
c© 2015 Rajath Subramanyam

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158312109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IDEMPOTENT DISTRIBUTED COUNTERS USING A FORGETFUL
BLOOM FILTER

BY

RAJATH SUBRAMANYAM

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor Indranil Gupta

ABSTRACT

Distributed key-value stores power the backend of high-performance web ser-

vices and cloud computing applications. Key-value stores such as Cassandra

rely heavily on counters to keep track of the occurrences of various kinds

of events. However, today’s implementations of counters do not provide

exactly-once semantics. A typical scenario is that a client requests a counter

increment, times out waiting for a response, and creates a duplicate request,

thus resulting in a double increment on the server side. In this thesis, we

address this problem by presenting, analyzing, and evaluating a novel server-

side data structure called the Forgetful Bloom Filter (FBF). Like a traditional

Bloom filter, an FBF is a compact representation of a set of elements (e.g.,

client requests). However, an FBF is more powerful than a Bloom filter in

two aspects: i) it can forget older elements (e.g., requests that are too old to

apply), and ii) it is self-adapting under a varying workload. We also present

an adaptive variant of FBF that adapts itself to meet a desired false positive

rate – thus the error achieved in the counter can be bounded even as the

workload changes. We present experimental results from a prototype imple-

mentation of FBFs and discuss the implications for a key-value store such as

Cassandra. Our results show that the FBF is highly accurate in maintaining

correct counter values.

ii

To my parents and brothers, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to thank my adviser Professor Indranil Gupta for guiding and

supporting me through my research. I would also to thank all the members

of Distributed Protocols Research Group (DPRG) for their help and support

and for making my academic experience an enjoyable one.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Contributions . 3
1.2 Roadmap . 4

CHAPTER 2 BACKGROUND . 5
2.1 Assumptions . 5
2.2 Bloom Filters . 5

CHAPTER 3 FORGETFUL BLOOM FILTER 7
3.1 Basic FBF Operations . 7
3.2 Generalized FBFs: the N−FBF 8
3.3 FBF Refresh . 8
3.4 Optimized Membership Check 10
3.5 Adaptation via Dynamic Resizing 12

CHAPTER 4 ANALYSIS: FALSE POSITIVE PROBABILITY
OF AN FBF . 15

CHAPTER 5 SYSTEM DESIGN: INTEGRATING FBFS INTO
CASSANDRA . 17
5.1 Cassandra . 17
5.2 Counters . 17
5.3 Background: Partitioned Counters in Cassandra 18
5.4 Idempotent Counters in Cassandra using FBF 20

CHAPTER 6 EVALUATION . 24
6.1 Membership Check . 24
6.2 False Positive Probability of an FBF 26
6.3 Dynamic Resizing . 27
6.4 FBF Integration with Distributed Key-Value Store 30
6.5 FBF Integration with Apache Cassandra 36

CHAPTER 7 RELATED WORK . 40

CHAPTER 8 FUTURE WORK . 42

v

CHAPTER 9 CONCLUSION . 43

REFERENCES . 44

vi

CHAPTER 1

INTRODUCTION

Modern distributed applications are changing the landscape of commercial

web-services. Distributed key-value/NoSQL stores like Cassandra [1,2], Riak

[3], BigTable [4], MongoDB [5], Voldemort [6] and DynamoDB [7, 8] are

becoming increasingly popular due to their higher availability, scalability,

and performance compared to traditional relational databases.

In today’s key-value/NoSQL systems, a counter [9–11] is a commonly used

type of data structure (usually a column in a database table). Counters

support increment (e.g., +1) operations from multiple clients and are used

for counting the number of tweets/likes/retweets, number of ad clicks, or

system parameters like the number of times an object was accessed [12,13].

Applications using key-value/NoSQL stores require a guarantee of idempo-

tence, i.e., that operations such as counter increments be carried out exactly-

once. However, it is well-known that exactly-once semantics are hard to

achieve in asynchronous systems [14]. For instance, when a client sends an

operation to the server, the server might fail after applying the operation

but before sending back an ack. In this case, the client has no way to know

whether the operation was applied or not [15]. In such a scenario, sending

a duplicate request might lead to an over-count, whereas not sending one

might lead to an under-count if there was indeed a server failure.

Today, there are three potential approaches to solving this problem of

idempotence in key-value stores such as Cassandra:

1. Clients do not submit duplicate requests, resulting in at-most-once se-

mantics.

2. The server maintains a list of all updates that have been applied to an

object (e.g., the counter) so that duplicate operations can be checked

and rejected.

1

3. The server utilizes a Bloom filter [16,17], a probabilistic data structure

of fixed size, to store updates. A Bloom filter is a compact represen-

tation of a set of elements, and allows fast checking of membership in

the set. Each client operation is uniquely timestamped (e.g., by using

the client id and a sequence number) and added to the Bloom filter

when the operation is performed. Subsequent duplicate operations can

be checked quickly against the Bloom filter and applied only if not

present.

We discuss these approaches in some detail. Approach (1) is the default

in Cassandra. This approach is cheap, but it has the disadvantage of losing

requests when there is a failure of the server or message delivery and thus

results in under-counts. Approach (2) is correct and has exactly-once se-

mantics (eventually), however, it is very costly in the long run – the history

of operations can grow unboundedly and checking for duplicates becomes

prohibitively expensive.

Approach (3) takes advantage of the fact that adding an element into

a Bloom filter is an idempotent operation; repeating addition of a given

element gives the same result. Thus, servers can be sent duplicates of the

same entry and the Bloom filter will reflect only one copy. At the server

side, determining if an operation has been performed is reduced to a simple

membership check. However, as the number of elements inserted into a Bloom

filter increases, so does the probability of a false positive (i.e., membership

checks may erroneously return true). False positives result in an under-count.

Using larger Bloom filters will only delay the problem. Further, in Bloom

filters it is impossible to:

• Delete entries from the Bloom filter,

• Grow the filter in size to scale with the number of elements, or

• Have entries timeout, from within the filter, without adding signifi-

cantly more data (such as buckets [18])

The problems associated with the above approaches motivate us to invent

and introduce a novel data structure called the Forgetful Bloom Filter (FBF).

Like a traditional Bloom filter, an FBF supports an element addition opera-

tion that is idempotent. An FBF allows insertion and membership-checking

2

of items with the same asymptotic cost as a Bloom filter. Unlike a Bloom

filter, an FBF takes advantage of temporal locality that exists in counter

operations, i.e., storing old updates becomes less valuable over time as these

operations become increasingly unlikely to be retried. In fact, clients often

have write request timeout beyond which they give up on the write. Thus, an

FBF automatically expires older items (the timeout period can be adjusted).

An FBF does so by using multiple constituent Bloom filters to essentially

maintain a moving window of recent operations.

Like the traditional Bloom filter, false positives can occur in the FBF, thus

leading to an under-count for counters. However, unlike the Bloom filter, this

false positive rate can be bounded in an FBF. We present adaptive techniques

to grow and shrink the FBF, which allow it to always meet a user-specified

upper threshold of false positive rate. Thus the error achieved in the counter

can be bounded even as the workload changes.

In this thesis we use counters as an exemplar application to demonstrate

that the FBF approach provides probabilistic accuracy very close to approach

(2) detailed earlier (exactly-once semantics) at roughly the same cost and

with higher accuracy than approach (3) above (pure Bloom filters).

1.1 Contributions

Our thesis is that idempotent, lock-free, correct, fast, distributed counters can

be achieved in distributed key-value/NoSQL stores using a novel, efficient and

feasible data structure called Forgetful Bloom Filter (FBF).

We support the thesis by building the FBF data structure, analyzing it,

developing a prototype, implementing it in a distributed key-value store sim-

ulator and integrating it with a real-world distributed key-value/NoSQL store

called Apache Cassandra.

• We describe how the FBF data structure is built, describe its set and

get interfaces and also define the refresh and dynamic resizing property

of the FBF.

• We analyze the FBF and derive the overall effective false positive prob-

ability of the FBF.

3

• We develop a prototype of the FBF data structure complete with all the

functionalities. We also build a distributed key-value store simulator

and integrate the FBF data structure into it. In addition, we also

integrate the FBF data structure with a real-world distributed key-

value store Apache Cassandra.

• We perform experimental evaluation on the standalone FBF data struc-

ture, FBF integration with the distributed key-value store simulator

and FBF integration with Apache Cassandra.

1.2 Roadmap

The remainder of the thesis is organized as follows. Chapter 2 covers as-

sumptions and background. We present an overview of how the FBF data

structure works in Chapter 3. In Chapter 4, we show how to analytically de-

rive the false positive probability of an FBF. Chapter 5 shows how FBFs can

be incorporated into distributed key-value stores like Apache Cassandra [2].

Chapter 6 describes experimental results from our prototype implementation

of FBFs and experimental results from an integration of FBF with a generic

distributed key-value store. We cover related work in Chapter 7, future work

in Chapter 8 and conclude in Chapter 9.

4

CHAPTER 2

BACKGROUND

In this chapter, we discuss the assumptions and provide a brief overview of

Bloom filters.

2.1 Assumptions

We make the following assumptions:

• Data (e.g., key-value pairs) is stored and replicated at one or more

servers.

• Clients issue operations via a front-end server (called a Coordinator in

Cassandra) which then communicates with the replicas.

• All client operations are globally and uniquely identified, e.g., by using

the tuple <client id, per-client sequence number>.

• Clients have a write request timeout period for each write operation. If

a client does not get a response from the coordinator within this time

period, the client aborts the write operation.

• There is a user-specified upper bound on the false positive rate of the

data structure that we use to maintain idempotence. For instance, for

counters, the user may specify an error percentage in the value, and

the false positive rate can be derived directly from it.

2.2 Bloom Filters

A Bloom filter [16,17] is a space-efficient data structure that can be used to

capture elements of a set and check quickly for membership in that set. A

5

0	 0	 1	 0	 0	 0	 0	 1	 0	 0	 0	 1	 0	 0	 0	

•  r1	 =	 h1(e)	 =	 2	 -‐>	 set	 b2	 to	 1	
•  r2	 =	 h2(e)	 =	 7	 -‐>	 set	 b7	 to	 1	
•  r3	 =	 h3(e)	 =	 11	 -‐>	 set	 b11	 to	 1	

b0	 b1	 b2	 b3	 b4	 b5	 b6	 b7	 b8	 b9	 b10	 b11	 b12	 b13	 b14	

Figure 2.1: An element e inserted into a Bloom filter comprising of m = 15
bits and 3 hash functions. Later, a membership check of element e checks if
the same 3 bits are set to 1.

Bloom filter is an array of m bits, each bit initially set to 0. When an element

is inserted it is hashed using k (fixed) hash functions. Each hash output

maps to a bit in the Bloom filter, which is then set. An example is shown

in Fig.2.1. To check for membership, the same k hash functions are used to

check if all the mapped bits are already 1. While Bloom filters always return

the right answer for an element already in the set (no false negatives), false

positives [19] may occur as a non-present element may check to true because

of the way bits were set. However, the rate of false positives can be lowered

arbitrarily close to 0 by changing parameters such as k, m, etc. [16,17].

Bloom filters are not ideal to solve counter idempotence for two reasons:

1. Bits set by older operations cannot be deleted or expired automatically

from the Bloom filter.

2. Bloom filter parameters (m, k) need to be fixed at creation time.

Thus, once the Bloom filter fills up, it is hard to “scale up” the Bloom filter,

or “move” its elements to another Bloom filter with different parameters

unless one maintains all updates. As a result, over time, as more and more

bits become set to 1, the false positive rate rises above the user-specified false

positive threshold for that application.

6

CHAPTER 3

FORGETFUL BLOOM FILTER

This chapter presents a new data structure that builds on the Bloom filter

but also overcomes many of its shortcomings listed in Sec. 2.2. Our new data

structure is called a Forgetful Bloom Filter (abbreviated henceforth as FBF).

An FBF maintains a moving window over recent operations. Thus it allows

older operations to automatically time out and be deleted from the FBF.

We also show how to keep the false positive rate below the user-specified

threshold, even as the workload changes, by adapting the parameters of the

FBF.

3.1 Basic FBF Operations

In its simplest form, an FBF contains three Bloom filters:

1. A future Bloom filter

2. A present Bloom filter

3. A past Bloom filter

All these Bloom filters are equal in size and identical in their use of hash

functions. Such an FBF with only three Bloom filters is called a Basic FBF.

When an element needs to be inserted (Algorithm 1), it is first checked for

membership in the FBF (we will describe the membership check in the next

paragraph). If it is not present, it is inserted only into the future and present

Bloom filters, but not in the past Bloom filter.

A membership check can be performed by checking if the tested element is

present in at least one of the three constituent Bloom filters – if so, the check

returns true. If the element is absent in all the three constituent filters, it is

considered to be not present in the FBF. Additionally, the structure of the

7

Algorithm 1 Insert element el into the FBF

procedure insert(el)
if !membershipCheck(el) then

FBF [future].set(el)
FBF [present].set(el)

end if
end procedure

FBF allows us to optimize the membership check further, thus lowering the

false positive rate – we describe this optimization in Sec. 3.4.

When applied to the counter idempotence problem, recall from Sec. 2.1

that we assume that all client operations are globally and uniquely identified,

e.g., by using a <client id, per-client sequence number>. Thus, when a server

receives a client operation (such as a counter increment), it is first checked

for membership in the FBF. If it is not present, it is inserted into the FBF

and the operation is reflected into the database table. If it is already present

in the FBF, the operation is discarded; however, another acknowledgment is

returned to the client.

3.2 Generalized FBFs: the N−FBF

In general, our FBF may contain more than three constituent Bloom fil-

ters. Broadly, we say that an N−FBF contains one Future Bloom filter, one

Present Bloom filter, and N(≥ 1) Past Bloom filters. This is illustrated in

Fig. 3.1. Our basic FBF becomes a special case – it is a 1-FBF (N = 1).

Insertion of a new element in anN−FBF affects only the future and present

Bloom filters, but not any of the N past Bloom filters. The membership check

remains unchanged (Sec. 3.4).

3.3 FBF Refresh

In order to forget older elements, periodically (every t time units), an FBF

undergoes a refresh operation. In a basic FBF, at a refresh point, the follow-

ing operations are performed atomically:

1. The past Bloom filter is dropped;

8

Elements
Future Bloom filter

Present Bloom filter

Set of past Bloom Filter(s)

Figure 3.1: An FBF is implemented as a list of Bloom filters. Elements are
inserted into the future and present Bloom filters.

Elements Future Bloom filter

Present Bloom filter

Set of past Bloom Filter(s)

Newest past Bloom filter

New Bloom filter

Oldest past Bloom filter removed

..

.

..

Figure 3.2: A refresh operation in a N−FBF adds a new Future Bloom
filter, removes the oldest Past Bloom filter), and moves the other Bloom
filters up.

2. The current present Bloom filter is turned into the new past Bloom

filter;

3. The current future Bloom filter is turned into the new present Bloom

filter;

4. A new, empty future Bloom filter is added to the FBF.

For an N -FBF, the refresh operation cascades intuitively through the past

Bloom filters, from the newest to the oldest, as shown in Fig. 3.2. The oldest

Bloom filter is dropped, the next oldest Bloom filter becomes the oldest, and

so on. Finally, the old present Bloom filter becomes the newest past Bloom

filter, the old future becomes the new present, and a new and empty Bloom

filter is added as the new future Bloom filter.

9

0 t 2t 3t 4t 5t 6t Time

Past Bloom filter

Present Bloom filter

Future Bloom filter

0-t

0-t t-2t

t-2t

0-t

0-2t

t-3t

2t-3t

t-3t

2t-4t

3t-4t

2t-4t

3t-5t

4t-5t

3t-5t

4t-6t

5t-6t

Figure 3.3: Timeline of a basic FBF showing the refresh operation. The
constituent filters with the darker shade represent the filters into which
elements are inserted.

Fig. 3.3 demonstrates the long-term behavior of a basic FBF due to its

refresh operation. The refresh period is t time units. The time slices of data

stored by each constituent Bloom filter is shown in the box representing the

Bloom filter. A basic FBF stores client operations that have come in the past

(2t, 3t] time units. In general, an N−FBF stores client operations from the

past ((N+1) · t, (N+2) · t] time units. We set this interval to be greater than

the counter write request timeout period (which is typically configured in the

key-value store clients based on suggested configuration parameters), beyond

which the client will stop retrying the update operation. This ensures that

the FBF captures all relevant operations, and that older forgotten operations

will not be retried by clients.

Implementation-wise, the refresh operation of the FBF is carried out by a

thread running in the background based on the refresh period set by the ap-

plication. This operation is carried out seamlessly exposing only the standard

set and get interface like a normal Bloom filter.

3.4 Optimized Membership Check

When checking an FBF for membership against an element in Sec. 3.1, our

approach was merely checking if any of the constituent Bloom filters contain

the element. However, the false positive rate of the FBF can be further

10

lowered by observing the following critical property of an FBF.

Property 1: In a basic FBF, the future and past Bloom filters do not overlap

in time.

This property arises because the point of time at which a new (empty)

future Bloom filter is created is at the same time instance when a past Bloom

filter became one (it was a present Bloom filter before) – this is the atomic

refresh point described in Sec. 3.3. Since no further elements are inserted

into a past Bloom filter, there is no overlap in time with the future Bloom

filter. This is also pictorially evident in Fig. 3.3. More generally, we can

show that:

Property 2: In an N-FBF, only consecutive (neighboring) Bloom filters

overlap in time.

This leads us to the following optimization: we only need to check for mem-

bership simultaneously in pairs of overlapping Bloom filters. For instance,

in a basic FBF we need not check to see if element is present both in the

future Bloom filter and the past Bloom filter. This is because the element

was first inserted into the FBF at some point of time – it could only have

been inserted into either the current future filter or the current past filter,

but not into both. On the other hand, if the element is in both future and

present Bloom filters, or both present and past Bloom filters, or just the past

Bloom filter then the element is genuinely present in the FBF.

This leads us to an optimized algorithm for checking membership in an

FBF. Algorithm 2 describes the pseudocode, and we explain below.

Consider an N-FBF with the future Bloom filter indexed as future, present

Bloom filter indexed as present and the past Bloom filters indexed from

pastNewest to pastOldest. Using Property 2, the algorithm proceeds as

follows: the membership check proceeds by checking for membership in the

most recent window of time until the oldest window of time is reached. If

the membership check passes in any window of time (i.e., two consecutive

Bloom filters return true), then there is no need to check further and the

check can return true. Accordingly, the future Bloom filter is checked first.

If it is not present there, the present as well as the pastNewest Bloom filter

are checked together. Intuitively, the membership check proceeds with the

next consecutive pairs of Bloom filters. Finally, the oldest past Bloom filter

is checked. If all tests return false, then the membership check returns false

(element is not present). The optimized version takes Property 2 into account

11

Algorithm 2 Optimized Membership check for element el

procedure membershipCheck(el)
if FBF [future].get(el) then

return true
else if FBF [present].get(el) ∧ FBF [pastNewest].get(el) then

return true
else if pastOldest > pastNewest then

for i = pastNewest to pastOldest− 1 do
if FBF [i].get(el) ∧ FBF [i+ 1].get(el) then

return true
end if

end for
else if FBF [pastOldest].get(el) then

return true
else

return false
end if

end procedure

by only checking Bloom filters that overlap in time.

3.5 Adaptation via Dynamic Resizing

As the workload changes over time, the rate of updates may go up (or down).

This may lead to the constituent Bloom filters of the FBF filling up quicker

(or slower) than the refresh rate can keep up. As a result, the false positive

rate may spike.

In order to maintain the FBF’s false positive rate below a user-specified

threshold (e.g., based on the desired accuracy of counter operations), we

show how to adapt the FBF parameters. Concretely, we adapt the following

two parameters:

1. Number of constituent Bloom filters, and

2. Refresh rate.

Dynamic resizing is implemented by a thread running in the background.

The thread calculates the false positive probability (see Sec. 4) and, as this

value approaches the threshold set by the application, it adapts the number

of constituent Bloom filters and the refresh rate. Again, this thread runs in

12

the background seamlessly to the application exposing only the standard set

and get interface like a normal Bloom filter.

Algorithm 3 Dynamic resizing

procedure triggerDynamicResizing()
if curFPP () ≥ 0.9 · targetFPP () then

//Multiplicative Increase of number of Bloom filters and Additive
decrease of refresh period

scaleUpF ilters()
decreaseRefreshPeriod()

else if curFPP () ≤ 0.1 · targetFPP () then
//Additive Decrease of number of Bloom filters and Additive in-

crease of refresh period
scaleDownFilters()
increaseRefreshPeriod()

end if
end procedure

The pseudocode is shown in Algorithm 3. The thread running every one

second computes curFPP , i.e., the current false positive probability of the

FBF (based on the analysis shown in Sec. 4). The curFPP is then com-

pared with the threshold false positive probability set by the application

i.e., targetFPP . Then the approach uses multiplicative increase/additive

decrease of the parameters. Broadly, when the false positive rate becomes

too high and risks violating targetFPP (e.g., due to an increase in volume

of incoming requests), the dynamic resizing algorithm does two things:

1. It increases the number of Bloom filters in the N− FBF from (N + 2)

to 2 ·(N+2), by adding the extra Bloom filters to the set of past Bloom

filters.

2. It decreases the refresh period from t units to (t− 1) units.

This multiplicative increase/additive decrease action lowers the false posi-

tive rate by increasing the window size of past requests and filling up Bloom

filters less. If it is still too high, further resizing operations may be initiated

by the background thread.

Later, if the false positive rate subsides (e.g., due to a natural lowering

of the update rate from clients), then the adaptive algorithm automatically

adjusts these two parameters in the reverse fashion, i.e., the number of Bloom

13

0 t 2t 3t Time

Past Bloom filter

Present Bloom filter

Future Bloom filter

Figure 3.4: The state of a basic FBF from 0-3t.

filters is decreased and the refresh period is increased. Both parameters

are adjusted additively in order to be conservative. This ensures that the

N−FBF stays as small and incurs as low overhead as possible, in order to

support the current workload, at all times.

We adopt this approach inspired by TCP congestion control [20], so that

we respond aggressively when the false positive probability is about to be

violated, but let up gently when the situation starts returning to normalcy.

14

CHAPTER 4

ANALYSIS: FALSE POSITIVE
PROBABILITY OF AN FBF

In this chapter, we now derive an equation to estimate the false positive

probability of an N−FBF consisting of N constituent past Bloom filters

(and thus N + 2 total Bloom filters). This equation is used by the dynamic

resizing thread of Sec. 3.5.

To make the analysis tractable, we assume:

• Hash functions are uniform.

• The Bloom filters inside an FBF behave independent of each other, as

far as false positive rates are concerned.

We later show through our experiments in Sec. 6 that, despite our assumption

of independence, our analysis holds in practice.

Consider a single Bloom filter B with m bits, k hash functions, and with l

elements inserted. From, e.g., [21], the probability p of a false positive during

a membership check on this Bloom filter is equal to the probability that all

k bits corresponding to that element were set by previous insertions. This

probability is thus equal to:

p(B) =

(
1−

(
1− 1

l

)mk
)
≈
(
1− e−kl/m

)k
(4.1)

To determine the probability of a false positive in an FBF with an arbitrary

number of constituent filters, we first present the derivation of this quantity

for the most basic 1−FBF with three filters (future, present and a single past

filter).

Consider a 1−FBF with three Bloom filters, each with m bits and k hash

functions as shown in Fig.3.4. In our 1−FBF example, the membership

check from Algorithm 2 first evaluates the future Bloom filter alone, then

the present and past filter, and finally the past filter alone. Following the

15

path for a membership check in our FBF, we therefore wish to determine the

probability of some false positive in either: 1) the first Bloom filter (future),

or 2) both the present and past filters, or 3) in the past filter by itself.

Let the past Bloom filters be indexed from most recent to oldest (i.e.,

pastNewest = 1, · · · , pastOldest = n). Under the assumption of indepen-

dence, the probability of a false positive in a 1−FBF can be estimated as:

p(BasicFBF) = 1− (1− p(Bfuture))

· (1− p(Bpresent) · p(B1)) · (1− p(B1))
(4.2)

From Equation 4.1,

p(Bi) =
(
1− e−kli/m

)k
where li is the number of elements inserted into Bloom filter Bi.

Generalizing Equation 4.2 to an N−FBF with (N + 2) total filters, we

can therefore estimate the probability of a false positive as the probability

of some false positive in either the first Bloom filter, both filters in some

contiguous pair in the remaining filters, or in the last filter by itself. That

is, for an N−FBF that holds updates over (N + 2) time intervals, we can

determine the false positive probability within each interval (ti, ti+1) of the

membership check as:

φi→i+1(N − FBF) =

p(Bfuture), if i = n+ 1

p(Bpresent) · p(B1), if i = n

p(Bn+1−i) · p(Bn−i), if 1 ≤ i ≤

n− 1

p(Bn), if i = 0

The probability that some stage of the membership check will return a false

positive is therefore equal to:

p(N − FBF) = 1−
n+1∏
i=0

(1− φi→i+1(N − FBF)) (4.3)

Later (Sec. 6.2) we will compare this estimate with the observed false

positive rate.

16

CHAPTER 5

SYSTEM DESIGN: INTEGRATING FBFS
INTO CASSANDRA

In this chapter, we discuss how FBFs can be integrated into the partitioned

counters of today’s distributed key-value stores like Cassandra. Subsections

A− C below describe the background, and in D we show our integration.

5.1 Cassandra

While our techniques are applicable to any key-value store, for concreteness,

we apply these to Apache Cassandra [1,2]. Here we describe the background

for Cassandra and its counters.

Cassandra is a decentralized, distributed key-value store where server nodes

are arranged in a virtual ring using consistent hashing [22], and these servers

store the corresponding key-value pairs. Keys are assigned to servers based

on consistent hashing. Keys can be replicated at multiple server nodes for

fault-tolerance, e.g., neighbor servers on the ring. Cassandra supports con-

currency with multiple clients. Clients can send CRUD (Create, Read, Up-

date, Delete) operations to any server node in the ring. This contacted server

is called the coordinator for that operation. The coordinator node, upon re-

ceiving a client request, locates the replica node(s) responsible for that key

via consistent hashing, forwards them the query, receives their response, and

forwards it back to the client.

5.2 Counters

Counters [23,24] in Cassandra are a special-kind of data structure, typically

stored as a special column inside a database table. Once a counter column

is defined inside the table, clients can issue update operations (e.g., +1’s) on

any key in that table. The flow of a counter update operation is shown in

17

Client

Counter
operation

Coordinator

ACK

Replica

Replica

Replica

ACK

ACK

ACK

Figure 5.1: Update operation on a counter with a replication factor (RF) of
3

Fig. 5.1 (it is slightly different from a normal update). When the coordinator

receives a request from a client, it locates a suitable replica (of that key) as

the leader replica and forwards the request to it. The leader replica forwards

the counter update to other replicas. Each replica, after committing the

operation to the commitlog [25] and the in-memory Memtable [26], sends

back a corresponding ack to the leader replica which further sends back an

ack to the coordinator, which in turn returns an ack to the client.

In Sec. 5.3, we introduce the internals of partitioned counters design in

Cassandra, their evolution, and their associated problems. In Sec. 5.4, we

show how FBFs can be integrated into distributed key-value stores like Cas-

sandra and overcome the inherent problems to obtain idempotent, lock-free,

correct, fast, distributed counters.

5.3 Background: Partitioned Counters in Cassandra

Cassandra (v0.8 onward) supports partitioned or distributed counters [27].

Such counters are split and replicated across across multiple nodes (servers),

thus ensuring fault-tolerance, availability, load-balancing, and scalability (i.e.,

18

if the replication factor or RF is > 1).

Each sub-counter (counter at a server) tracks all its received updates/deltas.

When needed various anti-entropy techniques are used (e.g., read-repair [28],

AES [29] and repair-on-write) to aggregate all updates for the counter across

the cluster. The goal is to provide eventual consistency [30], i.e., the replicas

eventually learn about all the updates in the system. This design of counters

is not idempotent. Client-retries after a counter write request timeout or

commitlog replays can lead to incorrect value of the counter. This is true for

partitioned counters design used in all versions up to Cassandra v2.0.

Internally at each server, each sub-counter is split into fragments called

‘shards’. A shard is a 3-tuple consisting of (node’s counter id, shard’s logical

clock, shard’s value) as shown in Fig. 5.2. The counter id is a value uniquely

identifying the node that created the shard. The logical clock is a monoton-

ically increasing number representing the number of operations committed

on the shard. Finally, the shard’s value is either the size of the increment

or the total value, depending upon the shard type. A shard type could be

either a local shard or a remote shard. Local shards track the updates/deltas

received by this particular sub-counter. It is not possible to simply replicate

this delta in other replica nodes. Instead, the local shards are summed and

the total is sent to other replicas. Whenever a local shard is sent to another

node, it is stored as a remote shard at that other node.

The final value of the counter at any replica node is the sum of the values

of:

1. All the local shards in that node, and

2. That single remote shard in that node which has the highest logical

clock

We use an example to show the working of Cassandra’s partitioned coun-

ters, as well as to show how a message loss can violate idempotence. This is

depicted in Fig. 5.2. In this figure, consider a counter c1 with a replication

factor of 2. The counter is replicated at node A and node B. In step 1,

node A receives an increment of +1 to the counter c1. After committing the

update to it’s own commitlog and Memtable, the update is propagated to

node B where it is appended to the commitlog and stored as a remote shard

in B’s Memtable. A client issuing a read of c1 at this point reads a value of

19

1 irrespective of whether the coordinator redirects the read request to node

A or node B. In step 2, node B receives an increment of +2 to the counter

c1. After committing locally, the update is propagated to node A where it is

appended in the commitlog and updated in the Memtable as a remote shard.

A client issuing a read of c1 at this point would read a value of 3 (i.e., sum

of all local shards plus the that remote shard with the largest logical clock).

At step 3, the Memtable is flushed to an on-disk SSTable [31] in both node

A and B. In step 4, node A receives an increment of +3. After committing

locally, the update is propagated to node B. At this stage, if the ack to the

client were to be dropped by the network, the counter operation is replayed

in step 4 when the client re-transmits its request – this immediately leads to

an over-count. A client read of c1 will return 9, instead of the correct value

of 6.

To deal with these issues, from Cassandra v2.1 onward, the concept of

local shard and remote shard were eliminated by the developers instead, a

(local) lock is acquired for each counter being updated, the local sub-counter

value is read, and then the incremented value (not the increment itself as in

Cassandra v2.0) is written into the commitlog and the Memtable and sent to

the other node. The sum of all the local shards of a node need not be done.

The value of the sub-count with the highest logical clock is chosen. This

simplified design, however it has performance implications due to the lock-

read-write-unlock. This new design of partitioned counters in v2.1 ensures

that counter operations are idempotent in case of commitlog replays, but

can still lead to incorrect values in cases of client retries after counter write

request timeout.

5.4 Idempotent Counters in Cassandra using FBF

In order to integrate FBFs with distributed key-value stores to obtain idem-

potent counters, we propose the following changes at the server-side and the

client-side.

As mentioned earlier, each client operation needs to be identified by a

globally unique identifier, such as <client id, per-client sequence number>.

This involves minor changes to the client-side drivers.

On the server side, an FBF is associated with each counter column. In

20

Node A
Memtable

A0 1 1

Commitlog

A0 1 1

1. Node A, increment counter c1 by 1

id,clock,value id,clock,valueLocal shard

Node B
Memtable

A0 1 1

Commitlog

A0 1 1

Remote shard

Read will return c1 value = 1

Node A
Memtable

A0 1 1

Commitlog

A0 1 1

2. Node B, increment counter c1 by 2

Node B
Memtable

A0 1 1

Commitlog

A0 1 1

Read will return c1 value = 3

B0 1 2 B0 1 2B0 1 2 B0 1 2

Node A
SSTable #1

A0 1 1

3. Flush

Node B
SSTable #1

A0 1 1

Read will return c1 value = 3

B0 1 2B0 1 2

Node A
Memtable

A0 1 3

Commitlog

A0 1 3

4. Node A, increment counter c1 by 3

Node B
Memtable

A0 2 4

Commitlog

A0 2 4

Read will return c1 value = 6

A0 1 1

B0 1 2

A0 1 1

B0 1 2

SSTable #1 SSTable #1

ACK back to the client dropped

Node A
Memtable

A0 2 6

Commitlog

A0 1 3

5. (RETRY) Node A, increment counter c1 by 3

Node B
Memtable

A0 3 7

Commitlog

A0 2 4

Read will return c1 value = 9 (OVER-COUNT)

A0 1 1

B0 1 2

A0 1 1

B0 1 2

SSTable #1 SSTable #1

A0 1 3 A0 3 7

Figure 5.2: An example depicting how Cassandra’s partitioned counters
work, and how a re-transmission of a counter update can lead to an
over-count.

most key-value stores developed using object-oriented principles, this involves

adding an object of the FBF implementation as a member of the counter

column class.

21

Node A

Memtable

A0 1 1

Commitlog

A0 1 1 cl1_ts1

1. Node A, increment counter c1 by 1 (id = cl1_ts1)

id,clock,value id,clock,valueLocal shard

Node B

Memtable

A0 1 1

Commitlog

A0 1 1 cl1_ts1

Remote shard

Read will return c1 value = 1

Node A

Memtable

A0 1 1

Commitlog

2. Node B, increment counter c1 by 2 (id = cl1_ts2)
Node B

Memtable

A0 1 1

Commitlog

Read will return c1 value = 3

B0 1 2 B0 1 2 cl1_ts2B0 1 2 B0 1 2 cl1_ts2

Node A

SSTable #1

A0 1 1

3. Flush

Node B

SSTable #1

A0 1 1

Read will return c1 value = 3

B0 1 2B0 1 2

Node A

Memtable

A0 1 3

Commitlog

A0 1 3 cl1_ts3

4. Node A, increment counter c1 by 3 (id = cl1_ts3)
Node B

Memtable

A0 2 4

Commitlog

A0 2 4 cl1_ts3

Read will return c1 value = 6

A0 1 1

B0 1 2

A0 1 1

B0 1 2

SSTable #1 SSTable #1

ACK back to the client dropped

Node A

Memtable

A0 1 3

Commitlog

A0 1 3 cl1_ts3

5. (RETRY) Node A, increment counter c1 by 3 (id = cl1_ts3)
Node B

Memtable

A0 2 4

Commitlog

A0 2 4 cl1_ts3

Read will return c1 value = 6 (ACCURATE)

A0 1 1

B0 1 2

A0 1 1

B0 1 2

SSTable #1 SSTable #1

FBF

FBFcl1_ts1 cl1_ts1 FBF

cl2_ts2 FBF cl2_ts2 FBF

cl1_ts3 FBF cl1_ts3 FBF

cl1_ts3 FBF FBF

A0 1 1 cl1_ts1 A0 1 1 cl1_ts1

FBF FBF

Figure 5.3: An example depicting how an FBF integrated into Cassandra’s
partitioned counters can avoid over-count when there is a re-transmission of
a counter update.

The counter update (with an unique id) on each node containing the

counter first goes through the FBF associated with that counter. A member-

ship check is run in order to determine if that particular counter operation

was previously applied or not. If the membership check passes, then it is

dismissed as a retry; else it is appended to the commitlog and updated in the

22

Memtable. All these steps are atomic. As long as ((N+1) ·t) (where N is the

number of past Bloom filters in the FBF and t is the refresh period) is greater

than the client counter write request timeout, retries will be dismissed. In

the event of a false positive, a valid non-duplicate counter operation may

be dismissed as a duplicate. However, this is a low probability occurrence.

We have shown earlier (Sec. 3.5) how FBF is capable of self-adapting to the

workload in order to lower the false positives. We also show in Sec. 6 that

the number of false positives is very small.

Counters are replicated on multiple nodes to provide fault-tolerance, scal-

ability and high-availability. The counter operations after being committed

locally should be propagated to other nodes holding the replica of the counter.

This ensures that the corresponding FBFs are synchronized and consistent

across the cluster.

The shards stored in the commitlog also additionally contain the unique

id associated with the counter operation in order to ensure that the updates

are not duplicated during commitlog replays.

We chose the approach of associating FBFs with each counter column,

rather than at the system level or the key granularity. A system-level FBF

would have to handle too many counter operations (across multiple tables).

A key-level FBF would create too many FBFs. The column-level (or rather

table-level) FBF gives the best of both worlds. This approach also entails

minimal changes to the underlying design of key-value stores.

The same set of steps that lead to an over-count back in Fig. 5.2 are il-

lustrated now with the key-value store using FBFs in Fig. 5.3. Steps 1 − 4

are the same as in Fig. 5.2. However, each update has an unique id associ-

ated with it and each counter has an FBF integrated into them as shown in

Fig. 5.3. After the loss of ack at the end of step 4, the operation with an id

of cli1 ts3 is retried. However, it is dismissed as a retry since it passes the

membership test in the FBF. The correct value of the counter c1 (i.e., 6) is

returned at the end of step 4.

In summary, using the FBF, it is possible to obtain idempotent (with high

probabilistic accuracy), lock-free (without the lock-read-write-unlock design

of Cassandra v2.1), correct, fast (due to the lock-free design), distributed

counters in key-value stores such as Cassandra.

23

CHAPTER 6

EVALUATION

This chapter describes the experiments we carried out to show the properties

of the FBF data structure as well as its integration with distributed key-

value/NoSQL stores.

We have implemented a standalone prototype of the FBF data structure

in C++. We present experimental results that show its false positive rate,

adaptability and the effect on counter operations.

To assist readers Table 6.1 summarizes the terms and notation used through-

out this chapter (some of these terms have already been used in the thesis,

but this is a comprehensive summary).

Table 6.1: Summary of Terms used in the experiments.

Notation Definition
FPP False Positive Probability

N
Number of constituent past Bloom filters
in the FBF

m
Number of bits in each constituent Bloom
filter of the FBF

k
Number of hash functions used by each constituent
Bloom filter in the FBF

t Refresh period of the FBF

6.1 Membership Check

We compare the false positive rate behaviors of the optimized membership

check algorithm (Sec. 3.4) against the simple approach of Sec. 3.1 (i.e., check-

ing all constituent Bloom filters). This experiment was run with a basic

FBF with the dynamic resizing thread disabled. The FBF parameters are

m = 6250 bits, k = 5 hash functions, and a refresh period of t = 5s.

24

Fig. 6.1 plots the false positive probability (FPP) on the Y-axis against the

number of elements inserted into the FBF on the X-axis. The membership

check algorithms are initiated after all the elements are inserted. The FPP

was computed empirically using both approaches by running a membership

check for 200k invalid elements that were known not to be inserted in the

FBF, and calculating what fraction of such checks returned true as an answer.

As we can see from Fig. 6.1, the FPP using the optimized membership check

algorithm (Sec. 3.4) is much lower than using the simple approach (Sec. 3.1)

– notice that the vertical axis is logarithmic in scale. For instance, at 300

operations, the FPP computed using our optimized membership check is 90%

lower than the FPP calculated using the simple approach.

We conclude that the optimized membership check is worth using as it pro-

vides higher accuracy and thus lowers the number of valid counter operations

that would be dismissed incorrectly as retries.

Figure 6.1: False positive probability(FPP) using the optimized
membership algorithm and the simple approach.

25

Figure 6.2: False Positive Probability(FPP) of an FBF comparison with the
empirical FPP.

6.2 False Positive Probability of an FBF

We now evaluate if our false positive analysis of Sec. 4 in fact accurately

models the observed FPP. The empirical FPP was determined by testing the

FBF for membership against 200k invalid elements that were known not to

be inserted into the FBF, and calculating the fraction that returned true as

an answer. This is the ground truth.

The first experiment was run using a basic FBF (with the dynamic resizing

thread disabled). The FBF parameters are k = 5 hash functions, m = 6250

bits, and a refresh period of t = 5s. Fig. 6.2 plots the FPP against the

number of elements inserted into the FBF. The FPP determined using our

analysis reasonably matches the actual FPP determined empirically even as

the number of elements inserted into the FBF increases.

A second experiment was run against multiple simple FBFs, each with

26

Figure 6.3: False Positive Probability(FPP) of an FBF comparison with
empirical FPP.

different sizes of the constituent Bloom filters ranging from 5k to 30k bits,

keeping the number of elements inserted into the FBF constant at 300 and

k = 5 hash functions. Fig. 6.3 shows again that the analysis is reasonably

accurate even if the size of each constituent Bloom filter in the FBF is varied.

6.3 Dynamic Resizing

We separately evaluate the effect of the two adaptive knobs of Section 3.5 –

1) the refresh rate change, 2) the number of Bloom filters, and 3) evaluate

the combined effect of adapting them together.

In the first experiment, 4 simple FBFs each with refresh period of 5s, 3s,

2s and 1s respectively are used. The FBF parameters are m = 25k bits, and

k = 5 hash functions. 5k elements were inserted with an exponential increase

in the workload rate. As we can see from Fig. 6.4, the FPP decreases as the

27

Figure 6.4: False Positive Probability(FPP) of an FBF decreases as refresh
period is decreased.

refresh rate is lowered. For instance, at 100 operations per second, the FPP

of the FBF with a refresh period of 5s is 1000 times the FPP of the FBF with

a refresh period of 1s. This shows that refresh rate is an effective control

knob for the FPP.

In the second experiment, 4 simple FBFs with 24, 12, 6 and 3 constituent

Bloom filters are used. The FBF parameters are refresh period of t = 5s,

m = 6250 bits, and k = 5 hash functions. 3k elements are inserted with a

steady increase in the workload. As we can see from Fig. 6.5, the FPP of an

FBF decreases as we scale up the number of filters in the FBF. For instance,

at 100 operations per second, the FPP of the FBF with 3 Bloom filters is

5.5 times the FPP of the FBF with 24 Bloom filters. This is true even at

high operation rates. We conclude that changing the number of constituent

Bloom filters is an effective control knob for adaptation.

In the third experiment, we show that it is possible to maintain the FPP

28

Figure 6.5: False Positive Probability(FPP) of an FBF decreases as number
of filters is increased.

of an FBF below an application provided target FPP by adapting both the

number of constituent Bloom filters as well as the refresh rate simultaneously.

This is based on the algorithm described in Algorithm 3. Fig. 6.6 shows how

the number of Bloom filters and refresh period are adapted to keep the overall

FPP of the FBF below the target FPP. Initially, we begin with a simple FBF

i.e., an FBF with 3 Bloom filters, each of which has m = 6250 bits and k = 5

hash functions and a refresh period of 11s. The primary Y-Axis plots the FPP

and the secondary Y-Axis plots the variation in the number of constituent

Bloom filters and refresh period in seconds. As more elements are inserted,

the FPP of the FBF increases. At t = 16s, when the FPP of the FBF comes

within 10% of the target FPP, the dynamic resizing kicks in and the number

of Bloom filters is scaled to 6 (i.e., 4 − FBF) and refresh rate is decreased

to 10s. This brings the FPP of the FBF down. Later, as the workload starts

to subside at t = 19s, the number of Bloom filters drops to 4 and the refresh

29

Figure 6.6: False Positive Probability(FPP) of an FBF is maintained below
an application provided target FPP even with increasing workload over
time by dynamic resizing.

period is at 13s. Dynamic resizing kicks again at t = 28s as the FPP of

the FBF approaches the target FPP. It increases the number of constituent

Bloom filters from 4 to 8 and the refresh period is decreased from 13s to 12s.

We can see the FPP of the FBF drops at t = 40s as well. This is due to the

periodic refresh operation based on the refresh period t.

We conclude that FBFs are capable of adapting to the varying workload of

counter operations. It scales up and down transparently in order to preserve

the accuracy of counter operations.

6.4 FBF Integration with Distributed Key-Value Store

We built a C++ simulator capturing essential features of Cassandra-like dis-

tributed key-value (KV) store [32]. Our use of the simulator is motivated by

30

our desire to show that FBFs are applicable to and useful in any distributed

key-value store.

6.4.1 Implementation details of the Distributed Key-Value
Store Simulator

The distributed key-value(KV) store simulator supports a relevant subset

of the features supported by Cassandra, especially pertaining to distributed

counters. The simulator was built in C++. The simulator follows a client-

server model. The server can be run on multiple physical machines. Commu-

nication among the machines in the distributed system is via message passing.

The key-value store can be scaled horizontally by adding more nodes/servers.

The server-side is built based on a multi-threaded architecture. The main

class that controls the server-side functionalities is the Node class. The Node

class spawns a main thread called receiver thread that listens on a particular

port number. This thread further spawns a separate thread for each message

received on that port. The message passing formats and interfaces are defined

in the Message class. The message passing uses the TCP protocol. The

transport functionalities are defined in the tcp class.

The data which is essentially counter data structure is partitioned over

a set of nodes in the cluster. Each Node supports a Memtable-like map of

counter data structure. The counter data structure is defined in the Counter

class. The Counter object encapsulates a vector of Shard objects. The shards

are designed based on the design discussed in Sec. 5.3. The shard design is

defined in the Shard class. It encapsulates a tuple of Node id, logical clock,

value and metadata information whether the shard is a local shard or a

remote shard. The node id is defined by the NodeId class.

The data is partitioned using consistent hashing [22]. The output of the

consistent hash function is a fixed size circular ring (i.e., the output of the

hash function wraps around a ring from a smallest value to the largest value).

Each node is assigned a random point on the ring based on a combination

of ip address, port number and a sequence number like timestamp. The key

which corresponds to the counter name is assigned to a node by first hashing

the key to get a point on the ring, and then finding the nearest clockwise

neighbor. The key is also replicated further in the next set of clockwise

31

neighbors of this node depending on the replication factor.

The client is also based on a multi-threaded architecture. The KV store

client supports basic CRUD (Create Read Update Delete) operations on the

counter data structure. On the server-side, counters are split in sub-counters

stored on multiple nodes. Each sub-counter tracks updates individually and

the overall value of the counter is aggregated across the cluster. The goal is

to provide eventual consistency. This designed is based on the same design

principles as discussed in Sec. 5.3. The client also allows users to create

counter columns either without using a Forgetful Bloom Filter (FBF) (as

in Sec. 5.3) or using an FBF (as in Sec. 5.4). When the counter column is

created with an FBF, initially a basic 1-FBF is associated with that counter.

It runs all the optimization discussed in Sec. 3 to limit the false positives and

dismiss the duplicates with high probabilistic accuracy.

Even though the distributed key-value store we built borrows design princi-

ples from Apache Cassandra: like consistent hashing for partitioning, replica-

tion, etc., – with the simulator, it makes it possible to integrate the Forgetful

Bloom Filter in a generalized distributed key-value store and show that it

can applied to real-world systems like Apache Cassandra or Riak to obtain

idempotent counters.

6.4.2 Correctness

We set up a 10 server cluster on the Emulab testbed [33]. The nodes in the

cluster are set up in a ring topology. Each node in the ring is a d710 node

connected to its neighbor using a 100Mbps link. The node type information

of a d710 node is shown in Table 6.2.

Table 6.2: Emulab d710 node type information.

OS Ubuntu 14.04

Processor
64-bit Intel Quad
Core Xeon E5530

Memory 2 GB

Each node is running the distributed key-value server. We create two

counter objects each with a replication factor of 3. One of the counters has

an FBF associated with it, while the other doesn’t (these two counters are

partitioned based on consistent hashing). Every update operation on the

32

Figure 6.7: Counter without FBF has an error of 6% as compared to
counter with FBF, which is 100% accurate in our experiment.

former counter goes through the FBF (i.e., a membership check is made

using the unique id provided by the client in the FBF) and the counter is

updated only if the id uniquely representing that update were not already

present in the FBF. The latter counter object doesn’t have an associated

FBF. Update operations are directly applied on the object. Using a client, a

set of identical counter increment operations are issued to both the counters.

A subset of these counter operations are retried periodically.

Fig. 6.7 plots the counter values along with the expected value against

time. We observe that the expected value and the value of the counter with

the FBF overlap at all times. At the end of the experiment, the counter

with the FBF is 100% accurate, i.e., the value of the counter is number of

counter increments without the retries. The counter without the FBF has

an error of 6%. With write rates that are higher or vary over time, the FBF

would self-adapt in order to keep the false positive rate low (as was shown

33

0	

5	

10	

15	

20	

25	

30	

5	 25	 50	

W
rit
e	
La
te
nc
y	
in
	 m

s	

Number	 of	 batch	 counter	 updates	

Counter	 with	 FBF	 Counter	 without	 FBF	

Figure 6.8: Write latency in ms of batch counter updates.

in Figure 6.6).

Although our analysis showed there might be false positives, for all prac-

tical purposes, the FPP is so low that the counters are essentially accurate

in our experiments.

Next, we fail (crash and take offline) one node among the nodes containing

the counter with the FBF. The distributed key-value store automatically

replicated the counter at another node. During this process, we observed

that counters continued to provide 100% accuracy. This shows that FBF

handles node failures and still provides accurate counters.

6.4.3 Write Latency

The counter objects with the FBFs integrated with them have an additional

step of membership check that needs to be done in the FBF during every

update operation. We ran another experiment to show that the effect on

write latency due to this step is negligible. We set up four d710 nodes in a

star topology and used another d710 node as a client. We then ran batch

counter updates and measured write latency of counter update operations on

both the counter with the FBF enabled and vanilla counters (i.e., counters

34

without the FBF). Fig. 6.8 shows that we observed that counter with FBF

for a batch counter updates of 50 operations is only slower by 10% which is

in order of 2ms on average.

6.4.4 Comparison of an FBF with a Recyclable Bloom Filter

In this section, we compare FBF with a similar approach that works with

Bloom filters but does not use a sliding window to compactly represent only

recent elements. We developed another variation of Bloom filter which we

call Recyclable Bloom filter [32]. The Recyclable Bloom filter (RBF) is based

on a single traditional Bloom filter. Inserting an element and checking for

membership is similar to a normal Bloom filter. However, like an Forget-

ful Bloom filter (FBF), an application can provide a target false positive

probability. A thread running in the background computes the false positive

probability (FPP) based on Equation 4.1 and as the FPP goes beyond the

application-provided target FPP, all the bits in Recyclable Bloom filter are

cleared/flushed to make room for newer elements.

The next experiment compares the accuracy of an RBF with that of an

FBF. We set up a 10 node cluster on Emulab testbed [33]. The nodes in the

cluster are set up in a ring topology. Each node is a d710 node connected

to its neighbor using a 100Mbps link. The node type information of a d710

node is shown in Table 6.2.

Each node is running the distributed key-value store [32] we built. We

create two counter objects each with a replication factor of 3. One of the

counters has a simple FBF (or a 1-FBF) associated with it with the dynamic

resizing thread disabled (i.e., this means that the number of constituent

Bloom filters will always remain 3), while the other has a RBF associated

with it. In order to make it an even playing ground, the number of bits in the

RBF is N+2 times (in this experiment, N = 1) the number of bits in each of

the constituent Bloom filter of the FBF. As a result, the FBF and RBF use

the same amount of memory. In this experiment, the FBF parameters are

N = 3, m = 500 bits and k = 3 hash functions; while the RBF parameters

are m = 1500 bits and k = 3 hash functions. Using a client, a set of identical

counter increment operations are issued to both the counters. A subset of

these counter operations are retried randomly with increasing frequency.

35

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

0	 20	 40	 60	 80	 100	 120	

Er
ro
r	 P

er
ce
nt
ag
e	

Number	 of	 retries	

Counter	 with	 FBF	

Counter	 with	 RBF	

Figure 6.9: The eror percentage of Counter with RBF increases
exponentially as the number of retries increases while the counter with FBF
has a steady low error percentage relatively.

Fig. 6.9 plots the error percentages of both the counters. We observe that

as the frequency of retries increases the error percentage of the counter with

RBF increases exponentially, while that of the counter with the FBF stays

relatively steady. Note that vertical axis is in logarithmic scale and also

note that the error percentage of the counter with FBF is non-zero due to

the relatively smaller size of the constituent Bloom filter as compared to the

number of elements inserted.

Hence we conclude that an FBF is more accurate than a larger RBF.

Additionally as we have shown in earlier experiments, unlike RBFs, FBFs

are capable of scaling up and down based on the workload rate and thus

providing idempotent counters with high probabilistic accuracy.

6.5 FBF Integration with Apache Cassandra

We integrated an implementation of the FBF data structure in Apache Cas-

sandra [2]. The subsections below describe the implementation details and

36

ForgetfulBloomFilter

+ FBF:List<BloomFilter>
+ refreshPeriod:long
+ maxTolerableFPP:double
+ refreshThread:Runnable
+ dynamicResizingThread: Runnable

- ForgetfulBloomFilter(numberOfBFs,
refreshTime, appProvidedFPP)
- insert(key): void
- membershipCheck(key): boolean
- addBloomFilter(): BloomFilter
- getPastOldest(): int
- getRefreshPeriod(): long
- refresh(): void
- returnEffectiveFPP(): double
- checkEffectiveFPP(): void
- dynamicResizing(): void
- triggerTrimDown(): void

Figure 6.10: UML diagram of the ForgetfulBloomFilter class. This class
was added as an utility class in Apache Cassandra.

evaluations.

6.5.1 Implementation details of FBF Integration with Apache
Cassandra

We used Apache Cassandra v2.0.11 [34] for our integration and experiments.

On the server-side, we first implemented a new class called ForgetfulBloom-

Filter. This encapsulates all the functionalities of the Forgetful Bloom Filter

(FBF) data structure. We added this as an utility class. The class members

primarily comprises of a list of Bloom filters and two threads each correspond-

ing to the refresh and dynamic resizing functionality of the FBF respectively.

The UML diagram of the class is shown in Fig. 6.10.

FBF was integrated into Apache Cassandra v2.0.11 [34]. This version of

Cassandra uses the partitioned counter design [27] described in Sec. 5.3. Our

integration followed the system design described in Sec. 5.4. An object of the

FBF class was included in the ColumnFamilyStore class. In addition to this,

we integrated a membership check of the unique client id received from the

37

client for each counter update operation in the FBF in the StorageProxy class.

This ensures that only those operations that are not retries are committed

in the counter write path [35]. The addition of the client id into the FBF

and committing the update into the Memtable is an atomic operation. As

discussed in Sec. 5.4, the counter update operation is committed only if the

client id fails a membership check in the FBF. We have shown in earlier

sections how the false positive probability is practically zero.

On the client-side, we made changes to the Datastax Java client driver

v2.0.7 [36, 37] to generate unique client ids for each counter update opera-

tion. This ensures that each counter update operation is identified by an

unique id and in case of a retry, the same id that was used in the original

operation is reused. Changes were affected mainly in Requests and Session-

Manager classes to generate the unique id for each counter update operation.

We also changed the default behavior of the client driver to issue retry when-

ever there was a write timeout for a counter update. This change was made

in the DefaultRetryPolicy class. We also made changes to the Requests, Re-

questHandler, QueryTimeoutException and WriteTimeoutException classes

to ensure that the client reuses the same client id that was used for the

original operation in case a counter write operation timed out.

The client id received on the server-side had to be parsed and identified

correctly. For this we made changes to the QueryOptions, ModificationState-

ment, CounterMutation, CassandraServer, Client and QueryMessage classes.

All these changes affected the write path of the counter operations. Read

path of all the counter operations are unaffected by the FBF integration.

6.5.2 Correctness

We setup a 3 node cluster on Emulab testbed [33]. The nodes in the cluster

are set up in a ring topology. Each node is a d710 node connected to the

other using a 100Mbps link. The node type information of a d710 node is

shown in Table 6.2. The read timeout and write timeout period of the cluster

were 5s and 2s respectively.

We ran the following steps using two different flavours of Apache Cassan-

dra: one with the FBF integrated and another one without the FBF which

we call the Vanilla Apache Cassandra. We created a test keyspace [38] with a

38

0	
20	
40	
60	
80	

100	
120	
140	
160	
180	
200	
220	
240	
260	
280	
300	
320	
340	
360	
380	
400	
420	
440	
460	
480	
500	
520	
540	
560	

10,25	 15,25	 20,25	

Co
un

te
r	 V

al
ue

	

Loss	 in	 %,	 latency	 in	 ms	

Expected	 Value	

Apache	 Cassandra	 with	 FBF	

Vanilla	 Apache	 Cassandra	

Figure 6.11: Apache Cassandra with FBF is always accurate under varying
conditions of loss and latency.

replication factor (or RF) of 1. We created a counter in this keyspace. Later,

we introduced different parameters of loss and latency on the link connect-

ing the nodes. The loss and latency introduced in the network makes the

distributed system an asynchronous one, thus causing a subset of the opera-

tions to timeout and induce a retry. We then ran consecutively a set of 500

counter operations at a steady rate on the counter from a client that used the

modified Java client driver. Fig. 6.11 shows that value of the counter at the

end of the experiment. The counter created in the FBF integrated Cassandra

was always accurate while the counter in the Vanilla Apache Cassandra had

an average error of 5%.

39

CHAPTER 7

RELATED WORK

The notion of remote procedure calls (RPCs) was formulated by Birrell and

Nelson in [14]. The notion of at least/at most/exactly once semantics arises

from these RPCs. It is well-known that exactly once semantics are hard to

achieve in a distributed system with failures and message losses.

There are a variety of distributed key-value/NoSQL stores like Cassandra

[2], Riak [3], BigTable [4], DynamoDB [8], and Couchbase [39] among others.

Most of them have support for counting using fast, distributed counters [9],

[10]. Counters in most NoSQL stores are based on CRDTs [40].

Cassandra v2.1 contains a slightly more correct implementation of coun-

ters [41]. However it’s new design has performance implications. The key

difference from earlier versions is that instead of logging the deltas in the

commitlog, making commitlog replays potentially unsafe, it reads the value

of the counter for every update operation and then applies the delta. The

new value is then updated in the Memtable. This makes the distributed

counters slower since it involves lock-read-update instead of just adding the

delta. The change solves internal idempotence i.e., makes the commitlog re-

plays safe. However, it cannot solve external idempotence via replays from

clients and can still lead to inaccuracies.

In contrast, our solution helps in achieving both internal (i.e., commitlog

replay) as well as external (i.e., client replays) idempotence with high proba-

bilistic accuracy thus providing correct counters. It also ensures that counter

operations are lock-free and thus fast.

Another work [42] suggests making Apache Storm counters idempotent

by using a combination of other systems like Redis [43] and Apache Kafka

[44]. In contrast to this, our solution proposes an elegant design that can

be integrated into a system without drastic changes in design or external

dependency on other systems.

Bloom filter are useful in variety of applications. Their use ranges from web

40

browsers like Google Chrome [45] (where they are used for Safe Browsing), to

their use in networking applications [46] and distributed databases to perform

efficient joins [47–49].

In [18], it is proposed to be used to maintain a summary of the cache of

each proxy server within a heirarchy of proxy servers. In [50], a variation

of Bloom filter called Attenuated Bloom filter is introduced. It is used for

efficient routing in Peer-to-Peer systems. An attenuated Bloom filter is an

array of Bloom filters in which each component filter is labeled with its

level in the array. Each filter summarizes the items that can be reached by

performing “level” number of hops from the originating node.

Bloom filters [16] have spawned a rich set of variants [51]. Compressed

Bloom filters [52] improve performance when the Bloom filter has to be trans-

ferred over the network as a message in a distributed system. Compressed

Bloom filters are useful especially if the Bloom filters have to be transmitted

frequently and the transmission size is a limiting factor.

Counting Bloom filter (CBF) [18] allows the set to change dynamically via

insertions and deletions by maintaining a bit vector with a fixed cell width of

w. Inserting/Removing elements corresponds to incrementing/decrementing

a counter. However, there are two issues with CBF is: i) counter overflows,

and ii) the choice of w.

In [53], an improvement to CBF is introduced called d-left Counting Bloom

filter (dlCBF). It is based on d-let hashing and offers the same functionality

as a CBF, but uses less space.

Spectral Bloom Filters (SBF) [54] is designed primarily for multi-sets al-

lowing estimates of multiplicities of keys with a small error probability. Stable

Bloom filters [55] also maintains cells instead of bits and are used to eliminate

duplicates in data streaming applications. After each insertion, randomly se-

lected cells are decremented by 1 in order to make space for newer elements.

However, none of these satisfy the requirements needed to maintain idem-

potent counters. It is not possible to automatically retire older operations

and scale according to the workload.

41

CHAPTER 8

FUTURE WORK

An important future direction of this research would be to explore the ap-

plication of FBF for other use-cases. Our thesis explores the application of

the Forgetful Bloom Filter (FBF) to achieve idempotent correct distributed

counters in NoSQL storage systems. However, FBFs can be used in a wide-

variety of other applications too. For example, the problem of click inflation

in Internet advertising requires detecting duplicates in a data stream in real-

time [56]. The use of FBFs in this scenario can be explored.

In addition to exploring the use of the FBF data structure in other use-

cases, another direction could be to integrate the FBF with other popular

ring-based distributed key-value/NoSQL stores like Riak, Voldermort, Dy-

namoDB, etc and non-ring based distributed key-value/NoSQL stores like

MongoDB. This integration could lead to studying interesting topics related

to the data structure.

Exploring their applications in other distributed frameworks can help study

other possible algorithms pertaining to the FBF. For instance to list a few:

merging, serializing and deserializing the data structure. Studying their ap-

plication in other distributed frameworks is an important future direction.

Apart from studying and researching topics pertaining to the integration

of FBF with other use-cases and other distributed frameworks, there is also

potential to coming up with more dynamic algorithms for the FBF. This too

is an import future direction of our research.

42

CHAPTER 9

CONCLUSION

Distributed key-value stores/NoSQL have become popular because they pro-

vide better scalability, availability and performance compared to traditional

relational databases. In this thesis, we introduced a novel data structure

called Forgetful Bloom Filter, which we call an FBF. This data structure al-

lows us to compactly maintain the recently received list of update operations,

so that exactly-once semantics can be provided with high probability. We

also presented techniques to adapt the FBF as the workload rate changes. We

showed how to integrate the FBF into key-value stores like Cassandra. Our

experimental evaluations show that the FBF can achieve low false positive

probabilities, and achieve high accuracy of counter operations in key-value

stores.

43

REFERENCES

[1] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, Apr. 2010. [Online]. Available: http://doi.acm.org/10.1145/
1773912.1773922

[2] “The Apache Cassandra Project.” http://cassandra.apache.org/, Ac-
cessed: 2015-05-11.

[3] “Riak.” http://basho.com, Accessed: 2015-05-11.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A distributed storage system for structured data,” in Proceedings
of the 7th USENIX Symposium on Operating Systems Design and
Implementation - Volume 7, ser. OSDI ’06. Berkeley, CA, USA:
USENIX Association, 2006. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1267308.1267323 pp. 15–15.

[5] “MongoDB.” https://www.mongodb.org/, Accessed: 2015-05-11.

[6] “Project Voldemort - A distributed database.” http://www.
project-voldemort.com/voldemort/, Accessed: 2015-05-11.

[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Operating Systems
Review, vol. 41, no. 6, pp. 205–220, Oct. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1323293.1294281

[8] “AWS — Dynamo DB - NoSQL Cloud Database Service.” http://aws.
amazon.com/dynamodb, Accessed: 2015-05-11.

[9] “Using a counter.” http://www.datastax.com/documentation/cql/3.0/
cql/cql using/use counter t.html, Accessed: 2015-05-11.

[10] “Counters in Riak 1.4.” http://basho.com/counters-in-riak-1-4, Ac-
cessed: 2015-05-11.

44

[11] “Counters in DynamoDB.” http://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/WorkingWithItems.html#
WorkingWithItems.AtomicCounters, Accessed: 2015-05-11.

[12] “Databases — Research at Facebook.” https://research.facebook.com/
databases, accessed: 2015-05-11.

[13] “Rainbird: Real-time analytics at Twitter.” http://cdn.oreillystatic.
com/en/assets/1/event/55/Realtime\%20Analytics\%20at\20Twitter\
%20Presentation.pdf, Accessed: 2015-05-11.

[14] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,”
ACM Transactions on Computer Systems, vol. 2, no. 1, pp. 39–59, Feb.
1984. [Online]. Available: http://doi.acm.org/10.1145/2080.357392

[15] “Add a proper retry mechanism for counters in case of failed requests.”
https://issues.apache.org/jira/browse/CASSANDRA-2495, Accessed:
2015-05-11.

[16] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, July
1970. [Online]. Available: http://doi.acm.org/10.1145/362686.362692

[17] Wikipedia, “Bloom filter,” 2015, [Online; accessed 11-May-2015].
[Online]. Available: http://en.wikipedia.org/wiki/Bloom filter

[18] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
A scalable wide-area web cache sharing protocol,” IEEE/ACM
Transactions on Networks, vol. 8, no. 3, pp. 281–293, June 2000.
[Online]. Available: http://dx.doi.org/10.1109/90.851975

[19] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison,
M. Smid, and Y. Tang, “On the false-positive rate of bloom filters,”
Inf. Process. Lett., vol. 108, no. 4, pp. 210–213, Oct. 2008. [Online].
Available: http://dx.doi.org/10.1016/j.ipl.2008.05.018

[20] V. Jacobson, “Congestion avoidance and control,” in Symposium
Proceedings on Communications Architectures and Protocols, ser.
SIGCOMM ’88. New York, NY, USA: ACM, 1988. [Online]. Available:
http://doi.acm.org/10.1145/52324.52356 pp. 314–329.

[21] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

45

[22] Karger, David and Lehman, Eric and Leighton, Tom and Panigrahy,
Rina and Levine, Matthew and Lewin, Daniel, “Consistent Hashing
and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web,” in Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing, ser.
STOC ’97. New York, NY, USA: ACM, 1997. [Online]. Available:
http://doi.acm.org/10.1145/258533.258660 pp. 654–663.

[23] “Counters in Cassandra.” http://wiki.apache.org/cassandra/Counters,
Accessed: 2015-05-11.

[24] “Distributed Counters in Cassandra.” http://www.datastax.com/
wp-content/uploads/2011/07/cassandra sf counters.pdf, Accessed:
2015-05-11.

[25] “Durability Cassandra.” http://wiki.apache.org/cassandra/Durability,
Accessed: 2014-05-11.

[26] “MemTable in Cassandra.” http://wiki.apache.org/cassandra/
MemtableSSTable, Accessed: 2015-05-11.

[27] “Partitioned Counters Design Document.” https://issues.apache.org/
jira/secure/attachment/12459754/Partitionedcountersdesigndoc.pdf,
Accessed: 2015-05-11.

[28] “Read Repair on Apache Cassandra Wiki.” http://wiki.apache.org/
cassandra/ReadRepair, Accessed: 2015-05-11.

[29] “Anti-Entropy on Apache Cassandra Wiki.” https://wiki.apache.org/
cassandra/AntiEntropy, Accessed: 2015-05-11.

[30] W. Vogels, “Eventually consistent,” Queue, vol. 6, no. 6, pp. 14–19, Oct.
2008. [Online]. Available: http://doi.acm.org/10.1145/1466443.1466448

[31] “SSTable in Cassandra.” http://wiki.apache.org/cassandra/
MemtableSSTable, Accessed: 2015-12-16.

[32] “A C++ Cassandra Simulator.” https://github.com/rajath26/
CassandraSimulator, Accessed: 2015-05-11.

[33] “Network emulation testbed home.” https://www.emulab.net/, ac-
cessed: 2015-05-11.

[34] “Apache Cassandra 2.0 on Github.” https://github.com/apache/
cassandra/tree/cassandra-2.0, Accessed: 2015-07-11.

[35] “Architecture Internals on Cassandra Wiki.” https://wiki.apache.org/
cassandra/ArchitectureInternals, Accessed: 2015-07-11.

46

[36] “Java Driver 2.0 for Apache Cassandra.” http://docs.datastax.com/
en/developer/java-driver/2.0/java-driver/whatsNew2.html, Accessed:
2015-07-11.

[37] “Datastax Java Driver for Apache Cassandra on Github.” https://
github.com/datastax/java-driver, Accessed: 2015-07-11.

[38] “Keyspace docuemntation on Datastax.” http://docs.datastax.com/en/
cql/3.0/cql/cql reference/create keyspace r.html, Accessed: 2015-07-11.

[39] “Couchbase.” http://www.couchbase.com/, Accessed: 2015-05-11.

[40] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Proceedings of the 13th International
Conference on Stabilization, Safety, and Security of Distributed Systems,
ser. SSS’11. Berlin, Heidelberg: Springer-Verlag, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=2050613.2050642 pp.
386–400.

[41] “What’s new in Cassandra 2.1: Better Implementa-
tion of Counters.” http://www.datastax.com/dev/blog/
whats-new-in-cassandra-2-1-a-better-implementation-of-counters,
Accessed : 2014-12-16.

[42] “No more Over-Counting: Making Apache Storm
Counters Easy and Idempotent using Kafka and Re-
dis.” https://blog.deck36.de/no-more-over-counting-\
\making-counters-in-apache-storm-idempotent-using-redis-hyperloglog/,
Accessed: 2015-05-11.

[43] “Redis.” http://redis.io/, Accessed: 2015-05-11.

[44] “Apache Kafka.” http://kafka.apache.org/, Accessed: 2015-05-11.

[45] “Google Chrome.” http://www.google.com/chrome/, accessed: 2015-
05-11.

[46] A. Broder, M. Mitzenmacher, and A. B. I. M. Mitzenmacher, “Network
applications of bloom filters: A survey,” in Internet Mathematics, 2002,
pp. 636–646.

[47] Z. Li and K. A. Ross, “Perf join: An alternative to two-way
semijoin and bloomjoin,” in Proceedings of the Fourth International
Conference on Information and Knowledge Management, ser. CIKM
’95. New York, NY, USA: ACM, 1995. [Online]. Available:
http://doi.acm.org/10.1145/221270.221360 pp. 137–144.

47

[48] J. K. Mullin, “Optimal semijoins for distributed database systems,”
IEEE Trans. Softw. Eng., vol. 16, no. 5, pp. 558–560, May 1990.
[Online]. Available: http://dx.doi.org/10.1109/32.52778

[49] “Bloom Join.” http://liveramp.com/engineering/
bloomjoin-bloomfilter-cogroup/, Accessed: 2015-05-11.

[50] S. C. Rhea and J. Kubiatowicz, “Probabilistic location and routing,”
2002.

[51] “A Garden Variety of Bloom filters.” http://matthias.vallentin.net/
blog/2011/06/a-garden-variety-of-bloom-filters/, Accessed: 2015-05-11.

[52] M. Mitzenmacher, “Compressed bloom filters,” in Proceedings of
the Twentieth Annual ACM Symposium on Principles of Distributed
Computing, ser. PODC ’01. New York, NY, USA: ACM, 2001. [Online].
Available: http://doi.acm.org/10.1145/383962.384004 pp. 144–150.

[53] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting bloom filters,” in Proceedings
of the 14th Conference on Annual European Symposium - Volume
14, ser. ESA’06. London, UK, UK: Springer-Verlag, 2006. [Online].
Available: http://dx.doi.org/10.1007/11841036 61 pp. 684–695.

[54] S. Cohen and Y. Matias, “Spectral Bloom Filters,” in Proceedings of
the 2003 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’03. New York, NY, USA: ACM, 2003. [Online].
Available: http://doi.acm.org/10.1145/872757.872787 pp. 241–252.

[55] F. Deng and D. Rafiei, “Approximately detecting duplicates for
streaming data using stable bloom filters,” in Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1142473.1142477 pp. 25–36.

[56] A. Metwally, D. Agrawal, and A. El Abbadi, “Duplicate detection in
click streams,” in Proceedings of the 14th International Conference on
World Wide Web, ser. WWW ’05. New York, NY, USA: ACM, 2005.
[Online]. Available: http://doi.acm.org/10.1145/1060745.1060753 pp.
12–21.

48

