of the GFEMgl [63]. In the class of problems of interest, where a very large number of sub-local

problems may be necessary to effectively bridge spatial scales, parallel speed-up is crucial to the practicality of the

method.

The simplicity of GFEMgl parallelization is described in Algorithm 3.1. The only caveat is that sub-local problems

must be selected in only one thread at a time and subsequently delegated to another thread in the team in order to avoid

a race condition. Additionally, because sub-local problems may vary in size and expense, for example, close to the

global boundary as opposed to on the interior of the domain (compare bottom left and top left sub-local problem

domains in Figure 3.1), the order in which they are solved may affect parallel efficiency, and thus sorting may be

necessary. A much more detailed discussion of the parallelism of the method as well as additional implementational

details are available in [63].

3.1.3 Numerical integration of weak form

Because neighboring patches of elements are enriched with different sub-local solutions, and thus defined on different

sub-local domains, integration of the enriched global weak form can, in general, be complicated in the overlap region,

due to the highly adapted nature of sub-local problems and potential mesh incompatibility issues. However, in the
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GFEMgl, since all refinement is performed on the local mesh before subdivision into sub-local problems, adjacent

sub-local problems have matching meshes where they overlap. This greatly simplifies numerical integration of global–

local shape functions in the global problem, since sub-local solutions can then be integrated exactly using the refined,

unsubdivided local mesh. Further explanation of this issue can be found in [63].

Moreover, in order to resolve fine-scale material effects, accurate integration of the left hand side is crucial, due to

rapid spatial variation in the thermal conductivity κ(x). In the coarse-scale, initial global analysis given by (2.12) or

(2.21), however, only coarse-scale integration of the left hand side is used, since only coarse-scale response is needed

to generate boundary conditions for fine-scale problems. On the other hand, in the local and enriched global problems,

the left hand side can be integrated exactly using the heavily refined local mesh. Global integration is carried out using

a parallel implementation, as discussed in Appendix B.

3.1.4 Multiscale effects on sub-local boundaries

A major challenge when dealing with material heterogeneities is the oscillations, high gradients, and singularities of

the exact solution. The initial global problem is discretized using a coarse mesh designed to capture only smooth,

structural-scale behavior; therefore, boundary conditions on sub-local domains are also smooth. The fine-scale be-

havior of the exact solution is then lost at individual sub-local boundaries. As made clear by Figure 3.2, however, in

the GFEMgl each sub-local problem boundary lying on the interior of the global domain, i.e., ∂ΩL \ (∂ΩL ∩ ∂Ω) is

interior to another sub-local problem on an adjacent patch in the overlap region. Therefore, resulting global–local

enrichment functions are able to capture highly oscillatory fine-scale effects even across element or sub-local problem

boundaries. This is in contrast to competing methods, which may require harsh constraints on fine-scale approxima-

tion functions at local boundaries, thereby potentially losing important localized solution characteristics. Strategies to

further improve the boundary conditions applied to sub-local problems are discussed in the next section.

3.1.5 Improvement of boundary conditions on sub-local problems

Inexact and often poor boundary conditions on local problems from the coarse-scale global solution are the primary

controlling factor in the quality of GFEMgl solutions. Based on detailed studies of the method as it is applied to

several classes of problems, solution behavior due to local boundary conditions can be problem-dependent [51]. In

GFEMgl analyses with sub-local problems, the effect of the boundary conditions becomes even more important, due

to the inherently smaller local problems and resulting proximity of local boundaries to sharp solution features. Two

strategies have been identified in [51] to improve their quality:

(i) multiple global–local iterations, and/or
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(ii) use of a ‘buffer zone’ to dampen the effect of error in boundary conditions altogether.

3.1.5.1 Global–local iteration

As previously described in Chapter 2, carrying out multiple global–local iterations is one promising method for im-

proving GFEMgl solutions [51, 90]. After the initial GFEMgl analysis according to Section 2.2.1, sub-local problems

are solved again, substituting the enriched global solution θE or uE , in heat transfer and thermoelasticity, respectively,

for the initial global solution θ0 or u0, providing an improved estimate of the global solution as a boundary condition

on the sub-local problems. This iteration can be carried out as many times as needed. It should be noted that unlike

traditional iterative methods, typically only a few iterations are sufficient to obtain an accurate solution. However,

inherent in this approach is the additional computational expense of solving each highly refined sub-local problem

and enriched global problem multiple times—fortunately, in the case of linear problems, this entails only forward and

backward substitutions, since the stiffness matrices of sub-local problems do not change between iterations.

An additional issue associated with global–local iteration in problems where extensive mesh refinement is present

at each sub-local problem boundary may impact computational efficiency. Bridging the enriched global solution,

which is based on local enrichments defined on the previous heavily refined local problem, to the boundary of the

current similarly heavily refined local problem is necessary (and the same issue appears, as will be demonstrated in

Chapter 4, for time-dependent problems, when local boundary conditions at each time step are derived from enriched

global solutions at the previous time step). This requires expensive searching and mapping algorithms to transfer

information between the first enriched global solution and second local problem(s), which can be complex and even

unreliable for extreme levels of mesh refinement in local problems. However, the topology of local meshes remains

the same in between local problem iterations, and a one-to-one correspondence exists between each sub-local problem

element in overlapping regions. Leveraging this information, an optimized approach (similar in nature to the multi-

physics coupling framework detailed in Chapter 2 and Appendix A) can be adopted to more efficiently map enriched

global solutions onto the boundary of each sub-local problem; the implementation of this approach is explained in

Appendix B.

3.1.5.2 Buffer zone

The buffer zone strategy consists of selecting a larger sub-local domain than the corresponding global region enriched

by that sub-local solution. In terms of seed patches, this can be interpreted as Igl
enriched ⊂ I

gl
local problem.

The buffer zone approach is the simplest strategy, as it involves solving the initial global, local, and enriched

global problems only once, potentially saving substantial computational effort compared to global–local iteration, and

is straightforward to implement. In this study, this approach is not used because of the larger and more expensive sub-
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Table 3.1: Sub-local problem details from GFEMgl analyses of the laser-heated beam problem: (enriched) global
problem sizes (in degrees of freedom) relative to DFEA and sizes of the largest sub-local problems at each global
mesh size.

Global problem size Max. local problem size

Method Sub-local problems Heat Elasticity Heat Elasticity

DFEA (hp-GFEM) — 146,142 949,968 — —
GFEMgl H1 45 673 4,845 81,081 513,513

H2 275 1,823 12,435 11,169 70,737
H3 1,589 8,393 55,797 1,701 10,773

local problems which result. The effect of using a buffer zone in parallel sub-local problems is unclear and potentially

interesting, however, and is left for future investigation.

3.2 Numerical examples

3.2.1 Homogeneous laser-heated beam

In order to most directly compare the performance of the parallel GFEMgl to the traditional GFEMgl with monolithic

local problems, before moving to problems exhibiting fine-scale material features, the homogeneous thermoelastic

laser-heated beam problem of Section 2.5.2 is revisited; in this chapter, the identical problem is solved using the

parallel approach with sub-local problems. It has already been shown that parallel efficiency of the method improves

as the number of sub-local problems is increased by slightly refining the global mesh H while holding constant the

local mesh size h, i.e., reducing the ratio H/h. This gain in efficiency is due to the lower computational cost of

individual problems and a more uniform load balance, and comes without a significant impact on overall solution

accuracy.

In each case, the coarse global mesh shown in Figure 2.7a (H = 0.5) is refined gradually in the neighborhood

of the sharp laser flux, resulting in global mesh sizes of H1 = 0.25, H2 = 0.125, and H3 = 0.0625. Corresponding

global meshes are superimposed on contour plots shown in Figure 3.3. The global heat transfer and thermoelasticity

problems have polynomial orders of approximation pθ = {2, 2, 2} and pu = {3, 3, 3}, respectively, while all sub-local

problems use pθL = {3, 3, 2} and pu
L = {4, 4, 3}. The element size in sub-local problems in each case is h ≈ 0.0078.

Sub-local problem details for this example are given in Table 3.1. Unless otherwise noted, all examples are solved

using 24 CPUs on a shared memory machine with 384 GB RAM, and a direct linear solver is used in all cases.

Because local problems are subdivided into smaller sub-local domains, inherently more local boundaries are cre-

ated in the parallel version of the GFEMgl; thus, error in boundary conditions from the coarse-scale global problem

solution on local problems may often govern overall error in the final, enriched global solution. As previously dis-
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(a) H1, temperature (b) H1, von Mises stress

(c) H2, temperature (d) H2, von Mises stress

(e) H3, temperature (f) H3, von Mises stress

Figure 3.3: Laser-heated beam GFEMgl solution contours using sub-local problems at various global mesh refinement
levels.

cussed, strategies have been identified to improve these inexact boundary conditions [51, 106]. One such improvement

strategy is the use of multiple global–local iterations, which replaces the coarse-scale, initial solution as a boundary

condition on local problems with the better-quality enriched global solution. Multiple global–local iterations are car-

ried out on the laser-heated beam at each global mesh refinement level. GFEMgl solution contours from the parallel

approach using sub-local domains at each global mesh refinement level are shown in Figure 3.3. Solutions are shown

at the final global–local iteration in each case. Figure 3.4 demonstrates the evolution of von Mises stress under the

sharp laser heating at global mesh size H2 in each enriched global solution. The stress is shown along the centerline of

the beam, at a depth z = 0.16 below the surface upon which the laser heating is applied. It is apparent from this figure

that oscillations in the solution may be present near local problem boundaries due to poor-quality boundary conditions

from the coarse-scale global solution. However, after even just one additional global–local iteration, the smoothness

of the solution in the vicinity of the sharp thermal gradient is improved drastically.
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Figure 3.4: Laser-heated beam von Mises stress field under the sharp heating along the center of the beam, at depth
z = 0.16, at each global–local iteration.

In order to better quantify the accuracy of the GFEMgl solutions, Figure 3.5 shows convergence of global error

measures—in this case, relative difference in the energy norm of each solution, computed using (2.27) and (2.28)—of

both heat transfer and thermoelasticity solutions at each global mesh size with respect to an equivalent direct finite

element analysis. The equivalent DFEA employs the hp-adaptive GFEM with an identical localized mesh refinement

level and polynomial order of the approximation as GFEMgl simulations, as described previously. After global–local

iterations, the GFEMgl at each global mesh size converges to a solution very similar to the equivalent DFEA in both

heat transfer and thermoelasticity problems, resulting in all cases in a relative difference in the energy norm of under

1%. For a given mesh refinement level (local mesh refinement in GFEMgl; localized global mesh refinement in the

DFEA) it is therefore possible to obtain a global accuracy level with GFEMgl which is on par with optimal hp-adaptive

approaches for this problem.

In addition to global measures of solution quality, local or pointwise quantities are also considered. Thus, maxi-

mum von Mises stresses from GFEMgl thermoelasticity solutions are compared in Figure 3.6. The pointwise quantities

of interest in the neighborhood of localized features obtained from GFEMgl simulations are shown to be accurate when

compared to a direct finite element analysis, converging to relative difference levels well under 1%.

3.2.2 Square domain with material microstructure

The next example presented exhibits multiscale effects in the form of material heterogeneity: a three-dimensional,

square domain with a bi-material “microstructure”, inspired by [98], subjected to strong convective boundary con-
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(b) Thermoelasticity

Figure 3.5: Convergence of relative difference in the energy norm of laser-heated beam GFEMgl solutions at various
global mesh sizes H after global–local iterations with respect to equivalent DFEA. Iteration zero represents the coarse-
scale initial global solution.
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Figure 3.6: Pointwise convergence of maximum von Mises stress in laser-heated beam GFEMgl solutions at various
global mesh sizes H after global–local iterations, computed with respect to DFEA. Iteration zero represents the coarse-
scale initial global solution.

ditions on top (θtop) and bottom (θbottom), and left (θleft) and right (θright) faces to induce a nearly two-dimensional

steady-state heat diffusion through the domain. When the thermoelasticity problem is solved, homogeneous dis-

placement boundary conditions are applied on top, bottom, left, and right faces. This problem is solved for various

resolutions (1 × 1, 2 × 2, and 4 × 4) of the repeating microstructural pattern, as described in more detail for each case

to follow.

3.2.2.1 1 × 1 (unit) cell

Geometry and boundary conditions of this simplest, “unit cell” case are depicted in Figure 3.7. This example is solved

for the heat transfer problem only. The ratio of conductivities of each material phase is κa/κb = 50. This example

serves to verify that the GFEMgl is able to reproduce a reference hp- or adaptive GFEM direct finite element analysis

(DFEA) on a coarse mesh in the presence of material heterogeneity.

The hp-GFEM DFEA employs heavy, uniform mesh refinement and polynomial order pDFEA = {2, 2, 1}. On the

other hand the GFEMgl global mesh is much coarser, with p = {1, 1, 1}, or only the linear partition of unity. The

GFEMgl local problem is chosen accordingly as the entire unit cell domain, which provides exact boundary conditions

from the global domain, since ∂ΩL = ∂Ω, the simplest possible case. The GFEMgl local problem also uses the same

mesh refinement level and polynomial order ploc = pDFEA as the DFEA, so that the two solutions are identical. Figure

3.8 demonstrates the DFEA (and, thus, also the GFEMgl local problem) mesh, as well as the coarse, global mesh used

in the GFEMgl, all consisting of structured, 4-node GFEM tetrahedra. While the material microstructure is selected to
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Figure 3.7: Geometry of the square unit cell domain with bi-material microstructure.

(a) DFEA (b) GFEMgl

Figure 3.8: GFEM meshes used to solve the 1×1 cell with each method. The adaptive GFEM DFEA mesh is identical
to the mesh used in the GFEMgl local problem.
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Table 3.2: Comparison of GFEMgl solution of the bi-material unit cell with adaptive GFEM DFEA for verification
(heat transfer only).

Method Global dofs Energy (×105) % difference

DFEA 53,979 3.094 –
GFEMgl initial 50 4.322 39.68%

local 53,979 3.094 0.00%
enriched 100 3.099 0.15%

fit the mesh refinement pattern in all examples presented for simplicity’s sake, arbitrary microstructural features may

also be modeled in through the use of GFEM enrichments like those described in [1, 84, 124].

A summary of the numerical simulation results is given in Table 3.2. As expected, DFEA and GFEMgl local

problem solutions are identical, and using only the partition of unity and global–local enrichment functions, the

GFEMgl is able to reproduce the reference solution with fine-scale details on the coarse, global mesh for this special

case.

3.2.2.2 2 × 2 cells

To determine the impact of local boundary conditions on GFEMgl solutions to the multiscale problems of interest, as

well as the effectiveness of proposed boundary condition improvement strategies, the next case is a slightly larger prob-

lem than the above example, consisting of 4 of the microstructural unit cells—2 in the x- and 2 in the y-direction—with

otherwise identical geometry and boundary conditions. This example, however, is analyzed using the multiphysics

coupling framework for the thermoelastic solution. The coarse global mesh is shown in Figure 3.10. Now adopting

the sub-local GFEMgl approach, global–local enrichment functions are constructed from numerical solutions of 50

hp-adapted sub-local problems.

As in the previous example, both DFEA and GFEMgl meshes consist of structured, 4-node tetrahedral elements. In

this case, two hp-GFEM direct analyses are carried out: one is an ‘equivalent’ hp-GFEM solution with an equivalent

level of fidelity to GFEMgl simulations, while the other is used as a reference solution to which both the equivalent

DFEA and GFEMgl solutions are compared. The equivalent DFEA uses heavy, uniform mesh refinement and global

polynomial degree pθDFEA = {2, 2, 1} in the heat transfer problem. The reference DFEA, on the other hand, has the

same level of mesh refinement, while pθDFEA = {3, 3, 2}. In GFEMgl simulations pθ = {1, 1, 1} globally, while adapted

sub-local problems use pθloc = {2, 2, 1}. In all instances, the thermoelasticity problem uses one polynomial order higher

than the heat transfer problem.

Unlike the 1 × 1 verification example, however, local problem boundaries which lie on the interior of the global

domain introduce inexact boundary conditions from the coarse-scale solution. Of the two boundary condition improve-

ment strategies discussed in Section 3.1.5, only the strategy involving multiple global–local iterations is examined for
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Figure 3.9: Convergence of relative error in the energy norm of GFEMgl heat transfer solutions of the 2× 2 square do-
main after global–local iterations, using various local boundary condition types. Zero global–local iterations indicates
the coarse-scale, initial global solution. The dashed line represents the relative error (with respect to the hp-GFEM
reference solution) of the equivalent hp-GFEM solution.

each boundary condition type. Because of the large number of local problems and high level of local mesh refinement,

the buffer zone strategy for boundary condition improvement is not considered, so as to incur a lower computational

cost per sub-local problem.

Convergence of GFEMgl solutions with respect to the reference DFEA solution after global–local iterations for

each boundary condition type in the heat transfer problem is shown in Figure 3.9. The equivalent DFEA is also shown

for comparison. Relative error in the energy norm of each solution θh with respect to the reference solution θref is

computed as

er
E,θ =

√∣∣∣B(θref, θref) − B(θh, θh)
∣∣∣√∣∣∣B(θref, θref)

∣∣∣ .

After just two global–local iterations, in the Dirichlet case, the relative difference in the energy norm between GFEMgl

and the equivalent DFEA is on the order of 1%, whereas mixed boundary conditions on sub-local problems yield a

result which is slightly closer to the reference solution. No significant further improvement in the solution is observed

past two iterations for any boundary condition type tested. The enriched global flux field contours after three iterations

resulting from each type of boundary condition on sub-local problems in the GFEMgl are also shown in Figure 3.10.

The presence of fine-scale singularities at sharp material interfaces and across global element boundaries can be

observed; localized, sharp gradients in the flux field are accurately resolved across scales by the GFEMgl.

Analogous results for the thermoelastic problem are given in Figure 3.11, where relative error in the energy norm
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(a) Dirichlet boundary conditions (b) Mixed/convective boundary conditions

Figure 3.10: Enriched global flux magnitude contours of the 2 × 2 square example solved with GFEMgl after three
global–local cycles, based on Dirichlet and convective boundary conditions in sub-local problems. The coarse global
mesh is also superimposed in each case.

of the each solution uh with respect to the reference solution uref is given by

er
E,u =

√∣∣∣B(uref,uref) − B(uh,uh)
∣∣∣√∣∣∣B(uref,uref)

∣∣∣ .

Dirichlet and mixed boundary conditions exhibit a similar convergence behavior with respect to the reference DFEA,

both attaining an error level close to or better than the equivalent direct analysis in this case. Unlike the heat transfer

problem, Dirichlet boundary conditions on sub-local problems converge to a lower error level relative to the reference

hp-GFEM solution more quickly than spring boundary conditions. The converged von Mises stress contours after

three global–local cycles in the thermoelasticity problem are shown in Figure 3.12.

Based on results from both heat transfer and thermoelasticity, in Figures 3.9 and 3.11, respectively, discrepancies

between Dirichlet and mixed boundary conditions may be attributed to problem-specific behavior. In general, it

may be difficult to choose an optimal, representative spring stiffness or convective coefficient to ensure a low error

level in GFEMgl enriched global solutions relative to DFEA; Dirichlet boundary conditions, on the other hand, are

straightforward and provide accuracy levels which are generally very similar or better than mixed boundary conditions.

Regardless of the type of boundary conditions chosen for the GFEMgl simulation, as error due to inaccurate boundary

conditions in local problems decreases (i.e., as the quality of the global solution improves), discretization error in

local problems, which is independent of the local boundary conditions, governs the overall solution accuracy.

Numerical results for the time required to assemble local problems during each global–local iteration are given in

Table 3.3; results from both brute force and optimized approaches to assembling local problem boundary conditions,

as described in Section 3.1.5, are included for comparison. Based on these results, it is clear that sub-local assembly
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Figure 3.11: Convergence of relative error in the energy norm of GFEMgl thermoelasticity solutions of the 2 × 2
square domain after global–local iterations, using various local boundary condition types. Zero global–local iterations
indicates the coarse-scale, initial global solution. The dashed line represents the relative error (with respect to the
hp-GFEM reference solution) of the equivalent hp-GFEM solution.

(a) Dirichlet boundary conditions (b) Mixed/spring boundary conditions

Figure 3.12: GFEMgl von Mises stress contours of the 2 × 2 square problem after three global–local iterations with
various local problem boundary condition types.
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Table 3.3: Parallel local problem assembly wall times for each global–local iteration of the 2 × 2 square example (24
CPUs); brute force approach to assembling boundary conditions versus an optimized approach based on sub-local
mesh topology. Heat transfer (Ωθ

L) and thermoelasticity (Ωu
L), respectively, are given.

Brute force (s) Optimized (s) Speedup

B.C. type Iteration Ωθ
L Ωu

L Ωθ
L Ωu

L Ωθ
L Ωu

L

Dirichlet 1 0.57 18.40 0.56 19.81 0.99 0.93
2 24.86 63.77 0.60 20.60 41.74 3.10
3 23.47 64.22 0.55 21.69 42.84 2.96

Mixed 1 0.57 19.59 0.49 18.80 1.16 1.04
2 25.25 112.66 0.55 24.71 45.89 4.56
3 25.29 109.08 0.69 21.87 36.82 4.99

times are bottlenecked by the computation of boundary contributions. Using the brute force approach, initial local

problems are the least expensive to assemble, since their boundary conditions are derived from the smooth, initial

global solution, defined over a coarse mesh. However, computational effort is drastically increased in both heat

transfer and thermoelastic problems after further iterations due to the substantial cost of searching and mapping of the

enriched global solution quantities onto local problem boundaries. On the other hand, use of the topology of sub-local

problem meshes at the boundary leads to assembly times which are on the same order as the initial global problem;

in heat transfer, this leads to a 98% time savings, and 67% in the case of thermoelasticity. This drastic reduction in

assembly effort affords the use of global–local iterations as a practical boundary condition improvement strategy, even

in cases which require very high levels of mesh refinement in fine-scale, sub-local problems.

3.2.2.3 4 × 4 cells

To explore the computational efficiency of the method in large simulations, another example is provided, which is

composed of 16 of the unit cells described in Section 3.2.2.1—4 in the x- and 4 in the y-direction. This problem is

solved for heat transfer physics only. The geometry and boundary conditions of the larger problem are illustrated in

Figure 3.13. Direct finite element analysis and a GFEMgl solution are again compared. As in previous cases, global

polynomial order in the reference solution is pDFEA = {2, 2, 1}, while in the GFEMgl the coarse-scale global solution

uses p = {1, 1, 1}. 162 sub-local problems are solved in this instance with heavy mesh refinement and ploc = {2, 2, 1}.

The DFEA is comprised of over 1.6 million dofs, but the largest—and thus most computationally expensive—

GFEMgl sub-local problem is just under 54000 dofs, or roughly 30 times smaller than the DFEA. The GFEMgl

enriched global problem, on the other hand, consists of only 324 dofs. The coarse, global mesh of structured, 4-

node GFEM tetrahedral elements utilized to solve this example using GFEMgl is shown in Figure 3.14. Only one

global–local cycle (i.e., no additional boundary condition improvement strategy) is considered in this case.

To carry out the computations, the hp-GFEM DFEA utilizes a parallel implementation with 6 CPUs for assembly
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Figure 3.13: Geometry of the largest (4 × 4) square domain with bi-material microstructure.

Figure 3.14: Coarse, global GFEMgl mesh used to solve the largest (4 × 4) square domain example.
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Table 3.4: Comparison of actual times to solution for the large square domain using GFEMgl and DFEA.

Method Assembly (s) Solution (s) Total (s)

DFEA 18.84 164.30 183.14
GFEMgl initial 0.00 0.01

162 sub-local problems 24.42 90.75
enriched 22.67 0.01 137.86
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Figure 3.15: Vertical temperature profile in the 4× 4 square domain at x = 0.375 (denoted by the dotted line in Figure
3.13): DFEA reference versus GFEMgl coarse-scale, initial global and enriched solutions.

and solution of the global problem. Analogously, in the GFEMgl, the 162 sub-local problems are assembled and solved

in parallel using 6 CPUs, and assembly and solution of the global problem are also carried out in parallel. The solution

times resulting from each method are provided in Table 3.4.

The GFEMgl gives noticeably better computational efficiency—over 30% time savings—than the DFEA under the

parallel implementation, even on a very small number of CPUs. While assembly of the DFEA is just slightly more

efficient than assembly of the enriched global problem, which can be attributed to the cost of assembling global–local

enrichment functions, factorization and solution of the global system of equations in the DFEA is the clear bottleneck

on solution time. On the other hand, in the GFEMgl, solving the 162 local problems is the most involved computation.

On a larger computer with additional CPUs it is expected that the GFEMgl would provide vastly better efficiency in

terms of total time to solution.

It has already been verified that global measures, such as energy, between hp-GFEM DFEA and GFEMgl simula-

tions agree well, so in this case local or pointwise accuracy of the global solution under each method is also explored

in Figure 3.15. The initial global solution provides an upper bound to the reference solution; however, it is clear
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x = 9.3

phase a

phase b

Figure 3.16: Heterogeneous laser-heated beam geometry in a localized region surrounding the sharp laser heating.
The center of the applied sharp laser heating is indicated by a dashed line. The single dot indicates the location at
which pointwise quantities are compared in each simulation.

that no local characteristics, such as sharp gradients in the temperature field can be captured on the structural-scale

mesh without special enrichment functions. Despite inexact boundary conditions from the coarse-scale solution on the

GFEMgl sub-local problems, however, pointwise temperature from the enriched global solution compares very well

with the reference solution. The GFEMgl provides both improved computational efficiency and comparable accuracy

to DFEA for this problem.

3.2.3 Laser-heated beam with material heterogeneity

Combining aspects of the laser-heated beam and square domain examples presented in Sections 3.2.1 and 3.2.2, the

presence of material heterogeneity is considered in a localized region under the sharp flux on the same laser-heated

beam of Sections 3.2.1 and 2.5.2. Thus, this example serves to combine the multiscale effects of both very localized

thermomechanical loading as well as material heterogeneity. The cruciform material pattern depicted on the beam in

Figure 3.16. In this problem, material properties are such that the ratio of heat conductivities κa/κb = 5.0. Similarly,

thermoelastic properties are such that the ratio of Young’s moduli Ea/Eb = 5.0, thermal expansion coefficients αa/αb =

5.0, and Poisson’s ratios νa = νb. In each case, material properties are chosen such that the volume-averaged properties

are equivalent to the properties chosen in the homogeneous beam in Section 3.2.1.

Because of localized stress concentrations and singularities due to material interfaces, this problem requires very

high local solution fidelity, which makes DFEA impractical due to the extreme level of mesh refinement required

to resolve localized stress gradients. However, the GFEMgl with sub-local domains allows for substantially better

resolution of local fields due to the lower computational cost of individual fine-scale problems, even at very high

levels of mesh refinement. Thus, since it has been shown that GFEMgl can obtain an accuracy level comparable

to DFEA, in this case the GFEMgl is used to generate a reference solution. This reference solution has a global

mesh refinement level leading to 1,589 sub-local problems, each of which has a local element size h ≈ 0.0039;

in comparison, the coarsest global mesh has H = 0.5. Polynomial orders used in the global and local problems,

respectively, are pθ = {2, 2, 2}, pu = {3, 3, 3}, pθL = {3, 3, 2}, and pu
L = {4, 4, 3}. The thermoelasticity DFEA which
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Table 3.5: Laser-heated beam with heterogeneous material problem size details (in degrees of freedom) from the
GFEMgl reference solution versus the equivalent direct simulation. 1,589 sub-local problems are solved in the GFEMgl

reference solution. The DFEA is prohibitively large and thus not solved in this case, but only shown for comparison.

Problem size

Method Heat transfer Thermoelasticity

DFEA (hp-GFEM) 1,104,611 7,153,071
GFEMgl Initial global 6,804 51,030

Largest local 11,169 70,737
Enriched global 8,393 55,797

(a) Temperature (b) Von Mises stress

Figure 3.17: GFEMgl reference solution contours from the laser-heated beam with material heterogeneity.

is hypothetically equivalent to this reference solution (i.e., identical mesh refinement level and polynomial order

of approximation) consists of over 7 million degrees of freedom and is too large to be stored in memory on the

computational resources used to obtain these results. Details of the size of the GFEMgl reference solution as compared

to its equivalent DFEA solution are given in Table 3.5. Qualitative contours of the GFEMgl reference solution are

shown in Figure 3.17.

Just as in the case of the homogeneous beam in Section 3.2.1, the problem is solved with various global mesh sizes

H in order to generate varying numbers and sizes of sub-local problems in the GFEMgl, where H1 = 0.25, H2 = 0.125,

and H3 = 0.0625. In all cases, the resulting local mesh size is h ≈ 0.0078. Global problem and sub-local problem

sizes are identical to those from the homogeneous beam example, shown in Table 3.1. Solution contours at each global

mesh refinement level are given in Figure 3.18.

Convergence behavior of GFEMgl solutions after global–local iterations with respect to the reference solution is

also examined in this case. Relative error in the energy norm in global solutions, with respect to the reference GFEMgl

solution, from both heat transfer and thermoelasticity solutions are shown in Figure 3.19. In this case, relative error in

the energy norm is computed as

er
E,θ =

√∣∣∣∣B(θref
gl , θ

ref
gl ) − B(θgl, θgl)

∣∣∣∣√∣∣∣∣B(θref
gl , θ

ref
gl )

∣∣∣∣
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(a) H1, temperature (b) H1, von Mises stress

(c) H2, temperature (d) H2, von Mises stress

(e) H3, temperature (f) H3, von Mises stress

Figure 3.18: Laser-heated beam with material heterogeneity solution contours from GFEMgl at various global mesh
refinement levels.
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in heat transfer, and

er
E,u =

√∣∣∣∣B(uref
gl ,u

ref
gl ) − B(ugl,ugl)

∣∣∣∣√∣∣∣∣B(uref
gl ,u

ref
gl )

∣∣∣∣
for the elasticity problem, where ( )ref

gl denotes the GFEMgl reference solution, and ( )gl denotes a GFEMgl solution,

while B( , ) indicates the bilinear form associated with each problem. For comparison the error levels from an

equivalent DFEA (once again an hp-GFEM DFEA with identical polynomial order and mesh size h ≈ 0.0078) with

respect to the GFEMgl reference solution are also shown. It is important to note that initial, coarse-scale global

problems at global mesh sizes H1 and H2 are too coarse to resolve material interfaces. Global mesh H3 in fact

matches the material interfaces; however, a mesh this coarse is unable to capture localized solution gradients in the

neighborhood of the sharp thermal loading. Thus, in this problem boundary conditions on local domains can be

especially poor, and the impact on global solution behavior is noticeable. With respect to the reference solution,

GFEMgl solutions from the coarsest two global meshes converge to a very similar and stable relative error level in

the energy norm of roughly 2% and 7% in heat transfer and thermoelasticity problems, respectively. As global–local

iterations are performed, error due to poor boundary conditions on fine-scale problems is reduced; therefore, local

solution fidelity is ultimately what controls enriched global solution error after a few iterations. On the other hand the

finest global mesh, which matches internal material interfaces, maintains a low and nearly constant error level with

respect to the reference solution, even after iteration. It can also be observed that GFEMgl solution quality may even

exceed that of an equivalent direct simulation; special global–local enrichment degrees of freedom may be able to

better represent localized gradients and singularities due to internal material interfaces.

Local or pointwise solution quantities are again compared in this numerical example. Convergence of von Mises

stress at a point (x, y) = (9.41, 0.28), denoted by a dot in Figure 3.16, on the surface of the laser-heated beam, and

in the neighborhood of both the localized laser heating and material interface, after global–local iterations is shown

in Figure 3.20. In all cases localized von Mises stress converges to a relative error level around or under 2%. For

the coarsest global mesh H1, the effect of boundary conditions is improved consistently with iteration, resulting in a

relative error level of well under 1%. At global mesh size H2, integration and discretization error, because the global

mesh does not match material interfaces, likely skews the initial global solution such that localized von Mises stress is

close to the reference value. While global solutions with the coarsest mesh H1 show, in general, a smaller error with

respect to the DFEA than a finer mesh H2, global mesh size may impact several GFEMgl solution aspects, including

the size of fine-scale, local problems, as well as the quality of the initial global solution, making pointwise convergence

behavior potentially difficult to characterize. However, after iteration, the solution approaches a relative error level

close to global mesh size H3. The fact that the global mesh conforms to internal material interfaces at mesh size H3

leads to a steady error level in pointwise quantities, even after iteration.
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Figure 3.19: Convergence of relative error in the energy norm of heterogeneous laser-heated beam GFEMgl solutions
at various global mesh refinement levels H after global–local iterations with respect to a GFEMgl reference solution.
Iteration zero represents the coarse-scale initial global solution. For comparison, the hp-GFEM DFEA is also shown.
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Figure 3.20: Pointwise convergence of von Mises stress in the heterogeneous laser-heated beam from GFEMgl so-
lutions at various global mesh refinement levels H after global–local iterations, with respect to a reference solution.
Iteration zero represents the coarse-scale initial global solution.

3.2.4 L-shaped domain

The next numerical example is a three-dimensional L-shaped domain with a similar bi-material microstructural pattern

to the square domain in Section 3.2.2, subjected to uniform, steady-state temperature boundary conditions on its top

and right faces to induce a heat flux singularity at the reentrant inner corner. Only heat transfer is considered in

this example. In this instance, the ratio of conductivities of each material phase is κa/κb = 20. Geometry and

boundary conditions are described in Figure 3.21. This problem represents a more practical scenario where resolution

of microstructural details is necessary only in a localized region surrounding a sharp solution gradient, and better

demonstrates the important interaction between microstructural heterogeneity and structural-scale loading effects.

The global problem is meshed with 4-node GFEM tetrahedra and solved using GFEMgl with sub-local problems,

p = {2, 2, 1} globally, and, in sub-local problems, heavy localized mesh refinement to capture the material microstruc-

ture, with ploc = {2, 2, 1}; higher-order enrichment in the z-direction is unnecessary due to the nearly two-dimensional

nature of the solution. In all cases, sub-local problems are solved in parallel, and only one global–local cycle is per-

formed. To demonstrate the scale of the problem the coarse, global mesh and sample local problem are shown in

Figure 3.22. The bi-material microstructure is adopted in the shaded region shown. Elsewhere, homogenized material

properties are used, where the homogenized conductivity κ∗ is computed by the rule of mixtures, that is,

κ∗ = Vaκa + Vbκb,
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Figure 3.21: Geometry of the L-shaped domain with bi-material microstructure near the reentrant inner corner.

Table 3.6: Comparison of L-shaped domain solutions from various boundary conditions on the local problem(s).

Method Global dofs Energy (×106) % difference

DFEA 1,676,652 3.376 –
DFEA, homogenized 10,120 3.440 1.91%
GFEMgl initial 768 3.537 4.79%
GFEMgl enriched Dirichlet 770 3.384 0.26%

mixed 770 3.385 0.28%

where Va (Vb) is the volume fraction of phase a (b). Global–local enrichments are adopted only in the neighborhood

of the edge singularity where the assumptions of the homogenization theory do not hold. Only two nodes of the

coarse, global mesh are enriched with these functions. The reference or equivalent DFEA uses adaptive GFEM with

pDFEA = {2, 2, 1} and localized refinement around the reentrant corner. In contrast to previous examples, to demonstrate

the impact of the material microstructure in the presence of a heat flux singularity, the problem is also solved using a

DFEA with totally homogenized material parameters and phomog = {2, 2, 1}, and employing localized mesh refinement

near the reentrant inner corner.

The first GFEMgl simulations investigate the impact of applying different types of boundary conditions (Dirichlet

or mixed) on, in this case, 2 sub-local problems. The solutions are also compared to the DFEA case using homogenized

material properties throughout, as well as the coarse-scale, initial global solution using p0 = {1, 1, 1}. Pointwise

temperature approaching the reentrant inner corner for all cases is plotted in Figure 3.23. Global energy comparisons

of each solution are also presented in Table 3.6.

Despite a relatively poor initial global solution, GFEMgl solutions employing both Dirichlet (temperature) and

mixed (convective) boundary conditions on sub-local problems are nearly identical, with Dirichlet boundary conditions
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Figure 3.22: Coarse global mesh and a sub-local domain used to generate GFEMgl enrichment functions for the L-
shaped domain example. The assumptions of the homogenization theory are not valid in the neighborhood of the edge
due to the presence of singularities.
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Figure 3.23: L-shaped domain temperature profile in approaching the reentrant corner at x = 50 (see dotted line in
Figure 3.21), comparing DFEA, DFEA with homogenized material parameters, and all GFEMgl boundary condition
types.
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(a) DFEA, homogenized material properties (b) GFEMgl

Figure 3.24: Magnitude of heat flux singularity at the reentrant inner corner of the L-shaped domain, demonstrating
the impact of material heterogeneity on localized response. Compare to Figure 3.22 for scale.

giving just slightly better results relative to the reference DFEA. The DFEA with homogenized material parameters,

on the other hand, leads to underestimation of the temperature in the neighborhood of the singularity at the reentrant

inner corner, and this solution is clearly also unable to capture potentially important localized gradients. To further

demonstrate the impact of material heterogeneity in the neighborhood of a sharp solution feature, contours of the

singular flux field at the reentrant inner corner from both homogenized DFEA and GFEMgl solutions are included

in Figure 3.24. It is clear from this figure that the singularity pattern in the homogenized and multiscale solutions

are completely different and that localized solution gradients can be captured by the GFEMgl even across fine-scale

problem boundaries. Furthermore, the GFEMgl solution at the interface between homogenized and heterogeneous

material properties does not show any spurious effects.

The effect of varying the number of (sub-)local problems used to generate global–local enrichment functions is

also examined. This is accomplished by refining the global mesh, or decreasing the global mesh size H, around

the corner in order to increase the number of seed patches, ωα, α ∈ Igl, in the global region from which sub-local

problems are selected, but maintaining the same element size h in sub-local problems across cases. Equivalently, for

each global mesh refinement level the ratio of structural-scale to fine-scale element size H/h decreases. Sub-local

problems are solved in parallel on 24 CPUs, and only one global–local cycle is used. Table 3.7 shows the maximum,

minimum, and average sizes of sub-local problems at the four coarsest global mesh sizes H.

Furthermore, in typical multiscaling techniques, the memory requirements for saving fine-scale problem informa-

tion may be substantial. In the GFEMgl, as additional sub-local problems are extracted and solved, for a constant

fine-scale mesh size h, the cost of solving each local problem actually decreases. However, it should be noted that

in order to most efficiently iterate to improve sub-local boundary conditions, factorized stiffness matrices of each

sub-local problem should be stored. The memory use in the GFEMgl with varying numbers of sub-local problems

is detailed in Table 3.8. The average memory requirement per sub-local problem drops steeply as the global mesh
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Table 3.7: L-shaped domain GFEMgl sub-local problem sizes. A greater number of sub-local problems indicates a
finer global (coarse-scale) element size (H).

(Sub-)local problem size

Method (Sub-)local problems Smallest Largest Average

DFEA – – 1,676,652 –
GFEMgl 1 – 1,674,636 –

2 1,348,208 1,348,208 1,348,208
24 100,416 815,748 285,477

161 568 274,820 44,764

Table 3.8: Memory usage in L-shaped domain solutions using the GFEMgl for various numbers of sub-local problems.
Overall memory use in GFEMgl is bound by the storage of factorizations of sub-local problem stiffness matrices.

Memory use (GB)

Method Local problems Total Per local problem

DFEA – 2.14 2.14
GFEMgl 1 2.15 2.15

2 3.03 1.51
24 7.51 0.31

161 7.70 0.05

refinement level is increased. However, when iterative improvement of boundary conditions is unnecessary, the mem-

ory requirements of the GFEMgl decrease. Overall memory use in the parallel GFEMgl is governed by the storage of

factorized sub-local problem stiffness matrices, and a conservative upper bound on memory use by sub-local problems

is given by the memory required in the largest sub-local problem multiplied by the number of processors used.

Pointwise temperature along a line approaching the reentrant inner corner is demonstrated in Figure 3.25 for

the four coarsest global meshes (i.e., the smallest number of sub-local problems), while global error measures and

solution times are given in Table 3.9 for all global meshes considered. While all solutions agree well with the DFEA,

the case with 864 separate sub-local problems yields the most accurate result. Furthermore, Figure 3.25 shows that

convergence to the reference solution as the number of sub-local problems is increased is observed not only in global

measures but also in pointwise quantities. Thus, there is an apparent tradeoff between global-to-local mesh refinement

Table 3.9: Comparison of L-shaped domain solutions using the GFEMgl for various numbers of sub-local problems.
Times to solution (assembly and factorization) are also listed.

Method Local problems Global dofs Energy (×106) % diff. Wall time (s)

DFEA – 1,676,652 3.376 – 177.4
GFEMgl 1 770 3.385 0.29% 3126.8

2 770 3.384 0.26% 837.7
24 880 3.377 0.05% 281.6

161 1,789 3.377 0.03% 60.8
864 4,440 3.375 0.01% 30.2
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Figure 3.25: Temperature profile in L-shaped domain approaching the reentrant corner at x = 50 (see dotted line in
Figure 3.21), comparing DFEA and GFEMgl solutions with varying numbers of sub-local problems.

Table 3.10: Comparison of GFEMgl parallel performance on 24 CPUs in L-shaped domain solutions with various
numbers of sub-local problems. GFEMgl solution times consider assembly, factorization, and solution of initial global
and local problems, while DFEA solution times consider only the linear solve phase.

Method Local problems Solve (s) Speedup Efficiency

DFEA (serial) – 1373.1 – –
DFEA (parallel) – 145.8 9.42 0.393
GFEMgl (parallel) 24 267.1 5.14 0.214

161 48.2 28.48 1.187
864 17.8 76.97 3.207

ratio and solution accuracy. However, global mesh refinement increases the computational effort associated with

solving the global problem itself, necessitating a detailed cost–benefit analysis of this idiosyncrasy of the GFEMgl. As

shown in Table 3.9, however, the increase in global problem size between the cases with 24 sub-local problems and

864 sub-local problems is modest at just a few thousand dofs. The solution using 864 sub-local problems is, perhaps

counterintuitively, not only the most accurate but also the most efficient.

A more detailed analysis of the parallel performance of the GFEMgl relative to DFEA combined with a highly

optimized, parallel direct linear solver is provided in Table 3.10. In this case, only the three finest global mesh sizes

are considered. GFEMgl and DFEA parallel solutions (again, on 24 CPUs) are compared to a reference DFEA serial

solution using a serial direct linear solver. Solve time in GFEMgl encompasses the assembly and solution of the initial,

coarse-scale global problem, assembly and solution of local problems, and solution of the enriched global problem.

DFEA solve time, on the other hand, includes only the linear solve phase using an optimized, parallel direct linear
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qmax = 100.0

σxx = 100.0

σxx = −100.0

Figure 3.26: Mesh and thermomechanical boundary conditions on the heterogeneous beam.

Table 3.11: Thermoelasticity problem size details in degrees of freedom (dofs) for the heterogeneous beam compared
to the equivalent hp-GFEM DFEA. In the GFEMgl simulation 372 sub-local problems are solved.

Method Problem size (dofs)

DFEA (hp-GFEM) 4,971,870
GFEMgl Initial global 11,160

Enriched global 12,276
Largest local 66,555
Smallest local 13,203
Average local 54,269

solver. GFEMgl parallel solutions attain an efficiency of well over 100% in this example.

3.2.5 Heterogeneous beam under thermomechanical bending

The final example demonstrated is a heterogeneous beam of dimensions 30× 5× 1 with material interfaces distributed

throughout and subjected to uniform strong-axis bending tractions at both ends, along with a distributed heat flux

on the top surface. Elsewhere, convective boundary conditions are applied. Geometry and boundary conditions are

given in Figure 3.26. The structure of the two-phase heterogeneous material is random but defined in such a way that

heavy, uniform mesh refinement in sub-local problems can resolve all internal material interfaces. Material properties

of material phase a (b) are as follows: thermal conductivity κa = 2.5 (κb = 10.0) Young’s modulus Ea = 2.0 × 105

(Eb = 10.0 × 105), Poisson’s ratio νa = 0.3 (νb = 0.25), and coefficient of thermal expansion αa = 2.0 × 10−5

(αb = 4.0 × 10−5). Maintaining a coarse global mesh dimension H = 1.0, the characteristic “size” of the material

microstructure requires a local mesh size h = 0.125 to resolve the material heterogeneity. Details regarding global and

local problem sizes are listed in Table 3.11.

At a necessary mesh refinement level at the fine scale of h = 0.125, a DFEA approach is impractically expensive, as

memory demands are far too high for the available computational resources. However, adopting a GFEMgl approach,

many smaller, independent sub-local problems allow for the resolution of material discontinuities at the fine scale, yet

both the computational cost and memory requirements of each local problem are manageable. The global polynomial
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Table 3.12: Wall times for each GFEMgl thermoelasticity solution phase for the heterogeneous thermomechanical
beam at h = 0.125.

Wall time (s)

Assemble Solve Total % of total time

Initial 1704.7 0.8 1705.5 35.1%
Local 138.2 283.9 442.1 8.7%
Enriched 2727.4 0.6 2728.0 56.2%

Total simulation time 4855.6

order in the heat transfer (thermoelasticity) problem is pθ = {2, 2, 2} (pu = {3, 3, 3}), while in local problems, pθL =

{2, 2, 1} (pu
L = {3, 3, 2}).

Contours of GFEMgl solutions are shown in Figure 3.27 alongside results of an hp-GFEM direct simulation of

the beam using homogenized, uniform material properties throughout. The homogenized hp-GFEM DFEA uses

only a coarse, global mesh, H = 1.0 (identical to the global mesh in the GFEMgl solution), and pθDFEA = {2, 2, 2},

pu
DFEA = {3, 3, 3}. Both homogenized DFEA and GFEMgl solutions capture the smooth, overall response of the

structure. However, the GFEMgl solution, enriched with detailed, fine-scale solutions, captures localized temperature

and stress oscillations due to fine-scale material interfaces throughout the beam, even at the coarse, global scale.

A breakdown of solution times for this case is given in Table 3.12. Because of the high level of local mesh refine-

ment relative to the coarse, global mesh, it is clear that global assembly is extraordinarily expensive relative to local

problem computations. This additional expense stems from computing contributions from global–local enrichments,

defined over the many highly hp-adapted subdomains, as well as obtaining the high-fidelity, enriched global tempera-

ture field for the calculation of thermal stress contributions. However, it is important to note that the GFEMgl solution

is still tractable on the computational resources used, while the equivalent DFEA far exceeds the available memory

capacity.

3.3 Summary

The GFEMgl enables effective resolution of microstructural effects on a coarse, structural-scale finite element mesh,

which is required in order to capture intrinsically multiscale, coupled failure initiation and evolution in structures.

GFEMgl solution accuracy is demonstrated in global measures, such as energy, and also in pointwise quantities, like

temperature, in the neighborhood of sharp gradients, and is found to be comparable to direct finite element analysis.

The multiscale coupling is accomplished without the use of homogenized or upscaled material properties, which often

fail to capture important localized behavior in the presence of, for example, singularities and other stress raisers.

Fine-scale enrichment functions also effectively capture oscillatory, localized solution behavior across boundaries in
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(a) GFEMgl, temperature (b) Homogenized DFEA, temperature

(c) GFEMgl, heat flux in axial direction (d) Homogenized DFEA, heat flux in axial direction

(e) GFEMgl, transverse deflection (f) Homogenized DFEA, transverse deflection

(g) GFEMgl, shear stress σxy (h) Homogenized DFEA, shear stress σxy

Figure 3.27: Heterogeneous beam solution contours from GFEMgl simulations with h = 0.125, alongside solutions
based on a DFEA using smooth, homogeneous material properties. The coarse-scale, global mesh is superimposed on
GFEMgl solutions.
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the structural-scale problem. In the framework of the GFEMgl, continuity among fine-scale solutions need not be

enforced, nor are overly restrictive boundary conditions on fine-scale problems required, providing this method with

flexibility in addition to its proven accuracy. Strategies are presented to improve boundary conditions on fine-scale

problems, and carrying out multiple global–local iterations is shown to be an effective technique even in the presence

of many sharp gradients due to microstructural features.

Furthermore, the examples demonstrated in this chapter highlight the efficiency of the GFEMgl—it is rapidly paral-

lelizable, since fine-scale sub-local problems are solved independently of one another, without communication. Such

efficient parallelism is critical when dealing with problems of multiscale character, since, as shown in the examples

presented, a large number of fine-scale problems is generally required in realistic simulations. Most importantly,

the GFEMgl obtains better efficiency than direct numerical simulation for the class of problems of interest, while

maintaining nearly identical accuracy.
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Chapter 4

GFEMgl for nonlinear thermomechanical
problems with time-dependent behavior

Previously, Chapter 2 described an efficient technique for modeling thermo-structural problems with the GFEMgl.

Work in this chapter focused solely on linear elastic structural response. In the classes of problems of interest, however,

it is important to consider not only elastic but also nonlinear, plastic effects due to very localized thermomechanical

loadings.

Strongly graded meshes in the neighborhood of localized heating phenomena are necessary to capture not only

intense gradients in temperature, stress, and strain—as in previous chapters dealing with purely linear elastic material

behavior—but also local residual deformations due to nonlinear effects. Adaptive methods are typically considered an

optimal approach for problems of this nature [108, 126]. For instance, hp-adaptive FEM has been applied to compu-

tational modeling of laser welding processes in [85, 115], which utilize a posteriori error estimation to perform mesh

refinement and unrefinement along the weld path. However, even when plasticity is confined to only a small region of

the global structure, heavily adapted models may prove computationally expensive to solve, since local nonlinearities

may govern the convergence behavior of the global nonlinear solution scheme. In general, classical approaches for

solving high-fidelity, nonlinear problems such as domain decomposition-based solvers may experience convergence

issues when nonlinear effects are extremely localized or otherwise unbalanced, and domain decomposition approaches

aiming to address this issue is an active research area [11, 15, 103]. Another persistent issue in adaptive approaches is

handling changing discretizations (i.e., remeshing or refinement/unrefinement) in between time or load steps. Adap-

tive simulations of nonlinear problems typically involve mapping or transfer of three-dimensional solutions as well as

material state variables onto meshes which evolve in time, leading to significant computational overhead [67, 95, 104].

The GFEMgl has been formulated for and applied to nonlinear, elasto-plastic problems by Kim et al. [64] and

Gupta et al. [52], where it has proven effective in capturing localized plasticity in local problems while maintaining a

coarse, uniform, structural-scale mesh, making global nonlinear solution iterations inexpensive. However, these works

are limited to treating localized plastic behavior which is (i) confined to a fixed region of interest on the global structure

and (ii) induced by uniform, monotonic, proportional structural loadings. In the class of problems under investigation,

intense thermal gradients on the structure may vary significantly in both space and time, leading to thermomechanical

behavior which is difficult to characterize a priori. Furthermore, both heating and cooling effects must be considered
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in order to predict residual stresses and strains.

Building upon the multiphysics solution framework presented in Chapter 2, this chapter presents a novel GFEMgl

formulation to address these issues and treat the problem of coupled transient heat transfer and nonlinear thermoplas-

ticity. The presented method can handle approximation spaces which evolve in time by updating enrichment functions

generated from local boundary value problems at each time/load step in the analysis, while maintaining a fixed global

mesh; thus, unlike typical hp-adaptive methods, it does not involve mapping of solutions and material state variables

onto changing meshes. The quality of global–local enrichments may also be sensitive to boundary conditions applied

on local problems at each time step of the analysis [51], so strategies for improving boundary conditions in the time-

dependent, nonlinear problems of interest are also discussed. In Section 3.2 results from a few verification examples

are included to demonstrate that the method achieves a comparable level of accuracy to traditional, direct analysis

approaches. Many challenging, industrial-scale problems may require a high level of local fidelity which may be pro-

hibitively expensive or difficult to achieve using a direct approach. Therefore, the presented method is finally applied

to a representative example of this nature to highlight its parallelism and general applicability in application areas of

interest.

4.1 Problem definition

In contrast with the problem formulation for linear thermoelasticity in Section 2.1, this chapter focuses on transient

heat transfer problems and nonlinear thermoplasticity problems. The problem is defined over a domain Ω ∈ R3×[0, tN]

with a specified time interval {t |t ∈ [0, tN] }. Just as in the previous case of linear thermoelasticity, the formulation is

presented in a staggered sense.

4.1.1 Transient heat transfer

The transient heat transfer problem is defined over a domain Ωθ ∈ R3 × [0, tN], Ωθ = Ω, with boundary ∂Ωθ =

Γθ ∪ Γ f ∪ Γc, where Γθ ∩ Γ f = ∅, Γθ ∩ Γc = ∅, and Γc ∩ Γ f = ∅. The strong form of the governing partial differential

equation over a time interval t ∈ [0, tN] is given by

ρc
∂θ

∂t
− ∇ · (κ∇θ) = Q(x, t) in Ωθ, (4.1)

where θ = θ(x, t) is the temperature field, κ = κ(x) the thermal conductivity tensor, ρc = ρ(x)c(x) is the volumetric

heat capacity, and Q(x, t) the internal heat source. As opposed to (2.1), time-dependency of the temperature field and

thermal loads are considered.
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Time-dependent boundary conditions on ∂Ωθ are given by

θ = θ̄(x, t) on Γθ

−κ∇θ · n = f̄ (x, t) on Γ f

−κ∇θ · n = hc(θ − θ∞) on Γc, (4.2)

where n is the outward unit normal to Γ f and Γc, f̄ and θ̄ are prescribed normal heat flux and temperature, respectively,

hc is the convective coefficient, and θ∞ is the ambient temperature. Initial conditions at time t = 0 are

θ(x, 0) = θ0(x). (4.3)

4.1.2 Thermoplasticity

The thermoplasticity problem is again defined over Ωu ∈ R3, Ωu = Ω, with boundary ∂Ωu = Γu∪Γt, where Γu∩Γt = ∅.

Only quasistatic response is assumed; however, when dealing with highly transient thermal loadings, the dynamic

effects of rapid thermal expansion and shrinkage may need to be considered in the thermomechanical response, which

is left for future study.

The quasistatic or steady-state governing equations are given by

∇ · σ = −b(x, t) in Ωu

σ = C : εm

εm = ε − εp − εθ

ε =
1
2

(
∇u + ∇uT

)
εθ = αθ(θ(x, t) − θ∞), (4.4)

with σ the Cauchy stress tensor, b the body force, C = C(x) Hooke’s tensor of material moduli, and ε, εm, εp, and

εθ the total, elastic mechanical, plastic, and thermal strain tensors, respectively. The reference temperature for the

computation of thermal strains and the ambient temperature θ∞ (used in convective heat transfer boundary conditions)

are assumed to be the same in all cases. Plastic strain εp is a state variable defined at each material point in the domain;

the J2 plasticity model adopted in this study is defined in detail in the following section. u = u(x, t) is the (now time-

or load-dependent) displacement field, and αθ = αθ(x) denotes the tensor of thermal expansion coefficients. In all

cases, isotropic thermal expansion is assumed, that is, αθ = αθ1. It is also important to note that in the context of

thermoplasticity problems, t denotes pseudotime.
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Table 4.1: Classical rate-independent J2 flow theory.

Elastic stress-strain relationship: σ = C : εm

Elastic domain in stress space: Eσ = {(σ, α) | f (σ, α) ≤ 0}

Associated flow rule and hardening law: ε̇p = γ
∂ f
∂σ

α̇ =

√
2
3
γ

Kuhn–Tucker loading/unloading conditions: γ ≥ 0, f (σ, α) ≤ 0, γ f (σ, α) = 0

Consistency condition: γ ḟ (σ, α) = 0

Boundary conditions on ∂Ωu are

u(x, t) = ū(x, t) on Γu

σ(x, t) · n = t̄(x, t) on Γt, (4.5)

where ū is the prescribed displacement, n is the outward unit normal to Γt, and t̄ is the specified traction. Initial

conditions at time t = 0 are denoted

u(x, 0) = u0(x). (4.6)

4.1.2.1 Plasticity model

Plastic deformations in the material are accounted for using the classical J2 flow theory as detailed by Simo and

Hughes [118] and included in Table 4.1. Only the rate-independent case with isotropic hardening is considered;

however, viscoplastic effects become important in certain instances of the class of problems of interest, which may be

a pertinent topic of future work. The von Mises yield criterion f is given by

f (σ, α) = ||devσ|| −

√
2
3

K̂(α) ≤ 0, (4.7)

where α is the internal material hardening state variable, and the hardening model K̂ adopted herein is given by

K̂(α) = σy + Kα + (σ∞ − σy)
[
1 − exp(−ωα)

]
, (4.8)

with σy the yield stress and K the linear hardening parameter. σ∞ and ω are the saturation stress and hardening

exponent, respectively, associated with nonlinear hardening, based on the model originally proposed in [135] and also

used in [32].
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4.2 GFEMgl formulation for coupled transient heat transfer and

thermoplasticity

4.2.1 GFEMgl for general time-dependent problems

In contrast to the steady-state form of the method presented in Section 2.2.1 of Chapter 2, GFEMgl analyses of time-

dependent or multi-step problems are most generally embodied by

(i) establishing initial conditions, i.e., solving the initial global problem, then

(ii) at each time or load step in the simulation t = tn, n = 0, . . . ,N,

(1) extracting and solving local problems based on boundary conditions from the global solution, and

(2) reanalyzing the enriched global problem based on local solutions at tn.

The overall GFEMgl algorithm for the coupled, time-dependent thermoplasticity problem is illustrated in Figure 4.1.

Two primary issues unique to time-dependent or multi-step nonlinear GFEMgl analyses implied by the steps above are

(i) the choice of boundary conditions from the global solution on local problems at each time step tn, so as to

minimize error in local solutions, and

(ii) the time-dependency of global–local enrichments used to approximate the global solution.

However, time evolution of the global approximation space is not unique to the GFEMgl; this issue is analogous to

hp-adaptive methods, where the global approximation changes in between time steps as a result of changing mesh

refinement. Similarly, in G/XFEM analyses of dynamic fracture propagation [20, 25, 121], global enrichment spaces

(i.e., mesh nodes enriched with Heaviside or singular functions) must vary in time to accommodate evolving crack

paths.

A detailed GFEMgl formulation for coupled transient heat transfer and nonlinear thermoplasticity follows, includ-

ing a description of how local problem boundary conditions as well as time-dependent global approximation spaces

are treated.

4.2.2 Transient heat transfer

As opposed to Section 2.3.1 in Chapter 2, time-dependency of the temperature field must be accounted for in dis-

cretizing the heat equation (4.1). Application of the GFEMgl to transient heat transfer problems is the subject of work

by O’Hara et al. [91–93]. In this formulation, the global governing PDE (4.1) is discretized spatially using GFEM

and temporally using a finite difference scheme. In order to capture localized evolution of the solution in time, it is
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Transient global heat transfer

Steady-state local heat transfer

Global thermoplasticity

Local thermoplasticity

1. Set initial conditions: n = 0, t0 = 0, θ0, u0

2. At time t = tn+1:

2.1. Boundary
conditions from
global solution θn 2.2. Enrichment

functions from local
solution θL,n+1

2.3. Temperature field
θn+1

2.4. Boundary
conditions from
global solution un (or
u∗n+1)

2.5. Enrichment
functions from local
solution uL,n+1

3. n← n + 1

Figure 4.1: The GFEMgl for time-dependent thermo-structural problems, as detailed in Section 4.2. The coarse-scale
global problem and hp-adapted local problem are shown in each discipline.
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generally necessary to update global–local shape functions at each time step, thereby introducing time-dependency

into the global shape functions. Thus, the following transient formulation accommodates changing shape functions

over the course of the transient solution.

4.2.2.1 Global problem

On the coarse-scale, global domain Ω̄θ = Ωθ ∪ ∂Ωθ. The problem is formulated as: Find θ ∈ SG(Ωθ) ⊂ SGFEM(Ωθ)

such that for all δθ ∈ SG(Ωθ),

∫
Ωθ

(
ρc
∂θ

∂t
δθ + ∇θκ∇δθ

)
dΩ + η

∫
Γθ
θδθ dΓ +

∫
Γc

hcθδθ dΓ

=

∫
Ωθ

Qδθ dΩ +

∫
Γ f

f̄ δθ dΓ + η

∫
Γθ
θ̄δθ dΓ +

∫
Γc

hcθ∞δθ dΓ, (4.9)

where η is a penalty parameter for enforcement of Dirichlet boundary conditions.

The temperature drift ∂θ
∂t is approximated using the α-method finite difference scheme,

∂θ

∂t
=
θn+1 − θn

∆t

θn+α = αθn+1 + (1 − α)θn, (4.10)

where the notation ( )n := ( )(x, tn) is adopted. Parameter 0.0 ≤ α ≤ 1.0 determines the particular finite difference

scheme (whether implicit or explicit), and ∆t is the time step size, such that
∑N

n=1 ∆tn = tN . Substituting (4.10) in (4.9),

the temporally discretized weak form is given by

∫
Ωθ

(
ρc
∆t

(θn+1 − θn) δθ + ∇ [αθn+1 + (1 − α)θn] κ∇δθ
)

dΩ

+ η

∫
Γθ

[αθn+1 + (1 − α)θn] δθ dΓ +

∫
Γc

hc [αθn+1 + (1 − α)θn] δθ dΓ

=

∫
Ωθ

[αQn+1 + (1 − α)Qn] δθ dΩ +

∫
Γ f

[
α f̄n+1 + (1 − α) f̄n

]
δθ dΓ

+ η

∫
Γθ

[
αθ̄n+1 + (1 − α)θ̄n

]
δθ dΓ +

∫
Γc

hcθ∞δθ dΓ. (4.11)

Adopting GFEM approximation (2.8) for the temperature field θ and rewriting in matrix form, while also consid-

ering potential time-dependency of shape functions,

θ(x, tn) ≈ θhp(x, tn) = N̄θ
n(x)dθ, (4.12)
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where

N̄θ
n(x) =

[
N̄θ

n,1(x) · · · N̄θ
n,k(x)

]
, N̄θ

n,α =
[
Nα(x) φn,α1(x) · · · φn,αmα

(x)
]
,

and similarly for the temperature gradient ∇θ,

∇θ(x, tn) ≈ ∇θhp(x, tn) = B̄θ
n(x)dθ =

[
∇ ⊗ N̄θ

n(x)
]

dθ. (4.13)

Substituting (4.12) and (4.13) into (4.11) and moving all known terms (those involving time tn as well as prescribed

quantities) to the right-hand side, the fully spatially and temporally discretized form of the transient heat transfer

problem is

[
1
∆t

Mθ
n+1 + αKθ

n+1

]
dθn+1 =

[
1
∆t

Mθ
n+1,n − (1 − α)Kθ

n+1,n

]
dθn + αfθext,n+1 + (1 − α)fθext,n+1,n, (4.14)

where

Mθ
n+1 =

∫
Ωθ

ρcN̄θ T
n+1N̄θ

n+1 dΩ,

Kθ
n+1 =

∫
Ωθ

B̄θ T
n+1κB̄θ

n+1 dΩ +

∫
Γc

hcN̄θ T
n+1N̄θ

n+1 dΓ,

Mθ
n+1,n =

∫
Ωθ

ρcN̄θ T
n+1N̄θ

n dΩ,

Kθ
n+1,n =

∫
Ωθ

B̄θ T
n+1κB̄θ

n dΩ +

∫
Γc

hcN̄θ T
n+1N̄θ

n dΓ,

fθext,n+1 =

∫
Ωθ

N̄θ T
n+1Qn+1 dΩ +

∫
Γ f

N̄θ T
n+1 f̄n+1 dΓ + η

∫
Γθ

N̄θ T
n+1θ̄n+1 dΓ +

∫
Γc

N̄θ T
n+1hcθ∞ dΓ,

fθext,n+1,n =

∫
Ωθ

N̄θ T
n+1Qn dΩ +

∫
Γ f

N̄θ T
n+1 f̄n dΓ + η

∫
Γθ

N̄θ T
n+1θ̄n dΓ +

∫
Γc

N̄θ T
n+1hcθ∞ dΓ.

Thus, time-dependency of the global approximation space can be treated in a straightforward manner involving only

one extra term, Mθ
n+1,ndθn, on the right-hand side at each time step.

For simplicity, α = 1.0 is chosen in all subsequent transient heat transfer GFEMgl simulations, leading to the

unconditionally stable, implicit backward Euler scheme. In this instance, (4.14) simplifies to

[
1
∆t

Mθ
n+1 + Kθ

n+1

]
dθn+1 =

1
∆t

Mθ
n+1,ndθn + fθext,n+1. (4.15)

4.2.2.2 Local problem(s)

Local problems defined on Ωθ
L,i are extracted from the global domain Ωθ in the same manner as the GFEMgl procedure

presented in Section 2.3.1 of Chapter 2 for the case of steady-state heat transfer. Given the transient nature of the
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global problem, local solutions should, however, be updated at each global time step t = ti, i = 0, . . . ,N to reflect

the time-evolution of localized effects. Because local solutions are only utilized to generate global–local enrichment

functions with good approximation properties for the global problem, transient effects in local problems are ignored,

which simplifies and reduces the computational effort required to solve. Thus, at a given time step tn+1, the solving

equations are of the same form as the steady-state heat transfer local problem presented in Section 2.3.1 of Chapter 2:

Kθ
LdθL,n+1 = fθext,L,n+1, (4.16)

where the left-hand side Kθ
L remains constant in between time steps, just as in Equation (2.13). However, time-

dependency of thermal loads and boundary conditions must be considered on the right-hand side, so that

fθext,L,n+1 = η

∫
∂Ωθ

L\(∂Ωθ
L∩∂Ωθ)

N̄θ T
L θn dΓ + η

∫
∂Ωθ

L∩Γθ
N̄θ T

L θ̄n+1 dΓ +

∫
Ωθ

L

N̄θ T
L Qn+1 dΩ

+

∫
∂Ωθ

L∩Γ f
N̄θ T

L f̄n+1 dΓ +

∫
∂Ωθ

L∩Γc
hcN̄θ T

L θ∞ dΓ. (4.17)

A key aspect of (4.17) is that boundary conditions on ∂Ωθ
L∩∂Ωθ, such as the prescribed heat flux f̄ (x, t) and temperature

θ̄(x, t), are evaluated at current time t = tn+1, whereas boundary conditions on ∂Ωθ
L \

(
∂Ωθ

L ∩ ∂Ωθ
)

come from the

transient global solution θn = θ(x, tn) at the previous time step.

4.2.2.3 Global–local enrichment functions

The steady-state local problem (4.16) yields global–local enrichments for the transient global problem at time t = tn

φ
gl
n,α(x) = Nα(x)θL(x, tn). (4.18)

Time-dependent shape functions at a given patch ωα in the enriched global problem are thus given by

N̄θ
n,α(x) =

[
Nα(x) φα1(x) · · · φα(mα−1)(x) φ

gl
n,α(x)

]
,

where time-dependency is only assumed to arise in global–local shape functions. Temperature gradient B̄θ
n,α(x) follows

in a straightforward manner.

4.2.3 Nonlinear thermoplasticity

Treating localized thermoplasticity with GFEMgl using global–local shape functions which evolve in time bears analo-

gies to heat transfer with time-dependent shape functions; however, additional challenges arise as a result of the non-
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εn

σ

ε

σn

(a) General nonlinear stress–strain relationship.

εp εe

σ

ε

load
unload

σy

(b) Elasto-plastic stress–strain relationship with linear elastic
loading/unloading and linear isotropic hardening behavior.

Figure 4.2: Nonlinear stress–strain relationships for, e.g., nonlinear elastic or elasto-plastic materials.

linear nature of the problem. In this section, strategies for accommodating time-dependent shape functions in the

GFEMgl are identified and formulated in detail for both

(i) general nonlinear problems (for example, nonlinear elasticity) as well as

(ii) the particular case of interest, thermo-elasto-plasticity.

The formulations presented are detailed in algorithm form in Appendix C.

4.2.3.1 General nonlinear global problem

The nonlinear problem defined by (4.4) is typically subdivided into several load or time steps, so that the displacement

un+1 := u(x, tn+1) is expressed incrementally as

un+1 = un + ∆un+1. (4.19)

Equilibrium must be satisfied in an incremental sense at each step. By substituting (4.19) in (4.4), the variational

formulation of the nonlinear global problem is:

Find ∆un+1 ∈ SG(Ωu) ⊂ SGFEM(Ωu) such that, ∀δu ∈ SG(Ωu),

∫
Ωu
σ(un + ∆un+1) : ε(δu) dΩ + η

∫
Γu

(un + ∆un+1) · δu dΓ =

∫
Γt

t̄n+1 · δu dΓ + η

∫
Γu

ūn+1 · δu dΓ, (4.20)
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where η is a penalty parameter. Because nonlinearity arises in σ(un+1), as demonstrated, for example, in Figure 4.2a,

an iterative Newton-Raphson procedure can directly be applied to solve (4.20) for ∆un+1. Linearizing (4.20) in this

sense and rearranging all known terms (including prescribed loads or displacements and terms involving the previous

time tn or previous Newton-Raphson iteration) on the right-hand side,

∫
Ωu
ε(∆u(i+1)) : C(i)

tan : ε(δu) dΩ + η

∫
Γu
∆u(i+1) · δu dΓ =

∫
Γt

t̄n+1 · δu dΓ

+ η

∫
Γu

(
ūn+1 − u(i)

n+1

)
· δu dΓ −

∫
Ωu
σ(un + ∆u(i)

n+1) : ε(δu) dΩ, (4.21)

where ( )(i) signifies a quantity at Newton-Raphson iteration i, and C(i)
tan represents the material tangent moduli at

iteration i,

C(i)
tan :=

∂σ(u(i)
n+1)

∂ε(u(i)
n+1)

. (4.22)

Observing that un|Γu = ūn, (4.21) simplifies further to

∫
Ωu
ε(∆u(i+1)) : C(i)

tan : ε(δu) dΩ + η

∫
Γu
∆u(i+1) · δu dΓ =

∫
Γt

t̄n+1 · δu dΓ

+ η

∫
Γu

(
∆ūn+1 − ∆u(i)

n+1

)
· δu dΓ −

∫
Ωu
σ(un + ∆u(i)

n+1) : ε(δu) dΩ, (4.23)

The total displacement increment at time tn+1 is updated at each iteration as

∆u(i+1)
n+1 = ∆u(i)

n+1 + ∆u(i+1). (4.24)

Combining the Newton-Raphson iteration (4.21), constitutive relations (4.4), and the J2-plasticity model of Table

4.1, the radial return mapping algorithm, as proposed in [118], to update the plastic deformation at each load step is

detailed in Algorithm 4.1.

In contrast to Equations (2.19) and (2.20) in the linear thermoelasticity problem of Chapter 2, the nonlinear prob-

lem formulated in (4.23) leads to a GFEM approximation of the displacement (or strain) increment, rather than the

total displacement (or strain), at time tn+1, albeit of the same form,

∆u(x, tn+1) ≈ ∆uhp(x, tn+1) = N̄u
n+1(x)∆du

n+1,

ε(∆un+1) ≈ εhp(∆uhp
n+1) = B̄u

n+1(x)∆du
n+1, (4.25)

with incremental solution coefficients ∆du
n+1. The total displacement and strain can then be reconstructed as the
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Algorithm 4.1 Radial return mapping for classical rate-independent J2 flow theory.

Compute the trial elastic state based on displacement u(i)
n+1 at iteration i,

εm,trial
n+1 = ε(u(i)

n+1) − εp
n − ε

θ
n+1

σtrial
n+1 = C : εm,trial

n+1 ;

if f (σtrial
n+1, αn) ≤ 0 then

Admissible stress state—set the current plastic state to the previous state, and compute the elastic moduli:

αn+1 = αn

εp
n+1 = εp

n

σn+1 = σtrial
n+1

C(i)
tan = C

else
Inadmissible stress state—solve the (nonlinear) equation

f (σtrial
n+1, αn +

√
2
3 ∆γ(i)) = 0

for ∆γ(i) = γ(i)∆tn+1;
Compute the updated plastic state and elasto-plastic tangent moduli:

n(i)
n+1 =

devσtrial
n+1∣∣∣∣∣∣devσtrial
n+1

∣∣∣∣∣∣
α(i)

n+1 = αn +

√
2
3 ∆γ(i)

εp(i)
n+1 = εp

n + ∆γ(i)n(i)
n+1

εm(i)
n+1 = ε(u(i)

n+1) − εp(i)
n+1 − ε

θ
n+1

σ(i)
n+1 = C : εm(i)

n+1

C(i)
tan = C(i)

ep,n+1;

end if
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summation of all increments, that is,

uhp(x, tn+1) =

n+1∑
j=0

N̄u
j (x)∆du

j ,

εhp(uhp
n+1) =

n+1∑
j=0

B̄u
j (x)∆du

j . (4.26)

However, it is clear from (4.23) that the computation of σ(un + ∆un+1) at each integration point in Ωu involves the in-

cremental reconstruction of total strain εn+1 from each time step of the nonlinear solution. To avoid this computational

overhead, it is convenient to store the total strain at the previous step εn as a state variable at each material point, such

that

ε(un+1) ≈ εhp(uhp
n+1) = εn + B̄u

n+1(x)∆du
n+1. (4.27)

Introducing (4.25) and (4.27) in (4.23), the discrete form of the problem at each Newton-Raphson iteration may

be written as

Ku(i)
tan,n+1∆du(i+1) = fu

ext,n+1 − fu(i)
int,n+1, (4.28)

where

Ku(i)
tan,n+1 =

∫
Ωu

B̄u T
n+1C(i)

tanB̄u
n+1 dΩ + η

∫
Γu

N̄u T
n+1N̄u

n+1 dΓ,

fu
ext,n+1 =

∫
Γt

N̄u T
n+1 t̄n+1 dΓ + η

∫
Γu

N̄u T
n+1ūn+1 dΓ,

fu(i)
int,n+1 =

∫
Ωu

B̄u T
n+1σ(εn+1) dΩ + η

∫
Γu

N̄u T
n+1∆du

n+1 dΓ,

and, from (4.4), fu(i)
int,n+1 in (4.28) incorporates thermomechanical effects. From (4.24) and (4.26), the total solution at

each iteration is updated discretely as

uhp(i+1)
n+1 =

n∑
j=0

N̄u
j (x)∆du

j + N̄u
n+1∆du(i+1)

n+1 with ∆du(i+1)
n+1 = ∆du(i)

n+1 + ∆du(i+1). (4.29)

4.2.3.2 Thermo-elasto-plastic global problem

The preceding holds for a general materially nonlinear problem (with or without time-dependent shape functions)

based on an incremental Newton-Raphson solution scheme. However, the solution then depends recursively on all

previous solution increments; thus, it requires saving each previous solution increment in the nonlinear analysis,

∆u j, j = 0, . . . , n, comprised of solution coefficients ∆d j and time-dependent shape functions N̄u
j at each step, as

well as the previous total strain εn at each integration point in the domain. In three-dimensional, nonlinear solutions
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involving many time steps and a large number of integration points, computer memory demands may therefore be

substantial.

Instead, an explicit representation of the solution at the current time step only in terms of shape functions from

the current step is sought, i.e., adopting (2.9), the GFEM approximations of the total displacement and strain fields,

respectively, in matrix form are

u(i)
n+1 ≈ uhp(i)

n+1 = N̄u
n+1(x)du(i)

n+1,

ε(i)
n+1 ≈ ε

hp(i)
n+1 = B̄u

n+1(x)du(i)
n+1, (4.30)

where

N̄u
n+1(x) =

[
N̄u

n+1,1(x) · · · N̄u
n+1,k(x)

]
, N̄u

n+1,α(x) =

Nu
α0(x)︸ ︷︷ ︸
PoU

Nu
n+1,α1(x) · · · Nu

n+1,αmα
(x)︸                           ︷︷                           ︸

Enrichment


denotes the global shape functions, while

B̄u
n+1(x) =

[
B̄u

n+1,1(x) · · · B̄u
n+1,k(x)

]
, B̄u

n+1,α(x) =

Bu
α0(x)︸ ︷︷ ︸
PoU

Bu
n+1,α1(x) · · · Bu

n+1,αmα
(x)︸                           ︷︷                           ︸

Enrichment

 ,
indicates the strain-displacement matrix.

In the special case of elasto-plasticity, the total stress at the previous converged load step σ(un) satisfies the von

Mises yield criterion (4.7). Then, according to (4.4) and Table 4.1, σ is linear elastic in un, such that

σ(un+1) = σ(un + ∆un+1) = C : εm(un) + σ(∆un+1).

The elastic loading/unloading behavior is demonstrated graphically in Figure 4.2b (in this instance considering a linear

elastic material model with linear isotropic hardening behavior). (4.21) may then be rewritten

∫
Ωu
ε(∆u(i+1)) : C(i)

tan : ε(δu) dΩ + η

∫
Γu
∆u(i+1) · δu dΓ =

∫
Γt

t̄n+1 · δu dΓ + η

∫
Γu

(
ūn+1 − u(i)

n+1

)
· δu dΓ

−

∫
Ωu
εm(un) : C : ε(δu) dΩ −

∫
Ωu
σ(∆u(i)

n+1) : ε(δu) dΩ. (4.31)

A critical issue in (4.31) is representing the total solution u(0)
n+1 to begin Newton-Raphson iterations at the beginning of

each new time or load step (i = 1). Traditionally, the previous converged total solution is used to begin the nonlinear
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solution scheme, i.e., u(0)
n+1 = un. However,

un ≈ N̄u
ndu

n

depends on previous shape functions N̄u
n , which are unavailable at the current time step, and previous converged

solution coefficients du
n are incompatible with shape functions N̄u

n+1 at the current step.

Linear recovery of total solution un Instead, the previous total solution un may be approximated using current

global shape functions updated for time t = tn+1,

un ≈ uhp
n+1,n = N̄u

n+1(x, tn+1)du
n+1,n,

εn ≈ ε
hp
n+1,n = B̄u

n+1(x, tn+1)du
n+1,n, (4.32)

where the notation ( )n+1,n indicates a term involving shape functions from step n + 1 and quantities (e.g., strains,

loads, or solutions) from step n. Because the previous converged state is linear elastic in un, rewriting (4.20) at the

previous step n and substituting linear elastic constitutive relations (4.4) yields

∫
Ωu
εm(un) : C : ε(δu) dΩ + η

∫
Γu

un · δu dΓ =

∫
Γt

t̄n · δu dΓ + η

∫
Γu

ūn · δu dΓ, (4.33)

where

εm(un) = ε(un) − εp
n − ε

θ
n.

Previous converged plastic and thermal strains εp
n and εθn may then be applied as linear elastic pre-strains on the

right-hand side of (4.33), so that

∫
Ωu
ε(un) : C : ε(δu) dΩ+η

∫
Γu

un ·δu dΓ =

∫
Γt

t̄n ·δu dΓ+η

∫
Γu

ūn ·δu dΓ−

∫
Ωu

(
−εp

n − αθθn

)
: C : ε(δu) dΩ. (4.34)

Substituting approximation (4.32) for un and εn results in the discrete linear elastic system of equations

Ku
elas,n+1du

n+1,n = fu
ext,n+1,n − fu

int,n+1,n, (4.35)
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with

Ku
elas,n+1 =

∫
Ωu

B̄u T
n+1CB̄u

n+1 dΩ + η

∫
Γu

N̄u T
n+1N̄u

n+1 dΓ,

fu
ext,n+1,n =

∫
Γt

N̄u T
n+1 t̄n dΓ + η

∫
Γu

N̄u T
n+1ūn dΓ,

fu
int,n+1,n =

∫
Ωu

B̄u T
n+1C

(
−εp

n − αθθn

)
dΩ.

Although (4.35) has a residual-type quantity on the right-hand side, the internal force term contains only linear elastic

pre-strains, leading to a total solution. The ‘recovered’ solution uhp
n+1,n provides a robust starting point for the nonlinear

solution algorithm at step n + 1, and the fully discrete form of the Newton-Raphson scheme for un+1 at each iteration

i > 0 is then

Ku(i)
tan,n+1∆du(i+1) = fu

ext,n+1 − fu(i)
int,n+1, (4.36)

with

Ku(i)
tan,n+1 =

∫
Ωu

B̄u T
n+1C(i)

tanB̄u
n+1 dΩ + η

∫
Γu

N̄u T
n+1N̄u

n+1 dΓ,

fu
ext,n+1 =

∫
Γt

N̄u T
n+1 t̄n+1 dΓ + η

∫
Γu

N̄u T
n+1ūn+1 dΓ,

fu(i)
int,n+1 =

∫
Ωu

B̄u T
n+1σ(u(i)

n+1) dΩ.

The approximate total solution uhp(i+1)
n+1 can then be expressed in a convenient form involving only shape functions from

the current step t = tn+1, as

uhp(i)
n+1 = N̄u

n+1du(i+1)
n+1 with du(i+1)

n+1 = du(i)
n+1 + ∆du(i+1), (4.37)

where du(0)
n+1 = du

n+1,n. Thus, time-dependency of the global approximation space may be handled automatically, and

representing the total solution in the updated space at step t = tn+1 involves no additional computational cost or

storage compared to a discretization which remains constant in between time steps.

Linear prediction of total solution un+1 A disadvantage of recovering the previous converged state un is that (4.34)

involves the temperature from the previous time t = tn, which therefore requires storage of the heat transfer solution

from both previous and current time steps. Instead, a strategy based on a linear elastic ‘prediction’ of the solution at
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the current time t = tn+1 is detailed as follows: At the initial Newton-Raphson iteration i = 1 of time tn+1,

C(0)
tan = C,

u(1)
n+1 := un + ∆u(1).

Substituting the above into (4.31) yields

∫
Ωu
ε(∆u(1)) : C : ε(δu) dΩ + η

∫
Γu
∆u(1) · δu dΓ =

∫
Γt

t̄n+1 · δu dΓ + η

∫
Γu

(
ūn+1 −

(
u(1)

n+1 − ∆u(1)
))
· δu dΓ

−

∫
Ωu

(
ε(u(1)

n+1 − ∆u(1)) − εp
n − ε

θ
n+1

)
: C : ε(δu) dΩ,

then rearranging and simplifying further,

∫
Ωu
ε(u(1)

n+1) : C : ε(δu) dΩ + η

∫
Γu

u(1)
n+1 · δu dΓ =

∫
Γt

t̄n+1 · δu dΓ + η

∫
Γu

ūn+1 · δu dΓ

+

∫
Ωu

(
εp

n + εθn+1

)
: C : ε(δu) dΩ, (4.38)

which is linear in total solution iterate u(1)
n+1, based on the application of εp

n as a linear elastic pre-strain on the right-

hand side. Rather than ‘recovering’ previous solution un+1,n as proposed above, u(1)
n+1 is equivalent to a linear elastic

‘predictor’ or trial state of the classical RRA [118] at load increment n + 1. Substituting (4.30) into (4.38) results in

the discrete linear system of equations at iteration i = 1

Ku
elas,n+1du(1)

n+1 = fu
ext,n+1 − fu(0)

int,n+1, (4.39)

with

fu(0)
int,n+1 =

∫
Ωu

B̄u T
n+1C

(
−εp

n − αθθn+1

)
dΩ.

The fully discrete form of the Newton-Raphson scheme for un+1 at each iteration i > 1 is given by (4.36), and the

approximate total solution uhp(i+1)
n+1 is similarly given by (4.37).

4.2.3.3 Local problem(s)

A local domain Ωu
L ⊆ Ωu is chosen just as previously described in the linear thermoelasticity formulation of Section

2.3.2 of Chapter 2. The nonlinear local thermoplasticity problem is divided into time steps or increments in the same

manner as the global problem, so that, at t = tn+1, it is formulated as follows:
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Find ∆uL,n+1 ∈ SL(Ωu
L) ⊂ SGFEM(Ωu

L) such that, ∀δuL ∈ Xhp
L (Ωu

L),

∫
Ωu

L

σ(uL,n + ∆uL,n+1) : ε(δuL) dΩ + η

∫
∂Ωu

L\(∂Ωu
L∩Γt)

(
uL,n + ∆uL,n+1

)
· δuL dΓ

= η

∫
∂Ωu

L\(∂Ωu
L∩∂Ωu)

un · δuL dΓ + η

∫
∂Ωu

L∩Γu
ūn+1 · δuL dΓ +

∫
∂Ωu

L∩Γt
t̄n+1 · δuL dΓ. (4.40)

A key aspect of problem (4.40) is the use of the generalized FEM solution of the global problem un at the previous

time step as a displacement boundary condition on ∂Ωu
L \ (∂Ωu

L ∩ ∂Ωu); tractions or spring boundary conditions are

also permitted.

The local total displacement, displacement increment, and total strain fields, respectively, may be approximated as

∆uL(x, tn+1) ≈ ∆uhp
L (x, tn+1) = N̄u

L(x)∆du
L,n+1,

uL(x, tn+1) ≈ uhp
L (x, tn+1) = N̄u

L(x)du
L,n+1,

ε(uL,n+1) ≈ εhp
L (uhp

n+1) = B̄u
L(x)du

L,n+1, (4.41)

where, in the local problem, shape functions are independent of time t. Applying a Newton-Raphson iteration scheme

to the nonlinear problem (4.40) in an analogous manner to the global problem (4.21), the discrete system of equations

at iteration i + 1 is given by

Ku(i)
tan,L∆du(i+1)

L = fu
ext,L,n+1 − fu(i)

int,L,n+1, (4.42)

with

Ku(i)
tan,L =

∫
Ωu

L

B̄u T
L C(i)

tanB̄u
L dΩ + η

∫
∂Ωu

L\(∂Ωu
L∩Γt)

N̄u T
L N̄u

L dΓ,

fu
ext,L,n+1 = η

∫
∂Ωu

L\(∂Ωu
L∩∂Ωu)

N̄u T
L un dΓ + η

∫
∂Ωu

L∩Γu
N̄u T

L ūn+1 dΓ +

∫
∂Ωu

L∩Γt
N̄u T

L t̄n+1 dΓ,

fu(i)
int,L,n+1 =

∫
Ωu

L

B̄u T
L σ(uL,n+1) dΩ,

and the total solution at each iteration is updated as

uhp(i+1)
L,n+1 = N̄u

Ldu(i+1)
L,n+1 with du(i+1)

L,n+1 = du(i)
L,n+1 + ∆du(i+1)

L .

4.2.3.4 Improving local boundary conditions

As described in previous chapters, the quality of an enriched global GFEMgl solution is sensitive to the quality of

boundary conditions provided by the global problem—especially in time-dependent or multi-step analyses, since
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error arising from local problem boundary conditions is propagated from time step to time step. In (4.40), boundary

conditions un ≈ uhp
n from the previous global time step may provide a poor estimate of the global solution at the

current time step, but traditional approaches for improving boundary conditions, such as performing multiple global–

local iterations or using a large ‘buffer zone’ [51], may be prohibitively expensive in nonlinear problems involving

many time steps. The GFEMgl, however, is targeted at problems exhibiting localized plasticity, so that nonlinearity

at a given load step is concentrated, for example, under a sharp loading, while the behavior of the majority of the

global domain is linear elastic. Therefore, an estimate or prediction of the global solution u∗n+1 ≈ uhp
n,n+1 at the current

time step tn+1 based on shape functions from the previous time step tn may be used to provide improved local problem

boundary conditions,

u∗n+1 ≈ uhp
n,n+1 = N̄u

n(x)du
n,n+1,

ε∗n+1 ≈ ε
hp
n,n+1 = B̄u

n(x)du
n,n+1, (4.43)

where ( )n,n+1 indicates a computation of quantities at time t = tn+1 using shape functions from the previous step,

t = tn. Two variations are possible: Linear elastic prediction of the global solution uhp,lin
n,n+1, based on (4.39), substituting

shape functions N̄u
n and B̄u

n ,

uhp,lin
n,n+1 = N̄u

ndu,lin
n,n+1,

leading to the linear system of equations

Ku
elas,ndu,lin

n,n+1 = fu
ext,n,n+1 − fu

int,n,n+1, (4.44)

or nonlinear prediction of the global solution uhp,nl
n,n+1, based on (4.36), using shape functions N̄u

n and B̄u
n ,

Ku(i)
tan,n∆du(i+1) = fu

ext,n,n+1 − fu(i)
int,n,n+1, (4.45)

where the total solution is then given by

uhp,nl(i+1)
n,n+1 = N̄u

ndu(i+1)
n,n+1 with du(i+1)

n,n+1 = du(i)
n,n+1 + ∆du(i+1).

The nonlinear improvement strategy is substantially more expensive than the linear prediction, involving, in general,

several Newton-Raphson iterations.
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4.2.3.5 Global–local enrichment functions

Based on the two global problem formulations presented, two different time-dependent global–local enrichments are

proposed for nonlinear problems to treat incremental or total approximations of the global solution. In either case,

time-dependent shape functions at a given patch ωα in the global problem are of the form

N̄u
n+1,α(x) =

[
Nu
α0(x) Nu

α1(x) · · · Nu
α(mα−1)(x) Nu,gl

n+1,α(x)
]
,

that is, time-dependency in the global shape functions is assumed to arise only in terms involving global–local enrich-

ments. Strain–displacement matrix B̄u
n+1,α(x) follows in a straightforward manner.

Incremental global–local enrichments In the case of general nonlinear global problems based on an incremental

approximation of the solution at each time step, such as (4.25), global shape functions N̄u
n+1 should possess good ap-

proximation properties to represent the incremental change in the solution, or the evolution of the solution in between

time steps, rather than the total solution itself. Thus, a new global–local enrichment based on the increment in the

local solution over the interval [tn, tn+1] is adopted,

φgl
n+1,α(x) = Nα(x)∆uL(x, tn+1), (4.46)

where the local displacement increment is given in (4.41).

Total global–local enrichments When approximating the total solution at each time step in the global problem, as

in (4.30) or (4.32), global–local enrichments are of the traditional form at t = tn+1,

φgl
n+1,α(x) = Nα(x)uL(x, tn+1), (4.47)

and the local solution uL is given in (4.41).

4.3 Numerical examples

A few numerical examples are included in the following section to explore the robustness, efficiency, and accuracy

of the proposed GFEMgl. In verification examples, GFEMgl solutions are compared to a reference solution based

on an optimal direct finite element analysis (DFEA) approach, hp-GFEM, which is equivalent to hp-adaptive FEM.

Additionally, to demonstrate the applicability of the method to industrial-scale problems, a larger, realistic problem

is presented for which a direct analysis approach would be impractical. In the following examples, a fixed mesh
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Figure 4.3: Geometry and boundary conditions of the elasto-plastic bi-material bar.

Figure 4.4: hp-GFEM mesh of the bi-material bar problem.

geometry is used in all time steps of hp-GFEM reference solutions and GFEMgl global and local problems, that is, no

mesh adaptivity is performed in between time steps. Furthermore, unless otherwise specified, all GFEMgl nonlinear

examples utilize the linear prediction strategy (4.39) to represent the total solution at each new time step, and boundary

conditions on local problems are updated based on a linear prediction of the total solution (4.44).

4.3.1 Bi-material bar with confined plastic region

The first numerical example is a verification problem subject to only mechanical (i.e., no thermomechanical) loadings,

for the purpose of testing each of the above GFEMgl formulations for nonlinear problems with time-dependent shape

functions.

The example is a bar of dimensions 1×7×1 under uniform tension P = 6 with a soft region in the center, designed

to induce localized plasticity. The bar geometry and boundary conditions are illustrated in Figure 4.3. The bar has

uniform Young’s modulus and Poisson’s ratio E = 4 and ν = 0.0, respectively, while the yield stress in the “stiff”

region is σa
y = 12.0 and in the “soft” region σb

y = 4.0. The material has a bilinear hardening model with plastic tangent

modulus Etan = 0.25. The tensile load P is applied in 10 equal increments or load steps, λP, λ = 0.1, 0.2, . . . , 1.0, then

the bar is subsequently unloaded in 10 equal increments, resulting in N = 20 total load steps. This problem is based

on a very similar problem originally solved using the GFEMgl formulation proposed in [64].

In this study, the problem is solved using both hp-GFEM (DFEA), for reference, and GFEMgl, based on the

formulations detailed in the above sections. hp-GFEM and GFEMgl (global and local) meshes for this problem are

shown in Figures 4.4 and 4.5, respectively. Reference hp-GFEM solutions use a uniform polynomial order php =

{2, 2, 2} and heavy mesh refinement in the soft region to capture plastic deformation, while GFEMgl solutions similarly
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(a) GFEMgl global problem. Spherical glyphs represent global nodes enriched with the local solution.

(b) GFEMgl local problem.

Figure 4.5: Meshes used to solve the bi-material bar problem with the GFEMgl.

use p = ploc = {2, 2, 2}. There is no global mesh refinement, while uniform mesh refinement in the local problem,

ΩL = {x | 2.0 < x < 5.0}, is performed to match that of the hp-GFEM global mesh. the hp-GFEM global problem

consists of 111,372 dofs, while the GFEMgl global problem and local problem have, respectively, 501 and 103,404.

In each case the global solution is enforced as a mixed- or spring-type boundary condition on the local domain; it is

furthermore important to note that in this problem, boundary conditions on local problems only come from the global

solution (all other local boundaries have homogeneous Neumann conditions). The problem is solved using the variety

of GFEMgl algorithms presented above:

(i) GFEMgl based on time-dependent, incremental enrichments (4.46) and local problem boundary conditions from

(a) the solution at the previous step un or

(b) linear prediction of the next solution increment, ∆ulin
n,n+1;

(ii) GFEMgl based on time-dependent, total enrichments (4.47) and local problem boundary conditions from

(a) the solution at the previous step un,

(b) linear prediction of the solution ulin
n,n+1, i.e., from (4.44), or

(c) nonlinear prediction of the solution unl
n,n+1, i.e., from (4.45);

(iii) GFEMgl based on time-independent enrichment functions. Enrichment functions are generated from the nonlin-

ear solution of the local problem uL,max with boundary conditions from a linear solution of the global problem

at the maximum load step, i.e., λmax = 1.0; this is the strategy proposed in [52, 64], which is included here for

comparison.
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(a) GFEMgl, incremental, un (b) GFEMgl, incremental, ulin
n,n+1

(c) GFEMgl, total, un (d) GFEMgl, total, ulin
n,n+1

(e) GFEMgl, total, unl
n,n+1 (f) GFEMgl, time-independent (uL,max)

(g) hp-GFEM (DFEA)

Figure 4.6: Contours of residual axial stress σyy in the bi-material bar problem from GFEMgl and hp-GFEM solutions
at the final load step.

Qualitative contour plots of the residual axial stress field σyy at t = tN , when the bar is fully unloaded, are shown

in Figure 4.6. Load–displacement curves from each global–local enrichment strategy—incremental, total, and time-

independent—are included in Figures 4.7, 4.8, and 4.9, respectively, with the hp-GFEM solution superimposed in each

case for comparison. Displacement and applied load are both evaluated at x = (0.5, 7.0, 0.5). Very good agreement

of all solutions with the hp-GFEM reference is observed for this verification problem.

In order to investigate the accuracy of each specific approach, the relative errors in maximum axial displacement

umax
y at the end of the bar, x = (0.5, 7.0, 0.5), from each solution are compared in Table 4.2. It is clear that updating

the local solution at each time or load step leads to more accurate global solutions, as all GFEMgl strategies involving

time-dependent shape functions give better results than the time-independent enrichment functions from a single local

solution at maximum load. Nonlinear solutions based on both incremental and total enrichments give similar results;

a linear approximation of global boundary conditions at tn+1 leads to slight improvements in the observed maximum

displacement. As expected, a nonlinear estimate of local problem boundary conditions at the current time step gives
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Figure 4.7: GFEMgl load–displacement curve of the bi-material bar problem based on incremental enrichments, com-
pared to hp-GFEM.
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Figure 4.8: GFEMgl load–displacement curve of the bi-material bar problem based on total enrichments, compared to
hp-GFEM.
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Figure 4.9: GFEMgl load–displacement curve of the bi-material bar problem based on global–local enrichments com-
puted from the ultimate load step, λ = λmax = 1.0, compared to hp-GFEM.

Table 4.2: Comparison of maximum axial displacements umax
y obtained from GFEMgl solutions of the bi-material bar,

relative to the hp-GFEM reference.

Method Global dofs umax
y % difference

hp-GFEM (DFEA) 111,372 16.79 –
GFEMgl, coarse global 468 15.63 6.895%

total, un 501 16.74 0.262%
total, ulin

n,n+1 501 16.75 0.246%
total, unl

n,n+1 501 16.77 0.118%
incremental, un 501 16.74 0.297%
incremental, ulin

n,n+1 501 16.75 0.225%
time-independent (uL,max) 501 16.67 0.720%
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Table 4.3: Comparison of Newton-Raphson iterations required for convergence of the GFEMgl global bi-material bar
problem, relative to the hp-GFEM reference. Unloading begins at load step 10. A blank space in the table indicates
a linear (elastic) step. The total number of global iterations at each step—that is, including nonlinear prediction of
boundary conditions—are given.

Global iterations

Load step hp-GFEM total, un total, ulin
n,n+1 total, unl

n,n+1 incr., un incr., ulin
n,n+1 uL,max

1
2
3
4
5
6
7 4 4 3 7 4 4 4
8 4 4 4 8 4 4 4
9 4 4 4 8 4 4 4
10 4 4 3 9 4 4 4
11 3
12 2
13
14
15
16
17
18
19
20

the best result. However, as previously noted, this strategy comes at the cost of performing two nonlinear solutions of

the global problem at each time step.

The total number of Newton-Raphson iterations required for convergence at each load step in global problems

is included in Table 4.3; local iterations required are given in Table 4.4. Although nonlinear boundary condition

prediction requires, in general, multiple nonlinear solution iterations to converge, thus increasing the number of global

assembly/solution cycles, it should be noted from Table 4.4 that these more accurate boundary conditions lead to fewer

overall Newton-Raphson iterations in the local problem, relative to linear boundary condition prediction. However,

this is a problem-dependent behavior, as the global problem itself is relatively small and inexpensive to solve, and

furthermore, local problem boundary conditions only come from the global solution—no prescribed, external bound-

ary conditions are applied—thus, the quality and behavior of local solutions is entirely dependent upon the quality of

the global solution. Furthermore, from Table 4.3, nonlinear behavior is observed at unloading steps 11 and 12 when

local boundary conditions from un are used with the total solution approach. This behavior may be attributed to a

combination of the lagging local boundary condition and corresponding recovery of the total global solution; on the

other hand, this “residual” nonlinear behavior is not observed when adopting an incremental approach in the global
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Table 4.4: Comparison of Newton-Raphson iterations required for convergence of the GFEMgl local bi-material bar
problem, relative to the hp-GFEM reference. Unloading begins (in the global problem) at step 10. A blank space in
the table indicates a linear (elastic) step.

Local iterations

Load step total, un total, ulin
n,n+1 total, unl

n,n+1 incr., un incr., ulin
n,n+1

1
2
3
4
5
6
7 3 3 3
8 3 4 4 3 4
9 4 4 4 4 4
10 4 4 4 4 4
11 4 4 4 4
12
13
14
15
16
17
18
19
20
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Table 4.5: Thermo-elasto-plastic laser-heated beam material properties.

Property Value Units

Young’s modulus E 10.15 × 106 psi

Poisson’s ratio ν 0.33 –

Yield stress σy 40.0 × 103 psi

Saturation stress σ∞ 45.0 × 103 psi

Plastic modulus K 0.0 psi

Hardening exponent ω 75.0 –

Thermal expansion coefficient αθ 1.283 × 10−5 ◦F−1

Thermal conductivity κ 1.87 ft-lbf
s-in-◦F

Heat capacity ρc 16.2 ft-lbf
in3-◦F

problem.

4.3.2 Thermo-elasto-plastic laser-heated beam

While the previous example serves as verification for the implementation of time-dependent shape functions for elasto-

plastic problems, the following example is a verification problem for time-dependent thermoplasticity problems in-

volving transient heating solved with GFEMgl. In all cases, an hp-GFEM direct analysis is used as a reference for

comparison. The problem is very similar in nature to the homogeneous laser-heated beam of Section 2.5.2 of Chapter

2 on linear thermoelasticity. However, in this case, two types of transient, localized thermal boundary conditions are

applied:

(i) stationary, localized heating followed by cooling to room temperature; and

(ii) a moving, localized heating.

The beam is of dimensions 12 in × 0.5 in × 0.24 in, and is fixed against axial deformations in all load scenarios. Initial

conditions in the heat transfer and thermoplasticity are θ0 = θ∞ and u0 = 0. Its thermal and mechanical material

properties are summarized in Table 4.5. In GFEMgl solutions of the problem, the same fixed, coarse-scale global

mesh consisting of four-node tetrahedral elements (global element size H = 0.5) is used irrespective of the nature of

thermal boundary conditions applied, whether stationary or moving. GFEMgl local problems are meshed with four-

node tetrahedral elements for local adaptive mesh refinement. On the other hand, the hp-GFEM global mesh must be

adapted for each load case of interest. In this and all other thermoplasticity problems presented in this chapter, only

total global–local enrichments, based on linear recovery of the total solution, are considered. The effect of boundary

conditions on local problems from un and ulin
n,n+1, as detailed in Section 4.2.3.4, is examined in GFEMgl solutions in

each load case.
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Figure 4.10: Time evolution of the maximum magnitude (at x = 9.3) of the stationary laser flux applied to the thermo-
elasto-plastic laser-heated beam.

4.3.2.1 Stationary laser heating

The stationary laser heating applied to the front surface of the beam (z = 0.24 in) is characterized by

f̄ (x, t) =
I0

2πa2 g(t) exp
(
−(x − b)2

2a2

)
, 8.0 ≤ x ≤ 10.0, where

g(t) =


− t

tmax

(
t

tmax
− 2.0

)
if t < 2tmax

0.0 otherwise.

Parameter I0 = 295 ft-lbf
s is the laser flux intensity, a = 0.025 in is the laser focus, or width, and b = 9.3 in dictates

the x-coordinate of the center of the flux. The temporal variation of the applied flux magnitude is denoted g(t), and

tmax = 0.5 s is the time at which the laser flux reaches a maximum. The time evolution of the maximum magnitude of

the applied laser flux (i.e., at the focus point, x = b) is illustrated in Figure 4.10. Convection boundary conditions are

applied elsewhere, at an ambient temperature of θ∞ = 70 ◦F.

The sharply varying laser flux requires high local solution fidelity—accomplished in hp-GFEM via localized adap-

tive mesh refinement, and in GFEMgl by global–local enrichments from the solution of an adapted local problem—in

order to predict not only intense temperature and stress gradients, but also localized, residual plastic deformation in

the beam due to the heating. The GFEMgl global heat transfer problem has pθ = {2, 2, 2} (pu = {3, 3, 3} for thermo-

plasticity) and a global mesh size H = 0.5. The local problem is chosen in a region of the beam in the neighborhood of

the sharp applied flux, 8.0 ≤ x ≤ 10.5, which has local adaptive mesh refinement such that local mesh size h = 0.0625

and pθL = {2, 2, 2} (pu
L = {3, 3, 3} for thermoplasticity). Temperature and spring boundary conditions are applied on
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Figure 4.11: hp-GFEM mesh of the thermo-elasto-plastic beam subjected to stationary laser heating.

(a) GFEMgl global problem. Spherical glyphs represent global nodes enriched with the local solution.

(b) GFEMgl local problem.

Figure 4.12: Meshes used to solve the thermo-elasto-plastic laser-heated problem with the GFEMgl (stationary heat-
ing).

heat transfer and thermoplasticity local problems, respectively. The hp-GFEM direct analysis is designed to achieve

approximately equivalent solution fidelity to GFEMgl solutions; it has a coarse global mesh size away from the sharp

heating H = 0.5 and localized global mesh refinement in the neighborhood of the sharp flux such that H = 0.0625,

with a uniform polynomial order throughout pθ = {2, 2, 2} (pu = {3, 3, 3} in the thermoplasticity problem). Both

GFEMgl and hp-GFEM simulations are carried out over 32 time/load steps, with ∆t = 0.125 s the time step size in the

transient heat transfer problem, so that 0.0 ≤ t ≤ 4.0. The hp-GFEM mesh geometry and boundary conditions are

shown in Figure 4.11, while the corresponding GFEMgl local and global meshes are shown in Figure 4.12.

Results from two GFEMgl solution strategies are included: one based on time-dependent shape functions, as

formulated in Section 4.2.3, and the other based on time-independent shape functions. Time-dependent global–local

enrichments in thermoplasticity problems are generated from local solutions using boundary conditions from both un

and ulin
n,n+1, as described in Section 4.2.3.4. Time-independent global–local enrichments come from the solution of a
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(a) Maximum temperature, θ (b) Maximum axial stress, σxx

Figure 4.13: Contours of maximum temperature and axial stress in the thermo-elasto-plastic laser-heated beam prob-
lem from GFEMgl (top) and hp-GFEM (bottom) solutions. The GFEMgl stress contour shown has local problem
boundary conditions from ulin

n,n+1.

single steady-state local problem at the maximum thermal load step (i.e., t = tmax), which is analogous to the strategy

described previously in Section 4.3.1 and originally presented in [64].

Qualitative, three-dimensional contours of the maximum temperature and corresponding maximum axial stress

from hp-GFEM and GFEMgl solutions (based on local boundary conditions from ulin
n,n+1) are shown in Figure 4.13.

Figure 4.14 shows enriched global and corresponding local thermoplasticity problem solution contours at the maxi-

mum temperature step from each choice of local problem boundary conditions (un and ulin
n,n+1). It can be observed,

qualitatively, that a linear global solution at each new load step may lead to a much improved estimate of global so-

lution behavior on local problem boundaries, and accurate boundary conditions on local problems generally lead to

high-quality enriched global solutions.

The pointwise maximum temperature and von Mises stress along the central axis of the beam, y = 0.25, at a

depth z = 0.22, just beneath the surface, are plotted in Figure 4.15. The reference hp-GFEM solution is shown for

comparison with GFEMgl simulations using time-dependent shape functions. The maximum temperature distribution

is nearly identical for both hp-GFEM and GFEMgl simulations. Pointwise maximum von Mises stresses along the

centerline of the beam also show a good agreement; due to the generous size of the local domain chosen in this

example, local boundary conditions from un and ulin
n,n+1 yield very similar results, though ulin

n,n+1 compares slightly

better to hp-GFEM results near the intense stress gradient where the sharp laser heating is applied. A localized

oscillation in the stress field near x = 9.24 in both GFEMgl simulations likely arises due to the coarse global mesh

chosen in this example and the proximity of this point to a global mesh edge.

In contrast, Figure 4.16 shows a comparison between pointwise maximum temperature and von Mises stress
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(a) Local boundary conditions from un. (b) Local boundary conditions from ulin
n,n+1.

Figure 4.14: Contours of axial displacement ux at the maximum temperature load step in the thermo-elasto-plastic
laser-heated beam problem from GFEMgl local (top) and corresponding enriched global (bottom) solutions with dif-
ferent choices of local boundary conditions.

in a GFEMgl simulation based on time-independent shape functions (that is, global–local enrichments from a local

solution at maximum thermal load). Global–local enrichments from the maximum thermal load are able to effectively

capture the localized behavior of the transient temperature field. However, it is clear from Figure 4.16b that time-

independent shape functions cannot adequately characterize the more complex time evolution of thermal stresses from

the multiphysics solution field.

Of interest in this verification problem is the accuracy, relative to direct analysis, of prediction of residual defor-

mations using GFEMgl. Thus, following the transient heat transfer solution, the beam is cooled back to its initial state

(ambient temperature θ∞ = 70.0 ◦F). The residual deformed shapes of hp-GFEM reference and all GFEMgl solutions

(based on both time-dependent and time-independent shape functions) are shown for qualitative comparison in Figure

4.17. Pointwise residual displacements uy in the vertical direction, near the top of the beam (y = 0.48), as well as uz

in the out-of-plane direction, along the central axis of the beam (y = 0.25), are shown in Figure 4.18. Again included

for contrast in Figure 4.19 are plots of residual deformations resulting from GFEMgl simulations of the same prob-

lem with time-independent shape functions. Although both GFEMgl solutions with time-dependent enrichments show

similar qualitative behavior, local boundary conditions from ulin
n,n+1 offer a noticeable improvement over boundary con-

ditions from un in the prediction of residual deformations when compared to the DFEA reference solution. Figures

4.17 and 4.19 further reinforce that time-independent shape functions in thermoplasticity problems are not suitable for

capturing residual deformations due to highly localized thermal stresses which evolve significantly in time.
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Figure 4.15: Pointwise maximum temperature and von Mises stress along the central axis (y = 0.25, z = 0.22) of
the thermo-elasto-plastic laser-heated beam from the hp-GFEM reference and GFEMgl solutions with time-dependent
shape functions.
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Figure 4.16: Pointwise maximum temperature and von Mises stress along the central axis (y = 0.25, z = 0.22) of the
thermo-elasto-plastic laser-heated beam from the hp-GFEM reference and GFEMgl solutions with time-independent
shape functions.
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(a) Undeformed configuration with GFEMgl global mesh su-
perimposed

(b) DFEA reference

(c) GFEMgl, time-dependent, BCs from ulin
n,n+1 (d) GFEMgl, time-independent

Figure 4.17: Residual deformed configurations of the thermo-elasto-plastic laser-heated beam from hp-GFEM and
GFEMgl solutions. The coarse, global mesh used in GFEMgl analyses is shown on the undeformed configuration for
comparison.

4.3.2.2 Moving laser heating

The moving laser heating applied to the front surface of the beam (z = 0.24 in) is characterized by

f̄ (x, t) =
I0

2πa2 g(t) exp
(
−(x − b(t))2

2a2

)
, 8.0 ≤ x ≤ 12.0, where

g(t) = 1.0 − exp(−γt),

b(t) = 9.25 + vxt.

Parameter I0 = 125 ft-lbf
s is the laser flux intensity, a = 0.025 in is the laser focus or width, and b(t) dictates the spatial

variation of the flux in time, with vx = 0.125 in/s the constant velocity of the applied laser heating. The temporal

variation of the applied heat flux magnitude is denoted g(t), which increases in time, with γ = 3.0. The time-rise of the

maximum applied laser flux (i.e., at the focus point, x = 9.25 + 0.125t) is shown in Figure 4.20. Convection boundary

conditions with ambient temperature θ∞ = 70 ◦F are applied elsewhere on the domain.

Time-dependent shape functions are necessary in this case to capture the local spatial evolution of the transient heat

flux. As in the previous load case, the GFEMgl global heat transfer problem has pθ = {2, 2, 2} (thermoplasticity has

pu = {3, 3, 3}). In order to accommodate the moving flux in this case, the local problem is chosen as a larger region in
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(b) Residual out-of-plane displacement, uz

Figure 4.18: Pointwise residual displacements, after cooling to room temperature, of the thermo-elasto-plastic laser-
heated beam from the hp-GFEM reference and GFEMgl solutions with time-dependent shape functions. Vertical
displacement uy is measured at y = 0.48, z = 0.22, while out-of-plane displacement uz is measured at y = 0.25,
z = 0.22.
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Figure 4.19: Pointwise residual displacements, after cooling to room temperature, of the thermo-elasto-plastic laser-
heated beam from the hp-GFEM reference and a GFEMgl solution with time-independent shape functions. Vertical
displacement uy is measured at y = 0.48, z = 0.22, while out-of-plane displacement uz is measured at y = 0.25,
z = 0.22.
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Figure 4.20: Time evolution of the maximum magnitude (at x = 9.25 + 0.125t) of the moving laser flux applied to the
thermo-elasto-plastic laser-heated beam.

Figure 4.21: hp-GFEM mesh of the thermo-elasto-plastic beam subjected to moving laser heating.

the global domain, 8.0 < x < 11.5, where once again the local mesh size h = 0.0625, and pθL = {2, 2, 2} (pu
L = {3, 3, 3}

for thermoplasticity). Temperature (spring) boundary conditions are applied on the heat transfer (thermoplasticity)

local problem. Similarly, the hp-GFEM direct analysis has localized global mesh refinement along the path of the

sharp, applied flux, so that H = 0.0625 locally, and a uniform polynomial order throughout pθ = {2, 2, 2} (pu = {3, 3, 3}

in the thermoplasticity problem). Each simulation has 32 time/load steps, with ∆t = 0.25 s the time step size in the

transient heat transfer problem, so that 0.0 ≤ t ≤ 8.0. Mesh geometries are depicted in Figures 4.21 and 4.22,

corresponding to hp-GFEM and GFEMgl simulations, respectively.

In this case, to accommodate the sharp laser heating as it propagates along the axis of the beam, the local problem is

chosen to be larger than the previous, stationary scenario. The GFEMgl for transient heat transfer and thermoplasticity

could be adapted to accommodate moving local problem meshes, so as to maintain as small a local problem size as

possible surrounding the localized loadings of interest. However, it is also important to note that to predict localized

residual deformations, stresses, and strains, global–local enrichment functions are necessary in all regions of the
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(a) GFEMgl global problem. Spherical glyphs represent global nodes enriched with the local solution.

(b) GFEMgl local problem.

Figure 4.22: Meshes used to solve the thermo-elasto-plastic laser-heated problem with the GFEMgl (moving heat
flux).

structure previously or currently affected by localized heating and corresponding plastic effects.

The temperature distribution θ(x, t) along the central axis of the beam at y = 0.25, z = 0.2 at various times t,

comparing hp-GFEM DFEA and GFEMgl solutions, is given in Figure 4.23, and the corresponding quasistatic axial

stresses σxx(x, t) are shown in Figure 4.24. As in the previous load case, the temperature field from the transient

GFEMgl solution and stress fields from the thermoplasticity solution match the hp-GFEM reference solution well at

all time steps of the analysis. At the final time step, a slight discrepancy is observed when local boundary conditions

from un are used; the local problem is large in this example in order to accommodate the moving heat flux, but as the

sharp heating approaches the right boundary, the effects of inaccurate boundary conditions impact the solution more

significantly. Additionally, global stresses at this step approach yield (σy = 4.0 × 104); thus, plastic behavior may not

be extremely localized any longer. Contour plots of the accrued plastic strain at the final load step are given in Figure

4.25 for the hp-GFEM reference and GFEMgl solutions. It can be observed in this case that the GFEMgl predicts very

similar nonlinear material behavior, even on a coarse, global mesh.

GFEMgl solutions are shown to be accurate; however, the computational efficiency of the proposed approach is

also of interest. Table 4.6 compares the wall time spent assembling and solving the global nonlinear thermoplasticity

problem until convergence of the residual at a single time step, t = 0.75, in GFEMgl and hp-GFEM reference solutions.

A parallel assembly and parallel direct linear solver are used. As expected, assembly of the GFEMgl global nonlinear

problem is slightly more expensive than the hp-GFEM reference in order to accurately integrate global–local enrich-

ments; however, there are roughly 50 times fewer degrees of freedom in the GFEMgl global problem, leading to vastly
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Figure 4.23: Temperature profiles along the central axis of the thermo-elasto-plastic laser-heated beam subjected to
a transient, moving laser flux at various times t. The temperature is taken at depth z = 0.2. hp-GFEM and GFEMgl

solutions are plotted together for comparison.

Table 4.6: Wall time spent assembling/solving the global nonlinear laser-heated beam problem (moving flux) at t =

0.75; GFEMgl vs. hp-GFEM reference.

Wall time (s)

Problem size (dofs) Iterations Assemble Solve Total

hp-GFEM (DFEA) 153,090 3 16.90 33.38 50.29
GFEMgl global 3,072 2 23.87 0.03 23.91
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Figure 4.24: Axial stress profiles along the central axis of the thermo-elasto-plastic laser-heated beam subjected to a
transient, moving laser flux at various times t. The temperature is taken at depth z = 0.2. hp-GFEM and GFEMgl

solutions are plotted together for comparison.

(a) GFEMgl, un (b) GFEMgl, ulin
n,n+1

(c) hp-GFEM DFEA

Figure 4.25: Contours of equivalent plastic strain ε̄p at the final time/load step for the thermo-elasto-plastic laser-
heated beam subjected to a moving laser heating.
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Table 4.7: Thermo-elasto-plastic heterogeneous beam material properties.

Property Phase a Phase b

Young’s modulus E 2.0 × 105 10.0 × 105

Poisson’s ratio ν 0.30 0.30

Yield stress σy 1000 2000

Plastic modulus K 6000 6000

Thermal expansion coefficient αθ 2.0 × 10−5 4.0 × 10−5

Thermal conductivity κ 2.0 10.0

Table 4.8: Thermoplasticity problem size details in degrees of freedom (dofs) for the heterogeneous beam compared
to the equivalent hp-GFEM DFEA. In the GFEMgl simulation 372 sub-local problems are solved.

Method Problem size (dofs)

DFEA (hp-GFEM) 381,150
GFEMgl Initial global 11,160

Enriched global 12,276
Largest local 6,450
Smallest local 1,650
Average local 5,368

reduced factorization and solution times and overall lower computational cost per global load step.

4.3.3 Heterogeneous thermo-elasto-plastic beam

This problem is analogous to the heterogeneous thermoelastic beam of Section 3.2.5 of Chapter 3. Thus, the problem

geometry and boundary conditions are exactly as described in Figure 3.26: a beam with random, heterogeneous

material throughout is subjected to uniform bending, as well as a heat flux on its top surface. However, in this chapter,

thermo-elasto-plastic material properties are adopted. The presence of sharp material interfaces at the fine scale may

therefore lead to very localized plastic deformations; the goal of the GFEMgl is to capture this local behavior.

The characteristic size of the microstructure is increased, relative to the thermoelastic example of Section 3.2.5, in

order to compare GFEMgl results with an equivalent hp-GFEM solution (DFEA). Material properties of each phase a

and b are summarized in Table 4.7. A linear hardening model (ω = 0, σ∞ = σy) is used in the plastic response of the

structure.

The GFEMgl global mesh size H = 1.0, the number of local problems is 372, local mesh size h = 0.25, and in

the thermoplasticity problem, global and local polynomial orders are pu = {3, 3, 3} and pu
L = {3, 3, 3}, respectively

(one polynomial order lower is adopted in heat transfer analysis). The equivalent DFEA reference solution has a

uniform global mesh size H = 0.25 and pu
ref = {3, 3, 3}. Global and local problem sizes are detailed in Table 4.8. the

DFEA leverages a parallel assembly and parallel direct linear solver; GFEMgl local problems are solved in parallel,
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Table 4.9: Comparison of GFEMgl solution of the heterogeneous thermo-elasto-plastic beam to the equivalent hp-
GFEM DFEA.

Method Heat energy (×104) Strain energy er,diff
E,θ er,diff

E,u

hp-GFEM (DFEA) 5.041 31.99 – –
GFEMgl initial 4.769 62.76 0.232 0.981

enriched 5.036 32.03 0.029 0.032

Table 4.10: Comparison of wall times of hp-GFEM DFEA and each GFEMgl thermoplasticity solution phase for the
heterogeneous thermomechanical beam. The problems are solved on a parallel machine with 24 CPUs.

Wall time (s)

Assemble Solve Total Speedup

hp-GFEM (DFEA, serial) 99.32 379.34 478.65 –
hp-GFEM (DFEA) 7.81 55.20 63.01 7.60
GFEMgl initial 1.24 0.41

local – 31.73
enriched 11.51 0.64 45.54 10.51

while global problems are assembled and solved in parallel on a machine with 24 CPUs. The parallel assembly

implementation is discussed in detail in Appendix B.

Relative difference in the energy norm of the GFEMgl parallel solution with respect to the equivalent DFEA

reference is given in Table 4.9. Internal energy and work of internal forces (strain energy) are compared in the

heat transfer and thermoplasticity problem, respectively. Relative differences er,diff
E,θ and er,diff

E,u are computed based on

Equations (2.27) and (2.28) from Chapter 2. Globally, a good agreement of both DFEA and GFEMgl solutions is

observed, with a relative difference in the energy norm in each case of around or under 3%, while, according to Table

4.8, roughly 30 times fewer degrees of freedom are required in the global GFEMgl problem. Furthermore, a qualitative

comparison of the von Mises stress contours from each solution is shown in 4.26. Local stress concentrations due to

sharp material interfaces may cause localized plastic deformation, thus inducing nonlinear behavior globally.

A comparison of solution times from DFEA and GFEMgl solution is given in Table 4.10, and the number of

Newton-Raphson iterations required to solve in each case is given in Table 4.11. Table 4.11 shows that nonlinearity

Table 4.11: Newton-Raphson iterations required to solve the heterogeneous thermo-elasto-plastic beam problem with
each method.

Iterations

hp-GFEM (DFEA) 2
GFEMgl initial 1 (linear elastic)

local 1 (362 of 372 local problems)
2 (10 of 372 local problems)

enriched 2
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(a) DFEA, von Mises stress

(b) GFEMgl, von Mises stress

Figure 4.26: Heterogeneous thermo-elasto-plastic beam von Mises stress contours from (a) hp-GFEM DFEA reference
and (b) GFEMgl solutions. The coarse-scale, global mesh is superimposed on the GFEMgl solution, as well as an
enlarged view of a local stress concentration due to a material interface.
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Table 4.12: Comparison of wall times for assembly of the global heterogeneous thermo-elasto-plastic beam thermo-
plasticity problem in both GFEMgl and hp-GFEM DFEA on 24 CPUs.

Assembly wall time (s) Speedup

hp-GFEM (DFEA, serial) 99.32 –
GFEMgl enriched (serial) 210.86 –
hp-GFEM (parallel) 7.81 12.71
GFEMgl enriched (parallel) 11.51 18.32

exists in this problem at the global scale. The very fine, uniform mesh of the direct finite element analysis, required to

capture localized nonlinear behavior, makes each nonlinear solution iteration expensive. GFEMgl, on the other hand,

maintains a coarse, global mesh, drastically reducing the cost of each global Newton-Raphson iteration. Moreover,

in this example problem, fine-scale nonlinearity exists in only very few (10 out of 372 total) local problems, in

which more than one Newton-Raphson iteration is required for convergence. Because the vast majority of local

problems (362 of 372 total) have only linear elastic behavior, convergence of the local solution is observed in just one

iteration; thus, locally linear fine-scale behavior can be resolved in the global problem without the need to iterate in the

expensive, highly refined local problem. Owing to these significant advantages over direct analysis, from Table 4.10,

analyzing this problem with the GFEMgl with parallel nonlinear sub-local problems results in a 25% time savings in

comparison, and a better parallel speedup with respect to the equivalent serial, direct simulation.

Table 4.12 examines the parallel and serial global assembly times for the heterogeneous beam (see Appendix B

for parallel assembly details). Since global integration of element matrices is performed over the heavily refined,

fine-scale problem mesh, each global GFEMgl element involves the evaluation of global–local shape functions as

well as material properties at many fine-scale integration points. Because global element computations are relatively

expensive, scalability of the parallel global assembly for this problem is in general comparable to or better than hp-

GFEM DFEA.

4.3.4 Hat-stiffened panel

The final example presented is a representative structure with realistic geometry that might be encountered in, for

example, aerospace applications: a three-dimensional, thin panel structure with two ‘hat’ stiffeners along the bottom

surface to provide additional reinforcement. The panel geometry is illustrated in Figure 4.27, and the material prop-

erties are summarized in Table 4.13. A linear hardening model (i.e., ω = 0, σ∞ = σy) for the plastic response of the

structure is chosen. Unless otherwise noted, dimensions are given in inches. Additional dimensions include the panel

thickness, tpanel = 0.0625, and the thickness and depth of the stiffeners, tstiff = 0.032 and dstiff = 1.0, respectively. The

stiffeners are joined to the panel by 40 full spot welds and 4 half-spot welds at the global boundary which intersects

the stiffeners, each of radius rweld = 0.07.
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Figure 4.27: Geometry of the hat-stiffened panel problem. Overall size of the panel in-plane is 10.0 × 7.5.

Table 4.13: Hat-stiffened panel material properties.

Property Value Units

Young’s modulus E 17.1 × 103 ksi

Poisson’s ratio ν 0.325 –

Yield stress σy 152.0 ksi

Plastic modulus K 420.0 ksi

Thermal expansion coefficient αθ 4.28 × 10−6 ◦F−1

Thermal conductivity κ 0.8755 ft-lbf
s-in-◦F

Heat capacity ρc 14.0384 ft-lbf
in3-◦F
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Figure 4.28: Time variation of peak flux intensity (i.e., at x = b, zmin ≤ z ≤ zmax) applied to the hat-stiffened panel
problem in each local region of interest.

A constant normal pressure p0 = 2.0 psi and steady heat flux f̄0 = 5.0 ft-lbf
s-in2 are applied to the panel surface.

The edges of the panel are held at a constant temperature θ̄∞ = 70 ◦ F. Spring boundary conditions are applied

along the two frontmost panel edges in Figure 4.27, while displacement boundary conditions preventing in-plane

displacement (i.e., symmetry boundary conditions) are applied along the rear panel and stiffener edges. To induce

sharp thermomechanical gradients, a series of local, transient heat fluxes are applied at various locations on the panel

surface. The applied heat flux is given by a Gaussian function, spatially, with an impulse variation in time, denoted

g(t),

f̄ (x, t) =
I0

2πa2 g(t)h(z) exp
(
−(x − b)2

2a2

)
+ f̄0, 0.0 ≤ t ≤ 4.0, where

g(t) =
1 − cos

(
π
2 t

)
2

,

h(z) =



exp(−(z − zmin)2) if z < zmin

1.0 if zmin ≤ z ≤ zmax

exp(−(z − zmax)2) if z > zmax.

In all cases, I0 = 80.0 ft-lbf
s is the intensity, a = 0.02 in gives the width or radius of the heat flux, b determines the

center of the applied flux in the transverse (x-) direction, and zmin and zmax dictate the spatial length of the flux. The

time variation of the peak flux intensity is included in Figure 4.28. Details on the size and location of each localized

heating in terms of other parameters {zmin, zmax, b} are included in Table 4.14.
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Table 4.14: Hat-stiffened panel sharp flux locations.

Load case zmin zmax b

A 3.4 3.8 6.4
B 4.1 4.4 3.0

AB

Figure 4.29: Global hexahedral mesh and local problem regions in the hat-stiffened panel problem: critical local
regions subjected to sharp heating effects, and 44 local regions along the stiffener connections containing spot welds.

The FE mesh of the panel consists entirely of structured, 8-node hexahedral elements, which is shown in Figure

4.29—the figure also indicates critical local regions A and B which are subjected to a sharp, local heating, and the local

regions containing each spot weld or half-spot weld. In order to maintain a coarse, global structural mesh regardless

of localized features such as sharp geometry of the spot weld connections or applied thermal loadings, the GFEMgl

is utilized to insert this information into the global model via the solution of local problems. Local problems are

discretized using 4-node tetrahedral elements, so that unstructured local meshes can represent detailed geometry, and

adaptive mesh refinement may be used to capture localized phenomena of interest. A discussion on incorporating

global–local enrichments defined on a tetrahedral mesh into a global approximation space based on a partition of unity

from hexahedral elements can be found in [92], and is also the subject of ongoing work [68]. The local problem

meshes used to treat sharp applied heatings are shown in Figure 4.30, and cutaway views of typical unstructured

tetrahedral local problem meshes designed to fit the geometry of full and half-spot welds, respectively, are illustrated

in Figure 4.31.

The GFEM discretization has a linear polynomial approximation in the heat transfer global and local problems,

pθ = {1, 1, 1} and pθL = {1, 1, 1}, while the global thermo-structural problem has a quadratic approximation, pu =

{2, 2, 2} and pu
L = {2, 2, 2}. Total global–local enrichments and linear prediction of the solution at each time step are

utilized to solve the global problem. Global and local problem size details are given in Table 4.15. The GFEMgl

enriched global model is nearly identical in size to the coarse, global mesh, differing by only about 1%. On the other

hand, a hypothetical, equivalent direct analysis with a specially tailored mesh to represent all fine-scale features would
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(a) Flux region A

(b) Flux region B

Figure 4.30: Tetrahedral local problem meshes used in each sharp flux case for the hat-stiffened panel problem.

(a) Typical full spot weld mesh

(b) Typical half-spot weld mesh

Figure 4.31: Cutaway view of typical tetrahedral local problem meshes used in regions with spot welds in the hat-
stiffened panel problem. A specially-tailored unstructured mesh is used locally to fit the weld geometry.
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Table 4.15: Hat-stiffened panel GFEMgl problem size details in degrees of freedom (dofs). In each analysis local
problems for 40 full spot welds, 4 half-spot welds, and 1 local region are solved. The estimated equivalent DFEA
thermoplasticity problem size is roughly 4.5 million dofs.

Problem size (dofs)

Heat transfer Thermoplasticity

DFEA (estimate) 370,000 4,500,000
Initial global 27,888 209,160
Enriched global (A) 28,480 210,936
Enriched global (B) 28,436 210,804
Local Full spot weld 7,966 95,592

Half-spot weld 4,179 50,148
Region A 5,807 69,684
Region B 5,965 71,580

result in approximately 4.5 million degrees of freedom in the global thermoplasticity problem, or roughly a 2000%

increase in global problem size relative to the coarse problem. Furthermore, detailed geometry of the the spot welds

and sharp applied heat fluxes would pose significant mesh generation challenges.

The simulation consists of 20 time steps in the heating phase and 5 in the cooling phase for a total of 25 time/load

steps and a simulation time of 25 seconds. In the heating phase, 0.0 ≤ t ≤ 5.0, the time step size is ∆t = 0.25 s, while

in the cooling phase, 5.0 < t ≤ 25.0, the time step is substantially larger, ∆t = 4.0, since variation of the temperature

field is mostly smooth and material behavior is elastic in this interval.

Figure 4.32 shows the localized nature of temperature distributions in the panel due to each sharp applied flux case

at the maximum load step (t = 2.5) from GFEMgl simulations.

Because a DFEA is impractically expensive, GFEMgl results are instead compared to a direct simulation on the

coarse, global hexahedral mesh, in order to demonstrate the localized solution fidelity possible with GFEMgl. Figure

4.33 gives the internal heat energy and strain energy from GFEMgl and coarse global direct analyses. Both global

models capture the overall response of the structure reasonably well; large errors in the transient heat transfer solution

exist near the peak heat flux, since the coarse mesh is unable to account for the sharp applied heating, which is due to

both discretization error and numerical integration error in the sharp, Gaussian function.

From an engineering perspective, however, localized quantities such as stress, strain, and plastic deformation due

to the sharp heating and detailed connection geometry are of specific interest. Figures 4.34 and 4.35 show a zoom-in

on the localized peak and residual von Mises stress in the panel surface, resulting from a sharp flux applied in Regions

A and B, respectively, for both GFEMgl and coarse-scale analyses of the problem. In Region A, the coarse analysis

yields a sharp stress gradient and residual localized stress, which is likely due to the close proximity of the applied,

sharp heat flux to a global mesh edge. However, stresses are substantially higher than expected due to the low fidelity

of local plastic deformation prediction. GFEMgl, on the other hand, gives a more realistic stress distribution, as well as
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(a) Region A

(b) Region B

Figure 4.32: GFEMgl global temperature contours at the maximum heat flux (t = 2.5) in the hat-stiffened panel
problem.

a sharper resolution of the residual stress due to localized plasticity. Region B, however, shows significantly different

localized behavior, both at the maximum and residual steps. The GFEMgl gives a good resolution of the complex

interaction between the panel and spot weld connections to the stiffener in the neighborhood of the localized heat

flux. Moreover, the GFEMgl predicts a sharp, localized residual stress field underneath the applied heat flux, while the

coarse, global analysis is unable to capture this effect.

Figures 4.36 and 4.37 show the analogous von Mises stress distributions on a cutaway view in each stiffener

connection, only at maximum load (t = 2.5), in each sharp flux case. In Region A, local stress is concentrated in

the panel and thus is remote relative to the stiffener connections; while localized stresses still exist at the spot weld

connections, they are low in magnitude. On the other hand, comparing Figures 4.37a and 4.37b, the sharp flux in

Region B is applied much closer to a stiffener, leading to substantially higher stresses and localized plasticity in the

spot weld connections. In contrast to Figure 4.36, high local fidelity in the thermoplasticity problem is necessary in

this case to accurately resolve sharp stress gradients in the welded connections, which might lead to localized failure

in the panel.

Table 4.16 details the total wall times required for solution of the thermoplasticity problem on 24 CPUs with

GFEMgl while the coarse global solution times are also included for reference; only results from Region A are in-

cluded. In the GFEMgl, local problems are assembled and solved in parallel, while both the coarse-scale and GFEMgl

enriched global problems use a parallel assembly routine and parallel direct sparse linear solver. Global factoriza-
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Figure 4.33: Strain energy and internal heat energy in the hat-stiffened panel problem, GFEMgl vs. coarse scale
hexahedral mesh.

Table 4.16: Wall times required for GFEMgl simulation of the hat-stiffened panel problem; sharp flux in Region A.
The times for the coarse scale global problem are also included for reference.

Wall time (s)

Local assemble/solve Assemble Solve Total

Coarse global – 66.2 379.5 445.6
GFEMgl 1231.6 6148.7 440.9 7821.1

122



(a) GFEMgl, t = 2.5 (b) Coarse global, t = 2.5

(c) GFEMgl, t = 25.0 (d) Coarse global, t = 25.0

Figure 4.34: Von Mises stress contours in the panel at maximum load (t = 2.5) and final (t = 25.0) time steps from
GFEMgl and coarse global simulations of the hat-stiffened panel problem; sharp flux in Region A.
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(a) GFEMgl, t = 2.5 (b) Coarse global, t = 2.5

(c) GFEMgl, t = 25.0 (d) Coarse global, t = 25.0

Figure 4.35: Von Mises stress contours in the panel at maximum load (t = 2.5) and final (t = 25.0) time steps from
GFEMgl and coarse global simulations of the hat-stiffened panel problem; sharp flux in Region B.

(a) GFEMgl, t = 2.5 (b) Coarse global, t = 2.5

Figure 4.36: Cutaway view of von Mises stress contours in the stiffeners at maximum load (t = 2.5) from GFEMgl

and coarse global simulations of the hat-stiffened panel problem; sharp flux in Region A.
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(a) GFEMgl, t = 2.5 (b) Coarse global, t = 2.5

Figure 4.37: Cutaway view of von Mises stress contours in the stiffeners at maximum load (t = 2.5) from GFEMgl

and coarse global simulations of the hat-stiffened panel problem; sharp flux in Region B.

tion and solution times in both coarse global and GFEMgl simulations are comparable, since global problem sizes

are comparable, but the large computational expense associated with solving local problems and, furthermore, the

costly assembly of GFEMgl enriched global problems are evident. More efficient numerical integration strategies for

assembling global–local enrichments could partially reduce this cost, which is explored in [116] and warrants further

study. Regardless, it is also worth noting that an equivalent DFEA of the problem would result in over 4 million dofs,

or a problem size increase of over 20 times relative to the coarse mesh; thus, the computational cost associated with

assembly and solution of the problem would increase substantially—and likely eclipse that of the GFEMgl—to reach

a comparable fidelity.

4.3.4.1 Steady-state: parallel study

To assess the parallel strong scaling performance of the GFEMgl in this example, the peak sharp flux located in Region

B is applied and a parallel steady-state, nonlinear analysis is carried out on various numbers of threads. The overall

speedup of the GFEMgl, considering all aspects of assembly and solution of both global and local problems, versus

the number of processors is shown in Figure 4.38. Despite the relatively small number of local problems solved in this

example, reasonable gains in speedup are observed as additional threads are added. A good parallel efficiency (0.92) is

observed with 4 threads, while parallel performance degrades as additional CPUs are added, resulting in an efficiency

of 0.64 and speedup of 15.45 on 24 threads. This decrease in efficiency may be attributed to a load imbalance among

threads due to several factors—specifically, the small number of local problems relative to the number of threads,

small discrepancies in the sizes of individual local problems, and, importantly, unbalanced nonlinear behavior among

local problems. For instance, a noticeable decrease in parallel efficiency occurs between 16 and 20 threads; when 20

threads are utilized in the analysis, the parallel computation time is in fact bound by the serial wall time spent solving

a single nonlinear local problem.

In [63], a load balance heuristic for parallel solution of local problems is established, based purely on local problem
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Figure 4.38: GFEMgl parallel speedup in the steady-state hat-stiffened panel problem, relative to a serial GFEMgl

simulation. The GFEMgl simulation utilizes a parallel assembly and parallel direct sparse solver, and has 45 local
problems which are analyzed in parallel.

sizes in dofs, and is applied only to linear problems. Strategies such as sorting local problems in descending order of

cost are identified, yielding improvements in parallel performance. Nonlinear problems, on the other hand, present

a challenge in achieving a good parallel load balance, since it is difficult or impossible to determine where nonlinear

behavior may occur a priori; even small local problems may necessitate several nonlinear iterations to converge, so

that problem size alone may not offer a good prediction of the computational cost.

Development of strategies to account for the additional cost of localized nonlinearities in parallel computations

requires further investigation. It is reasonable to speculate, however, that by subdividing local problems into smaller

local domains (as in, e.g., [63, 106]), better parallel efficiency might be observed, although errors in local problem

boundary conditions could lead to less accurate global solutions.

A breakdown of solution time spent in each phase of the problem is given in Figure 4.39. Based on Figure 4.39a,

it can be observed that, as expected, the computational cost of the thermoplasticity problem vastly outweighs that of

the heat transfer problem. Moreover, Figure 4.39b shows that parallel assembly and solution of local problems scale

nearly evenly with parallel assembly and solution of the enriched global problem; at least up to the number of CPUs

considered in this study, neither local problems nor the enriched global problem present a specific bottleneck in the

strong scaling of the overall GFEMgl simulation time for this example.
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Figure 4.39: Parallel vs. serial solution wall times spent in each solution phase in the steady-state hat-stiffened panel
problem. Total wall times as well as the proportion of total solution wall time spent in each solution phase are shown.
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4.4 Summary

A novel GFEMgl formulation for the analysis of materially nonlinear, coupled thermo-structural problems subjected

to localized, transient heating effects is presented in this chapter. GFEM enrichment functions are generated on the

fly via the solution of hp-adapted local boundary value problems, enabling fine-scale features to be represented on a

coarse, fixed, structural-scale mesh. To account for the evolution of localized solution features in time, local solutions

must be updated at each time or load step of the analysis, leading to time-dependency of global–local enrichment

functions, and, therefore, time-dependency of the global approximation space. Several strategies for handling time-

dependent, numerically generated shape functions and ensuring convergence of solution iterations at each time or load

step of the nonlinear analysis are thus identified. Unlike traditional adaptive meshing strategies, the GFEMgl does not

require additional computational effort to map global solutions or nonlinear material state variables between time or

load steps, from one global discretization or approximation space to the next, since the global mesh remains constant.

Since the quality of numerical global–local enrichment functions can be sensitive to the accuracy of local problem

boundary conditions from the global solution, a simple strategy based on linearly updating local boundary conditions

at each step in the nonlinear, thermo-elasto-plastic problems of interest is also introduced.

The methods developed in this work are applied to a few representative problems of interest exhibiting localized,

nonlinear thermomechanical effects in the form of sharp applied loadings as well as internal material interfaces and

heterogeneity, in the interest of assessing robustness, accuracy, and computational efficiency. In terms of accuracy,

GFEMgl solutions compare favorably with equivalent direct approaches (hp-adaptive GFEM) in representing local-

ized temperature gradients, thermomechanical stresses and strains, and residual deformations, while maintaining a

coarse global mesh. The reference direct analysis approaches, however, employ highly adapted meshes, and global

convergence is often governed by extremely localized nonlinearities, leading to expensive nonlinear solution itera-

tions. Because localized nonlinearities are treated in GFEMgl local problems, and GFEMgl global problem sizes are

also generally orders of magnitude smaller than equivalent direct analyses, global nonlinear solution iterations are

inexpensive. The GFEMgl also provides excellent meshing flexibility relative to a direct analysis approach, since lo-

calized loads or geometric features need only be captured in local problems. Furthermore, GFEMgl local problems are

intrinsically parallelizable, so that analysis of fine-scale solution features on adapted local meshes is computationally

efficient; thus, the GFEMgl may achieve reduced solution times relative to DFEA, even when a high level of fidelity

in localized regions of interest is required at the global scale.
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Chapter 5

Contributions and prospects for future
work

The preceding chapters have presented several extensions to the generalized finite element method with the primary

goal of application to large-scale, nonlinear thermo-structural problems featuring localized phenomena in mind. Here,

a summary of the main novel contributions of the work, as well as a broad overview of potential future extensions, is

given.

5.1 Contributions

(i) The first noteworthy contribution of this thesis is a framework for analysis of multiphysics (i.e., coupled thermo-

mechanical) problems exhibiting localized solution behavior in hp-GFEM and GFEMgl, as presented in [107].

The framework enables efficient coupling of physics when sharp variations in multiphysics solution quantities of

interest may occur within coarse, structural-scale elements due to the use of special GFEM enrichment functions.

(ii) This work also introduces a GFEMgl for modeling localized, structural-scale thermal and thermo-mechanical

effects induced by fine-scale material heterogeneity, as published in [106]. The impact of local variation in ma-

terial properties may be important to consider in the global response of the structure, especially in regions where

typical homogenization approaches are not valid, such as in the neighborhood of highly localized gradients and

singularities. The GFEMgl approach

(a) allows for a level of fidelity which may be prohibitively computationally expensive or memory-intensive on

given computational resources when using a direct method, such as adaptive finite element analysis, and

(b) is straightforward to implement on parallel computers, while providing excellent parallel efficiency relative

to equivalent direct analysis approaches.

Moreover, the method is quite flexible and generic, as it has been shown to be applicable to nonlinear as well as

transient problems.

(iii) Also presented in this thesis is the extension of GFEM and GFEMgl to nonlinear thermoplasticity problems

subjected to localized, transient thermal effects. Building on the GFEMgl heat transfer formulation introduced in
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[90–93], in this work, thermo-elasto-plastic problems of interest are effectively modeled using coarse, structural-

scale meshes via the use of time-dependent GFEMgl enrichment functions. The time-dependent shape functions

are able to represent localized temperature and resulting thermal stress/strain fields, as well as localized residual

deformations, which are crucial considerations in life prediction of structures in the target application areas. The

method allows for global approximation spaces which evolve in time to capture localized phenomena without

requiring a mapping of global three-dimensional solutions and nonlinear material state variables, for instance,

between changing meshes, as is typical of traditional hp-adaptive approaches to problems of a similar nature,

and poses a substantial computational overhead.

5.2 Future directions

Based on results as well as persistent limitations observed during the course of this work, several potential future

directions or extensions of the research are necessary to continue progress toward practical and realistic applications

of the methods developed.

5.2.1 Improved physics

Analysis methods developed and presented in this thesis may benefit tremendously from the introduction of more

complex or realistic physics to the problem at hand. Extension of the GFEMgl framework presented in this thesis to

account for additional physics effects will likely prove both challenging and interesting. A few of the most important

of these extensions are summarized.

5.2.1.1 Realistic material models

In this study, simple J2 plasticity and linear heat transfer are considered. However, in practical applications areas of

interest, i.e., structures in extreme, multiphysics loading scenarios, more sophisticated material constitutive models

are necessary to characterize the physics of the problem.

For instance, as cited in [12], in the application area of computational welding mechanics, consideration of rate-

dependent, thermo-viscoplastic effects is of utmost importance in satisfactorily describing material behavior at elevated

temperatures, potentially upwards of two-thirds of the melting point. Furthermore, examining temperature-dependent

thermal and mechanical properties, including nonlinear heat transfer, may likely drastically impact nonlinear response

of the structures of interest [69, 70].

Similar issues are well-cited in the application area of structural analysis of hypersonic air vehicles, where local-

ized, rate-dependent plastic effects can significantly alter the response of the global structure in extreme aero-thermo-
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structural environments [128]. As in the case of laser welding, temperature-dependent variation of material properties

in this class of problems is likely to have a marked influence on overall structural behavior, and is a requirement for

realistic structural models.

5.2.1.2 Large deformations

Hypersonic flight vehicle structures are typically comprised of very thin plate members. Deformations due to rapid,

local heating of the structure are thus known to lead to geometrically nonlinear phenomena such as local buckling, for

example, in between structural stiffeners. In other areas of interest, such as computational weld mechanics, practical

finite element models must be able to predict residual structural distortion in the interest of identifying the potential

for, e.g., buckling or instability [21]. Therefore, consideration of large deformations in the structure is a necessary

component of future work in this area.

5.2.1.3 Transient dynamic response

Typically, a quasistatic thermomechanical response is considered sufficient in the application area of computational

modeling of laser welding [69]. In the case of hypersonic flight vehicles, however, extremely rapid temperature

changes and aerodynamic pressure loads on the structure due to, e.g., shock interactions, may lead to transient dynamic

effects. Accounting for transient effects due to localized loadings in the context of the GFEMgl is an intriguing future

direction of research.

5.2.1.4 Thermomechanical fracture

A crucial consideration in the life prediction of structures in the application areas of interest in this work is fracture

nucleation and propagation. For instance, Tzou [132] attempts to characterize the evolution of fractures due to thermal

shock loading from a transient heat source. Related to the previous point on consideration of dynamic response,

modeling dynamic fracture in structures subjected to extremely localized, shock thermal loadings is an important

direction of future research, and the coupled framework developed as part of this study, in conjunction with previous

work with GFEM for three-dimensional crack propagation is well-suited to this application.

5.2.2 Multiple spatial scales

Aside from introducing more sophisticated physics into the problems examined herein, this study has highlighted

the formidable parallel performance and applicability of the GFEMgl to problems of an intrinsically coupled multi-

scale character—especially relative to traditional direct approaches, which prove to be prohibitively computationally

expensive in the context of large-scale problems requiring extreme fidelity at the global scale. It has been shown
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that additional computational power alone may not be sufficient to solve challenging multiscale, multiphysics prob-

lems; thus, the development of effective, scalable multiscale analysis techniques is necessary to take advantage of

high-performance computing resources.

One potentially interesting future extension is the introduction of multiple—i.e., more than two—spatial scales

into the GFEMgl framework. By introducing multiple hierarchies of computationally manageable fine-scale, local

problems, the GFEMgl may prove to be an effective tool for bridging micro- or material-scale effects to the structural

or component level.

5.2.2.1 Numerical integration of global GFEMgl weak form

Even in a simple, two-scale approach, the cost of numerically integrating the global system of equations, which

depends on numerical enrichment functions defined over fine-scale, local meshes, is significant. The introduction of

additional spatial scales into the hierarchy would lead to a disparity between local and global mesh sizes of potentially

arbitrarily many orders of magnitude; thus, the traditional approach of performing numerical integration over the local

mesh would become impracticable due to prohibitive computational cost.

To reduce the cost of assembling global–local enrichments and thus accelerate global solution times, simplified

or optimized numerical integration approaches are necessary. Work by Schweitzer and Wu [116] has preliminarily

investigated this issue, albeit in the context of the global–local approach with enrichments stemming from a particle

method in local problems.

5.2.3 Efficient linear solvers

The parallel version of the GFEMgl bears similarities to, for example, domain-decomposition based methods, which

attempt to make large-scale, high-fidelity problems more tractable by subdividing them into computationally man-

ageable, parallelizable subdomains. GFEMgl incurs little to no communication cost among intrinsically parallelizable

local problems, making it very conducive to high-performance computing applications. However, in order to better

understand the competitiveness of the method as it is applied to large-scale problems in the applications of interest,

relative to available approaches, a direct comparison to available parallel approaches, like multigrid or domain-

decomposition methods, is necessary.

5.2.4 Integration with practical analysis tools

The transition of methods developed herein to design practice is, unfortunately, a nontrivial task, as it requires more

than simply providing a computer implementation of these methods to practicing engineers and scientists. Several

additional method developments are necessary.
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5.2.4.1 Nonintrusive implementation

Related to the incorporation of more realistic or complex physical behavior into the framework developed during

this study, practical applications of the method in an engineering context also require robust software tools. Mature,

widely-used analysis codes have large libraries of material models, loads and boundary conditions, element formula-

tions, and efficient solvers. As discussed in [50, 105], nonintrusively incorporating the method into an established (i.e.,

commercial) analysis software package, is necessary to enable more rapid and accessible transition of the GFEMgl to

industrial applications, and designing an efficient and robust algorithm to do so is an important topic of future research.

5.2.4.2 Dimensionally reduced models

Fully three-dimensional models are prohibitively expensive for large-scale problems; however, the kinematic assump-

tions of dimensionally reduced structural elements such as plates, shells, beams, etc., cannot satisfactorily capture

localized thermomechanical behavior of interest. Furthermore, adaptive localized mesh refinement, an optimal solu-

tion strategy in the classes of problems of interest, is difficult—or perhaps impossible—when dealing with meshes of

plates, shells, or even three-dimensional hexahedral elements. Therefore, another key aspect in the potential appli-

cation of the subject methods to industrial-scale problems is the compatibility of the GFEMgl with commonly-used,

practical structural element formulations such as plates and shells. Souloumiac and others [122] and Duan and others

[21], for instance, propose a method for coupling solid and dimensionally reduced models, in the application area

of weld mechanics, in order to predict global-scale residual distortions due to highly localized, thermo-elasto-plastic

effects. The superposition-based hp-d method of Krause and Rank [112] has previously been extended to the coupling

of locally three-dimensional and globally two-dimensional approximations in [33, 34]—an analogous extension of the

GFEMgl is also likely possible.
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Appendix A

Thermomechanical coupling
implementation for GFEM

This segment presents a detailed description of specific issues relating to the computational implementation of one-

way coupling for thermomechanical problems in a GFEM framework, introduced in Chapter 2, with special emphasis

on maintaining computational efficiency.

A.1 hp-GFEM coupling

Coupling two physics problems with the hp-version of GFEM is the most straightforward case because in this instance

one finite element in the heat transfer problem corresponds to exactly one finite element in the thermo-structural

problem. The integration order for assembly of the stiffness matrix over element iuel in the thermomechanical problem

is chosen based upon the maximum equivalent polynomial order,

peq = max{peq(φαi), peq(b), peq(θ)}, (A.1)

where φαi(x) are structural problem shape functions, b(x) the structural problem body force, and θ(x) the temperature

field. The polynomial order of the temperature field peq(θ(x)) is easily obtained as the maximum p-order of the heat

transfer problem shape functions over the patches covering element iθel.

Once the integration order has been obtained for iuel, evaluation of the temperature field at the integration points

is direct, since integration points in each element iθel in the heat transfer problem and iuel in the structural problem

are identical; no expensive searching for individual elements in the mesh and inverse mapping of integration points

to physical coordinates is required. The detailed algorithm for assembly and solution, accounting for thermal stress

contributions, in this case is straightforward and is detailed in Algorithm A.1. The mesh correspondence and exchange

of information between problems is also illustrated in Figure A.1.
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Algorithm A.1 Assembly and solution of hp-GFEM global thermoelasticity problems considering multiphysics tem-
perature effects.

for finite element iuel < nels in the structural mesh do
get the corresponding element iθel in the heat transfer problem;
determine the integration rule {ξ}iel based on (A.1);
for each integration point ξ j, j < npts do

obtain temperature field θ in iθel at ξ j, and compute thermal strain εθ from (2.3);
compute contributions from iuel at ξ j in weak form (2.21);
j← j + 1;

end for
iuel ← iuel + 1;

end for
solve linear system (2.23);

Heat Transfer Elasticity

x, σθ(θ)x

θ(x)

iel

Figure A.1: Algorithm showing communication between physics problems in the hp-GFEM case to obtain thermal
stress contributions. Dashed arrows represent corresponding data in each problem, while solid arrows represent ex-
change of physical quantities between the physics problems.

A.2 GFEMgl coupling

As previously discussed, the GFEMgl introduces additional complexities in the multiphysics coupling framework.

Because a sequential coupling is adopted, the most accurate, enriched global heat transfer solution θE is used to

compute thermal stress contributions in each of the initial global, local, and enriched global structural problems, as

described previously in Section 2.3.2. However, θE is represented using global–local shape functions from the solution

of hp-adapted heat transfer local problems, which are defined over the refined local mesh.

Additional assumptions are therefore adopted in the GFEMgl to maintain computational efficiency and compati-

bility with the multiphysics coupling framework. Not only are the global heat transfer and structural mesh geometries

identical, but the local problem meshes must also have the same one-to-one correspondence of elements. Just as in the
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hp-GFEM, only the geometry of the mesh must be the same, however, and arbitrary choice of enrichment functions is

possible.

A.2.1 Global thermo-structural problems

The coupling procedures for both initial and enriched global problems are virtually the same. However, in the ap-

plication of interest, the heat transfer problem is typically subject to extremely sharp and localized thermal boundary

conditions. It has been shown that these sharp thermal loadings, when applied on a coarse, global mesh, can lead

to large integration errors (as well as significant pollution error in the initial global solution) [90, 93]. Once these

integration errors are treated in the GFEMgl heat transfer local and enriched global solutions, the refined local mesh

of the heat transfer problem may be used to accurately integrate thermal stress contributions, even in the coarse-scale,

global structural problem. While in general the use of this fine integration mesh results in a large number of quadra-

ture points, it allows for exact integration of thermal stress contributions, and the effort required is comparable to a

direct finite element analysis at the same level of fidelity. In realistic problems, it is further expected that the assembly

effort in the region where global–local enrichments are required will be comparable to the effort associated with the

remainder of the global domain. Although it is not a focus of present work, alternative, inexact but less expensive in-

tegration techniques have been in active development [116]. The local mesh elements nested within each coarse-scale

global element are denoted descendants of that global element. The exchange of data between physics problems for

computing thermal stress contributions (using nested local elements) is described graphically in Figure A.2.

The detailed description of thermoelastic problem assembly and solution, considering multiphysics effects, in

initial and enriched global problems is given in Algorithm A.2.

A.2.2 Local thermo-structural problems

Assembly of structural local problems is similar to the global problems; however, local problems are required to com-

municate with the global structural and heat transfer problems in order to obtain the global temperature field, θE , for

thermal stress contributions at integration points in the refined local mesh. As described pictorially in Figure A.3, each

local structural mesh element iuL
el is a nested descendant of the corresponding global element iuel. Thus, it is a simple

task to determine the coarse-scale, global element corresponding to each local descendant. Some additional computa-

tional effort is incurred in this case, since an inverse mapping is required to obtain the corresponding integration point

in the global element. The assembly and solution algorithm adopted in the thermoelastic problem is described in detail

in Algorithm A.3.
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Figure A.2: Algorithm showing communication between GFEMgl global thermo-structural problem and global heat
transfer problems to obtain thermal stress contributions. Dashed arrows represent a corresponding data in each prob-
lem, while solid arrows represent exchange of physical quantities between the physics problems.
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Figure A.3: Algorithm showing communication between GFEMgl local thermo-structural problems and the global
heat transfer problem to obtain thermal stress contributions. Dashed arrows represent corresponding data in each
problem, while solid arrows represent exchange of physical quantities between the physics problems.
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Algorithm A.2 Assembly and solution, considering multiphysics temperature effects, of GFEMgl initial and enriched
global thermoelasticity problems.

for finite element iuel < nels in the global structural mesh do
get the corresponding global element iθel in the global heat transfer problem;
get the list of nested local elements of iuel, { j

uL
desc}iel ;

for each descendant juL
desc < ndescs do

get the corresponding local descendant jθL
desc in the local heat transfer problem;

determine the descendant integration points {ξ} jdesc ;
for each integration point ξk, k < npts do

find the corresponding global integration point ηk in iθel by inverse mapping the physical coordinate xk;
obtain temperature field θE using jθL

desc at ηk in iθel, and compute thermal strain εθ from (2.3);
compute contributions from juL

desc at ηk to iuel at ξk in weak form (2.21);
k ← k + 1;

end for
juL
desc ← juL

desc + 1;
end for
iuL
el ← iuL

el + 1;
end for
solve linear system (2.23);

Algorithm A.3 Assembly and solution, considering multiphysics temperature effects, of GFEMgl local thermoelastic-
ity problems.

for finite element iuL
el < nL

els in the local structural mesh do
get the corresponding local element iθL

el in the local heat transfer problem;
get the corresponding global element iθparent in the global heat transfer problem;
determine the local integration rule {ξ}iel ;
for each integration point ξ j, j < npts do

find the corresponding global integration point η j in iθparent by inverse mapping the physical coordinate x j.
obtain temperature field θE using iθel at η j in iθparent, and compute thermal strain εθ from (2.3);
compute contributions from iuL

el at ξ j in weak form (2.24);
j← j + 1;

end for
iuL
el ← iuL

el + 1;
end for
solve linear system (2.25);
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Appendix B

GFEMgl parallel improvements

This appendix details implementational improvements related to parallel performance of the GFEMgl, as used in

Chapters 3 and 4. All parallel algorithms are implemented in C++ using OpenMP [94].

B.1 Sub-local problem boundary condition computation

As described in detail and demonstrated in Chapter 3, the GFEMgl based on sub-local problems can resolve very local-

ized behavior on a coarse-scale, structural mesh via the efficient, parallel solution of many fine-scale, local problems.

These local problems are subject to boundary conditions from the global solution, which may come from

(i) a coarse-scale, initial global analysis, defined on a coarse, quasi-uniform mesh and based on only analytical or

polynomial global shape functions, or

(ii) a previous enriched global GFEMgl solution, such as from a previous time or load step, or a previous global–local

iteration.

Mapping global solutions onto the boundary of fine scale problems can be computationally expensive, especially

when the global solution involves numerical global–local enrichment functions which are defined over highly adapted

fine-scale meshes. Based on the topology and hierarchy of GFEMgl local and global meshes, optimized strategies for

computing boundary conditions on sub-local problems are devised so as to incur little to no additional computational

cost.

B.1.1 Boundary conditions from coarse-scale solution

When fine-scale boundary conditions come from a coarse-scale, initial global analysis based only on analytically-

defined shape functions and a coarse, global mesh, computation is straightforward and inexpensive; fine-scale elements

are directly descended from a coarse-scale element, which is stored as part of the local problem data structure. The

mapping of boundary conditions onto local problems from a coarse-scale, global solution is demonstrated in Figure

B.1 and described in Algorithm B.1.
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Figure B.1: Coarse-scale computation of boundary conditions on sub-local problems without global–local enrichment
functions in the global problem.

Algorithm B.1 Assembly of sub-local problem boundary condition contributions on a given local problem from a
coarse, global solution.

for each local element face iBC
Lα on the boundary ∂ΩLα \ (∂ΩLα ∩ ∂Ω) of local problem ΩLα do

get the corresponding global volume element iG in the global problem which contains iLα;
for each local integration point ξ j, j < npts on face iBC

Lα do
compute the corresponding global coordinate x j(ξ j);
evaluate the coarse-scale, global solution u0(x j) in iG;
compute boundary condition contributions from u0(x j) as in, e.g., (2.15);

end for
end for
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B.1.2 Boundary conditions from enriched global solution

When boundary conditions on sub-local problems come from global solutions based on global–local enrichment func-

tions, computation of boundary condition quantities becomes substantially more involved. A naı̈ve or ‘brute force’

approach (equivalent to the approach described in the above section for coarse-scale global solutions) consists of ex-

pensive searching for local elements and mapping of global to local coordinates based on a given global coordinate x

in order to evaluate global–local enrichment functions. However, as mesh adaptivity in fine-scale problems increases,

this approach quickly becomes extremely inefficient (see, for instance, 3.3 in Chapter 3) or even unreliable, resulting

in overall GFEMgl solution time bottlenecks due to local problem boundary computations.

Instead, the hierarchical topology of the underlying adapted local meshes, on which global–local enrichments are

defined, may be used to devise an optimized approach for computing global–local boundary conditions on fine-scale

problems. In all cases, local meshes are adapted such that they are compatible in regions in which they overlap on

the global domain. A single master descendant is defined (denoted iGL in Algorithm B.2), which then can be used to

link a given sub-local element to its geometrically corresponding elements in all other fine-scale problems. The mesh

of master descendants covering all sub-local domains is equivalent to the mesh of an unsubdivided, monolithic local

problem—that is, in terms of local domains,

ΩL,master =
⋃
α

ΩLα.

Figure B.2 describes the optimized approach and illustrates the fine-scale mesh correspondence graphically. The

topology of the boundary of local problem ΩLα is identified on both the coarse global and intersecting sub-local

problem meshes—it is important to note that the boundary of ΩLα is interior to these intersecting problems. Algorithm

B.2 gives a detailed explanation of the procedure. Figure B.3 illustrates the mesh of master descendants corresponding

to Figure B.2.

B.1.3 Numerical example: transient heat transfer

To verify the implementation and demonstrate the improvements in computational efficiency associated with lever-

aging the algorithm presented, the laser-heated beam example of Section 4.3.2.1 in Chapter 4 is solved; however, in

this case, only the transient heat transfer problem is considered. Furthermore, 6 levels of global mesh refinement are

performed on the global domain in the neighborhood of the sharp, stationary applied laser flux. The resulting local

domain has 10 additional levels of localized mesh refinement surrounding the sharp flux location in GFEMgl simu-

lations. In parallel GFEMgl simulations with sub-local problems, the local domain is subdivided into 250 sub-local

problems. The global polynomial order is p = {2, 2, 2, } while in the local problem, ploc = {3, 3, 3}. The transient
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Figure B.2: Local problem descendant relationships for optimized computation of boundary conditions on sub-local
problems with global–local enrichment functions in the global problem, based on nested mesh topology in sub-local
problems (i.e., when conducting multiple global–local iterations, or in time-dependent problems). The optimized
approach avoids expensive searching and mapping of fine-scale solutions onto the sub-local boundaries.
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Figure B.3: Fine-scale, master descendant mesh associated with Figure B.2, used to determine the geometric corre-
spondence of fine-scale elements for efficient computation of sub-local boundary conditions.

Algorithm B.2 Assembly of sub-local problem boundary condition contributions on a given local problem from an
enriched global GFEMgl solution.

for each local element face iBC
Lα on the boundary ∂ΩLα \ (∂ΩLα ∩ ∂Ω) of local problem ΩLα do

get the corresponding global volume element iG in the global problem which contains iLα;
get the master descendant iGL which corresponds to iLα;
for each local integration point ξ j, j < npts on face iBC

Lα do
compute the corresponding global coordinate x j(ξ j);
for each enriched global node ωk, k < nnods (where ωα ∈ {ωk}) of element iG do

evaluate the solution uLk(x j), of each corresponding sub-local problem ΩLk, using ξ j and descendant iGL;
compute global–local shape functions at the integration point, as in, e.g., (4.18),

φ
gl
αk = ϕαuLk;

end for
calculate the global solution u(x j) in iG based on global–local shape functions;
compute boundary condition contributions from u(x j) as in, e.g., (4.17);

end for
end for
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Figure B.4: Internal energies of GFEMgl and hp-GFEM transient heat transfer solutions of the laser-heated beam.

analysis is carried out over the interval t ∈ [0, 1] in 20 uniform time steps, so that ∆t = 0.05. For comparison, an

‘equivalent’ direct hp-GFEM analysis is also included. Both GFEMgl and hp-GFEM simulations leverage a parallel

implementation on a machine with 24 computing cores.

The internal energies of GFEMgl and hp-GFEM solutions at each time step are given in Figure B.4.

Figure B.5 shows the wall times required for solution of the problem under each method when ‘brute force’ com-

putation of local boundary conditions is used. Despite the good accuracy of all approaches adopted to solve the

problem, the expensive searching and mapping of GFEMgl enriched global solutions onto sub-local problem bound-

aries bottlenecks the overall solution time, so that any benefit of a parallel implementation is lost due to computational

overhead.

Figure B.6 compares the wall time required for assembly of local problems in each GFEMgl simulation, now

considering optimized computation of local boundary conditions. It is an important distinction that the monolithic

GFEMgl local problem uses a parallel assembly algorithm on 24 threads, while each of 250 GFEMgl sub-local prob-

lems utilizes a serial assembly routine on each thread; the assembly of sub-local problems experiences a slight over-

head with respect to the monolithic local problem because of this as well as the extra expense associated with over-

lapping sub-local regions (see, e.g., Figure B.2). Immense gains in assembly efficiency are observed by adopting the

optimized numerical integration strategy on sub-local boundaries described above, and the benefits are expected to

increase as the ratio H/h between global and local mesh sizes increases.

In contrast with Figure B.5, Figure B.7 compares overall transient simulation wall times when computation of

sub-local problem boundary conditions is optimized. As expected, in this instance the parallel GFEMgl with sub-local
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Figure B.5: Cumulative wall time required for transient heat transfer simulation of the laser-heated beam, brute force
computation of local problem boundary conditions.
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Figure B.6: Cumulative wall time required for assembly of local problems in GFEMgl transient heat transfer simu-
lations of the laser-heated beam. The monolithic GFEMgl local problem utilizes a parallel assembly on 24 threads,
while sub-local problems are each assembled (in serial) on one thread in the team of 24 total threads.
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Figure B.7: Cumulative wall time required for transient heat transfer simulation of the laser-heated beam, optimized
computation of local problem boundary conditions.

Table B.1: Comparison of parallel efficiency of hp-GFEM and GFEMgl transient heat transfer solutions of the laser-
heated beam at a single time step (t = 0.1) on 24 CPUs. GFEMgl solution times consider assembly, factorization, and
solution of local problems, while DFEA solution times consider only the linear solve phase.

Method Solve (s) Speedup Efficiency

hp-GFEM DFEA (serial) 551.11 – –
hp-GFEM DFEA (parallel) 83.73 6.58 0.274
GFEMgl 78.59 7.01 0.292
GFEMgl, sub-local 27.11 20.33 0.847

problems outperforms both hp-GFEM and GFEMgl simulations in terms of total wall time required.

Table B.1 compares the parallel efficiency of GFEMgl approaches with respect to the hp-GFEM solution using an

optimized, parallel direct sparse solver at a single time step (t = 0.1) of the transient solution. The solution times shown

are exclusive of time spent assembling the global problem; that is, they include hp-GFEM times for factorization and

solution of the global system of equations, while GFEMgl times include assembly, factorization, and solution of local

problems, as well as factorization and solution of the global problem. The parallel GFEMgl with sub-local problems

yields the best speedup with respect to the serial DFEA.

Even further gains in computational efficiency are possible in GFEMgl transient heat transfer problems, with or

without sub-local problems. Because no time scale is associated with the linear, steady-state local problems, and

their respective spatial discretizations remain constant at each time step of the analysis, the factorized system of

equations for each local or sub-local domain may be stored and reused at each global time step. In this instance, only

external loads require updating, and solution of local problems involves only a forward and backward substitution on
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Figure B.8: Comparison of wall times for transient heat transfer simulations of the laser-heated beam with (store LHS)
and without storage of (sub-)local problem factorizations. The monolithic GFEMgl local problem utilizes a parallel
assembly on 24 threads, while sub-local problems are each assembled (in serial) on one thread in the team of 24 total
threads.

the factorized linear system. Figure B.8 shows overall solution wall times when local factorizations are stored and

reused at each time step. While the monolithic local problem leads to an improved solution time, even relative to

the analysis utilizing parallel sub-local problems, it is again important to distinguish that the local problem utilizes a

parallel assembly algorithm and parallel direct sparse solver. In general, however, monolithic local problems may be

prohibitively large to be solved on given computational resources. Although this strategy allows for faster computation

times, the storage overhead associated with all local or sub-local problem factorizations may be extremely large; thus,

a careful consideration of computation time versus memory usage is important. Furthermore, the strategy is only

generally applicable to linear problems (i.e., importantly, not the elasto-plastic problems with multiple load steps that

are also of interest in this study). Regardless, the GFEMgl with sub-local problems is capable of providing good

computational efficiency without incurring additional storage overhead.

B.2 Parallel assembly

Three parallel assembly strategies are compared, based on findings by Jarzebski et al. [57]:

(i) OpenMP critical regions (critical), which are implemented in the global assembly routine, asserting that only

one thread at a time may assemble its contributions into the global matrices,

(ii) OpenMP atomic updates (atomic), which reduces the overhead associated with critical regions, and can be
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Figure B.9: Different OpenMP parallel assembly strategies considered: atomic updating (atomic) versus critical
region (critical), from [57].

Figure B.10: Simple parallel assembly benchmark problem; a 4-node tetrahedral mesh of a linear elastic domain under
uniform tension.

applied to a single update operation in the global matrices,

(iii) and an element coloring scheme [13],

each in order to avoid race conditions in the global stiffness matrix and load vector(s).

B.2.1 Tetrahedral mesh

Figure B.10 shows a very simple, linear elasticity ‘benchmark’ problem used to assess the scalability of each global

assembly approach. The model consists of 1,208 four-node tetrahedral GFEM elements. Two global polynomial

orders of the approximation are considered, p = 5 (33,075 global degrees of freedom) and p = 6 (52,920). A high

polynomial order is chosen so that individual element computations are expensive relative to the cost of assembly of

element contributions into the global matrices—i.e., each element contribution involves many integration points.
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Figure B.11 shows parallel assembly speedup results with global polynomial orders p = 5 and p = 6 for each

of the strategies implemented. The global serial CPU times for assembly are 12.16 and 102.86 seconds, respectively.

It is clear that use of a critical region, which requires explicit synchronization of all threads during each assembly

operation, gives a poor speedup of roughly 2 or less for p = 5 and 7 or less when p = 6. Scalability likely reaches an

upper bound due to the serial execution time required during the assembly operation.

The element coloring scheme avoids race conditions altogether by ensuring that all elements assembled in a given

color do not share a global node, i.e., no two elements of a single color will simultaneously write to a single location

in memory. However, there are several limitations inherent in this approach. First, there is a substantial overhead

associated with computing the mesh coloring, especially for dense tetrahedral mesh topologies where many elements

may share a single node. (It should be noted, however, that this overhead time is not included in the numerical results

shown.) Second, it is also possible that a mesh coloring may require a very large number of colors; the number of

elements of a given color may therefore be fewer than the number of processors available for the assembly operation.

In this instance a suboptimal speedup is expected, which proves true in the examples shown, as the parallel speedup

reaches an upper bound of roughly 8. The element coloring scheme generally yields a better speedup than the critical

region approach, however. Specific performance aspects of the coloring scheme are detailed in Section B.2.3.

Atomic updating, which is a simplified critical region optimized for update operations on a given shared memory

location, provides the best speedup for the test examples shown. While p = 5 seems to reach a bottleneck, when p = 6

globally, the approach scales well relative to the ideal, linear scaling.

B.2.2 Hexahedral mesh

Figure B.12 shows the same linear elasticity ‘benchmark’ problem, now meshed with 1,000 eight-node hexahedral

GFEM elements, for comparison with the previous tetrahedral mesh. A global polynomial order p = 4 is used in this

case, resulting in 83,160 degrees of freedom.

Parallel assembly speedup results for this example are included in Figure B.13. For reference, the serial CPU

time for assembly of the hexahedral benchmark problem is 26.52 seconds. A very similar behavior of the parallel

assembly strategy utilizing a critical region is observed in this case, again due to the serial bottleneck. However, in

this case the atomic update and mesh coloring give very similar speedup results. The improved performance of the

coloring scheme, relative to atomic updating, may be attributed to the nature of the hexahedral mesh; in this case,

fewer elements are connected to each node, resulting in fewer colors, or, equivalently, fewer race conditions.
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Figure B.11: Speedup in parallel assembly for the benchmark problem with 4-node tetrahedral elements for various
global polynomial orders of the approximation.
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Figure B.12: Simple parallel assembly benchmark problem; an 8-node hexahedral mesh of a linear elastic domain
under uniform tension.
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Figure B.13: Speedup in parallel assembly for the benchmark problem with 8-node hexahedral elements.
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Figure B.14: Comparison of the number of elements per color in each mesh considered for the benchmark problem.
The dashed horizontal line indicates the maximum number of CPUs on which the parallel assembly was tested in the
examples shown. The tetrahedral mesh has a total of 1,208 elements, while the hexahedral mesh has 1,000.

B.2.3 Element coloring scheme performance

Figure B.14 compares the number of elements per color in both the structured tetrahedral and structured hexahedral

meshes. While the tetrahedral mesh requires 54 colors, with a maximum of number of elements nel = 43 in the largest

color, the hexahedral mesh needs only 10 colors, with 150 elements in the largest color.

The dashed horizontal line in the figure indicates the maximum number of threads, N = 16, for which parallel

assembly results are shown in both of these sample meshes. Out of 54 colors in the tetrahedral mesh, 17 have fewer

elements than threads, nel < N, which greatly diminishes the efficiency of the parallel assembly, as (sometimes

multiple) threads remain idle during the assembly of these colors. On the other hand, just 2 of 10 colors in the

hexahedral mesh have nel < N, while most colors have nel � N, due to the connectivity structure of the mesh,

resulting in fewer elements connected per node; thus, the coloring scheme achieves a substantially better speedup on

the hexahedral mesh than in the tetrahedral case.
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Appendix C

GFEMgl nonlinear solution algorithms for
time-dependent shape functions

This appendix provides the nonlinear solution strategies for GFEMgl thermoplasticity problems presented in Chapter

4 in detailed algorithm form, for ease of implementational reproduction, as follows:

(i) A nonlinear solution algorithm C.1 based on reconstruction of the total solution from separate approximations

at each increment, or the ‘incremental’ approach.

(ii) Algorithm C.2 based on recovering the previous converged solution at time t = tn in the updated approximation

space at t = tn+1 from a linear elastic solution, or the linear ‘recovery’ approach.

(iii) Algorithm C.3 based on predicting the total solution at the current time step t = tn+1 in the updated approximation

space from a linear elastic solution, or the linear ‘prediction’ approach.
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Algorithm C.1 Nonlinear GFEMgl solution algorithm based on an incremental approach.

for all t ∈ t0, . . . , tN do
if updating local problem boundary conditions then

Compute (4.44),
∆du,lin

n,n+1 ←
(
Ku

elas,n

)−1 (
fu

ext,n,n+1 − fu
int,n,n+1

)
;

uhp,lin
n,n+1 =

n∑
j=0

N̄u
j (x)∆du

j + N̄u
n∆du,lin

n,n+1

end if
Solve local problems, update global–local shape functions,

φgl
n+1,α(x) = Nα(x)∆uL(x, tn+1);

i← 0;
repeat

Assemble and solve (4.28),

∆du(i+1) ←
(
Ku(i)

tan,n+1

)−1 (
fu

ext,n+1 − fu(i)
int,n+1

)
;

Update the total solution according to (4.29),

∆du(i+1)
n+1 ← ∆du(i)

n+1 + ∆du(i+1);

uhp(i+1)
n+1 =

n∑
j=0

N̄u
j (x)∆du

j + N̄u
n+1∆du(i+1)

n+1 ;

i← i + 1 ;
until convergence

end for
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Algorithm C.2 Nonlinear GFEMgl solution algorithm based on linear recovery of the previous converged solution.

for all t ∈ t0, . . . , tN do
if updating local problem boundary conditions then

Compute (4.44),
du,lin

n,n+1 ←
(
Ku

elas,n

)−1 (
fu

ext,n,n+1 − fu
int,n,n+1

)
;

uhp,lin
n,n+1 = N̄u

ndu,lin
n,n+1

end if
Solve local problems, update global–local shape functions,

φgl
n+1,α(x) = Nα(x)uL(x, tn+1);

i← 0;
Solve linear elastic problem at the previous (converged) step with current shape functions (4.35),

du
n+1,n ←

(
Ku

elas,n+1

)−1 (
fu

ext,n+1,n − fu
int,n+1,n

)
;

du(0)
n+1 ← du

n+1,n;
repeat

Assemble and solve (4.28),

∆du(i+1) ←
(
Ku(i)

tan,n+1

)−1 (
fu

ext,n+1 − fu(i)
int,n+1

)
;

Update the total solution (4.37),
du(i+1)

n+1 ← du(i)
n+1 + ∆du(i+1);

uhp(i)
n+1 = N̄u

n+1du(i+1)
n+1 ;

i← i + 1;
until convergence

end for
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Algorithm C.3 Nonlinear GFEMgl solution algorithm based on linear prediction of the total solution at the current
time step.

for all t ∈ t0, . . . , tN do
if updating local problem boundary conditions then

Compute (4.44),
du,lin

n,n+1 ←
(
Ku

elas,n

)−1 (
fu

ext,n,n+1 − fu
int,n,n+1

)
;

uhp,lin
n,n+1 = N̄u

ndu,lin
n,n+1

end if
Solve local problems, update global–local shape functions,

φgl
n+1,α(x) = Nα(x)uL(x, tn+1);

i← 1;
Solve linear elastic problem for the total solution at the current step (4.39),

du(1)
n+1 =

(
Ku

elas,n+1

)−1 (
fu

ext,n+1 − fu(0)
int,n+1

)
;

repeat
Assemble and solve (4.28),

∆du(i+1) ←
(
Ku(i)

tan,n+1

)−1 (
fu

ext,n+1 − fu(i)
int,n+1

)
;

Update the total solution (4.37),
du(i+1)

n+1 ← du(i)
n+1 + ∆du(i+1);

uhp(i)
n+1 = N̄u

n+1du(i+1)
n+1 ;

i← i + 1;
until convergence

end for
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[80] J.M. Melenk and I. Babuška. The partition of unity finite element method: Basic theory and applications.
Computer Methods in Applied Mechanics and Engineering, 139:289–314, 1996.

[81] W.F. Mitchell. The hp-multigrid method applied to hp-adaptive refinement of triangular grids. Numerical
Linear Algebra with Applications, 17(1):211–228, 2010. doi: doi10.1002/nla.700.
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