
c© 2015 Jun Moon

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158312114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CONTROL AND ESTIMATION WITH LIMITED INFORMATION:
A GAME-THEORETIC APPROACH

BY

JUN MOON

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Tamer Başar, Chair
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ABSTRACT

Modern control systems can be viewed as interconnections of spatially dis-

tributed multiple subsystems, where the individual subsystems share their

information with each other through an underlying network that inherently

introduces limitations on information flow. Inherent limitations on the flow

of information among individual subsystems may stem from structural con-

straints of the network and/or communication constraints of the network.

Hence, in order to design optimal control and estimation mechanisms for

modern control systems, we must answer the following two practical but

important questions:

(1) What are the fundamental communication limits to achieve a desired

control performance and stability?

(2) What are the approaches one has to adopt to design a decentralized

controller for a complex system to deal with structural constraints?

In this thesis, we consider four different problems within a game-theoretic

framework to address the above questions.

The first part of the thesis considers problems of control and estimation

with limited communication, which correspond to question (1) above.

We first consider the minimax estimation problem with intermittent ob-

servations. In this setting, the disturbance in the dynamical system as well

as the sensor noise are controlled by adversaries, and the estimator receives

the sensor measurements only sporadically, with availability governed by an

independent and identically distributed (i.i.d.) Bernoulli process. This prob-

lem is cast in the thesis within the framework of stochastic zero-sum dynamic

games. First, a corresponding stochastic minimax state estimator (SMSE)

is obtained, along with an associated generalized stochastic Riccati equation

(GSRE). Then, the asymptotic behavior of the estimation error in terms of

the GSRE is analyzed. We obtain threshold-type conditions on the rate of
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intermittent observations and the disturbance attenuation parameter, above

which 1) the expected value of the GSRE is bounded from below and above

by deterministic quantities, and 2) the norm of the sequence generated by

the GSRE converges weakly to a unique stationary distribution.

We then study the minimax control problem over unreliable communica-

tion channels. The transmission of packets from the plant output sensors to

the controller, and from the controller to the plant, are over sporadically fail-

ing channels governed by two independent i.i.d. Bernoulli processes. Two dif-

ferent scenarios for unreliable communication channels are considered. The

first one is when the communication channel provides perfect acknowledg-

ments of successful transmissions of control packets through a clean reverse

channel, which is the TCP (Transmission Control Protocol), and the second

one is when there is no acknowledgment, which is the UDP (User Datagram

Protocol). Under both scenarios, the thesis obtains output feedback minimax

controllers; it also identifies a set of explicit existence conditions in terms of

the disturbance attenuation parameter and the communication channel loss

rates, above which the corresponding minimax controller achieves the desired

performance and stability.

In the second part of the thesis, we consider two different large-scale op-

timization problems via mean field game theory, which address structural

constraints in the complex system stated in question (2) above.

We first consider two classes of mean field games. The first problem (P1) is

one where each agent minimizes an exponentiated performance index, captur-

ing risk-sensitive behavior, whereas in the second problem (P2) each agent

minimizes a worst-case risk-neutral performance index, where a fictitious

agent or an adversary enters each agent’s state system. For both problems, a

mean field system for the corresponding problem is constructed to arrive at a

best estimate of the actual mean field behavior in various senses in the large

population regime. In the finite population regime, we show that there exist

ε-Nash equilibria for both P1 and P2, where the corresponding individual

Nash strategies are decentralized as functions of the local state information.

In both cases, the positive parameter ε can be taken to be arbitrarily small

as the population size grows. Finally, we show that the Nash equilibria for

P1 and P2 both feature robustness due to the risk-sensitive and worst-case

behaviors of the agents.
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In the last main chapter of the thesis, we study mean field Stackelberg dif-

ferential games. There is one leader and a large number, say N , of followers.

The leader holds a dominating position in the game, where he first chooses

and then announces his optimal strategy, to which the N followers respond by

playing a Nash game. The followers are coupled with each other through the

mean field term, and are strongly influenced by the leader’s strategy. From

the leader’s perspective, he is coupled with the N followers through the mean

field term. In this setting, we characterize an approximated stochastic mean

field process of the followers governed by the leader’s strategy, which leads

to a decentralized ε-Nash-Stackelberg equilibrium. As a consequence of de-

centralization, we subsequently show that the positive parameter ε can be

picked arbitrarily small when the number of followers is arbitrarily large.

In the thesis, we also include several numerical computations and simula-

tions, which illustrate the theoretical results.
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CHAPTER 1

INTRODUCTION

The thesis focuses on various problems of control and estimation with limited

information within a game-theoretic framework. The first part, that is Chap-

ters 2 and 3, studies optimal estimation and control over unreliable commu-

nication channels within the stochastic zero-sum dynamic game framework.

The second part, that is Chapters 4 and 5, considers two different large-scale

optimization problems via mean field game theory.

In this chapter, we first introduce a general motivation on control and esti-

mation with limited information, and provide an extensive literature review

on the topic of the thesis. We then provide motivation for the questions

studied in the thesis, and include a summary of the main results developed

in the thesis.

1.1 Systems with Limited Information

In classical control systems, one considers designing a centralized controller

that has access to the entire information on the system. In order to design

a centralized controller, it is very common to assume that 1) the controller

has access to information generated by the plant, and 2) the communica-

tion between the controller and the plant is flawless. With these idealized

assumptions, a centralized controller can be designed using various optimal

design methodologies to ensure stability and performance.

These idealized scenarios, however, cannot capture a large class of general

real-world systems that are generally restricted to availability of limited infor-

mation due to communication and/or structural constraints, which therefore

reduces the ability of the control system to adapt to various uncertainties in

the environment that affect its performance. For example, in remote control

systems, the controller may not be able to communicate perfectly with the
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Figure 1.1: General networked control system configuration.

plant due to the unreliable nature of communication channels. Moreover,

a centralized controller may not be implementable in large-scale systems,

since the controller may not be able to access all the necessary information

regarding the system.

In the following two subsections, we discuss in more detail the nature of

limited information in control systems due to communication constraints and

structural constraints, and these two constraints separately.

1.1.1 Systems with Communication Constraints

We first discuss communication constraints in control systems. What we

mean by communication constraints is limitations on communication between

the plant and the controller, and in both directions. An overall objective here

is to study and characterize the degradation in performance in the face of

such constraints, and to see how stability is affected. What are for example

the fundamental limits on communication, in the same spirit as Shannon’s

information theory, beyond which the controller can stabilize the system, and

performance degradation is within an acceptable range?

2



Over the past decade, the topic of Networked Control Systems (NCSs)

has emerged to analyze the effect of communication limitations on control

systems, which has led to a combined treatment of control and communica-

tions. A general configuration of NCSs is depicted in Fig. 1.1. In NCSs, the

network characterizes communication limitations between controllers, plants,

and sensors, and thus plays a crucial role in the achievement of the desired

overall design objectives. Consequently, the main goal of research for NCSs

is to analyze the behavior of a system under limited communication, and

how to design controllers to cope with that limitation [1, 2, 3].

The application areas of NCSs are very broad; some of these applica-

tions are mobile sensor networks, remote surgery, unmanned aerial vehicles,

and power and chemical plants [1, 4]. Command, control, communications,

computers, and intelligence (C4I) systems in defense can also be seen as a

sub-class of NCSs, where the local operation areas share their gathered in-

formation, and receive tactical operation messages from the headquarters

through a wireless communication network that generally operates under

some restrictions.

To capture the effects of communication limitations on NCSs, limitations

such as delays, bounds on data rate, and packet drops are imposed on the

communication network. These are natural because 1) delays are contin-

ually generated in communication while encoding, decoding, transmitting,

and receiving signals, 2) every communication channel has a finite capacity

within which the data has to be handled reliably, and 3) communication is

unreliable, that is, it is subject to losses or link failures, especially in wireless

transmissions [1, 2].

To better motivate this class of problems, consider a simple target es-

timation problem in a radar system, where estimation is performed based

on sensor signals that are reflected from the target, as depicted in Fig. 1.2

[5, 6]. Due to a large volume of clutter and unforeseeable weather conditions,

reflected signals can be lost or delayed randomly. In this case, after a cer-

tain number of consecutive measurement losses, the numbers of false alarms

and/or missing targets increase, which results in losing the target informa-

tion. Now, confronted with this scenario, the main objective should be to

achieve stability and performance of the estimator in spite of measurement

losses. To be specific, as mentioned earlier, we need to characterize the fun-

damental communication limits, above which the estimator would be able to
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Figure 1.2: Configuration of the radar tracking system. Image courtesy:
http://en.wikipedia.org

track the target reliably.

In Chapters 2 and 3 of the thesis, we focus on estimation and control prob-

lems over unreliable communication channels within the stochastic zero-sum

dynamic game framework. A related literature review on this class of prob-

lems is provided in Section 1.2.1 of this chapter. Moreover, our motivation

for Chapters 2 and 3, and a summary of the results, are given in Sections 1.3

and 1.4, respectively.

1.1.2 Systems with Structural Constraints

We now move on to structural constraints in control systems. A system that

consists of several interconnected subsystems which are spatially distributed

can be viewed as a large-scale system. In such systems, due to structural

(or topological) constraints, it is not possible to physically connect the whole

system; hence, the individual controllers will have access to limited informa-

tion generated only from their close neighborhood [1, 3, 7]. Therefore, the

information constraint in this case is generally imposed by the system struc-

ture, and a centralized approach with a single computer process to design

an optimal controller is often not feasible. Moreover, even if the problem is

mathematically tractable, the implementation of the controller suffers from

computational complexity due to the high-dimensional state space with a

large number of interconnected inputs and outputs [8, 9].

For example, in a communication network, there can be a large number of
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Figure 1.3: The power network of USA. Image courtesy:
http://www.foxnews.com

Figure 1.4: A large-scale map of protein interactions in fruit flies. Image
courtesy: http://harvardmagazine.com

users who use limited resources provided by the service provider. Moreover,

in the smart grid system, depicted in Fig 1.3, there are several utility com-

panies and users, in which case for a large number of users, the traditional

centralized optimization techniques suffer from computational complexity in

attempting to manage the demand response [10]. Finally, the Web graph,

various social networks with billions of vertices and trillions of edges, and

biological networks as shown in Fig. 1.4, require computationally efficient

algorithms to analyze their dynamics [11, 12].

To circumvent structural difficulties, and make the problem more tractable,

a certain localization technique is needed to obtain a class of decentralized1

1Here, we do not distinguish between the definitions of “decentralized” and “dis-
tributed,” since both terms reflect the localization in the large-scale system [8].
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controllers so that the individual local controllers are able to generate an

appropriate control action by using local measurements to control the large-

scale system. But decentralized designs require much more involved analysis

for the corresponding controller, since in some cases the decentralization can

make the control problem intractable [13, 9].

In view of the above discussion, analyzing and optimizing large-scale sys-

tems constitute a real challenge. In Chapters 4 and 5, we study various

large-scale optimization problems via mean field game theory, which is one

way of coping with decentralization, localization, and complexity due to large

scale. The problem description and literature review are provided in Section

1.2.2 of this chapter. Our motivation for Chapters 4 and 5 and a summary

of the main results are provided in Sections 1.3 and 1.4, respectively.

1.2 Literature Review

In this section, we provide a review of the literature related to the topics

studied in this thesis. We first review some of the previous work in NCSs

with unreliable communication channels. We then discuss previous work on

large-scale optimization and decentralized design via mean field game theory.

1.2.1 Optimal Control and Estimation over Unreliable
Communication Channels

An initial study of optimal control over unreliable communication chan-

nels can be traced back to the uncertainty threshold principle developed by

Athans, Ku and Gershwin in [14], which can be regarded as one of the first re-

sults that connect control and communication from Shannon’s point of view.

This result has been generalized to many different forms; see [15, 16], and

the references therein. These results, however, were based on the assump-

tion of perfect state measurement and hence cannot accommodate general

communication limitations on a system.

Another way of looking at this class of problems is the context of Markov

jump linear systems (MJLSs) [17, 18]. This modeling framework is appropri-

ate, since many unreliable communication channels can be modeled simply

by a two-state Markov chain with a transition probability distribution (or

6
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rate). This approach, however, requires knowledge of the entire mode of the

Markov chain (also known as the form process), which is not realistic for

many practical control problems.

Subsequently, two different models of unreliable communication channels

have been proposed in [19], where the unreliable communication channel

was categorized based on whether the control packet reception is acknowl-

edged (Transmission Control Protocol, TCP) or not (User Datagram Proto-

col, UDP); see Figs. 1.5 and 1.6, respectively. For this class of problems,
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the authors in [19] assumed that the quantities that model the unreliable

communication channels, that is {αk} and {βk} in Figs. 1.5 and 1.6, are

independent and identically distributed (i.i.d.) Bernoulli processes.

In this setting, for the TCP-case, the authors in [19] considered the linear-

quadratic Gaussian (LQG) problem, and showed that the separation principle

holds, the LQG controller is linear in the measurement, and the stability

region is determined by the unstable modes of the system and control and

measurement loss rates, which can be viewed as the generalized uncertainty

threshold principle. For the UDP-case, it was shown in [19] that the optimal

controller is linear under some conditions; however, there is a dual effect

between control and estimation [20].

The results in [19] were extended by [21] to the noisy measurement case.

Specifically, for the TCP-case, it was shown that the LQG controller in [19]

and the Kalman filter in [22] with the control input can be designed inde-

pendently because there is no dual effect between filtering and control. The

authors also characterized two independent critical values of control and mea-

surement loss rates in terms of the unstable modes of the open-loop system.

Furthermore, precise analytical bounds on these critical values were also pro-

vided. For the UDP-case, the authors showed that the optimal controller is

generally nonlinear in the measurement, but is linear only for the perfect

measurement case considered in [19]. The results for the TCP-case in [21]

were extended to the multiple packet drop case in [23], to the generalized

acknowledgment model in [24], and to the limited transmission bandwidth

case in [25]. The decentralized LQG control problem over TCP-networks was

discussed in [26], and the LQG problem with Markovian packet losses was

studied in [27]. The stabilization issue and a characterization of the explicit

critical values were also considered in [28, 29, 30].

As for H∞ control over unreliable communication channels, the framework

of Markov jump linear systems (MJLSs) was mostly used in the literature

with some related references being [31, 32, 33, 34, 35, 36, 37]. Related to the

MJLS approach, [38], [39], and [40] also studied H∞ control with random

packet losses by identifying a set of (different) linear matrix inequalities. The

controllers, however, were restricted to be time invariant and are therefore

suboptimal. It should be mentioned that with the framework of MJLSs, the

information of the form process needs to be available to the controller, that

is, the controller is mode dependent [36, 37]. Since the TCP-case does not
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have access to the current mode of the control packet loss information, as

argued in [19], the unreliable channel modeled by MJLSs is not equivalent to

the TCP-case (or for that matter to the UDP-case). One of the most recent

sets of results on H∞ control over unreliable communication channels was

presented in [41]; however, the communication degradation there was due to

packet delays rather than packet drops.

Along with control over unreliable communication channels, the estima-

tion problem was studied extensively and independently. The general con-

figuration of the underlying system is depicted in Fig. 1.7. This problem is

also known as estimation with intermittent observations, which was initiated

within the minimum mean-square estimation (MMSE), or Kalman filtering

framework [42, 6].

Within the Kalman filtering framework, the first set of notable results were

obtained by [22]. There, the stochastic Kalman filter and the associated

stochastic Riccati equation (or the stochastic error covariance matrix), say

Pk, were obtained such that their processes are dependent on the entire

measurement arrival information, {βk}. Moreover, [22] showed that there

is a critical value of the measurement loss rate beyond which the expected

value of the error covariance matrix, E{Pk}, is bounded. It was also shown

that this critical value is a function of the unstable modes of the system, and

can be analyzed in terms of lower and upper bounds.

The difference between the Kalman filter in [22] and the Markov jump

linear estimator (MJLE) in [43] is that the latter is dependent only on the

current measurement arrival information βk. It was shown in [22] that the

Kalman filter in that paper is optimal over all possible estimators, and thus

provides better estimation performance than the MJLE.

The results obtained in [22] were extended to many different forms, with

some related references being [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. In

[44], a characterization of the critical value was studied when the system
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eigenvalues are distinct. In [45], it was shown that the lower bound of the

critical value guarantees boundedness of E{Pk} if the system’s observable

space is invertible or the output matrix, say C, is invertible. For second-

order systems, a closed-form expression for the critical value was obtained in

[46]. In [48], Kalman filtering with two independent partial observation loss

models was studied. Extended Kalman filtering (EKF) with intermittent

observations, and its error covariance, were studied in [49], again in the

expectation sense.

Instead of E{Pk}, other performance metrics, or a correlated intermittent

observation case, were studied in [47, 50, 51, 54, 53, 52] to provide other per-

spectives on the error covariance matrix, Pk. In [47], the authors considered

boundedness of the upper envelope of Pk, and then showed its relationship

to E{Pk} under a Markovian loss model. They also proved boundedness

of E{P r
k} for any r ≥ 1 for scalar systems. In [50] and [51], the authors

showed boundedness of Pk in the probabilistic sense, i.e., boundedness of

P(Pk ≤ M). In [53], more detailed results than in [47] were obtained when

the intermittent observations are governed by a Markov process. Weak con-

vergence of {Pk} to a unique stationary distribution was discussed in [52] and

[54]. While the author in [52] considered {Pk} as a random walk and then

proved weak convergence by using its mean contraction property, the authors

in [54] showed the same result by modeling {Pk} as an order-preserving and

strongly sublinear random dynamical system.

The problem of H∞ estimation with intermittent observations was studied

in [55, 56, 57, 33, 58] within the framework of MJLSs. The estimators were

restricted to be time invariant, since the MJLSs approach requires instanta-

neous information (that is βk) on measurement losses. The authors in [59]

proposed a time-varying H∞ estimator; however, it is still suboptimal, since

it uses the instantaneous measurement loss information.

1.2.2 Large-Scale Optimization via Mean Field Game Theory

Mean field games constitute a class of noncooperative stochastic differential

(or dynamic) games, where there is a large number of players or agents, who

interact with each other through a mean field term included in the individ-

ual performance indices and/or each agent’s state system, which captures the
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average behavior of all agents. Rationality of each agent is a key underlying

assumption in the characterization of the Nash equilibrium (or ε-Nash equi-

librium) for the mean field game, which is the most general solution concept

in noncooperative game theory [60, 61]. The mean field coupling term is

also known as mass behavior or macroscopic behavior in statistical physics,

since each individual agent can be viewed as a small particle; when there is

a large number of particles, the effect of the individual particle on the mass

behavior becomes negligible, and each particle follows this mass behavior via

an individual-mass interaction consistency relationship.

Viewing each subsystem as an agent in a large-scale system, there are

various applications of mean field games for multi-agent systems. In [62], the

problem of a large number of coupled oscillators has been formulated within

the mean field game framework, where decentralized optimal strategies were

characterized to obtain an ε-Nash equilibrium. The problem of charging of

a large number of plug-in electric vehicles was studied in [63] and [64]. In

addition to this, there are several application domains of mean field games,

such as engineering, finance, economics with a large number of firms, biology,

etc.; see [65, 66, 67, 68, 69].

For games with a large number of agents, computing Nash equilibria for

the corresponding game via direct methodologies as discussed in standard

texts for dynamic games, such as [61], may be cumbersome and complicated,

since complexity increases with the number and heterogeneity of the agents,

and the dimension of the state space. Moreover, due to structural constraints

imposed on the system, it is not realistic that each agent is able to access

the state information generated by all other agents. It is more realistic that

each agent is able to access only his own state information.

To resolve this difficulty, mean field analysis was used to obtain the best

estimate of the actual mean field behavior, in terms of computationally low

complexity optimal decentralized strategies that are functions of local in-

formation and constitute an ε-Nash equilibrium [70, 71, 72]. In [66], the

authors developed independently a different approach to obtain the mean

field equilibrium, applicable to more general models, which entails solving

coupled forward-backward partial differential equations where the former is

related to optimal control with the Hamilton-Jacobi-Bellman equation, and

the latter is related to the mean field distribution with the Fokker-Planck-

Kolmogorov equation. Both of these approaches are built on a platform that
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utilizes the fact that the impact of an individual agent on the mean field

behavior becomes negligible when the number of agents goes to infinity.

Most of the mean field games discussed in the literature referenced above

cannot capture robustness and risk averse-behavior, since the individual per-

formance indices are risk-neutral. The class of risk-sensitive mean field games

was introduced in [73] and [74], where the performance indices involve expo-

nentiated integral cost. The one-agent version is equivalent to risk-sensitive

optimal control, which was first introduced in [75] (see also [76, 77] and

the references therein). In [75], the relationship of the linear-quadratic (LQ)

risk-sensitive control problem to a LQ zero-sum differential game was also es-

tablished. Later, the finite- and infinite-horizon risk-sensitive optimal control

problems were considered in [78, 79, 80, 81, 82], and risk-sensitive differential

nonzero-sum games were studied in [83].

In contrast to the class of mean field games referenced above, [84] and

[85] considered the situation when there are one major agent and a large

number of minor agents, in view of which stochastic mean field approxima-

tion was introduced, and ε-Nash equilibria were obtained. Specifically, due

to strong influence of the major agent on minor agents, the approximated

mean field coupling term is no longer deterministic, but a stochastic process

driven by the Brownian motion of the leader. In [84], the state augmentation

method was developed via the strong law of large numbers to characterize

the best stochastic mean field process when the followers are heterogeneous

with K distinct models. In [85], fixed point analysis was applied to obtain

similar results as in [84] when the dynamics and costs of the followers are

parametrized within a continuum set. These two different approaches lead

to (different) decentralized optimal strategies for the individual agents that

constitute (different) ε-Nash equilibrium. The nonlinear counterpart of mean

field games with major and minor agents was studied in [86].

Finally, it should be mentioned that mean field games discussed above are

Nash games. That is, each agent determines his optimal strategy noncoop-

eratively and all simultaneously, which leads to ε-Nash equilibria, and there

is no hierarchy of decision making between the agents. On the other hand,

if one wants to model a certain hierarchical structure in mean field games,

the corresponding problem can be formulated by employing the Stackelberg

setting. Classical Stackelberg games are hierarchical decision-making prob-

lems, where there is a leader with a dominant position over the follower [87].
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The leader first announces his optimum strategy by taking into account the

rational reactions of the followers. The follower then chooses his optimal

strategy based on the leader’s strategy, and finally the leader comes back

and implements his announced strategy, thus generating his action. When

there is such a solution, the resulting optimum strategies for the leader and

the follower form a Stackelberg equilibrium for the corresponding game [61].

Stackelberg differential and dynamic games have been studied extensively

in the literature since 1970, and detailed expositions can be found in [61,

88, 89, 90, 91, 92, 93], and the references therein. Stackelberg games have

a wide range of applications. For example, in the setting of communication

networks, one can have a single service provider and a (large) number of users,

where the service provider sets the usage price(s) for the Nash followers [94].

In the smart grid, optimal demand response management can be studied

within the framework of Stackelberg games, where the utility companies are

leaders, and the users are followers [95].

1.3 Motivation for the Thesis

Chapters 2 and 3 study NCSs with unreliable communication channels. Our

motivation for Chapters 2 and 3 is as follows:

• The problem of optimal estimation with intermittent observations cap-

tured in Fig. 1.7 was investigated exclusively within the Kalman filter-

ing framework; however, the worst-case scenario of this class of prob-

lems (which captures robustness) had not yet been addressed until we

initiated work on this topic in [96, 97]. Some available results on H∞

estimation with intermittent observations are suboptimal due to their

restrictive information and estimator structure.

• The available results on optimal control over TCP- and UDP-like com-

munication channels captured in Figs. 1.5 and 1.6 had been obtained

within the LQG framework, and the same problem for robust control

within the worst-case scenario had not yet been addressed until our

work initiated it in [98, 99, 100, 101]. Some available results on H∞

control over unreliable communication channels discussed are subopti-

mal, and they are not related to the TCP- and the UDP-cases due to
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their specified information structures.

In Chapters 4 and 5, we consider large-scale optimization problems un-

der structural constraints via mean field game theory. Our motivation for

Chapters 4 and 5 is as follows:

• Following up with [73] and [74], it is a natural (but challenging) next

step to extend the previous work on risk-sensitive mean field games

to the heterogeneous agent case with infinite-horizon cost functions.

Moreover, it is necessary to study the robustness property of the cor-

responding ε-Nash equilibria in view of the fact that the risk-sensitive

approach is closely connected with H∞ control. Finally, we also need

to study the relationship between risk-sensitive, worst-case, and risk-

neutral mean field games with respect to some design parameters, as

was done for classical one-agent optimal control problems in earlier

literature, for example [75, 78, 77, 79].

• As discussed in Section 1.2.2, the previous work on mean field games

are Nash games. Hence, it is necessary to study hierarchical decision-

making problems via mean field game theory within the Stackelberg

framework.

1.4 Main Results of the Thesis

We state a summary of the main results developed in this thesis:

• In Chapter 2, within the setting of intermittent observations depicted

in Fig. 1.7, we obtain a stochastic minimax state estimator (SME)

with an associated generalized stochastic Riccati equation (GSRE) by

solving a corresponding stochastic zero-sum dynamic game. We then

study the asymptotic behavior of the estimation error in terms of the

GSRE, and show that under some conditions, 1) the GSRE is bounded

below and above in the expectation sense, and 2) the GSRE converges

weakly to a unique stationary distribution. This chapter is based on

[96, 97].

• In Chapter 3, we obtain classes of output feedback minimax controllers

for both the TCP- and the UDP-cases by solving a corresponding
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stochastic zero-sum dynamic game. We identify a set of explicit thresh-

old conditions in terms of the loss rates and the disturbance attenuation

parameter, above which the corresponding minimax controller exists,

and achieves the desired disturbance attenuation performance and sta-

bility. This chapter is based on [98, 99, 100, 101].

• In Chapter 4, we consider risk-sensitive and robust mean field games.

For both problems, we obtain ε-Nash equilibria, where the individual

Nash strategies are decentralized as a function of local state informa-

tion, and the positive parameter ε can be picked arbitrarily close to

zero when the number of agents is arbitrarily large. We show that the

ε-Nash equilibria for both problems are partially equivalent. Finally, we

also show that the ε-Nash equilibria for both problems feature robust-

ness due to the risk-sensitive and worst-case behaviors of the agents.

This chapter is based on [102, 103].

• In Chapter 5, we study mean field Stackelberg differential games with

one leader and a large number of followers. Given an arbitrary strategy

of the leader, we characterize an approximated stochastic mean field

process, and obtain an ε-Nash equilibrium for the followers, where the

individual Nash strategies are decentralized as a function of local state

information. We then obtain a decentralized (ε1, ε2)-Stackelberg strat-

egy for the leader, where we show that the positive parameters ε1 and

ε2 converge to zero when the population size of the followers grows to

infinity. This chapter is based on [104, 105].

1.5 Organization of the Thesis

The outline of the thesis is as follows. In Chapter 2, we study the minimax

estimation problem with intermittent observations. The minimax control

problem for both the TCP- and UDP-cases is presented in Chapter 3. In

Chapter 4, we consider risk-sensitive and robust mean field games. We study

mean field Stackelberg differential games in Chapter 5. We collect our con-

cluding remarks in Chapter 6, where some future research directions are also

provided. The appendices contain proofs and important lemmas that are

used to prove the mains results presented in the thesis.
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CHAPTER 2

MINIMAX ESTIMATION WITH
INTERMITTENT OBSERVATIONS

2.1 Introduction

We study the minimax estimation problem with intermittent observations, as

depicted in Fig. 1.7. As mentioned in Chapter 1, although there has been sig-

nificant progress on the intermittent observation problem within the Kalman

filtering framework, it has not yet been addressed thoroughly through the

worst-case or H∞ approach. Some relevant results for the problem of H∞

estimation with intermittent observations were obtained in [55, 56, 57, 33],

and [58], where different sets of linear matrix inequalities were derived for

the H∞ performance. These results, however, are related more to the theory

of Markov jump linear estimators (MJLEs) and are therefore suboptimal,

since the estimators are restricted to be time-invariant and obtained under

the assumption of instantaneous measurement arrival.

In this chapter, by formulating the problem within the framework of stochas-

tic zero-sum dynamic games, we first obtain a stochastic minimax state es-

timator (SMSE) and an associated generalized stochastic Riccati equation

(GSRE), both of which are time varying and random, and are dependent

on the sequence of the random measurement arrival information {βk} and

the H∞ disturbance attenuation parameter γ. We then identify an exis-

tence condition for the SMSE in terms of the GSRE and γ. We also show

that under that existence condition, the SMSE is able to attenuate arbi-

trary disturbances within the level of γ. Moreover, we show that for the

extreme scenario that corresponds to least disturbance attenuation (that is,

as γ →∞), the SMSE and the GSRE converge, respectively, to the Kalman

filter and its stochastic Riccati equation {Pk} in [22].

The second objective of this chapter is to analyze the asymptotic behavior

of the estimation error in terms of the GSRE. In particular, we prove bound-
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edness of the sequence generated by the GSRE in the expectation sense, and

also show its weak convergence. More specifically, we first show that under

the existence condition, there exist both a critical value of the measurement

loss rate and a critical value for the disturbance attenuation parameter be-

yond which the expected value of the sequence generated by the GSRE can

be bounded both below and above. Second, we prove that under the exis-

tence condition, the norm of the sequence generated by the GSRE converges

weakly to a unique stationary distribution. For both cases, we show that

when γ → ∞, the corresponding asymptotic results are equivalent to those

in [22] and [54]. We also demonstrate by simulations that the SMSE outper-

forms the stationary and suboptimal H∞ MJLE in [58].

Organization

The structure of the chapter is as follows. In Section 2.2, we formulate the

problem of minimax estimation with intermittent observations. In Section

2.3, we obtain the SMSE and GSRE, and characterize the existence condition.

In Section 2.4, we analyze the asymptotic behavior of the GSRE. In Section

2.5, we present simulation results. We end the chapter with the concluding

remarks of Section 2.6.

2.2 Problem Formulation

Consider the following linear dynamical system:

xk+1 = Axk +Dwk (2.1a)

ysk = Cxk + Evk (2.1b)

yk = βky
s
k (2.1c)

zk = Lxk, (2.1d)

where xk ∈ Rn is the state; {wk} ∈ `p2 and {vk} ∈ `m2 are the disturbance

input and the measurement noise sequences, respectively; ysk ∈ Rm is the

sensor output, yk is the channel output that is available to the estimator (see

Fig. 1.7); zk ∈ Rq is the variable that needs to be estimated; and A, C, D,
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E, L are time-invariant matrices with appropriate dimensions. We assume

that (A,C) is observable and (A,D) is controllable. We also assume that

E is square and non-singular, and define V := EET . In (2.1), the sequence

of random variables, {βk}, models intermittency of observations between the

sensor and the estimator (see Fig. 1.7), which is an i.i.d. Bernoulli process

with P(βk = 1) = β.

Define the information that is available to the estimator at each time k as:

Ik := {β0:k, y0:k}. (2.2)

It is worth noting that the H∞ MJLE in [55] and [58] utilizes the partial

information, {y0:k, βk}, which is a subset of the information structure in (2.2).

Having the information structure as in (2.2), we seek an estimate x̂k (or

ẑk) of the actual state xk, to be generated by x̂k = πk(Ik), where πk is an

admissible (Borel measurable) estimator policy to be determined. We denote

the class of admissible estimation policies by Π.

Now, our first main objective in this chapter is to find a recursive estima-

tor policy π ∈ Π under (2.2) that minimizes the following worst-case cost

function:

� T Nπ �:= sup
x0,w0:N−1,v0:N−1

E{
∑N−1

k=0 |zk − ẑk|2Q}1/2

E{|x0 − x̃0|2Q0
+
∑N−1

k=0 |wk|2 + βk|vk|2}1/2
, (2.3)

where Q ∈ Sn≥0, Q0 ∈ Sn>0, and x̃0 ∈ Rn is a known bias term which stands

for some initial estimate of x0. Note that in (2.3), the expectation is taken

with respect to {βk}, since the estimator policy that we are seeking should be

dependent on {βk} in view of our information structure given in (2.2). The

problem in (2.3) can be regarded as an H∞ estimation problem [106, 107].

By invoking the formulation of the corresponding soft-constrained game,

the cost function of the associated zero-sum dynamic game parametrized by

the disturbance attenuation parameter, γ > 0, can be written as follows (see

[61]):

JNγ (π, x0, w0:N−1) (2.4)

= E
{
−γ2|x0 − x̃0|2Q0

+
N−1∑
k=0

|xk − x̂k|2Q − γ2
(
|wk|2 + |yk − βkCxk|2V −1

)}
,
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where (2.1c) is used with vk = E−1(yk − βkCxk), and Q := LTQL ≥ 0.1

In view of the deterministic H∞ estimation problem considered in [106],

if (2.4) admits a saddle-point solution2 for some γ, then the corresponding

estimator policy, π∗γ ∈ Π, is a minimax policy that is parametrized by γ,

and under this policy, we have the bound � T Nπ∗γ �≤ γ. Moreover, when γ

is sufficiently large or γ goes to infinity, the minimax policy (or estimator)

exists, which corresponds to the Kalman filter [106].

Bearing in mind the previous observation, we seek a minimax estimator

policy, π∗γ, that solves

inf
π∈Π

sup
x0,w0:N−1

JNγ (π, x0, w0:N−1) = sup
x0,w0:N−1

JNγ (π∗γ, x0, w0:N−1). (2.5)

Such a π∗γ will be obtained in Section 2.3. We also need to characterize the

smallest values of γ and β, say γ∗s and βs, for which the minimax estimator

exists for all γ > γ∗s and β > βs. Obviously, γ∗s and βs are coupled with

each other; hence they cannot be determined independently. Moreover, γ∗s ,

provided that it is finite, will be the value of (2.3).

After solving (2.5) and characterizing γ∗s and βs, or more precisely, finding

the relationship between γ∗s and βs, we will analyze the asymptotic behaviors

of the minimax estimator in Section 2.4.

2.3 Stochastic Minimax State Estimator

In this section, we obtain a minimax estimator by solving the zero-sum dy-

namic game in (2.4). The main result is the following.

Theorem 2.1. Consider the zero-sum dynamic game (2.4) subject to (2.1)

with k ∈ [0, N − 1], β ∈ [0, 1], and a fixed γ > 0. Then:

1We can also use the measurement model yk = βkCxk + Evk with

� T Nπ �:= sup
x0,w0:N−1,v0:N−1

E{
∑N−1
k=0 |zk − ẑk|2Q}1/2

E{|x0 − x̃0|2Q0
+
∑N−1
k=0 |wk|2 + |vk|2}1/2

,

to arrive at the same zero-sum dynamic game as in (2.4). Note that the above model
considers the situation when the estimator receives noise only signal when there are mea-
surement losses.

2See [106] and [61] for the definition of saddle point for zero-sum dynamic games.
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(i) There exists a stochastic minimax state estimator (SMSE) if

ρ(ΣkQ) < γ2, almost surely (a.s.) for all k, (2.6)

where Σk with Σ0 = Q−1
0 is generated by a generalized stochastic Riccati

equation (GSRE)

Σk+1 = A(Σ−1
k − γ

−2Q+ βkC
TV −1C)−1AT +DDT . (2.7)

(ii) The SMSE is given by

ẑk = Lx̂k

x̂k+1 = Ax̂k + βkAKk(yk − Cx̂k), x̂0 = x̃0, (2.8)

where Kk is the estimator gain that can be written as

Kk = (Σ−1
k − γ

−2Q+ βkC
TV −1C)−1CTV −1. (2.9)

(iii) Suppose that (2.6) holds for all k. Then the SMSE achieves the per-

formance level of γ, that is, � T Nπ∗γ �≤ γ.

Proof. Since we seek a causal estimator, by using forward dynamic program-

ming, we can introduce the quadratic cost-to-come (worst past cost) function

Wk(xk) = E{−|xk − x̄k|2Zk + lk|Ik}, where Zk > 0, Z0 = γ2Q0, and l0 = 0

[106, 107, 96]. Then, the cost from the initial state to stage k + 1 is

E{|xk+1 − x̄k+1|2Zk+1
− lk+1|Ik+1}

= min
(wk,xk)

[
−|xk − x̂k|2Q + γ2|wk|2 + γ2|yk − βkCxk|2V −1 + |xk − x̄k|2Zk − lk

]
,

where the equality follows from the definition of the information structure

Ik+1.

For existence of a unique minimizer, by Lemma 6.1 in [106], given Ik, it

is necessary to have Zk −Q > 0 for all k. Then, by Lemma 6.2 in [106], the
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minimum cost at stage k + 1 can be obtained as

E{|xk+1 − x̄k+1|2Zk+1
− lk+1|Ik+1}

= |xk+1 − AU−1
k (Zkx̄k + βkγ

2CTV −1yk −Qx̂k)|2Z̄−1
k

+ |Qx̂k − Zkx̄k − βkγ2CTV −1yk|2U−1
k

+ |x̄k|2Zk − |x̂k|
2
Q + γ2|yk|2V −1 − lk,

where Uk := Zk + βkγ
2CTV −1C − Q and Z̄k := AU−1

k AT + γ−2DDT . Note

that the last equation is equivalent to its conditional expectation given Ik+1.

Since this is true for all k, the dynamic equation for x̄k can be written as

x̄k+1 = AU−1
k (Zkx̄k + βkγ

2CTV −1yk −Qx̂k) (2.10)

Zk+1 = (AU−1
k AT + γ−2DDT )−1.

Also, with Z0 = γ2Q0, let Σk := γ2Z−1
k ; then (2.10) can be rewritten as

x̄k+1 = Ax̄k + βkAKk((yk − Cx̄k) + γ−2Q(x̄k − x̂k)).

Now, choose the estimator policy to be the certainty equivalence policy, i.e.,

x̂k = x̄k for all k [106, 107], which can be obtained by solving the following

optimization problem:

x̂k = arg max
xk

E{−γ2|xk − x̄k|2Σ−1
k

+ lk|Ik}.

Note that the above problem has a unique solution. Then we have (2.7) and

(2.8).

To prove part (iii), observe that under (2.6), by the definition of the cost-

to-come function [107], Wk(xk) ≤ 0 for all disturbances (x0, w0:N−1) and for

all k. This implies that the value of the zero-sum game (2.4) is finite and

bounded from above by zero. Hence, the SMSE achieves the disturbance

attenuation level γ. Note that if (2.6) does not hold at k̄ ∈ [0, N − 1], the

zero-sum game is unbounded because Wk(xk) can be made arbitrarily large

by an appropriate choice of the disturbance [106, 107]. This implies that γ

cannot be the disturbance attenuation level for the SMSE. This completes

the proof of the theorem.
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We define

Γ(β) := {γ > 0 : ρ(ΣkQ) < γ2, a.s. ∀k ∈ [0,∞)}

Λ(γ) := {β ∈ [0, 1) : ρ(ΣkQ) < γ2, a.s. ∀k ∈ [0,∞)}.

Let γ∗s (β) := inf{γ : γ ∈ Γ(β)} and βs(γ) := inf{β : β ∈ Λ(γ)}. Then

we have the following proposition which follows from the definitions of γ∗s (β)

and βs(γ).

Proposition 2.1. Suppose that γ is finite, and γ > γ∗s (β) and β > βs(γ).

Then ρ(ΣkQ) < γ2 holds a.s. for all k. �

We have two observations on γ∗s (β). First, when A is stable, γ∗s (β) is fi-

nite for all β ∈ [0, 1]. This is because when β = 0, which is the worst-case

communication channel, the problem reduces to the open-loop H∞ estima-

tion problem of the stable system, and it was shown in [106] that γ∗s (0) is

finite. Second, when A is unstable, γ∗s (0) is not finite since Γ(0) is empty.

Notice that γ∗s (1) is finite since (2.7) becomes the Riccati equation of the

deterministic H∞ estimation problem in [106].

We have some remarks. Note that Pk below is the error covariance matrix

of the Kalman filter in [22], which is provided in (A.14) (or (A.15)).

Remark 2.1. (i) γ∗s (β) and βs(γ) are functions of each other and therefore

cannot be determined independently.

(ii) By induction, we can show that Pk ≤ Σk a.s. for all k, provided that

the condition in Proposition 2.1 holds and P0 = Q−1
0 .

(iii) As γ → ∞, Σk → Pk and the SMSE converges to the Kalman filter in

(A.13).

(iv) By using the matrix inversion lemma, the GSRE can be written as

Σk+1 = AΣkA
T +DDT − AΣk

(
βkC

T GT
)

×

(
V + βkCΣkC

T βkCΣkG
T

βkGΣkC
T GΣkG

T − γ2I

)−1(
βkC

G

)
ΣkA

T ,

where GTG = Q. Then clearly, Σk → Pk as γ →∞.
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Before concluding this section, it is worth noting that H∞ MJLEs in [55]

and [58] utilize the partial information structure for estimation; hence, they

are time-invariant and suboptimal. In fact, the SMSE will provide better

estimation performance than H∞ MJLEs. This fact will be demonstrated by

numerical examples in Section 2.5.2.

2.4 Asymptotic Analysis of the GSRE

In this section, we provide an asymptotic analysis of the GSRE. The first sub-

section deals with boundedness of E{Σk}. This constitutes a generalization

of Result A.1 in Appendix A.3. The second subsection considers the weak

convergence of {‖Σk‖}. This result can be seen as a minimax counterpart of

Theorem 3.1 in [54], which considers the weak convergence of {‖Pk‖} where

Pk is the SRE given in Appendix A.3 as (A.14) (or (A.15)).

2.4.1 Boundedness of E{Σk}

Consider the following modified Lyapunov equation and modified generalized

Riccati equation (MGRE):

Σ̆k+1 = (1− β)h1(γ, Σ̆k) (2.11)

Σ̄k+1 = (1− β)h1(γ, Σ̄k) + βh2(γ, Σ̄k) =: h(γ, β, Σ̄k), (2.12)

where Σ̆0 = Σ̄0 = Q−1
0 , and the functions h1 and h2 are defined in Appendix

A.1 as (A.2a) and (A.2b), respectively. The objective here is to show that

under some conditions, (2.11) and (2.12) constitute respectively lower and

upper bounds on E{Σk}.

Proposition 2.2. Introduce the following algebraic Riccati equation (ARE):

Σ̆ = (1− β)h1(γ, Σ̆). (2.13)

Define

Γ̆ := {γ > 0 : ρ(Σ̆+Q) < γ2, Σ̆+ ∈ Sn>0 solves (2.13)}.
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Let γ̆∗ := inf{γ : γ ∈ Γ̆} and β̆c := 1− 1
ρ2(A)

. Then if γ is finite, and γ > γ̆∗

and β > β̆, we have {Σ̆k} → Σ̆+ as k →∞.

Proof. See Appendix A.1.

Proposition 2.3. Introduce the following modified generalized algebraic Ric-

cati equation (MGARE):

Σ̄ = h(γ, β, Σ̄) = (1− β)h1(γ, Σ̄) + βh2(γ, Σ̄). (2.14)

Define the following sets:

Γ̄(β) := {γ > 0 : ρ(Σ̄Q) < γ2, Σ̄ ∈ Sn>0 solves (2.14)}

Λ̄(γ) := {β ∈ [0, 1) : ρ(Σ̄Q) < γ2, Σ̄ ∈ Sn>0 solves (2.14)}.

Let γ̄∗(β) := inf{γ : γ ∈ Γ̄(β)} and β̄c(γ) := inf{β : β ∈ Λ̄(γ)}. Suppose

Q−1
0 ≤ DDT . Then, for any finite γ > γ̄∗(β) and β > β̄c(γ), as k → ∞,

{Σ̄k} → Σ̄+ where Σ̄+ is a fixed point of the MGARE with ρ(Σ̄+Q) < γ2.

Proof. See Appendix A.1.

Proposition 2.4. Suppose that the condition in Proposition 2.3 holds. Then:

(i) Suppose Γ̄(β) is not empty with β1 and β2. If β1 ≥ β2, then γ̄∗(β1) ≤
γ̄∗(β2). Also γ̄∗(β) ≥ γ̄∗(1) for all β.

(ii) If γ1 ≥ γ2 > γ̄∗(β) is finite, then β̄c(γ1) ≤ β̄c(γ2). Also, as γ → ∞,

β̄c(γ)→ λ̄ where λ̄ is defined in Result A.1 in Appendix A.3.

Proof. See Appendix A.1.

We now show the existence of critical values, βc(γ) ∈ [0, 1) and γ∗c (β) > 0,

which determine boundedness of E{Σk}.

Theorem 2.2. Suppose that the condition in Proposition 2.1 holds. Then,

there exist βc(γ) ∈ [0, 1) and γ∗c (β) > 0 such that

∀k, E{Σk} ≤M(γ,Σ0), if β > βc(γ) and γ > γ∗c (β)

lim
k→∞

E{Σk} =∞, otherwise,

where M(γ,Σ0) depends on the initial condition of the GSRE and γ.
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Proof. When A is stable, there exists γ > 0 such that E{Σk} is bounded

for all β ∈ [0, 1]. This is because the GSRE becomes the deterministic

generalized Riccati equation of the H∞ estimation problem when β = 1, and

is the modified Lyapunov equation when β = 0 where the boundedness of the

former and the latter were shown in [106] and Appendix A.1, respectively.

Consider the case when A is unstable. If β = 1, then under the controlla-

bility and observability assumptions, E{Σk} converges to a positive definite

matrix. If β = 0, then the problem is equivalent to the open-loop estimation;

therefore, E{Σk} → ∞ as k → ∞. Now, suppose that there is β1 such that

E{Σk} is bounded. Clearly, by Lemma A.3(i) in Appendix A.2, E{Σk} is

bounded for all β > β1. In fact, if β2 ≥ β1, then we have

Eβ1{Σk+1} = (1− β1)E{h1(γ,Σk)}+ β1E{h2(γ,Σk)}

≥ (1− β2)E{h1(γ,Σk)}+ β2E{h2(γ,Σk)} = Eβ2{Σk+1},

where Lemma A.3(i) is used to arrive at the inequality. It is possible to define

βc(γ) as follows:

βc(γ) := inf{β ∈ [0, 1) : E{Σk} is bounded in Sn≥0}.

Now, for a given β, if γ1 ≥ γ2, we have

Eβ{Σγ2
k+1} = (1− β)E{h1(γ2,Σk)}+ βE{h2(γ2,Σk)}

≥ (1− β)E{h1(γ1,Σk)}+ βE{h2(γ1,Σk)} = Eβ{Σγ1
k+1},

where the inequality follows from Lemma A.3(ii). Therefore, γ∗c (β) can be

defined as

γ∗c (β) := inf{γ > 0 : E{Σk} is bounded in Sn≥0}.

This completes the proof.

The previous theorem shows that under the existence condition of the

SMSE, there are critical values that determines boundedness of E{Σk}. Pre-

cise characterizations of βc(γ) and γ∗c (β) are even harder than in the Kalman

filtering case due to the worst-case scenario. However, it is still possible to

obtain lower and upper bounds for them under the following assumption:
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Assumption 2.1. h(γ, β,Σk) is concave in Σk for all k.

This condition guarantees the concavity of the GSRE in the expectation

sense. It is shown in Appendix A.2 and Lemma A.4 that there are certain

ranges of γ and β for which the above assumption holds. Note that in the

rest of this subsection, Sk are Fk are as defined in Result A.1 in Appendix

A.3, which constitute respectively lower and upper bounds of E{Pk}.

Theorem 2.3. Suppose that the conditions in Proposition 2.1 and Assump-

tion 2.1 hold, and Q−1
0 ≤ DDT . Then:

(i) βc(γ) satisfies β̆c ≤ βc(γ) ≤ β̄c(γ).

(ii) γ∗c (β) satisfies γ̆∗ ≤ γ∗c (β) ≤ γ̄∗(β).

(iii) Sk ≤ Σ̆k ≤ E{Σk} ≤ Σ̄k for all k.

(iv) Suppose that γ > γ̄∗(β), β > β̄c(γ), and γ is finite. Then, limk→∞ Σ̆k =

Σ̆+ and limk→∞ Σ̄k = Σ̄+.

Proof. We first show that Σ̆k ≤ E{Σk} ≤ Σ̄k for all k. Clearly, Σ̆0 = Σ̄0 =

E{Σ0} = Q−1
0 . Then, by induction, Σ̆k ≤ E{Σk} implies

E{Σk+1}
(a)
= (1− β)E{h1(γ,Σk)}+ βE{h2(γ,Σk)}
(b)

≥ (1− β)E{h1(γ,Σk)}
(c)

≥ (1− β)h1(γ,E{Σk})
(d)

≥ (1− β)h1(γ, Σ̆k) = Σ̆k+1,

where (a) follows from the law of iterated expectations, (b) is due to Lemma

A.3(v) in Appendix A.2, (c) follows from Jensen’s inequality due to Lemma

A.3(iii), and (d) is due to the induction argument and Lemma A.3(viii).

Similarly, Sk ≤ Σ̆k can be shown by induction and Lemma A.3(v).

For the second part, E{Σk} ≤ Σ̄k implies

E{Σk+1}
(e)
= E{h(γ, β,Σk)}

(f)

≤ h(γ, β,E{Σk})
(g)

≤ h(γ, β, Σ̄k) = Σ̄k+1,

where (e) is due to the law of iterated expectations, (f) follows due to the

assumption and from Jensen’s inequality, and (g) is obtained from the in-

duction argument and Lemma A.3(viii).
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Now, if γ < γ̆∗ and β < β̆c, then since
√

1− βA is not stable, {Sk} → ∞
as k → ∞ due to Theorem 3 in [22]. Therefore, {Σ̆k} → ∞ as k → ∞ and

E{Σk} → ∞ as k → ∞. This implies that βc(γ) ≥ β̆c and γ∗c (β) ≥ γ̆∗. Let

us consider the second case. By Proposition 2.3 and the previous inequality,

we have that {Σ̄k} → Σ̄+ as k → ∞, and Σ̄+ ≥ E{Σk} for all k. Since

Σ̄+ ≥ Σ̆k, we have convergence of the lower bound due to Proposition 2.2.

Hence, we have βc(γ) ≤ β̄c(γ) and γ∗c (β) ≤ γ̄∗(β). This completes the proof

of the theorem.

The following series of discussions provides a comparison of Theorem 2.3

with Result A.1 in Appendix A.3.

Remark 2.2. We have Sk ≤ Σ̆k and Fk ≤ Σ̄k due to Lemma A.3(v) and

(ii). Moreover, Σ̆k → Sk and Σ̄k → Fk as γ → ∞ from Lemma A.3(vi)

and (vii), respectively. This shows that since Pk ≤ Σk a.s. for all k, Sk ≤
E{Pk} ≤ E{Σk} ≤ Σ̄k, and the lower and upper bounds converge to the

deterministic values in view of Theorem 2.3. This implies that given γ and

β, if E{Σk} ≤ Σ̄+, then E{Pk} ≤ Σ̄+, that is, the Kalman filter is also stable

in the expectation sense.

Remark 2.3. Remark 2.2 implies that given γ and β, if we have E{Σk} ≤
Σ̄+, then β ≥ λ̄, where λ̄ is the upper critical value of the Kalman filter

defined in Appendix A.3. Therefore, β ≥ λ̄ is a necessary condition for

boundedness of E{Σk}. On the other hand, for the Kalman filtering case,

β ≥ λ̄ is a sufficient condition for the boundedness of E{Pk} (see Appendix

A.3).

Remark 2.4. As γ → ∞, E{Σk} → E{Pk}. Moreover, when γ → ∞, its

boundedness condition is equivalent to that in Result A.1, since β̆c = λ̆ and

β̄c(γ)→ λ̄ in view of Proposition 2.4. In this case, Assumption 2.1 holds for

any β as discussed in Appendix A.2.

Remark 2.5. Even if C is invertible, there is no reason that βc(γ) = β̆c un-

less γ is sufficiently large. This is because the SMSE considers the worst-case

scenario that results in increasing β̄(γ) depending on γ due to Proposition

2.4(ii). This fact will be demonstrated in Section 2.5. This implies that the

statement of Result A.1(iii) is not valid for the minimax estimation problem.
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2.4.2 Weak Convergence of {‖Σk‖}

This subsection presents a result on weak convergence of the norm of the

sequence generated by the GSRE, as captured in the following theorem.

Theorem 2.4. Suppose that the condition in Proposition 2.1 holds, β > 0,

and DDT > 0. Then, {‖Σk‖}3 converges weakly to a unique stationary

distribution from any initial condition Σ0 = Q−1
0 .

Proof. Under the existence condition, since Pk ≤ Σk a.s. for all k, for any

M ≥ 0 we have

P(‖Pk‖ ≤M) ≥ P(‖Pk‖ ≤M, ‖Σk‖ ≤M)

= P(‖Pk‖ ≤M | ‖Σk‖ ≤M)P(‖Σk‖ ≤M) = P(‖Σk‖ ≤M),

where P(·|·) is conditional probability. We let FΣk(M) := P(‖Σk‖ ≤M) and

FPk(M) := P(‖Pk‖ ≤ M). Clearly, {FPk(M)} is a sequence of distribution

functions of the norm of the matrices generated by the SRE in (A.14) (or

(A.15)) for all k. In the same vein, {FΣk(M)} is a sequence of distribution

functions of the norm of the matrices generated by the GSRE in (2.7) for

all k. Also, by definition, FΣk(M) ≤ FPk(M) for all k. Then, if {FΣk(M)}
converges to some distribution function at all continuity points M of its limit,

we have the weak convergence [108].

For any β > 0, {‖Pk‖} converges weakly to a unique stationary distribution

due to Theorem 3.1 in [54]. We can also equivalently say that for any β > 0,

the sequence of distribution functions {FPk(M)} converges to FP (M) as k →
∞ at all continuity points of M of FP (M), where FP (M) is a distribution

function [108]. Therefore, limk→∞ FΣk(M) ≤ FP (M).

Now, we use the following fact that follows from the convergence of se-

quences of real numbers [109]: a sequence of real numbers, say {xk}, con-

verges to x if and only if every subsequence of {xk} converges to x.

By using Helly’s selection theorem [108], for the sequence of distribution

functions {FΣk(M)}, there is a subsequence, {FΣk(l)(M)}, and a right con-

tinuous nondecreasing function FΣ(M) so that liml→∞ FΣk(l)(M) = FΣ(M)

at all continuity points M of FΣ(M).

We claim that FΣ(M) is a distribution function. To show this, due to [108,

Theorem 2.6], it suffices to show that the sequence {FΣk(M)} is tight, i.e.,

3Note that ‖X‖ is the induced 2-norm of the matrix X.
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for all ε > 0, there is an Mε so that lim supk→∞ 1−FΣk(Mε)+FΣk(−Mε) ≤ ε.

The tightness can also be written as for each ε > 0, there exist M
(1)
ε and

M
(2)
ε such that FΣk(M

(1)
ε ) < ε and FΣk(M

(2)
ε ) > 1− ε, for all k [110].

Note that the sequence {FPk(M)} is tight in view of [108, Theorem 2.6].

Then, for each ε > 0, there exists M
(1)
ε such that FΣk(M

(1)
ε ) ≤ FPk(M

(1)
ε ) < ε

for all k. Moreover, for all k, we have

1− FPk(M) ≤ 1− FΣk(M)⇔ P(‖Pk‖ > M) ≤ P(‖Σk‖ > M),

and limM→∞ P(‖Pk‖ > M) = limM→∞ P(‖Σk‖ > M) = 0. This implies that

for each ε > 0, there exists M
(2)
ε such that P(‖Σk‖ > M

(2)
ε ) < ε for all k,

which leads to 1 − P(‖Σk‖ > M
(2)
ε ) = FΣk(M

(2)
ε ) > 1 − ε. This proves the

claim.

We have shown that for the sequence of distribution functions {FΣk(M)},
there exists a convergent subsequence {FΣk(l)(M)}, where its limit, FΣ(M),

is also a distribution function. To complete the proof, we need to show that

every subsequence converges to FΣ(M).

Consider any arbitrary subsequence {FΣm(l)
(M)} of {FΣk(M)}. Note that

{FΣm(l)
(M)} and {FΣk(l)(M)} are different subsequences of {FΣk(M)} in-

dexed by l. Moreover, since {FPk(M)} is a convergent sequence, by using

the above fact, the subsequences, {FPk(l)(M)} and {FPm(l)
(M)}, also converge

to FP (M) as l→∞.

For each ε ≥ 0, there exist l1 and l2 such that

|FΣk(l)(M)− FΣ(M)| ≤ ε

2
, ∀l ≥ l1

|FΣm(l)
(M)− FΣk(l)(M)| ≤ |FPk(l)(M)− FP (M)| ≤ ε

2
, ∀l ≥ l2,

where we made use of the fact that |FΣm(l)
(M)−FΣk(l)(M)| ≤ 1 and FΣk(M) ≤

FPk(M) for all k.

Let l′ := max{l1, l2}. Then, for any l ≥ l′,

|FΣm(l)
(M)− FΣ(M)| ≤ |FΣk(l)(M)− FΣ(M)|+ |FΣm(l)

(M)− FΣk(l)(M)|

≤ |FΣk(l)(M)− FΣ(M)|+ |FPk(l)(M)− FP (M)|

≤ ε

2
+
ε

2
= ε.

Since ε was arbitrary, {FΣm(l)
(M)} also converges to FΣ(M) as l→∞. Note
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that this holds for any arbitrary subsequence. Hence, every subsequence of

{FΣk(M)} has the same limit, which proves the theorem.

Remark 2.6. The weak convergence of {‖Pk‖} to a unique stationary dis-

tribution was discussed in [52] and [54]. While [52] considered the SRE in

(A.14) (or (A.15)) as a random walk and then proved weak convergence by

using the mean contraction property when A is non-singular, [54] showed the

same result by modeling the SRE as an order-preserving and strongly sub-

linear random dynamical system. On the other hand, in this chapter, under

the existence condition, we have proven the weak convergence of {‖Σk‖} by

showing the convergence of the sequence of distribution functions.

Remark 2.7. When γ →∞, the stationary distribution in (i) converges to

that in [54, Theorem 3.1]. Moreover, Theorem 2.4 also holds when ‖Σk‖2 =

Tr(ΣT
kΣk) where Tr(·) is the trace operator.

2.5 Simulations: Asymptotic Analysis and Estimation

Performance

In this section, we present simulation results on the asymptotic analysis of the

GSRE discussed in Section 2.4.1, and compare the estimation performance

with the H∞ MJLE in [58].

2.5.1 SMSE and Kalman Filter: Lower and Upper Bounds

We first analyze the lower and upper bounds on E{Σk} and E{Pk}. To allow

for a comparison, we use the same linear system model as in [22]. We first

consider the scalar case where A = −1.25, C = 1, D = 1, V = 2.5, and

Q = 1. For the Kalman filter case, λc = 0.36. Moreover, it can be calculated

that γ̄∗(1) = 1.585. Figure 2.1(a) shows a plot of the convergence region of

(2.12). This plot is obtained by using the following approach:

(S.1) Fix β = 1 and take a sufficiently large value of γ > 0.

(S.2) Obtain the solution, Σ̄ ∈ Sn>0, of the MGARE in (2.14), and check the

condition ρ(Σ̄Q) < γ2.
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Figure 2.1: Convergence region of (2.12) (top: scalar case, bottom: matrix
case).

(S.3) If the condition holds, decrease β and then go to (S.2). Otherwise, it

is the critical value of β for that γ; go to the next step.

(S.4) Decrease γ and fix β = 1. Go to (S.2).

As can be seen, as γ →∞, β̄c(γ)→ 0.36 = β̆c. Figure 2.2 shows a plot of the

steady state upper and lower bounds on E{Σk} versus β. In this simulation,

although C is invertible, since β̄c(γ) = 0.36 only when γ is sufficiently large,

β̆c cannot be the critical value for boundedness of E{Σk}, provided that

the existence condition in Proposition 2.1 and Assumption 2.1 hold. That

is, β ≥ β̆c is necessary but not sufficient for boundedness of E{Σk}. This

result is a direct consequence of Proposition 2.4 and is due to the worst-case

approach.
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Figure 2.2: Transition to instability in the scalar case.

We now discuss the two-dimensional case, where

A =

(
1.25 0

1 1.1

)
, C =

(
1 1

)
, D =

(√
20 0

0
√

20

)
, V = 2.5, Q = 20.

Figure 2.1(b) shows the convergence region of (2.12). The plot is also ob-

tained by using the above approach. Note that β̄c(γ) → λ̄ as γ → ∞. The

plot of the lower and upper bounds on E{Σk} for the two-dimensional case is

shown in Fig. 2.3. Note that the critical transition for boundedness of E{Σk}
depends on the level of the disturbance attenuation parameter γ. Moreover,

as mentioned, β ≥ λ̄ is necessary for boundedness of E{Σk}.

2.5.2 SMSE versus H∞ MJLE

We compare estimation performance of the SMSE with that of the H∞ MJLE

in [58]. Figure 2.4 shows the existence region of the SMSE for the same scalar

system as in Section 2.5.1. We obtained this plot by Monte Carlo simulations

with 1000 samples of the GSRE.

Now, to use the H∞ MJLE theory in [58], the transition matrix S is given
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Figure 2.3: Transition to instability in the matrix case.

by

S =

(
1− β β

1− β β

)
.

It is easy to show that the i.i.d. Bernoulli process {βk} with P(βk = 1) = β

is identical to the Markov process {βk} with S. Also, the corresponding

optimum disturbance attenuation level when β = 0.7 is 7.5.

Figure 2.5 shows E{Σk} and Σ̄k when γ = 40 and β = 0.7. Note that we

have E{Σk} ≤ Σ̄k for all k; therefore, Assumption 2.1 holds. Figure 2.6 shows
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Figure 2.4: Existence region of the SMSE of the scalar system. The plot is
obtained by Monte Carlo simulations with 1000 samples of (2.7).
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Figure 2.5: E{Σk} and Σ̄k of the scalar system. The plot of E{Σk} is
obtained by averaging 10, 000 Monte Carlo simulations.

the mean-square estimation error of the SMSE and the H∞ MJLE when

β = 0.7, and wk = −vk = 10. Each curve is obtained by averaging 10, 000

Monte Carlo simulations. We use γ = 40 for the SMSE. Due to Figures 2.4

and 2.1(a), and Theorem 2.3, such a choice guarantees existence of the SMSE

and E{Σk} ≤ Σ̄. Note that although γ for the SMSE is larger than that of

the H∞ MJLE (that is 7.5), the better estimation error is achieved by the

SMSE. This is expected, since the SMSE uses {βk} that corresponds to the

entire information on the measurement arrivals, whereas the H∞ MJLE uses

only the instantaneous information βk. Finally, the SMSE with the static
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Figure 2.6: Empirical r.m.s. estimation error when wk = 10 and vk = −10.
This plot is obtained by averaging 10, 000 Monte Carlo simulations.

gain obtained from Σ̄ also shows better estimation performance than the

H∞ MJLE, since Σ̄ constitutes the tight upper bound for E{Σk}.

2.6 Conclusions

In this chapter, we have considered the problem of minimax estimation with

intermittent observations. Unlike the previous work, we have considered

the situation when the sensor noise and the disturbance are not stochastic

processes, but are treated as adversarial inputs. As such, the problem has

been formulated within the framework of stochastic zero-sum dynamic games.

We have obtained the stochastic minimax state estimator (SMSE) and the

associated generalized stochastic Riccati equation (GSRE). We have identi-

fied a threshold-type existence condition for the SMSE as a function of the

disturbance attenuation parameter, γ, and also one for the GSRE, which

implicitly depends on the measurement arrival rate β. We have shown that

when the existence condition holds for a particular γ, the SMSE achieves the

disturbance attenuation level corresponding to that γ, and if γ → ∞, the

SMSE converges to the Kalman filter with intermittent observations.

Two different asymptotic behaviors of the GSRE have been discussed.

Specifically, we have shown boundedness of the sequence generated by the

GSRE in the expectation sense, and weak convergence of the norm of that
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sequence to a unique stationary distribution. These two results indicate that

stability of the SMSE implies stability of the Kalman filter with the same

unreliable communication channels. This is a consequence of the fact that

the SMSE should be more conservative than the Kalman filter, since the

former deals with arbitrary disturbances under the worst-case scenario.
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CHAPTER 3

MINIMAX CONTROL OVER UNRELIABLE
COMMUNICATION CHANNELS

3.1 Introduction

In this chapter, we study a minimax control problem over unreliable com-

munication channels. Unlike the previous work on control over unreliable

communication channels, as mentioned in Chapter 1, this chapter considers

the case when the disturbance and the sensor noise in dynamical systems are

arbitrary and controlled by adversaries, instead of being stochastic with a

priori specified statistics. We consider two different scenarios for unreliable

communication channels: the TCP- and the UDP-cases, as depicted in Figs.

1.5 and 1.6, respectively. Both communication channels are assumed to be

temporally uncorrelated, which are modeled as two independent and identi-

cally distributed Bernoulli processes. These two different problems are for-

mulated within the framework of stochastic zero-sum dynamic games, which

enables us to develop worst-case (H∞) controllers under TCP- and UDP-like

information structures.

We first consider the TCP-case. Due to its acknowledgment nature, we

are able to apply the certainty equivalence principle developed in [106] and

[107], where the deterministic H∞ optimal control was analyzed through

three steps. By following these steps, we obtain a class of output feedback

minimax controllers in terms of the H∞ disturbance attenuation parameter,

say γ, and the control and measurement loss rates, where γ is a parameter

that measures robustness of the system against arbitrary disturbances as in

standard H∞ control [106, 111]. For the TCP-case, the minimax controller

obtained is dependent on the acknowledged control packet loss information,

which differs from the existing mode-dependent H∞ controller for MJLSs in

the literature as discussed in Chapter 1.

Specifically, the main results for the TCP-case are as follows:
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(i) The existence of a minimax controller is dependent on γ, and the loss

rates.

(ii) For given loss rates and γ > 0, if all the existence conditions are sat-

isfied, then γ is the attenuation level of the corresponding minimax

controller.

(iii) The critical values of the control and measurement loss rates for closed-

loop system stability and performance are functions of γ.

(iv) There is no separation between control and estimation.

(v) As γ →∞, the parametrized (in γ) minimax control system converges

to the corresponding LQG control system in [19] and [21].

Item (ii) implies that if γ exists and is finite, then the corresponding ad-

missible minimax controller achieves the disturbance attenuation level γ for

an arbitrary disturbance, that is, the H∞ norm of the closed-loop system is

bounded above by γ [106]. As for item (v), the limiting behavior in terms of γ

implies that in view of item (ii), the disturbance does not play any role, since

it is infinitely penalized; hence, the limiting behavior of the corresponding

minimax controller collapses to the LQG controller as in the standard case

discussed in [106, 111].

For the UDP-case, we consider the scenario when there is no measurement

noise, which is a counterpart of the LQG problem discussed in [19]. We show

that due to the absence of acknowledgments regarding control packet losses,

there is dual effect between control and estimation, but the corresponding

minimax controller parametrized by γ is linear in the measurement. Such a

dual effect problem did not arise in the H∞ control problem within the MJLS

framework, since as already mentioned, the latter has access to the current

mode of the Markov chain. We provide the (different) existence condition for

the corresponding problem in terms of γ and control and measurement loss

rates. We also provide explicit expressions on the H∞ optimum disturbance

attenuation parameter and the critical values for mean-square stability and

performance of the closed-loop system. Moreover, we show that when γ →
∞, the minimax control system collapses to the corresponding LQG system

in [19]. Finally, from simulation results, we show that the stability and

performance regions for the UDP-case are more stringent than those of the

TCP-case due to lack of acknowledgments.
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Organization

The organization of the chapter is as follows. The problem formulation is

stated in Section 3.2. Sections 3.3, 3.4, and 3.5 are for the TCP-case, which

consider problems of state feedback minimax control, minimax estimation

with intermittent observations (for which complete development can be found

in Chapter 2), and the H∞ synthesis problem, respectively. A special case of

the UDP problem is studied in Section 3.6. Section 3.7 provides numerical

examples. We end the chapter with the concluding remarks of Section 3.8.

3.2 Problem Formulation

We consider the following linear dynamical system:

xk+1 = Axk + αkBuk +Dwk (3.1a)

yk = βkCxk + Ewk, (3.1b)

where xk ∈ Rn is the state; uk ∈ U ⊂ Rm is the control (actuator);

wk ∈ W ⊂ Rp is the disturbance input as well as the measurement noise;

yk ∈ Y ⊂ Rl is the sensor output; and A, B, C, D, E are time-invariant

matrices with appropriate dimensions. In (3.1), {wk} is a square-summable

sequence, which is not necessarily stochastic. We further assume the follow-

ing decompositions:

wk =

(
w̄k

vk

)
, D =

(
D̄ 0

)
, E =

(
0 Ē

)
, V = ĒĒT > 0,

where Ē is square and non-singular. Finally, we assume that the communi-

cation network is temporally uncorrelated, that is, {αk} and {βk} in (3.1)

are independent and identically distributed (i.i.d.) Bernoulli processes with

P(αk = 1) = α and P(βk = 1) = β, respectively. We denote the variance of

αk by ᾱ := α(1− α).

The TCP-like information that is available to the controller is defined byI0 := {y0, β0}

Ik := {y0:k, α0:k−1, β0:k}, k ≥ 1.
(3.2)
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The UDP-like information is defined byG0 := {y0, β0}

Gk := {y0:k, β0:k}, k ≥ 1.
(3.3)

Note that the major difference between (3.2) and (3.3) is that in (3.2), the

acknowledgment signal, α0:k−1, is included, by which, as expected from the

LQG case in [19], the controller under (3.2) will provide better stability and

performance.

A convention we adopt in this chapter is one of zero-input strategy. That

is, the actuator does not do anything when there are control packet losses. It

was shown in [112] that for the disturbance free case (wk ≡ 0), using the one-

step previous control packet in order to compensate for the current packet

loss does not necessarily lead to better performance.

Let U andW be the appropriate spaces of control and disturbance policies,

respectively. We define control and disturbance policies, µ ∈ U and ν ∈ W ,

that consist of sequences of functions:

µ = {µ0, µ1, ..., µN−1}, ν = {ν0, ν1, ..., νN−1},

where µk and νk are Borel measurable functions which map the information

set (3.2) or (3.3) into the control and disturbance spaces of Rm and Rp, re-

spectively. Note that in the spirit of the worst-case approach, the disturbance

is assumed to know everything the controller does.

Now, our main objective in this chapter is to obtain output feedback con-

trollers over TCP- and UDP-networks, which minimize the following cost

function:

� T Nµ �:= sup
(x0,w0:N−1)

JN(µ, ν)1/2

E
{
|x0|2Q0

+
∑N−1

k=0 |wk|2
}1/2

, (3.4)

where

JN(µ, ν) = E
{
|xN |2QN +

N−1∑
k=0

|xk|2Q + αk|uk|2R
}
,

where Q,QN ≥ 0, R,Q0 > 0, and µ and ν are the control and disturbance
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policies as introduced earlier. Note that the control uk incurs the additional

cost only if it is applied to the plant. This can be viewed as an H∞ optimal

control problem [106]. It is worth noting that if αk is included in (3.2), then

the problem can be studied in the framework of Markov jump linear systems,

and the optimal controller can then be obtained directly from [36].

Associated with the system (3.1), we introduce the zero-sum dynamic game

that is parametrized by the disturbance attenuation parameter, γ > 0:

JNγ (µ, ν) = E
{
|xN |2QN − γ

2|x0|2Q0
+

N−1∑
k=0

|xk|2Q + αk|uk|2R − γ2|wk|2
}
, (3.5)

subject to system (3.1a) and the measurement equation (3.1b).

Now, in view of (3.4) and (3.5), our main objective in this chapter can

be rephrased as one of obtaining a controller for (3.1) under the specified

information structure such that it minimizes the cost function (3.5) while

the disturbance maximizes the same cost function. In other words, we need

to characterize a saddle point,1 say (µγ, νγ), for the zero-sum dynamic game

(3.5) in terms of γ.

As in standard H∞ control [106], the existence of saddle-point solutions for

(3.5) will be dependent on the value of γ. Therefore, we need to characterize

the smallest value of γ, say γ∗, above which the saddle-point solutions exist.

Then, by definition, for any γ > γ∗, the saddle point, (µγ, νγ), exists, provided

that γ∗ is finite. Moreover, for any finite γ > γ∗, µγ is a minimax controller

that leads to finite upper value for the zero-sum dynamic game in (3.5), and

achieves the performance level of γ for (3.4), i.e., under µγ, � T Nµγ �≤ γ.

After characterizing a class of minimax controllers for the TCP- and UDP-

cases, the next goal is to examine such controllers with respect to the com-

munication channel conditions. Specifically, given the controllers, we need

to obtain the smallest values of α and β, say αc and βc, for the closed-loop

system stability and performance. Obviously, αc and βc are functions of γ,

and γ∗ is a function of α and β.

In what follows, in Sections 3.3-3.5, we obtain a class of output feedback

minimax controllers for the TCP-case. Toward that end, we apply the cer-

1See [106] and [61] for the definition of saddle point for zero-sum dynamic games.
Normally, in going from (3.4) to (3.5), one would be looking for the minimax solution of
(3.5), but as in [106], one could instead look for the saddle-point solution, without any
loss of generality.
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tainty equivalence principle discussed in Appendix B.2, in view of which the

corresponding zero-sum dynamic game can be analyzed through three steps

discussed in Appendix B.2. Note that the certainty equivalence principle

was originally developed by [106] and [107] for the deterministic (no packet

drops) H∞ control problem, and the results presented in Appendix B.2 can

be regarded as the certainty equivalence principle of the H∞ control problem

for the TCP-case.

In Section 3.6, we obtain a (different) class of output feedback minimax

controllers for the UDP-case. We consider a special case of this problem,

where there is no measurement noise in (3.1b). As discussed in Section

3.6, the general minimax control problem for the UDP-case is hard, since

there is no acknowledgment of control packet losses. In view of the certainty

equivalence principle in Appendix B.2, this is because part (b) of the certainty

equivalence principle cannot be applied to the UDP-case, which is shown in

Section 3.4.

3.3 State Feedback Minimax Control over the

TCP-Network

This section addresses part (a) of the certainty equivalence principle dis-

cussed in Appendix B.2. In particular, we obtain a state feedback minimax

controller over the TCP-network.

3.3.1 Finite-Horizon Case

Lemma 3.1. Consider the zero-sum dynamic game in (3.5) with a fixed

γ > 0 and α ∈ [0, 1]. Then:

(i) There exists a unique state feedback saddle-point solution if and only if

ρ(DTZk+1D) < γ2, for all k ∈ [0, N − 1], (3.6)

where Zk is generated by the generalized Riccati equation (GRE):

Zk = Q+ P T
uk

(αR + ᾱBTZk+1B)Puk − γ2P T
wk
Pwk +HT

k Zk+1Hk, (3.7)
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where ZN = QN , and

Hk = A− αBPuk +DPwk (3.8a)

Puk = (R +BT (I + αZk+1DM
−1
k DT )Zk+1B)−1 (3.8b)

×BT (I + Zk+1DM
−1
k DT )Zk+1A

Pwk = (γ2I −DT (I − αZk+1BL
−1
k BT )Zk+1D)−1 (3.8c)

×DT (I − αZk+1BL
−1
k BT )Zk+1A

Mk = γ2I −DTZk+1D (3.8d)

Lk = R +BTZk+1B. (3.8e)

(ii) The feedback saddle-point policies, (µ∗γ, ν
∗
γ), can be written as

u∗k = µ∗k(Ik) = −Pukxk (3.9)

w∗k = ν∗k(Ik) = Pwkxk, k ∈ [0, N − 1]. (3.10)

(iii) If Mk has a negative eigenvalue for some k, then the zero-sum dynamic

game does not admit a saddle point and the upper value of the game

becomes unbounded.

Proof. To prove parts (i) and (ii), we need to employ dynamic programming

with the following value function Vk(xk) = E{xTkZkxk|Ik}, where Zk ≥ 0 is

given in (3.7) with ZN = QN [61]. Now, by induction, suppose the claim

is true for k + 1. That is, Vk+1(xk+1) is the saddle-point value of the static

zero-sum game at k + 1 under (3.6). Then, since the information structure

of the TCP-network is nested for all k, the cost-to-go at k can be written as

Vk(xk) = min
uk

max
wk

E
{
hk(x, u, w) + Vk+1(xk+1)

∣∣Ik} (3.11)

= max
wk

min
uk

E
{
hk(x, u, w) + Vk+1(xk+1)

∣∣Ik}, (3.12)

where hk(x, u, w) := |xk|2Q + αk|uk|2R − γ2|wk|2. Under (3.6), the static zero-

sum game above is strictly convex in uk and concave in wk; hence there is a

unique pair of minimizer and maximizer, which can be written as

u∗k = −(R +BTZk+1B)−1BTZk+1(Axk +Dw∗k) =: ϕ1,k(xk, w
∗
k)

w∗k = (γ2I −DTZk+1D)−1DTZk+1(Axk + αBu∗k) =: ϕ2,k(xk, u
∗
k).
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The explicit expressions of u∗k and w∗k can be obtained by seeking fixed points

of the above:

u∗k = ϕ1,k(xk, ϕ2,k(xk, u
∗
k)) = −Pukxk

w∗k = ϕ2,k(xk, ϕ1,k(xk, w
∗
k)) = Pwkxk,

which is (3.9) and (3.10). Then the pair of (3.9) and (3.10) for each k consti-

tutes a saddle point for the static zero-sum game at k, and by substituting

(3.9) and (3.10) into (3.11) (or (3.12)), we arrive at the GRE. Proceeding

similarly, we can obtain the state feedback saddle-point strategies in (ii) with

the GRE for all k, where the corresponding saddle-point value is V0(x0).

To prove part (iii), suppose that it has a negative eigenvalue for some

k̄ ∈ [0, N − 1]. Then the corresponding static zero-sum game does not admit

a saddle point. In fact, there exists a sequence of maximizer strategies by

which the upper value of this static zero-sum game becomes unbounded at k̄,

which also proves the necessity of part (i) [106]. This completes the proof.

3.3.2 Infinite-Horizon Case

We now discuss the infinite-horizon problem of state feedback minimax con-

trol over the TCP-network. Before presenting the result, we provide some

preliminaries. In this section, we assume that QN = 0. We first state the

infinite-horizon version of the solution in Lemma 3.1.

• The associated generalized algebraic Riccati equation (GARE) can be

written as

Z̄ = Q+ P̄ T
u (αR + ᾱBT Z̄B)P̄u − γ2P̄ T

w P̄w + H̄T Z̄H̄, (3.13)

where H̄, P̄u, and P̄w are infinite-horizon versions of (3.8) with respect

to Z̄.

• The stationary minimax controller and the worst-case disturbance are

ū∗k = −P̄uxk (3.14)

w̄∗k = P̄wxk. (3.15)
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• The infinite-horizon version of the existence condition in Lemma 3.1(i)

is given by

ρ(DT Z̄D) < γ2. (3.16)

We also introduce the time-reverse notation, which is used in the next

proposition that states the convergence of the GRE. Let Z̃k := ZN−k. Then

the GRE in (3.7) can be rewritten as

Z̃k+1 = Q+ P̃ T
uk

(αR + ᾱBT Z̃kB)P̃uk − γ2P̃ T
wk
P̃wk + H̃T

k Z̃kH̃k, (3.17)

where P̃uk , P̃wk , and H̃k are the time-reverse versions of (3.8) in Lemma 3.1

with respect to Z̃k. The time-reverse version of the concavity condition can

be written as

ρ(DT Z̃kD) < γ2. (3.18)

Then we have the following result:

Proposition 3.1. Suppose (A,B) is controllable and (A,Q1/2) is observable.

Define the sets

Γ1(α) := {γ > 0 : Z̄ ≥ 0 solves (3.13) and satisfies (3.16)}

Λ1(γ) := {α ∈ [0, 1) : Z̄ ≥ 0 solves (3.13) and satisfies (3.16)}.

Let γ∗1(α) := inf{γ : γ ∈ Γ1(α)} and αc(γ) := inf{α : α ∈ Λ1(γ)}. Then for

any finite γ > γ∗1(α) and α > αc(γ), as k → ∞, {Z̃k} → Z̄+ where Z̄+ is a

fixed point of (3.13) that satisfies (3.16).

Proof. Let us first note some basic facts regarding the GARE in (3.13). In

[106], it was proven that when α = 1, (3.16) is a necessary and sufficient

condition that guarantees convergence of the GRE in (3.17). In particular,

for a fixed γ > γ∗1(1), given a fixed point of (3.13) that satisfies (3.16), {Z̃k}
converges to Z̄+. Now, when α = 0, (3.13) can be written as

Z̄ = AT Z̄A+Q+ AT Z̄D(γ2I −DT Z̄D)−1DT Z̄A, (3.19)

which is the algebraic Riccati equation (ARE) associated with the optimiza-
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tion problem of (B.1) in Appendix B.1. If A is stable, (3.19) has a solution

that satisfies (3.16), which is also equivalent to saying that {Z̃k} converges

to Z̄+ [106]. When A is unstable, since the maximum cost of (B.1) is not

bounded, (3.19) does not admit any solution in the class of positive semi-

definite matrices, which also shows that {Z̃k} does not converge for any

γ > 0. Thus, Γ(0) is an empty set when A is unstable.

Now, from definitions of γ∗1(α) and αc(γ), Z̄ ≥ 0 is a solution to (3.13)

that satisfies (3.16). Due to Lemma B.1(ii), Z̄ constitutes an upper bound on

the GRE. Therefore, we have (3.18), which guarantees monotonicity of the

GRE from Lemma B.1(i). Then, we can conclude that the monotonic and

bounded sequence {Z̃k} converges as k →∞. This completes the proof.

We also have the following result which shows the relationship between

LQG and minimax control over the TCP-network.

Proposition 3.2. Suppose that the assumptions in Proposition 3.1 hold.

Then, as γ →∞, Z̄+ defined in Proposition 3.1 converges to the solution of

the following ARE:

Z̄+ = AT Z̄+A− αAT Z̄+B(R +BT Z̄+B)−1BT Z̄+A+Q.

Proof. The value of the soft-constrained zero-sum dynamic game decreases

in γ [106]. Then the result follows immediately.

We now state the main result of this section.

Theorem 3.1. Suppose (A,B) is controllable and (A,Q1/2) is observable.

Then for any finite γ > γ∗1(α) and α > αc(γ), the following hold:

(i) The state feedback minimax controller is given by (3.14) with Z̄+.

(ii) Suppose αP̄ T
u RP̄u− γ2P̄ T

w P̄w > 0. Then the closed-loop system with the

worst-case disturbance in (3.15), i.e., xk+1 = (A − αkBP̄u + DP̄w)xk,

is stable in the mean-square sense, that is, E{|xk|2} → 0 as k →∞ for

all initial conditions.

(iii) The closed-loop system, i.e., xk+1 = (A−αkBP̄u)xk+Dwk, is bounded in

the mean-square sense, that is, there exists M ≥ 0 such that E{|xk|2} ≤
M for all k and initial conditions.
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(iv) The state feedback minimax controller achieves the performance level of

γ, that is, � T ∞µ∗γ �≤ γ.

Proof. Parts (i) follows from Proposition 3.1. To prove part (ii), by using

(3.13), we have

E{|xk+1|2Z̄+} − E{|xk|2Z̄+} = E{xTk (H̄T Z̄+H̄ + ᾱP̄ T
u B

T Z̄+BP̄u − Z̄+)xk}

= −E{xTkQxk + αxTk P̄
T
u RP̄uxk − γ2xTk P̄

T
w P̄wxk}.

Now, we have

E{xTk+1Z̄
+xk+1} = xT0 Z̄

+x0 −
k∑
i=0

E
{
xTi (Q+ αP̄ T

u RP̄u − γ2P̄ T
w P̄w)xi

}
.

Since the left-hand side of the above equation is bounded below by zero, we

have

lim
k→∞

E{xTk (Q+ αP̄ T
u RP̄u − γ2P̄ T

w P̄w)xk} = 0.

Then in view of the observability assumption and (αP̄ T
u RP̄u− γ2P̄ T

w P̄w) > 0,

we must have E{|xk|2} → 0 as k →∞.

For part (iii), when wk ≡ 0, we have the following equation:

Z = αP̄ T
u RP̄u + (1− α)ATZA+ α(A−BP̄u)TZ(A−BP̄u) +Q,

where Z ≥ 0 exists due to Theorem 3 in [19] and the relationship between

the minimax control when wk ≡ 0 and the LQG control. Then from (ii), we

can show that E{|xk|2} → 0 as k →∞ for all initial conditions when wk ≡ 0;

hence, the result follows.

To prove part (iv), first note that for any finite γ > γ∗1(α), since the upper

value of the game is bounded with Z̄+, we have the following inequality for

all disturbances in `p2:

J∞(µ∗γ, w) ≤ xT0 Z̄
+x0 + γ2E

{ ∞∑
k=0

|wk|2
}
.

By taking x0 = 0, the result holds. This completes the proof.
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3.4 Minimax Estimation over the TCP-Network

This section considers minimax estimation for the TCP-case, which corre-

sponds to part (b) of the certainty equivalence principle in Appendix B.2.

The detailed analysis of this section can be found in Chapter 2.

Lemma 3.2. Consider the zero-sum dynamic game in (3.5) with α ∈ [0, 1],

β ∈ [0, 1], and a fixed γ > 0. Then:

(i) A stochastic minimax estimator (SME) exists if and only if

ρ(ΣkQ) < γ2, ∀k ∈ [0, N − 1], (3.20)

where Σk is generated by the following generalized stochastic Riccati

equation (GSRE) in (2.14).

(ii) The SME is

x̄k+1 = Ax̄k + αkBuk + AΠk(γ
−2Qx̄k + βkC

TV −1(yk − Cx̄k)), (3.21)

where the estimator gain Πk = (Σ−1
k − γ−2Q+ βkC

TV −1C)−1.

We now construct the smallest values of γ and β for which the SME exists.

Proposition 3.3. Suppose that (A,C) is observable and (A,D) is control-

lable. Define the following sets and parameters:

Γ2(β) := {γ > 0 : ρ(ΣkQ) < γ2, ∀k}, γ∗2(β) := inf{γ : γ ∈ Γ2(β)}

Λ2(γ) := {β ∈ [0, 1) : ρ(ΣkQ) < γ2, ∀k}, βc(γ) := inf{β : β ∈ Λ2(γ)}.

Then, for any finite γ > γ∗2(β) and β > βc(γ), ρ(ΣkQ) < γ2 holds for all k;

hence, the SME exists.

Remark 3.1. (i) Due to the acknowledgment nature of the TCP-case, the

SME is a function of control and measurement packet loss information,

i.e. {αk} and {βk}.

(ii) The SME is time varying and random because the estimator gain de-

pends on the GSRE that is a function of the measurement arrival pro-

cess. Furthermore, when βk = 0, while the Kalman filter in [21] is
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identical to the open-loop estimator, the SME performs the state esti-

mation under the worst-case disturbance.

(iii) For any finite γ > γ∗2(β) and β > βc(γ), by induction, we can show

that Pk ≤ Σk for all k, where Pk with P0 = Q−1
0 is the error covariance

matrix of the Kalman filter in Appendix A.3. Moreover, as γ →∞, the

SME and Σk converge to the Kalman filter and Pk in [21].

3.5 Minimax Control over the TCP-Network

In this section, we consider part (c) of the certainty equivalence principle

in Appendix B.2 and therefore complete the design of the output feedback

minimax control system over the TCP-network. Toward this end, we com-

bine the results in Sections 3.3 and 3.4, and then introduce one additional

existence condition for the worst-case state estimator.

Theorem 3.2 ([99, 101]). For any γ, α, and β, suppose (3.6) and (3.20)

hold for all k, i.e. there exist the state feedback minimax controller and the

SME over the TCP-network. Then:

(i) The worst-case state estimator, x̂k, exists if

ρ(ΣkZk) < γ2, for all k ∈ [0, N − 1]. (3.22)

(ii) If the condition in (i) holds, then the worst-case state estimator can be

written as

x̂k = (I − γ−2ΣkZk)
−1x̄k, (3.23)

where x̄k is generated by the SME in Lemma 3.2.

(iii) If the condition in (i) holds, then the output feedback minimax controller

is given by (3.9) with (3.23). Furthermore, this controller achieves the

disturbance attenuation performance level of γ, that is, � T Nµ∗γ �≤ γ.

Remark 3.2. As expected from standard H∞ control theory, there are three

conditions on γ; (3.20) is for the existence of the SME, (3.6) is related to the

state feedback minimax controller, and (3.22) is the spectral radius condition
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that ensures the existence of the worst-case state estimator. Moreover, unlike

the LQG case considered in [21], there is no separation between control and

estimation due to (3.22).

For the infinite-horizon case, we can use the theories developed in Sections

3.3 and 3.4 to obtain a corresponding output feedback minimax controller.

This is done next; the proof is similar to that of Theorem 3.2.

Theorem 3.3. Suppose that (A,B) and (A,D) are controllable, and (A,Q1/2)

and (A,C) are observable. Define

Γ3(α, β) := {γ > 0 : γ > γ∗1(α), γ > γ∗2(β), ρ(ΣkZ̄
+) < γ2, ∀k},

where Z̄+ is the solution of the GARE in (3.13) that satisfies (3.16). Let

γ∗3(α, β) := inf{γ : γ ∈ Γ3(α, β)}. Then for any finite γ > γ∗3(α, β),

α > αc(γ), and β > βc(γ), the stationary output feedback minimax controller

is given by (3.14) with the following worst-case state estimator:

x̂k = (I − γ−2ΣkZ̄
+)−1x̄k, (3.24)

where x̄k is generated by the SME in Lemma 3.2. Finally, � T ∞µ∗γ �≤ γ. �

Remark 3.3. (i) γ∗3(α, β) is the smallest value of γ that satisfies all the

existence conditions, which is the optimum disturbance attenuation level

of the original disturbance attenuation problem.

(ii) The optimum disturbance attenuation level is a function of α and β. In

fact, γ∗3(1, 1) is related to the deterministic H∞ control problem, and

γ∗3(0, 0) is analogous to the open-loop problem that is not finite when A

is unstable.

(iii) As can be seen from Theorem 3.3, the critical values, αc(γ) and βc(γ),

are coupled with each other through γ; hence, in general, their values are

problem dependent and cannot be quantified analytically. This fact actu-

ally stems from standard H∞ control, in which the optimum disturbance

attenuation level (the smallest value of γ in the context of standard H∞

control) cannot be determined analytically, and a heuristic approach is

generally used depending on the problem at hand [106, 111].
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(iv) When γ → ∞, from (3.24), we can easily see that x̂k = x̄k for all k.

Furthermore, the state feedback minimax controller as well as the SME

collapse to the LQG system presented in [21] in view of Proposition 3.2

and Remark 3.1(iii).

3.6 Minimax Control over the UDP-Network

In this section, we study the minimax control problem over the UDP-network.

3.6.1 Finite-horizon Case

We first consider the finite-horizon problem. The UDP-like information

structure and the associated cost function are given by (3.3) and (3.5), re-

spectively. We assume that the linear dynamical system in (3.1) has no

measurement noise (E = 0), and C is the identity matrix, that is, in case of

transmission the controller has perfect access to instantaneous value of the

state. We then have the following linear dynamical system:

xk+1 = Axk + αkBuk +Dwk, yk = βkxk. (3.25)

We let ᾱ := α − α2, α′ := 1 − α and β′ := 1 − β. We now obtain the

output feedback minimax controller (and the worst-case disturbance) under

the UDP-type information structure for (3.25).

Lemma 3.3. Consider the zero-sum dynamic game in (3.5) with (3.25). For

fixed γ > 0, α ∈ [0, 1] and β ∈ [0, 1], we have the following result:

(i) A unique output feedback saddle-point solution exists if and only if

ρ(DTZk+1D) < γ2, (3.26)

where Zk is generated by the following coupled generalized Riccati equa-
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tions (GREs): ZN = QN , UN = 0 and

Zk = H̆T
k Zk+1H̆k +Q− γ2P̆ T

wk
P̆wk

+ P̆ T
uk

(αR + ᾱBTZk+1B + β′ᾱBTUk+1B)P̆uk

= Q+ ATZk+1A− Uk + β′ATUk+1A (3.27)

Uk = β′ATUk+1A+ P̆ T
wk

(γ2I −DTZk+1D)P̆wk + 2αP̆ T
uk
BTZk+1DP̆wk

− P̆ T
uk

(αR + β′ᾱBTUk+1B)P̆uk + 2αP̆ T
uk
BTZk+1A− 2P̆ T

wk
BTZk+1A,

(3.28)

where

H̆k = A− αBP̆uk +DP̆wk

P̆uk = (Sk + αBTZk+1DM
−1
k DTZk+1B)−1

×BT (I + Zk+1DM
−1
k DT )Zk+1A

P̆wk = (Mk + αDTZk+1BS
−1
k BTZk+1D)−1

×DT (I − αZk+1BS
−1
k BT )Zk+1A

Sk = R +BT (Zk+1 + α′β′Uk+1)

Mk = γ2I −DTZk+1D.

(ii) The saddle-point solution can be written as, where x̂k = E{xk|Gk}:

u∗k = −P̆uk x̂k (3.29)

w∗k = P̆wk x̂k, k ∈ [0, N − 1]. (3.30)

Proof. To prove parts (i) and (ii), we need to employ dynamic programming

or rather the Isaacs equation. At stage N , the value function is given by

VN(xN) = E{xTNQNxN |GN}. It is easy to see that, from the dynamic pro-

gramming equation, the cost-to-go from stage N − 1 can be expressed as

VN−1(xN−1) = min
uN−1

max
wN−1

E
{
hN−1(x, u, w) + VN(xN)|GN−1

}
(3.31)

= max
wN−1

min
uN−1

E
{
hN−1(x, u, w) + VN(xN)|GN−1

}
(3.32)

= E{|xN−1|2ZN−1
+ |eN−1|2UN−1

|GN−1}, (3.33)

where hN−1(x, u, w) := |xN−1|2Q+αN−1|uN−1|2R−γ2|wN−1|2, ZN−1 is the GRE
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in Lemma 3.1, ek := xk − x̂k with x̂k = E{xk|Gk}, and UN−1 is given by

UN−1 = −αP T
uN−1

(R +BTQNB)PuN−1
+ P T

wN−1
(γ2I −DTQND)PwN−1

+ 2αP T
uN−1

BTQNA+ 2αP T
uN−1

BTQNDPwN−1
− 2PwN−1

DTQNA,

where PuN−1
and PwN−1

are defined in Lemma 3.1. Note that UN−1 ≥ 0. The

equality in (3.33) is achieved by using the following saddle-point solution

under (3.26):

u∗N−1 = −PuN−1
x̂N−1, w

∗
N−1 = PwN−1

x̂N−1,

which can be achieved by solving the static zero-sum game in (3.31).

Note that as mentioned in [19], the estimator error becomes a function of

uN−2 at stage N − 2 so that there is dual effect. To see this, we first write

the cost-to-go from stage N − 2:

VN−2(xN−2) = min
uN−2

max
wN−2

E
{
hN−2(x, u, w) + VN−1(xN−1)|GN−2

}
(3.34)

= max
wN−2

min
uN−2

E
{
hN−2(x, u, w) + VN−1(xN−1)|GN−2

}
. (3.35)

Now, note that the estimation error at k = N−2 is zero when βN−2 = 1, and

eN−1 = AeN−2 + (αN−2 − α)uN−2, otherwise. Therefore, (3.34) (or (3.35))

yields a unique minimizer and maximizer under (3.26), which can be written

as follows:

u∗N−2 = −(R +BT (ZN−1 + α′β′UN−1)B)−1BTZN−1(Ax̂N−2 +Dw∗N−2)

=: ψ1,N−2(x̂N−2, w
∗
N−2)

w∗N−2 = (γ2I −DTZN−1D)−1DTZN−1(Ax̂N−2 + αBu∗N−2)

=: ψ2,N−2(x̂N−2, u
∗
N−2).

We obtain the saddle point, (u∗N−2, w
∗
N−2), for (3.34) (or (3.35)) by solving

the above fixed-point equations:

u∗N−2 = ψ1,N−2(x̂N−2, ψ2,N−2(x̂N−2, u
∗
N−2)) = −P̆uN−2

x̂N−2 (3.36)

w∗N−2 = ψ2,N−2(x̂N−2, ψ1,N−2(x̂N−2, w
∗
N−2)) = P̆wN−2

x̂N−2. (3.37)
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Substituting (3.36) and (3.37) into (3.34) (or (3.35)), we obtain

VN−2(xN−2) = E{|xN−2|2ZN−2
|GN−2}+ E{|eN−2|2UN−2

|GN−2},

where ZN−2 and UN−2 are given in (3.27) and (3.28), respectively. Then pro-

ceeding similarly, the minimax controller and the worst-case disturbance that

constitute a saddle point can be written as (3.29) and (3.30), respectively.

This completes the proof.

In summary, for the linear system given in (3.25), the corresponding mini-

max controller is (3.29), which is linear in the information Gk given by (3.3),

and is a function of two coupled nonlinear GREs (3.27) and (3.28). If the

above existence condition fails to hold, then the minimax controller does not

exist. In fact, the value of the corresponding zero-sum dynamic game would

then be infinite as we discussed in the TCP-case.

It should be mentioned that there is no known general solution to the

problem of LQG control over the UDP-network for the noisy measurement

model in (3.1b), since the associated optimization problem is then no longer

convex, and the optimal LQG controller is generally nonlinear in the avail-

able information ([21]). Also, there is no separation between control and

estimation. We would naturally expect a similar difficulty to arise in the

minimax control problem under the noisy measurement case.

We next proceed with the infinite-horizon case for again the additive noise

free problem.

3.6.2 Infinite-Horizon Case

The infinite-horizon versions of the coupled GREs and the existence condition

are provided below:

• The coupled GAREs are given by

Z = H̆TZH̆ +Q− γ2P̆ T
w P̆w + P̆ T

u (αR + ᾱBTZB + β′ᾱBTUB)P̆u

= Q+ ATZA− U + β′ATUA (3.38)

U = β′ATUA+ P̆ T
w (γ2I −DTZD)P̆w − P̆ T

u (αR + β′ᾱBTUB)P̆u

+ 2αP̆ T
u B

TZA− 2P̆ T
wB

TZA+ 2αP̆ T
u B

TZDP̆w, (3.39)
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where P ′u, P ′w, and H ′ are infinite-horizon versions of P ′uk , P ′wk , and

H ′k, respectively.

• The corresponding minimax controller and the worst-case disturbance

are given by

u∗k = −P̆ux̂k (3.40)

w∗k = −P̆wx̂k. (3.41)

• The existence condition can be written as

ρ(DTZD) < γ2. (3.42)

We need to obtain conditions on γ, α and β that guarantee convergence

of the coupled GREs in (3.27) and (3.28) under (3.26), which can be charac-

terized by

γ∗U(α, β) = inf{γ > 0 : lim
k→∞

Z̃k = Z, lim
k→∞

Ũk = U, Z ≥ 0 and U ≥ 0 solve

(3.38) and (3.39), and satisfy (3.42)}

αUc (γ, β) = inf{α ∈ [0, 1) : lim
k→∞

Z̃k = Z, lim
k→∞

Ũk = U, Z ≥ 0 and U ≥ 0

solve (3.38) and (3.39), and satisfy (3.42)}

βUc (γ, α) = inf{β ∈ [0, 1) : lim
k→∞

Z̃k = Z, lim
k→∞

Ũk = U, Z ≥ 0 and U ≥ 0

solve (3.38) and (3.39), and satisfy (3.42)},

where Z̃k and Ũk are the time-reverse equations of (3.27) and (3.28), respec-

tively, as introduced in Section 3.3.2. Note that these parameters are coupled

with each other. Also, if γ > γ∗U(α, β), α > αUc (γ, β), and β > βUc (γ, α), then

the infinite-horizon minimax controller for the UDP-case is (3.40), provided

that γ is finite, which stabilizes the closed-loop system and achieves the dis-

turbance attenuation level of γ. Moreover, as γ → ∞, the critical values,

αUc (γ, β) and βUc (γ, α), converge to the corresponding LQG values in [19, 21].

For the LQG problem, the explicit convergence conditions of the corre-

sponding Riccati equations were obtained in [19, 21] when B is invertible.

Since the minimax controller is equivalent to the LQG controller when γ

asymptotically goes to infinity, those conditions are necessary for the min-
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imax controller; that is, due to the existence condition, the conditions in

[19, 21] are only necessary for the convergence of (3.27) and (3.28) even if B

is invertible. We should note that the general convergence conditions cannot

be obtained analytically, because the critical values, αUc (γ, β) and βUc (γ, α),

are coupled with each other.

We now state the main result of this section.

Theorem 3.4. Suppose that (A,B) and (A,D) are controllable, and (A,Q1/2)

is observable. Suppose that γ > γ∗U(α, β) is finite, and α > αUc (γ, β) and

β > βUc (γ, α). Then:

(i) The minimax controller is given by (3.40).

(ii) Suppose αP̆ T
u RP̆u− γ2P̆ T

w P̆w > 0. Then the closed-loop system with the

worst-case disturbance in (3.41) and the estimation error are bounded

in the mean-square sense, that is, there exist M,M ′ ≥ 0 such that

E{|xk|2} ≤M and E{|ek|2} ≤M ′ for all k and initial conditions.

(iii) The closed-loop system with an arbitrary disturbance and the estimation

error are bounded in the mean-square sense.

(iv) The minimax controller in (i) achieves the disturbance attenuation level

of γ.

Proof. Parts (i) and (iv) follow from the preceding discussion. To prove part

(ii), by using (3.38) and (3.39), we have

E{|xk+1|2Z − |xk|2Z + |ek+1|2U − |ek|2U}

= E{−xTk (Q+ αP̆ T
u RP̆u − γ2P̆ T

w P̆w)xk + eTk (αP̆ T
u RP̆u − γ2P̆ T

w P̆w)ek}.

Summing up the above expression over k yields

E{|xk+1|2Z + |ek+1|2U}

= E{|x0|2Z + |e0|2U}+
k∑
i=0

E{eTi (αP̆ T
u RP̆u − γ2P̆ T

w P̆w)ei}

−
k∑
i=0

E{xTi (Q+ αP̆ T
u RP̆u − γ2P̆ T

w P̆w)xi}.
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Note that for any L ≥ 0, β′E{xTkLxk} ≥ E{eTkLek}, and we have αP̆ T
u RP̆u−

γ2P̆ T
w P̆w > 0. Therefore,

E{|xk+1|2Z + |ek+1|2U} ≤ E{|x0|2Z + |e0|2U}

−
k∑
i=0

E{xTi (Q+ β(αP̆ T
u RP̆u − γ2P̆ T

w P̆w))xi}.

Since the left-hand side of the above inequality is bounded below by zero, we

have limk→∞ E{xTk (Q + β(αP̆ T
u RP̆u − γ2P̆ T

w P̆w))xk} = 0. Since αP̆ T
u RP̆u −

γ2P̆ T
w P̆w > 0, in view of the observability assumption, we have the desired

result.

For part (iii), when wk ≡ 0, we have

Z = α′ATZA+ α(A−BP̆u)TZ(A−BP̆u) + P̆ T
u (αR + ᾱβ′BTUB)P̆u +Q

U = αATZA− α(A−BP̆u)TZ(A−BP̆u) + β′ATUA

− P̆ T
u (αR + ᾱβ′BTUB)P̆u,

where Z ≥ 0 and U ≥ 0 exist due to Theorem 9 in [19] and the relationship

between the minimax control when wk ≡ 0 and the LQG control. Then from

(ii), we can show that E{|xk|2} and E{|ek|2} are bounded when wk ≡ 0;

hence, the result follows.

3.7 Numerical Examples

In this section, we provide numerical examples to demonstrate the relation-

ship between α, β, and γ, and compare the disturbance attenuation perfor-

mance for different values of γ.

3.7.1 Stability and Performance Region

Consider the following system:

xk+1 = Axk + αkuk + wk, (3.43)

where A = 2 and A = 1.1. We take R = 1 and Q = 1.
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Figure 3.1: Stability and performance region of (3.43) for the TCP-case.

Figure 3.1 shows the stability and performance region of (3.43) for the

TCP-case. To obtain the region numerically, we use the following approach:

(S.1) Fix α = 1 and take a sufficiently large value of γ > 0.

(S.2) Obtain the solution of the GARE in (3.13), and check the existence

condition in (3.16).

(S.3) If the existence condition holds, decrease α and then go to (S.2). Oth-

erwise, it is the critical value of α for that γ; go to the next step.

(S.4) Decrease γ and fix α = 1. Go to (S.2).

Figure 3.1 shows (as goes with intuition) that the system needs a more reli-

able communication channel if the high level of disturbance attenuation is re-

quired. For both cases, αc(γ)→ αR as γ →∞ where αR = 1− (1/22) = 0.75

when A = 2 has been calculated in [19]. Moreover, as the plant becomes more

open-loop unstable, the stability and performance region becomes smaller.

This is an expected result, since the more open-loop unstable a plant is, the

more frequently we need to measure its state and control it. Finally, it is

easy to see that α > αR is a necessary condition for the existence of the state

feedback minimax controller for the TCP-case.

The region of stability and performance for the UDP-case is shown in Fig.

3.2. We used the same approach above to obtain this plot. As expected, the
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Figure 3.2: Stability and performance region of (3.43) for the UDP-case.

UDP controller has a smaller stability and performance region in terms of α,

β, and γ than the TCP-case. Moreover, as γ → ∞, αUc (γ, β) and βUc (γ, α)

converge to the corresponding critical values shown in [19]. This also shows

that the condition given in [19] is a necessary condition for the existence of

the minimax controller for the UDP-case.

3.7.2 Disturbance Attenuation Performance (TCP-case)

We use the pendubot system as in [21], where the system and cost matrices

can be found. Figure 3.3 shows the existence regions of the state feedback
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the SME for the pendubot system.

minimax controller and the SME. This plot is also obtained by using the

approach described in Section 3.7.1. The vertical axis is α for the state

feedback controller, whereas it is β for the SME. Note that the intersection

of regions above the two lines guarantees the existence of the state feedback

minimax controller as well as the SME. Moreover, as γ →∞, all these regions

converge to the corresponding value of the LQG problem in [21].

Figure 3.4 shows the disturbance attenuation performance of the minimax

controller for different values of γ when wk is Gaussian or a sinusoidal distur-

bance with amplitude of 0.01. We use α = 0.8 and β = 0.9. As can be seen,

when γ = 20, the minimax controller outperforms the LQG controller. Fi-

nally, when γ is sufficiently large, the performance of the minimax controller

is identical to the corresponding LQG controller in [21].

3.8 Conclusions

In this chapter, we have studied the minimax control problem for LTI systems

over unreliable communication channels. We have considered two different

scenarios for the communication channels: the TCP-case and the UDP-case.

Unlike the previous work, we have considered the situation when the sen-

sor noise and the disturbance are not necessarily stochastic processes, but
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Figure 3.4: Disturbance attenuation performance with α = 0.8 and β = 0.9
(top: Gaussian disturbance, bottom: sinusoidal disturbance).

are treated as adversarial inputs. The control problems are then naturally

formulated within the framework of stochastic zero-sum dynamic games.

For both the TCP and UDP cases, we have obtained different classes of

output feedback minimax controllers by characterizing the corresponding sets

of existence conditions in terms of the H∞ disturbance attenuation parameter

and the packet loss rates. We have shown that stability and performance

of the closed-loop system are determined by the disturbance attenuation

parameter and the packet loss rates. Finally, as the disturbance attenuation

parameter goes to infinity, the minimax controllers become equivalent to the

corresponding LQG controllers (TCP or UDP controllers).
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Part II

Mean Field Games
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CHAPTER 4

RISK-SENSITIVE AND ROBUST MEAN
FIELD GAMES

4.1 Introduction

In this chapter, we study two classes of mean field games; linear-quadratic

risk-sensitive mean field game (LQ-RSMFG, P1) and LQ robust mean field

game (LQ-RMFG, P2).

In P1, each agent minimizes an exponentiated performance index, which

captures risk-sensitive behavior. In P2, each agent minimizes a worst-case

performance index, where the performance is affected by a fictitious agent or

an adversary who affects each agent’s state system through an input (possibly

independent across different agents’ systems). In contrast to [113], the ad-

versary in P2 is state dependent, which is generally unknown to each agent.

In both cases, that is P1 and P2, we consider the heterogeneous agent case

with infinite-horizon performance indices, and the individual agents are cou-

pled with each other through the mean field term included in the individual

performance indices.

Now, the main objectives of the chapter are as follows:

(i) to characterize Nash equilibria for P1 and P2 in a decentralized man-

ner;

(ii) to establish conditions under which the Nash equilibria of P1 and P2

are equivalent ;

(iii) to analyze limiting behaviors of equilibria in the large population regime

as well as at particular limiting values of the design parameters.

To attain our goal, we use mean field game theory. Specifically, we first

obtain an individual optimal decentralized controller by solving the LQ risk-

sensitive optimal control problem (LQ-RSOCP) for P1 or the LQ stochastic
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zero-sum differential game (LQ-SZSDG) for P2, which is a function of the

local state information and an arbitrary deterministic function. Note that

as shown in [75, 106, 78, 79, 77], LQ-RSOCP and LQ-SZSDG are equiva-

lent; therefore, the corresponding optimal controllers are identical. We then

construct a mean field system for P1 and P2 that is used to approximate

the mass behavior effect on the individual agent by characterizing a unique

deterministic function that can be determined off-line. This characterization

is based on a fixed point analysis using a contraction mapping argument.

Since the worst-case disturbance plays a crucial role in P2, these two mean

field systems are not generally identical, which results in providing a different

estimate of the mass behavior.

We show consistency between the best approximated mass behaviors for

P1 and P2, and the actual mass behavior in different senses. In particu-

lar, we prove that in the large population regime, the approximation error

converges to zero in both the mean-square sense and the almost sure sense.

We prove that the set of N -optimal decentralized controllers form ε-Nash

equilibria for P1 and P2, and ε can be made arbitrarily close to zero when

the population size grows to infinity. We also show that the ε-Nash equilibria

for P1 and P2 are partially equivalent, because of the equivalence of the in-

dividual optimal control laws, and the differences in the approximated mass

behaviors obtained by the corresponding mean field systems.

Finally, we discuss limiting behaviors of the ε-Nash equilibria for P1 and

P2 with respect to the design parameters. Specifically, we show that when

the disturbance attenuation parameter goes to infinity, their ε-Nash equilibria

are equivalent to that of the risk-neutral game considered in [71]. We also

show by numerical examples that the Nash equilibria feature robustness.

This follows from the inherent robustness property of the individual optimal

control problems, i.e., LQ-RSOCP and LQ-SZSDG.

Organization

The chapter is organized as follows. In Section 4.2, we formulate LQ risk-

sensitive mean field games and LQ robust mean field games. We solve the

LQ risk-sensitive mean field game in Section 4.3, and discuss its limiting

behaviors with respect to two design parameters in Section 4.4. In Section
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4.5, we solve the LQ robust mean field game. In Section 4.6, the partial

equivalence between the LQ risk-sensitive mean field game and the LQ robust

mean field game, and their limiting behaviors, are discussed. In Section

4.7, numerical examples are presented to illustrate the results. We end the

chapter with the concluding remarks of Section 4.8.

We use the following notation: universal constants c, M , ε, etc., are inde-

pendent of the population size N and/or the time-horizon T . On the other

hand, constants ε(N) and X(T ) are dependent on N and T , respectively,

and X(N, T ) is dependent on N and T , jointly.

4.2 Problem Formulation

In this section, we formulate two problems: the linear-quadratic risk-sensitive

mean field game (LQ-RSMFG, P1) and the linear-quadratic robust mean

field game (LQ-RMFG, P2).

4.2.1 LQ Risk-Sensitive Mean Field Games (P1)

The stochastic differential equation (SDE) for agent i, 1 ≤ i ≤ N , is given

by

dxi = (A(θi)xi +B(θi)ui)dt+
√
µD(θi)dWi(t), (4.1)

where xi(0) = x̄i; xi ∈ Rn is the state; ui ∈ Rm is the control input;

{Wi(t), t ≥ 0} is a p-dimensional standard Brownian motion defined on a

complete probability space (Ω,F ,P); and µ > 0 is a noise intensity parame-

ter. Further, θi ∈ Θ ⊂ Rq, with q := n(n+m+ p), is an independent system

vector that determines the triplet (A(θ), B(θ), D(θ)) of each agent. We have

the following assumption:

Assumption 4.1. (a) {Wi(t), t ≥ 0; 1 ≤ i ≤ N} are independent across

different agents.

(b) A(·), B(·), and D(·) are continuous matrix-valued functions of θ with

appropriate dimension for all θ ∈ Θ. Also, Θ is compact.

(c) x̄i ∈ X for all i where X is a compact subset of Rn.
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(d) For the first N ≥ 1 agents, we have the following empirical distribution:

FN(θ, x) =
1

N

N∑
i=1

1{θi≤θ, x̄i≤x}, θ ∈ Θ, x ∈ X,

where each inequality is componentwise.

(e) There is a probability distribution F (θ, x) on Rq+n such that FN(θ, x)

converges weakly to F (θ, x) as N →∞. In other words, for any bounded

and continuous function p(θ, x) on Rq+n [114],

lim
N→∞

∫
Rq+n

p(θ, x)dFN(θ, x) =

∫
Rq+n

p(θ, x)dF (θ, x).

Remark 4.1. (i) If each agent is uniform (θi = (A,B,D) and x̄i = x̄ for

all i), then F (θ, x) degenerates to a point mass, and in that case, (b)-(e)

in Assumption 4.1 would not be needed.

(ii) Let F (θ) and FN(θ) be the marginal distribution functions of F (θ, x)

and FN(θ, x), respectively, with respect to θ. Due to the Glivenko-

Cantelli theorem [108], FN(θ) converges weakly when {θi} is a sequence

of i.i.d. random variables under the distribution F (θ).

In this chapter, we consider only the risk averse problem; hence, δ > 0.

We let γ :=
√
δ/2µ and call it the disturbance attenuation parameter. The

significance and relevance of the disturbance attenuation parameter will be

clarified throughout the chapter.

Now, given (4.1) and Assumption 4.1, in the problem under consideration,

each agents seeks a controller that minimizes the following risk-sensitive per-

formance index:

P1 : JN1,i(ui, u−i) = lim sup
T→∞

δ

T
logE

{
e

1
δ
φ1i (x,fN ,u)

}
, (4.2)

where u−i = {u1, ..., ui−1, ui+1, ..., uN}, δ is the risk sensitivity index, and

φ1
i (x, fN , u) :=

∫ T

0

‖xi(t)− fN(t)‖2
Q + ‖ui(t)‖2

Rdt, (4.3)

where Q ≥ 0 and R > 0. In (4.3), fN(t) denotes the mean field term or the
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mass behavior term that captures the average behavior of the first N agents:

fN(t) =
1

N

N∑
i=1

xi(t). (4.4)

In view of this setting, the agents interact with each other through the mean

field term, and the coupling effect on each agent is taken into account in

(4.2).

Remark 4.2. Let λ = 1/δ. By using the Taylor expansion of (4.2) around

λ = 0, one arrives at the following relation:

JN1,i(ui, u−i) = lim sup
T→∞

1

T

[
E
{
φ1
i (x, fN , u)

}
+
λ

2
var{φ1

i (x, fN , u)}+ o(λ)
]
,

where var is the variance of φ1
i (x, fN , u) and o(λ) is a higher order term (in

λ) which involves higher-order moments of (4.3). This shows that the risk-

sensitive performance index entails all the moments of (4.3). Note that when

δ →∞ (λ→ 0), the performance index (4.2) corresponds to the risk-neutral

case considered in [71].

We define the following two sets of admissible controls:

U c1,i = {ui : ui(t) ∈ σ(xi(s), s ≤ t, 1 ≤ i ≤ N), (4.5)

‖xi(T )‖2 = o(T ),

∫ T

0

‖xi(t)‖2dt = O(T ) a.s.}

Ud1,i = {ui : ui(t) ∈ σ(xi(s), s ≤ t), (4.6)

‖xi(T )‖2 = o(T ),

∫ T

0

‖xi(t)‖2dt = O(T ) a.s.},

where σ(xi(s), s ≤ t, 1 ≤ i ≤ N) is the σ-algebra generated by xi(s) for

s ≤ t and for all i, 1 ≤ i ≤ N , and σ(xi(s), s ≤ t) is the σ-algebra generated

by xi(s) for s ≤ t. It should be noted that the admissible control in (4.5)

is centralized in terms of states of all agents, while the control in (4.6) is

decentralized since it is associated with the local state information. Since

Ud1,i ⊆ U c1,i, we accordingly say that U c1,i is a set of admissible centralized

controllers and Ud1,i a set of admissible decentralized controllers for P1.

Now, under the admissible control sets defined above, P1 is equivalent

to characterizing an individual optimal control strategy that forms a Nash
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equilibrium (or ε-Nash equilibrium). The definition is given as follows.

Definition 4.1. The set of controllers, {u∗i ∈ U c1,i, 1 ≤ i ≤ N}, constitutes

an ε-Nash equilibrium with respect to the cost functions {JN1,i, 1 ≤ i ≤ N},
if there exists ε ≥ 0 such that for any i, 1 ≤ i ≤ N ,

JN1,i(u
∗
i , u
∗
−i) ≤ inf

ui∈Uc1,i
JN1,i(ui, u

∗
−i) + ε.

If ε is zero, then {u∗i ∈ U c1,i, 1 ≤ i ≤ N} is a Nash equilibrium with respect

to {JN1,i, 1 ≤ i ≤ N}.

Note that in the definition, the Nash strategies, {u∗i ∈ U c1,i, 1 ≤ i ≤
N}, and the infimization on the RHS are not necessarily restricted to the

decentralized set (4.6).

In Section 4.3, we characterize an ε-Nash equilibrium for P1 where the

corresponding strategy of each agent, say u∗i , is decentralized, i.e. u∗i ∈ Ud1,i
for all i. We also show that when the number of agents is large, {u∗i ∈
Ud1,i, 1 ≤ i ≤ N} is a Nash equilibrium.

4.2.2 LQ Robust Mean Field Games (P2)

We now consider the following SDE for agent i, 1 ≤ i ≤ N :

dxi = (A(θi)xi +B(θi)ui +D(θi)vi)dt+
√
µD(θi)dWi(t), (4.7)

where xi(0) = x̄i and vi ∈ Rp is an auxiliary decision variable (disturbance

input). The other parameters satisfy Assumption 4.1.

Similarly, we define the sets of admissible centralized and decentralized

controllers for P2 by

U c2,i = {ui : ui(t) ∈ σ(xi(s), s ≤ t, 1 ≤ i ≤ N),

E{‖xi(T )‖2} = o(T ),E{
∫ T

0

‖xi(t)‖2dt} = O(T ) }

Ud2,i = {ui : ui(t) ∈ σ(xi(s), s ≤ t),

E{‖xi(T )‖2} = o(T ),E{
∫ T

0

‖xi(t)‖2dt} = O(T ) }.
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In this second problem, P2, each agent seeks a controller that minimizes

the following worst-case performance index (defined for agent i):

P2 : JN2,i(ui, u−i) = sup
vi∈Vi

lim sup
T→∞

1

T
E{φ2

i (x, fN , u, v)} (4.8)

φ2
i (x, fN , u, v) := φ1

i (x, fN , u)−
∫ T

0

γ2‖vi(t)‖2dt, (4.9)

where Vi is the class of disturbances such that each vi(t) is adapted to

σ(xi(s), s ≤ t, 1 ≤ i ≤ N), and JN2,i(ui, u−i) <∞ for all ui ∈ U c2,i.
It should be noted that each agent is coupled via the mean field term (4.4).

The disturbance vi in (4.7) can be viewed as a fictitious player (or adversary)

of agent i, which determines the worst-case risk-neutral performance index

of agent i; therefore, the actual maximizing one in (4.7) for (4.8) will, in

general, be different for different i. Notice also that this is not a 2N -agent

game, but is still an N -agent game with respect to (4.8). Now, viewed as an

N -agent game, with the individual worst-case performance index (4.8), the

two equilibrium concepts in Definition 4.1 are well-defined with respect to

{JN2,i, 1 ≤ i ≤ N} under U c2,i.
In Section 4.5, we carry out the same analysis for P2 as we do in Section

4.3 for P1. We then show in Section 4.6 that P1 and P2 are partially

equivalent in the sense that the decentralized Nash strategies of the agents

are similar, but are determined by different auxiliary systems that lead to

the decentralized form.

4.3 LQ Risk-Sensitive Mean Field Games

In this section, we solve P1 via risk-sensitive mean field control theory.

4.3.1 Risk-sensitive Optimal Control

This section solves a single LQ risk-sensitive optimal control problem.

We consider the following SDE:

dx = (Ax+Bu)dt+
√
µDdW (t), x(0) = x̄, (4.10)
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and the risk-sensitive cost function

J̄(u, g) = lim sup
T→∞

δ

T
logE

{
e

1
δ
φ̄1(x,g,u)

}
(4.11)

φ̄1(x, g, u) :=

∫ T

0

‖x(t)− g(t)‖2
Q + ‖u(t)‖2

Rdt, (4.12)

where g ∈ Cbn. The optimal control problem (4.11) can be seen as a robust

tracking problem with respect to the given reference signal g [106]. We have

the following result, where we suppress the subscript i and the parameter θ.

Proposition 4.1. Consider the risk-sensitive control problem (4.11) with

(4.10). Suppose that (A,B) is controllable and (A,Q1/2) is observable. Sup-

pose that for a fixed γ :=
√
δ/2µ > 0, there is a matrix P > 0 that solves the

following generalized algebraic Riccati equation (GARE):

ATP + PA+Q− P (BR−1BT − 1

γ2
DDT )P = 0. (4.13)

Then,

(i) H := A−BR−1BTP + 1
γ2
DDTP and G := A−BR−1BTP are Hurwitz.

(ii) The optimal decentralized controller that minimizes (4.11) is given by

ū(t) = −R−1BTPx(t)−R−1BT s(t), (4.14)

where s(t) satisfies the following differential equation:

ds(t)

dt
= −HT s(t) +Qg(t), (4.15)

with initial condition s(0) = −
∫∞

0
eH

T σQg(σ)dσ.

(iii) The closed-loop system (4.10) with the optimal decentralized controller

in (4.14) satisfies ‖x(T )‖2 = o(T ) and
∫ T

0
‖x(t)‖2dt = O(T ) almost

surely.

(iv) The differential equation (4.15) has a unique solution in Cbn, which is

given by

s(t) = −
∫ ∞
t

e−H
T (t−σ)Qg(σ)dσ. (4.16)
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(v) The minimum cost is

J̄(ū, g) = lim sup
T→∞

1

T

∫ T

0

q(τ)dτ + µTr(PDDT ), (4.17)

where q(τ) = gT (τ)Qg(τ)− sT (τ)BR−1BT s(τ) + γ−2sT (τ)DDT s(τ).

Proof. See Appendix C.2.

Remark 4.3. (i) Define

γ∗ := inf{γ > 0 : P > 0, P solves (4.13)}. (4.18)

Then by definition, for any finite γ > γ∗, the GARE in (4.13) admits

a solution P . In this case, γ∗ is known as an optimum disturbance

attenuation level, and any γ > γ∗ determines the level of the disturbance

attenuation [106]. Moreover, given the system and the cost matrices, γ∗

can be computed by transforming the GARE into the form of a linear

matrix inequality (LMI) [115].

(ii) For any finite γ > γ∗, since H and G are Hurwitz, there exist positive

constants ρ > 0 and η > 0 such that ‖eHt‖ ≤ ρe−ηt for all t ≥ 0. The

same holds for G.

In the rest of the section, from Proposition 4.1, the triplet (A,B,D) is

replaced by the ordered triplet (A(θi), B(θi), D(θi)); accordingly the solution

of the GARE in (4.13) is denoted by P (θi) > 0. In that sense, si(t) is the bias

term of agent i with (A(θi), B(θi), D(θi), P (θi)). For notational convenience,

we use the subscript i when θ = θi.

4.3.2 Mean Field Analysis

We now construct a mean field system for P1 to characterize the best ap-

proximated mass behavior to the actual mass behavior (4.4) when N is large.

Let x̄θ(t) = E{xθ(t)}. By substituting the optimal decentralized controller

(4.14) and the bias term (4.16) into (4.1), and taking expectation, x̄θ(t) can

be written as

x̄θ(t) = eG(θ)tx+

∫ t

0

eG(θ)(t−τ)Ū(θ)

(∫ ∞
τ

e−H(θ)T (τ−σ)Qg(σ)dσ

)
dτ, (4.19)
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where Ū(θ) = B(θ)R−1BT (θ). Then we can construct the following auxiliary

system under Assumption 4.1:

T (g)(t) :=

∫
(θ,x)∈Θ×X

x̄θ(t)dF (θ, x). (4.20)

The operator (4.20) is a function of g, which captures the average behavior

of all agents within the system parameter space Θ and the initial conditions

when N is large; hence it must be consistent with the mass behavior (4.4)

under (4.14). We call (4.20) the mean field system for P1.

Assumption 4.2. (a) (A(θ), B(θ)) and (A(θ), Q1/2) are controllable and ob-

servable, respectively, for all θ ∈ Θ.

(b) γ∗θ is finite and γ > γ∗θ for all θ ∈ Θ, where γ∗θ := inf{γ > 0 : P (θ) >

0, P (θ) solves (4.13)}.

(c) We have

‖R−1‖‖Q‖
∫
θ∈Θ

‖B(θ)‖2
(∫ ∞

0

‖eG(θ)τ‖dτ
)(∫ ∞

0

‖eH(θ)τ‖dτ
)
dF (θ) < 1.

Remark 4.4. For one-dimensional agent systems, by using the GARE, As-

sumption 4.2(c) can be simplified as follows∫
θ∈Θ

QB2(θ)

A(θ)2R +B(θ)2Q+ 1
γ2
A(θ)D(θ)2P (θ)R

dF (θ) < 1.

As γ →∞, the above condition coincides with [71, Equation (18)].

We have the following result.

Theorem 4.1. Suppose that Assumptions 4.1 and 4.2 hold. Then there is a

unique g∗ ∈ Cbn such that g∗ = T (g∗).

Proof. From Lemma C.2(i) in Appendix C.1, the operator T (x) ∈ Cbn for any

x ∈ Cbn, where Cbn is a Banach space. Then for any x, y ∈ Cbn, we have

‖T (x)− T (y)‖∞ ≤ ‖x− y‖∞‖R−1‖‖Q‖
∫
θ∈Θ

‖B(θ)‖2

×
(∫ ∞

0

‖eG(θ)τ‖dτ
)(∫ ∞

0

‖eH(θ)τ‖dτ
)
dF (θ).
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By Assumption 4.2 and the contraction mapping theorem [116], we have the

desired result.

Remark 4.5. Under Assumption 4.2(c), the infinite-dimensional fixed point

problem in Theorem 4.1 can be solved via the Banach successive approxima-

tion method [116] or the policy iteration method [70].

The optimal decentralized controller for agent i with g∗ can be written as

u∗i (t) = −R−1BT
i Pix

∗
i (t)−R−1BT

i si(t), (4.21)

where si(t) is determined by g∗ in Theorem 4.1. Due to Proposition 4.1(iii),

u∗i ∈ Ud1,i. We denote the closed-loop system and the mass behavior under

the optimal decentralized controller in (4.21) by x∗i (t) and f ∗N , respectively.

4.3.3 Closed-loop System Analysis

The following result shows the closed-loop system stability in the time-

average sense.

Proposition 4.2. Suppose that Assumptions 4.1 and 4.2 hold. Then,

sup
N≥1

max
1≤i≤N

lim sup
T→∞

δ

T
logE{e

1
δ

[
∫ T
0 ‖x

∗
i (t)‖2Q+‖u∗i (t)‖2Rdt]} <∞.

Proof. Note that

‖x∗i (t)‖2
Q ≤ C1‖eGitxi(0)‖2

Q + C2

∥∥∥∫ t

0

eGi(t−τ)BiR
−1BT

i si(τ)dτ
∥∥∥2

Q

+ C3

∥∥∥√µ ∫ t

0

eGi(t−τ)DidWi(τ)
∥∥∥2

Q

, C1z1(t) + C2z2(t) + C3z3(t),

and ‖u∗i (t)‖2
R ≤ C4(‖xi(t)‖2 + ‖si(t)‖2); therefore, since si ∈ Cbn for all i, we

can choose a constant C > 0 independent of N such that

‖x∗i (t)‖2
Q + ‖u∗i (t)‖2

R ≤ C(z1(t) + z2(t) + z3(t)).
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Hence,

lim sup
T→∞

δ

T
logE{e

1
δ

[
∫ T
0 ‖x

∗
i (t)‖2Q+‖u∗i (t)‖2Rdt]}

≤ lim sup
T→∞

δ

T
logE{e

1
δ

∫ T
0 Cz1(t)+Cz2(t)+Cz3(t)dt}

= lim sup
T→∞

[C
T

∫ T

0

z1(t) + z2(t)dt+
δ

T
logE{e

C
δ

∫ T
0 z3(t)dt}

]
,

where the equality follows since z1 and z2 are deterministic processes.

In view of Lemma C.3 in Appendix C.1, lim supT→∞
C
T

∫ T
0
z1(t)+z2(t)dt <

∞ that is independent of N due to the compactness of Θ. Let z̄3(t) =
√
µ
∫ t

0
eGi(t−τ)DidWi(τ). Then by definition z3(t) = ‖z̄3(t)‖2

Q, and z̄3 satisfies

the following SDE:

dz̄3(t) = Giz̄3(t)dt+
√
µDidWi(t), z̄3(0) = 0,

where Gi is Hurwitz. We introduce the auxiliary SDE

dz̄4(t) = Giz̄4(t)dt+Diwi(t)dt+
√
µDidWi(t), z̄4(0) = 0.

Due to the connection between risk-sensitive and H∞ control discussed in

[83, 78, 79], we have

lim sup
T→∞

δ

T
logE{e

C
δ

∫ T
0 ‖z̄3(t)‖2Qdt}

= sup
wi

lim sup
T→∞

C

T
E
{∫ T

0

‖z̄4(t)‖2
Q − γ2‖wi(t)‖2dt

}
.

Now, consider the following Riccati inequality

0 = ATi Pi + PiAi +Q− PiBiR
−1BT

i Pi +
1

γ2
PiDiD

T
i Pi

= GT
i Pi + PiGi +Q+ PiBiR

−1BT
i Pi +

1

γ2
PiDiD

T
i Pi

≥ GT
i Pi + PiGi +Q+

1

γ2
PiDiD

T
i Pi.

Then in view of the above inequality, the KYP Lemma [117] and Example

2.2 in [78], and from the “completion of squares” method, the corresponding
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optimal solution is w∗i (t) = 1
γ2
DTPiz̄4(t), which leads to

sup
wi

lim sup
T→∞

C

T
E
{∫ T

0

‖z̄4(t)‖2
Q − γ2‖wi‖2dt

}
≤ CµTr(PiDiD

T
i ) ≤ Cµ sup

θ∈Θ
Tr(P (θ)D(θ)DT (θ)) <∞,

where the last inequality follows from the compactness of Θ. This completes

the proof.

4.3.4 Consistency Analysis

We now show consistency between g∗ and the actual mass behavior under

(4.21) in the large population regime.

Theorem 4.2. Suppose that Assumptions 4.1 and 4.2 hold. Then, the fol-

lowing hold:

(i) lim
N→∞

E
{∫ T

0

‖f ∗N(t)− g∗(t)‖2dt
}

= 0, ∀T ≥ 0

lim
N→∞

lim sup
T→∞

1

T
E
{∫ T

0

‖f ∗N(t)− g∗(t)‖2dt
}

= 0.

(ii) lim
N→∞

∫ T

0

‖f ∗N(t)− g∗(t)‖2dt = 0, ∀T ≥ 0, a.s.

lim
N→∞

lim sup
T→∞

1

T

∫ T

0

‖f ∗N(t)− g∗(t)‖2dt = 0, a.s.

Proof. See Appendix C.2.

Theorem 4.2 states that there is exact consistency between g∗ and f ∗N in

the mean-square sense as well as in the almost sure sense when the number

of agents is arbitrarily large. We can also view this result as a law of large

numbers with respect to N [71].

The following result establishes the concentration inequality of Theorem

4.2; the proof is given in Appendix C.2.

Corollary 4.1. Let X(N, T ) :=
∫ T

0
‖f ∗N(t) − g∗(t)‖2dt. If Assumptions 4.1

and 4.2 hold, then

76



(i) For each c > 0, there exists N ′ such that for all N ≥ N ′,

P(|X(N, T )− E{X(N, T )}| ≥ s) ≤ 2e−2s2/c2 , ∀T ≥ 0.

(ii) For each c(N) > 0 with N ≥ 1, there exists T ′ such that for all T ≥ T ′,

P(|X(N, T )− E{X(N, T )}| ≥ sT ) ≤ 2e−2s2/c(N)2 .

In Corollary 4.1, with small c and c(N), X(N, T ) is concentrated around

its mean value with high probability. Note that in Corollary 4.1(ii), c(N) can

be chosen to be arbitrarily small when N is large due to Theorem 4.2(ii).

4.3.5 Asymptotic Equilibrium Analysis: The ε-Nash
Equilibrium

This section characterizes an ε-Nash equilibrium for P1. We first introduce

two cost functions that are related to admissible centralized and decentralized

controllers:

JN1,i(u
∗
i , u
∗
−i) = lim sup

T→∞

δ

T
logE{e

1
δ
φ1i (x

∗,f∗N ,u
∗)}

JN1,i(ui, u
∗
−i) = lim sup

T→∞

δ

T
logE{e

1
δ
φ1i (x,f

−i∗
N ,u)},

where φ1
i (x
∗, f ∗N , u

∗) is (4.3) when all agents use the optimal decentralized

controller (4.21) and φ1
i (x, f

−i∗
N , u) is (4.3) when agent i is under the full state

feedback controller ui ∈ U c1,i (i.e., xi(t) := xi(t)|ui(t)), while other agents are

still under the optimal decentralized controller (4.21).

We now state the main result, whose proof is given in Appendix C.2.

Theorem 4.3. Suppose that Assumptions 4.1 and 4.2 hold. Then the set of

the optimal decentralized controllers in (4.21), {u∗i : 1 ≤ i ≤ N}, constitutes

an ε-Nash equilibrium for P1. That is, for any i, 1 ≤ i ≤ N , there exists

εN ≥ 0 such that

JN1,i(u
∗
i , u
∗
−i) ≤ inf

ui∈Uc1,i
JN1,i(ui, u

∗
−i) + εN ,

where εN → 0 as N →∞.
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Remark 4.6. Note that given g∗, P1 is transformed into N independent

risk-sensitive optimal control problems, and the resulting optimal controllers

constitute an ε-Nash equilibrium.

Remark 4.7. As discussed in Remark 4.3(i), the individual Nash strate-

gies have the disturbance attenuation properties with γ. This shows that the

ε-Nash equilibrium features robustness, which will be demonstrated by simu-

lations in Section 4.7.

4.4 Limiting Behaviors of LQ Risk-Sensitive Mean

Field Games

This section discusses limiting behaviors of P1 with respect to two different

design parameters. The first one is known as the large deviation limit (small

noise limit) and the second one is the risk-neutral limit.

4.4.1 Small Noise Limit

We consider the small noise limit of P1 in which the noise intensity parameter

µ decreases to zero. If we take µ→ 0, then the SDE for agent i now becomes

the following ordinary differential equation:

dxi(t)

dt
= A(θi)x+B(θi)ui.

Moreover, the risk-sensitive objective function in (4.2) heavily penalizes the

large deviation of (4.3) when δ also decreases such that γ =
√
δ/2µ is fixed

and positive. In this case, the results in Proposition 4.1 and Theorems 4.1-

4.3 are valid, since γ still remains as the same value. Specifically, under

this limit, the set of N optimal controllers in (4.21) constitutes an ε-Nash

equilibrium for P1.

4.4.2 Risk-neutral Limit

Now, consider the case when δ →∞ for a fixed µ. As mentioned in Remark

4.2, under this limit, the risk-sensitive cost function (4.2) is equivalent to the
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risk-neutral case considered in [71]. This imposes a smaller weight on the

large deviation of (4.3). We have the following result.

Proposition 4.3. Consider P1 with δ → ∞ for a fixed µ > 0. If Assump-

tions 4.1 and 4.2 hold, then

(i) The optimal decentralized controller for each agent can be written as

u∗i (t) = −R−1BT
i Zixi(t)−R−1BT

i ri(t),

where Zi ≥ 0 is a solution of the following ARE:

ATi Zi + ZiAi +Q− ZiBiR
−1BT

i Zi = 0,

and ri(t) is

ri(t) = −
∫ ∞
t

e−F
T
i (t−σ)Qg(σ)dσ,

where Fi = Ai −BiR
−1BT

i Zi is Hurwitz.

(ii) The set of N-decentralized controllers in (i) constitutes an ε-Nash equi-

librium for P1. Moreover, ε can be made arbitrarily small by picking

N arbitrarily large.

Proposition 4.3 implies that P1 has the same limiting behavior of δ as the

case of the LQ risk-sensitive control problem discussed in [75, 78, 106].

4.5 LQ Robust Mean Field Games

In this section, we solve P2 formulated in Section 4.2.2 via worst-case mean

field control theory.

4.5.1 The LQ Stochastic Zero-sum Differential Game

This section considers the LQ stochastic zero-sum differential game by re-

placing the mass behavior (4.4) with an arbitrary function h ∈ Cbn.
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We consider the following SDE (from (4.7)):

dx = (Ax+Bu+Dv)dt+
√
µDdW (t), x(0) = x̄. (4.22)

The performance index is given by

J̄(u, v, h) = lim sup
T→∞

1

T
E
{
φ̄2(x, h, u, v)

}
(4.23)

φ̄2(x, h, u, v) := φ̄1(x, h, u)−
∫ T

0

γ2‖v(t)‖2dt. (4.24)

We then have the following result:

Proposition 4.4. Consider the LQ stochastic zero-sum differential game

(4.22)-(4.23). Suppose that (A,B) is stabilizable and (A,Q1/2) is detectable.

Suppose that for a fixed γ > 0, there is a matrix P ≥ 0 that solves the GARE

(4.13). Then,

(i) H := A−BR−1BTP + 1
γ2
DDTP and G := A−BR−1BTP are Hurwitz.

(ii) The optimal decentralized controller and the worst-case disturbance that

constitute a saddle-point equilibrium1 for (4.23) are given by

ū(t) = −R−1BTPx(t)−R−1BT s(t) (4.25)

v̄(t) = γ−2DTPx(t) + γ−2DT s(t), (4.26)

where s(t) satisfies the differential equation (4.15) with g(t) replaced by

h(t).

(iii) The closed-loop system (4.22) with the optimal controller (4.25) and

the worst-case disturbance (4.26) satisfies E{‖x(T )‖2} = o(T ) and

E{
∫ T

0
‖x(t)‖2dt} = O(T ).

(iv) s(t) in (ii) has a unique solution in Cbn, which can be written as (4.16)

with g(t) replaced by h(t).

(v) The saddle-point value is (4.17) with g(t) replaced by h(t).

Proof. See Appendix C.2.

1See [61] or [106] for the definition of saddle-point equilibrium.
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It should be mentioned that the optimal decentralized control laws of the

individual agents for P1 and P2 are identical. This is to be expected, since

the corresponding optimal control problems are equivalent in the sense that

they share the same controller, and the minimum cost and the saddle-point

value are identical [106, 78]. We also note that in Proposition 4.4, γ is a free

variable.

Remark 4.8. Just like the optimal control problem in Section 4.3.1, γ is the

disturbance attenuation parameter that measures robustness of the closed-loop

system [106]. Also, as γ →∞, (4.23) coincides with the LQ optimal control

problem in [71].

4.5.2 Mean Field Analysis

We now construct a mean field system for P2. Again, let x̄θ := E{xθ(t)}.
By applying (4.25), (4.26), and (4.16) with g(t) replaced by h(t), x̄θ can be

written as

x̄θ(t) = eH(θ)tx+

∫ t

0

eH(θ)(t−τ)U(θ)

(∫ ∞
τ

e−H
T (θ)(τ−σ)Qh(σ)dσ

)
, (4.27)

where U(θ) = B(θ)R−1BT (θ) − γ−2D(θ)DT (θ). The mean field system for

P2 can be written as

L(h)(t) :=

∫
(θ,x)∈Θ×X

x̄θ(t)dF (θ, x), (4.28)

where F (θ, x) is the distribution function given in Assumption 4.1(e). Then,

by following the argument as in Section 4.3.2, if the operator (4.28) is a

contraction, then we have the fixed point. Notice that in general, its fixed

point, say h∗, will not be identical to g∗ in Theorem 4.1, provided that they

exist, since h∗ is also determined by the worst disturbance.

Assumption 4.3. (a) (A(θ), B(θ)) and (A(θ), Q1/2) are stabilizable and de-

tectable, respectively, for all θ ∈ Θ.

(b) γ∗θ is finite and γ > γ∗θ for all θ ∈ Θ, where γ∗θ is defined in Assumption

4.2.
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(c) We have

‖Q‖
∫
θ∈Θ

(∫ ∞
0

‖eH(θ)t‖2dt
)2

(‖B(θ)‖2‖R−1‖+ γ−2‖D(θ)‖2)dF (θ) < 1.

Remark 4.9. As γ → ∞, Assumption 4.3(c) becomes equivalent to that in

[71].

The following result is the counterpart of Theorem 4.1 in the present case.

Theorem 4.4. Suppose that Assumptions 4.1 and 4.3 hold. Then there is a

unique h∗ ∈ Cbn such that h∗ = L(h∗).

Now, the optimal decentralized controller for agent i is

u∗i (t) = −R−1BT
i Pix

∗
i (t)−R−1BT

i si(t), (4.29)

and the worst-case disturbance for agent i is

v∗i (t) = γ−2DT
i Pix

∗
i (t) + γ−2DT

i si(t), (4.30)

where si(t) is now dependent on h∗ in Theorem 4.4. Note that due to Propo-

sition 4.4(iii), u∗i ∈ Ud2,i with v∗i . By a possible abuse of notation, we denote

the closed-loop system and the mass behavior under (4.29) and (4.30) by

x∗i (t) and f ∗N(t), respectively.

4.5.3 Closed-loop System Analysis

The next result shows the closed-loop system stability.

Proposition 4.5. Suppose that Assumptions 4.1 and 4.3 hold. Then,

sup
N≥1

max
1≤i≤N

lim sup
T→∞

1

T
E
{∫ T

0

‖x∗i (t)‖2 + ‖u∗i (t)‖2dt
}
<∞.

Proof. The result can be shown in a similar way to that in Lemma C.3 in

Appendix C.1.

4.5.4 Consistency Analysis

The following result is the counterpart of Theorem 4.2 in this case.
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Theorem 4.5. Suppose that Assumptions 4.1 and 4.3 hold. Then, the fol-

lowing hold:

(i) lim
N→∞

E
{∫ T

0

‖f ∗N(t)− h∗(t)‖2dt
}

= 0, ∀T ≥ 0

lim
N→∞

lim sup
T→∞

1

T
E
{∫ T

0

‖f ∗N(t)− h∗(t)‖2dt
}

= 0.

(ii) lim
N→∞

∫ T

0

‖f ∗N(t)− h∗(t)‖2dt = 0, ∀T ≥ 0, a.s.

lim
N→∞

lim sup
T→∞

1

T

∫ T

0

‖f ∗N(t)− h∗(t)‖2dt = 0, a.s.

The next result is the counterpart of Corollary 4.1.

Corollary 4.2. Let Y (N, T ) :=
∫ T

0
‖f ∗N(t) − h∗(t)‖2dt. If Assumptions 4.1

and 4.3 hold, then

(i) For each c > 0, there exists N ′ such that for all N ≥ N ′,

P(|Y (N, T )− E{Y (N, T )}| ≥ s) ≤ 2e−2s2/c2 , ∀T ≥ 0.

(ii) For each c(N) ≥ 0 with N ≥ 1, there exists T ′ such that for all T ≥ T ′,

P(|Y (N, T )− E{Y (N, T )}| ≥ sT ) ≤ 2e−2s2/c(N)2 .

4.5.5 Asymptotic Equilibrium Analysis: The ε-Nash
Equilibrium

This section characterizes an ε-Nash equilibrium for P2. As in Section 4.3.5,

we introduce two cost functions that are related to centralized and decen-

tralized controllers:

JN2,i(u
∗
i , u
∗
−i) = lim sup

T→∞

1

T
E{φ2

i (x
∗, f ∗N , u

∗, v∗)}

JN2,i(ui, u
∗
−i) = sup

vi∈Vi
lim sup
T→∞

1

T
E{φ2

i (x, f
−i∗
N , u, v)},
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Figure 4.1: Relationship between P1, P2, and the risk-neutral LQ mean
field game (LQ-MFG) with respect to the design parameters µ, δ, and γ.

where φ2
i (x
∗, f ∗N , u

∗, v∗) is (4.9) when all the agents are under the optimal

decentralized controller u∗i in (4.29) and the worst-case disturbance v∗i in

(4.30), and φ2
i (x, f

−i∗
N , u, v) is (4.9) when all the agents except i are under u∗i

and v∗i , while agent i is under the centralized controller ui ∈ U c2,i and vi ∈ Vi.
We now state the main result for P2.

Theorem 4.6. Suppose that Assumptions 4.1 and 4.3 hold. Suppose that

each agent adopts the corresponding worst-case disturbance in (4.30). Then,

for any i, 1 ≤ i ≤ N , there exists εN ≥ 0 such that

JN2,i(u
∗
i , u
∗
−i) ≤ inf

ui∈Uc2,i
JN2,i(ui, u

∗
−i) + εN ,

where εN → 0 as N →∞.

Proof. See Appendix C.2.

Remark 4.10. Just like P1, given h∗, P2 can be treated as N indepen-

dent LQ stochastic zero-sum differential games, and the resulting N optimal

controllers constitute an ε-Nash equilibrium.

4.6 Discussion on Partial Equivalence and Limiting

Behaviors of P1 and P2

As we have seen in Sections 4.2-4.5, in P1 and P2, the optimal controller for

each agent that constitutes the ε-Nash equilibrium shares the same control

law, but the bias term is determined by their respective mean field systems.

This observation, and the limiting behaviors of P1 discussed in Section 4.5

lead to the following conclusions.
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There exists a partial equivalence between P1 and P2 in the sense that

their respective approximated mass behaviors are different, although the in-

dividual optimal controllers that constitute ε-Nash equilibria share the same

control laws. Specifically, the partial equivalence stems from the worst-case

disturbance in P2. If γ → ∞ (in P1, δ → ∞ for fixed µ), then the Nash

equilibria of P1 and P2 become identical to that of the risk-neutral LQ

mean field game (LQ-MFG) considered in [71], since the individual optimal

controllers as well as the corresponding fixed points are identical to that in

[71], as discussed in Proposition 4.3, and Remarks 4.8 and 4.9. Figure 4.1

summarizes this discussion.

It should be mentioned that a similar partial equivalence was discussed

briefly in [73, Remark 6], and the result here sheds further light on that

issue via the Nash certainty equivalence principle. In [73], it was noted

that the control of fictitious player has to be included in the Fokker-Planck-

Kolmogorov (FPK) equation of the robust mean field game that determines

the density of the mass behavior, and thereby the mean field equilibrium

solutions for the risk-sensitive and robust mean field games are not necessarily

identical. The connection is that here the corresponding approximated mass

behavior functions for P1 and P2, g∗ and h∗, resemble the FPK equation,

and they are generally not identical due to the presence of the adversary in

the latter.

4.7 Numerical Examples

In this section, two different numerical examples are considered. In each one,

we compare P1, P2, and the risk-neutral case in [71] via their tracking per-

formance and consistency between their respective approximated and actual

mean field behaviors.

4.7.1 A System with Uniform Distribution

The first numerical example is the case when each agent’s system parameter

Ai = θi is an i.i.d. uniform random variable on the interval [a, b] where

0 < a < b. Also, B = D = Q = R = 1, µ = 2, and the initial condition

is 5. Note that under this setting, Assumption 4.1 holds where Assumption
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Figure 4.2: State trajectories of the scalar example when N = 500 (top)
and the histogram (bottom) with γ = 1.5 and γ = 150.

4.1(e) holds due to Remark 4.1(ii). We obtain Pi =
θi+
√
θ2i+(1−γ−2)

(1−γ−2)
> 0,

which implies γ∗θ = γ∗ = 1. Moreover, Hi = −
√
θ2
i + (1− γ−2) < 0 and

Gi =
−γ−2θi−

√
θ2i+(1−γ−2)

(1−γ−2)
< 0 for all i and any γ > γ∗ = 1. Then the

mean field systems for P1 and P2, which are given in (4.20) and (4.28),
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Figure 4.3: The approximation error, ε2(N), with respect to N when
γ = 1.5 and γ = 150.

respectively, can be written as

T (g)(t) =
1

b− a

∫
θ∈[a,b]

[
5eG(θ)t (4.31)

+

∫ t

0

eG(θ)(t−τ)
(∫ ∞

τ

e−H(θ)(τ−s)g(s)ds
)
dτ
]
dθ

L(h)(t) =
1

b− a

∫
θ∈[a,b]

[
5eH(θ)t (4.32)

+

∫ t

0

eH(θ)(t−τ)(1− γ−2)
(∫ ∞

τ

e−H(θ)(τ−s)h(s)ds
)
dτ
]
dθ.

Assume that a = 2, b = 5, and consider two cases; γ = 1.5 and γ = 150.

We then need the contraction condition for (4.31) and (4.32) to characterize

their fixed points. Note that since we are dealing with the heterogeneous

agent case, the analytic method proposed in [70] is not applicable to obtain

the fixed points.

It can be verified that Assumptions 4.2(c) and 4.3(c) hold; hence we have

contraction. Then we use the Banach successive approximation method

[116], by which the fixed point of (4.31) and (4.32) when γ = 1.5 are

g∗(t) = 5.086e−8.49t and h∗(t) = 5.1e−3.37t, respectively, where the exact

values are obtained by the curve fitting algorithm. Note that due to the

partial equivalence, g∗ 6≡ h∗, and g∗, h∗ ∈ Cb1. The same method is used to

obtain the fixed points of (4.31) and (4.32) when γ = 150.
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Figure 4.4: The approximated mass behavior, g∗ = (g∗1, g
∗
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h∗ = (h∗1, h
∗
2)T , of P1 and P2, respectively, for the second order damping

system when γ = 3.

Figure 4.2(top) shows the state trajectories of 500 agents for P1 and P2.

Each trajectory and therefore the equilibrium features robustness when γ =

1.5, which is a consequence of its disturbance attenuation property with γ as

discussed earlier in the chapter. This is well illustrated in the state histogram

in Fig. 4.2 (bottom). Each agent is more concentrated when γ = 1.5. Note

that when γ = 150, the trajectories of P1 and P2 show the same behaviors,

which is a consequence of their limiting behavior with respect to γ. The curve

of the approximation performance, ε2(N), with respect to N is shown in Fig.

4.3, where ε2(N) := lim supT→∞
1
T
E{
∫ T

0
‖f ∗N(t) − g∗(t)‖2dt} (or h∗). Each

plot shows convergence approximately at the rate of O(1/N), and also shows

that the curve with a smaller γ leads to a better approximation performance

due to the disturbance attenuation property of P1 and P2.

4.7.2 A Second-order Damping System

The next numerical example considers the transfer function of the following

second-order damping system:

Hi(s) =
1

s2 + 2s+ βi
, (4.33)
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Figure 4.5: State trajectories of the second order damping system when
N = 50 (top), and ε(N) with respect to N (bottom). Note that the
equilibrium features robustness with γ = 3.

whose state space representation is

Ai =

(
0 1

−βi −2

)
, Bi =

(
0

1

)
.

We assume D = (0, 1)T , Q = I, R = 5, µ = 0.5, and the initial condition is

taken to be (2, 5)T . Also, βi is an i.i.d. uniform random variable on [−4, 4].

Note that the pole of (4.33) is located at a radius of β
1/2
i and at an angle

of sin−1(1/β
1/2
i ); hence, depending on realizations of βi, the system can be

stable or unstable.

By using the numerical integration method, it can be checked that the

mean field systems for P1 and P2 are contraction when γ = 3. Figure
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4.4 shows the 2-dimensional approximated mass behaviors, g∗ and h∗, for

the second-order system, which are obtained by the Banach successive ap-

proximation method. Figure 4.5 shows the trajectory of N = 50 and the

approximation error, ε2(N), with respect to N . Notice that better approxi-

mation performance is achieved when γ = 3 due to the inherent robustness

property of P1 and P2.

4.8 Conclusions

In this chapter, two classes of LQ mean field games have been considered; the

linear-quadratic risk-sensitive mean field game (P1) and the linear-quadratic

robust mean field game (P2). We have obtained ε-Nash equilibria for both

P1 and P2, where the individual Nash strategies are decentralized as a

function of an agent’s own state and the best approximated mass behavior

function, where the latter can be determined off-line. Specifically, under the

individual optimal decentralized controllers, the mass behavior collapses into

the best approximated function that is obtained by fixed point analysis of

the corresponding mean field system. We have shown that ε-Nash equilibria

for P1 and P2 are partially equivalent in the sense that the Nash strategies

share the same control laws, but are also characterized by different approx-

imated mass behavior functions. This partial equivalence stems from the

difference between their respective mean field systems due to the presence of

the adversary in P2.

We have also studied the limiting behaviors of the ε-Nash equilibria in the

large population regime as well as in the limit of the design parameters. In

particular, we have shown that when the population size grows to infinity,

ε-Nash equilibria become (exact) Nash equilibria. Moreover, when the dis-

turbance attenuation parameter goes to infinity, ε-Nash equilibria of P1 and

P2 become identical to that of the risk-neutral LQ mean field game consid-

ered in [71]. Note that such a relationship can be viewed as the mean field

counterpart of what is observed in the one-agent case discussed in earlier

literature, see [75, 106, 78, 79, 77]. Finally, we have shown that the ε-Nash

equilibria for P1 and P2 feature robustness due to the risk-sensitivity of

the former and the worst-case characteristic of the latter. This robustness

property has been demonstrated by two different numerical examples.
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CHAPTER 5

MEAN FIELD STACKELBERG
DIFFERENTIAL GAMES

5.1 Introduction

In this chapter, we consider mean field Stackelberg differential games when

there is one leader and a large number, say N , of followers. The leader

globally dominates over the followers for the entire duration in the sense that

before the start of the game he chooses and then announces his strategy to

the N followers who play a Nash game. The N number of Nash followers

choose their optimal strategies noncooperatively and simultaneously based

on the leader’s observed strategy. Note that the class of Stackelberg games

with one leader and N number of Nash followers was studied (without the

mean field framework) in [89, 118].

The information structures for both the leader and the followers are adapted

open-loop,1 that is, information on each agent’s initial condition and filtration

is available to each agent (the leader, of course, knows everything that the

followers know). Moreover, in this setting, the followers are coupled with each

other through the mean field term included in each follower’s cost function,

and are strongly influenced by the leader’s strategy included in each agent’s

cost function and dynamics. From the leader’s perspective, he is coupled

with the N followers through the mean field term included in his cost func-

tion. We also consider the heterogeneous case of the followers with K distinct

models, that is, follower i belongs to a finite model set K = {1, 2, ..., K}.
Since there is a large number of followers, complexity issues arise from the

mean field coupling term and heterogeneity of Nash followers. In addition,

solving the leader’s optimal control problem becomes complicated, since it

depends on a large number of Nash followers. Hence, computing an exact

1The notion of (adapted) open-loop information structure for (stochastic) Stackelberg
games can be found in [61, 93].
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Stackelberg-Nash solution is cumbersome to say the least. To circumvent

this difficulty, our approach in this chapter is to apply the stochastic mean

field approximation to characterize the best estimate of the actual mean field

behavior.

We first consider the mean field Nash game for the N followers given an

arbitrary strategy of the leader. We solve a local optimal control problem of

the followers with leader’s control taken as an exogenous stochastic process.

We characterize the best estimate of the actual mean field behavior that is

dependent on the leader’s arbitrary strategy. Note that the local optimal

controller for the followers is decentralized, as it is a function of local in-

formation and the approximated mean field process (and also the leader’s

arbitrary strategy). We show that for each fixed strategy of the leader,

the followers’ optimal decentralized strategies lead to an ε-Nash equilibrium,

where ε converges to zero as N →∞.

We then consider the leader’s problem. The leader’s local optimal control

problem includes additional constraints induced by the mean field process

determined by Nash followers, which is thus still hard to solve, but is much

more tractable than the leader’s original optimal control problem, since in

the latter, the number of additional constraints depends on N . We obtain

the leader’s decentralized optimal controller as a function of his informa-

tion and the mean field process. Unlike the follower’s problem, the leader’s

problem may not have a unique optimal solution due to coupled forward-

backward stochastic differential equations (FBSDEs) and the corresponding

nonsymmetric Riccati differential equation (RDE). We identify a linear ma-

trix inequality (LMI) condition under which solutions of the RDE as well as

the FBSDEs exist. We finally show that the optimal decentralized controllers

for the leader and the followers constitute an (ε1, ε2)-Stackelberg equilibrium

for the original game, where ε1 and ε2 both converge to zero as N →∞. This

implies that for a large number of followers, the impact of the followers on

the leader collapses to the approximated mean field process, which reduces

complexity of the original Stackelberg game.
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Organization

The chapter is organized as follows. In Section 5.2, we formulate the problem,

and discuss the difficulty of obtaining the solution to the original problem

when the number of followers is large. Section 5.3 solves the follower’s prob-

lem given an arbitrary strategy of the leader, and characterizes the mean field

process. The leader’s problem is discussed in Section 5.4, where we obtain an

approximated Stackelberg equilibrium. Numerical examples are presented in

Section 5.5. We end this chapter with the concluding remarks of Section 5.6.

5.2 LQ Mean Field Stackelberg Games

In this section, we formulate the problem of linear-quadratic (LQ) mean field

Stackelberg games, and discuss the difficulty in obtaining the solution with

a finite (but large) number of followers.

5.2.1 Problem Formulation

Let (Ω,F ,Ft, t ≥ 0,P) be a natural complete filtered probability space aug-

mented by all the P null sets in F . We denote the set of all vector-valued

(or matrix-valued) Ft adapted processes satisfying E
∫ T

0
‖ · ‖2dt < ∞ by

L2
F(0, T ; ·).
We have one leader, P0, and N followers, {Pi, 1 ≤ i ≤ N}. The leader

and the followers have their own cost functions {JNi , 0 ≤ i ≤ N} which each

wants to minimize.

We consider the controlled stochastic differential equation (SDE) for the

leader, P0,

dx0(t) = [A0x0(t) +B0u0(t)]dt+D0dW0(t), (5.1)

where x0 ∈ Rn is the state that captures the behavior of P0, u0 ∈ Rp is the

control of P0, and {W0(t), t ≥ 0} is a q-dimensional Brownian motion. The

SDE for the follower Pi, 1 ≤ i ≤ N , is given by

dxi(t) = [A(θi)xi(t) +Bui(t) + Fu0(t)]dt+DdWi(t), (5.2)
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where xi ∈ Rn is the state of follower Pi, ui ∈ Rp is the control of Pi,
and {Wi(t), t ≥ 0} is a q-dimensional Brownian motion. In (5.1) and (5.2),

A0, B0, D0, Ai := A(θi), B, D, and F are time-invariant matrices with

appropriate dimensions. Let Ft be the σ-algebra generated by {xi(0), 0 ≤
i ≤ N} and {Wi(τ), τ ≤ t, 0 ≤ i ≤ N}, i.e., Ft = σ(xi(0),Wi(τ), τ ≤ t, 0 ≤
i ≤ N). Let F it = σ(xi(0),Wi(τ), τ ≤ t), for i, 0 ≤ i ≤ N . We say that

F it is local information of agent i, 0 ≤ i ≤ N , whereas Ft is the global (or

centralized) information.

In (5.2), {θi, 1 ≤ i ≤ N} models the heterogeneity of the followers, which

can be viewed as a sequence of dynamic parameters. For simplicity, we

consider the case that only the system matrices of the followers, Ai = A(θi),

1 ≤ i ≤ N , are different, and the analysis developed in this chapter can

easily be extended to the case when other parameters are also dependent on

θi. We assume that Pi, 1 ≤ i ≤ N , is of K distinct models. Specifically,

let K = {1, 2, ..., K} and Nk = {i : θi = k, 1 ≤ i ≤ N} for k ∈ K. Then

Nk := |Nk| where |Nk| is the cardinality of Nk capturing K distinct types of

followers with {θi, 1 ≤ i ≤ N}. In our heterogeneous model, we have Ai = Aj

if i, j ∈ Nk, in which case we denote Ak := Ai = Aj. Since N =
∑K

k=1Nk, the

vector πN = (πN1 , ..., π
N
K), where πNk = Nk/N , k ∈ K, becomes the probability

distribution on {θi, 1 ≤ i ≤ N}.
We introduce the following assumption:

Assumption 5.1. (a) {xi(0), 0 ≤ i ≤ N} are independent of each other,

and are measurable on F0. Also, E[x0(0)] = x̄0, E[xi(0)] = x̄, and

supi≥0 E[‖xi(0)‖2] ≤ c <∞.

(b) {Wi(t), 0 ≤ i ≤ N} are independent of each other, which are also inde-

pendent of {xi(0), 0 ≤ i ≤ N}.

(c) There exists a probability vector π = (π1, ..., πK) such that limN→∞ π
N =

π, where 0 < πk ≤ 1 for all k ∈ K with
∑K

k=1 πk = 1.

It should be mentioned that Assumption 5.1(c) implies that Nk > 0 for

each k ∈ K, and Nk →∞ when N →∞, that is, any type of the followers is

not diminished when N goes to infinity. One example of Assumption 5.1(c)

is K = {1, 2} with N1 = N2 = N/2, in which case π = (0.5, 0.5). Finally, due

to Assumptions 5.1(a) and 5.1(b), we have Ft = ∨Ni=0F it .
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The performance index for P0 to be minimized is given by

JN0 (u0, u
N) = E

∫ T

0

[
‖x0(t)−H0x

N(t)‖2
Q0

+ ‖u0(t)‖2
R0

]
dt, (5.3)

where Q0 ≥ 0 and R0 > 0. In (5.3), xN(t) = 1
N

∑N
i=1 xi(t) denotes the mean

field term that captures the mass behavior of the followers. Note that in

view of (5.3), the leader and the followers are coupled through the mean field

term. The performance index for Pi, 1 ≤ i ≤ N , is given by

JNi (ui, u−i, u0) = E
∫ T

0

[
‖xi(t)−HxN(t)‖2

Q + ‖ui(t)‖2
R + 2uTi (t)Lu0(t)

]
dt,

(5.4)

where Q ≥ 0 and R > 0. Note that the followers are (weakly) coupled with

each other through the mean field term xN , but are strongly coupled with

the leader’s control u0 included in (5.2) and (5.4).

The classes of admissible controls for P0 and Pi are defined as follows.

Let z ∈ L2
F(0, T ;Rn). We define U0 to be the set of u0 ∈ L2

F(0, T ;Rp) such

that u0 being a function of y = (x0, ..., xN , z) is Lipschitz continuous with

respect to y. Similarly, we define Ui(u0) to be the set of ui ∈ L2
F(0, T ;Rp)

such that given u0 ∈ U0, ui being a function of y′ = (x1, ..., xN , u0, z) is

Lipschitz continuous with respect to y′ for all i. Note that under these two

definitions, for any u0 ∈ U0 and ui ∈ Ui(u0), there exists a unique (strong)

solution to SDEs in (5.1) and (5.2) in L2
F(0, T ;Rn) [119]. It should also be

noted that in the definitions of U0 and Ui(u0), the corresponding controllers

are not restricted to be functions of the local information.

We next discuss the hierarchy of the (adapted) open-loop Stackelberg game

under consideration. The leader, P0, holds a dominating position in the sense

that he first decides on and announces his strategy u0, and enforces on Pi,
1 ≤ i ≤ N ; in this process, the leader takes into account the rational reactions

of the followers. The N followers then respond by playing a Nash game under

the leader’s strategy. Note that in this framework, each player (leader and

followers) knows his own system and cost parameters, and P0 also knows the

cost and system parameters of the followers. Moreover, the followers know

the leader’s optimal strategy for the entire time-horizon ([0, T ]), that is, the

leader announces his strategy in advance, and ahead of the followers at the
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start of the game.

In this hierarchical setting, the main objective of this chapter is to obtain a

Stackelberg equilibrium2 for the corresponding game. However, since we are

dealing with a large number of followers, two different issues of complexity

arise. One is with regard to the Nash game of the followers, since it is hard

(maybe impossible) to obtain the Nash equilibrium with an arbitrary strategy

of the leader when N is large. Another one is with regard to the stochastic

optimal control problem faced by the leader, as the number of additional

constraints induced by the Nash followers grows with N . This point will be

discussed in more detail in Section 5.2.2.

Now, to address these two issues of complexity, instead of seeking a Stack-

elberg solution, we seek an approximated Stackelberg equilibrium by char-

acterizing the best estimate of the actual mean field behavior xN when N is

arbitrarily large, in view of which 1) the Nash game of the followers admits

an ε-Nash equilibrium for any arbitrary open-loop strategy of the leader, and

2) the leader is able to characterize a unique optimal solution that leads to

an approximated Stackelberg strategy. We will see that due to the mean

field approximation, the number of additional constraints for the leader’s op-

timization problem induced by the Nash followers will be independent of N ,

making it easier to solve than the leader’s original optimization problem.

5.2.2 Discussion on the Direct Approach

We discuss the direct approach to the Stackelberg game formulated in Section

5.2.1. We do not provide an explicit expression of the Stackelberg equilib-

rium, but (informally) argue why the standard direct approach discussed in

[61, 93] for games with a small number of players may not be applicable to

solve the mean field Stackelberg game formulated in Section 5.2.1.

We first need to solve the Nash game of the followers for an arbitrary

open-loop strategy of the leader. Suppose that each follower has access to

the global state information. From [119], the Hamiltonian for follower i given

2See [61] for the definition of a Stackelberg equilibrium.
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u0 ∈ U0 can be written as (t argument is suppressed)

Hi(xi, ui, s
N
i , gi) = −

[
‖xi −HxN‖2

Q + ‖ui‖2
R + 2uTi Lu0

]
+ sN,Ti (Aixi +Bui + Fu0) + Tr(gTi D).

Then by the stochastic maximum principle (see [119]), the optimal solution3

for follower i is the one that maximizes the above Hamiltonian:

u′i(t) = R−1BT sNi (t)−R−1Lu0(t), (5.5)

where the corresponding forward-backward SDE (FBSDE) is given by

dx′i(t) =
[
Aix

′
i(t) +BR−1BT sNi (t)− (BR−1L− F )u0(t)

]
dt+DdWi(t)

dsNi (t) =
[
−ATi sNi (t) +Qx′i(t)−QHxN(t)− (1/N)HTQx′i(t)

+ (1/N)HTQHxN(t)
]
dt+ gi(t)dWi(t)

x′i(0) = xi(0), sNi (T ) = 0.

(5.6)

As can be seen from (5.6), the dynamics for x′i depend on the leader’s

open-loop strategy, and the adjoint process sNi is a function of the mean field

term. Note that this optimality condition holds for any follower. Therefore,

since each follower is coupled through the cost functionals only, if there is

an Ft-adapted solution of the FBSDE in (5.6) for all i, 1 ≤ i ≤ N , then

the set of u′i in (5.5) leads to a Nash equilibrium of the followers given any

arbitrary open-loop strategy of the leader [61]. In general, however, neither

the existence of the solution of (5.6) nor its uniqueness is guaranteed, and

even if a solution exists, it is hard to obtain, since (5.6) is highly coupled

across followers. Moreover, it may not be realistic in many cases that each

follower has access to the state information of the other followers. This

corresponds to the complexity of the Nash game when the number of followers

is large as mentioned in Section 5.2.1.

Now, to obtain a Stackelberg strategy for the leader, the leader is faced

3Note that in our case, the maximum principle is also sufficient, since R > 0 and Hi is
concave in xi for all i, see [119, Theorem 5.2].
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with the following optimization problem:

min
u0

JN0 (u0, u
N), s.t. x0, x

′
i, s

N
i , i = 1, 2, ..., N, (5.7)

where x0 is the state equation for the leader, and x′i and sNi are from (5.6),

which are additional constraints induced by Nash followers. Note that in the

above optimization problem, the cost function JN0 (u0, u
N) includes the mean

field term 1
N

∑N
i=1 x

′
i(t) which is dependent on u0 by virtue of (5.6). Moreover,

the number of additional constraints increases with N , which demonstrates

the second complexity issue brought up in Section 5.2.1. Hence, the above

heuristic argument informally shows that the standard approach may not

be applicable to obtain a Nash-Stackelberg equilibrium, and strengthens our

motivation for studying the problem within the mean field theory framework.

5.3 Mean Field Nash Games for the N Followers

This section considers the mean field Nash game for the N followers under

an arbitrary strategy of the leader, u0 ∈ U0. Since the followers are coupled

through only the mean field term, under the mean field approximation, each

follower actually faces a separate stochastic optimal control problem, which

we discuss below.

5.3.1 Local Optimal Control Problem for Pi
Consider the SDE for Pi, 1 ≤ i ≤ N :

dxi(t) = [A(θi)xi(t) +Bui(t) + Fu0(t)]dt+DdWi(t), (5.8)

where E[xi(0)] = x̄ with E[‖xi(0)‖2] <∞. The cost function is given by

J̄i(ui) = E
∫ T

0

[
‖xi(t)−Hz(t)‖2

Q + ‖ui(t)‖2
R + 2uTi (t)Lu0(t)

]
dt, (5.9)

where z(t) ∈ L2
F(0, T ;Rn) replaces xN(t) in (5.4), which can be viewed as

the mass behavior when N → ∞, whose explicit expression will be derived

later in this section. Note that due to the hierarchical structure of the game
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under consideration, z will be determined by an arbitrary strategy of P0.

Moreover, the individual impact of each follower on z may be negligible if z

captures the mass behavior.

The optimal control problem (5.9) can be viewed as a standard stochastic

LQ problem by treating z and u0 as exogenous signals. We have the follow-

ing result, whose proof follows from the standard stochastic optimal control

problem, see [120, 121, 119].

Lemma 5.1. Given z ∈ L2
F(0, T,Rn) and u0 ∈ U0, consider the local optimal

control problem for Pi, 1 ≤ i ≤ N , in (5.9). There exists a unique optimal

controller u∗i ∈ L2
F(0, T,Rq). Moreover, (x∗i , u

∗
i ) ∈ L2

F(0, T ;Rn+p) is the

corresponding optimal solution if and only if

u∗i (t) = R−1BTpi(t)−R−1Lu0(t), (5.10)

where
dx∗i (t) =

[
Aix

∗
i (t) +BR−1BTpi(t)− (BR−1L− F )u0(t)

]
dt+DdWi(t)

dpi(t) =
[
−ATi pi(t) +Q(x∗i (t)−Hz(t))

]
dt+ ri(t)dWi(t)

x∗i (0) = xi(0), pi(T ) = 0,

(5.11)

where (x∗i , pi, ri) ∈ L2
F(0, T ;R2n,Rn×q) is the solution to the forward-backward

SDE (FBSDE) in (5.11). Finally, given z and u0, (x∗i , pi, ri) has a unique

solution in L2
F(0, T ;R2n,Rn×q).

We now obtain an equivalent state-feedback representation of the opti-

mal controller and the corresponding optimal trajectory given in (5.10) and

(5.11), respectively. Let Gi(t) := Ai−BR−1BTZi(t) and pi(t) = −Zi(t)x∗i (t)+
φi(t), where φi(T ) = 0 and

−dZi(t)
dt

= ATi Zi(t) + Zi(t)Ai +Q− Zi(t)BR−1BTZi(t), Zi(T ) = 0. (5.12)

Notice that (5.12) is a symmetric Riccati differential equation (RDE) that
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arises in the standard LQ optimal control problem. We can show that

dx∗i (t) =
[
Gi(t)x

∗
i (t) +BR−1BTφi(t)− (BR−1L− F )u0(t)

]
dt+DdWi(t)

dφi(t) =
[
−GT

i (t)φi(t)−QHz(t)− Zi(t)(BR−1L− F )u0(t)
]
dt

+ (Zi(t)D + ri(t))dWi(t)

x∗i (0) = xi(0), φi(T ) = 0,

(5.13)

where the corresponding optimal decentralized state feedback controller is

given by

u∗i (t) = −R−1BTZ(t)x∗i (t) +R−1BTφi(t)−R−1Lu0(t). (5.14)

Note that φi is now decoupled from x∗i . Since R > 0 and Q ≥ 0, from the

standard LQ optimal control theory (see [119]), the RDE in (5.12) admits

a unique solution Zi(t) ≥ 0 for all t ∈ [0, T ] with Zi(T ) = 0. Moreover,

we have Zk := Zi ≡ Zj if i, j ∈ Nk for any k ∈ K. Therefore, since K is

finite, supk∈K,0≤t≤T ‖Zk(t)‖ ≤ C < ∞. This also implies that given z and

u0, there exists a unique Ft adapted solution to the FBSDE in Lemma 5.1

due to the affine structure of the transformation [121, Theorem 4.1]. The

explicit expression of the solution of (5.13) (and therefore (5.11)) in integral

form can be obtained by using [85, Lemma A.1].

Remark 5.1. It should be noted that the local optimal controller for Pi is

a function of its own information (including z) and an arbitrary open-loop

strategy of the leader. In view of this, we call (5.10) or (5.14) the optimal

decentralized controller for the follower.

5.3.2 Stochastic Mean Field Approximation

This subsection considers the mean field approximation. We first apply the

optimal decentralized controller (5.10) (or (5.14)) to N followers, and denote

the corresponding state by x∗i . From our K distinct heterogeneity model, let
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zNk (t) = 1
Nk

∑
i∈Nk x

∗
i (t). Then

xN(t) =
1

N

N∑
i=1

x∗i (t) =
1

N

K∑
k=1

∑
i∈Nk

x∗i (t) =
1

N

K∑
k=1

Nkz
N
k (t) =

K∑
k=1

πNk z
N
k (t),

where πNk = Nk/N is the probability of the k-th model in K defined in Section

5.2.1.

Now, zNk with k ∈ K can be written as

dzNk (t) =
[
Akz

N
k (t) +BR−1BT p̄Nk (t)− (BR−1L− F )u0(t)

]
dt

+ (1/Nk)
∑

i∈Nk DdWi(t)

dp̄Nk (t) =
[
−ATk p̄Nk (t) +Q(zNk (t)−Hz(t))

]
dt

+ (1/Nk)
∑

i∈Nk ri(t)dWi(t)

zNk (0) = (1/Nk)
∑

i∈Nk xi(0), p̄Nk (T ) = 0,

where p̄Nk (t) = 1
Nk

∑
i∈Nk pi(t). Equivalently, the state-feedback representa-

tion for zNk can be written as

dzNk (t) =
[
Gk(t)z

N
k (t) +BR−1BT φ̄Nk (t)− (BR−1L− F )u0(t)

]
dt

+ (1/Nk)
∑

i∈Nk DdWi(t)

dφ̄Nk (t) =
[
−GT

k (t)φ̄Nk (t)−QHz(t)− Zk(t)(BR−1L− F )u0(t)
]
dt

+ (1/Nk)
∑

i∈Nk(Zi(t)D + ri(t))dWi(t)

zNk (0) = (1/Nk)
∑

i∈Nk xi(0), φ̄Nk (T ) = 0,

where φ̄Nk (t) = 1
Nk

∑
i∈Nk φi(t).

Note that the Brownian motions for Pi, 1 ≤ i ≤ N , are independent

of each other, and are also independent of the initial conditions, and we

have E
∫ T

0
‖ri(t)‖2dt < ∞. Moreover, under Assumption 5.1, N → ∞ im-

plies Nk → ∞ for all k ∈ K. Then from the strong law of large numbers

(SLLN) [122], (1/Nk)
∑

i∈Nk DdWi(t) and (1/Nk)
∑

i∈Nk ri(t)dWi(t) are neg-

ligible as N → ∞ (as mentioned, that implies Nk → ∞), in view of which

zk(t) = limNk→∞ z
N
k (t) and p̄k(t) = limNk→∞ p̄

N
k (t) are well-defined processes.

Therefore, since the mean field xN(t) was replaced by z(t) in (5.9), we may

denote the mean field limit z(t) = limN→∞ x
N(t) = limN→∞

∑K
k=1 π

N
k z

N
k (t) =∑K

k=1 πkzk(t), which is a well-defined process.
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Hence, zk and p̄k for k ∈ K can be written as
dzk(t) =

[
Akzk(t) +BR−1BT p̄k(t)− (BR−1L− F )u0(t)

]
dt

dp̄k(t) =
[
−ATk p̄k(t) +Q(zk(t)−Hz(t))

]
dt

zk(0) = x̄, p̄k(T ) = 0.

(5.15)

It should be noted that the actual mean field stochastic process xN is now

captured by the stochastic process z with z(t) =
∑K

k=1 πkzk(t) that depends

on the leader’s open-loop strategy u0 ∈ U0 (note that u0 is adapted to the

filtration Ft). By using the state-feedback representation given in (5.13), we

may obtain the equivalent mean field process
dzk(t) =

[
Gk(t)zk(t) +BR−1BT φ̄k(t)− (BR−1L− F )u0(t)

]
dt

dφ̄k(t) =
[
−GT

k (t)φ̄k(t)−QHz(t)− Zk(t)(BR−1L− F )u0(t)
]
dt

zk(0) = x̄, φ̄k(T ) = 0,

(5.16)

where φ̄k(t) = limNk→∞ φ̄
N
k (t). Note that the state-feedback mean field rep-

resentation is also dependent on the leader’s strategy u0 ∈ U0.

Proposition 5.1. Given u0, the stochastic mean field process (5.15) (and

therefore (5.16)) admits a unique solution for all k ∈ K if there exists a

solution of the following RDE

−dZ̃(t)

dt
= AT Z̃(t) + Z̃(t)A + Q3 − Z̃(t)B2Z̃(t), Z̃(T ) = 0, (5.17)

where A, Q3 and B2 are defined in Appendix D.1.

Proof. We can see that p̄k is coupled with zk and the mean field term z(t) =∑K
k=1 πkzk(t). Let z̃ and p̃ be the column vectors associated with zk and p̄k,

k = 1, 2, ..., K, respectively. Then z̃ and p̃ can be written as

dz̃(t) =
[
Az̃(t) + B2p̃(t)− BLu0(t)

]
dt, dp̃(t) =

[
−AT p̃(t) + Q3z̃(t)

]
dt,

where BL = 1K ⊗ (BR−1L− F ). Note that z̃(0) = 1K ⊗ x̄ and p̃(T ) = 0nK .

It can be shown that p̃(t) = −Z̃(t)z̃(t) + φ̃(t), where

dφ̃(t) =
[
−(AT − Z̃(t)B2)φ̃(t)− Z̃(t)BLu0

]
dt, φ̃(T ) = 0.
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Then from [121, Theorem 4.1], the existence and uniqueness of a solution

to (5.15) (hence, to (5.16)) follow from the existence of a unique solution of

(5.17). This completes the proof.

The RDE given in (5.17) is not symmetric and positive semi-definite, since

Q3 is neither symmetric nor positive semi-definite. Therefore, in general,

it may not admit a unique solution. We do not provide conditions for the

existence of solution of (5.17), since this issue will be studied together with

the leader’s problem in Section 5.4, where conditions that guarantee existence

and uniqueness of the leader’s optimal solution as well as the solution of

the mean field process are provided in terms of a linear matrix inequality.

Therefore, in the rest of this section, we assume that the solution of the mean

field process in (5.15) (or (5.16)) exists.

The following result shows that (5.15) or (5.16) is indeed the best estimate

of the actual mass behavior when N is arbitrarily large.

Proposition 5.2. Suppose that Assumption 5.1 holds. Then for any u0 ∈ U0,

we have

E
∫ T

0

‖xN(t)− z(t)‖2dt = O
( 1

N
+ ε2N

)
,

where εN = supk∈K |πNk − πk|. Moreover, we have

sup
0≤t≤T

E[‖xN(t)− z(t)‖2] = O(
1

N
+ ε2N).

Proof. We prove the first statement only, since the second statement can be

shown in a similar way. We use the state-feedback representation given in

(5.16). First, note that

‖xN(t)− z(t)‖2 =
∥∥∥ K∑
k=1

πNk z
N
k (t)−

K∑
k=1

πkzk(t)
∥∥∥2

≤ 2
∥∥∥ K∑
k=1

πNk (zNk (t)− zk(t))
∥∥∥2

+ 2ε2N

∥∥∥ K∑
k=1

zk(t)
∥∥∥2

.

Let ek(t) = zNk (t)− zk(t) and ēk(t) = φ̄Nk (t)− φ̄k(t), where ēk(T ) = 0 for all

k ∈ K. Moreover, we have E[ek(0)] = 0 and E[‖ek(0)‖2] < ∞ for all k ∈ K.
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Then

E
∫ T

0

‖xN(t)− z(t)‖2dt

≤ 2E
∫ T

0

∥∥∥ K∑
k=1

πNk ek(t)
∥∥∥2

dt+ 2ε2NE
∫ T

0

K∑
k=1

‖zk(t)‖2dt, (5.18)

where we make use of the fact that Brownian motions of the followers are

independent of each other to get the second term in the RHS of the inequality.

Then, for the second term, in view of the fact that E
∫ T

0
‖zk(t)‖2dt <∞ for

all k ∈ K, we can show that ε2NE
∫ T

0

∑K
k=1 ‖zk(t)‖2dt = O(ε2N) as N →∞.

Now, for the first term of (5.18), we have

dek(t) = [Gk(t)ek(t) +BR−1BT ēk(t)]dt+ (1/Nk)
∑
i∈Nk

DdWi(t)

dēk(t) = −GT
k (t)ēk(t)dt+ (1/Nk)

∑
i∈Nk

(Zi(t)D + ri(t))dWi(t).

Let Φi(t, s) be the state transition matrix associated with Gi(t), that is,

dΦi(t, s) = Gi(t)Φi(t, s)dt. We have the following facts from linear system

theory:

dΦT
i (s, t) = −GT

i (t)ΦT
i (s, t)dt, dΦT

i (t, s) = ΦT
i (t, s)GT

i (t)dt

ΦT
i (0, t)ΦT

i (s, 0) = (Φi(s, 0)Φi(0, t))
T = ΦT

i (s, t),

where 0 ≤ s, t ≤ T . For any k ∈ K, by using Itô formula, we have

dΦT
k (t, 0)ēk(t) = ΦT

k (t, 0)(1/Nk)
∑
i∈Nk

(Zi(t)D + ri(t))dWi(t).

Then,

−ΦT
k (t, 0)ēk(t) =

∫ T

t

ΦT
k (τ, 0)(1/Nk)

∑
i∈Nk

(Zi(t)D + ri(t))dWi(t),

which implies

ēk(t) = −
∫ T

t

ΦT
k (τ, t)(1/Nk)

∑
i∈Nk

(Zi(t)D + ri(t))dWi(t).
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Since ēk(t) has to be an adapted solution with respect to Gkt = ∨i∈NkF it , we

must have ek(t) = E[ek(t)|Gkt ] for all k ∈ K, which implies that ēk(t) ≡ 0

for all k ∈ K. Due to the fact that supk∈K,0≤t≤T ‖Zk(t)‖ ≤ C and Φk(t, τ)

is continuous in t and τ , there exists a constant C1 > 0 independent of N

such that supk∈K,0≤t,τ≤T ‖Φk(t, τ)‖ ≤ C1 < ∞ [85, Remark A.4]. Hence,

E
∫ T

0
‖ek(t)‖2dt ≤ C2 < ∞ for all k ∈ K. Now, due to the fact that

limN→∞ π
N
k = πk > 0 from Assumption 5.1, it can be shown that

1

N2
E
∫ T

0

∥∥∥ K∑
k=1

Nkek(t)
∥∥∥2

dt =
1

N2

∫ T

0

N∑
i=1

E[‖ei(t)‖2]dt ≤ C2N

N2
,

where the equality follows from the independence of the Brownian motions.

Then we have the desired result. This completes the proof.

5.3.3 Optimality of N followers: The ε-Nash Equilibrium

This subsection shows that the set of N optimal decentralized strategies for

Pi, 1 ≤ i ≤ N obtained in Section 5.3.2, constitutes an ε-Nash equilibrium

for Pi, 1 ≤ i ≤ N , given u0 ∈ U0. The definition of an ε-Nash equilibrium is

given as follows.

Definition 5.1. The set of strategies, {ūi ∈ Ui(u0), 1 ≤ i ≤ N}, constitutes

an ε-Nash equilibrium with respect to {JNi , 1 ≤ i ≤ N}, if there exists ε ≥ 0

such that JNi (ūi, ū−i, u0) ≤ infui∈Ui(u0) J
N
i (ui, ū−i, u0)+ε, for all i, 1 ≤ i ≤ N .

We now recall the dynamics and the corresponding optimal decentralized

controller for the follower Pi, 1 ≤ i ≤ N , given in Lemma 5.1:

dx∗i (t) =
[
Aix

∗
i (t) +BR−1BTpi(t)− (BR−1L− F )u0(t)

]
dt+DdWi(t)

dpi(t) =
[
−ATi pi(t) +Q(x∗i (t)−Hz(t))

]
dt+ ri(t)dWi(t)

x∗i (0) = xi(0), pi(T ) = 0

u∗i (t) = R−1BTpi(t)−R−1Lu0(t),

(5.19)

where pi now depends on the mean field process z(t) =
∑K

k=1 zk(t) determined

in (5.15). As already mentioned in Remark 5.1, the above optimal controller

is decentralized in terms of the local information and the arbitrary strategy of
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the leader. It should be noted that in Definition 5.1, the set of the follower’s

(say i’th) admissible strategies, Ui(u0), was not restricted to be decentralized.

Theorem 5.1. Suppose that Assumption 5.1 holds. For any u0 ∈ U0, the set

of N strategies in (5.19) (or (5.14)), i.e., uN∗ = {u∗i , 1 ≤ i ≤ N}, constitutes

an ε-Nash equilibrium for {Pi, 1 ≤ i ≤ N}, that is, for any i, 1 ≤ i ≤ N ,

we have

Ji(u
∗
i , u
∗
−i, u0) ≤ inf

ui∈Ui(u0)
Ji(ui, u

∗
−i, u0) + ε,

where ε = O( 1√
N

+ εN) and εN is defined in Proposition 5.2.

Proof. The proof consists of two parts. First, by using Cauchy-Schwarz in-

equality, we have

JNi (u∗i , u
∗
−i, u0) ≤ J̄i(u

∗
i ) + ε2(N) + 2

(
E
∫ T

0

‖x∗i (t)− z(t)‖2
Qdt
) 1

2
ε(N)

= J̄i(u
∗
i ) +O

( 1√
N

+ εN

)
, (5.20)

where ε(N) := (E
∫ T

0
‖xN(t)− z(t)‖2dt)1/2 = O( 1√

N
+ εN) in view of Propo-

sition 5.2, and the equality follows from Proposition 5.2 and the fact that

x∗i ∈ L2
F(0, T ;Rn). Note that the above condition implies that for any u0 ∈ U0

and i, ∣∣∣JNi (u∗i , u
∗
−i, u0)− J̄i(u∗i )

∣∣∣ = O
( 1√

N
+ εN

)
.

On the other hand, since E
∫ T

0
‖x∗i (t)‖2dt < ∞ and E

∫ T
0
‖z(t)‖2dt < ∞,

we can show that JNi (u∗i , u
∗
−i, u0) ≤ C < ∞, where C is independent of N .

Since we have infui∈Ui(u0) J
N
i (ui, u

∗
−i, u0) ≤ JNi (u∗i , u

∗
−i, u0), we may consider

the controller ui ∈ Ui(u0) that satisfies E
∫ T

0
‖xi(t)‖2dt < ∞ for all i. Then

we can show that

JNi (ui, u
∗
−i, u0) ≥ J̄i(ui) + I1 + I2,
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where

I1 = 2E
∫ T

0

(xi(t)−Hz(t))TQH(z(t)− xN(t))dt

I2 =
2

N
E
∫ T

0

(xi(t)−Hz(t))TQH(x∗i (t)− xi(t))dt.

By using Cauchy-Schwarz inequality, Proposition 5.1, and the fact that

E
∫ T

0
‖xi(t)‖2dt <∞ and E

∫ T
0
‖z(t)‖2dt <∞ for all i, we can show that

J̄i(u
∗
i ) ≤ J̄i(ui)

≤ JNi (ui, u
∗
−i, u0) + |I1|+ |I2|

≤ JNi (ui, u
∗
−i, u0) +O

( 1

N

)
+ 2
√
‖H‖‖Q‖

(
E
∫ T

0

‖xi(t)−Hz(t)‖2
Qdt
)1/2

ε(N)

= JNi (ui, u
∗
−i, u0) +O

( 1√
N

+ εN

)
, (5.21)

where ε(N) := (E
∫ T

0
‖xN(t)−z(t)‖2dt)1/2 = O( 1√

N
+εN) and the first inequal-

ity follows from the fact that u∗i is the corresponding minimizing solution of

the follower’s local optimal control problem. Then, from (5.20) and (5.21),

we have the desired result. This completes the proof.

We now discuss the relationship between the mean field approach in this

section and the standard approach discussed in Section 5.2.2. For any u0 ∈ U0

and as N → ∞, in view of the FBSDE given in (5.6), we can show that for

all k ∈ K

p̄k = lim
Nk→∞

(1/Nk)
∑
i∈Nk

sNi (t), zk(t) = lim
Nk→∞

(1/Nk)
∑
i∈Nk

x′i(t),

since (1/N)HTQx′i(t) = o(1/N) and (1/N)HTQHxN(t) = o(1/N) in (5.6)

are negligible as N →∞. This implies that the mean field process obtained

by the standard approach is identical to that in (5.15). Moreover, we have

limN→∞ s
N
i = pi and limN→∞ x

′
i = x∗i for all i, where x∗i and pi are obtained

in Lemma 5.1. This shows that when N → ∞, the ε-Nash equilibrium in

Theorem 5.1 is the same as the centralized Nash equilibrium in Section 5.2.2

(that is the set of the centralized strategies u′i, 1 ≤ i ≤ N , in (5.5)), since
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u∗i = u′i for all i, provided that the solution of the corresponding FBSDE in

(5.6) exists for all N .

5.4 Leader’s Problem

In this section, we solve the leader’s problem to obtain an approximated

Stackelberg equilibrium.

5.4.1 Leader’s Local Optimal Control Problem

Due to the nature of the Stackelberg game under consideration, the leader’s

local optimal control problem is to minimize

J̄0(u0) = E
∫ T

0

[
‖x0(t)−H0z(t)‖2

Q0
+ ‖u0(t)‖2

R0

]
dt (5.22)

subject to

dx0(t) = [A0x0(t) +B0u0(t)]dt+D0dW0(t), (5.23)

and
dzk(t) =

[
Akzk(t) +BR−1BT p̄k(t)− (BR−1L− F )u0(t)

]
dt

dp̄k(t) =
[
−ATk p̄k(t) +Q(zk(t)−Hz(t))

]
dt

zk(0) = x̄, p̄k(T ) = 0, k = 1, 2, ..., K,

(5.24)

where E[x0(0)] = x̄0 and E[‖x0(0)‖2] < ∞. In (5.22), the mean field term

is replaced with the approximated mean field behavior of the followers,

z(t) =
∑K

k=1 πkzk(t), which is dependent on the leader’s arbitrary strategy

u0 ∈ U0 as can be seen from (5.24). Note that the leader’s local optimal

control problem has 2K additional constraints induced by the mean field ap-

proximation in Section 5.3, which is independent of N . Hence, as expected,

the optimization problem (5.22) is much more tractable than the original

optimal control problem faced by P0 in (5.7), although the optimal control

problem in (5.22) is still not standard, since it has additional constraints that

have initial and boundary conditions.
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Note that constraints in (5.24) can be replaced by the state-feedback rep-

resentation form, which is given below for convenience:
dzk(t) =

[
Gk(t)zk(t) +BR−1BT φ̄k(t)− (BR−1L− F )u0(t)

]
dt

dφ̄k(t) =
[
−GT

k (t)φ̄k(t)−QHz(t)− Zk(t)(BR−1L− F )u0(t)
]
dt

zk(0) = x̄, φ̄k(T ) = 0, k = 1, 2, ..., K.

(5.25)

The following lemma solves the nonstandard optimal control problem in

(5.22); the proof is given in Appendix D.3.

Lemma 5.2. For the local optimal control problem for P0 in (5.22), there

exists a unique optimal controller u∗0 ∈ L2
F(0, T,Rq). Moreover, (x∗0, u

∗
0) ∈

L2
F(0, T ;Rn+p) is the corresponding optimal solution if and only if

u∗0(t) = R−1
0 BT

0 p0(t)−R−1
0 (LTR−1BT − F T )

K∑
k=1

πkλk(t), (5.26)

where

dx∗0(t) =
[
A0x

∗
0(t) +B0R

−1
0 BT

0 p0(t)

−B0R
−1
0 (LTR−1BT − F T )

∑K
k=1 πkλk(t)

]
dt+D0dW0(t)

dp0(t) =
[
−AT0 p0(t) +Q0(x∗0(t)−H0z(t))

]
dt+ q0(t)dW0(t)

dλk(t) =
[
−ATk λk(t) +HT

0 Q0(H0z(t)− x∗0(t))−Qξk(t)

+HTQ
∑K

k=1 πkξk(t)
]
dt+ qk(t)dW0(t)

dξk(t) =
[
Akξk(t)−BR−1BTλk(t)

]
dt

dzk(t) =
[
Akzk(t) +BR−1BT p̄k(t)− (BR−1L− F )R−1

0 BT
0 p0(t)

+ (BR−1L− F )R−1
0 (LTR−1BT − F T )

∑K
k=1 πkλk(t)

]
dt

dp̄k(t) =
[
−ATk p̄k(t) +Q(zk(t)−Hz(t))

]
dt

x∗0(0) = x0(0), ξk(0) = 0, zk(0) = x̄

p0(T ) = 0, λk(T ) = 0, p̄k(T ) = 0, k = 1, 2, ..., K.

(5.27)

Remark 5.2. In (5.27), ξk and λk, k = 1, 2, ..., K, are additional Ft adapted

forward-backward processes (or adjoint processes) generated by additional

constraints zk and p̄k, k = 1, 2, ..., K.
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Bearing in mind that in the follower’s problem, the corresponding optimal

solution exists if and only if the mean field limit z and the leader’s optimal

control u∗0 exist. In view of Lemma 5.2, we need to identify conditions for

which there exists a set of unique solutions of the FBSDEs in (5.27).

Let

X (t) =
(
x∗T0 (t) ξT1 (t) . . . ξTK(t) zT1 (t) . . . zTK(t)

)T
Y(t) =

(
pT0 (t) λT1 (t) . . . λTK(t) p̄T1 (t) . . . p̄TK(t)

)T
,

where X (0) = (xT0 (0),0TnK ,1
T
K ⊗ x̄T )T and Y(T ) = 02nK+n. Note that X and

Y are (2nK+n)-dimensional vector-valued forward and backward processes,

respectively. Define

A1 = diag{A0,A,A}, B1 =

B0R
−1
0 BT

0 B1 0n×Kn

0nK×n −B2 0nK×Kn

B3 BK B2

 , D1 =

 D0

0nK×q

0nK×q



A2 =

 Q0 0n×nK Q1

Q2 −QT
3 QK

0nK×n 0nK×nK Q3

 , B2 = −AT1 , D2 =

 q0(t)

q̄(t)

0nK×q

 ,

where the corresponding block matrices are defined in Appendix D.1. We

can show that

dX (t) = [A1X + B1Y ]dt+D1dW0(t)

dY(t) = [A2X + B2Y ]dt+D2dW0(t).

It can be shown that X and Y satisfy the following affine transformation

Y(t) = −Λ(t)X (t) + V(t), (5.28)

where Λ(t) is a solution to the following RDE

−dΛ(t)

dt
= Λ(t)A1 − B2Λ(t) +A2 − Λ(t)B1Λ(t), Λ(T ) = 0, (5.29)

110



and V(t) satisfies V(T ) = 0 and

dV(t) = [B2 + Λ(t)B1]V(t)dt+ [D2 + Λ(t)D1]dW0(t).

Note that V is decoupled from X . It is easy to see that the RDE in (5.29)

is nonsymmetric; hence in general, it may not admit a solution [121, 123].

Since X and Y satisfy the affine transformation (5.28), X and Y admit a

unique solution if the nonsymmetric RDE in (5.29) has a unique solution for

all t ∈ [0, T ] [121, Theorem 4.1] (or see [92]). We now identify conditions for

the existence of a unique solution of (5.29).

The first result is given below, which follows from direct computation, or

see [121, Theorem 4.3].

Proposition 5.3. Suppose that we have

det
{(
I 0

)
eĀ(t−T )

(
I

0

)}
> 0, ∀t ∈ [0, T ], Ā =

(
A1 −B1

−A2 B2

)
. (5.30)

Then the RDE in (5.29) admits a unique solution Λ(t) for all t ∈ [0, T ] with

Λ(T ) = 0, which can be written as

Λ(t) =
[(

0 I
)
eĀ(t−T )

(
I

0

)][(
I 0

)
eĀ(t−T )

(
I

0

)]−1

= Π(t)Ψ−1(t),

where Π(t) and Ψ(t) are defined in Lemma D.1 in Appendix D.2.

Note that the condition in (5.30) requires computation of the matrix expo-

nential function ((4nK+2n)× (4nK+2n)-dimensional) and its determinant

for all t; therefore, it is sometimes hard to check. The following result pro-

vides an easy-to-check condition for existence and uniqueness of the solution

of (5.29), which can be viewed as a modified version of [123, Theorem 3.11].

Proposition 5.4. Let

Υ(W1,W2) =

(
W1A1 −W2A2 −W1B1 +AT1W2 +W2B2 −AT2W2

0 −BT1 W2 + BT2 W2

)
,

where W1 = W T
1 > 0 and W2 = W T

2 . Suppose Υ + ΥT < 0. Then, the RDE

in (5.29) admits a unique solution Λ(t) for all t ∈ [0, T ] with Λ(T ) = 0.
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Proof. The local existence and uniqueness theorem of differential equations

implies that there exists a solution to the differential equation in Lemma D.1

in Appendix D.2 for t sufficiently close to T , that is, Ψ(t) is invertible for t

sufficiently close to T . Therefore, it suffices to show that if Υ+ΥT < 0 holds

with W1 = W T
1 > 0 and W2 = W T

2 , Ψ(t) is invertible for all t ∈ [0, T ].

For any z ∈ R2nK+n and z 6= 0, define

V (t, z) = zT (ΨT (t)W1Ψ(t) + ΨT (t)W2Π(t)

+ ΠT (t)W2Ψ(t) + ΠT (t)W2Π(t))z.

Clearly, the matrix-valued function in V (t, z) is symmetric, that is, V (t, z) =

V T (t, z), and in view of the terminal condition, we have V (T, z) = zTW1z >

0. Let z̄ = (zTΨT (t), zTΠT (t))T . It can be shown that (t argument is sup-

pressed)

dV

dt
= 2zTΨTW1

dΨ

dt
z + 2zT

dΨT

dt
W2Πz + 2zTΨW2

dΠ

dt
z + 2zT

dΠT

dt
W2Πz

= 2zTΨTW1(A1Ψ− B1Π)z + 2zT (ΨTAT1 − ΠTBT1 )W2Πz

+ 2zTΨTW2(−A2Ψ + B2Π)z + 2zT (−ΨTAT2 + ΠTBT2 )W2Πz

= z̄T (Υ + ΥT )z̄ < 0.

This implies that V (t, z) is monotonically decreasing from (−∞, T ], and since

V (T, z) = zTW1z > 0, V (t, z) > 0 for all t ∈ [0, T ]. This also implies that

the matrix-valued function in V (t, z) is positive definite for all t ∈ [0, T ];

therefore, Ψ(t) is invertible for all t ∈ [0, T ]. This completes the proof.

Remark 5.3. Let L(W1,W2) = diag{Υ + ΥT ,−W1}, and C = {W1 = W T
1 >

0,W2 = W T
2 : L(W1,W2) < 0}. We can easily check that L(W1,W2) < 0 is a

linear matrix inequality (LMI), and C is convex. Therefore, the condition in

Proposition 5.4 can be checked by using standard semidefinite programming

by identifying feasibility of the corresponding LMI [115].

We write Λ(t) in the partition form:

Λ(t) =

Λ11(t) Λ12(t) Λ13(t)

Λ21(t) Λ22(t) Λ23(t)

Λ31(t) Λ32(t) Λ33(t)

 ,
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where Λ11 is n× n, and Λ22 and Λ33 are nK × nK matrices. Then it is easy

to check that the existence of a solution Λ(t) (especially Λ33) implies the

existence of a solution of the RDE in (5.17), which guarantees the existence

of a solution of the mean field process in Proposition 5.1.

Before concluding this subsection, we should note that under the optimal

decentralized controller of the leader in (5.26), the approximated mean field

process, zk and z(t) =
∑K

k=1 πkzk(t), can be obtained by simply taking the

conditional expectation with respect to F0
t , i.e., zk(t) = E[zNk (t)|F0

t ], which

is indeed equivalent to applying the SLLN in Section 5.3.2. This implies

that under the optimal strategy of the leader, the approximated mean field

is a stochastic process adapted to the leader’s local information, which is

similar to the major and minor problem considered in [84] and [85], but

their stochastic mean field processes are indirectly affected by the major’s

strategy, since the control input of the major player does not appear in the

corresponding mean field process.

5.4.2 Optimality of the Leader: The (ε1, ε2)-Stackelberg
Equilibrium

This subsection shows that if the leader announces u∗0 obtained in Section

5.4.1 to the N followers, the set of the optimal decentralized strategies for the

leader and the followers constitutes an approximated Stackelberg equilibrium.

The definition of an (ε1, ε2)-Stackelberg equilibrium is as follows, which can be

viewed as a modified version of the definition of an ε-Stackelberg equilibrium

given in [61].

Definition 5.2. Let ūN(ū0) = {ū1(ū0), ..., ūN(ū0), ūi ∈ Ui(ū0), 1 ≤ i ≤ N}
and ū0 ∈ U0. Then ū = {ū0, ū

N(ū0)} is an (ε1, ε2)-Stackelberg equilibrium

with respect to {JNi , 0 ≤ i ≤ N} if the following two properties hold:

(i) ūN(ū0) constitutes an ε1-Nash equilibrium under ū0.

(ii) There exists ε2 ≥ 0 such that

JN0 (ū0, ū
N(ū0)) ≤ inf

u0∈U0
JN0 (u0, ū

N(u0)) + ε2.

Since, in Definition 5.2, the followers are ε-Nash followers, the above defi-

nition can also be viewed as an approximated version of the definition of the
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Stackelberg equilibrium given in [89, 118].

We now recall the dynamics and the corresponding optimal decentralized

controller for P0:

dx∗0(t) =
[
A0x

∗
0(t) +B0R

−1
0 BT

0 p0(t)

−B0R
−1
0 (LTR−1BT − F T )

∑K
k=1 πkλk(t)

]
dt+D0dW0(t)

dp0(t) =
[
−AT0 p0(t) +Q0(x∗0(t)−H0z(t))

]
dt+ q0(t)dW0(t)

u∗0(t) = R−1
0 BT

0 p0(t)−R−1
0 (LTR−1BT − F T )

∑K
k=1 πkλk(t),

(5.31)

where the corresponding FBSDEs are given in Lemma 5.2. Let

u∗ = {u∗0, uN∗(u∗0)}, uN∗(u∗0) = {u∗1(u∗0), ..., u∗N(u∗0)}, (5.32)

where u∗0 is determined from (5.31) and uN∗(u∗0) is the set of the followers’

optimal decentralized strategies in Theorem 5.1 when u0 is replaced by u∗0.

Note that uN∗(u∗0) is the set of followers’ optimal decentralized strategies

when the leader announces his optimal decentralized strategy u∗0 to the N

followers.

Theorem 5.2. Suppose that Assumption 5.1 holds and the RDE in (5.29)

has a unique solution Λ(t) for all t ∈ [0, T ] with Λ(T ) = 0. Then u∗ given

in (5.32) constitutes an (ε1, ε2)-Stackelberg equilibrium, where ε1 = ε2 =

O( 1√
N

+ εN) and εN is defined in Proposition 5.2.

Proof. We first note that under u∗0, uN∗(u∗0) constitutes an ε1-Nash equilib-

rium where ε1 = O( 1√
N

+ εN) in view of Theorem 5.1. Therefore, it suffices

to show that the optimal decentralized strategy of the leader (5.31) with

uN∗(u∗0) satisfies the second property in Definition 5.2. Let z−0 be the mean

field process when the leader takes an arbitrary strategy u0 ∈ U0. Let xN−0 be

the actual mass behavior when the followers are under uN∗(u0). Note that

z−0 and xN−0 are equivalent to those in Proposition 5.2, since Proposition 5.2

holds for any arbitrary strategy of the leader.

Similar to Theorem 5.1, we can show that∣∣∣JN0 (u∗0, u
N∗(u∗0))− J̄0(u∗0)

∣∣∣ = O
( 1√

N
+ εN

)
,
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which implies

JN0 (u∗0, u
N∗(u∗0)) ≤ J̄0(u∗0) +O

( 1√
N

+ εN

)
, (5.33)

where J̄0(u∗0) is the minimum cost of the leader’s local optimal control prob-

lem in Lemma 5.2. Note that J̄0(u∗0) is related to the mean field process z(t)

given in Lemma 5.2.

By virtue of Theorem 5.1 and Lemma 5.2, we have that E
∫ T

0
‖x∗0(t)‖2dt <

∞ and E
∫ T

0
‖x∗i (t)‖2dt <∞ for all i; hence there exists a constant C, inde-

pendent of N , such that JN0 (u∗0, u
N∗(u∗0)) ≤ C < ∞. Since for any u0 ∈ U0,

we have infu0∈U0 J
N
0 (u0, u

N∗(u0)) ≤ JN0 (u∗0, u
N∗(u∗0)), it suffices to consider

u0 ∈ U0 with the property that E
∫ T

0
‖x0(t)‖2dt <∞.

Now, we have

JN0 (u0, u
N∗(u0)) ≥ J̄0(u0) + I,

where

I = 2E
∫ T

0

(x0(t)− z−0(t))TQ(z−0(t)−H0x
N
−0(t))dt.

Then by using Cauchy-Schwarz inequality and Proposition 5.2, we can show

that

J̄0(u∗0) ≤ J̄0(u0) ≤ JN0 (u0, u
N∗(u0)) +O

( 1√
N

+ εN

)
, (5.34)

where the first inequality follows from the fact that u∗0 is the corresponding

optimal solution of the leader’s local optimal control problem from Lemma

5.2. Hence, from (5.33) and (5.34), we have

JN0 (u∗0, u
N∗(u∗0)) ≤ inf

u0∈U0
JN0 (u0, u

N∗(u0)) + ε2,

where ε2 = O( 1√
N

+ εN). This completes the proof.

In Section 5.3.3 below Theorem 5.1, we had shown that for any u0 ∈ U0

and when N → ∞, the ε-Nash equilibrium in Theorem 5.1 is equivalent to

the centralized Nash equilibrium obtained in Section 5.2.2 (that is the set

of the centralized strategies u′i, 1 ≤ i ≤ N , in (5.5)), provided that the
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solution of the FBSDE in (5.6) exists for all N . This implies that when N →
∞, the (ε1, ε2)-Stackelberg equilibrium becomes identical to the centralized

Stackelberg equilibrium that is a solution of the leader’s optimization problem

in (5.7), since the optimization problems for the leader in (5.7) and (5.22)

become identical (note that (1/N)
∑N

i=1 x
′
i(t) in (5.7) converges to the mean

field process z(t) in (5.15) as N → ∞). Therefore, in view of Theorems

5.1 and 5.2, the (ε1, ε2)-Stackelberg equilibrium is approximated centralized

Stackelberg equilibrium with an approximation factor O( 1√
N

+ εN). As a

consequence, when there is a large number of followers, there is no need for

the followers to share the information among themselves, which is of course

less restrictive than the original Stackelberg game discussed in Section 5.2.2.

5.4.3 Optimality of Leader’s Policy with State-feedback
Policies by the Followers

We now consider the situation when the followers have, instead, access to

state feedback information, in which case the leader is faced with an optimal

control problem with additional constraints given in (5.25), instead of (5.24).

For notational simplicity, we assume that F = 0, which implies that coupling

effect between the leader and the followers appear in their cost functions only.

Similar to Lemma 5.2, we can then show that (x∗0, u
∗
0) ∈ L2

F(0, T ;Rn+p) is

the corresponding optimal solution if and only if

u∗0(t) = R−1
0 BT

0 p0(t)−R−1
0 LTR−1BT

K∑
k=1

πkλ̄k(t) (5.35)

−R−1
0 LTR−1BT

K∑
k=1

πkZk(t)ξ̄k(t),

where Zk is the RDE given in (5.12) and the set of corresponding FBSDEs
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is given by

dx∗0(t) =
[
A0x

∗
0(t) +B0R

−1
0 BT

0 p0(t)−B0R
−1
0 LTR−1BT

∑K
k=1 πkλ̄k(t)

−B0R
−1
0 LTR−1BT

∑K
k=1 πkZk(t)ξ̄k(t)

]
dt+D0dW0(t)

dp0(t) =
[
−AT0 p0(t) +Q0(x∗0(t)−H0z(t))

]
dt+ q0dW0(t)

dλ̄k(t) =
[
−GT

k (t)λ̄k(t) +HT
0 Q0(H0z(t)− x0(t)) +HTQ

∑K
k=1 πkξ̄k(t)

]
dt

+ q̄k(t)dW0(t)

dξ̄k(t) =
[
Gk(t)ξ̄k(t)−BR−1BT λ̄k(t)

]
dt

dzk(t) =
[
Gk(t)zk(t) +BR−1BT φ̄k(t)

]
dt−BR−1L

[
R−1

0 BT
0 p0(t)

−R−1
0 LTR−1BT

∑K
k=1 πkλ̄k(t)

−R−1
0 LTR−1BT

∑K
k=1 πkZk(t)ξ̄k(t)

]
dt

dφ̄k(t) =
[
−GT (t)φ(t)−QHz(t)

]
dt− Zk(t)BR−1L

[
R−1

0 BT
0 p0(t)

−R−1
0 LTR−1BT

∑K
k=1 πkλ̄k(t)

−R−1
0 LTR−1BT

∑K
k=1 πkZk(t)ξ̄k(t)

]
dt

x∗0(0) = x0(0), ξ̄k(0) = 0, zk(0) = x̄

p0(T ) = 0, λ̄k(T ) = 0, φ̄k(T ) = 0, k = 1, 2, ..., K.

(5.36)

It is easy to show that λk(t) = Zk(t)ξ̄k(t) + λ̄k(t) for all k ∈ K. By

substituting this transformation into ξ̄k, we have ξ̄k ≡ ξk, which implies that

u∗0 in (5.35) is equivalent to the optimal strategy of the leader when the

followers are under the open-loop representation given in (5.31). Moreover,

since the RDE Zk has a unique solution as discussed in Section 5.3.1, the

existence condition of the solution of the FBSDEs in (5.36) is the same as

the one in Proposition 5.4. Therefore, when the leader announces (5.35)

instead of (5.31) to the N followers, the set of the optimal decentralized

strategies for the leader and the followers, that is, u∗0 in (5.35) and the set

of u∗i s in (5.14) with u∗0, still constitute an (ε1, ε2)-Stackelberg equilibrium,

where ε1 = ε2 = O( 1√
N

+ εN).

We should mention that in standard linear-quadratic Stackelberg stochas-

tic differential games, the information of the follower does not play an impor-

tant role. That is, as discussed in [61], regardless of whether the follower has

open-loop or closed-loop perfect state information, the Stackelberg strategy
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Figure 5.1: Λ(t) over time with Λ(10) = 0.

of the leader is the same, since different information structures do not lead to

different optimization problems for the leader. The results in this subsection

also confirm the same phenomenon in mean field Stackelberg games.

5.5 Numerical Examples

This section provides numerical examples. We first consider the case of uni-

form followers (K = 1), and then discuss the heterogeneous case with K = 4.

5.5.1 The Case of Uniform Followers

Consider the SDE for P0 and Pi, 1 ≤ i ≤ N :

dx0(t) = [2x0(t) + u0(t)]dt+ dW0(t)

dxi(t) = [1.3xi(t) + 2ui(t)]dt+ dWi(t),

and the performance indices

J0 = E
∫ 10

0

[(x0(t)− 0.8xN(t))2 + 2u2
0(t)]dt

Ji = E
∫ 10

0

[(xi(t)− 0.7xN(t))2 + 2u2
0(t) + ui(t)u0(t)]dt,
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Figure 5.2: ε(N) with respect to N .
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Figure 5.3: Λ(t) over time with Λ(7) = 0 for the heterogeneous case.

where x0(0) and xi(0) are distributed according to N (0, 1). It can be checked

that with above parameters, the LMI condition in Proposition 5.4 holds,

where Λ(t) ∈ R3×3 is depicted in Fig 5.1. Note that Λ(t) is neither sym-

metric nor positive semi-definite. Figure 5.2 plots ε(N) := (E
∫ 10

0
‖xN(t) −

z(t)‖2dt)1/2. Note that for the case of uniform followers, we have ε(N) =

O(1/
√
N). As can be seen, ε(N) converges as N →∞.
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Figure 5.4: ε(N) with respect to N for the heterogeneous case.

5.5.2 The Heterogeneous Case with K = 4

We now consider the same model as in Section 5.5.1, except that T = 7 and

there are K = 4 distinct models of the followers with

A(θi) ∈ {1.3, 1.7, 1.9, − 3.8}, π =
(

2/4 1/8 1/8 1/4
)
.

The nonsymmetric RDE Λ is a 9 × 9 matrix, whose diagonal terms are

depicted in Figure 5.3. The plot of ε(N) is shown in Fig. 5.4. It also

converges as N →∞.

5.6 Conclusions

In this chapter, we have considered mean field Stackelberg differential games,

where there is one leader and a large number, say N , of heterogeneous follow-

ers with K distinct types. We have used the stochastic mean field approxi-

mation to characterize the best estimate of the actual mean field process of

the followers. We have shown that with the approximated mean field process

and each fixed strategy of the leader, the optimal decentralized controllers

of the followers, which are solutions of the followers’ local control problems,

constitute an ε-Nash equilibrium, where ε converges to zero as N →∞. For

the leader’s problem, we have identified an LMI condition under which the

leader’s local optimal control problem admits a unique optimal decentralized
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controller. We have shown that the optimal decentralized controllers for the

leader and the followers constitute an (ε1, ε2)-Stackelberg equilibrium, where

ε1 and ε2 both converge to zero as N →∞.
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CHAPTER 6

CONCLUSIONS AND FUTURE
DIRECTIONS

6.1 Recap

In this thesis, we studied various problems of control and estimation with

limited information within a game-theoretic approach, to address communi-

cation constraints and structural constraints in modern control systems.

In the first part of the thesis, that is Chapters 2 and 3, we considered con-

trol and estimation problems over unreliable communication channels within

the stochastic zero-sum dynamic game framework.

In Chapter 2, we obtained the stochastic minimax state estimator (SMSE)

for the case when the estimator receives the sensor measurement intermit-

tently governed by the Bernoulli process. We analyzed the asymptotic be-

havior of the estimation error in terms of a generalized stochastic Riccati

equation (GSRE). In particular, we identified conditions on the rate of in-

termittent observations and the disturbance attenuation parameter, above

which 1) the expected value of the GSRE is bounded from below and above

by the deterministic quantities, and 2) the sequence of the norm generated

by the GSRE converges weakly to a unique stationary distribution. Finally,

we identified explicit lower and upper bounds for the expected value of the

GSRE, and showed their convergence.

In Chapter 3, we considered the minimax control problem for TCP- and

UDP-like unreliable communication channels that are modeled by two in-

dependent Bernoulli processes. We obtained the output feedback minimax

controllers in both cases. We also characterized the set of threshold-type

existence conditions for both problems in terms of the communication chan-

nel loss rates and the disturbance attenuation parameter, above which the

minimax controller is able to achieve the desired control performance and

stability. Finally, we identified a trade-off between disturbance attenuation
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and fundamental communication limitations.

In the second part of the thesis, that is Chapters 4 and 5, we considered

two different large-scale optimization problems via mean field game theory

to address structural constraints in the large-scale system.

In Chapter 4, risk-sensitive and robust mean field games were considered.

We obtained an ε-Nash equilibrium for each corresponding problem, where

the individual Nash strategies are decentralized as a function of local state

information, and ε can be picked arbitrarily small when the number of agents

is arbitrarily large. We showed that the two ε-Nash equilibria are partially

equivalent in the sense that the individual Nash strategies for both problems

share the same control law, but are determined by the different mean field

system that provides the best estimation of the actual mean field behavior.

Finally, we showed that both ε-Nash equilibria feature robustness in terms

of the disturbance attenuation parameter.

The last chapter, Chapter 5, considered mean field Stackelberg differential

games. We identified the approximated stochastic mean field behavior of the

followers governed by the leader’s strategy. With the approximated stochastic

mean field behavior, we obtained a decentralized ε-Nash equilibrium for the

followers. Moreover, the decentralized (ε1, ε2)-Stackelberg strategy of the

leader was obtained by solving the leader’s local nonstandard optimal control

problem. We identified an existence condition for the (ε1, ε2)-Stackelberg

strategy in terms of a linear matrix inequality. Finally, as a consequence of

decentralization, we showed that ε1 and ε2 can be picked arbitrarily small

when the number of followers is arbitrarily large.

6.2 Directions for Future Work

There are several interesting open problems on networked control systems

and mean field games as natural outgrowths of the problems treated in this

thesis. We identify some of these below.

Networked Control Systems

Chapter 2 studied the asymptotic behavior of the GSRE in the expectation

sense and the weak convergence sense. The asymptotic behavior of the GSRE
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can also be analyzed in the probabilistic sense, as was done for the Kalman

filtering problem in [50, 51]. In this case, one needs to show boundedness

of P(Σk ≤ M), where M ≥ 0. This will provide a different perspective to

the asymptotic behavior of the GSRE, which cannot be interpreted in the

expectation sense.

In Chapters 2 and 3, the corresponding unreliable communication chan-

nel was taken to be temporally uncorrelated in terms of an i.i.d. Bernoulli

process. This can be extended to the temporally correlated one with the

Gilbert-Elliot channel model, in which case the communication channel can

be regarded as a two-state irreducible and stationary Markov chain [27, 53].

The certainty equivalence principle for the TCP-case still holds. In order to

obtain the corresponding minimax controller, we need to use dynamic pro-

gramming. This, however, requires more involved steps than Section 3.3,

since depending on the acknowledged information, two different zero-sum

games appear at each time k to derive a minimax controller.

The minimax control problem for the TCP-case in Chapter 3 considers

the case of perfect acknowledgments of control packet losses. In real-world

systems, however, these acknowledgments may not be transmitted reliably

due to the unreliable nature of the reverse channel. This unreliability can

be modeled within a probabilistic framework, in which the controller receives

acknowledgments perfectly with probability ν ∈ [0, 1]. Note that when ν = 0,

the problem is equivalent to the UDP-case as studied in Chapter 3. This

would be an interesting and challenging direction of research to pursue.

Finally, it would be interesting to study minimax control and estimation

problems for nonlinear dynamical systems over unreliable communication

channels, which is a problem that has been studied in [124] within the LQG

framework.

Mean Field Games

The results obtained in Chapter 4 have shown how risk-sensitive optimal

control, stochastic zero-sum differential game, and risk-neutral LQG control

are related within the framework of mean field games. A further interesting

problem would be to establish such relationships for systems described by

general nonlinear stochastic differential equations under general cost func-
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tions. Moreover, it would also be interesting to study risk-sensitive and

robust mean field games with major and minor players, as was done for the

risk-neutral case in [84, 85, 86].

The analysis developed in Chapter 5 considers the one leader case. This

can be extended to the problem of multiple leaders and followers. In this

extension, the leaders will also play a Nash game among themselves; there-

fore, the problem can be viewed as a combination of Stackelberg and Nash

games as mentioned in [118]. In this case, due to the multiple influence of the

leaders on the mean field behavior of the followers, the leaders’ local optimal

control problems will be more involved than that in Chapter 5.

Another possible extension of the results of Chapter 5 would be to the case

when the mean field coupling term is also included in the individual stochastic

differential equations, which will introduce a more general coupling scenario

between the followers and the leader.

One can also consider mean field Stackelberg dynamic games with discrete-

time system dynamics for the leader and the followers. This problem can also

be viewed as an extension of [125], where a similar problem is studied with

state feedback information and a simplified cost function.

Finally, studying mean field games for singularly perturbed systems (SPSs)

is an important area of research in control, since SPSs are able to capture gen-

eral dynamic behavior by using two different time scales, “fast” and “slow,”

where the fast term corresponds to dynamics with small time constants. A

major challenge in studying this problem is to construct a separation of time

scales to design a local optimal controller that provides a best estimate mean

field behavior, and to construct a corresponding mean field system.
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APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Proof of Convergence of the MGRE

This section provides proofs of convergence of (2.11) and the MGRE in (2.12).

We rewrite the modified generalized Riccati equation (MGRE) in (2.12):

Xk+1 = (1− β)h1(γ,Xk) + βh2(γ,Xk) =: h(γ, β,Xk), (A.1)

where X0 = Q−1
0 , and h1(γ,X) and h2(γ, β,X) are functions that are defined

by

h1(γ,X) := A(X−1 − γ−2Q)−1AT +DDT (A.2a)

h2(γ,X) := A(X−1 − γ−2Q+ CTV −1C)−1AT +DDT . (A.2b)

In terms of h1 and h2, the modified generalized algebraic Riccati equation

(MGARE) can be rewritten as

X = (1− β)h1(γ,X) + βh2(γ,X) =: h(γ, β,X). (A.3)

The following condition is needed:

ρ(XQ) < γ2. (A.4)

Before stating our main result on the convergence of (A.1), we observe

that the MGARE in (A.3) is a convex combination of two different AREs.

For the first part, consider the problem of maximizing

H1
γ(p′0:N−1) = |z′N |2Q−1

0
+

N−1∑
k=0

|z′k|2Q − γ2|p′k|2, (A.5)
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subject to z′k+1 = Az′k + Dp′k. The second part of (A.3) is related to the

zero-sum dynamic game with the objective function

H2
γ(q′′0:N−1, p

′′
0:N−1) = |z′′N |2Q−1

0
+

N−1∑
k=0

|z′′k |2Q + |q′′k |2 − γ2|p′′k|2, (A.6)

and state dynamics z′′k+1 = Az′′k + CTV −1/2q′′k + Dp′′k, where q′′0:N−1 is the

minimizer and p′′0:N−1 is the maximizer. Then we can solve (A.5) and (A.6)

by dynamic programming (under the strict concavity assumption, see [61]),

the corresponding Riccati equations are, respectively, given by

X ′k+1 = h1(γ,X ′k), X
′
0 = Q−1

0 (A.7)

X ′′k+1 = h2(γ,X ′′k ), X ′′0 = Q−1
0 , (A.8)

where we used the time-reverse notation in [126] and then replaced the triple

(A,D,G) with the ordered triple (AT , GT , DT ) where Q = GTG.

It was shown in [106] that if (A.7) and (A.8) have fixed points, i.e., X ′ =

h1(γ,X ′) and X ′′ = h2(γ,X ′′), satisfying (A.4) where X ′, X ′′ ∈ Sn>0, then

they converge to X ′ and X ′′, respectively. This follows from monotonicity

and continuity of (A.7) and (A.8) with the controllability and observability

assumptions [126, 106].

We now show convergence of (A.1).

Lemma A.1. Suppose that X0 ≤ DDT , β ∈ [0, 1], and γ > 0 is fixed.

Suppose that MGRE satisfies (A.4) for all k. If X̄ ∈ Sn>0 is a fixed point of

(A.3) that satisfies (A.4), then as k →∞, {Xk} → X+ where X+ is a fixed

point of (A.3) satisfying (A.4).

Proof. First note that when X0 = 0, {Xk} is a monotone sequence when

ρ(XkQ) < γ2. To see this, at k = 0, we have X0 ≤ h(γ, β,X0) = X1. Now,

assume that we have Xk−1 ≤ Xk. Then

Xk = h(γ, β,Xk−1)

= (1− β)h1(γ,Xk−1) + βh2(γ,Xk−1)

≤ (1− β)h1(γ,Xk) + βh2(γ,Xk)

= h(γ, β,Xk) = Xk+1,

where the inequality follows from Lemma A.3(viii). Therefore, if there exists
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M > 0 such that M ≥ Xk for all k satisfying (A.4), then {Xk} converges to

X+, and by continuity, it is a fixed point of the MGARE satisfying (A.4).

We next show that if there is a fixed point X̄ ∈ Sn>0 of the MGARE

satisfying (A.4), then X̄ ≥ Xk for all k. Clearly, at k = 0, we must have

X̄ ≥ X0. Now, suppose we have X̄ −Xk ≥ 0. Consider

X̄ −Xk+1

= (1− β)
(
A((X̄−1 − γ−2Q)−1 − (X−1

k − γ
−2Q)−1)AT

)
+ β

(
A((X̄−1 − γ−2Q+ CTV −1C)−1 − (X−1

k − γ
−2Q+ CTV −1C)−1)AT

)
.

Then it is easy to see that X̄ ≥ Xk+1. Therefore, X̄ ≥ Xk for all k.

Finally, if X0 = 0 and there is a fixed point X̄ satisfying (A.4), then due

to the monotonicity of the MGRE, {Xk} converges to X+ as k →∞, where

by continuity X+ is a fixed point of (A.3) satisfying (A.4). The existence of

the fixed point of the MGARE is shown in the next lemma. Note that since

the monotonicity condition holds with X0 ≤ DDT , we have convergence for

all initial conditions X0 ≤ DDT . This completes the proof of the lemma.

We now show existence of the fixed point of the MGARE (A.3) that sat-

isfies (A.4).

Lemma A.2. There is a finite γ > 0 and a fixed point of the MGARE in

Sn≥0 that satisfies (A.4) for all β ∈ (0, 1].

Proof. First assume that A is stable, and observe that (A.2a) and (A.2b) are

standard AREs; hence under the controllability and observability assump-

tion, each of them has a unique fixed point in Sn≥0 that satisfies (A.4) for

some γ1 and γ2, respectively, due to [106]. Choose γ := max{γ1, γ2} and let

X1 and X2 be fixed points of (A.2a) and (A.2b), respectively. Clearly, we

have X2 ≤ X1. Now, consider the function of the convex combination of

(A.2a) and (A.2b), namely (A.3). When β = 0, its fixed point is X1, and X2

when β = 1. Let E = {X : X2 ≤ X ≤ X1}. Then (A.3) can be restricted to

a continuous mapping of E into itself due to Lemma A.3(i). Moreover, E is

convex, compact and nonempty subset of Sn≥0. Then existence follows from

Brouwer’s fixed point theorem [61].

Now, we consider the case when A is unstable, in which case (A.2a) does

not have a fixed point for all γ, but (A.2b) does for some γ, which satisfies

128



(A.4) [106]. Define

β′(γ) := inf{β ∈ (0, 1) : (A.3) has a fixed point that satisfies (A.4)}.

Then from Lemma A.3(i), for any β > β′(γ), (A.3) can be restricted to a

continuous mapping of E ′ into itself where E ′ = {X : X2 ≤ X ≤ X3} with

X3 = h(γ, β,X3). Then existence follows again from Brouwer’s fixed point

theorem. This completes the proof.

Proposition 2.2. Note that for any β > (1−1/ρ2(A)), we have
√

1− βρ(A) <

1. Let Ã :=
√

1− βA and D̃ :=
√

1− βD. By Lemma A.2, there exist γ and

Σ̆+ satisfying Σ̆+ = h1(γ, Σ̆+), and the condition ρ(Σ̆+Q) < γ2 with Ã and

D̃. Then convergence of {Σ̆k} is equivalent to convergence of (A.7). This

completes the proof.

Proposition 2.3. Suppose A is stable. Then, for all β ∈ [0, 1], there exists a

solution to (2.14) that satisfies ρ(Σ̄Q) < γ2 due to Lemma A.2. Consequently,

we have convergence due to Lemma A.1. Now, we consider the case when

A is unstable. First observe that Γ̄(0) is empty. From the definitions, there

exists a matrix Σ̄ that solves (2.14) and satisfies ρ(Σ̄Q) < γ2. This existence

is guaranteed due to Lemma A.2. Then, convergence follows from Lemma

A.1. This completes the proof.

Proposition 2.4. (i) The result follows from Lemma A.3(i) in Appendix

A.2 since for a given γ, we have ρ(Σ̄(γ, β1)Q) ≤ ρ(Σ̄(γ, β2)Q) ≤ γ2,

which leads to Γ̄(β2) ⊆ Γ̄(β1). The second statement can be shown in

a similar manner.

(ii) The first statement follows from Lemma A.3(ii) because ρ(Σ̄(γ1, β)Q) ≤
ρ(Σ̄(γ2, β)Q) ≤ γ2

2 ≤ γ2
1 shows that Λ̄(γ2) ⊆ Λ̄(γ1). For the second

statement, by Lemma A.3(vi), (2.14) converges to (A.10) as γ →∞.

A.2 Properties of the MGARE

The following lemma provides some useful properties of the MGARE in (A.3).
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Lemma A.3. Suppose that for a fixed γ > 0, X ∈ Sn>0 satisfies (A.4), and

Q = GTG ∈ Sn≥0. Then the following are true:

(i) If β2 ≥ β1, then h(γ, β1, X) ≥ h(γ, β2, X).

(ii) If γ2 ≥ γ1, then h(γ1, β,X) ≥ h(γ2, β,X).

(iii) Suppose ρ ∈ [0, 1] and X := ρX1 +(1−ρ)X2 where X1, X2 ∈ Sn>0. Then

h1(γ,X) ≤ ρh1(γ,X1) + (1− ρ)h1(γ,X2).

(iv) h2(γ,X) = minU maxL ς
′(X,U, L) = maxL minU ς

′(X,U, L), where

ς ′(X,U, L) = (A+ LG+ UV −1/2C)X(A+ LG+ UV −1/2C)T (A.9)

− γ2LLT + UUT .

(v) We have the following inequalities:

(1− β)AXAT +DDT ≤ (1− β)h1(γ,X) ≤ h(γ, β,X).

(vi) As γ →∞, (A.3) can be written as

h(γ, β,X) = AXAT +DDT − βAXCT (CXCT + V )−1CXAT .

(A.10)

(vii) As γ →∞, h1(γ,X) = (1− β)(AXAT +DDT ).

(viii) For any X1 ≤ X2 satisfying (A.4), we have h1(γ,X1) ≤ h1(γ,X2),

h2(γ,X1) ≤ h2(γ,X2), and h(γ,X1) ≤ h(γ,X2).

Proof. (i) Consider (β2 − β1)h1(γ,X)− (β2 − β1)h2(γ,X). Since V ∈ Sn>0

and C cannot be a zero matrix, under (A.4), h1(γ,X) > h2(γ,X); thus,

completing the proof.

(ii) The result follows by inspection.

(iii) Define

ς(X,K) := (A+KG)X(A+KG)T +DDT − γ2KKT . (A.11)
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By applying the matrix inversion lemma, we have

h1(γ,X) = AXAT + AXGT (γ2I −GXGT )−1GXAT +DDT

= max
K

ς(X,K),

where the last equality is achieved by KX = AXGT (γ2I − GXGT )−1,

since the above optimization problem is quadratic and concave in K.

Now, we have

h1(γ,X) = ς(X,KX)

= ρς(X1, KX) + (1− ρ)ς(X2, KX)

≤ ρς(X1, KX1) + (1− ρ)ς(X2, KX2)

= ρh1(γ,X1) + (1− ρ)h1(γ,X2).

(iv) Let us consider the dual problem, i.e., the quadruple (A, V −1/2C,D,G)

is replaced with the ordered quadruple (AT , BT , GT , DT ). Then by

using the matrix inversion lemma,

h′2(γ,X) = AT (X−1 − γ−2DDT +BBT )−1A+Q

= F T
h′2
XFh′2 +Q+ P 1,T

h′2
P 1
h′2
− γ2P 2,T

h′2
P 2
h′2
,

where

Fh′2 = A+DP 2
h′2
−BP 1

h′2

P 1
h′2

= (I +BT (I +XD(γ2I −DTXD)−1DT )XB)−1

×BT (I +XD(γ2I −DTXD)−1DT )XA

P 2
h′2

= (γ2I −DT (I −XB(I +BTXB)−1BT )XD)−1

×DT (I −XB(I +BTXB)−1BT )XA.

It can be shown that

h′2(γ,X) = min
U ′

max
L′

ς ′′(X,U ′, L′) = max
L′

min
U ′

ς ′′(X,U ′, L′),
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where

ς ′′(X,U ′, L′)

= (A+DL′ +BU ′)TX(A+DL′ +BU ′)− γ2L′,TL′ + U ′,TU ′,

where the corresponding minimizer and maximizer can be written as

U ′X = −P 1
h′2
, L′X = P 2

h′2
.

Then the result follows by replacing the quadruple (A,B,G,D) with

the ordered quadruple (AT , CTV −1/2, DT , GT ), in which case the min-

imizer is UX = U ′,TX and the maximizer is LX = L′,TX with the ordered

quadruple (AT , CTV −1/2, DT , GT ).

(v) Inequalities follow by inspection.

(vi) It can be shown by using the matrix inversion lemma.

(vii) It can be shown by using the matrix inversion lemma.

(viii) Notice that (A.11) and (A.9) are affine in X. Consider

h1(γ,X1) = ς(X1, KX1) ≤ ς(X2, KX1) ≤ ς(X2, KX2) = h1(γ,X2),

and

h2(γ,X1) = ς ′(X1, UX1 , LX1)

≤ ς ′(X1, UX2 , LX1)

≤ ς ′(X2, UX2 , LX1) ≤ ς ′(X2, UX2 , LX2) = h2(γ,X2).

Hence, the result follows. This completes the proof of the lemma.

We now show that there is a class of γ and β such that h(γ, β,X) is concave

in X. Note that when β = 0, h(γ, β,X) cannot be concave due to Lemma

A.3(iii). We have the following relation:

h(γ, β,X) = (1− β)h1(γ,X) + βh2(γ,X)

= (1− β)ς(X,KX) + βς ′(X,UX , LX),
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where ς(X,K) and ς ′(X,U, L) are defined in (A.11) and (A.9), respectively,

and KX , LX , and UX are given in the proof of Lemma A.3(iii) and (iv).

Define

Υ(X,K,U, L) := (1− β)ς(X,K) + βς ′(X,U, L).

Note that by definition, Υ(X,K,U, L) is affine in X. We then have

h(γ, β,X) = Υ(X,KX , UX , LX)

= min
U

max
K,L

Υ(X,K,U, L) = max
K,L

min
U

Υ(X,K,U, L),

which follows because the zero-sum game is strictly convex in U and strictly

concave in L and K, and ς(X,K) (resp. ς ′(X,U, L)) is independent of U and

L (resp. K).

Let X = ρX1 + (1− ρ)X2 where ρ ∈ [0, 1]. Consider

h(γ, β,X) = Υ(X,KX , UX)

= ρΥ(X1, KX , UX , LX) + (1− ρ)Υ(X2, KX , UX , LX)

≥ ρΥ(X1, K, UX , L) + (1− ρ)Υ(X2, K, UX , L), ∀K,L,

where the inequality follows from the definition of the saddle point [61]. Let

K = KX1 and L = LX1 . Clearly, we have

h(γ, β,X) ≥ ρΥ(X1, KX1 , UX , LX1) + (1− ρ)Υ(X2, KX1 , UX , LX1)

≥ ρΥ(X1, KX1 , UX1 , LX1) + (1− ρ)Υ(X2, KX1 , UX2 , LX1),

since UX1 and UX2 are the corresponding minimizers. On the other hand, we

also have the following relation due to the definition of the saddle point:

h(γ, β,X) ≤ ρΥ(X1, KX , UX1 , LX) + (1− ρ)Υ(X2, KX , UX1 , LX)

≤ ρΥ(X1, KX1 , UX1 , LX1) + (1− ρ)Υ(X2, KX2 , UX1 , LX2).

Note that by Lemma A.3(iii) and (iv),

Υ(X2, KX1 , UX2 , LX1) ≤ Υ(X2, KX2 , UX2 , LX2),
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and

Υ(X2, KX2 , UX1 , LX2) ≥ Υ(X2, KX2 , UX2 , LX2).

Hence, it can be easily seen that we can choose γ and β such that for all

ρ ∈ [0, 1],

h(γ, β,X) ≥ ρΥ(X1, KX1 , UX1 , LX1) + (1− ρ)Υ(X2, KX2 , UX2 , LX2) (A.12)

= ρh(γ, β,X1) + (1− ρ)h(γ, β,X2).

Then we have the desired result. The following lemma states the above

discussion.

Lemma A.4. Suppose that X = ρX1 + (1 − ρ)X2 > 0 where ρ ∈ [0, 1] and

X satisfies (A.4). Then h(γ, β,X) is concave in X if one of the following

conditions holds:

(i) γ is sufficiently large.

(ii) CTV −1C − γ−2Q ≥ 0 and β = 1.

(iii) Equation (A.12) holds for some γ and β. �

Note that part (i) is the case considered in [22]. Part (ii) can be shown in

a similar way to that in Lemma A.3(iii).

A.3 Kalman Filtering with Intermittent Observations

In this appendix, we recall the results on Kalman filtering with intermittent

observations in [22, 46, 45].

Suppose that x0 is a Gaussian random vector with zero mean and covari-

ance matrix Q−1
0 , and {wk} and {vk} are i.i.d. Gaussian processes with zero

mean and covariance matrices DDT and V , respectively. Moreover, suppose

that (x0, {wk}, {vk}) are independent of each other. Suppose P(βk = 1) =

β = λ. Then under the full information structure in (2.2), the Kalman filter
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and the associated stochastic Riccati equation (SRE) can be written as [22]

x̂k+1 = Ax̂k + βkAPkC
T (CPkC

T + V )−1(yk − Cx̂k) (A.13)

Pk+1 = APkA
T +DDT − βkAPkCT (CPkC

T + V )−1CPkA
T (A.14)

= A(P−1
k + βkC

TV −1C)−1AT +DDT , P0 = Q−1
0 , (A.15)

where Pk := E{(xk − x̂k)(xk − x̂k)T |Ik} is an error covariance matrix and

(A.15) is obtained by applying the matrix inversion lemma to (A.14). The

error covariance matrix (A.14) (or (A.15)) was studied extensively in the

literature. We state below the relevant result obtained by [22, 44, 46, 45].

Result A.1 (Boundedness of E{Pk}). (i) There exists a critical value λc ∈
[0, 1) such that

∀P0, k, E{Pk} ≤MPo if λ > λc

∃P0, lim
k→∞

E{Pk} =∞ if λ ≤ λc,

where MPo ∈ Sn≥0 depends on the initial condition of (A.14).

(ii) Define

Sk+1 = (1− λ)ASkA
T +DDT =: v1(Sk)

Fk+1 = AFkA
T +DDT − λAFkCT (CFkC

T + V )−1CFkA
T =: v2(Fk),

where S0 = F0 = P0. Let λ̆ and λ̄ be such that

lim
k→∞

Sk = S ∈ Sn≥0, ∀λ > λ̆ := 1− 1

ρ(A)2

lim
k→∞

Fk = F ∈ Sn≥0, ∀λ > λ̄,

where S = v1(S) and F = v2(F ). Then λc satisfies λ̆ ≤ λc ≤ λ̄. Moreover,

if λ > λ̄, then S ≤ E{Pk} ≤ F for all k.

(iii) The critical value satisfies λc = λ̆ if one of the following three condi-

tions holds:

(a) C is invertible or invertible on the observable subspace

(b) A has only one unstable eigenvalue

(c) The eigenvalues of A have distinct absolute values. �
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Properties of the GARE

Here, we provide some useful properties of the GARE in (3.13). For nota-

tional convenience, the “overbar” is dropped.

Lemma B.1. Suppose (A,B) is controllable and (A,Q1/2) is observable. As-

sume that given γ and α, (3.18) holds for all k. Assume further that the

GARE has a solution Z := Z(γ, α) ≥ 0 which satisfies (3.16). Then:

(i) Z̃k ≤ Z̃k+1 for all k.

(ii) Z ≥ Z̃k for all k.

Proof. (i) Note that Z̃k with α = 1 is the GRE of the deterministic H∞

optimal control problem, and its monotonicity was proven in [106]. Moreover

when α = 0, the GRE can be obtained by solving the following optimization

problem:

max
w0:N−1

|xN |2QN +
N−1∑
k=0

|xk|2Q − γ2|wk|2, (B.1)

with the constraint of xk+1 = Axk + Dwk. Then under the concavity con-

dition, the monotonicity holds [106]. To prove the general case, note that
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ZN = 0 ≤ ZN−1. By induction, suppose Zk+1 ≥ Zk+2. Then we have

Vk(x) = |x|2Zk
= min

u
max
w

[
(1− α)E

{
Vk+1(Ax+Dw) + |x|2Q − γ2|w|2

∣∣Ik}
+ αE

{
Vk+1(Ax+Bu+Dw) + |x|2Q + |u|2R − γ2|w|2

∣∣Ik}]
≥ min

u
max
w

[
(1− α)E

{
Vk+2(Ax+Dw) + |x|2Q − γ2|w|2

∣∣Ik+1

}
+ αE

{
Vk+2(Ax+Bu+Dw) + |x|2Q + |u|2R − γ2|w|2

∣∣Ik+1

}]
= |x|2Zk+1

= Vk+1(x).

Here Vk(x) = E{xTZkx|Ik} is the saddle-point value of the dynamic game

with only N − k stages (see Lemma 3.1). Hence, we have Zk ≥ Zk+1 for all

k. Then the result follows by reversing the time index.

(ii) Note that when α = 1 or α = 0, Z ≥ Z̃k for all k, which was shown

in [106]. To see the general case, when k = 0, Z ≥ Z̃0 = 0. Suppose

Z − Z̃k+1 ≥ 0. Under this assumption and the fact that α is positive, it can

be checked that Z − Z̃k ≥ 0. Therefore, the result follows.

B.2 Certainty Equivalence Principle

The main idea of the certainty equivalence principle for H∞ control is as

follows ([106]): At time k, given the state feedback minimax controller, one

should first look for the worst past disturbances that maximize the cost func-

tion under the specified information structure and then find the worst-case

state estimator, x̂k, that corresponds to the worst past disturbances. If such

an x̂k exists, then the minimax controller can use it in place of the state xk

to generate the control action.

In this appendix, we show that the TCP problem formulated in Section 3.2

in Chapter 3 satisfies the three basic properties of the certainty equivalence

principle in [106], but the UDP problem does not.

Toward this end, we use the notation s := {sk} ∈ S′ and sτ := {sk}τk=0 ∈
Sτ . Let the set of disturbances Ω be (x0, w) =: ω ∈ Ω := Rn ×W′. For the

LTI system, let the solutions of (3.1a) and (3.1b) be xt = φt(u,w, x0, {αk}t−1
k=0)

and yt = ηt(u,w, x0, {αk}t−1
k=0, βt). By using the inherent causality, we have
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xt = φt(u
t−1, wt−1, x0, {αk}t−1

k=0) and yt = ηt(u
t−1, wt, x0, {αk}t−1

k=0, βt). Let Θτ

be the set of realizations of packet drops until τ ∈ [0, N − 1]. Now, for any

given τ ∈ [0, N − 1] and (ū, ȳ, κ̄) ∈ Uτ ×Yτ × Θτ , we define the following

subset Ωτ of Ω:

Ωτ (ū, ȳ, κ̄) := {ω ∈ Ω : ηk(ū, ω, κ̄) = ȳk, k = 0, 1, ..., τ},

where the set is compatible with all disturbance sequences in Ω. We also

introduce the following set which is the set of restrictions of the elements of

Ωτ to [0, τ ]:

Ωτ
τ (ū, ȳ, κ̄) := {ωτ ∈ Ωτ : ω ∈ Ωτ (ū, ȳ, κ̄)}.

Note that Ωτ and Ωτ
τ are the sets that are related to the disturbances, which

are compatible with observed sequences of control, measurement, and real-

izations of packet drops.

Now, it can be shown that the information process (u, ω, κ) 7→ {Ωτ} carries

consistent, perfect recall, and nonanticipative properties introduced in [106,

page 249]. Hence, we are now in a position to apply the certainty equivalence

principle for the TCP problem. In particular, the zero-sum dynamic game for

the TCP-case formulated in Section 3.2 in Chapter 3 can be studied through

the following three steps:

(a) State feedback minimax control by assuming that the controller has the

actual state information.

(b) Minimax estimation under the TCP-like information structure.

(c) Synthesis of the results in (a) and (b) by characterizing the worst-case

state estimator, say x̂k, that will be used in the minimax controller ob-

tained in part (a) by replacing the true state with x̂k.

For the UDP-case, on the other hand, due to the absence of acknowledg-

ments, we cannot construct the above information process. Therefore, the

zero-sum dynamic game of the UDP-case cannot be solved by the certainty

equivalence principle.
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APPENDIX C

APPENDIX FOR CHAPTER 4

C.1 Preliminary Results

Lemma C.1. (i) The following inequality holds:∫ T

0

‖x∗i − f ∗N‖2
Q + ‖u∗i ‖2

Rdt

≤
∫ T

0

‖x∗i − g∗‖2
Q + ‖u∗i ‖2

Rdt+ ‖Q‖
∫ T

0

‖f ∗N − g∗‖2dt

+ 2‖Q‖

(∫ T

0

‖x∗i − g∗‖2dt

) 1
2
(∫ T

0

‖g∗ − f ∗N‖2dt

) 1
2

.

(ii) The following holds:∫ T

0

‖xi − g∗‖2
Q + ‖ui‖2

Rdt

≤
∫ T

0

‖xi − f−i
∗

N ‖
2
Q + ‖ui‖2

Rdt+ |F1|+ |F2|,

where

F1 , 2‖Q‖

(∫ T

0

‖xi − g∗‖2dt

) 1
2
(∫ T

0

‖g∗ − f ∗N‖2dt

) 1
2

F2 ,
2‖Q‖
N

(∫ T

0

‖xi − g∗‖2dt

) 1
2
(∫ T

0

‖x∗i − xi‖2dt

) 1
2

.
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Proof. (i) It can be shown by using the following relation:∫ T

0

‖x∗i − f ∗N‖2
Q + ‖u∗i ‖2

Rdt

≤
∫ T

0

‖x∗i − g∗‖2
Q + ‖u∗i ‖2

Rdt+

∫ T

0

‖f ∗N − g∗‖2
Qdt

+ 2

(∫ T

0

‖x∗i − g∗‖2
Qdt

) 1
2
(∫ T

0

‖g∗ − f ∗N‖2
Qdt

) 1
2

.

(ii) We have (a.s.)∫ T

0

‖xi − f−i
∗

N ‖
2
Q + ‖ui‖2

Rdt ≥
∫ T

0

‖xi − g∗‖2
Q + ‖ui‖2

Rdt+ U1 + U2,

where

U1 = 2

∫ T

0

(xi − g∗)TQ(g∗ − f ∗N)dt

U2 =
2

N

∫ T

0

(xi − g∗)TQ(x∗i − xi)dt.

Now,

|U1| ≤ 2‖Q‖

(∫ T

0

‖xi − g∗‖2dt

) 1
2
(∫ T

0

‖g∗ − f ∗N‖2dt

) 1
2

|U2| ≤
2‖Q‖
N

(∫ T

0

‖xi − g∗‖2dt

) 1
2
(∫ T

0

‖x∗i − xi‖2dt

) 1
2

,

and this proves the lemma.

Lemma C.2. (i) Suppose that Assumptions 4.1 and 4.2 hold. Then we

have T (x) ∈ Cbn for any x ∈ Cbn.

(ii) x̄θ(t) in (4.19) is equicontinuous and uniformly bounded on Θ×X.

Proof. (i) The result follows from [127, Lemma 9.1].

(ii) The boundedness follows from the compactness of Θ and X. As for

equicontinuity, see [71, Lemma 5.1].
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Lemma C.3. Under the conditions in Proposition 4.4, the closed-loop system

(4.22) with the optimal controller in (4.25) and the worst-case disturbance in

(4.26) satisfies E{‖x(T )‖2} = o(T ) and E{
∫ T

0
‖x(t)‖2dt} = O(T ).

Proof. We first prove E{
∫ T

0
‖x(t)‖2dt} = O(T ). Consider

E{‖x(t)‖2} ≤ 8‖eHtx̄‖2 + 8
∥∥∥∫ t

0

eH(t−τ)BR−1BT s(τ)dτ
∥∥∥2

+ 8E
{∥∥∥√µ∫ t

0

eH(t−τ)DdW (τ)
∥∥∥2}

+ 8
∥∥∥ 1

γ2

∫ t

0

eH(t−τ)DDT s(τ)dτ
∥∥∥2

, 8Ξ1(t) + 8Ξ2(t) + 8Ξ3(t) + 8Ξ4(t).

Then it suffices to show that lim supT→∞(1/T )
∫ T

0
Ξj(t)dt <∞, j = 1, 2, 3, 4.

From Remark 4.3(ii), we have ‖eHtx̄‖2 ≤ ρ2e−2ηt‖x̄‖2; hence, we can show

that lim supT→∞(1/T )
∫ T

0
Ξ1(t)dt = 0. To prove the second term, since

‖s‖∞ ≤ ‖g‖∞‖Q‖ρ/η =: M , we have Ξ
1/2
2 (t) ≤ ‖Bi‖2‖R−1‖Mρ/η =: M̄ ,

which leads to lim supT→∞(1/T )
∫ T

0
Ξ2(t)dt ≤ M̄2. Similarly, it can be shown

that lim supT→∞(1/T )
∫ T

0
Ξ4(t)dt < ∞. For the third part, note that by Itô

isometry,

Ξ3(t) = µTr
(∫ t

0

eH(t−τ)DDT eH
T (t−τ)dτ

)
, Tr(Z(t)),

where Z(0) = µDDT . Then, Z(t) is a nondecreasing function, and converges

to Z ≥ 0 as t → ∞, since H is Hurwitz. Hence, Ξ3(t) ≤ Tr(Z) for all

t ≥ 0 and lim supT→∞(1/T )
∫ T

0
Ξ3(t)dt ≤ Tr(Z). Similarly, we can show that

E{‖x(T )‖2} = o(T ). This completes the proof.

C.2 Proofs for Chapter 4

Here, we provide proofs for several of the results presented in Chapter 4.

Proof of Proposition 4.1. Part (i) is shown in [106]. For part (iv), the solu-
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tion of (4.15) can be written as

s(t) = e−H
T ts(0) +

∫ t

0

e−H
T (t−σ)Qg(σ)dσ.

Then it is easy to show that with s(0), s(t) admits a unique solution in Cbn
[70, 71]. Part (iii) follows from [71, Theorems 3.1 and 4.1], since G and H

are Hurwitz.

To prove parts (ii) and (v), let

J̄T (u, g) = δ logE
{
e

1
δ
φ̄1(x,g,u)

}
,

where φ̄1(x, g, u) :=
∫ T

0
‖x(t) − g(t)‖2

Q + ‖u(t)‖2
Rdt is defined in (4.12). We

also define

J̃T (u, g) = δ logE
{
e

1
δ
φ̃(x,g,u)

}
,

where

φ̃(x, g, u) := φ̄1(x, g, u) + ‖x(T )‖2
P + 2sT (T )x(T ) + ‖s(T )‖2

P−1

= φ̄1(x, g, u) + ‖P 1/2x(T ) + P−1/2s(T )‖2.

Then clearly, J̄T (u, g) ≤ J̃T (u, g), and

lim sup
T→∞

1

T
J̄T (u, g) = J̄(u, g) ≤ lim sup

T→∞

1

T
J̃T (u, g).

Now, for any admissible controllers, it can be shown that

J̄(u, g) ≥ lim sup
T→∞

1

T

∫ T

0

q(t)dt+ µTr(PDDT ),

where q(t) = ‖g(t)‖2
Q − ‖BT s(t)‖2

R−1 + γ−2‖DT s(t)‖2.

On the other hand, by using Itô formula, (4.13), and (4.15) with the “com-

pletion of squares” method, we obtain

J̃T (u, g) = ‖x̄‖2
P + 2xT (0)s(0) + µT Tr(PDDT ) + ‖s(T )‖2

P−1

+

∫ T

0

q(t)dt+ δ logE{eΥ1(T )+Υ2(T )},
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where

Υ1(T ) =
1

δ

∫ T

0

‖u(t) +R−1(BTPx(t) +BT s(t))‖2
Rdt

Υ2(T ) = ς

∫ T

0

(xT (t)PD + sT (t)D)dW (t)

− ς2

2

∫ T

0

‖DTPx(t) +DT s(t)‖2dt,

where ς = 2
√
µ/δ. Now, we introduce a change of probability measure [77]

dP̄ = eΥ2(T )dP,

where it can be verified that eΥ2(t) is a martingale on [0, T ] for any admissible

controllers in Ud1,i and T ≥ 0 [114]. Then due to the Girsanov theorem

[77, 114], P̄ is also a valid probability measure, and we can define the new

expectation Ē with respect to P̄. Therefore, since s ∈ Cbn, we have

J̄(u, g) ≤ lim sup
T→∞

1

T
J̃T (u, g)

= lim sup
T→∞

[ δ
T

log Ē{eΥ1(T )}+
1

T

∫ T

0

q(t)dt
]

+ µTr(PDDT ).

Then it is easy to see that the controller given in (4.14) is the corresponding

optimal controller, and (4.17) is the minimum cost. This completes the

proof.

Proof of Theorem 4.2. For the first result of part (i), we consider the follow-

ing relation:

E

{∫ T

0

‖f ∗N(t)− g∗(t)‖2dt

}
≤ 2E

{∫ T

0

∥∥∥f ∗N(t)− 1

N

N∑
i=1

x̄∗i (t)
∥∥∥2

dt

}
(C.1)

+ 2T sup
t≥0

∥∥∥ 1

N

N∑
i=1

x̄∗i (t)− g∗(t)
∥∥∥2

. (C.2)

Let e∗i (t) = x∗i (t) − x̄∗i (t) and Λi(t) := E{e∗i (t)(e∗i (t))T} where x̄∗i (t) is (4.19)

with g∗. Then ei(0) = 0 and Λi(0) < ∞ for all i. The SDE for e∗i (t) can be
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written as

de∗i = Gie
∗
i dt+

√
µDidWi(t). (C.3)

Now, for (C.1), we have

E

{∫ T

0

∥∥∥ 1

N

N∑
i=1

e∗i (t)
∥∥∥2

dt

}
=

1

N2
Tr
(∫ T

0

N∑
i=1

Λi(t)dt
)
,

where the equality follows due to the fact that the Brownian motions are

independent with all agents. It can be shown that Λi(t) satisfies the following

Lyapunov equation:

dΛi(t)

dt
= GiΛi(t) + Λi(t)G

T
i + µDiD

T
i .

Note that Gi is Hurwitz for all agents. Then the above Lyapunov equation

is monotonically nondecreasing, and converges to a positive definite matrix,

say, Λi > 0, as t → ∞ for all i. Since Θ is compact, there exists a positive

definite matrix Λ independent of N such that

E

{∫ T

0

∥∥∥f ∗N(t)− 1

N

N∑
i=1

x̄∗i (t)
∥∥∥2

dt

}
≤ T

N
Tr(Λ).

Therefore (C.1) converges to zero as N → ∞ for all T ≥ 0. For (C.2), note

that under Assumption 4.1,

1

N

N∑
i=1

x̄∗i (t) ≡
∫

(θ,x)∈Θ×X
x̄∗θ(t)dFN(θ, x).

Then the convergence (C.2) follows from Lemma C.2(ii) in Appendix C.1,

and Assumptions 4.1 and 4.2. The second statement of part (i) follows from

the first one.
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To prove the first statement of part (ii), consider

∫ T

0

‖f ∗N(t)− g∗(t)‖2dt ≤ 2

∫ T

0

∥∥∥ 1

N

N∑
i=1

e∗i (t)
∥∥∥2

dt

+ 2T sup
t≥0

∥∥∥ 1

N

N∑
i=1

x̄∗i (t)− g∗(t)
∥∥∥2

,

where e∗i (t) is defined in (C.3). Then the second term converges to zero as

N →∞. Note that for each t ≥ 0, e∗i (t) is a random vector with E{e∗i (t)} = 0

and E{‖e∗i (t)‖2} = Tr(Λi(t)) ≤ Tr(Λi) ≤ Tr(Λ) < ∞ for all i and t ≥ 0.

Hence, for each t ≥ 0, e∗1(t), e∗2(t), ... are mutually orthogonal random vectors.

Also, it can be shown that by the integral test, for all t ≥ 0,

lim
N→∞

N∑
i=1

Tr(Λi(t)) log2(i)

i2
≤ lim

N→∞

N∑
i=1

Tr(Λ) log2(i)

i2
<∞.

Then limN→∞ ‖(1/N)
∑N

i=1 e
∗
i (t)‖ = 0 a.s. for all t ≥ 0 due to the law of

large numbers [122, Theorem 5.2]. Since ‖(1/N)
∑N

i=1 e
∗
i (t)‖ is integrable on

[0, T ] for all T ≥ 0 [71, Lemma 5.2], limN→∞
∫ T

0
‖(1/N)

∑N
i=1 e

∗
i (t)‖2dt = 0

for all T ≥ 0 a.s. which proves the first statement of part (ii).

For the second statement of part (ii), we have

lim sup
T→∞

1

T

∫ T

0

‖f ∗N(t)− g∗(t)‖2dt

≤ lim sup
T→∞

2

T

∫ T

0

∥∥∥ 1

N

N∑
i=1

e∗i (t)
∥∥∥2

dt+ 2 sup
t≥0

∥∥∥ 1

N

N∑
i=1

x̄∗i (t)− g∗(t)
∥∥∥2

.

Then the second term converges to zero as N →∞. For the convergence of

the first term, we follow the proof in [71, Lemma 5.3]. Let

e∗i (t) =
√
µ

∫ t

−∞
eGi(t−s)DidWi(s)−

√
µ

∫ 0

−∞
eGi(t−s)DidWi(s)

, w1
i (t) + w2

i (t).

It should be pointed out that the Brownian motion for t < 0 is just for

mathematical purposes, since this process does not affect the entire process
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of e∗i (t) for all t and i [122]. Now, it suffices to show that (a.s.)

lim
N→∞

lim sup
T→∞

1

T

∫ T

0

∥∥∥ 1

N

N∑
i=1

w1
i (t)
∥∥∥2

dt = 0 (C.4)

lim
N→∞

lim sup
T→∞

1

T

∫ T

0

∥∥∥ 1

N

N∑
i=1

w2
i (t)
∥∥∥2

dt = 0. (C.5)

For (C.4), it can be verified that mN(t) := (1/N)
∑N

i=1 w
1
i (t) is a wide-

sense stationary Gaussian process with mean-zero and the following auto-

correlation function [122]:

R(τ, t) = E{mN(τ)mT
N(t)} =

1

N2

N∑
i=1

E{w1
i (τ)w1,T

i (t)}.

Then from the result on estimation of the auto-correlation function in [71,

Lemma 5.3] and [122], we have (a.s.)

lim sup
T→∞

1

T

∫ T

0

‖mN(t)‖2dt

=
1

N2
Tr(E{R(0, 0)}) ≤ µρ2 supθ∈Θ Tr(D(θ)DT (θ))

2ηN
,

which converges to zero as N →∞ with probability 1.

Let zi := ‖√µ
∫ 0

−∞ e
−GisDidWi(s)‖2. We can show that by using Itô for-

mula, E{z2
i } < ∞ for all i, and hence limN→∞

∑N
i=1 supθ∈Θ E{z2

θ}/i2 < ∞.

Then from the law of large numbers [122, Theorem 3.4], we can show that

limN→∞
1
N

∑N
i=1(zi − E{zi}) = 0 almost surely. This implies that for any κ,

there exists N ′ := N(κ) such that for all N ≥ N ′, 1
N

∑N
i=1 zi ≤ κ. Then with

Remark 4.3(ii), for all N ≥ N ′, we have

lim sup
T→∞

1

T

∫ T

0

∥∥∥ 1

N

N∑
i=1

w2
i (t)
∥∥∥2

dt ≤ lim sup
T→∞

1

T

∫ T

0

κρ2e−2ηtdt = 0, a.s.

which establishes (C.5). This completes the proof of the theorem.

Proof of Corollary 4.1. (i) From Theorem 4.2(ii), for each c > 0, there

exists N ′ := N(c) such that for all N ≥ N ′, we have X(N, T ) ≤ c for

all T ≥ 0. Note that X(N, T ) is now a random variable that is bounded

above by c with probability 1. Then, by using Hoeffding’s inequality
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[128], for any s ≥ 0,

P(X(N, T )− E{X(N, T )} ≥ s) ≤ e−2s2/c2 .

The same bound can be obtained for P(X(N, T )−E{X(N, T )} ≤ −s).
Then the result follows from their union bound.

(ii) For each c(N) with N ≥ 1, there exists T ′ := T (c(N)) such that for

all T ≥ T ′, (1/T )X(N, T ) ≤ c(N), which implies X(N, T ) is bounded

above by c(N)T with probability 1. Then, by using Hoeffding’s inequal-

ity, for any s ≥ 0, we get

P(X(N, T )− E{X(N, T )} ≥ sT ) ≤ e−2s2/c(N)2 .

The remaining part is similar to part (i). This completes the proof.

Proof of Theorem 4.3. From Theorem 4.2, for each N ≥ 1 and ε(N), there

exists T ′ := T (ε(N)) such that for all T ≥ T ′

( 1

T

∫ T

0

‖f ∗N(t)− g∗(t)‖2dt
)1/2

≤ ε(N), a.s.

Note that in view of Theorem 4.2(ii) and Corollary 4.1, for large N , we can

choose a small enough ε(N) to arrive at the above relation.

Due to Proposition 4.1(iii), there exist M1 and T1 such that∫ T

0

‖x∗i (t)‖2dt ≤M1T, ∀T ≥ T1, a.s. (C.6)

Moreover, note that due to Proposition 4.2, JN1,i(u
∗
i , u
∗
−i) ≤ C where C ≥ 0

is independent on N . Since Ud1,i ⊆ U c1,i, which implies infui∈Uc1,i J
N
1,i(ui, u

∗
−i) ≤

JN1,i(u
∗
i , u
∗
−i), we may consider ui ∈ U c1,i with the property that there exist M2

and T2 such that ∫ T

0

‖xi(t)‖2dt ≤M2T, ∀T ≥ T2, a.s. (C.7)

Note that in (C.6) and (C.7), M1 and M2 do not depend on N due to the

compactness of Θ. Furthermore, since g∗ ∈ Cbn, from Proposition 4.1, there
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exist M3 and T3 such that∫ T

0

‖g∗(t)‖2dt ≤M3T, ∀T ≥ T3.

Let T̄ := max{T ′, T1, T2, T3}, M̄1 := 4 max{M1,M2}, M̄2 := 4 max{M1,M3},
and M̄3 := 4 max{M2,M3}.

Now, from Lemma C.1(i), for all T ≥ T̄ , we have (a.s.)∫ T

0

‖x∗i − f ∗N‖2
Q + ‖u∗i ‖2

Rdt

≤
∫ T

0

‖x∗i − g∗‖2
Q + ‖u∗i ‖2

Rdt+ ‖Q‖ε(N)2T + 2‖Q‖(M̄2T )1/2ε(N)T 1/2.

Since exponentiating, taking expectation and logarithm, and taking the limit

of the expressions on both sides do not change the direction of the inequality,

it follows that

lim sup
T→∞

δ

T
logE{e

1
δ
φ1i (x

∗,f∗N ,u
∗)}

≤ lim sup
T→∞

δ

T
logE{e

1
δ
φ̄1i (x

∗,g∗,u∗)}+ 2‖Q‖ε(N)2 + 2‖Q‖M̄1/2
2 ε(N), (C.8)

where (C.8) is the performance index of (4.11) for agent i when agent i uses

the optimal decentralized controller in (4.21).

Furthermore, from Lemma C.1(ii), for all T ≥ T̄ ,∫ T

0

‖xi − g∗‖2
Q + ‖ui‖2

Rdt

≤
∫ T

0

‖xi − f−i
∗

N ‖
2
Q + ‖ui‖2

Rdt+ 2‖Q‖(M̄3T )1/2ε(N)T 1/2

+
2‖Q‖
N

(M̄3T )1/2(M̄1T )1/2.

Again, since exponentiating, taking expectation and logarithm, and taking
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the limit do not change the direction of the inequality, it follows that

lim sup
T→∞

δ

T
logE{e

1
δ
φ̄1i (x

∗,g∗,u∗)}

≤ lim sup
T→∞

δ

T
logE{e

1
δ
φ̄1i (x,g

∗,u)}

≤ lim sup
T→∞

δ

T
logE{e

1
δ
φ1i (x,f

−i∗
N ,u)}+ 2‖Q‖M̄1/2

3 ε(N) +
2‖Q‖
N

M̄
1/2
3 M̄

1/2
1 ,

where φ̄1
i (x, g

∗, u) is the modified version of (4.12) when agent i is under the

centralized controller ui ∈ U c1,i. Note that the first inequality follows from

the fact that the optimal decentralized controller in (4.21) solves the robust

tracking problem in Proposition 4.1.

Therefore, we have

JN1,i(u
∗
i , u
∗
−i) ≤ inf

ui∈Uc1,i
JN1,i(ui, u

∗
−i) + 2‖Q‖ε(N)2 + 2‖Q‖M̄1/2

2 ε(N)

+ 2‖Q‖M̄1/2
3 ε(N) +

2‖Q‖
N

M̄
1/2
3 M̄

1/2
1 ,

which implies

JN1,i(u
∗
i , u
∗
−i) ≤ inf

ui∈Uc1,i
JN1,i(ui, u

∗
−i) +O(ε(N)) +O(

1

N
).

Note that ε(N) is a constant that is dependent on N , which converges to zero

as N →∞ due to the previous argument and Theorem 4.2. This completes

the proof of the theorem.

Proof of Proposition 4.4. We need to prove parts (ii) and (v). Part (iii) was

shown in Lemma C.3 in Appendix C.1. The proofs of the remaining parts

are similar to that of Proposition 4.1.

By using the Itô formula, (4.13), and (4.15), it can be shown that

E
∫ T

0

‖x(t)‖2
Qdt = E{‖x(0)‖2

P − ‖x(T )‖2
P}+ µT Tr(PDDT )

+ E
∫ T

0

xT (t)(PBR−1BTP − 1

γ2
PDDTP )x(t)dt

+ 2E
∫ T

0

(uT (t)BTP + vT (t)DTP )x(t)dt,
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and

−2E
∫ T

0

hT (t)Qx(t)dt = 2E{s(0)Tx(0)− sT (T )x(T )}

+ 2E
∫ T

0

sT (t)(BR−1BTP − 1

γ2
DDTP )x(t)dt

+ 2E
∫ T

0

sT (t)(Bu(t) +Dv(t))dt.

From the “completion of squares” method, we have

E
∫ T

0

‖x(t)− h(t)‖2
Q + ‖u(t)‖2

R − γ2‖v(t)‖2dt

= E{‖x(0)‖2
P − ‖x(T )‖2

P + 2sT (0)x(0)− 2sT (T )x(T )}+ µT Tr(PDDT )

+

∫ T

0

q(t)dt+ E
∫ T

0

‖u(t) +R−1BTPx(t) +R−1BT s(t)‖2
Rdt

− E
∫ T

0

γ2‖v(t)− 1

γ2
DTPx(t)− 1

γ2
DT s(t)‖2dt,

where q(t) = ‖h(t)‖2
Q − ‖BT s(t)‖2

R−1 + γ−2‖DT s(t)‖2. Then due to the fact

that s ∈ Cbn and E{‖x(T )‖2} = o(T ) shown in Lemma C.3 in Appendix C.1,

we have

J̄(u, v, h) = lim sup
T→∞

1

T
E
∫ T

0

‖u(t) +R−1BT (Px(t) + s(t))‖2
Rdt

− lim sup
T→∞

1

T
E
∫ T

0

γ2‖v(t)− 1

γ2
DT (Px(t) + s(t))‖2dt

+ lim sup
T→∞

1

T

∫ T

0

q(t)dt+ µTr(PDDT ).

Since H is Hurwitz, (4.25) and (4.26) constitute the saddle-point equilibrium

of the infinite-horizon LQ stochastic zero-sum differential game [61], and the

corresponding saddle-point value is (4.17) with g(t) replaced by h(t). This

completes the proof.

Proof of Theorem 4.6. The proof is similar to that of Theorem 4.3. We define

ε(N) :=
(

lim sup
T→∞

1

T
E
{∫ T

0

‖f ∗N(t)− h∗(t)‖2dt
}) 1

2
.

Note that ε(N) defined above is similar to that in Theorem 4.3, since by
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Theorem 4.5(i) and Corollary 4.2, ε(N) can be taken to be arbitrarily small

when N is arbitrarily large.

From Lemma C.3 in Appendix C.1, there exists M1 such that

lim sup
T→∞

1

T
E
{∫ T

0

‖x∗i (t)‖2dt
}
≤M1.

Moreover, note that due to Proposition 4.5, JN2,i(u
∗
i , u
∗
−i) ≤ C where C ≥ 0

is independent of N . Since Ud2,i ⊆ U c2,i, which implies infui∈Uc2,i J
N
2,i(ui, u

∗
−i) ≤

JN2,i(u
∗
i , u
∗
−i), we may consider ui ∈ U c2,i with the property that with the

worst-case disturbance in (4.30), there exists M2 such that

lim sup
T→∞

1

T
E
{∫ T

0

‖xi(t)‖2dt
}
≤M2.

Note that due to the compactness of Θ, M1 and M2 are not dependent on

N . We also use M3 as defined in the proof of Theorem 4.3. Then we can

define M̄1, M̄2 and M̄3 in a similar way to that in the proof of Theorem 4.3.

We introduce the performance index of the stochastic zero-sum differential

game for agent i:

J̄2,i(u
∗
i , v
∗
i , h

∗) = lim sup
T→∞

1

T
E
{
φ̄2
i (x
∗, h∗, u∗, v∗)

}
,

where φ̄2
i (x
∗, h∗, u∗, v∗) is (4.24) for agent i when ui ≡ u∗i and vi ≡ v∗i . Note

that due to the definition of saddle-point equilibrium [61], J̄2,i(u
∗
i , v
∗
i , h

∗) =

infui∈Ud2,i J̄2,i(ui, v
∗
i , h

∗) = supvi∈Vi J̄2,i(u
∗
i , vi, h

∗).

Now, by using Lemma C.1(i) and the above equality condition, we have

JN2,i(u
∗
i , u
∗
−i) = lim sup

T→∞

1

T
E{φ2

i (x
∗, f ∗N , u

∗, v∗)}

≤ lim sup
T→∞

1

T
E
{
φ̄2
i (x
∗, h∗, u∗, v∗)

}
+ ‖Q‖ε(N)2 + 2‖Q‖M̄1/2

2 ε(N)

= J̄2,i(u
∗
i , v
∗
i , h

∗) +O(ε(N)). (C.9)
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Also, by using Lemma C.1(ii) and the above equality condition,

J̄2,i(u
∗
i , v
∗
i , h

∗) ≤ J̄2,i(ui, v
∗
i , h

∗)

≤ sup
vi∈Vi

lim sup
T→∞

1

T
E{φ2

i (x, f
−i∗
N , u, v)}

+ 2‖Q‖M̄1/2
3 ε(N) +

2‖Q‖(M̄3M̄1)
1
2

N

= JN2,i(ui, u
∗
−i) +O(ε(N)) +O(1/N). (C.10)

Then from (C.9) and (C.10), we have the desired result. This completes the

proof of the theorem.
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APPENDIX D

APPENDIX FOR CHAPTER 5

D.1 Block Matrices for Nonsymmetric RDEs

From Assumption 5.1(c), π = (π1, ..., πK). The following block matrices are

used in RDEs in (5.17) and (5.29):

A = diag{A1, ..., AK}

B1 = π ⊗−B0R
−1
0 (LTR−1BT − F T )

B2 = IK ⊗ (BR−1BT ), B3 = 1K ⊗ (−(BR−1L− F )R−1
0 BT

0 )

B4 = π ⊗ (BR−1L− F )R−1
0 (LTR−1BT − F T ), BK = 1K ⊗ B4

Q1 = π ⊗−Q0H0, Q2 = 1K ⊗ (−HT
0 Q0)

Q3 =


Q−QHπ1 −QHπ2 . . . −QHπK
−QHπ1 Q−QHπ2 . . . −QHπK

...
...

. . .
...

−QHπ1 −QHπ2 . . . Q−QHπK


Q4 = π ⊗HT

0 QH0, QK = 1K ⊗Q4

q̄(t) =
(
q1(t) . . . qK(t)

)
.

D.2 Auxiliary Lemma

Lemma D.1. Let the pair (Ψ(t),Π(t)) be the solution of the following dif-

ferential equation:

d

dt

(
Ψ(t)

Π(t)

)
=

(
A1 −B1

−A2 B2

)(
Ψ(t)

Π(t)

)
,

(
Ψ(T )

Π(T )

)
=

(
I

0

)
,
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where Ψ(t) is invertible for all t ∈ [0, T ]. Then the RDE in (5.29) has a

unique solution Λ(t) = Π(t)Ψ−1(t) for all t ∈ [0, T ].

Proof. Note that

dΨ−1(t)

dt
= −Ψ−1(t)

dΨ(t)

dt
Ψ−1(t) = −Ψ−1(t)A1 + Ψ−1(t)B1Π(t)Ψ−1(t),

which implies

dΛ(t)

dt
= (−A2Ψ(t) + B2Π(t))Ψ−1(t)

+ Π(t)(−Ψ−1(t)A1 + Ψ−1(t)B1Π(t)Ψ−1(t)).

This proves the lemma.

D.3 Proof of Lemma 5.2

The existence and uniqueness of the optimal controller follows from a similar

argument as discussed in [120, 121, 119].

To prove the optimality of the controller given in (5.26), we first consider

the following variations of SDEs with δu0 ∈ L2
F(0, T ;Rp) and k ∈ K:

dδx0(t) = A0δx0(t)dt+B0δu0(t)dt

dδzk(t) = Akδzk(t)dt+BR−1BT δp̄k(t)dt− (BR−1L− F )δu0(t)dt

δp̄k(t) = −ATk δp̄k(t)dt+Q(δzk(t)−Hδz(t))dt,

where it can be seen that δx0(0) = 0, δzk(0) = 0 and δp̄k(T ) = 0. We also

note that δz(t) =
∑K

k=1 πkδzk(t). Since the cost functional is convex in x0

and strictly convex in u0, u∗0 is the corresponding optimal controller if and

only if it satisfies the first-order condition

0 =
δJ̄(ū0)

2
= E

∫ T

0

[
δxT0 (t)Q(x0(t)−H0z(t))

+
K∑
k=1

πkδz
T
k (t)HT

0 Q0(H0z(t)− x0(t)) + δuT0 (t)R0u0(t)
]
dt.

(D.1)
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Now, by Itô formula,

dδxT0 (t)p0(t) = δuT0 (t)BT
0 p0(t)dt+ δzT (t) + δxT0 (t)Q(x0(t)−H0z(t))dt

+ δxT0 (t)q0(t)dW0(t),

which together with boundary conditions implies

0 = E
∫ T

0

[
δuT0 (t)BT

0 p0(t) + δxT0 (t)Q(x0(t)−H0z(t))
]
dt. (D.2)

By Itô formula,

dδzTk (t)λk(t) =
[
δp̄Tk (t)BR−1BTλk(t)− δuT0 (t)(LTR−1BT − F T )λk(t)

+ δzTk (t)HT
0 Q0(H0z(t)− x0(t))− δzTk (t)Qξk(t)

+ δzTk (t)HTQ
K∑
k=1

πkξk(t)
]
dt+ δzT (t)qk(t)dW0(t),

which implies

0 = E
∫ T

0

[
δp̄Tk (t)BR−1BTλk(t)− δuT0 (t)(LTR−1BT − F T )λk(t)

+ δzTk (t)HT
0 Q0(H0z(t)− x0(t))− δzTk (t)Qξk(t)

+ δzTk (t)HTQ
K∑
k=1

πkξk(t)
]
dt.

Multiplying both sides by πk and summing over K yield

0 = E
∫ T

0

[ K∑
k=1

πkδp̄
T
k (t)BR−1BTλk(t)−

K∑
k=1

πkδu
T
0 (t)(LTR−1BT − F T )λk(t)

−
K∑
k=1

πkδz
T
k (t)Qξk(t) +

K∑
k=1

πkδz
T
k (t)HT

0 Q0(H0z(t)− x0(t))

+
K∑
k=1

πkδz
T
k (t)HTQ

K∑
k=1

πkξk(t)
]
dt. (D.3)

By Itô formula,

dδp̄Tk (t)ξk(t) =
[
δzTk (t)Qξk(t)− δzT (t)HTQξk(t)− δp̄Tk (t)BR−1BTλk(t)

]
dt,
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which implies

0 = E
∫ T

0

[
δzTk (t)Qξk(t)− δzT (t)HTQξk(t)− δp̄Tk (t)BR−1BTλk(t)

]
dt.

Multiplying both sides by πk and summing over K yield

0 = E
∫ T

0

[ K∑
k=1

πkδz
T
k (t)Qξk(t)− δzT (t)HTQ

K∑
k=1

πkξk(t) (D.4)

−
K∑
k=1

πkδp̄
T
k (t)BR−1BTλk(t)

]
dt.

Then from (D.1)-(D.4), we have

0 = E
∫ T

0

δuT (t)
[
R0u0(t)−BT

0 p0(t) +
K∑
k=1

πk(L
TR−1BT − F T )λk(t)

]
dt.

This leads to the desired result, and completes the proof.
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[73] H. Tembine, Q. Zhu, and T. Başar, “Risk-sensitive mean field games,”
IEEE Transactions on Automatic Control, vol. 59, no. 4, pp. 835–850,
2014.
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[96] J. Moon and T. Başar, “Estimation over lossy networks: A dynamic
game approach,” in Proceedings of the 52nd IEEE Conference on De-
cision and Control, Florence, Italy, 2013, pp. 2412–2417.
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[99] J. Moon and T. Başar, “Control over lossy networks: A dynamic game
approach,” in Proceedings of American Control Conference, Portland,
OR, June 2014, pp. 5367–5372.
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