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ABSTRACT

In multicore era, programmers exploit concurrent programming to gain performance and re-

sponsiveness benefits. However, concurrent programs are difficult to write: the programmer

has to balance two conflicting forces, thread safety and performance.

To make concurrent programming easier, modern programming languages provide many

kinds of concurrent constructs, such as threads, asynchronous tasks, concurrent collections,

etc. However, despite the existence of these concurrent constructs, we know little about

how developers use them. On the other hand, although existing API documentation teach

developers how to use concurrent constructs, developers can still misuse and underuse them.

In this dissertation, we study the use, misuse, and underuse of two types of commonly used

Java concurrent constructs: Java concurrent collections and Android async constructs. Our

studies show that even though concurrent constructs are widely used in practice, developers

still misuse and underuse them, causing semantic and performance bugs.

We propose and develop a refactoring toolset to help developers correctly use concurrent

constructs. The toolset is composed of three automated refactorings: (i) detecting and fixing

the misuses of Java concurrent collections, (ii) retrofitting concurrency for existing sequential

Android code via a basic Android async construct, and (iii) converting inappropriately used

basic Android async constructs to appropriately enhanced constructs for Android apps.

Refactorings (i) and (iii) aim to fix misused constructs while refactoring (ii) aims to eliminate

underuses.

First, we cataloged nine commonly misused check-then-act idioms of Java concurrent

collections, and show the correct usage of each idiom. We implemented the detection strate-

gies in a tool, CTADetector, that finds and fixes misused check-then-act idioms. We

applied CTADetector to 28 widely used open source Java projects (comprising 6.4 million
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lines of code) that use Java concurrent collections. CTADetector discovered and fixed 60

bugs. These bugs were confirmed by developers and the fixes were accepted.

Second, we conducted a formative study on how a basic Android async construct, AsyncT-

ask, is used, misused, and underused in Android apps. Based on the study, we designed,

developed, and evaluated Asynchronizer, an automated refactoring tool that enables

developers to retrofit concurrency into Android apps. The refactoring uses a points-to static

analysis to determine the safety of the refactoring. We applied Asynchronizer to perform

123 refactorings in 19 widely used Android apps; their developers accepted 40 refactorings

in 7 projects.

Third, we conducted a formative study on a corpus of 611 widely-used Android apps

to map the asynchronous landscape of Android apps, understand how developers retrofit

concurrency in Android apps, and learn about barriers encountered by developers. Based

on this study, we designed, implemented, and evaluated AsyncDroid, a refactoring tool

which enables Android developers to transform existing improperly-used async constructs

into correct constructs. We submitted 45 refactoring patches generated by AsyncDroid in

7 widely used Android projects, and developers accepted 15 of them.

Finally, we released all tools as open-source plugins for the widely used Eclipse IDE which

has millions of Java users. Moreover, we also integrated CTADetector and AsyncDroid

with a static analysis platform, ShipShape, that is developed by Google. Google envisions

ShipShape to become a widely-used platform. Any app developer that wants to check code

quality, for example before submitting an app to the app store, would run ShipShape on

her code base. We expect that by contributing new async analyzers to ShipShape, millions

of app developers would benefit by being able to execute our analysis and transformations

on their code.
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CHAPTER 1

Introduction

The hardware industry keeps up with Moores law by resorting to multicore processing.

Nowadays multicores are everywhere: in smart phones, tablets, laptops, and desktop com-

puters. In the multicore era, the software industry can benefit from hardware improvements

if they leverage concurrent programming. However, writing concurrent programs is hard:

the programmer has to balance two conflicting forces, thread-safety and performance.

The industry trend is to convert the hard problem of using concurrency into the easier

problem of using concurrent libraries and constructs. For example, Microsoft provides Task

Parallel Library (TPL) [1] and Collections.Concurrent (CC [2]), Intel provides the Threading

Building Blocks (TBB) [3], and the Java community uses the java.util.concurrent

(j.u.c.) [4] library, Android framework provides AsyncTask [5], IntentService [6] and

AsyncTaskLoader [7].

Despite several existing books and API documentation that teach how and where to

use concurrent constructs, developers still misuse and underuse them. First, for concurrent

collections, which is one of the most widely-used features in concurrent libraries [8, 9, 10, 11],

developers often combine several operations to express higher-level semantics such as check-

then-act [10] idioms. In this idiom, the code first checks a condition, and then acts based

on the result of the condition. Although individual operations of a concurrent collection

are thread-safe, composing two operations can lead to atomicity violation bugs. Second, for

the basic async construct, AsyncTask, provided by Android framework, developers misuse

it by either launching a task but immediately blocking it to wait for the task result, or

accessing unthread-safe objects (i.e., GUI widgets) in a task. On the other hand, Android

async constructs are underused since there are places where we can move synchronous code

into asynchronous code to improve the responsiveness of mobile apps. Finally, although
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Android provides several async constructs that developers can use, developers can still choose

the inappropriate async constructs, which result in memory leaks, lost results, and wasted

energy.

This dissertation studies two types of Java concurrent constructs: Java concurrent col-

lections and Android async constructs. Based on the studies, it presents three refactorings

to help programmers to correctly use Java concurrent constructs. These refactorings either

fix the incorrect uses of Java concurrent constructs or introduce new uses of concurrent

constructs correctly. First, we present CTADetector which uses a static analysis to de-

tect instances of misused idiom of concurrent collections and automatically correct them

via refactoring. Second, we present an automated refactoring tool, Asynchronizer, which

enables developers to extract blocking sequential code into AsyncTask for Android apps.

Third, we presents a tool, AsyncDroid, which enables Android developers to transform

existing improperly-used shared-memory style Android async constructs (i.e., AsyncTask)

into proper distributed-style constructs (i.e., IntentService).

1.1 Thesis Statement

Our thesis is three-pronged:

(1) There is a need for solid studies on the uses of concurrent constructs. (2) It is

possible to design and develop refactoring techniques to fix misuses and introduce new

uses of concurrent constructs. (3) These refactorings are useful in practice.

To prove this statement, this dissertation presents four main bodies of research: (1) a study

on Java concurrent collections and an approach for detecting and correcting check-then-

act idioms of concurrent collections, (2) a study on Android AsyncTask and a refactoring

technique for safely retrofitting AsyncTask to sequential code, (3) a study to map the asyn-

chronous landscape of Android and a refactoring technique for converting shared-memory

style AsyncTask into distributed-style communication IntentService for Android apps,

and (4) an approach to integrate the above refactoring techniques with a single static analysis
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platform. For each refactoring technique, we submitted our refactoring patches to develop-

ers (a total of 323 patches) and they think our patches are useful. The rest of this chapter

introduces these four bodies of research.

1.2 Check-then-Act Misuse of Java Concurrent Collections

Individual operations of concurrent collections are thread-safe (i.e., several threads can safely

put into the same ConcurrentHashMap in parallel). However, concurrent collections can

be easily misused. Often programmers combine several operations to express higher-level

semantics such as check-then-act [10] idioms. In this idiom, the code first checks a

condition, and then acts based on the result of the condition.

        PermissionCollection pc;
chk: if ((pc = loaderPC.get(codeUrl)) == null) {
           pc = super.getPermissions(codeSource);
           if (pc != null) {
             ... // initializing "pc"
act:        loaderPC.put(codeUrl,pc);
           }
        }
        return (pc);

WebappClassLoader.java

chk: while (!queue.isEmpty() && ...) {
act:     CheaterFutureTask task = queue.

remove();
           incompleteTasks.add(task);
           taskValues.add(task.getRawCallable().
               call());
        }

BatchCommitLogExecutorService.java

chk: if (queryHandlers == null) {
act:     queryHandlers =newCopyOnWriteArrayList
               <QueryHandler>();
        }
        ...
        if (!queryHandlers.contains(handler)) {
           queryHandlers.add(handler);
        }

QueryHandlerRegistryImpl.java

(a) A usage of ConcurrentHashMap in GlassFish (b) A usage of BlockingQueue in Cassandra (c) A usage of CopyOnWriteArrayList in CXF

Figure 1.1: Three instances of misused check-then-act idioms of concurrent collections
used in real-world applications.

Figure 1.1 shows three real-world examples of check-then-act idioms. The labels chk

and act mark the check and act operations, respectively. In Fig. 1.1(a) the code checks

whether a ConcurrentHashMap loaderPC contains a specific key and if it does not, the

code creates a new value and puts it into the map. In Fig. 1.1(b) the code checks whether

the queue is empty, and if not, it removes elements from the queue. Figure 1.1(c) shows

a classic lazy-initialization: the code checks whether a list reference is null, and if so, it

creates a new list and adds elements into the list.

All three examples lead to bugs when they are executed under concurrent threads, say T1

and T2. In Fig. 1.1(a), suppose that both T1 and T2 execute statement chk and find that the

map does not contain the key. Thus, they both calculate the value and put it into the map.
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Whoever is the last one will overwrite the value put by the other thread. This breaks the

put-if-absent semantics of the original code. In Fig. 1.1(b), if T2 removes the last element

from the queue while T1 is between chk and act, the element retrieved by T1 will be null,

which will lead to a NullPointerException in the fifth line of code. In Fig. 1.1(c) suppose

that both threads find the list field is null and initialize it. In this case one initialization will

override the other. The elements added by one thread will be lost. We found and reported

all three bugs to the developers, who confirmed them as new bugs and applied our patch.

Notice that these are all examples of atomicity violation bugs: an operation executed by a

thread T2 between the T1 thread’s execution of chk and act statements might make T1 act

based on a stale condition. This can result in corrupted data structures, null pointer excep-

tions, and semantic errors (e.g., overwrite). Such errors can occur even if the programmers

use concurrent libraries, as shown in our three examples. We call the above errors semantic

bugs.

In addition to semantic bugs, programmers can also introduce performance bugs when

using check-then-act. A performance bug is an over-synchronized check-then-act

idiom that harms the performance. For the example in Fig. 1.1(a), suppose that the pro-

grammer used a lock to make the check-then-act idiom atomic. However, this reduces

the scalability of the application, because the same lock is used to protect all other access

to the loaderPC map. While this correctly prevents overlapping read and write concurrent

accesses, it also prevents concurrent read accesses. In an application with predominantly

read accesses, the lock-based synchronization dramatically reduces the performance. A much

better approach is to use the compound update APIs provided in the concurrent collections.

In this example, we can change the code to use ConcurrentHashMap.putIfAbsent.

To address the check-then-act misuses, we make the following contributions:

1. Catalog of idioms: we catalog the incorrect usage of check-then-act idioms of

concurrent collections.

2. Analysis of instances: By mining 28 projects, we uncover 282 misused and 545 correctly

used instances of the idioms. Using this data, we answer questions about popularity, error-

proneness, and evolution of idioms. This data lead to the discovery of 60 new bugs, confirmed

by the developers. We reported the misused idioms that we found in this work to Doug Lea,
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the lead designer of j.u.c. package. This led them to improve some APIs in the latest

JDK8 release (e.g., compute-if-absent in ConcurrentHashMap) in ways they expect will

reduce the prevalence of errors and misuses.

3. Tool for detection and correction: we implemented a pattern-based static analysis

tool, CTADetector, to detect misused check-then-act idioms. To correct the misused

idioms, our tool uses an interactive refactoring approach. The tool is available at:

http://refactoring.info/tools/CTADetector/

1.3 Retrofitting Concurrency for Android Apps

For smartphone apps, responsiveness is critical. Previous research [12, 13] shows that many

Android apps suffer from poor responsiveness and one of the primary reasons is that apps

execute all workload in the UI event thread. The UI event thread of an Android app processes

UI events, but long-running operations (i.e., CPU-bound or blocking I/O operations) will

“freeze” it, so that it cannot respond to new user input.

The primary way to avoid freezing the UI event thread is to resort to concurrency, by

extracting long-running operations into a background thread. Android framework pro-

vides AsyncTask, which is a high-level concurrent construct to execute background tasks.

AsyncTask can also interact with the UI thread by updating the UI via event handlers.

For example, the event handler onPostExecute executes after the task is finished, and can

update the UI with the task results.

We first conducted a formative study to understand how developers use AsyncTask. we

analyzed a corpus of top 104 most popular, open-source Android apps, comprising 1.34M

SLOC, produced by 1139 developers. The study shows:

1. 48% of the studied projects use AsyncTask in 231 different places. In 46% of the

uses, developers extracted long-running operations into AsyncTask via manual refactoring.

Others used AsyncTask from the first version.

2. We found two kinds of misuses. First, in 4% of the invoked AsyncTask, the code runs

sequentially instead of concurrently: the code launches an AsyncTask and immediately

blocks to wait for the task’s result. Second, we found that in 13 cases, code in AsyncTask
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accesses GUI widgets in a way which is not thread-safe. This leads to data races on these

GUI widgets.

3. We found that 251 places in 51 projects execute long-running operations in UI event

thread. This shows AsyncTask is underused.

Inspired by these findings, we designed, developed, and evaluated Asynchronizer, an

automated refactoring tool that enables developers to use AsyncTask. To perform the

refactoring, the developers only need to select the code that they want to run in background.

Asynchronizer will automatically create an instance of AsyncTask as an inner class,

generate event handlers in AsyncTask, and start the task.

However, manually applying this refactoring is non-trivial. First, a developer needs to

reason about fields, method arguments, and return value for AsyncTask, and the statements

that can be moved into AsyncTask. This requires reasoning about control- and data-flow.

Second, the developer has to deal with several special cases. For example, this or super

are relative to the enclosing class where they are used, whereas after extracting them into

AsyncTask, they are relative to the inner AsyncTask class. Third, the developer needs to

analyze the read-write effects on shared variables in order to prevent introducing data races.

To solve these challenges, we decompose the refactoring into two steps: code transfor-

mation and safety analysis. The transformation part uses Eclipse’s refactoring engine to

rewrite the code. The safety analysis uses a static race detection approach, specialized to

AsyncTask.

This research makes the following contributions:

1. Formative study: we conducted a study on the usage, misusage, and underusage of

AsyncTask in Android apps.

2. Algorithms: we designed the analysis and transformation algorithms to address the

challenges of refactoring long-running operations into AsyncTask. The algorithms account

for inversion of control by transforming sequential code into callback-based asynchronous

code, and reason about non-interference of updates on shared variables.

3. Tool: we implemented the refactoring in a tool, Asynchronizer, integrated with the

Eclipse refactoring engine. The tool is available at:

http://refactoring.info/tools/asynchronizer/
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4. Evaluation: To evaluate Asynchronizer’s usefulness, we used it to refactor 200 places

in 32 open-source Android projects. We evaluate Asynchronizer from five angles. First,

since 95% of the cases meet refactoring preconditions, it means that the refactoring is highly

applicable. Second, in 99% of the cases, the changes applied by Asynchronizer are similar

with the changes applied manually by open-source developers, thus our transformation is

accurate. Third, Asynchronizer changes 2394 LOC in 62 files in just a few seconds per

refactoring. Fourth, using Asynchronizer we discovered and reported 169 data races in 10

apps. 5 replied and confirmed 62 races. This shows that the automated refactoring is safer

than manual refactoring. Fifth, we also submitted patches for 123 refactorings in 19 apps.

10 replied and accepted 40 refactorings. This shows that Asynchronizer is valuable.

1.4 Converting Shared-Memory into Distributed-Style

Communication for Android Apps

In addition to the basic easy-to-use AsyncTask, Android framework also provides two en-

hanced yet more complicated async constructs IntentService and AsyncTaskLoader.

AsyncTask is designed for encapsulating short-running tasks while the other two are good

choices for long-running tasks. However, as our study on a corpus of 500 Android apps

shows, AsyncTask is the most widely used construct, dominating by a factor of 3x over the

other two choices combined.

However, if improperly used, AsyncTask can lead to memory leaks, lost results, and

wasted energy. Developers usually hold a reference to a GUI component in an AsyncTask,

so that they can easily update GUI based on task results. However, there are several instances

in which the Android system can destroy and recreate a GUI component while an AsyncTask

is running: when a user changes the screen orientation, or navigates to another screen on

the same app, switches to another app, clicks the “Home” button and navigates back, etc.

If the AsyncTask is still running and it holds GUI reference, the destroyed GUI cannot be

garbage collected, which leads to memory leaks.

On the other hand, if an AsyncTask that finished its job updates a GUI component that

has already been destroyed and recreated, the update is sent to the destroyed GUI rather
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than the recreated new one, and cannot be seen by the user. Thus, the task result is lost,

frustrating the user. Moreover, the device wasted its energy to execute a task whose result

is never used. As pointed out by many forums [14, 15, 16], this problem is widespread

and is critical for long-running tasks. IntentService and AsyncTaskLoader do not have

the above limitations because they do not hold a reference to GUI and instead use a rad-

ically different mechanism to communicate with the GUI. To avoid the above problems of

AsyncTask, developers must refactor AsyncTask code into enhanced async constructs such

as IntentService.

However, manually applying this refactoring is non-trivial due to drastic changes in com-

munication with GUI. This is a challenging problem because a developer needs to trans-

form a shared-memory based communication (through access to the same variables) into

a distributed-style (through marshaling objects on special channels). First, the developer

needs to determine which objects should flow into or escape from IntentService. Unlike

AsyncTask, the objects that flow into or escape from IntentService should be serializable.

Determining this requires tracing the call graph and type hierarchy. Second, the developer

needs to rewire the channels of communication. Whereas AsyncTask provides handy event

handlers for callback communication, IntentService does not. IntentService and GUI

can only communicate through sending and receiving broadcast messages. This requires

developer to replace event handlers with semantic-equivalent broadcast receivers, which is

tedious. Third, the developer needs to infer where to register the broadcast receivers. Reg-

istering at inappropriate places can still lead to losing task results.

We first conduct a formative study to to understand how developers use different Android

async constructs. We analyzed a corpus of 611 most popular open-source Android apps,

comprising 6.47M SLOC. To further put the study results in a broader context, we then

surveyed 10 expert Android developers. The study shows:

1. 161 (32%) of the studied apps use at least one asynchronous programming, resulting in

1893 instances. Out of these, AsyncTask is the most widely used.

2. The following code evolution scenario exists: developers first convert sequential code to

AsyncTask, and those that continue to evolve the code for better use of asynchrony refactor

it further into enhanced constructs.
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3. Android experts think AsyncTask is being overused at the expense of other enhanced

async constructs, and many inexperienced Android developers do not know its problem.

Experts suggest AsyncTask should only be considered for short-running tasks (i.e., less

than a second).

Inspired by the results of our study, we designed, developed, and evaluated AsyncDroid,

an automated refactoring tool that transforms shared-memory into distributed-style commu-

nication in the context of Android async programming. AsyncDroid refactors AsyncTask

into IntentService.

This research makes the following contributions:

Formative study: To the best of our knowledge, this paper presents the first quantitative

and qualitative study to (i) map the asynchronous landscape of Android, (ii) understand

how developers retrofit asynchrony, and (iii) learn about barriers encountered by developers.

Algorithms: We designed the analysis and transformation algorithms to address the chal-

lenges of refactoring from shared-memory communication (as used in AsyncTask) to dis-

tributed-style communication (as used in IntentService). The algorithm determines the

incoming and outgoing objects in/from IntentService, replaces event handlers with broad-

cast messages and receivers, and infers where to register broadcast receivers.

Tool: We implemented the algorithms in AsyncDroid, a refactoring tool built on top of

Eclipse refactoring engine. The tool is available at:

http://refactoring.info/tools/asyncdroid/

Evaluation: We evaluated AsyncDroid empirically, by refactoring 97 AsyncTasks in 9

popular open-source Android projects. We evaluate AsyncDroid from three aspects. First,

45% of the AsyncTasks pass the refactoring preconditions, and with minor manual changes

another 10% AsyncTasks can pass preconditions. This means the refactoring is highly ap-

plicable. Second, AsyncDroid changed 3386 SLOC in 77 files in total, determined that 148

variables flow into or escape from IntentService, moved 14 methods into IntentService,

and marked 18 types as serializable. This task is very large and challenging to be performed

manually, but AsyncDroid performs each refactoring in a few seconds. This shows that

AsyncDroid can save developer effort. Third, we submitted 45 refactoring patches in 7

projects. 4 projects replied and considered our changes to be correct, and they accepted 15
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refactorings. This shows AsyncDroid is valuable.

1.5 A Platform for Practical Impact

ShipShape [17] is a static program analysis platform from Google that allows custom an-

alyzers to plug in through a common interface. It provides interfaces to show structured

analysis results and fixes for buggy code. ShipShape is packed in a docker image [18] (which

is a light weight virtual machine) and takes other docker images which contain analysis tools

and implement ShipShape interfaces as input. To increase the practical impact of our refac-

toring toolset, we also integrated CTADetector and AsyncDroid with ShipShape by

putting them into publicly available docker images. Thus, users can download and invoke

our tools easily from ShipShape.

1.6 Dissertation Organization

The rest of this dissertation is organized as follows:

Chapter 2: CTADetector This chapter presents the contribution of the CTADetec-

tor technique for detecting and fixing misused check-then-act idioms for Java

concurrent collections.

Chapter 3: Asynchronizer This chapter presents the contributions of the Asynchro-

nizer technique for safely introducing asynchrony to sequential Android code via

refactoring.

Chapter 4: AsyncDroid This chapter presents the contributions of the AsyncDroid

technique for converting improperly-used Android async constructs into proper con-

structs.

Chapter 5: A Platform for Practical Impact This chapter presents the contributions

of integrating our toolset with a static analysis platform, ShipShape.
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Chapter 6: Related Work This chapter overviews the various bodies of work that are

related to the contributions of this dissertation.

Chapter 7: Conclusion and Future Work This chapter concludes the dissertation and

presents various directions for future work building upon the contributions of this

dissertation.

Parts of this dissertation have been published in technical reports, conferences, and jour-

nals. In particular, Chapter 2 is described in an ICST-2013 [19] and a STVR journal pa-

per [20], Chapter 3 in a FSE-2014 paper [21] and an ASE-2015 demo paper [22], Chapter

4 in an ASE-2015 paper [23] and an ASE-2015 demo paper [22]. These chapters have been

extended and revised when writing this dissertation.
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CHAPTER 2

Check-then-Act Misuse of Java Concurrent Collections

2.1 Introduction

According to previous empirical studies of concurrent library usage [8, 9, 10, 11], concur-

rent collections are one of the most widely-used features. Concurrent collections (e.g.,

ConcurrentHashMap from j.u.c.) contain thread-safe, scalable data structures. Their

individual operations are thread-safe. For example, several threads can safely put into the

same ConcurrentHashMap in parallel. However, as shown in Sec. 1.2, concurrent collec-

tions can be easily misused in check-then-act idioms which can lead to atomicity violation

bugs.

Although a lot of research has been done on detecting low-level data races [24, 25, 26, 27,

28] and high-level atomicity violations [29, 30, 9, 31], there is little research on cataloging

the real causes of such bugs. Because such bugs are still common, educating the developers

and providing automated support on program repair is very important. Despite the fact

that check-then-act idioms are prevalent when using concurrent collections, there has

been no work on cataloging the incorrect usage of check-then-act idioms of concurrent

collections.

In this chapter, we present a detailed empirical study that answers in-depth questions

about the usage of check-then-act idioms on a large scale. Our corpus contains 28

widely-used open-source Java projects that use concurrent collections. These projects com-

prise 6.4M non-blank, non-comment source lines of code (SLOC). We implemented a tool,

CTADetector, which uses a static analysis approach to detect instances of misused id-

ioms and a semi-automated transformation approach to correct them. Using this data and

our tool, we answer four research questions:
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RQ1: What are the commonly used check-then-act idioms in real-world programs?

We find that in each category of correctly used and misused idioms, there is one idiom that

clearly dominates the others.

RQ2: Which idioms are the most error-prone? We find one single idiom, put-if-absent,

for which the number of misused instances is larger than the number of correctly used in-

stances.

RQ3: Do misused idioms result in real bugs? Are our patches accepted by developers?

We find 282 misused instances (218 semantic and 65 performance-related). So far we report

155 bugs to developers, and they examine 90 of them. The developers confirm 60 of the

examined buggy instances as new bugs. For these confirmed bugs, the developers accept the

patches generated by CTADetector. The developers claim that the remaining instances

do not lead to real bugs because the buggy interleaving can not not occur in practice, or the

programs are resilient to such bugs.

RQ4: What is the evolution of programs w.r.t. check-then-act idioms? We find that

across three major versions between 2007 to 2012, the number of both correct and incorrect

usages increase. However, in the later versions, the percentage of incorrect usage decreases.

There are several implications of our findings. Programmers learn a new programming

construct through both positive and negative examples. Our catalog of idioms teaches them

how to use check-then-act idioms correctly. Along with the hundreds of instances of

idioms, it provides a tremendous educational resource. Second, library designers can use

our findings to make the APIs more robust or provide better documentation. Our paper

has already influenced the development of the Java’s j.u.c. package which was extended

with new APIs (e.g., computeIfAbsent) to fix the commonly misused idioms that we

found. Third, the testing community can focus its effort to find check-then-act bugs in

concurrent programs. Fourth, tool builders can use the developers’ responses to our bug

reports (Sec. 2.3.2) to think about how to create practical tools.
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2.2 Catalog of Idioms

2.2.1 Thread-safety for Collections

A class is thread-safe if it behaves correctly (i.e., it conforms to its specification) when ac-

cessed from multiple threads, regardless of the scheduling or interleaving of threads, and

without imposing on the calling code any additional synchronization or other coordina-

tion [10]. We will use this definition to refer now to the thread-safety of Collection

classes.

By default, most of the Java Collection classes are not thread-safe. For example, the

method java.util.HashMap.put(key,value) performs three major operations: (i) if the

key is in the map, update the corresponding entry, otherwise, (ii) increase the size of the

map and (iii) add a new entry. If one thread puts a new key into a HashMap, but the second

thread gets the size of this HashMap between operations (ii) and (iii), the second thread will

get a wrong size because the new entry has not been put yet. This scenario violates the

specification of HashMap: the size of a map should be equal to the number of entries in the

map. Thus, HashMap is not thread-safe.

To simplify concurrent programming, the j.u.c. package introduces several thread-safe

concurrent collections, e.g., ConcurrentHashMap, BlockingQueue, and CopyOnWriteArr-

ayList. The interleaving scenario illustrated above for HashMap.put cannot happen for

ConcurrentHashMap, since ConcurrentHashMap’s methods are thread-safe and execute

atomically.

Before the introduction of j.u.c., a programmer could create a thread-safe HashMap

using a synchronized wrapper (e.g., Collections.synchronizedMap(aMap)). The syn-

chronized HashMap achieves its thread-safety by protecting all accesses to the map with

a common lock. This results in poor scalability when multiple threads try to access dif-

ferent parts of the map simultaneously, since they contend for the same lock. Lets revisit

the example introduced in Fig. 1.1(a). Suppose that a programmer surrounded the whole

check-then-act idiom with a synchronization block which relies on a common lock to pro-

tect accesses to the whole map. While this solution ensures atomicity, it prevents any other
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concurrent accesses to the map, even to the entries that are not currently updated by put.

This limits the amount of concurrency in the application, which can hurt the performance.

We call this a performance bug.

The concurrent collections include the API methods offered by their corresponding non-

thread safe counterparts. In addition, they contain new APIs that encapsulate compound

update operations, and execute atomically, without resorting to one common lock. Us-

ing the concurrent collections over the synchronized collections offers dramatic scalability

improvements [10]. However, it is still possible to introduce bugs when using concurrent

collections.

Compound check-then-act operations can lead to atomicity violation bugs. Atomicity

(also referred to as serializability [32]) is a property where several concurrently executed

operations have an effect that is equivalent to that of a serial execution. As pointed out by

Flanagan et al. [33], atomicity is a non-interference property stronger than freedom from data

races. (atomicity is a non-interference property that if a code block is atomic, any interaction

between that block and other threads should not change the program’s behavior). Atomicity

violations occur when programmers make wrong assumptions about the atomicity scope of

a code block, incorrectly splitting it in two or more atomic blocks and allowing them to be

interleaved with other atomic blocks. Atomicity violation of a compound check-then-act

operations occurs in a sequence of three concurrent operations o′T1 ... o′′T2 ... o′′′T1 such that:

1. o′T1 and o′′′T1 are atomic operations executed by one thread (T1), and o′′T2 executes in another

thread (T2) concurrently;

2. o′T1 and o′′T2 are data dependent;

3. o′′′T1 and o′′T2 are data dependent.

To illustrate an atomicity violation, please refer back to the motivating example from

Fig. 1.1(a). Fig 2.1 graphically shows a thread interleaving for the code in Fig. 1.1(a).

Suppose thread T1 finds that the map does not contain the key (operation o′T1), so it will

calculate the value and try to put it into the map (operation o′′′T1). Before T1 puts, it is

suspended and another thread T2 puts a different value to the same key (operation o′′T2).

Then T1 resumes and executes its put operation. Under this scenario, the 〈codeUrl, pc〉

pair put by thread T2 will be overwritten by the put operation o′′′T1 . This violates the
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if ((pc = loaderPC
o'
T1
:      .get(codeUrl)) == null) {

pc = ...
... // initializing "pc"

o'''
T1
:    loaderPC.put(codeUrl,pc);

}

Thread T1 Thread T2

*The arrows represent the order of program execution.

Figure 2.1: An example of buggy interleaving for Fig. 1.1(a).

put-if-absent semantics of the original code. In this example, a block which is intended

to be atomic in thread T1 to express put-if-absent semantics is split into two blocks by

thread interleaving. Thus, there is an atomicity violation.

Notice that in all the check-then-act atomicity violations that we present, the bug can

manifest with as few as two threads. Other papers [34] also show that 96% of concurrency

bugs can manifest with just two threads.

Terminology: In this paper we use the term idiom to refer to a recurring programming

construct that developers use when working with concurrent collections. Like design pat-

terns [35], the idioms abstract away the details from code. We call an instance of an idiom

a concrete incarnation of the idiom in real code.

The widely-used check-then-act idiom can be expressed as specific idioms for spe-

cific collections (e.g., put-if-absent for ConcurrentHashMap). An idiom, can also have

syntactical variations (e.g., by using different API methods), even for the same collection.

We classify an idiom as misused when it can result in a non-atomic execution of the check

and act operations (semantic problems) or it is over-synchronized (performance problems).

In some cases, this can manifest as a disuse of the atomic library APIs or an erroneous

use, in others as over-zealous synchronization. We simply call all of them a misuse of the
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Table 2.1: Overview of check-then-act idioms.````````````Act upon
Check

Reference Object state

Reference (C1) lazy-initialization (C2) re-initialization
The state pointed by
the checked object

(C3) non-null check (C4) put-if-absent, get,
remove, replace,
add-if-absent

State other than the
one checked

(C5) multi-variable (C6) remove-if-not-empty

*The columns show what is checked, and the rows show what is acted upon.

concurrent collection API.

2.2.2 Overview of idioms

Based on the definitions we introduced in the previous subsection, we summarize the prop-

erties of the check-then-act idioms that can lead to atomicity violations when using

concurrent collections.

The check operation could query (i) the reference pointing to the collection (e.g., whether

the reference is null), or (ii) the state of the collection (e.g., whether a map contains a given

key).

The act operation could access (i) the reference pointing to the collection (e.g., make the

reference point to a new collection object), (ii) the state of the collection w.r.t. the object

queried in the check (e.g., put a new 〈key, value〉 in the map on the key entry previously

checked), or (iii) the state of the collection disregarding any object queried in the check

(e.g., remove all entries from a map).

Thus, using the above classification, there are 6 combinations of check and act opera-

tions, shown in Tab. 2.1. Next we describe each cell giving names to the idioms we have

encountered.

Cell C1 refers to lazy-initialization idiom, in which the check operation determines

whether the reference pointing to the collection is null, and if so it creates and assigns a

new collection object to the collection reference. Cell C2 refers to an idiom where based

on the size of the collection, the act operation can reallocate a new collection. Though the

idiom of C2 is rarely discussed in the literature, it still exists in practice and we think it is
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important.

Cell C3 contains a non-null check idiom, e.g., if the collection reference is not null,

invoke a method on it. Cell C4 contains several idioms. These idioms check if the collection

contains a certain entry, and based on the result, they can add/get/remove/override/ the

value a new entry.

Notice that Cell C5 refers to invariants that must be maintained across multiple vari-

ables [31]. For example, the check determines whether a collection is not null and the act

updates another collection with the elements of the first collection. Cell C6 contains an

idiom where the check determines whether the collection is not empty and the act removes

elements.

The structure of Tab. 2.1 is complete: it covers all possible scenarios that can occur in

check-then-act idioms. However, the kinds of idioms that are present in each cell is not

complete. We expect this list of idioms could grow if future research explores more case

study programs. We mined the idioms that we present in Tab. 2.1 using the 28 open-source

applications in our code corpus.

Notice that in our code corpus we did not find examples of idioms in cells C2, C3, and

C5, although there are examples in the literature (e.g., C3 in [34], C5 in [31]).

Developers or researchers could use our Tab. 2.1 to manually look for check-then-

act atomicity violations in their code or to design bug detection tools. Although we have

observed the check and act operations on instances of collections, similar operations can

appear on arbitrary objects that are accessed concurrently.

In the next subsections we provide several examples of usage and misusage of the idioms

in Tab. 2.1. Notice that we are intentionally focusing only on concurrent collections in this

paper, since the use of concurrent collections implies that the code will be executed by

multiple threads. We do not analyze sequential data-structures such as HashMap because

it is much harder to reason about whether the accesses to these sequential data-structures

may happen in parallel with other code.
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(a)Value v = map.get(key);

   if(v == null){

      v = calc();

      map.put(key, v);

      ...

   }

(b)if(map.get(key) == null){

      v = calc();

      map.put(key, v);

      ...

   }

(c)Value v = map.get(key);

   if(v != null){

      ...

      return;

   }

   v = calc();

   map.put(key, v);

   ...

(d)if(map.get(key) != null){

      ...

      return;

   }

   v = calc();

   map.put(key, v);

   ...

(e)if(!map.containsKey(key)){

      v = calc();

      map.put(key, v);

      ...

   }

(f)if(map.containsKey(key)){

      ...

      return;

   }

   v = calc();

   map.put(key, v);

   ...

Figure 2.2: Put-if-absent idiom and its variations for ConcurrentHashMap.

2.2.3 Misused Check-then-Act in ConcurrentHashMap

ConcurrentHashMap is a thread-safe implementation of HashMap. In addition, it contains

three new APIs: putIfAbsent(key, value), replace(key, oldValue, newValue),

and a conditional remove(key, value). For example, putIfAbsent (1) checks whether

the map contains a given key, and (2) if absent, inserts the 〈key, value〉 entry. This is a

classic example of a check-then-act idiom. The library guarantees that these two steps

are done atomically.

Next, we present the misused check-then-act idioms when using ConcurrentHashMap.

Figure 2.2 presents examples of code where the programmer meant to use put-if-absent

semantics. Notice there are many variations. Figure 2.2(a) shows a temporary variable that

is used to hold the result of the check. The check statement can use either get (Fig. 2.2(b))

or containsKey (Fig. 2.2(c)). Figure 2.2(e) and 2.2(f) show variations where the check

condition is reversed. Notice that all of these variations have a put invocation that is

control-dependent on a get or containsKey invocation on the same map.

Figure 2.3 and 2.4 show other misused check-then-act idioms. Unlike Fig. 2.2 that
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Value v = m.get(key);

if(v == null){

   v = calc();

   map.putIfAbsent(key, v);

}

return v;

(a) Put-if-absent idiom

with the use of putIfAbsent API

(1)Value v = map.get(key);

   if(v != null){

      v = map.remove(key);

      v.m();

      ...

   }

(2)Value v = map.get(key);

   if(v != null &&

      v.equals(v2)){

      map.remove(key);

      ...

   }

(c) Remove and conditional-

remove idiom

(1)Value v = map.get(key);

   if(v != null){

      v = calc();

      map.put(key, v);

      ...

   }

(2)Value v = map.get(key);

   if(v != null && v.equals(v2)){

      v = calc();

      map.put(key, v);

      ...

   }

(d) Replace and conditional-replace idiom

if(map.containsKey(key)){

   Value v = map.get(key);

   v.m();

   ...

}

(b) Get idiom of ConcurrentHashMap

Figure 2.3: Other check-then-act idioms for ConcurrentHashMap.

shows many syntactic variations of the same idiom, the subsequent figures only show one

variation for each idiom.

Figure 2.3(a) shows that even when programmers use the new putIfAbsent operation

instead of the old put, they still make mistakes. Notice that the code later uses the value

that the programmer assumed to be mapped with the key. Now we describe an interleaving

that results in an atomicity violation. After T1 found that the map does not contain the key,

it calculates the value v and stores it to a reference that is later used. Before T1 executes the

putIfAbsent operation, thread T2 puts another value to the same key. Then T1 resumes,

and its invocation of putIfAbsent will fail (since the key has been mapped by T2). The

last statement returns the reference to the stale value, which is not in the map.

Figure 2.3(b) shows an idiom involving the get operation. The code first checks that the

map contains a given key, and then invokes a method on the value mapped to this key. An

atomicity violation will occur when thread T1 finds that the map contains the given key.

Then T2 removes the key, and subsequently, T1 dereferences a null value. The code will

throw a NullPointerException.
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Figure 2.3(c) shows the idioms that remove elements. The first idiom (Fig. 2.3(c-1))

removes a 〈key, value〉 pair if the map contains the key, then subsequent statements use the

removed value. Suppose thread T1 finds that the map contains the key. Before it removes

this 〈key, value〉, it suspends and T2 removes the same pair. When T1 resumes, its remove

invocation returns a null value. Thus the subsequent statement that uses the value will

throw a NullPointerException.

The second idiom (Fig. 2.3(c-2)) is a typical conditional removal. The code removes a

〈key, value〉 pair only if the key is mapped to a specific value v2. The atomicity violation

occurs if T2 puts another value (say v3) to the same key, after T1 passed the check, but

before it removed the pair. When T1 resumes, the condition v.equals(v2) no longer holds,

yet T1 still removes the pair.

Figure 2.3(d) shows idioms that replace existing elements. These can be seen as comple-

mentary to put-if-absent semantics, since they have a put-if-present semantics. The

atomicity violations will occur when thread T2 removes the 〈key, value〉 pair while T1 passed

the check, and is about to perform the put. The second idiom (Fig. 2.3(d-2)) is a typical

conditional replace operation.

2.2.4 Misused Check-then-Act in Queues

The j.u.c. package contains several thread-safe implementations for working with queues.

ConcurrentLinkedQueue is a traditional FIFO queue. Its queue operations do not block:

if the queue is empty, the retrieval operation returns null. The package also provides

BlockingQueues to add blocking semantics to retrieval and insertion operations. If a queue

is empty, the retrieval operation will block until an element is available.

Figure 2.4(a) shows the remove-if-not-empty semantics. The code first checks whether

the queue contains some elements, and then it removes elements and uses them for further

actions. Notice that there are several variations: the check statement can be an if or

while statement, the check operation can query the size of the queue (e.g., q.size() !=

0 or !q.isEmpty) or peek inside to find elements. The act statement could use poll,

remove, take, etc.
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while(!queue.isEmpty()){

   // or while(queue.size()

   // > 0)

   Element e = queue.poll();

   // or remove(), take()

   e.m();

   ...

}

(1)if(!list.contains(e)){

      list.add(e);

   }

(2)while(!list.isEmpty()){

   // or if(!list.isEmpty())

      Element e = list.remove(0);

      // or list.get(0);

      e.m();

   }

(a) Remove-if-not-empty

idioms for concurrent queues

(b) Add-if-absent and remove-if-not-

empty idioms for CopyOnWriteList

if(collection == null){

    collection =

       createCollection();

    collection.add(element);

    ...

}

(c) Lazy-initialization idiom

for concurrent collections

synchronized(map){

   Value v = map.get(key);

   if(v == null) {

      v = calc();

      map.put(key, v);

      ...

   }

}

(d) Over-synchronization idiom

Figure 2.4: check-then-act idioms of other types.

Here we describe one scenario for atomicity violation. Suppose the queue contains only

one element and both threads T1 and T2 check the condition and find it is not empty. The

thread that is the last to invoke the retrieval operation will get a null value which makes

the code throw a NullPointerException.

2.2.5 Misused Check-then-Act in Lists

The j.u.c. package contains a thread-safe implementation for working with lists. CopyOnW-

riteArrayList is a data structure in which all mutative operations (e.g., add) are imple-

mented by making a fresh copy of the underlying array. Iterators iterate over a snapshot

view of the collection at the point that the iterator was created.

Figure 2.4(b) shows two idioms. The first idiom (Fig. 2.4(b-1)) illustrates add-if-absent

semantics. The code appends an element to a list, if the list does not already contain it.

Two threads, T1 and T2 can both pass the check at the same time, and they will append the

same element twice.

The second idiom (Fig. 2.4(b-2) ) illustrates the remove-if-not-empty idiom, and the
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atomicity violation happens under the same interleaving as shown in Sec. 2.2.4

2.2.6 Misused Check-then-Act in Lazy Initialization

The lazy-initialization idiom is also error-prone. Figure 2.4(c) shows code that lazily

creates a concurrent collection when it is needed. However, code also adds some elements

into it. The atomicity violation will occur if both T1 and T2 find the collection reference

is null and initialize it. In this case, one initialization will override the other. Now the

elements added by T1 are no longer seen by T2.

2.2.7 Over-Synchronization in Check-then-Act

Figure 2.4(d) shows a put-if-absent idiom wrapped by a synchronization block. Assuming

that the other accesses to the map are protected by the same lock, this code is properly

synchronized, thus the idiom executes atomically. However, the synchronization degrades

the performance: it prevents threads who are working on different buckets of the map to

operate in parallel. This defies the entire purpose of using a concurrent collection.

2.2.8 Correction of Idioms

A developer can use two ways to correct the atomicity violations caused by misused check-

then-act idioms: (1) leveraging the proper atomic API provided by the concurrent collec-

tions, or (2) adding a synchronization block around the check-then-act code.

Figure 2.5 shows the strategies that we use to fix the misused check-then-act id-

ioms. We underlined the statements that we add or change. For the idioms that have

put-if-absent semantics, we use the putIfAbsent operation instead of put. When

the code further reads the value placed in the map, our fix ((Fig. 2.5(a)) checks the sta-

tus of the putIfAbsent to judge whether the assumed value was indeed placed in the map

(putIfAbsent returns null to indicate successful execution). Note that for put-if-absent

idiom with the use of putIfAbsent method, our fix also checks the status of the putIfAbsent.
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Value v = map.get(key);

if(v == null) {

   v = calc();

Value tmpV = map.putIfAbsent(key, v);

if(tmpV != null)

v = tmpV;

}

... // variable v is used here

(a) Fix for put-if-absent idiom

Value v = map.get(key);

if(v != null) {

   v = map.remove(key);

if(v != null)  {

      v.m();

      ...

   }

}

(b) Fix for remove idiom

Value v = map.get(key);

if(v != null) {

   v = calc();

Value tmpV = map.

replace(key, v);

if(tmpV != null)  {

      ...

   }

}
(c) Fix for replace idiom

Value v = map.get(key);

if(v != null)  {

   v.m();

   ...

}

(d) Fix for get idiom

while(!queue.isEmpty()) {

   Element e = queue.poll();

if(e != null)  {

      e.m();

      ...

   }

}

(e) Fix for idiom of queue

Figure 2.5: Fixes for check-then-act idioms.

In the fixes in Fig. 2.5(b), 2.5(c) and 2.5(e), CTADetector adds code to check the

return value of the act operation, thus preventing NullPointerExceptions. For the get

idiom in Fig. 2.3(b), we replace the use of containsKey with checking whether the mapped

value is not null.

Note that we do not show the fixes for the add-if-absent and lazy-initialization

idioms. The fix for the former is similar to put-if-absent, while the fix for the latter is

wrapping the idiom with a proper synchronization block. Although adding synchronization

blocks is beyond the scope of CTADetector, techniques such as atomic region identifica-

tion [36] or automated atomicity violation fixes via static analysis and testing [37] can be

employed to help add such synchronization blocks. To fix the performance bugs because of

over-synchronization, CTADetector removes the lock and uses the corresponding com-
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pound update API method. For example, in Fig. 2.4(d), CTADetector removes the

synchronization and uses putIfAbsent instead of put.

Notice that the fixes we propose are not the only way to fix the buggy idioms. Consider

the example in Fig. 2.5(a). For the correctness sake, the first check (if (v == null)) is

redundant, since the putIfAbsent will perform its own null check, so the check-then-

act idiom is guaranteed to be atomic. However, by keeping the original check in place,

we reduce the chance of wasting memory and computation by not creating the unnecessary

value v especially in cases when the map already contains this entry. Another alternative

is to remove the first check from the code, but this has the effect of always creating the

object v, regardless of whether the map already contains this entry. Other solutions, even

more involved exist, for example to use a wrapper around the value class that performs lazy

initialization (thus delaying the execution of calc()) until the first access. One way to do

this is to declare the map as Map<Key, Future<Value>> [38]. However, we feel that our

solution is the least intrusive to the current code.

2.3 Analysis of Idiom Instances

In this section we answer four research questions:

• RQ1: What are the commonly used check-then-act idioms in real-world programs?

• RQ2: Which idioms are the most error-prone?

• RQ3: Do misused idioms result in real bugs? Are our patches accepted by developers?

• RQ4: What is the evolution of programs w.r.t. check-then-act idioms?

RQ1 and RQ2 help us, library designers, and tool builders learn about the state of the

practice. RQ3 evaluates whether the found misused idioms are critical for the correctness

or performance of real world programs. RQ4 shows whether developers pay more attention

to check-then-act idioms.
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2.3.1 Experimental setup

Subjects: To answer the first three research questions, we used a corpus of 28 real-world

open-source programs. The first three columns of Table 2.2 show the subject programs, the

version number, the size – in non-blank, non-comment source lines of code (SLOC)1, and

the domain of application. All programs use concurrent collections. For each program, we

use the most current version at the time of the experiments.

To study the evolution of the programs (RQ4), out of the initial corpus, we selected those

projects that had multiple releases between 2007 and 2012. This created a corpus of 18

programs. For each program, we chose three major releases: V3 – the most current release

(as shown in Tab. 2.3), V2 – a major release from 2010–2011, and V1 – a major release from

2007–2009.

Process: We ran our tool, CTADetector, over our corpus. CTADetector classified

idioms as correct or misused. The latter contains semantic or performance issues. We

manually verified the results and sorted them based on the idioms that we introduced in

Sec. 2.2.

To confirm whether the misused idioms result in real bugs, we reported 155 instances to

the open-source developers. Our companion website [40] contains links to our bug reports.

Along with the bug description, we also submitted a patch generated by CTADetector.

When developers reported that a misused idiom does not result in a real bug, we further

asked them to elaborate why the atomicity violation in the idiom is acceptable for their

program.

To answer the evolution question we compare the number of correct and misused instances

of idioms along the three major releases.

2.3.2 Results

RQ1: What are the commonly used check-then-act idioms in real-world pro-

grams?

Fig. 2.6 shows the distribution of correct and misused idioms across the corpus of 28

1as reported by the SourceCounter [39] tool
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(a)	  The	  distribuAon	  of	  misused	  idioms.	  
The	  total	  number	  is	  283.	  
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27%	  

Rem	  
8%	  
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6%	  CRep	  

2%	  

Get	  
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5%	  
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3%	  

(b)	  The	  distribuAon	  of	  correct	  idioms.	  
The	  total	  number	  is	  551.	  

*PIA: put-if-absent, Rem: remove, Rep: replace, CRem: conditional-remove, CRep:
conditional-replace, Get: get, Queue: idioms for queues, COWL: .idioms for lists, LI:
lazy-initialization.

Figure 2.6: The distribution of idioms.

projects. CTADetector found 282 instances of misused idioms and 545 instances of

correct idioms.

Notice that in each category, there is one idiom that clearly dominates the others: the

put-if-absent idiom is the most common misused idiom, while get is the most common

correctly used idiom. It is also surprising that the top four idioms in each category are

different.

While j.u.c provides 14 different kinds of concurrent collections including 2 maps, 2 sets,

9 queues, and 1 list, our result shows that 93% (264) of the misused instances and 90% (492)

of the correct instances appear when using ConcurrrentHashMap. This is expected: (i) a

previous study [11] shows that ConcurrrentHashMap is the most widely used concurrent

collection in Java, and (ii) ConcurrrentHashMap stores 〈key, value〉 pairs so it offers a

richer API than other collections, thus there are more choices to compose operations.
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Table 2.2: Correctly used check-then-act idiom instances in 28 real-world programs.
Subject SLOC Domain PIA Rem Rep CRem CRep Get Queue COWL LI Total

Annsor
1.0.3

1605 Annotation
processor

- - - - - - - - - 0

Cassandra
1.1.1

132183 Distributed
database

5 1 - - - 8 1 - - 15

CXF 2.6.1 441269 Services
framework

9 1 - 1 - 8 1 6 2 28

Lucene
4.0.0

361494 Text search
engine

1 - - - - 4 - - - 5

Mina 2.0.4 46435 Network
framework

2 - - - - 5 1 - - 8

Struts 2.3.4 146919 Web frame-
work

2 - 1 3 1 1 - - - 8

Tomcat
7.0.28

215298 Servlet con-
tainer

5 - - - - 10 2 - - 17

Trinidad
2.0.1

220484 JSF frame-
work

5 2 - 1 - 8 - - 4 20

Wicket
1.5.7

169142 Web frame-
work

3 - - - - 7 - - - 10

BlazeDS
4.0.1

68887 Web messag-
ing

2 3 - - - 11 - 16 9 41

Carbonado
1.2.3

54254 Persistence
layer

2 - - 2 - 2 - - - 6

CBB 1.0 17001 Building
Blocks

- - - - - - - - - 0

DWR 1.1 35630 Ajax for Java 10 1 - - 1 3 - - - 15
Ektorp
1.1.1

10112 CouchDB
API

- - - - - - - - - 0

Flexive
3.1.6

139011 Content
management

8 - 4 - 1 2 - - - 15

Glassfish
3.1

721944 Application
server

11 7 - 1 - 33 1 - 1 54

Granite
2.3.2

41790 Data Service 14 1 - - - 10 - - - 25

Hazelcast
2.0.4

89080 Data distri-
bution

13 4 - 3 - 39 - - - 59

Ifw2 1.33 55596 Web frame-
work

5 - - - - 1 - - - 6

JBoss AOP
2.2.2

196106 AO frame-
work

11 - - - - 10 - - - 21

JSefa 0.9.3 18173 Object seri-
alization

3 - - - - 2 - - - 5

Memcache 6695 Caching sys-
tem

- 1 - - 1 8 - - - 10

Open EJB
4.0.0

286451 EJB con-
tainer

2 4 - 2 - 5 - - - 13

Open JDK 2262000 JDK 8 24 8 6 16 5 19 - 2 - 80
RestEasy
2.3.4

123813 JAX-RS
client

4 - - 2 - 9 - - - 15

Tersus 113260 Visual pro-
gramming

1 - - - - - - - - 1

Vo Urp 29954 Data models
translator

1 - - - - - - - - 1

Zimbra 448573 Collaboration
server

3 11 - 2 - 44 2 3 2 67

Total 6453159 146 44 11 33 9 249 8 27 18 545

*Columns 4 to 12 represent put-if-absent, remove, replace, conditional-remove,
conditional-replace, get idioms, idioms for queues, CopyOnWriteList and
lazy-initialization.
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Table 2.3: Misused check-then-act idiom instances in 28 real-world programs.
Subject PIA Rem Rep CRem CRep Get Queue COWL LI Total

s p s p s p s p s p s p s p s p s p s p

Annsor 1.0.3 1 - - - - - - - - - - - - - - - - - 1 0
Cassandra 1.1.1 3 - - - - - - - - - 2 - 1 - - - - - 6 0
CXF 2.6.1 5 4 - - - - - - - - 3 - - - 2 - 1 - 11 4
Lucene 4.0.0 1 2 - - - - - - - - - - - - - - - - 1 2
Mina 2.0.4 2 2 - - 1 - 1 - 1 1 - - - - - - - - 5 3
Struts 2.3.4 5 1 - - - - - - - - - - - - 1 - - - 6 1
Tomcat 7.0.28 2 - - - - - - - - - 2 - - - - - 1 - 5 0
Trinidad 2.0.1 14 2 - - - 1 - - - - 1 - - - - - - - 15 3
Wicket 1.5.7 10 - - - - - - - - - - - - - 1 - - - 11 0
BlazeDS 4.0.1 1 3 2 - - - - - - - 6 - - - 1 - - - 10 3
Carbonado 1.2.3 2 - - - - - - - - - - - - - - - - - 2 0
CBB 1.0 4 - - - - - - - - - - - - - - - - - 4 0
DWR 1.1 1 - - - - - - - - - - - - - - - - - 1 0
Ektorp 1.1.1 4 - - - - - - - - - - - - - - - - - 4 0
Flexive 3.1.6 10 2 - - - - - - - - 2 - - - - 1 - - 12 3
Glassfish 3.1 5 6 2 - - - - - - - 2 - - - 1 - 1 - 11 6
Granite 2.3.2 5 2 - - - - - - - - - - - - - - - - 5 2
Hazelcast 2.0.4 14 3 - - - - - - - - 2 - - - - - - - 16 3
Ifw2 1.33 2 - - - - - - - - - 2 - - - - - - - 4 0
JBoss AOP 2.2.2 11 6 - - - - - - - - - - - - - - - - 11 6
JSefa 0.9.3 1 2 - - - - - - - - - - - - - - - - 1 2
Memcache 6 - - - - - - - - - 2 - - - - - - - 8 0
Open EJB 4.0.0 6 5 2 - - - - - - - 4 1 - - - - - - 12 6
Open JDK 8 19 3 - - - - - - - - - - 1 - 1 - 1 - 22 3
RestEasy 2.3.4 11 - - - - - - - - - - - - - - - - - 11 0
Tersus 1 - - - - - - - - - - - - - - - - - 1 0
Vo Urp 3 - - - - - - - - - - - - - - - - - 3 0
Zimbra 14 12 2 - - 2 - - - - - 2 - - 3 2 - - 19 18

Total 163 55 8 0 1 3 1 0 1 1 28 3 2 0 10 3 4 0 218 65

*For each idiom, the columns s and p show the number semantic and performance
bugs, respectively. Columns 2 to 10 represent put-if-absent, remove, replace,
conditional-remove, conditional-replace, get idioms, idioms for queues,
CopyOnWriteList and lazy-initialization.

RQ2: Which idioms are the most error-prone?

Table 2.2 shows the number of correctly used instances of idioms for each project. Columns

2–10 in Tab. 2.3 show the number of misused instances of idioms for each project, while

column 11 shows the total number for each project. For columns 2–11 in Tab. 2.3, sub-

column s shows the number of semantic bugs while sub-column p shows the number of

performance bugs. By comparing Tab. 2.2 and 2.3, we can notice that with the exception of

the put-if-absent idiom, the number of correct instances outweighs the misused instances

to a large extent for most projects. This means most developers are aware of how to correctly

use the concurrent collections, but may make mistakes occasionally.

For put-if-absent idiom, the number of misused instances is larger than the number of

correct instances. This shows that this idiom is the most error-prone. However, as we show
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in RQ3, not all misused instances are perceived as buggy by the developers.

For the misused idioms, Tab. 2.3 shows 65 instances of idioms (column Total, sub-column

p in Tab. 2.3) where the developers wrapped the check-then-act within a synchronized

block. However, this is over-synchronization, and we classify these instances as performance

bugs. This shows that some developers know there are atomicity violations in the idioms,

but they add synchronization to avoid them, instead of using the atomic APIs from the

concurrent collections. In contrast, CTADetector correctly suggests patches that involve

the atomic APIs, as discussed in Sec 2.2.8. This can dramatically improve the performance.

RQ3: Do misused idioms result in real bugs? Are our patches accepted by

developers?

In our corpus of projects, we selected the 17 most active projects. We reported the

misused idioms and also provided the patches generated by CTADetector. For some

large projects like GlassFish, we did not report all the misused idioms that are detected by

CTADetector, but only those for the major components.

For the 17 projects that we contacted, we reported 155 bugs. However, we only got replies

from the developers of 11 projects. We reported the bugs between June 2012 and August

2012, and we received no further responses after March 2013. Table 2.4 shows these 11

projects, along with the number of reported and replied bugs in each project (column 2),

and the number of bugs confirmed by developers (column 3). Out of the 90 bugs that were

investigated by developers, they confirmed 49 semantic and 11 performance bugs, so clearly

these are real problems. The developers of 9 projects accepted our patches for these 60 bugs

and included the patches in the new versions. Last column shows the version numbers that

include our patches.

As shown in Table 2.4, not all of the misused idioms lead to bugs, although two thirds of

the instances cause buggy behaviors or slow response in the programs. For the remaining

one third of our reported misused idioms, the developers do not think these cause problems.

We provide such examples in Fig. 2.7, in which we label the check and act operations.

For the case of semantic bugs that developers did not confirm, we divide the reasons that

the developers provided into three categories:
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public void maybeInitializeLocalState(int generationNbr) {
EndpointState localState = endpointStateMap.
get(FBUtilities.getBroadcastAddress());

chk:     if ( localState == null ) {
HeartBeatState hbState = new
HeartBeatState(generationNbr);

localState = new EndpointState(hbState);
localState.markAlive();

act:         endpointStateMap.put(
FBUtilities.getBroadcastAddress(), localState);

}
}

public void manageApp(Context context)  {
String contextName = context.getName();

chk:     if (deployed.containsKey(contextName))
return;

DeployedApplication deployedApp = new
DeployedApplication(contextName);

...

act:    deployed.put(contextName, deployedApp);
}

(a) Gossiper.java in Apache Cassandra (b) HostConfig.java in Apache Tomcat

private static Class<?> getSpiClass(String type) {
Class<?> clazz = spiMap.get(type);

chk:      if (clazz != null) {
return clazz;

}
try {
clazz = Class.forName("java.security." + type + "Spi");

act:           spiMap.put(type, clazz);
return clazz;

} catch (ClassNotFoundException e) {
throw new AssertionError("Spi class not found", e);

}
}

(c) Security.java in Open JDK 8

private static boolean isCCLOverridden(Class<?> cl) {
if (cl == Thread.class)
return false;

...
WeakClassKey key = new WeakClassKey(cl,
Caches.subclassAuditsQueue);
Boolean result = Caches.subclassAudits.get(key);

chk:     if (result == null) {
result = Boolean.valueOf(auditSubclass(cl));

act:          Caches.subclassAudits.put(key, result);
}
return result.booleanValue();

}

(d) Thread.java in Open JDK 8

protected Set<String> getStandardAttributes() {
Class clz = getClass();
Set<String> standardAttributes = standardAttributesMap.get(clz);

chk:      if (standardAttributes == null) {
standardAttributes = new HashSet<String>();

act:           standardAttributesMap.put(clz, standardAttributes);
while (clz != null) {
for (Field f : clz.getDeclaredFields()) {
...
standardAttributes.add(f.getName());

}
...

}
}
return standardAttributes;

}

(e) UIBean.java in Apache Struts 2

Figure 2.7: Examples of buggy instances not confirmed by developers.
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Table 2.4: Bug confirmation from the developers: 49 semantic bugs and 11 performance
bugs.

Subject Name Replied Bugs Confirmed Fixed Version

Apache Cassandra 6 5 1.1.2

Apache CXF 15 15 2.7.0

Apache Mina 5 5 2.0.5

Apache Struts 7 2 2.3.5

Apache Tomcat 5 4 7.0.30

Apache Trinidad 1 0 -

Apache Wicket 11 11 1.5.8

Glassfish 8 6 4.0

GraniteDS 7 7 3.0.0 beta1

OpenJDK 14 0 -

RestEasy 11 5 2.3.5

Total 90 60

1. Impossible interleaving: The buggy interleaving that we described in Sec. 2.2 does

not happen in the application context. This can be due to two reasons. First, the code

containing the idiom is never executed concurrently. For example, in Cassandra (shown in

Fig. 2.7(a)), the developers claimed that “maybeInitializeLocalState shouldn’t be called

concurrently, but it doesn’t hurt to clean that up too”. This was surprising to us, since this

defies the whole reason of using a concurrent collection. However, it could be that only some

code snapshots that use an instance of a concurrent collection are executed concurrently, or

it could be that developers envision some future evolution where the code will indeed run

concurrently. Interestingly, although the developers did not confirm this as a bug in this

code snippet, they still accepted and applied our patch.

Second, the conflicting operation never executes concurrently. For example, in Tomcat

(shown in Fig. 2.7(b)), at any given moment, there is only one thread that puts a value in

the map. The developers said “This issue is definitely not valid since a Host will never per-

mit multiple children with the same name at a time. This change was not included in the fix.”

2. Unique values: For some ConcurrentHashMap usages, the program uniquely calculates

one single value for a given key. That is, the value is either a singleton object [35], or the

program can calculate several value objects for the same key, but they are in the same equiv-
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alence class. Thus, for the put-if-absent idiom, even if the value written by one thread is

overwritten by another thread, since the two values are equivalent, the idiom does not lead

to bugs. In Open JDK 8, there are 13 cases when the values are uniquely calculated from

the keys. We show two such examples in Fig. 2.7(c) and (d). The developers said “In both

of the examples you mentioned, the race seems benign. In the first example, a Class may

be returned that’s not in the map anymore if it’s overwritten, but Class.forName() with

exact same args should return the same instance of Class. Likewise in the second example

the return value is a primitive boolean, so even if two threads race, it shouldn’t matter.

The race would be an issue if identity equality is required and the creation/construction of

the object inside the method does not itself guarantee identity, but I don’t see either of these

issues in these two examples”.

3. Program resilience: The program does not care whether a value written by one thread

is overwritten by another thread. For the example from Struts (shown in Fig. 2.7(e)), the

developers said “standardAttributes of UIBean doesn’t need atomicity, since I design

it just as a cache. Atomicity is not mandatory here”. Since ConcurrentHashMap is used

as a cache, even if the value is overwritten and no longer in the map, it can still be used

without affecting the behavior. For lazy-initialization idiom, there is also a case in

GlasshFish where even if the values put into the map are lost, those values will be created

and put again by other threads.

Discussion: In the above cases, the race conditions in the idioms are benign and can

improve the performance (e.g., put is faster than putIfAbsent). Notice that reasoning

about such cases requires deep understanding of the domain and the concurrency model of

the program. This is usually beyond the capabilities of tools and is better left to human

expert judgement. This is exactly the reason why CTADetector is interactive, allowing

the human expert to judge whether the misused idiom is really a bug.

However, developers should carefully check the semantics of the programs to make sure

they use an idiom correctly, since as our result shows, 67% of misused instances lead to real

bugs. Furthermore, the developers should document the invariants that ensure correctness.

This can prevent future versions running afoul precisely because of these bugs. In the 30
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instances that developers did not considered real bugs, they documented only one such in-

variant.

For performance bugs that developers did not confirm, we divide the reasons that the

developers provided into two categories:

1. Rarely executed code: The idioms that are over-synchronized are not executed of-

ten. For example, the over-synchronized idioms in GlasshFish are only executed when an

application is deployed to the GlasshFish server (which occurs rarely), not when a user

makes runtime accesses to that application (which occurs often). Thus, the performance

gains obtained by fixing such idioms are not measurable by their performance benchmarks.

2. Unnecessary objects creation: In the fix of put-if-absent idiom that we show

in Fig. 2.5(a), there is a chance that two threads enter the if statement at line 2 con-

currently and create two new objects. Notice that only one of the created objects will be

put into the map, so the code is still correct because it relies on the atomicity guarantees from

ConcurrentHashMap. For example, in the GlassFish project, creating FileLoggerHandl-

er objects multiple times can be expensive and the GlassFish developers prefer to use

synchronization within the idiom in order to avoid unnecessary object creations: “For

FileLoggerHandlerFactory, I prefer to keep the existing logic ... I am concerned that

it will create more FileLoggerHandler objects than necessary”.

Discussion: In the above cases, removing synchronization on the idiom does not provide

noticeable performance improvements or may even degrade performance. However, similar

to our discussion on semantic bugs, reasoning about such cases requires domain knowledge.

Thus, it requires an interactive mode of execution like the one that we envision for CTADe-

tector.

RQ4: What is the evolution of programs w.r.t. check-then-act idioms?

For the 18 projects that have multiple major releases, Table 2.5 shows the total number of

instances of idioms across three major releases. Notice that the number of instances increases

for both misused and correctly used idioms. This means that developers are embracing

concurrent collections. This is consistent with our recent finding [8] that shows that many
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Table 2.5: The evolution of idioms``````````````̀Instances
Version

V1 V2 V3

misused (m) 112 156 201
correct (c) 152 253 418
m/(m+c) 0.42 0.38 0.32

developers are embracing multicore parallel programming.

Interestingly, the ratio of misused instances (as shown by the last row) decreases in later

versions. One reason could be that developers pay more attention to the correct usage of

check-then-act idiom, since as time goes by, programmers have more resources to learn

how to use the concurrent collection correctly. Another explanation is they found such bugs

in production and applied patches.

Figure 2.8(a) shows the number and Fig. 2.8(b) shows the ratio of correct and incorrect

instances of check-then-act idioms, for the three versions of each project. These figures

show that although for most projects, the ratio of misused instances decreases in later ver-

sions, the absolute number of misused instances still increases. On the other hand, there are

also some projects, e.g. Open EJB, in which the ratio of misused instances increases slightly

in the later versions. This means that check-then-act usage of concurrent collections

is still error-prone. Thus, cataloging the check-then-act usage of concurrent collections

and automating bug finding tools like CTADetector is helpful.

2.3.3 Threats to Validity

Construct Validity: Since we did not run the open-source applications, but instead took

a static analysis approach to find misused idioms, one could argue whether such misuses can

really result in faults in the application code. What if those code idioms are never executed

concurrently? First, we relied on the intuition that the usage of concurrent collections in-

dicates the developers’ intent to execute that code concurrently. If there was no intent to

invoke those idioms from concurrent threads, the developers should have used the equiva-

lent sequential, non thread-safe collections (e.g., HashMap instead of ConcurrentHashMap),

which have better performance than the thread-safe concurrent collections. Second, for the
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majority of reported cases, the developers confirmed the possibility of a thread interleaving

that can result in buggy behavior, thus they accepted our patch. Third, even in cases where

the developers claim that the bugs cannot occur in practice, we found that the invariants

ensuring correctness are not sufficiently documented in the source code to avoid future ver-

sions of the software running afoul of precisely these bugs. Thus, it is still valuable to have

tools like CTADetector point the location of such potential bugs, so that developers can

at least document the code.

With respect to computing the evolution of correct and incorrect idioms shown in Tab. 2.5

and Fig. 2.8, we used the idioms identified automatically by CTADetector. A more pre-

cise metric would have been to cross-validate each idiom instance by reporting it to the

developers, the same way how we reported 155 bugs for the 17 projects that we used to

answer RQ3. Thus, some of the idioms that CTADetector classified as buggy in the

first two versions, might not be confirmed by developers. However, reporting all bugs is

not feasible. First, developers might not care about confirming bugs in versions of the code

that are 6 years old. Second, preparing and submitting thousands of bug reports takes an

inordinate amount of time. Third, our aim was to show the trend and the presence of bugs

in several versions, and thus the exact number is less important.

Internal Validity: One could ask whether the design of the experiment and the results

truly represent a cause-and-effect relationship. For example, how did we mitigate bias during

manual inspection of the reported misused idioms and during the bug reporting activities?

First, we created a text message in which we described a possible thread interleaving, and

we referred to the lines of code where CTADetector identified the misused idioms. It

was up to the original developers to examine our report and to confirm whether the buggy

interleaving could be possible. In a few cases when their replies were vague, we followed

up with the developers with another clarifying question, and only afterward we labeled the

idiom as buggy. The developers informed us whether the patch has been applied. In some

cases the developers changed the CTADetector-generated patch to confirm to the project

coding standards. For example, developers of Cassandra accepted our patch, CASSANDRA-

4402; they renamed some local variables, added comments and assertions, and reformatted
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the code.

When deciding for which projects to submit bug reports, our criteria were (i) the project

be active, (ii) have bug repositories, and (iii) have recent activity, e.g., within the last month

there was at least a bug reported and discussed.

External Validity: One could ask whether our results are applicable and generalizable

to a wider range of software projects, even those not developed in Java. First, we chose a

diverse corpus of 28 widely used Java open source projects totaling over 6.4M SLOC. They

are developed by very different entities, by large organizations or researchers, and covering

domains such as GUIs, servers, databases, search engines, web and desktop, programming

tools, etc. We expect that other kinds of applications will still use check-then-act idioms,

and we have no reason to believe that other applications won’t have buggy idioms. Second,

the other popular object-oriented languages, C++ and C#, have similar libraries containing

concurrent collections: TBB [3] library for C++, and Concurrent Collections [2] for C#.

These libraries provide very similar APIs. Thus, although the presentation is in the context

of Java, the problem is rather common in other languages such as C++ and C#.

Finally, this paper specifically investigates atomicity bugs. However, there are many other

kinds of concurrency-related bugs. For example, ordering bugs [34] where programmers im-

plicitly rely on a sequentially consistent memory model (which does not hold in Java), or

deadlocks. Although we did not investigate such bugs, we believe that catalogs for such

kinds of bugs can serve as excellent educational resources.

Reliability: Is our empirical study reliable and replicable? The corpus and the bug reports,

including the discussions with the open-source developers is available on our webpage. Also,

CTADetector is open-source and freely available:

http://refactoring.info/tools/CTADetector/
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2.4 Implications

There are several implications of our study. We organize them based on the community for

which they are relevant.

2.4.1 Developers

Becoming proficient with a new library requires a long-term commitment. Developers with-

out concurrent programming experience might ask themselves: should we learn how to

correctly use concurrent libraries. Programmers can learn a new programming construct

through both positive and negative examples. Our catalog of idioms teaches them how to

use check-then-act idioms correctly. Along with the hundreds of instances of idioms, it

provides a tremendous educational resource.

2.4.2 Library Designers

Library designers can use our findings to make the APIs more robust, provide better docu-

mentation, or provide new APIs as replacements for those that are error-prone. For example,

in the put-if-absent idiom shown in Fig. 2.2, if the key is not in the ConcurrentHashMap,

developers first compute a value for the key and put the 〈key, value〉 entry pair into the map.

To make these compound operations atomic, library designers can provide a new atomic API

compute-if-absent for ConcurrentHashMap. Thus, the put-if-absent idiom can be

replaced by a single method invocation of compute-if-absent. We have been in contact

with Doug Lea, the main architect of the j.u.c. package, and our finding of so many

misuses of the put-if-absent idiom has led him to add compute-if-absent API in the

Java 8 version of ConcurrentHashMap (officially released in the first quarter of 2014).

Additionally, library designers should provide better documentation for concurrent col-

lections. In the documentation, newly introduced atomic APIs should be emphasized and

examples of using these new APIs should be provided. In this way, programmers are more

likely to notice the existence of new APIs.
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2.4.3 Researchers

The testing community can focus its efforts to find higher-level atomicity violations bugs in

concurrent programs. Although traditionally the testing and verification community have

focused mostly on low-level data races, our findings show that high-level atomicity violations

are an important class of bugs and are widespread in today’s programs.

We hope that our paper inspires the community to identify other kinds of check-then-

act idioms used in concurrent collections. Moreover, alhough our work focuses on the

check-then-act idioms of concurrent collections, check-then-act bugs can also happen

on arbitrary objects. To detect check-then-act bugs for other kinds of objects, the

approach should first determine if an object may be accessed by multiple threads. Then the

approach should identify the check and act operations of the shared object, by analyzing

if they access the same field of the shared object.

2.4.4 Tool Builders

The answer of RQ3 shows that not all detected check-then-act idiom instances are con-

sidered to be bugs by developers. Since concurrency bug detection tools need to produce few

false warnings if they are ever to be used by practitioners, our finding raises several other

practical questions for tools builders: (i) What to do when an idiom would be an error if the

component was used concurrently, but it is now used sequentially? Should this be reported

as a warning? (ii) Do two writes of the same value constitute a race? (iii) Can racy programs

be “correct”? These questions are important for nearly any concurrency bug detection tools.

Tool builders should investigate the techniques that can mitigate these issues.

2.5 Analysis Infrastructure

In this section we describe our approach to automatically detect and correct the check-

then-act idioms that we listed in Sections 2.2–2.3. Subsection 2.5.1 shows an overview

of the architecture and outputs of CTADetector. Subsection 2.5.2 presents the detec-

tion and correction approach. Subsection 2.5.3 presents the pseudo-code for detecting one
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of the idioms (put-if-absent). Subsection 2.5.4 discusses the limitations and possible

improvements.

2.5.1 Infrastructure Overview

Variables	  of	  	  
concurrent	  collec0ons	  

ASTs	  

Variable	  
Collector	  

Buggy	  Idioms	  
for	  Map	  

Buggy	  Idioms	  
for	  Queue	  

Buggy	  Idioms	  	  
for	  List	  

Buggy	  Idioms	  for	  	  
Lazy	  Ini0aliza0on	  

Buggy	  idiom	  
instances	  

Corrector	  

Fixed	  idiom	  
instances	  

*The rounded rectangles are the components while the others are the inputs/outputs of each component.

Figure 2.9: The architecture of CTADetector.

We implemented both the detection and correction in a tool, CTADetector, on top of

Eclipse Java development tools (JDT) [41].

Figure 2.9 shows the architecture of CTADetector. CTADetector takes as input

the abstract syntax trees (ASTs) of the analyzed project. It first collects the variables

that represent concurrent collections through Variable Collection component. In code that

use these concurrent collection variables, CTADetector tries to match the code snippets

against the check-then-act buggy idioms. If CTADetector finds a match, it reports
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the buggy instance. CTADetector then corrects each buggy instances through the Cor-

rector component, which is an interactive tool.

The process of detecting correct idiom instances is similar to detecting buggy instances.

However, in this case, CTADetector matches the code snippets with the correct idioms

(similar with the ones shown in Fig. 2.5) rather than the buggy idioms. CTADetector

will not invoke Corrector component when it detects correct idiom instances.

Figure 2.10(a) shows a sample output for an instance of a detected buggy idiom. When

CTADetector finds a match between the source code and an idiom, it reports the detected

idiom as well as the source code location. For example, in Fig. 2.10(a), the tool detects

six buggy instances, three of which are semantic bugs while others are performance bugs.

It also shows the corresponding buggy idiom, file name, and line number of each instance.

CTADetector links the report to the source code, so it is easy for the developer to find

the location.

Figure 2.10(b) shows a sample output of the correction. The left pane in Fig. 2.10(b)

shows the original buggy code snippet while the right pane shows the code corrected by

CTADetector. Notice that this is an interactive process, so the developer can preview

and accept/reject the proposed changes.

2.5.2 Idiom detection and correction

To detect idioms, we employ a static code analysis that uses syntactical and semantical

information to match conditional statements from the source code of a program to the

idioms we presented in Section 2.2.

The analysis visits all the conditional statements (i.e., if and while) in a program. For

each conditional statement, the analysis iterates over all the idioms and tries to determine

a match. To determine a match, the analysis needs to verify whether: (i) the conditional

expression matches the check part of the idiom, (ii) the conditional statement operates

over an instance of a concurrent collection, and (iii) the body of the conditional statement

matches the act part of the idiom.

Next, we illustrate how the analysis matches one of the idioms, namely the put-if-absent
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(a)	  Output	  of	  buggy	  idiom	  instances	  

(b)	  Output	  of	  correc0on	  

Figure 2.10: A sample output from CTADetector

from Fig. 2.2(e). First, the analysis checks the expression used in the if’s condition. This

means determining whether (a) the code invokes the containsKey (b) the condition is

negated.

Second, the analysis checks whether if statement operates over an instance of Concurren-

tHashMap. To do this, the analysis gets the type information of a variable from the

static type binding (this determines that the variable is an instance of Map) and the vari-

able initialization statement (this determines that the map variable is initialized with a

ConcurrentHashMap). Note that we use an inter-procedural analysis to find out whether a

variable is initialized with a concurrent collection.

Third, the analysis checks whether (a) the body statements invoke the put method (b) the

put is invoked on the same ConcurrentHashMap object used in the condition expression,

and (c) it places in the map the same key object that was used in the condition expression.

Notice that CTADetector uses the same pattern matching approach to detect the
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Algorithm 1 detectCHMPut(ifStatement)
Input: The AST node that represents an if statement.

1: expr = ifStatement.getExpr()

2: prefixOperator = expr.getPrefixOperator()

3: thenStmts = ifStatement.getThenStmts()

4: if prefixOperator == Operator.NOT ∧ expr.Type == MethodInvocation ∧
expr.invoke() == “containsKey” then

5: chkV ar = expr.getReceiver()

6: chkV Type = resolveType(chkV ar)

7: key = expr.getArgs(0)

8: if chkV Type == ConcurrentHashMap then

9: for each stmt ∈ thenStmts do

10: if stmt.Type == MethodInvocation then

11: actV ar = stmt.getReceiver()

12: actV Type = resolveType(chkV ar)

13: arg = stmt.getArgs(0)

14: if stmt.invoke() == “put” ∧chkV Type == actV Type ∧ key == arg then

15: report idiom “if(!map.containsKey(key)) map.put(key,v);”

16: end if

17: end if

18: end for

19: end if

20: end if

correct uses of check-then-act idioms.

To correct the reported misused idioms, CTADetector uses the fixes that we presented

in Subsect. 2.2.8. We implemented the correction on top of Eclipse’s AST rewriting en-

gine [42]. Notice that we take an interactive approach: the programmer can inspect the

report, and if she agrees that it is indeed a problem, she can choose to apply the correction

transformation that CTADetector suggests. For each suggested transformation that tool

shows a preview of the code before and after the transformation (see Fig. 2.10(b)).

2.5.3 Algorithm for Put-if-Absent Idiom

Algorithm 1 shows the pseudocode for detecting the variation of put-if-absent idiom

in Fig. 2.2(e). The algorithm takes an if statement as the input and gets the expression

of the branch condition and the statements in then block (lines 1–3). Line 4 examine if

the conditional expression satisfies the check operation, i.e., there is a negation condition
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and the invocation of containsKey method. Then, the algorithm gets the variable name

and type for the variables map and key (lines 5–7). They are used to examine whether the

code snippet operates on a ConcurrentHashMap (line 8) and the variables in the act part

represent the same map and key (line 14). To match the act part of the idiom, the algorithm

iterates all the statements in the then block of the if statement (line 9) and try to find a

method invocation of put (line 14). Next, the algorithm checks whether put is called on

the same map, and same key (lines 8–14) as the preceding call of containsKey. If all the

above information matches, the algorithm reports a buggy instance of the put-if-absent

idiom.

Due to space considerations, we do not show the pseudocode for the other variations of

put-if-absent or for other idioms, but they use similar analyses.

2.5.4 Discussion

Despite the fact that our approach is pattern-based, it is quite effective and efficient. We first

discuss the reasons for false negatives and false positives and several potential extensions.

1. False negatives: CTADetector only performs an intra-procedural idiom match-

ing, thus it may miss cases when the check and act operations are in different methods

(this can lead to false negatives). For example, for the idiom shown in Fig. 2.2(e), the

if(!map.containsKey(key)) and map.put(key, v) may be in different methods. How-

ever, in the 28 projects we used in our empirical evaluation, we manually found only one

single case (in Mina) that needs inter-procedural analysis, thus making the inter-procedural

analysis unnecessary. This makes sense because the code snippets of check-then-act

idioms are succinct, thus the check and act operations are usually in the same method.

2. False positives: CTADetector uses the static type binding information to determine

whether a variable represents a concurrent collection object or whether two arguments are

the same. The analysis is a flow-insensitive may-analysis. It is conservative and safe but

may lead to false positives. Such inaccuracy is intrinsic for static analysis since it only gives

an approximation of dynamic execution. Here are two such cases.

First, there might be cases where the analysis determines that the target object on which
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the check-then-act idiom is applied may point to a ConcurrentHashMap, although the

object can only point to a HashMap in the dynamic execution. In such a case, CTADe-

tector reports a check-then-act idiom instance on ConcurrentHashMap, whereas the

idiom instance actually occurs on HashMap. However, in the 28 projects we used, there is

only one case (in OpenJDK 8) in which a collection may either point to a HashTable or a

ConcurrentHashMap, depending on some conditions.

Second, if the arguments of check and act operations may point to the same objects in

the target collection, CTADetector reports an idiom instance. It could happen that the

arguments may also be reassigned and point to different objects between the check and act

operations, in which case CTADetector reports a false positive. However, we never found

such a case in our corpus, because in practice the check-then-act idioms are succinct.

Thus, our static analysis approach is accurate to detect check-then-act idioms in most

practical cases, and using more accurate flow-sensitive points-to analysis will only have

modest improvements.

The last source of imprecision is CTADetector’s intra-procedural analysis to determine

synchronization. If the idioms are synchronized by locks properly, atomicity violation will not

occur. To determine whether a lock protects the idiom, CTADetector checks if the code

snippet is in a block protected by a lock and the operations that may result in a atomicity

violation are protected by the same lock. Notice that the intra-procedural analysis can miss

those cases when the idiom is protected externally by a lock, for example, the caller of the

method that contains the idiom acquires a lock before calling the method. However, among

the idiom instances we collected, we never found such a scenario, after we checked the code

snippets manually.

4. Extensions: To extend CTADetector to detect new idioms, one needs to imple-

ment the matching algorithms for new idioms. Suppose that j.u.c introduces new kinds

of concurrent collections that can have new kinds of check-then-act idioms. To en-

able CTADetector to detect these new idioms, one should (i) extend Variable Collector

to collect variables representing new kinds of collections, (ii) implement the matching al-

gorithms for new check-then-act idioms, and (iii) extend the Corrector component to

transform code based on the correct idioms. None of these steps require fundamental con-
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ceptual changes to the current algorithms. Because all these steps are similar with what

CTADetector already implements, an extender can use the current code as a sample.
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CHAPTER 3

Retrofitting Concurrency for Android Applications

3.1 Introduction

According to a Gartner report [43], by 2016 more than 300 billion apps for smartphones and

tablets will be downloaded annually. Android is the dominant platform, by 4x over the next

largest platform and 1.7x over all the others combined [44]. Previous studies [12, 13] have

shown that unresponsiveness is the number one bug that plagues Android apps. To avoid

unresponsiveness, app developers use asynchronous programming to execute CPU-bound or

blocking I/O operations (e.g., accessing the cloud, database, filesystem) in background and

inform the app when the result becomes available.

While programmers can use java.lang.Thread to fork concurrent asynchronous execu-

tion, it is cumbersome to communicate with the main thread. Android framework provides a

better alternative, AsyncTask, which is a high-level easy-to-use concurrent construct. How-

ever, we know little about how developers use it. To understand how AsyncTask is used,

underused and misused in practice, we conduct a formative study. The study answers the

following questions:

RQ1: How is AsyncTask used? We found that 48% of the studied projects use

AsyncTask in 231 different places. Developers either extracted long-running operations

into AsyncTask via manual refactoring or used AsyncTask from the first version.

RQ2: How is AsyncTask misused? For 4% of the invoked AsyncTask, the code runs

sequentially instead of concurrently because of invoking wrong APIs. We found similar

problems in our previous studies on concurrent libraries in C# [45, 46]. On the other hand,

in 13 cases, code in AsyncTask accesses non thread-safe GUI widgets. This leads to data

races on these GUI widgets.
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RQ3: Is AsyncTask underused? We found that 251 places in 51 projects execute long-

running operations in UI event thread. This also confirms the findings of a recent study by

Liu et al. [12] that shows that 21% of reported responsiveness bugs in an Android corpus

arise because developers tend to forget encapsulating long-running operations in AsyncTask.

Inspired by these findings, we designed, developed, and evaluated Asynchronizer, an

automated refactoring tool that enables developers to extract long-running operations into

AsyncTask. Asynchronizer uses a points-to static analysis to determine the safety of the

transformation.

3.2 Background on Android AsyncTask

3.2.1 Android GUI Programming

1 public class MainActivity extends Activity {
2 public boolean onOptionsItemSelected(MenuItem item) {
3 ...
4 new Button(new OnClickListener() {
5 public void onClick(...) {
6 exportToSpreadsheet(gameIds);
7 }
8 });
9 }

10 private void exportToSpreadsheet(final List gameIds) {
11 ...
12 new AsyncTask<Void, Void, String>(){
13 protected void onPreExecute(String filename) { }
14 protected String doInBackground(Void... params) {
15 ...
16 for (Object gameId : gameIds) {
17 games.add(dbHelper.findGameById(gameId));
18 publishProgress((Void)null);
19 }
20 String filename = ...
21 return filename;
22 }
23 protected void onProgressUpdate(Void... values) {
24 progressDialog.incrementProgressBy(1);
25 }
26 protected void onPostExecute(String filename) {
27 progressDialog.dismiss();
28 }
29 protected void onCancelled (String filename) { }
30 }.execute((Void)null);
31 }
32 }

Figure 3.1: Real-world example of AsyncTask in KeepScore
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onProgressUpdate	  

onPostExecute	  

Loop	  

Figure 3.2: Where is AsyncTask code executing?

Android GUIs are typically composed of several activities. An activity represents a GUI

screen. For example, the login screen of an email client is an activity. An application GUI

transitions through a sequence of activities, each of which is independent of the others.

However, at any given time, only one activity is active. Activities contain GUI widgets.

Similar to many other GUI frameworks such as Swing [47] and SWT [48], Android uses

an event-driven model. Events in Android apps include lifecycle events (e.g., activity cre-

ation), user actions (e.g., button click, menu selection), sensor inputs (e.g., GPS, orientation

change), etc. Developers define event handlers to respond to these events. For example,

onCreate handler is invoked when an activity is created, while onClick handler of a but-

ton is invoked when a button is clicked.

Android framework uses a single thread model to process events [49]. When an appli-

cation is launched, the system creates a main thread, i.e., the UI event thread, in which it

will run the application. This thread is in charge of dispatching UI events to appropriate

widgets or lifecycle events to activities. The main thread puts events into a single event
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queue, dequeues events, and executes event handlers.

However, if the main thread executes CPU-intensive work or blocking I/O calls such as

network access or database queries, this results in poor responsiveness. Once the main thread

is blocked, no events can be dispatched and processed, so application will not be responsive

to users’ actions. To avoid unresponsiveness, developers should exploit concurrency and

extract long-running operations into another thread.

3.2.2 AsyncTask in Android Framework

To ease the use of concurrency, Android framework provides AsyncTask class. AsyncTask

is a high-level abstraction for encapsulating concurrent work. AsyncTask also provides

event handlers such as onPostExecute that execute on the main thread after the task has

finished. Thus, the background task can communicate with the main thread via these event

handlers.

We illustrate a typical usage of AsyncTask using a real-world app, KeepScore, that keeps

scores for games that require tallying points as one plays. Figure 3.1 shows an AsyncTask

that reads game scores from a database and exports them in a spreadsheet file. The methods

that start with “on” are event handlers. Figure 3.2 shows the flow of this AsyncTask.

Line 4 sets up a listener for a button, and when the button is clicked, method exportToSp-

readsheet is called. This method creates an AsyncTask (line 12) and executes it concur-

rently with the main thread. The doInBackground method (line 14) encapsulates the work

that executes in the background. The task queries a database and adds the results to a list,

games (line 17). Finally, the result of the background computation is returned for main

thread to use (i.e., filename at line 21).

While the task is executing, it can report its progress to the main thread by invoking

publishProgress and implementing onProgressUpdate handler. In the example, the

task publishes its progress every time it finds a game (line 18), so the main thread can

update a progress dialog (line 24). The main thread executes the onPostExecute handler

after doInBackground finishes. In this example, the handler updates the GUI by dismissing

the progress dialog (line 27). Notice that this handler takes the result of the task as parameter
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(filename at line 26).

When it manages the lifecycle of an AsyncTask, the main thread executes onPreExecute

(line 13) before the doInBackground. It also executes the onCancelled (line 29) when the

task is cancelled.

The three generic types of AsyncTask (line 12) represent the parameter types of doInBac-

kground, onProgressUpdate, and the return type of doInBackground.

Notice that there are two ways that the main thread can fetch the result of an AsyncTask.

One, the result is available in the onPostExecute. Second, the result can be explicitly

requested through the get method on the task. This method has blocking semantics: if the

result is available, it will return immediately, otherwise it will block the main thread until

the result becomes available.

3.3 Formative Study of AsyncTask Use

In this section we present our formative study to understand how developers use, misuse,

and underuse AsyncTask in open-source Android apps.

3.3.1 Experimental Setup

Corpus of Android Apps. We selected our corpus of Android apps from Github [50].

To find Android apps, we filter Java repositories by searching if their README file contains

“Android app” keyword. We also manually confirmed that these repositories are Android

apps. We apply two more filters. First, because we want to contact developers, we need

to avoid analyzing inactive projects. Thus, we only keep repositories that contain at least

one commit after June 2013. Second, because we want to study the usage of AsyncTask in

mature, representative apps, we ignore apps that have less than 500 SLOC. Also, we ignore

all forked applications since they are similar to the original repository. Finally, we use the

top 104 most popular projects as our corpus, comprising 1.34M SLOC, produced by 1139

developers.

Analysis. We want to study whether developers refactor existing code into AsyncTask
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(i.e., they encapsulate existing statements into AsyncTask), or whether they introduce

AsyncTask on new code they write from scratch. Thus, we study not the latest version

of the code which contains AsyncTask, but the first version of the code where developers

introduce this construct. To do this, we searched the commit history of our corpus through

GiTective API [51], identified the commits that add import statements to AsyncTask,

and manually inspected the versions before and after such commits. This helps us under-

stand questions about correct and incorrect usage.

To understand whether the corpus contains underusage of AsyncTask, we want to identify

long-running operations that execute in the UI event thread and are potentially decreasing

the responsiveness of the application. These operations are candidates to be encapsulated

within AsyncTask.

Thus we first created a “black list” of long-running operations that Android documenta-

tion [49] warns should be avoided in the UI. We used Eclipse’s search engine to find call

sites to such operations. Using the call graph hierarchy, we analyzed whether they appear

directly or indirectly in event handlers but not in AsyncTask or Thread.

To assure validity and reliability, we make all the data-set and the results available on-

line [52].

3.3.2 Results

Table 3.1 shows the results about usage and misusage in the 50 projects that use AsyncTask.

The second row shows the items we count, including the number of instances of AsyncTask

(column 2), how many event handlers of AsyncTask are implemented by developers (columns

3 to 6), number of misuse which includes accessing GUI in doInBackground (column 7)

and wrong usage of get (column 8). The third row counts these items in newly introduced

AsyncTask (i.e., code where developers use AsyncTask from scratch). The fourth row

counts these items in code that was manually refactored by developers to use AsyncTask.

The fifth row sums the usage in newly introduced and refactored AsyncTask.

Using the data in Tab. 3.1, we answer three questions:

RQ1: What are the commonly used check-then-act idioms in real-world programs?
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Table 3.1: AsyncTask usage and misuage.
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106 64 10 2 0 7 9

Total 231 187 54 9 6 13 9

50 out of 104 projects use AsyncTask to embrace concurrency. This shows AsyncTask is

adopted in Android apps.

54% (125 out of 231) of AsyncTask instances are newly introduced when developers add

new features. However, there are 46% (106 out of 231) AsyncTask refactored. Here we

found two refactoring scenarios. First, in 94 cases, the code was refactored directly into

AsyncTask. Second, in 12 cases, the code is refactored from Java Thread into AsyncTask.

This is reasonable since AsyncTask provides event handlers and is easier to use than Thread

when the background thread needs to communicate with the main thread.

Lastly, we notice that onPostExecute handler is the most widely implemented by devel-

opers (81% (187 out of 231)). However, for the other three handlers, the implementation

percentage is only 23%, 4% and 3%. A possible explanation is that after a task is done,

applications have to update UI and report the result to users. onPostExecute handler

provides an easy way to update UI without explicitly knowing when the task is finished, so

it is implemented in most cases.

RQ2: Which idioms are the most error-prone?

We found that 13 AsyncTask (7 in manual refactoring) access GUI in doInBackground.

However, based on the Android document, accessing GUI from outside main thread will lead

to races, because Android UI toolkit is not thread-safe.

Data races can also occur on the non-GUI objects after developers transform sequential
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1 class NewChatActivity extends SherlockFragmentActivity {
2 public void onLoadFinished(Loader loader, Cursor cursor){
3 resolveIntent();
4 if (mRequestedChatId >= 0) {
5 ...
6 }
7 }
8 private void resolveIntent() {
9 startGroupChat(path, host, listConns.get(0));

10 ...
11 }
12 private void startGroupChat(...) {
13 ...
14 new AsyncTask<String, Void, String>() {
15 protected String doInBackground(String... params){
16 ...
17 mRequestedChatId = session.getId();
18 }
19 }.execute(room, server);
20 }
21 }

Figure 3.3: In ChatSecureAndroid project, developers introduce races in manual refactor-
ing.

code to concurrent code. Figure 3.3 shows a manual refactoring in ChatSecureAndroid

project. At line 3, onLoadFinished handler eventually calls startGroupChat method,

in which an AsyncTask is executed. This task writes to field mRequestedChatId at line

17. However, this field is read at line 4, which can be executed concurrently with line

17. Thus, there is a race on mRequestedChatId. Note that this data race is found by

Asynchronizer in our evaluation (see Sec. 3.6) rather than being found manually in this

formative study.

Also, nine manually refactored AsyncTasks are misused because developers invoke get

method on the task immediately after starting the task. As we mentioned in Sec. 3.2,

invocation of get blocks the current thread until the result is available. Thus, such usage

blocks the main thread immediately and defies the purpose of using AsyncTask.

RQ3: Do misused idioms result in real bugs? Are our patches accepted by developers?

We found that 51 out of 104 projects call long-running APIs in UI event handlers at 251

places. In these 51 projects, 17 projects have already used AsyncTask. Still, we found 79

places where AsyncTask is underused. The remaining 34 projects never use AsyncTask.

Based on our findings for RQ1, we conclude that AsyncTask is widely adopted and de-

velopers manually refactor their code to use AsyncTask in many cases. However, as RQ3
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shows, AsyncTask is still underused. RQ2 shows that manual refactoring may introduce

bugs.

Based on the results for RQ1–RQ3, we conclude that there is a need for safe refactoring

tools to enable developers to transform code towards AsyncTask (presented in Sec. 3.4),

as well as help developers check possible races that can occur between the code running in

AsyncTask and the code running in the main thread (presented in Sec. 3.5).

3.4 Transformations

1 public class RouteselectActivity extends Activity {
2 ...
3 public void onCreate(Bundle savedInstanceState) {
4 super.onCreate(savedInstanceState);
5 ...
6 ListView lv = getListView();
7 final String qry = "select...";
8 final String[] selectargs = {mStopid, datenow,
9 datenow};

10

11

12

13

14

15

16

17

18

19

20

21

22 Cursor mCsr = DatabaseHelper.ReadableDB()
23 .rawQuery(qry, selectargs);
24 startManagingCursor(mCsr);
25

26

27

28 lv.setOnTouchListener(mGestureListener);
29 if (mCsr.getCount() > 1)
30 tv.setText(R.string.route_fling);
31 else if (mCsr.getCount() == 0)
32 tv.setText(R.string.stop_unused);
33 lv.addFooterView(tv);
34 CursorAdapter adapter =
35 new CursorAdapter(this,
36 mCsr);
37 setListAdapter(adapter);
38 }
39

40 }

(a) before

1 public class RouteselectActivity extends Activity{
2 ...
3 public void onCreate(Bundle savedInstanceState){
4 super.onCreate(savedInstanceState);
5 ...
6 ListView lv = getListView();
7 final String qry = "select...";
8 final String[] selectargs = {mStopid, datenow,
9 datenow};

10 ProcessRoutes prTask = new ProcessRoutes(lv);
11 prTask.execute(qry, selectargs);
12 }
13 class ProcessRoutes extends AsyncTask<Object,
14 Void, Cursor>{
15 ListView lv;
16 ProcessRoutes(ListView lv) {
17 this.lv = lv;
18 }
19 protected Cursor doInBackground(Object... args){
20 String qry = (String) args[0];
21 String[] selectargs = (String[]) args[1];
22 Cursor mCsr = DatabaseHelper.ReadableDB()
23 .rawQuery(qry, selectargs);
24 startManagingCursor(mCsr);
25 return mCsr;
26 }
27 protected void onPostExecute(Cursor mCsr) {
28 lv.setOnTouchListener(mGestureListener);
29 if (mCsr.getCount()>1)
30 tv.setText(R.string.route_fling);
31 else if (mCsr.getCount() == 0)
32 tv.setText(R.string.stop_unused);
33 lv.addFooterView(tv);
34 CursorAdapter adapter =
35 new CursorAdapter(RouteselectActivity.this,
36 mCsr);
37 setListAdapter(adapter);
38 }
39 }
40 }

(b) after

*Relevant code from GR-Transit app. Programmer selects lines 22 to 24 in (a), and Asynchronizer
performs all the transformations. The left-hand side shows the original code, whereas the right-hand side
shows the refactored code by Asynchronizer.

Figure 3.4: An example refactoring performed by Asynchronizer.
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This section describes the code transformation that enables developers to move code from

main thread into AsyncTask. We implement the transformation in our tool, Asynchro-

nizer. We first explain the overall workflow of the tool, and then illustrate the transforma-

tions.

3.4.1 Refactoring Workflow and Preconditions

We implement Asynchronizer as a plugin in the Eclipse IDE [42]. To use Asynchro-

nizer, the programmer selects statements that she wants to encapsulate within AsyncTask,

and then chooses the Convert to AsyncTask option from the refactoring menu. The pro-

grammer can also specify the class and instance name that Asynchronizer will use to gen-

erate AsyncTask. Asynchronizer moves the selected statements into AsyncTask.doInB-

ackground method. In addition, Asynchronizer also infers the subsequent statements

that can be moved to onPostExecute. Before applying the changes, Asynchronizer gives

the programmer the option to preview them in a before-and-after pane. Then, Asynchro-

nizer transforms the code in place.

After the transformation, the programmer can invoke Asynchronizer’s safety analysis

component to check data races due to the transformation. We will present the safety analysis

in Sec. 3.5. If Asynchronizer found data races, the programmer still needs to confirm

and fix them manually. Only after this the refactored code is correct.

Figure 3.4(a) shows a code snippet from an Android app, GR-Transit, that displays bus

routes and schedules . The code snippet is used to show the bus routes that pass a given bus

stop. If the programmer applies our transformation to lines 22 to 24, Asynchronizer will

transform the code to Fig. 3.4(b). In a subsequent version of GR-Transit, the programmers

have done this transformation manually. Their new code, modulo syntactic difference, is the

same as Asynchronizer’s output.

Asynchronizer checks the following three preconditions before transforming, and re-

ports failed preconditions:

(P1) The selected statements do not write to more than one variable which is read in the

statements after the selection. Such a variable needs to be returned by doInBackground,
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but Java methods can only return one single variable.

(P2) The selected statements should not contain return statements. A return statement

in the original code enforces an exit point from the enclosing method. However, the same

return statement extracted into an AsyncTask can no longer stop the execution of the

original method. Similarly, the break and continue statements are only allowed if they

are selected along with their enclosing loop.

(P3) The selection contains only entire statements. Selecting an expression that is part of

a statement is not allowed because it would force the AsyncTask to immediately invoke

the blocking AsyncTask.get() to fetch the expression; this defies the whole purpose of

launching an AsyncTask.

3.4.2 Create the doInBackground Method

The first step of the transformation is to move the selected statements into the doInBackgro-

und method. This is similar to Extract Method refactoring. In this step, Asynchro-

nizer needs to determine the arguments and the return value of doInBackground. The

arguments are the local variables which are used in the selection but declared before it. The

return value is the local variable which is defined in the selection but used after it.

In Fig. 3.4(b), the doInBackground method takes two arguments, qry and selectargs,

and returns mCsr. However, note that doInBackground has only one varargs parameter

(i.e., array of unknown length), and its type is specified by the type argument (generic) of

AsyncTask. If all local variables are of the same type, Asynchronizer sets this type as the

first generic type argument for AsyncTask. If the passed-in local variables are of different

types, as it is the case for our example, Asynchronizer uses java.lang.Object as the

generic type argument (Fig. 3.4(b) line 19), and dereferences and type-casts the parameters

(Fig. 3.4(b) lines 20 and 21). If doInBackground has no arguments or return value, it uses

Void as parameter type or return type, and returns null.
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Algorithm 2 inferringPostStmts(selected, post, rv)

Input: selected← the selected code
post← all statements after the selected code
rv ← return variable of doInBackground

Output: moved← statements put into onPostExecute

1: dominated← []
2: unmoved← []
3: for all stmt in post do
4: if selected dominates stmt and not stmt contains return then
5: dominated← dominated append stmt
6: else
7: break
8: end if
9: end for

10: unmoved← post− dominated
11: moved← []
12: for all stmt in dominated do
13: if not unmoved is data dependent on stmt then
14: moved← moved append stmt
15: else
16: break
17: end if
18: end for
19: unmoved← post−moved
20: if unmoved uses rv then
21: invoke get method before the first use of rv in unmoved
22: end if
23: return moved

3.4.3 Create onPostExecute Handler

The second step is to infer which code can be put into onPostExecute handler. Because

the Android framework invokes the onPostExecute after the method doInBackground

has finished, the analysis needs to determine that the statements inside these two methods

follow the same control-flow as in the original program. Otherwise, the refactored program

will have a different semantics.

A naive implementation is to move all the statements after the selected code into onPostE-

xecute. However, this may break the control flow of the main thread. A statement cannot

be moved if it is not dominated by the statements in the selected code, or if it is a return
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statement. A statement dominates [53] another if every path from the entry point to the

latter statement passes through the former statement.

Algorithm 2 infers the set of statements to be moved to onPostExecute. The inputs of

the algorithm include the selected code that will be put into doInBackground (selected),

the list of statements syntactically after the selected code (post), and the return variable

of doInBackground (rv). The output is the set of statements which can be moved to

onPostExecute (moved). unmoved contains the statements which cannot be moved.

The algorithm first selects the prefix of post in which all statements are dominated by

selected and do not return (lines 3 to 9). The remaining statements cannot be moved so

they are put into the unmoved variable (line 10). The algorithm then constructs the final

result as the prefix of dominated for which all statements have no effect on any statement

in dominated (lines 11 to 18). This ensures no data dependencies are broken. unmoved is

updated with any statements which are not in moved (line 19). Finally, if unmoved contains

statements that use the resulting value of doInBackground, Asynchronizer adds a call

to AsyncTask’s get method before the first such use (lines 20 to 22).

In the example shown in Fig. 3.4(a), all the statements after the selected code (lines 28

to 37) can be put into onPostExecute. However, suppose there was a statement at line 38

that returns mCsr. This statement would not be moved to onPostExecute. Furthermore,

Asynchronizer would add a call to AsyncTask.get before the return statement because

it uses mCsr. In the current implementation, Asynchronizer uses Eclipse JDT’s [41]

variable bindings to approximate data dependencies.

3.4.4 Create Class Declaration

In this step, Asynchronizer creates fields, constructor and class declaration for AsyncTask.

Fields are generated by analyzing the statements in onPostExecute. Since onPostExecute

only have one parameter which is the return value of doInBackground, the tool converts

all the other arguments needed by onPostExecute into fields of AsyncTask. For example,

in Fig. 3.4(b), local variable lv is needed by onPostExecute. Asynchronizer declares a

field lv in the AsyncTask (line 15) and adds a constructor to initialize this field (line 16).
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After that, it creates an inner class declaration using all the code elements which have been

created above (line 13). Finally, it generates two statements to create task instance and call

execute method, and replaces the selected code by these two statements (lines 10 and 11).

3.4.5 Special Cases

Asynchronizer also analyzes code to properly transform several special cases:

(S1) doInBackground and onPostExecute cannot be declared to throw checked excep-

tions. Thus, if the selected statements throw exceptions (e.g., programmer selects FileOutp-

utStream.write method which throws IOException), Asynchronizer needs to generate

try-catch block to handle the exceptions. Asynchronizer first collects the exceptions that

are declared to be thrown by the selected code. If these exceptions are caught in the orig-

inal refactored method, it copies the corresponding catch clauses into doInBackground or

onPostExecute to handle the exceptions. Otherwise, it generates empty catch clause. In

our experiment, all the cases that throw exceptions have corresponding catch clauses in the

original code.

(S2) The original code may use this or super pointer (Fig. 3.4(a) line 35). After moving

it to an inner AsyncTask class, our tool replaces the original pointer with outer class’ this

or super pointer (Fig. 3.4(b) line 35).

3.5 Data Race Check

Our formative study (Sec. 3.3) shows that developers do introduce data races when they

manually refactor sequential code into AsyncTask concurrent code. These data races are

either accesses to GUI elements from the doInBackground, or possibly concurrent accesses

to other shared resources. Data races are hard to find as they only manifest themselves

under certain thread schedules. To assist developers with the refactoring, we propose a

static race detection approach specialized to the thread structure generated by AsyncTask.

We implement our approach as an extension of the IteRace race detector [54].

IteRace is a static race detector for Java parallel loops that achieves low rates of false
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warnings by taking advantage of the extra semantic information provided by the use of

high-level concurrency constructs. It uses the known thread-safety properties of concurrent

collection classes, summarizes races that occur in libraries at the level of the application,

and specializes for the thread structure of lambda-style parallel loops.

While IteRace is only capable of analyzing parallel loops, its approach of taking advan-

tage of the implicit thread structure of high-level concurrency constructs is also applicable to

AsyncTask. We thus extend IteRace to find races that occur between doInBackground

and other threads.

3.5.1 Data Races

Generally, a data race is a pair of accesses, one of which is a write, to the same memory

location, with no ordering constraint between the two accesses. For AsyncTask, a data

race can occur between accesses in doInBackground and accesses which may execute in

parallel with the asynchronous task. While the precise set of instructions that may execute

in parallel cannot be determined statically, we can find an approximation of it.

Asynchronizer relies on the Andersen-style static pointer analysis [55] provided by

WALA [56]. Thus, our analysis works over an abstract heap built along with a (k-bounded)

context-sensitive call graph. The underlying analysis is flow insensitive, except for the limited

sensitivity obtained from the SSA form.

Our tool makes the following approximation for a race: instruction iα in call graph node

nα races with instruction iβ in node nβ if both access the same field of the same abstract

object, at least one of the instructions is a write access, and 〈nα, iα〉 may happen in parallel

with 〈nβ, iβ〉.

3.5.2 May Happen in Parallel

We now introduce an approximation of the happens-in-parallel relation induced by the

AsyncTask. For simplicity, we present the algorithm from the perspective of analyzing

the races involving one AsyncTask at a time.
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onLoadFinished(…)
3: invoke resolveIntent()

resolveIntent()
10: startGroupChatId(…)

startGroupChat(…)
19: ….execute(…)

RACE!

doInBackground(…)
17: this.mRequestChatId = …

onLoadFinished(…)
4: this.mRequestChatId >= …

onLoadFinished(…)
3: return from resolveIntent()

…
4: ….get()

fork

join

x

*The nodes are call graph node-instruction pairs. The arrows are intra and inter procedural edges. The
crossed-out arrow is part of G∗ but not G∗

c9r. Dashed arrows denote reachable relations.

Figure 3.5: Supergraph without call-to-return edges (G∗c9r) for the code snippet in Fig. 3.3.

Let nb be the abstract call graph node for the analyzed doInBackground method. Let nh

be the event handler call graph node which executed nb’s AsyncTask– note that, depending

on the choice of abstraction, there can be multiple call graph nodes representing runtime

invocations of doInBackground. Let Nh be the set of all the event handler call graph

nodes in the current application. For the example in Fig. 3.3, nb is the invocation of the

doInBackground method on line 15, and nh is the execution of onLoadFinished (line 2)

which led to nb.

Let ie be the instruction which executes the AsyncTask containing nb. For our example

in Fig. 3.3, ie is execute method invocation at line 19. Let ne be the node executing ie.

Our choice of context sensitivity ensures its uniqueness.

Let G∗ be the so called supergraph [57] having as nodes pairs 〈n, i〉, where n is an call

graph node, and i is an instruction in n. Intra-procedural, i.e., control flow graph (CFG),

nodes and edges are lifted to the new graph, with each node i becoming a pair 〈n, i〉 and each

edge 〈i1, i2〉 becoming 〈〈n, i1〉, 〈n, i2〉〉. Call sites are linked to the lifted CFG of the target

call graph node. The call site instruction is represented by two instructions in G∗, a call and

a return. The call instruction is linked to the entry of the lifted CFG of the target CG node,
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while the return instruction is linked from the exit. Finally, there is an intraprocedural edge,

call-to-return, which bypasses the interprocedural paths by linking the call and the return

instructions directly.

Let G∗c9r be G∗ with all its call-to-return edges removed. Figure 3.5 shows the supergraph

without call-to-return edges for the example in Fig. 3.3. Removing call-to-return edges does

not affect reachability but it does affect the dominator relation used below. Call-to-return

edges prevent instructions in a called method dominate any instruction after the call.

We say that the instruction 〈nα, iα〉 may happen in parallel with instruction 〈nβ, iβ〉 if

〈nα, iα〉 is reachable from the doInBackground node nb, and either 〈nβ, iβ〉 does not dom-

inate 〈ne, ie〉 on G∗c9r, or, if nβ calls ne, iβ does not dominate the call to ne on the nβ’s

CFG. E.g., in Fig. 3.5, 〈nα, iα〉 is the node for line 17 which is within the doInBackground

method. 〈nβ, iβ〉 is the node for line 4, which does not dominate the forking node (line 19).

Thus, the nodes for lines 4 and 17 may happen in parallel.

Furthermore, as the two instructions read and write the same field (mRequestChatId) of

the same object (this), they may race. Thus, our tool raises a warning.

3.5.3 Android Model

Android applications are event-based so exercising the code depends on events triggered by

the UI, sensors, network, etc. In order to analyze the application statically, Asynchronizer

uses a synthetic model of several key Android classes.

Figure 3.6 shows the callgraph for the code snippet in Fig. 3.1. Asynchronizer creates

synthetic calls between the object initializer (the bytecode <init> method called before the

constructor) of an activity or widget and its events handlers. Thus, MainActivity’s ini-

tializer calls, among others, its onOptionsSelected event handler. Similarly, Asynchro-

nizer puts a synthetic call between a listener’s initializer node to its handlers, and between

the an AsyncTask’s execute and its doInBackground. This is an over-approximation of

the application’s possible behavior because it may be possible that a particular event will

not be triggered. As the analysis is flow insensitive, it does not matter that the handler

method is invoked at the handler object initialization point, not at the event trigger point.
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MainActivity.<init>

MainActivity.onOptionsItemSelected(…)

OnClickListener.<init>

OnClickListener.onClick(…)

MainActivity.exportToSpreadsheet(…)

AsyncTask.execute()

AsyncTask.doInBackground(…)

...

...

*Dashed arrows are synthetic call graph edges.

Figure 3.6: Part of the callgraph for the code in Fig. 3.1.

Asynchronizer use the following strategy to select entry point for the analysis: (1) if

the refactored class itself is an activity, it uses Activity.<init> as entry point; (2) if the

refactored class is a GUI widget class (i.e., a View), it uses the object initializer of both the

activities who use this widget, and the widget class itself as entry point (i.e., the analysis

may run multiple times).

In terms of safety, our analysis is subject to the traditional limitations of static pointer

analysis. Aside from the synthetic calls described above, reflection and native code are only

handled up to what is provided by the underlying pointer analysis engine, WALA [56]. In

some cases, Android apps use reflection to construct objects such as GUI widgets. Our

analysis does not analyze such objects. This could be improved by looking into the config-

uration files used for defining the UI [58]. Also, the analysis’ call graph contains a single

node for each event. Considering our may happen in parallel definition, this may lead to

false negatives for the cases where an event is invoked repeatedly.

Regarding precision, as our race detection analysis is static, it may report false races. The

imprecision stems from various types of imprecision in the underlying pointer analysis. This

is currently an unavoidable problem for scalable static race detectors[59, 54, 60]. First, the

pointer analysis may abstract multiple runtime objects by a single abstract object, leading to

false warnings on fields of objects that are always distinct at runtime. Second, the analysis is

flow-insensitive leading to warnings between accesses that are always ordered at runtime. In
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particular, our current implementation does not consider event handling order. This leads

to some false warnings in our evaluation. For example, the onCreate handler is always

handled before onStart. Thus, an AsyncTask started in onStart could not happen in

parallel with onCreate.

3.6 Evaluation

To evaluate the usefulness of Asynchronizer we answer the following evaluation questions:

EQ1. Applicability: How applicable is Asynchronizer?

EQ2. Accuracy: How accurate is Asynchronizer when performing the code transfor-

mations?

EQ3. Effort: How much programmer effort is saved by Asynchronizer?

EQ4. Safety: Is Asynchronizer safer than manual refactorings?

EQ5. Value: Do programmers find refactorings applied by Asynchronizer useful?

3.6.1 Experimental Setup

We want to evaluate Asynchronizer on real open-source code, but because we are not the

original developers of the code, it is hard to know on which code to apply the refactoring.

Thus, we use two sets of experiments. First, we let the source code itself tell us which parts

need to be refactored. To do this, we run Asynchronizer on projects that were manually

refactored by the open-source developers, and compare the outcomes. Second, we start from

the responsiveness issues detected by other researchers [13] and run Asynchronizer on

code that was not refactored yet and determine whether the refactorings are useful for the

original code developers. We use the first experiment to answer EQ1–EQ4, and the second

experiment to answer EQ5.

Replicating existing refactorings. From our formative corpus of 104 projects, we filtered

all projects which have at least two manual refactorings from sequential code to concurrent

code via AsyncTask, thus resulting in a corpus of 13 projects. The left-hand side of Tab. 3.2

66



shows the size of each project in non-blank, non-comment source lines of code1. For each

project, we applied Asynchronizer to the code version just before the version that con-

tained manual refactorings, and we only refactored the same code as the manual refactorings

did. Notice that manual refactorings occur in several versions, so we checked out the version

we need every time we applied Asynchronizer. We applied Asynchronizer to replicate

all 77 manual refactorings in these 13 projects.

We report several metrics for each project. To measure the applicability, we count how

many code fragments met the refactoring preconditions and thus can be refactored.

To measure the accuracy of code transformations, we compared the code transformed by

Asynchronizer with manually changed code, and report the number of cases that have

differences in doInBackground or onPostExecute method. Notice that here we are only

interested to compare the code changes (described in Sec. 3.4), but these changes may still

contain data races (we answer safety separately).

To measure the effort that a programmer would spend to refactor the code manually, we

report the number of lines and files that are modified by the refactoring. These numbers are

a gross estimate of the programmer effort that is saved when refactoring with Asynchro-

nizer. Although we measure effort indirectly, many changes and analysis are non-trivial.

To answer the safety question, we ran Asynchronizer to analyze data races introduced

by transformation. Notice that the races which occur in libraries (e.g., JDK) are not reported

at that level, but Asynchronizer propagates the accesses up the call graph to the places

where the library is invoked from the application [54]. We manually checked all the races and

categorize them into four categories: (fixed directly) the races are fixed by developers during

their manual refactoring; (fixed later) the races are not fixed during manual refactoring, but

are fixed in a later version; (never fixed) the races are not fixed even in the latest version;

(false) the races are false warnings.

The races that are fixed directly manifested immediately after a developer first encap-

sulated code into AsyncTask. Since in their commit the developers included both the

refactoring and the race fixes, it implies that they are aware of the existence of these races.

For the races that are fixed later, we also count how many days on average it took developers

1We used David Wheeler’s SLOCCount [39] to get size and we only report size of Java code.
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to find and fix races, as reported by the time span between the commit that introduces the

race and the commit that fixes the races. For the races that are still not fixed in the latest

version, we reported all of them to developers and suggested how to fix them.

Applying new refactorings. The preferred way to test for responsiveness is to run per-

formance tests. However, none of the Android apps that we found had performance tests.

Creating performance tests requires domain knowledge, generating test inputs that are repre-

sentative (e.g., relevant database entries), etc. Thus, to measure the value of the refactoring,

we select 19 projects that have potential responsiveness issues (shown in Tab. 3.3). These

issues are either detected in [13] or in our study presented in Sec. 3.3 but they have neither

been reported, nor fixed.

We manually identified the latent long-running operations in main thread. For example, we

search for call sites to database APIs in main thread. Then, we applied Asynchronizer on

these operations and generated patches from the refactoring. When Asynchronizer raised

a race warning, we checked and fixed the race. We also included the fix in the refactoring

patches. We submitted these patches to developers. In total, we applied Asynchronizer

to 123 places (column Passed + Failed in Tab. 3.3) in these projects. We grouped all

changes and submitted 19 patches (one patch per project).

3.6.2 Results

Table 3.2 tabulates results of applying Asynchronizer to 13 projects that have manual

refactorings.

Applicability: Columns 3 and 4 show the number of refactorings that pass or fail precon-

ditions P1–P3. Among the 77 places where we applied the refactoring, 73 places satisfy all

the three preconditions. Thus, our refactoring is highly applicable.

Of the four places that fail preconditions, 3 failed P1, 1 failed P2, 1 failed P3 (one case

failed two preconditions). We had to manually modify the code to satisfy the precondi-

tions. To satisfy precondition P1, we convert the local variables into fields of the refactored

class. For precondition P2, we temporarily remove the return statements before refactoring

and put them back to the appropriate places after refactoring. For precondition P3, we
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Table 3.2: Results of applying Asynchronizer to 13 projects that have manual refactor-
ings.
Project Name SLOC Applicability Accuracy Effort Safety

Passed Failed Diff. #
LOC
Mod.

Files
Mod. fi

x
ed

d
i-

re
ct

ly

fi
x
ed

la
te

r

n
ev

er
fi
x
ed

fa
ls

e

Total
Fix

Time
(day)

LibrelioDev 15120 4 2 1 212 5 0 16 0 15 31 54
Sonet 18294 14 0 0 708 4 0 0 12 20 32 –
SocializeSDK 65032 3 1 0 191 4 0 0 0 2 2 –
ChatSecureAndroid 35220 3 0 0 187 3 5 0 7 7 19 –
GwindowWhat 8785 4 0 0 68 4 0 0 0 0 0 –
Irccloud 21384 3 0 0 82 3 3 8 3 0 14 124
Cyclestreets 13523 3 0 0 98 3 0 0 0 0 0 –
Owncloud 17016 3 0 0 108 3 4 0 0 8 12 –
AndroidSettings 71226 5 0 0 117 4 0 0 0 0 0 –
AndroidCalendar 34090 4 0 0 113 4 0 0 0 0 0 –
MyExpenses 20914 2 0 0 34 2 0 0 0 0 0 –
Allplayers 5693 21 0 0 361 18 3 12 0 5 20 1
GRTransit 3316 4 1 0 206 5 0 2 2 0 4 14

Total 329613 73 4 1 2394 62 15 38 24 57 134 193

expanded the selected expression into a full statement, and then supplied it as the input to

Asynchronizer.

After changing the input source code to pass preconditions, we applied Asynchronizer

to these four cases and included them along with the other metrics shown in Tab. 3.2.

Accuracy: Column 5 shows the number of differences between manual and automated

refactorings. The differences do not include other changes made by developers (e.g., adding

new features). There is only one case in LibrelioDev-Android project where the two

outputs differ. In this case, manual refactoring moves fewer statements into onPostExecute

handler, but they don’t affect the semantics, which means that the code behaves the same

way in both cases.

Effort: In total, the refactoring modified 2394 lines of code in 62 files (see LOC Mod. and

Files Mod. columns in Tab. 3.2). On average, each refactoring changes 31 lines of code.

More important, many of these changes are non-trivial: programmers need to infer fields,

method parameters, and return value, which statements can be moved into onPostExecute,

as well as deal with special cases. In contrast, when using Asynchronizer, the programmer

only has to initiate the transformation. Asynchronizer takes less than 10 seconds per

refactoring.
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Safety: Columns 8 to 12 show the 134 races that Asynchronizer detected automatically

and we checked manually.

Notice that 38 races are not fixed immediately in the manual refactoring, but are fixed

in a later version. The strategies to fix these races include adding synchronizations, moving

the statements involved in races outside of AsyncTask, changing shared variables into local

variables, or removing the shared variables. Interestingly, among these 38 races, 12 races

in Allplayers-Android project are fixed incorrectly the first time: developers invoke get

immediately after executing the AsyncTask. They applied a second patch to fix them

correctly in a later version. In the four projects that fix races in a later version, developers

spent 193 days in total to apply patches (Fix Time column). There are 57 false warnings.

The reasons for the false warnings were discussed in Sec. 3.5.3.

The remaining 24 races still exist in the latest version. We reported all of them to

developers. They fixed 3 races in Irccloud-Android, and they confirmed 9 races in

ChatSecureAndroid and GRTransit. The developers of Sonet do not think the 12 races

lead to bugs. In this case, the pair of racing accesses are in two event handlers which develop-

ers confirmed can not happen in parallel (code examples are on [52]). In practice, developers

can avoid checking such races by customizing synthetic call graphs based on their domain

knowledge about which event handlers may happen in parallel.

Our result shows 62 (columns fixed later + never fixed) out of 134 races are nei-

ther detected nor fixed when developers perform manual refactoring. Even when they are

fixed in a later version, the timespan is long. Thus, Asynchronizer is safer than manual

refactoring.

Value: Table 3.3 shows results where we used Asynchronizer to refactor long-running

operations from main thread into AsyncTask. We used a corpus of 19 projects, where in total

we applied Asynchronizer to 123 places in 72 files. 121 cases satisfied the preconditions.

Similar to the previous experiment, for the two cases that failed the preconditions, we

manually modified the code to satisfy the preconditions. We also check the races reported

by Asynchronizer (column 5). Notice that the races we show in Tab. 3.3 do not include

false warnings (there are 72 false warnings in total).

We created patches which include the transformations and fixes for races, and submitted
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Table 3.3: Results of applying Asynchronizer to 19 projects that have potential respon-
siveness issues.
Project
Name

SLOC Passed Failed Races Replied? # Accepted Files
Mod.

Connectbot 33326 24 0 70 No 0 5
Cgeo 66389 11 0 0 Yes 11 6
KeePassDroid 28588 1 2 0 Yes 3 3
Vudroid 2408 1 0 13 Yes 0 1
VLC 36852 13 0 16 Yes 0 8
Rpicheck 6859 13 0 0 Yes 13 5
Adblockplus 11970 2 0 0 Yes 0 2
Alfresco 70471 7 0 0 No 0 7
HockeySDK 7052 4 0 0 Yes 4 4
FBReaderJ 58718 10 0 8 No 0 5
Catlog 6035 1 0 0 No 0 1
Glimmr 9570 3 0 0 No 0 4
K-9 Mail 78679 7 0 38 Yes 7 5
Open311 6642 5 0 0 No 0 4
Spika 19823 3 0 0 No 0 1
Eoecn 11760 3 0 0 No 0 2
Andlytics 44441 2 0 0 Yes 2 2
Liberario 8171 9 0 0 Yes 0 6
Allplayers 5693 2 0 0 No 0 2

Total 513447 121 2 145 - 40 72

the patches to the open-source developers. Column 6 shows whether developers replied

to our patches. We got 10 replies. Columns 7 shows the number of patches developers

accepted and merged. In total, developers from 6 projects have accepted 40 refactorings.

The developers of Vudroid, VLC and Liberario do not think the operations encapsulated

into AsyncTask significantly affect UI responsiveness. For example, Vudroid developers said

“ZoomRoll class instance is a singleton for application and hence your patch will change

only the first time load delay. I have never observed considerable time delays on Activity

start”. The developers of Adblockplus think the AsyncTask we introduced can lead to

data races on external files, so they do not accept our refactorings. However, detecting data

races on external resources is beyond the ability of Asynchronizer. This result shows the

importance of having domain knowledge, but also shows that our refactoring approach can

produce useful results accepted by developers.
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CHAPTER 4

Converting Shared-Memory into Distributed-Style
Communication for Android Apps

4.1 Introduction

In addition to AsyncTask, Android framework also provides other two major async con-

structs: IntentService and AsyncTaskLoader. However, as discussed in Chapter 1,

AsyncTask can lead to memory leaks, lost results, and wasted energy if improperly used. In

general, AsyncTask is designed for encapsulating short-running tasks while the other two

are good choices for long-running tasks.

To learn how async constructs are used in Android apps, understand how developers

retrofit asynchrony, and learn about barriers encountered by developers, we first conducted

a formative study by analyzing a corpus of 611 most popular open-source Android apps,

comprising 6.47M SLOC. We then surveyed 10 expert Android developers to put the study

results in a broader context. The study answers the following questions:

RQ1: How do Android developers use asynchronous programming? Mapping the land-

scape of usage of async constructs in Android is useful for researchers, library designers, and

is educational for developers. We found that 161 (32%) of the studied apps use at least one

asynchronous programming, resulting in 1893 instances. Out of these, AsyncTask is the

most widely used.

RQ2: How do Android developers retrofit asynchrony into existing apps? Must asyn-

chrony be designed into a program, or can it be retrofitted later? What are the most common

transformations to retrofit asynchrony? Answering this question is important for software

evolution researchers, as well as tool builders. We found widespread use of refactorings,

both from sequential code to async, and from basic async to enhanced async. We found the

following code evolution scenario: developers first convert sequential code to AsyncTask,
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and those that continue to evolve the code for better use of asynchrony refactor it further

into enhanced constructs.

RQ3: How do expert developers interpret the disparity in usage of async constructs?

Answering this question can provide educational value for developers. We found that experts

think AsyncTask is being overused at the expense of other enhanced async constructs,

and many inexperienced Android developers do not know its problem. They also suggest

AsyncTask should only be considered for short-running tasks (i.e., less than a second). They

suggest that the current guides and examples of IntentService are not enough, and point

out the need for refactoring tools to help unexperienced developers use and learn about the

enhanced async constructs and the different style of communicating with the GUI.

Inspired by the results of our formative study, we designed, developed, and evaluated

AsyncDroid, an automated refactoring tool that transforms shared-memory into distributed-

style communication in the context of Android async programming. AsyncDroid refactors

AsyncTask into IntentService. We developed AsyncDroid as an Eclipse plugin, thus

it offers all the convenience of a modern refactoring tool: it enables the user to preview and

undo changes and it preserves formatting and comments. To use it the programmer only

needs to select an AsyncTask instance, then AsyncDroid verifies that the transformation

is safe, and rewrites the code if the preconditions are met. However, if a precondition fails,

it warns the programmer and provides useful information that helps the programmer fix the

problem.

4.2 Background on Android IntentService and AsyncTaskLoader

We introduced the background of Android programming and AsyncTask construct in Sec. 3.2.

Though AsyncTask is an easy-to-use construct, it is ideally used for short tasks. Otherwise,

the three problems introduced in Chapter 1 (memory leaks, lost results, wasted energy) can

occur. In this section, we introduce the other two major async constructs which are safer

but more complicated: IntentService and AsyncTaskLoader.
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Figure 4.1: Where is IntentService code executing?

4.2.1 IntentService in Android

IntentService belongs to the Service component, but its encapsulated operations are exe-

cuted in a background thread instead of UI thread. Figure 4.1 shows the flow of IntentServ-

ice. Service is started when startService is invoked. Then onHandleIntent method is

executed in a background thread. Unlike AsyncTask, IntentService uses a distributed-

style programming to communicate with UI thread. To get the task result, the GUI

that starts the service should register a broadcast receiver. After the task is finished,

IntentService sends its task result via sendBroadcast method. Once the registered

receiver receives (i.e., the GUI) this broadcast, its onReceive method will be executed on

UI thread, so it can get the task result and update GUI.

Figure 4.2(a) shows a real-world example from owncloud-android app, which is an Android

client for a cloud server. It uses AsyncTask to execute the background task. LogActivity

starts a LoadingTask at line 11. The task reads some files in doInBackground (lines 32,

33) and returns a string (line 36). onPostExecute takes this string and uses it to update

a text view (line 22). Notice that LoadingTask is declared as a non-static inner class, so it

holds a reference to LogActivity.

Figure 4.2(b) shows an equivalent implementation of LogActivity using IntentService.

The background task from Fig. 4.2(a) is now put into onHandleIntent method (line 32).

The result is wrapped by an Intent object, which is marshalled and sent via broadcast (lines

74



1 public class LogActivity extends Activity {
2

3

4 private String mLogPath=FileUtils.getLogPath();
5 protected void onCreate() {
6 ...
7 LoadingTask task = new LoadingTask(view);
8

9

10

11 task.execute();
12 }
13 class LoadingTask extends AsyncTask {
14 private TextView textView;
15 private Exception exception;
16 LoadingTask(TextView view){textView = view;}
17 public void onPostExecute(String result) {
18

19

20

21 if (exception == null) {
22 textView.setText(result);
23 } else Log.i(exception.getMessage());
24 }
25

26

27

28 public String doInBackground(String[] args){
29

30

31 try {
32 File file = new File(mLogPath);
33 ...
34

35

36 return text;
37 } catch (Exception e) {
38 exception = e;
39

40

41 return null;
42 }}}}

(a) Using AsyncTask

1 public class LogActivity extends Activity {
2 public static final FILTER = "LogActivity_receiver";
3 private LoadingReceiver receiver;
4 private String mLogPath = FileUtils.getLogPath();
5 protected void onCreate() {
6 ...
7 receiver = new LoadingReceiver(view);
8 registerReceiver(receiver, new IntentFilter(FILTER));
9 Intent intent= new Intent(this,LoadingService.class);

10 intent.putExtra("mLogPath", mLogPath);
11 startService(intent);
12 }
13 class LoadingReceiver extends BroadcastReceiver {
14 private TextView textView;
15 private Exception exception;
16 LoadingReceiver(TextView view){ textView=view; }
17 public void onReceive(Context ctx, Intent intent){
18 String text = intent.getStringExtra("RV");
19 Exception exception = (Exception)intent
20 .getSerializableExtra("exception");
21 if (exception == null) {
22 textView.setText(text);
23 } else Log.i(exception.getMessage());
24 }}}
25 public class LoadingService extends IntentService {
26 private String mLogPath;
27 private Exception exception;
28 public void onHandleIntent(Intent intent) {
29 mLogPath = intent.getStringExtra("mLogPath");
30 Intent result = new Intent(LogActivity.FILTER);
31 try {
32 File file = new File(mLogPath);
33 ...
34 result.putExtra("exception", exception);
35 result.putExtra("RV", text);
36 sendBroadcast(result);
37 } catch (Exception e) {
38 exception = e;
39 result.putExtra("exception", exception);
40 result.putExtra("RV", null);
41 sendBroadcast(result);
42 }}}

(b) Using IntentService

*onCreate method starts a background task to read a log file, and the result is shown in a TextView.
(a) and (b) shows two semantic-equivalent implementations using AsyncTask and IntentService,
respectively.

Figure 4.2: Asynchronous code from Owncloud app.

35, 36). Intent is analogous to a hash map whose key is a string and value is a serializable

object (i.e., implements java.io.Serializable or android.os.Parcelable). It is the

only medium through which different components (e.g., service and broadcast receiver) can

exchange data. Finally, onReceive unwraps the result and updates the text view (line 22).

Notice that to register a receiver, the developer should provide a filter (represented by a

string) to specify which broadcast the receiver can receive. For example, line 2 defines a

filter “FILTER”. Lines 8 and 30 use it to register receiver and send broadcast.

Since IntentService is not affected by the destruction of the GUI objects that started

it, it does not suffer from the problems introduced in Chapter 1. Thus, it can be safely used
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for both short or long tasks.

4.2.2 AsyncTaskLoader

AsyncTaskLoader is built on top of AsyncTask, and it provides similar handlers as AsyncT-

ask. Unlike AsyncTask, AsyncTaskLoader is lifecycle aware: Android system binds/un-

binds the background task with GUI according to GUI’s lifecycle. Thus, it can also solve

the problems we mentioned in Chapter 1. However, AsyncTaskLoader is introduced after

Android 3.0, and it only supports two GUI components: activity and fragment.

4.3 Formative Study of Android Asynchrony

We want to assess the state of practice async programming in open-source Android apps. To

obtain a deep understanding of asynchronous programming practices in Android, we answer

three research questions. We now answer each of these questions, by first presenting the

methodology and corpus, and then the results.

RQ1: How do Android developers use asynchronous programming?

To answer this question, we studied all async constructs provided by the standard Android

libraries: AsyncTask, IntentService, AsyncTaskLoader and also the legacy-style Java

Thread.

Corpus-1. To collect representative Android apps, we chose Github [50]. To distinguish

Android apps in Github, we first searched all apps whose README file contains the “Android”

keyword. Because we want to analyze recently updated apps, we filtered for apps which have

been modified at least once since July 2014. Then, we sorted all these apps based on their

Table 4.1: Usage of async constructs in the Corpus-1

# Instances # App App%

AsyncTask 938 97 19%

Thread 655 110 22%

IntentService 182 30 6%

AsyncTaskLoader 118 14 3%
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star count and gathered the top 500 apps. To make sure that these apps have Android

projects, we check whether every app has at least one “AndroidManifest.xml” file, which

every Android project must contain in its root directory. After all filters, our code corpus

has 500 Android apps, comprising 4.69M non-blank, non-comment SLOC (as reported by

SLOCCount [39]).

Methodology. We built a tool, AsyncAnalyzer to automatically analyze the usage of

async constructs in our corpus. AsyncAnalyzer uses Eclipse API for syntactic analysis.

It builds an abstract syntax tree (AST) for each source file and traverses ASTs to gather

the usage statistics for the four async constructs. Doing the analysis at the level of ASTs

and not at the textual level, improves the accuracy in several ways.

First, it is immune to noise generated by text that matches names of the async con-

structs (e.g., import statements, comments, variable names, etc.) but does not represent an

instance of an async construct. Second, it correctly accounts for the ways in which devel-

opers instantiate async constructs: via anonymous inner classes (e.g., myAsyncTask = new

AsyncTask(...)) and via class subtyping (e.g., class MyService extends IntentSer-

vice.

Results. Table 4.1 tabulates the usage statistics of async constructs. The three columns

show the total number of construct instances, the total number of apps with instances of

the construct, and the percentage of apps with instances of the construct.

As we see from the table, AsyncTask is the most popular async construct in our corpus,

based on the total number of instances. However, if we count the total number of apps that

use at least one of these constructs, then the legacy-style Thread is the most popular, despite

the fact that Android already provides three special async constructs. AsyncTaskLoader

and IntentService are not as popular as the other two.

RQ2: How do Android developers retrofit asynchrony into existing apps?

Next we analyze how developers introduce async constructs into their apps. We want

to determine whether developers introduced async constructs when (i) implementing new

features (i.e., asynchrony was added to a new program element when writing code from

scratch), (ii) refactoring from existing sequential code, (iii) refactoring from another existing

async construct.

77



In order to be able to detect transitions between basic and enhanced async constructs, we

need to find projects where developers are aware that the enhanced constructs exist. Thus,

we use 2 different corpora to study IntentService and AsyncTaskLoader, respectively:

Corpus-2. We collected 93 random open-source Android apps from Github, comprising

1.54M SLOC, which use both AsyncTask and IntentService constructs in their latest

snapshot.

Corpus-3. We collected 18 random open-source Android apps, comprising 0.24M SLOC,

which use both AsyncTask and AsyncTaskLoader constructs in their latest snapshot.

Methodology. In order to identify transitions, we study not only the latest version of the

code, but also the first version where developers introduce async constructs. To do this,

we automatically searched the commit history of our corpora through Gitective API [51],

identified the commits that add import statements to AsyncTask, AsyncTaskLoader, or

IntentService. After automatically finding commits that introduce these async con-

structs, we manually inspected the versions before and after such commits in order to un-

derstand how these async constructs are introduced.

Results. Tables 4.2 and 4.3 show how AsyncTask, IntentService, and AsyncTaskLoader

are introduced.

The results show that in many cases developers refactor sequential code to AsyncTask.

This observation confirms our previous findings [21]. However, the refactorings for IntentSe-

rvice and AsyncTaskLoader mostly come from other async constructs. This shows the

following code evolution scenario: developers first convert sequential code to AsyncTask,

and those that continue to evolve the code for better use of asynchrony refactor it further

into IntentService or AsyncTaskLoader.

RQ3: How do expert developers interpret the disparity in usage of async con-

structs?

To shed light into this question, we conducted a survey with expert Android developers.

Methodology. To find expert developers, we used StackOverflow [61], which is the pio-

neering Q&A website for programming. In StackOverflow, users are sorted by their points

that they received from their answers for questions which are associated with some tags. We

contacted the top 10 users for the “android-async” tag and these 10 people are the ones who
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Table 4.2: How developers introduce AsyncTask and IntentService in the Corpus-2

Type # Instances

Newly added AsyncTask 277

Refactor sequential code to AsyncTask 103

Refactor Thread to AsyncTask 18

Newly added IntentService 205

Refactor sequential code to IntentService 13

Refactor Thread to IntentService 18

Refactor AsyncTask to IntentService 9

Refactor AsyncTaskLoader to IntentService 5

Table 4.3: How developers introduce AsyncTask and AsyncTaskLoader in the Corpus-3

Type # Instances

Newly added AsyncTask 73

Refactor sequential code to AsyncTask 24

Refactor Thread to AsyncTask 2

Newly added AsyncTaskLoader 15

Refactor sequential code to AsyncTaskLoader 3

Refactor AsyncTask to AsyncTaskLoader 10

Refactor Thread to AsyncTaskLoader 3

answered the questions related to Android async programming most. On average, each of

them answered 2095 questions on StackOverflow. We got replies from 5 of them, including

the author of a popular Android programming book [62].

Results. We asked three questions and summarized the experts’ answers below:

Q1) Why are there still lots of legacy-style Thread uses even though Android provides

three dedicated async constructs?

First, Thread construct has been around since the beginning and many Android developers

formerly developed Java apps. Developers are very familiar with Thread and they do not

have time to learn something new, thus they continue using it. Second, Thread is suitable

for other scenarios, such as parallelism and scheduled tasks.

Q2) Why are there many more AsyncTask uses than the other two enhanced constructs

even though AsyncTask may lead to memory leaks, lost task results, and wasted energy?
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They all agree that AsyncTask “is being overused” at the expense of the other two en-

hanced constructs. As a main reason, they invoke a historical account “AsyncTask was

advertised to the developers a lot in Android documentation” and it “got a lot of good press

early on”. On the other hand, they thought “many developers coming from desktop do not

realize the async nature of the Android memory management”. They also mention that

AsyncTaskLoader has been around only for a short time and is harder to implement, and

Google has not provided production-level examples of code that use IntentService and

AsyncTaskLoader.

As a guidance on Android async programming, they suggest that AsyncTask or Thread

should only be considered for short tasks (i.e., less than one second). For the work that will

take more than a second, developers should use IntentService.

Q3) Do you think that developers can benefit from a refactoring tool from AsyncTask to

IntentService?

They concluded that the technical challenges make the automation really hard: “it would

be a very difficult task, so the end solution may appear very complicated”, “that would be

quite a challenge to do automatically”. One also said that “it may help beginner, but senior

developers still like using their preferred way of writing async” and another said “it would

have to be very compelling for users to take their existing code and change it - especially to

something they do not already understand”.

Discussion: The answers from experts show that AsyncTask is easier to use and has

better guides and examples than the other two constructs. Also, many developers do not

understand Android memory management thus do not know the dark side of AsyncTask.

This observation explains why AsyncTask is the most popular async construct, and why

most of the time developers refactor sequential code to AsyncTask but seldom refactor

AsyncTask to other constructs. On the other hand, automated refactoring between these

constructs is challenging, but can provide helpful coding examples for developers.
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4.4 Refactoring AsyncTask to IntentService

Based on our findings from Sec. 4.3, developers tend to choose AsyncTask for Android

async programming. However, AsyncTask is not fit for long-running tasks, where devel-

opers should use IntentService or AsyncTaskLoader. Inspired by these findings, we

propose AsyncDroid, an automated refactoring tool that transforms shared-memory into

distributed-style communication in the context of Android async programming. Async-

Droid refactors existing AsyncTask into IntentService. It helps developers migrate

the inappropriately used AsyncTasks to IntentServices. Additionally, by looking at

transformations performed (e.g., using Eclipse’s preview refactoring feature), developers can

educate themselves on how to transform between AsyncTasks to IntentServices.

4.4.1 Refactoring Challenges

There are three main challenges that make it hard to execute the refactoring quick and

flawlessly by hand. First, the developer needs to determine which objects should be trans-

ferred into IntentService and BroadcastReceiver, and how to transfer them. Second,

the developer should establish channels to enable communication between IntentService

and GUI. Third, the developer must register the receiver properly in order to receive the

computation result from the established channel.

Transfer Objects from/to IntentService. As shown in Sec. 4.2, the non-local objects

required by AsyncTask are passed as method arguments or can be directly accessed as fields

from the outer class. However, the objects that flow into and escape from IntentService

have to be wrapped and sent via an Intent object. Similar to distributed-style program-

ming, objects transferred in this way are required to be serializable [63].

For example, at line 32 in Fig. 4.2(a), field mLogPath flows into doInBackground method.

Thus, it should be transferred to IntentService during refactoring (line 10 in Fig. 4.2(b)).

Determining objects transfer requires a nontrivial inter-procedural analysis of the code: the

developer must trace (i) the call graph to figure out which objects flow into IntentService

and BroadcastReceiver, and (ii) type hierarchy to check if the objects can be serialized.
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Establish Channels for Communication. AsyncTask provides four handlers that enable

developers to interact with GUI. Background task and handlers exchange data by accessing

the shared memory. However, IntentService sends broadcast to BroadcastReceiver to

communicate with GUI. Thus, the developer needs to rewire the channels of communication.

To achieve this, one must split AsyncTask into IntentService and BroadcastReceiver.

Splitting an AsyncTask includes moving the related fields and methods into IntentService

and BroadcastReceiver, which requires to trace the call graph. Additionally, the developer

has to write extra code for sending broadcast, which makes the refactoring more tedious.

Where to Register the Receiver. In order to receive the computation result from the

channels, the GUI needs to register a BroadcastReceiver. A naive approach is to register

at the original call site where the AsyncTask is created. For example, in Fig. 4.2(a), the task

is created in onCreate at line 7. While using IntentService in Fig. 4.2(b), the receiver

is registered at the same place in onCreate (line 8). This approach only works when the

original call site is already in a lifecycle event handler, such as onCreate method. Lifecycle

events are guaranteed to be triggered by OS during GUI recreation, so the receiver can be

registered automatically.

However, if the call site is not in a lifecycle event handler, the receiver cannot be registered

unless the event is triggered again after GUI recreation. For example, the call site can be

in the onClick listener of a button, so the receiver can only be registered when the user

clicks the button. If the GUI containing the button is recreated while the background task is

running, the recreated GUI cannot receive the broadcast unless the button is clicked again.

Thus, the developer also needs to infer where to register BroadcastReceiver during the

refactoring. This is a non-trivial insight for developers, because online documents only show

basic Android asynchronous programming scenarios, where this is not a concern.

4.4.2 The Canonical Form of AsyncTask Code and Refactoring
Preconditions

A key insight in designing refactorings is that there is a canonical form for input code [64, 65].

This canonical form adheres to the preconditions of the refactoring, so that the result of the
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transformation is indeed correct. This means that if the input code is not in canonical

form, it is necessary to transform into canonical form before performing the refactoring.

AsyncDroid has several preconditions, which together dictate the canonical form which

the source code must adhere to for a successful transformation:

P1: All variables that flow into or escape from doInBackground are or can be marked as se-

rializable. This is required because such variables need to be transferred to IntentService

and BroadcastReceiver via marshalling/unmarshalling.

P2: All the methods invoked in doInBackground should also be accessible by IntentService.

Because most AsyncTasks are declared as non-static inner classes, they can call methods from

the outer class. Since IntentService is not an inner class, it needs to be able to call the same

set of methods from the outer class, so their visibility needs to be appropriate.

P3: The refactored task is directly extended from AsyncTask and is not subclassed. This

precondition prevents the refactoring from breaking the inheritance relation and affecting

other AsyncTasks that are not refactored in the type hierarchy.

P4: An AsyncTask instance is only used when invoking AsyncTask.execute. For ex-

ample, if a task instance is used as a method argument or return value, AsyncDroid

halts the refactoring to avoid changing the design contract of the method. On the other

hand, AsyncTask defines some methods that are not supported by IntentService (e.g.,

AsyncTask.cancel). If these methods are invoked on the task instance, AsyncDroid

halts the refactoring.

Figure 4.2(a) is a valid example of a target program that meets all these preconditions,

thus it can be refactored by AsyncDroid. We will see in Sec. 4.5 how many real-world

programs readily meet these preconditions.

4.4.3 The Refactoring Algorithm

AsyncDroid takes the following steps to refactor an AsycnTask to IntentService.

Analyzing Transferred Objects. Since doInBackground and onHandleIntent are

semantic-equivalent methods that enclose background task, AsyncDroid needs to analyze

doInbackground to determine which objects should be transferred.
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We define the Target Class, Incoming Variables and Outgoing Variables for IntentService

as following:

Definition 1 (Target Class (T C)) The top-level or static inner class that creates and

starts the AsyncTask.

Definition 2 (Incoming Variables (IV)) The set of non-local variables flow into doInB-

ackground, which have to be transferred to IntentService, is:

FTC ∪ Ftask ∪ Argstask ∪ LVTCM where:

• FTC is the set of T C’s fields when the AsyncTask is a non-static inner class of T C

• Ftask is the set of AsyncTask’s fields that are initialized in its constructors or onPreEx-

ecute handler

• Argstask are the arguments of AsyncTask.execute method

• LVTCM is the set of final local variables declared in the T C’s method where the task

is created, when the AsyncTask is an anonymous inner class of T C

Notice that collecting IV requires inter-procedural analysis since doInBackground may

invoke other methods defined in T C or the AsyncTask.

Definition 3 (Outgoing Variables (OV)) The set of variables that escape from doInBac-

kground and need to be transferred from IntentService to BroadcastReceiver, is:

FM
TC ∪ FM

task ∪RV where:

• FM
TC is the set of T C’s fields that are modified in doInBackground method

• FM
task is the set of AsyncTask’s fields that are modified in doInBackground method

and used in onPostExecute

• RV is the return value of doInBackground method

An example of OV is the return value text and a field exception in Fig. 4.2(a) (lines

36, 38). FM
TC and FM

task are OV because IntentService and GUI holds and operates
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on different copies of objects due to (de)serialization. They should be written back in

BroadcastReceiver otherwise the modifications are lost. Note that there is no way to

write back modified incoming LVTCM or Argstask due to the communication mechanism of

IntentService. However, we never find a case in practice where these two types of IV

are modified. A reasonable explanation is that modifying them in a background thread can

introduce data races.

As mentioned in Sec. 4.4.1, the objects in the IV andOV set are required to be serializable.

AsyncDroid traverses the type hierarchy and checks the serializability of an variable type

based on its definition [66]: a type is serializable if it implements java.io.Serializable

and all of its fields’ types are serializable, unless the field is transient . AsyncDroid also

refactors a type to implement java.io.Serializable if its fields conform to the defini-

tion but it has not implemented yet. Note that when refactoring a type to be serializable,

AsyncDroid also checks the serializability of all its subtypes to guarantee the transforma-

tion is safe, and it only refactors the type defined in source code, not libraries. If any of the

IV and OV are not serializable or cannot be refactored, the refactoring fails precondition

P1.

Generating and Starting IntentService. First, for the target AsyncTask, Async-

Droid creates a corresponding IntentService class. The method body of onHandleIntent

is moved from doInBackground. Unlike AsyncTask, IntentService class cannot be a

non-static inner class. Thus, AsyncDroid creates it as an independent class. AsyncDroid

creates a field for each variables in IV and OV . AsyncDroid adds statements to unwrap

objects in IV from Intent at the beginning of onHandleIntent (line 29 in Fig. 4.2(b))

. At every exit of doInBackground, AsyncDroid creates an Intent to carry OV , and

sends it via broadcast (lines 34 to 36 and 39 to 41 in Fig. 4.2(b)).

Second, since doInBackground can invoke methods defined in AsyncTask or T C’s meth-

ods, AsyncDroid copies such methods into IntentService class. Note that Async-

Droid moves such methods instead of copying if doInBackground is the only caller. How-

ever, if any of such methods are in library code and cannot be copied, the refactoring fails

P2.

Finally, AsyncDroid rewrites the call sites of AsyncTask.execute into startService.
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This includes creating the Intent object to wrap the IV (lines 9-11 in Fig. 4.2(b)).

Notice that in Android, starting a service or sending a broadcast requests a Context

object. AsyncDroid checks if (i) T C itself is a subclass of Context and (ii) T C contains a

visible Context field or local variable, or a visible method that returns a Context object.

AsyncDroid uses such Context if there is any, otherwise the refactoring stops.

Creating and Registering Receiver. AsyncTask communicates with GUI through han-

dlers. However, to receive task result from IntentService, the developer needs to establish

a channel by registering a BroadcastReceiver on GUI. AsyncDroid rewrites the target

AsyncTask into BroadcastReceiver class. It keeps all the fields, constructors and handlers

defined in AsyncTask, and rewrites onPostExecute handler into BroadcastReceiver.on-

Receive (line 17 in Fig. 4.2(b)). AsyncDroid also inserts statements at the beginning of

onReceive to unwrap OV and writes them back to corresponding variables (lines 18, 19 in

Fig. 4.2(b)).

As discussed in Sec. 4.4.1, to avoid losing task result during GUI destroying and recre-

ation, the receiver should be registered in lifecycle event handlers. AsyncDroid declares

the receiver as a field of T C (line 3 in Fig. 4.2(b)). It tries to move the receiver creation

and registration into T C’s lifecycle event handlers unless they are already there. The follow-

ing example shows an AsyncTask that executes in a button’s onClick listener. Async-

Droid register the receiver in onCreate lifecycle handler during refactoring instead of in

the onClick listener:

1 void onCreate() {

2 button.setOnClickListener() {() -> { new MyAsyncTask(...).execute();}}

3 }

⇓

1 BroadcastReceiver receiver;

2 void onCreate() {

3 receiver = new MyBroadcastReceiver(...);

4 registerReceiver(receiver, ...);

5 button.setOnClickListener() {() -> {startService(...);}}

6 }
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Note that a T C can have multiple lifecycle event handlers. AsyncDroid registers the

receiver in the handler that is invoked first by the system (e.g., onCreate). A receiver can be

moved if and only if (i) the T C contains lifecycle event handlers, (ii) all variables transferred

to the receiver are still visible to it after moving, and (iii) the variables used by receiver’s

constructor are not redefined in other lifecycle event handlers. Rule (ii) guarantees syntax

correction while rule (iii) preserves the semantics of the refactoring. AsyncDroid raises a

warning when a receiver cannot be moved.

A filter is required when registering receiver. The filter specifies which broadcast a receiver

can receive. AsyncDroid concatenates T C class name and receiver name as filter name,

and uses it to register receiver and send broadcast (lines 2, 8 and 30 in Fig. 4.2(b)).

Dealing with other AsyncTask handlers. In addition to onPostExecute, AsyncTask

provides three other handlers. Note that the generated BroadcastReceiver keeps all these

three handlers. For onPreExecute, AsyncDroid inserts an invocation to this handler

before starting the service.

For onProgressUpdate, AsyncDroid first rewrites the call site of publishProgress

into sendBroadcast, with the filter set to “ProgressUpdate”:

1 void doInBackground(...) { publishProgress(arg); }

⇓

1 void onHandleIntent(...) {

2 intent.setAction("ProgressUpdate");

3 intent.putExtra("taskProgress", arg);

4 sendBroadcast(intent);

5 }

Then in onReceive, AsyncDroid adds a branch to intercept the “ProgressUpdate” broad-

cast, and invokes onProgressUpdate:

1 void onProgressUpdate(...) {...}

2 void onReceive(Context context, Intent intent) {

3 ... // code from onPostExecute

4 }

⇓
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1 void onProgressUpdate(...) {...}

2 void onReceive(Context context, Intent intent) {

3 if(intent.getAction().equals("ProgressUpdate")) { ...; onProgressUpdate(...); }

4 else ... // code from onPostExecute

5 }

AsyncDroid ignores onCancelled handler, since Android does not support canceling

IntentService. Tasks that invoke AsyncTask.cancel fails P4.

4.4.4 The Refactoring Implementation

We have implemented the refactoring as a plugin in the Eclipse IDE, on top of Eclipse

JDT [41] and refactoring engine [42]. To use AsyncDroid, the developer selects the

doInBackground method in the AsyncTask she wants to transform, and then chooses

Convert To IntentService option from the refactoring menu.

Limitation: When searching for the call sites of execute for a task, AsyncDroid searches

in the syntax block where the task is created and compares the task variables via JDT

variable binding. AsyncDroid also checks if the task variable is assigned to only one task

instance in the searched block (i.e., no alias on the task variable in the searched block).

The refactoring fails P4 if no call site is found. Although this heuristic approach can miss

refactoring chances, such as execute is called in a different method, we only find one case

in our study and experiment where this approach does not apply.

4.5 Evaluation

To empirically evaluate whether AsyncDroid is useful, we answer the following evaluation

questions.

EQ1. Applicability: How applicable is the refactoring?

EQ2. Effort: How much programmer effort is saved by AsyncDroid when refactoring?

EQ3. Accuracy and Value: How accurate is AsyncDroid when performing a refactor-

ing? Do developers think that the refactorings performed by AsyncDroid are useful?
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Table 4.4: Nine popular Android projects from Github.

Project Name SLOC # AsyncTask # IntentService

Owncloud 54918 6 0
Open311 6642 5 0
Prey-android-client 15361 8 1
SMSSync 16706 10 2
Opentripplanner 11766 7 0
UltimateAndroid 228154 10 0
AntennaPod 38430 24 0
WhatAndroid 23643 20 0
TextSecure 40819 18 0

Total 436439 102 3

4.5.1 Experimental Setup

To answer the above questions, we apply AsyncDroid on nine popular Github open-source

Android projects. We selected projects that use AsyncTask predominantly.

Table 4.4 provides statistics about these projects. We report the size (in SLOC), the

number of AsyncTask and IntentService instances that are used in each project.

For each project, we applied the AsyncDroid to every AsyncTask, except for the ones

that have already been used in Service or retained Fragment. The lifecycle of such

AsyncTasks is independent of GUI’s lifecycle, so the they do not suffer from the prob-

lems described in Chapter 1.

We recorded several metrics for each refactoring. To measure the applicability, we counted

how many instances met the refactoring preconditions and thus can be refactored. We also

analyzed the reasons why the remaining instances cannot be refactored by AsyncDroid.

To measure refactoring effort, we recorded the number of input and output variables (IV ,

OV), serialized types, moved/copied methods and moved receivers. We also counted the

number of files and SLOC that are changed. To verify the accuracy and value, we manually

examine the correctness of all the refactored code. We also sent 45 refactorings in 7 projects

to developers and let them judge the correctness and usefulness.
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Table 4.5: Applicability of applying AsyncDroid to AsyncTask in nine Android projects.

Project Name Passed Conditional Passed Failed P1 P2 P4

Owncloud 1 2 3 4 1 2
Open311 5 0 0 0 0 0
Prey-android-client 7 1 0 1 0 0
SMSSync 1 0 6 6 0 0
Opentripplanner 2 2 3 4 1 0
UltimateAndroid 5 1 4 2 2 2
AntennaPod 4 4 16 15 4 16
WhatAndroid 9 0 8 6 0 1
TextSecure 10 0 3 3 0 0

Total 44 10 43 41 7 21

IV: incoming vars; OV: outgoing vars; P1: all IV andOV can be serializable; P2: all methods
invoked by doInBackground are accessible in IntentService; P4: AsyncTask is
only used when invoking AsyncTask.execute.

Table 4.6: Effort of applying AsyncDroid to AsyncTask in nine Android projects.

Project Name #
IV

#
OV

Moved
Methods

Serialized
Types

Moved & unmoved
Receivers

Files
Mod.

SLOC
Mod.

# Task
Objects

Owncloud 6 5 1 0 2/0 3 193 3
Open311 6 10 3 10 3/0 11 395 5
Prey-android-client 11 9 5 2 4/2 10 392 8
SMSSync 0 1 0 0 1/0 1 41 1
Opentripplanner 8 8 4 3 0/10 14 679 10
UltimateAndroid 6 6 0 0 4/0 7 310 8
AntennaPod 8 8 1 2 4/3 11 418 8
WhatAndroid 11 10 0 0 9/0 9 411 9
TextSecure 25 10 0 1 3/0 11 547 10

Total 81 67 14 18 30/15 77 3386 62

IV: incoming vars; OV: outgoing vars.

4.5.2 Results

Table 4.5 and 4.6 shows the result of applying AsyncDroid on the AsyncTasks in our

corpus of 9 Android projects.

Applicability. Table 4.5 shows the applicability. We totally refactored 97 AsyncTasks

in the nine projects. Columns 2 and 4 show the number of instances that pass and fail

the refactoring preconditions. There are 44 AsyncTasks that pass the preconditions, while

43 fail the preconditions. This is not a limitation of AsyncDroid, but such cases can

not be converted from shared-memory to distributed-style. Column 3 shows another 10

AsyncTasks that fail the preconditions. However, these instances can be refactored into
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canonical form with other well-known refactorings (such as demoting fields to local variables)

so that AsyncDroid can refactor them. We show these instances in the “conditional pass”

column.

We discovered two common transformations that convert code into canonical form. First,

an unserializable object contained in IV but not in OV , can be converted into a local variable

in doInBackground as long as it is only used by doInBackground:

1 UnserializableObject object = new UnserializableObject(...);

2 void doInBackground(...) { object.method(); }

⇓

1 void doInBackground(...) {

2 UnserializableObject object = new UnserializableObject(...);

3 object.method();

4 }

Second, an AscynTask that is executed on a ThreadPool, can be changed to execute on a

plain thread since IntentService does not support ThreadPools:

1 AsyncTask task = new AsyncTask() {...};

2 task.executeOnExecutor(...);

⇓

1 AsyncTask task = new AsyncTask() {...};

2 task.execute(...);

For refactorings that conditional-pass or fail the preconditions, we analyzed which precon-

ditions they violate. Columns 5 to 7 shows the number of instances that fail P1, P2 and

P4. Note that one refactoring can violate multiple preconditions. The result shows most

failed refactorings violate P1. The main reason is that the unserializable types in IV or

OV are declared in third-party libraries (such as network or database). A source-to-source

transformation tool like AsyncDroid cannot transform third-party binary code. A typi-

cal scenario is an AsyncTask access network or database in background thread, however,

network or database APIs are usually in libraries.
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Preconditions P2 and P4 are violated mainly due to methods cancel or executeOnExec-

utor that are invoked either in doInBackground (thus failing P2) or on the task instance

(thus failing P4). Since these methods are specific to AsyncTask and IntentService does

not support them, AsyncDroid cannot transform those cases. For P3, we only find one

violation in WhatAndroid, so we do not show them in Table 4.5 due to lack of space.

In terms of applicability, AsyncDroid successfully refactored 45.3% AscynTasks directly

in nine projects. There are 10.3% AscynTasks that can also be refactored after converting

them to canonical form. This shows that AsyncDroid has a high level of applicability.

Effort. Table 4.5 shows the effort. We estimate the effort based on the 54 AsyncTasks

that pass or conditional pass the preconditions. In the last column, we show the number

of task instances that are created for the 54 AsyncTasks. 62 task instances are created in

total, which means most AsyncTasks are used only at one place. This observation confirms

our previous study [21]: developers tend to tightly bind an AsyncTask to only one GUI

component.

Columns 2 and 3 show the number of IV andOV for each project. For the 54 AsyncTasks,

there are 81 IV and 67 OV . Detecting them needs inter-procedural analysis. Moreover,

wrapping them into Intent object is also tedious.

Column 4 shows the methods that need to be moved or copied into IntentService.

We find 14 methods that should be put into IntentService. Note that searching these

methods also needs inter-procedural analysis. Column 5 shows the number of types that are

refactored to be serializable. On average, each refactoring marks 0.33 types as serializable.

However, checking serializability is tedious since it requires traversing the type hierarchy for

each field.

Column 6 shows the number of BroadcastReceivers that are moved into lifecycle event

handlers by AsyncDroid (left side of slash), and that have to be moved but AsyncDroid

cannot move (right side of slash). Notice that for each task instance, AsyncDroid creates

a corresponding receiver. Therefore, it creates 62 receivers in total: 30 are moved, 15 cannot

be moved, and the remaining 18 are already in lifecycle event handlers. For the 15 unmoved

receivers, GUI component can lose task result if GUI destroying and recreation occurs during

task running, thus AsyncDroid raises a warning.
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Columns 7 and 8 show the number of files and SLOC that are changed during the 54

refactorings. On average, each refactoring changes 1.43 files and 63 SLOC. AsyncDroid

helps developers change several SLOC, and such changes are non-trivial. Thus, we conclude

that AsyncDroid can save developers’ effort.

Accuracy and Value. By manually examining the 54 refactored instances applied by

AsyncDroid, we determined that no compilation errors were introduced and the original

semantics of AsyncTask are preserved.

We also submitted 45 refactorings in 7 projects to developers through Github pull request.

Given the large size of changes in the patches that we submitted (on average a patch touching

10 files with 403 additions and 210 deletions), we expected that developers might not reply

- as previous studies [19, 46] show that open-source developers are more likely to respond to

small patches.

Despite this, we still received replies from 4 projects in which 15 patches were accepted.

WhatAndroid [67] developers accepted the 9 refactorings we submitted by saying: “this is

an interesting set of changes, AsyncTask can definitely be a pain to deal with” and “these

tasks are a good fit for migration to IntentServices and I will migrate over to IntentServices”.

AntennaPod [68] developers said their AsyncTasks are short: “most of our tasks read or

write data from the database and should finish well under 100ms”. They think AsyncTasks

work fine for their short-running tasks while IntentService makes the code more verbose.

This shows that AsyncDroid can produce accurate and valuable results.
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CHAPTER 5

A Platform for Practical Impact

5.1 Introduction

Although static analysis and refactoring tools help developers find and fix bugs, these tools

can be difficult to smoothly integrate with each other and into the developer workflow,

particularly when scaling to large codebases [69]. Therefore, Google developes ShipShape,

a program analysis platform aimed at building a data-driven ecosystem around program

analysis. Google envisions ShipShape to become a widely-used platform. Any app developer

that wants to check code quality, for example before submitting an app to the app store,

would run ShipShape on her code base.

ShipShape [17] is a static program analysis platform developed by Google. It allows

customized analyzers to plug in through a common interface. ShipShape platform relies on

docker, which is a lightweight virtual machine. Docker allows one to package an application

with all of its dependencies into a standardized docker image for software development. A

docker image can wrap up an application in a complete filesystem that contains everything

it needs to run, including code, runtime libraries, system tools, etc [18].

Figure 5.1 shows the high-level architecture of ShipShape. ShipShape is packaged in

a docker image (i.e., the ShipShape service in Fig. 5.1). When the image is running,

ShipShape service starts up, listens to certain ports and sends analysis requests that are

sent to these ports (i.e., the dash arrows in Fig. 5.1). Customized analyzers (i.e., the analyzer

service in Fig. 5.1) can send analysis results to the ports that ShipShape service is listening

to (i.e., the solid arrows in Fig. 5.1). Note that customized analyzers are also deployed in

docker images. A customized analyzer can send analysis results to ShipShape through the

interfaces it provides. The results contain the location of the detected buggy code (i.e.,
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Figure 5.1: High-level architecture of ShipShape.

file name, line and column numbers) and the fixes for the buggy code. ShipShape can

print the results in JSON [70] format. Once ShipShape receives a command, it invokes the

corresponding analyzer and gets the results. ShipShape can be run either as a command-

line interface, or as a Jenkins plugin [71].

In order to increase the practical impact of this dissertation, we integrated CTADe-

tector and AsyncDroid with ShipShape. We expect that by contributing new async

analyzers to ShipShape, millions of app developers would benefit by being able to execute our

analysis and transformations on their code. Note that Asynchronizer is not integrated

because Asynchronizer is a semi-automated refactoring tool: developers need to select

the code that they want to extract into AsyncTask. However, Asynchronizer cannot

accurately infer which piece of code should be extracted. Thus, Asynchronizer does not

match ShipShape’s philosophy which only supports fully automatic analyzers.

In this chapter, we will present the technical details of integrating with ShipShape. Inte-

grating our toolsets with ShipShape includes three major steps: (i) implementing Eclipse

headless plugins; (2) implementing ShipShape interface; (3) building docker images that

contain our toolset.
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Figure 5.2: Steps of integrating Eclipse plugin with ShipShape.

5.2 Technical Details of Integrating with ShipShape

We implemented our toolset as Eclipse plugins. In order to integrate with ShipShape, we

should first be able to run the Eclipse plugins in a docker image. Figure 5.2 shows the

three major steps of integrating Eclipse plugin with ShipShape. The blue arrows show the

outputs of each step, while the red arrows show the inputs of each step.

Since docker images cannot run Eclipse with GUI, it requires running the Eclipse plugins

in headless mode [72] from command line. Thus, we first modified our implementation to

support Eclipse headless mode. In this modified implementation, instead of showing results

through Eclipse GUI widgets (e.g. Eclipse refactoring wizards), the tools save them as a XML

file. CTADetector saves the locations of the detected incorrect idiom instances, while
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AsyncDroid saves the locations of all the AsyncTask. The refactoring results are used as

fixes for ShipShape. The tools save the refactored code (i.e., the entire file that contains the

refactored code) in temporary files. These files will be used to generate ShipShape fixes so

their locations are also saved in the XML file. Thus, the output of running CTADetector

and AsyncDroid in Eclipse headless mode is a XML file that records the locations and a

set of temporary files that contain the refactored code. This step is shown as “Step 1” in

Fig. 5.2, whose outputs are the XML file and the refactored code.

The second step is to implement ShipShape interfaces to receive analysis request and send

analysis results to ShipShape. To receive analysis request, we need to define an analyzer

service, which includes creating analyzer, initiating analyzer category and stage, and regis-

tering the service to certain port so ShipShape can listen to it. To write analysis results,

ShipShape provides a NoteProto interface. This interface defines several fields to specify the

locations of the files that contain the buggy code, the line and column numbers of the buggy

code. Our implementation parses the XML file generated by our Eclipse headless plugins to

retrieve this information. For fixes, NoteProto provides fields to select a piece of code by its

start and end position, and developers can set a replacement to replace this piece of code

with correct code. In our implementation, we use a third party library java-diff-utils [73]

to compute the diffs between the original files and the refactored files (i.e., the temporary

files saved by our headless Eclipse plugin in the first step). Such diffs contain the insertions,

deletions and replacements in term of line numbers. For example, in Fig. 4.2, the computed

diffs between Fig. 4.2(a) and Fig. 4.2(b) includes inserting “private LoadingLogReceiver re-

ceiver;” at line 3, and replacing “task.execute();” with “this.startService(intent);” at line 11,

etc. We then use these diffs to set the fixes for NoteProto. “Step 2” in Fig. 5.2 represents

this step, in which we need to implement service interface and NoteProto interface using the

outputs of the first step.

Finally, we have to create a docker image that contains our toolset. This docker image will

be used as plugin of ShipShape. Since docker images are virtual machines, we can install

all the dependencies that required by our toolset in a docker image. This includes JVM,

the Eclipse that contains our headless plugins and the executable Java archive files (i.e., the

jar package) implemented in the second step. To build a docker image, we have to define
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a Dockerfile [74]. In Dockerfile, we can add instructions to build up the virtual machine

we need. In our implementation, we use apt-get to install JVM and wget to download the

Eclipse, and execute the jar package implemented in the second step to start our analyzer

service. After that, we can build docker image from Dockerfile [17, 74]. “Step 3” in Fig. 5.2

represents this step, in which we build a docker image that contains Eclipse headless plugin

and the implementation of ShipShape interfaces. We also submitted our docker images to

DockerHub [75] so they are publicly available.

Our implementation of integrating with ShipShape is available on our tool websites [40,

76]. To build and run customized analyzers on ShipShape, one can follow the instructions

on ShipShape website [17]. Our tool websites [40, 76] also contain the instructions for

running our toolset on ShipShape.
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CHAPTER 6

Related Work

We briefly present the work that is closest to the dissertation. We organize the related

work into: (i) empirical studies for concurrent programming, refactoring and API usage; (ii)

detection of data races and atomicity violations; (iii) pattern-based program analysis; (iv)

analysis and Testing for mobile apps; (v) safety analysis of event-driven applications; (vi)

refactoring for concurrency, parallelism and asynchrony and (vii) compiling shared-memory

programs to distributed-memory programs.

6.1 Empirical Study for Concurrent Programs, Refactoring and

API Usage

Many works focus on studying concurrency bugs. Lu et al. [34] categorized concurrency bug

types by analyzing a large number of bug reports from open-source repositories. They listed

one of the six types of atomicity violations that we classified in Tab. 2.1. In a followup

work [77] they also described bugs that manifest as performance slowdowns in concurrent

programs. Schaefer et al. [78] showed several examples of how sequential refactorings can

break concurrent programs. While Lu et al. [34] focused on the causes of the concurrency

bugs, Fonseca et al. [79] presented a study of concurrency bugs in MySQL, in which they

categorized and analyzed the effects (e.g., program crash, assertion violation) of the concur-

rent bugs. Pankratius et al. [80] studied the current state-of-the-practice in shared-memory,

multicore programming, and suggested areas and engineering principles for future research.

Weslley et al. [81] studied how developers are retrofitting applications to become more con-

current and summarized the usage of concurrent programming constructs in Java by ana-

lyzing more than 2000 projects. Li et al. [82] studied and categorized bug characteristics in
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modern software. Their result shows concurrency and performance related bugs can have

a severe impact on software. Our previous work [83] tested and studied the behaviors of

distributed applications under abnormal deploying environments.

Several researchers studied the software evolution and refactoring [84, 85, 19, 20, 86, 45,

46, 87, 88, 89, 90]. Kavaler et al. [84] studied how programmers ask questions about Android

APIs on StackOverflow. Kim et al. [87] studied the benefits of refactoring in industrial code

bases. Bavota et al. [90] investigated to what extent refactoring activities induce faults.

There are also several empirical studies [91, 92, 93, 94] on the usage of libraries or program-

ing language constructs. Dyer et al. [95] analyzed 31k open-source Java projects to find uses

of new Java language features over time. Buse et al. [96] proposed an automatic technique for

synthesizing API usage examples and conducted a study on the generated examples. Semih

et al. [8] studied how developers use Microsoft’s Parallel Libraries. One of their findings

is that some library constructs are error-prone. Also, Dig et al. [97] studied the evolution

of Java concurrent applications and cataloged the changes that programmers made in re-

sponse to concurrency. Another work [98] on automated refactoring to introduce concurrent

library constructs shows that manual refactorings from HashMap to ConcurrentHashMap

are error-prone. This dissertation focuses on the study of how programmers use, misuse and

underuse of Java concurrent constructs.

6.2 Data Race and Atomicity Checking

Several researchers proposed dynamic [24, 29, 30, 9, 99, 100] or static techniques [25, 26,

33, 101, 31] to check data races or atomicity violations in concurrent programs. Some ap-

proaches [24, 9] require programmers to provide test drivers, but constructing test drivers for

large applications is time consuming. Others [30] require programmers to write annotations,

but industry programmers are reluctant to write annotations. Static techniques like [25]

can report a large number of false warnings which may overwhelm programmers. A recent

work [26] uses techniques such as better modeling of concurrent threads and synchroniza-

tion constructs, as well as bubbling up the races from the library to application code level,

which significantly reduce the number of false warnings. Dynamic techniques, such as Atom-
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izer [102] and CTrigger [103], infer the unserializable interleavings automatically, and expose

bugs by executing those interleavings. However, the inferred interleavings depend on the

dynamic traces they use. Line-Up [104] is a dynamic linearizability checker that enumerates

schedules without knowing atomic regions. Model checkers like JPF [99] and Chess [100]

can expose concurrent bugs, including the bugs related to concurrent collections, but they

might not be scalable to large applications.

Among these techniques, Colt [9] is a recent dynamic tool that checks the atomicity of

composed operations from Java concurrent collections. Colt invokes the non-commutative

operations before and after the tested operations, and uses linearizability as the test oracle.

Colt found 41 problematic atomicity violations in 25 open-source projects. For the same

projects used in Colt’s evaluation, CTADetector found 178 violation instances, from

which we reported 85, and 55 of them are confirmed to be new bugs. Notice that even

though we tried our best to make a fair comparison (e.g., we contacted the Colt authors),

the comparison is hard because the Colt authors do not report how many of their bugs are

confirmed by developers, neither the exact version number of their subject programs.

The advantage of Colt is that it reports fewer false positives than static analysis tools,

since it uses the accurate dynamic information from the runtime execution instead of a static

approximation. However, Colt needs test cases to execute the program and its results

depend on the quality of the test cases. If the test cases do not cover the buggy idioms,

Colt will miss such bugs (this could explain why we found more buggy instances, even

confirmed by developers). In practice, CTADetector and Colt can be used in tandem.

For example, we can use Colt to check whether the reported instances by CTADetector

are real bugs.

Compared with other more general techniques, CTADetector focuses on the atomicity

violations of composed Java concurrent collection operations. Our approach does not require

programmer to write tests or annotations. In addition, we also detect performance bugs that

involve over-synchronization, and we tie the automated detection with interactive correction.
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6.3 Pattern-based Analysis

Pattern inference and identification is also a widely used approach to improve software

quality. AVIO [105] and Falcon [106] analyze the access patterns of variables to detect

or locate concurrency bugs. FindBugs [107] detects bugs by statically matching the bug

patterns to programs. The current version of FindBugs only considers one single variation

of put-if-absent idiom out of our nine idioms. Yu et al. [108] exploited interleaving idioms

to test concurrent programs. Uddin et al. [109] inferred temporal API usage patterns that

can be used to improve the API design and usage. Wendehals and Orso [110] proposed a

dynamic technique to recognize design patterns in the programs.

The success of the previous technique in finding buggy idioms shows that despite the fact

that the buggy idioms are not particularly deep, today’s state-of-the-art systems are still

riffle with such bugs. Thus, custom pattern-based analyses, like our current work on patterns

of concurrent collection usage, can be quite effective.

6.4 Analysis and Testing for Mobile Apps

Liu et al. [12] empirically studied performance bug patterns in Android apps, and concluded

that executing long-running operations in main thread is the main culprit. They also pro-

posed an approach to detect such operations statically. Berardinelli et al. [111] introduced

a framework for modeling and analyzing the performance of context-aware mobile software

systems. Arijo et al. [112] proposed a model-based approach to analyze the performance of

mobile apps, in which they represented state changes by graph transformation. Muccini et

al. [113] analyzed the challenges in testing mobile apps, including performance and mem-

ory testing. Lillack et al. [114] proposed an approach to track load-time configuration for

Android apps, which can help with tuning performance of Android apps. Yan et al. [115]

proposed a test generation approach to detect memory leaks for Android apps. Yang et

al. [13] tested the responsiveness of Android apps by adding a long delay after each heavy

API call. Choi et al. [116] used machine learning to learn a model for smartphone apps

and generated test inputs from the model. Jensen et al. [117] proposed a test generation
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approach to find event sequences that reach a given target line in smartphone apps. Concolic

testing [118] and random testing [119, 120] is also applied to smartphone apps. However,

our work on Asynchronizer is complementary to testing: we enable developers to use

AsyncTask refactoring to eliminate the performance issues that are detected in testing.

6.5 Safety Analysis of Event-driven Applications

Using static analysis, Sai et al. [58] formulated a solution based on call graph reachability to

detect GUI accesses from outside the main thread, whereas Zheng et al. [121] targeted data

races due to asynchronous calls for Ajax applications. Recent work on dynamic race detectors

for event-driven applications [122, 123, 124, 125] proposed a causality model for JavaScript

and Android which they used to infer happens-before relationships between events. Model-

checking based techniques have also been proposed for event-driven or GUI applications [126,

127, 128]. In future work, we propose to investigate how the above techniques of modeling

event relationships can be integrated with Asynchronizer.

6.6 Refactoring for Concurrency, Parallelism and Asynchrony

The refactoring community has been recently pushing refactoring technology beyond its

classic realm (i.e. in improving software design) into improving non-functional qualities

such as performance through parallelism and concurrency. Schafer et al. [129] proposed

a refactoring for replacing Java built-in locks with more flexible locks. Wloka et al. [130]

presented a refactoring for replacing global state with thread local state. Schafer et al. [131]

examined whether classic refactorings can be safely applied to concurrent programs. Dig

et al. implemented several implemented several concurrency-related refactorings to improve

throughput, scalability and asynchrony [98, 132, 133, 134, 54, 21, 135, 136, 137].
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6.7 Compiling Shared-memory to Distributed-memory

Several compiler techniques [138, 139, 140, 141, 142] have attempted to translate shared-

memory program to distributed-memory program. However, these techniques target high

performance distributed computing. In our work of AsyncDroid, we presented a refac-

toring from a shared-memory construct to a distributed-style construct in the context of

Android asynchrony.
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CHAPTER 7

Conclusion and Future Work

Concurrent constructs are some of the key features provided by modern programming lan-

guages and libraries. Although concurrent constructs make concurrent programming easier,

this dissertation shows that they can be still misused and underused. However, interactive

program transformation tools can mitigate these problems.

Some programmers erroneously think that just by using thread-safe concurrent collections

their code is thread-safe. Our study of 28 projects reveals nine common check-then-act

idioms that can result in atomicity violations. We found that the distribution of correct

and misused idioms is not the same, which means that some idioms are more error-prone

than others. This finding is important for library designers who can design more resilient

APIs. It also provides educational value for developers who use concurrent collections. Using

this corpus and our tool, CTADetector, we found 282 buggy instances. The developers

examined 90 of them and confirmed 60 as new bugs, and applied our patch. While they

confirmed 67% of the examined bugs, they claim that the remaining do not result in bugs.

This reasoning requires deep understanding of the domain and concurrency model. In ad-

dition, we reported the misuses of put-if-absent idiom that we found in this paper to

Doug Lea, the lead designer of j.u.c. package. This led them to improve some APIs in

the latest JDK8 release (e.g., compute-if-absent in ConcurrentHashMap) in ways they

expect will reduce the prevalence of errors and misuses.

Asynchronous execution of long-running tasks is crucial for the now ubiquitous mobile

and wearable apps. Despite significant efforts to educate Android app developers on how to

use async programming, developers can underuse or improperly use the primary construct,

AsyncTask, which can lead to memory leaks, lost results, and wasted energy. Based on

the study of 715 Android projects, we discovered that developers refactor their sync code
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into AsyncTask, and some go further into using safer (but more complex) async constructs.

However, their manual refactoring introduces performance bugs or data races. In some cases,

it took developers hundreds of days to find and fix these bugs. To help developers correctly

use these concurrent constructs, we presented two refactoring tools. Asynchronizer au-

tomates refactoring sequential code to use AsyncTask. The refactoring is composed of two

steps: a code transformation that moves user-selected code into AsyncTask, and a safety

analysis that checks data races. We applied Asynchronizer on 32 Android apps. We found

that the tool is widely applicable, it is accurate compared to manual code transformations,

it saves programmers’ effort, it is safer than manual refactoring, and open-source developers

accepted 40 patches with refactorings created by Asynchronizer. AsyncDroid is a refac-

toring that converts from AsyncTask which uses a shared-memory style of communication

to IntentService which uses a distributed style of communication. Our evaluation shows

that AsyncDroid is applicable and accurate, and it saves effort. Developers accepted 15

refactorings generated by AsyncDroid, which shows that it is valuable. This result shows

that the refactorings presented in this dissertation can be useful in practice.

We now present our plans for possible future work building upon our current contributions

and results as described in Chapters 2, 3, 4 and 5:

Automatically Inferring Places for Asynchrony: Although Asynchronizer and

AsyncDroid provide refactorings for introducing concurrent constructs in existing code,

developers still need to decide the places where to apply the refactorings to get the benefit

of asynchrony. Despite extensive programming documentation (e.g., Android Best Practices

for Performance [143]) or tools that detect I/O blocking operations (e.g., StrictMode [144]

for Android), programmers still lack knowledge about where to introduce concurrency in the

program. Thus, we need approaches for inferring locations where concurrency refactorings

should be applied.

A naive approach is to put every potential long-running operations into concurrent con-

structs. For example, developers can use Android StrictMode to detect network, database

and disk access, and encapsulate all these accesses into asynchronous task. However, this will

result in unnecessary asynchronous code, since not every such access is long-running. For

106



example, a single insertion to a local database might not need to be put into a background

thread. On the other hand, developers have to ensure against data-races when performing

concurrency refactorings, which is tedious and time-consuming. Therefore, it is not worth

to apply concurrency refactoring to every blocking operations.

We plan to use two approaches to address this problem. First, we plan to apply data

mining techniques [145, 146, 147] to mine frequently used API patterns in existing asyn-

chronous code. We can use the mined patterns to determine whether an API usage should

be put into a concurrent construct. Second, we plan to combine testing with our refactoring

techniques. Testing tools such as MonkeyRunner [148] and Traceview [149] can help

locate performance bottlenecks for Android apps. We plan to use them for profiling and

inferring where to introduce asynchrony and which concurrent construct to use.

Mining Refactoring Patterns for Other Concurrent Constructs: In this dissertation,

we studied the use, misuse and underuse of concurrent collections and Android async con-

structs. We plan to study the usage and misusage of other concurrent constructs. For exam-

ple, Java 8 adds a new concurrent construct java.util.concurrent.CompletableFutur-

e [150] which provides a range of methods for composing or handling background tasks

without blocking the caller thread. It gives developers standard techniques for executing

continuations when a task completes, and various ways to combine tasks. Reactive program-

ming [151] provides a way for composing asynchronous and event-based programs by using

observable sequences. It extends the observer pattern [152] to support sequences of data

and events, and adds operators that allow one to compose sequences together declaratively

while abstracting away low-level threading, synchronization, thread-safety and concurrent

data structures. The emergence of these new concurrent constructs gives us an opportunity

to discover more bug patterns and concurrency-related refactorings. In this dissertation,

we manually determined whether developers introduce a concurrency construct by writing

code from scratch or by moving existing code into the construct. We plan to investigate

automatic approaches that infer how a construct is introduced during program evolution.

Such approaches can facilitate our refactoring mining process.

More Precise Data Race Checking for Mobile Apps: In this dissertation, we proposed
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a static data race detection approach for Android apps and combined it with Asynchro-

nizer. However, this approach has a high false positive rates (i.e., greater than 50%). The

high false positive rate prevents the practical use of Asynchronizer. We plan to com-

bine Asynchronizer with some more precise dynamic data race detection techniques for

Android apps [124, 125], and evaluate the new combinations. We also plan to increase the

precision of our static race detection technique for Android apps. For example, we can build

context–sensitive and flow-sensitive control flow graph for analysis. Then we can compare

the static and dynamic race detections for Android apps. We hope by such ways, we can

increase the practical impact of Asynchronizer.

Impact of our toolset on Software Development: We deployed our refactoring tools as

analyzers for ShipShape. Our vision is that Shipshape can become a widely-used analysis

platform in near future. Any developer that wants to check code quality, for example before

committing a code change, would run ShipShape on her code base. We expect that by

integrating our tools with ShipShape, millions of app developers would benefit by being

able to execute our analysis and transformations on their code. We plan to monitor the

development status and adoption of ShipShape, as well as how practitioners are using our

tools.
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[114] M. Lillack, C. Kästner, and E. Bodden, “Tracking load-time configuration options,” in
Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’14, 2014, pp. 445–456.

[115] D. Yan, S. Yang, and A. Rountev, “Systematic testing for resource leaks in Android
applications,” in Proceedings of the IEEE 24th International Symposium on Software
Reliability Engineering, ser. ISSRE 13, 2013, pp. 411–420.

[116] W. Choi, G. Necula, and K. Sen, “Guided GUI testing of Android apps with mini-
mal restart and approximate learning,” in Proc. of the ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications, ser.
OOPSLA ’13, 2013, pp. 623–640.

[117] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated testing with targeted event
sequence generation,” in Proc. of the International Symposium on Software Testing
and Analysis, ser. ISSTA ’13, 2013, pp. 67–77.

[118] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic testing of
smartphone apps,” in Proc. of the ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, ser. FSE ’12, 2012, pp. 1–11.

117



[119] C. Hu and I. Neamtiu, “Automating gui testing for Android applications,” in Proc. of
the International Workshop on Automation of Software Test, ser. AST ’11, 2011, pp.
77–83.

[120] Y. Lin, X. Tang, Y. Chen, and J. Zhao, “A divergence-oriented approach to adaptive
random testing of java programs,” in Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’09, 2009, pp. 221–232.

[121] Y. Zheng, T. Bao, and X. Zhang, “Statically locating web application bugs caused by
asynchronous calls,” in Proc. of the International Conference on World Wide Web,
ser. WWW ’11, 2011, pp. 805–814.

[122] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby, “Race detection for web applica-
tions,” in Proc. of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’12, 2012, pp. 251–262.

[123] V. Raychev, M. Vechev, and M. Sridharan, “Effective race detection for event-driven
programs,” in Proc. of the ACM SIGPLAN International Conference on Object Ori-
ented Programming Systems Languages & Applications, ser. OOPSLA ’13, 2013, pp.
151–166.

[124] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira, G. A. Pokam, P. M. Chen,
and J. Flinn, “Race detection for event-driven mobile applications,” in Proc. of the
ACM SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI ’14, 2014, pp. 326–336.

[125] P. Maiya, A. Kanade, and R. Majumdar, “Race Detection for Android Applications,”
in Proc. of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’14, 2014, pp. 316–325.

[126] O. Tkachuk and M. Dwyer, “Environment generation for validating event-driven soft-
ware using model checking,” IET Software, vol. 4, no. 3, pp. 194–209, 2010.

[127] M. Dwyer, V. Carr, and L. Hines, “Model checking graphical user interfaces using ab-
stractions,” in Proc. of the ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE ’97, 1997, pp. 244–261.

[128] J. Atlee and J. Gannon, “State-based model checking of event-driven system require-
ments,” in Proc. of the Conference on Software for Citical Systems, ser. SIGSOFT ’91,
1991, pp. 16–28.
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