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ABSTRACT

Task and/or data parallelism can be exploited in most applications on today’s

multi-core processors. However, inefficient data organization, data depen-

dencies, and hardware constraints limit scalable parallelization of these ap-

plications. In this thesis, performance and the impact of some optimizations

is compared and evaluated for simple tasks using two parallel frameworks,

OpenMP and Galois. Additionally, their performance on three real life appli-

cations, High Accuracy Relativistic Magnetohydrodynamics (HARM) which

operates on a grid data structure; Delaunay Triangulation, which refines a

triangulated mesh; and Dynamic Fracture Propagation, which operates on a

triangulated mesh with adaptive refinement; is evaluated. It is found that

OpenMP is a simple yet powerful tool for parallelization of most regular ap-

plications and workloads. Galois, which is specially designed for irregular

data patterns, performs well for graph like structures. However, neither of

them are well suited for all tasks and other frameworks must be explored to

find one that is simple to use and yet powerful for all possible applications.
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CHAPTER 1

INTRODUCTION

Multi-core processors offer shared memory parallelism where multiple threads

operate independently on a global address space and share memory resources.

This global view facilitates data sharing among the threads in an easy and

efficient manner for communication. However, this makes the programmer

responsible to ensure synchronization and correct access to memory. Var-

ious constructs such as locks, semaphores, barriers, etc are used for syn-

chronization and memory access control. The major shared memory parallel

frameworks are POSIX Threads (Pthreads) [1], OpenMP [2], Intel R©Cilk
TM

[3],

Intel R©Thread Building Blocks (TBB) [4], Galois [5], etc. This thesis is a

study of parallelization using OpenMP and Galois.

OpenMP is a compiler directives driven Application Programming Inter-

face (API) which provides an easy to use approach to parallelize applications.

The main focus of OpenMP is on loops as the bulk of the computation in

many programs is concentrated in loops. Galois is a framework to exploit

amorphous data-parallelism in irregular programs. It provides a set of exten-

sions and classes which extract parallelism from applications speculatively.

In this thesis, an evaluation of performance using OpenMP and Galois for

parallelization of applications with different data structures and algorithm

patterns is presented. To this end, a few optimizations and best practices

for both OpenMP and Galois are listed and their impact on performance for

various tasks is evaluated. Using this knowledge, a few real applications with

different data structures and algorithms are parallelized and evaluated.

Optimizations in memory allocation and utilization, synchronization and

scheduling for both OpenMP and Galois are analyzed to determine the trade-

offs between performance benefits and ease of use. For this analysis, emphasis

is laid on regular and irregular data structures separately. Simple Jacobi it-

erations are used on regular 2-dimensional arrays and irregular 2-dimensional

triangulated meshes.
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Three real world applications are used to compare the performance of

OpenMP and Galois. The first application is High Accuracy Relativistic

Magnetohydrodynamics (HARM), which solves hyperbolic partial differen-

tial equations in conservative form using high-resolution shock capturing

techniques [6]. This application solves the relativistic magnetohydrodynamic

equations of motion on a stationary black hole. It performs multiple inde-

pendent iterations over arrays to compute primitive variables and flux.

The second application is Delaunay Triangulation in two dimensions, which

takes a set of points on a plane and incrementally builds a delaunay triangu-

lation of the points. This application solely performs mesh refinement and

has a single loop in the algorithm.

The third application is Dynamic Fracture Simulation, which simulates

propagation of a fracture in a 2-dimensional material under constant stress. It

uses finite element analysis on a triangulated mesh with adaptive refinement.

This application has two distinct phases, an iterative computation phase and

a mesh refinement phase.

This thesis is organized as follows: Chapter 2 presents the background;

Chapter 3 describes the parallelization and optimizations for OpenMP and

Galois that are considered in this thesis, Chapter 4 describes the experi-

mental methodology, Chapters 5 and 6 evaluate the impact of optimizations

on regular and irregular data, Chapter 7 evaluates the three applications

and Chapter 8 compares the advantages and disadvantages of OpenMP and

Galois.
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CHAPTER 2

BACKGROUND

2.1 Parallel frameworks

In this thesis, parallelization of applications using two parallel frameworks

OpenMP and Galois is evaluated. A brief discussion on OpenMP and Galois

is presented in the following sections.

2.1.1 OpenMP

OpenMP (Open Multi-Processing) is an API that supports multi-platform

shared memory multiprocessing programming in C, C++ and Fortran on

most processor architectures and operating systems. It uses a portable, scal-

able model that gives programmers a simple and flexible interface for devel-

oping parallel applications.

OpenMP uses a set of compiler directives and library routines for par-

allelism [7]. It considers loops as primary parallel operations and provides

easy to use API for parallelizing loops with fixed number of iterations. The

framework provides a set of routines like locks, barriers, reductions, etc to

enable parallelism with data dependencies.

OpenMP has minimal system requirements and most C/C++ compilers

provide support for OpenMP.

2.1.2 Galois

Galois is a framework of extensions and classes which provides ready-to-

use abstractions and data-structures to enable parallel computation. Galois

builds its interface on Pthreads and speculatively extracts amorphous data-

parallelism.
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Galois is an object-oriented system where shared objects can be accessed

with relative ease. Its runtime handles scheduling of the iterations and actual

memory access locks using simple interfaces. This framework is particularly

designed for workloads which do not have a fixed iteration space or those

which operate on irregular data-structures like graphs.

Galois depends on operator formulation and Tao-analysis [8] of programs

to provide opportunities to exploit parallelism by compile-time, inspector-

executor, or optimistic parallelization. The main features of Galois are un-

ordered set iterators, graph and other irregular data structures, parallel for

loops and accumulators. One major advantage of Galois over OpenMP is the

possibility to add additional work to the current worklist.

Galois requires Boost libraries for execution and cmake for compilation,

apart from a C++ compiler.

2.2 Applications

Three applications have been used to evaluate the parallel performance. This

section provides a brief introduction to these applications.

2.2.1 High Accuracy Relativistic Magnetohydrodynamics
(HARM)

HARM is a conservative finite volume approach to solve hyperbolic partial

differential equations (PDE). This application was developed by Grammie et

al. [6] and improved by Noble et al. [9] to solve General Relativistic Mag-

netoHydroDynamics (GRMHD). The original application is written in C for

sequential execution and is hosted by the authors [10].

2.2.2 Delaunay Triangulation

Delaunay triangulations are among the most important constructs in two

dimensional computational geometry. Delaunay triangulation for a set of

points is a triangulation such that no other point lies in the circumcircle of

any triangle. Delaunay triangulation is implemented in OpenMP/Cilk as a

4



part of Problems Based Benchmarks Suite (PBBS) [11], and in Galois as a

sample benchmark application in the LoneStar benchmark suite [12].

2.2.3 Dynamic Fracture Simulation

Dynamic Fracture Simulation simulates the development of damage of a ma-

terial under constant stress using finite element analysis on a finely triangu-

lated mesh with adaptive refinement. This application is based on the finite

element analysis presented by Mangala et al. [13].
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CHAPTER 3

PARALLELIZATION STRATEGIES USING
OPENMP AND GALOIS

Näıve use of parallel frameworks does not always provide the expected per-

formance. While the specific reason for lack of performance is application-

specific, they could be generally attributed to high parallelization overhead,

inefficient memory layout, load imbalance, false sharing or high synchroniza-

tion overheads. There are a number of ways to handle each of these, and the

right choices are again application-specific.

A set of optimizations which might benefit performance of applications are

presented in the following sections. The optimizations that are evaluated in

this thesis are listed in tables 3.1 and 3.2. The optimizations are categorized

based on the problems they address. The table also has a brief description

which will be elaborated in the following sections and a code which will be

used to address these optimizations in the following chapters.

Version of an application with basic parallelization of loops without any

additional optimizations is denote by the code bsc.

Table 3.1: Set of optimizations for OpenMP

Category Name Description Target
Data

Code

Basic Basic Basic parallelization without
optimizations

All bsc

Memory
allocation
and usage

First
Touch

Initialization is done in parallel All ftp

Space
Filling

Data is sorted and then
initialized in parallel

Irregular sfp

Synchroni-
zation

Critical Using critical sections All crt
Atomic Using atomic directives All atm
Locks Using OpenMP locks All lck

Successive
loops

Merge Using single parallel region and
OpenMP for directives

All mrg

Explicit Using single parallel region and
explicit task distribution

All exp
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Table 3.2: Set of optimizations for Galois

Category Name Description Target
Data

Code

Basic Basic Basic parallelization without
optimizations

All bsc

Memory
allocation
and usage

Large Array
Local

Using LargeArray with local al-
location

Regular la-loc

Large Array
Interleaved

Using LargeArray with inter-
leaved allocation

Regular la-int

Parallel
Allocation

Using parallel allocation Irregular ftp

Space
Filling

Using space filling parallel
allocation

Irregular sfp

3.1 Memory allocation and usage

Memory accesses are slow and this is specially serious in a multi-core par-

allel setting as memory channels are shared among several cores. Memory

becomes a bottleneck for several applications and adding more cores cannot

alleviate performance in these cases. Also, most modern systems have Non-

Uniform Memory Access (NUMA) architectures and memory access time

depends on the memory address accessed [14]. In these cases, allocating

memory close to the thread using it provides considerable benefit. OpenMP

and Galois allow this allocation.

Memory allocation policy adopted by the operating system plays an im-

portant role in data allocation. Actual memory is only allocated when data

is first used and not when a malloc function is called [14]. The memory al-

located is either local to the thread which used the data first, or interleaved

across all possible nodes in a round-robin fashion, depending on the system’s

memory allocation policy.

Also, cache locality plays an important role in memory performance. Loops

must be structured and parallelized to take this into consideration.

For regular data structures, this translates to parallelizing the loop that

initializes the data and structuring loops traversals in a cache-aware manner.

Tiling is one of the methods that improves cache locality [15]. For irregular

data structures, the access pattern would also be irregular making it difficult

to split the data across the threads. Given some information about the

underlying data structure, sorting the data using a space-filling curve [16] in

7



a temporary location and then allocating the actual data is beneficial.

3.1.1 OpenMP

OpenMP does not handle memory allocation explicitly. However, by using a

parallel directive in the initialization phase, different threads access different

sections of the data which can affect the allocation of memory in a NUMA

node which obeys first touch policy. libnuma provides an interface to handle

memory allocation policies which can be used by programs to customize

memory allocation.

Version of an application that performs initialization of dynamically allo-

cated data in parallel is annotated by the code ftp. For irregular data, if

the data is sorted using a space-filling curve and assigned in parallel, it is

annotated by the code sfp.

3.1.2 Galois

Galois uses libnuma to allocate memory for its thread pool. Most Galois

structures allocate memory using the first touch policy. Galois programs

benefit by initialization in parallel, similar to OpenMP. Galois provides con-

venient wrappers to allocate memory for regular structures such as arrays

using their data structure Galois::LargeArray. Irregular data structures

like graphs allocate vertices and edges locally to the thread that creates and

inserts them.

For regular data, a Galois application using Galois::LargeArray with lo-

cal first touch allocation policy and parallel initialization of data is annotated

by la-loc and interleaved allocation policy is annotated la-int.

For irregular data using Galois data structures, parallel allocation of data

is annotated ftp and parallel allocation of data after it is sorted using a

space-filling curve is annotated sfp.
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3.2 Synchronization

3.2.1 OpenMP

OpenMP provides directives for barriers, critical sections and atomic opera-

tions and library routines for locks. Additionally, compilers provide a set of

built-in functions for atomic memory access which can be used directly for

synchronization. A choice needs to be made among these depending on the

particular use. Applications using atomic directive, critical directive and

lock library routines are annotated atm, crt and lck respectively. Only one

thread can execute a critical section at a given time. This is useful when

global data needs to be modified by the threads in a synchrounous fashion.

Atomic sections are performed as if it were one single operation. These are

useful only when the operation is simple. Locks are versatile and their usage

is application and programmer dependent. Built-in functions are provided by

the compilers based on the underlying hardware support. These are gener-

ally used for compare-and-swap operations and basic operations on numeric

data types.

3.2.2 Galois

Galois handles synchronization in its runtime and provides synchronization

wrappers for its objects. Classes that inherit the GChecked class can be

locked when required. The basic data structures like graphs have inherent

locks and can be used directly without worrying about synchronization. Ga-

lois speculatively executes iterations with logical locks implemented using

compare-and-swap operations. Since Galois handles synchronization in its

runtime, all Galois versions use it and alternate schemes are not considered.

3.3 Scheduling

3.3.1 OpenMP

OpenMP provides three scheduling options, static, dynamic and guided.

The given iteration space is equally divided among all the threads in static
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scheduling. This has very low overhead as scheduling is only done during ini-

tialization of a loop. Dynamic scheduling assigns small chunks of iterations

to each thread at the onset and more work is assigned as threads complete

their tasks. This has a high overhead as the scheduler is active throughout

the execution of the loop. Guided scheduling combines properties of static

and dynamic scheduling. It initially assigns larger chunks to each thread and

reduces the chunk sizes as iterations are completed. This also has more over-

head than the static version. OpenMP also provides an ordered clause which

ensure that the iterations are executed in order in a deterministic fashion.

Ordered execution however has a high overhead. The optimal schedule is

application-specific.

These individual schedules are not evaluated in this thesis. However, static

scheduling is used for loops which have similar work load per iteration and

guided scheduling is used for iterations with load imbalance.

3.3.2 Galois

New iterations can be added to the iteration space dynamically in Galois un-

like OpenMP. This makes scheduling of tasks more complex in Galois. Galois

has several policies available for determining the order in which to execute

iterations. These could be deterministic, such as queue, stack or priority

queue, which have higher overhead; or non-deterministic, such as those using

chunked queues or independent local queues for each thread. Galois also pro-

vides an interface to specify type traits to optimize the runtime system such

as does not need parallel push which indicates the operator does not gen-

erate new work and push it to the worklist. The deterministic versions can

be used for debugging purposes but the non-deterministic iterators maximize

parallelism. We only use non-deterministic iterators in the evaluations.

Default scheduling is used for versions that allocate data serially while local

queues are used for versions that allocate data in parallel. Galois implements

work stealing to handle load imbalance at runtime.
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3.4 Successive parallel loops

3.4.1 OpenMP

If multiple loops are successively parallelized using OpenMP, it might be ben-

eficial to use a single parallel section to reduce the overhead of creation and

desctruction of threads. One optimization and use for directives for inner

regions. This method is annotated by the code mrg. Another optimization

is to explicitly divide the task among the threads which can be run with-

out OpenMP runtime interference. This method is annotated by the code

exp. Figure 3.1 illustrates these methods. These methods are evaluated in the

next sections to evaluate the benefit of these operations. Newer OpenMP im-

plementations generally optimize creation and destruction of threads which

might limit the benefits of these optimizations.

while (cond) {

#pragma omp parallel for

for(int i=0; i<n1; i++} {

...

}

/* serial computation */

...

#pragma omp parallel for

for(int i=0; i<n2; i++} {

...

}

}

(a) bsc

#pragma omp parallel

while (cond) {

#pragma omp for

for(int i=0; i<n1; i++} {

...

}

#pragma omp single

{

/* serial computation */

...

}

#pragma omp for

for(int i=0; i<n2; i++} {

...

}

}

(b) mrg

#pragma omp parallel

{

int id = omp_get_thread_num

();

int nth =

omp_get_num_threads ();

int start1 = ...;

int end1 = ...;

int start2 = ...;

int end2 = ...;

while (cond) {

for(int i=start1; i<end1;

i++} {

...

}

// barrier if needed

if (id == ...) {

/* serial computation */

...

}

// barrier if needed

for(int i=start2; i<end2;

i++} {

...

}

// barrier if needed

}

}

(c) exp

Figure 3.1: bsc, mrg and exp versions of parallel loops using OpenMP

3.4.2 Galois

Galois, on the other hand, handles the creation and scheduling of threads with

its own runtime system and does not provide any user controlled parameters

11



in this regard.
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CHAPTER 4

EXPERIMENTAL METHODOLOGY

Performance evaluation of OpenMP and Galois is presented in chapters 5, 6

and 7. All applications in the evaluation are written in C++ and compiled

using GNU C++ compiler. Timing for both OpenMP and Galois is measured

by using the wall clock time determined by using interfaces in their respective

frameworks. Each run is repeated for three trials and the minimum execution

time is considered for the evaluation. The reported time is only for the bulk

of the computation. Initialization and clean-up portions of the application

are not included. Speedup is computed with respect to the single thread

performance of each version and not with respect to the serial version. This

is to compare speedups without taking into consideration the overheads of

using OpenMP or Galois. Most implementations using OpenMP use minimal

object oriented features although they are written in C++. Galois is highly

object oriented with basic synchronization entities as objects which adds

additional overheads to Galois, both in terms of performance and number of

lines of code. In the evaluation, both execution time and speedup need to be

considered to give a complete picture of the performance.

Two machines are used for the performance evaluations. The first machine

has two Intel R©Xeon R©X5650 processors with 6 cores each, operating at a

frequency of 2.66 GHz. Each processor has 12MB of L3 cache and the system

has 24GB RAM. It runs Scientific Linux 6.1 and the compiler used is GCC

version 4.7.1. Galois version 2.2.1 is used with Boost libraries of version

1.51.0. This machine is referred to as Taub in the evaluations.

The second machine has four Intel R©Xeon R©E7-4860 processors with 10

cores each, operating at a frequency of 2.27 GHz. Each processor has 24MB

of L3 cache and the system has 128GB RAM. It runs Scientific Linux 6.6

and the compiler used is GCC version 4.8.2. Galois version 2.2.1 is used with

Boost libraries of version 1.58.0. This machine is referred to as I2PC in the

evaluations.
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CHAPTER 5

PERFORMANCE EVALUATION FOR
REGULAR DATA STRUCTURES

The problem used for this evaluation is a basic heat transfer simulation in a

2D matrix using Jacobi iterations. The algorithm uses a 5 point stencil to

compute an updated value for each of the grid points. Algorithm 1 describes

the basic algorithm in detail.

The for loops in each iteration are completely independent in this compu-

tation. They access two separate grids and do not cause any false sharing or

synchronization issues. However, each iteration must be computed sequen-

tially. We compare the different memory allocation policies for OpenMP

and Galois, and the effects of merging successive loops together in OpenMP.

These experiments are performed on the machine Taub.

Algorithm 1 Basic heat transfer pseudocode

while iteration < max iter do
Update boundary values
for i in 1 to n do

for j in 1 to n do
Update B[i][j] using 5 point stencil of matrix A

end for
end for
Swap matrix B and matrix A
increment iteration

end while

5.1 OpenMP

To compare effects of parallel memory allocation and merging of successive

loops, we implement four versions using OpenMP based on the optimization

strategies mentioned in chapter 3. bsc is the basic implementation using

parallel for directive. ftp has the basic implementation with data initial-
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Figure 5.1: Execution time of Jacobi for 1000 iterations using OpenMP

ization performed in parallel. mrg has one single parallel region and for

directives within the parallel region for loops and single directive for serial

parts. Lastly, exp again has one single parallel region but with explicit task

division by computing start and end indices, and barriers for synchronization.

These versions are run for various grid sizes and number of iterations and

the results are presented in figures 5.1 to 5.4. The running time and speedup

for different grid sizes and 1000 iterations are shown in figures 5.1 and 5.2.

It can be observed in figures 5.1 and 5.2 that all versions perform well for

smaller grid sizes with ∼ 10x speedup for grid size 1024 with 12 threads.

However, the speedup falls drastically to ∼ 2x for bsc, exp and mrg. It falls

to ∼ 4x for ftp. Jacobi iterations are memory intensive with very little com-

putation. For smaller grid sizes that fit in cache, speedup is good. However,

for larger grid sizes, memory becomes a bottleneck and performance is poor.

ftp performs better over the other versions but is still restricted by memory.

Taub has two processors of 6 cores each, and allocating memory in parallel

improves locality in the NUMA machine.

A comparison of speedups with respect to grid sizes is shown in figure

5.3 and a comparison of speedups with respect to number of iterations is

shown for grid sizes of 512 and 1024 in figure 5.4. The speedups increase

for larger grid sizes until 1024 which is due to increased work per thread.
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Figure 5.2: Speedup of Jacobi for 1000 iterations using OpenMP
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Figure 5.3: Comparison of speedup across grid sizes using OpenMP

Comparing the parallelization strategies bsc, mrg and exp, it can be observed

that exp performs the best, followed by mrg and then bsc. While this is

as expected, it must be noted that the difference between them becomes

increasingly small for larger grid sizes. The wider range at 256 narrows down

by 1024 as observed in figure 5.3. With increasing work per thread, the

OpenMP overheads reduce in proportion to the total time and hence give

better speedups. The speedups increase with increasing iterations in general

with a few outliers as observed in figure 5.4. However, the impact is not

drastic.
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Figure 5.4: Comparison of speedup across iterations using OpenMP

5.2 Galois

Three versions of Jacobi iterations are implemented in Galois. The basic

version bsc has dynamically allocated arrays with iterations based on loop

indices. Two versions are implemented using the Galois::LargeArray data

structure, one with interleaved allocation called la-int and one with local

allocation based on first touch policy called la-loc.

A comparison of the performance of these three versions for varying grid

sizes and number of iterations is shown in figures 5.5 to 5.8. Execution time

and speedup for different grid sizes are shown in figures 5.5 and 5.6. It can be

observed that la-loc has a very high overhead for serial execution but catches

up with the other two versions occasionally. This gives a significant boost

to its speedup but it has never outperformed the other versions. la-int and

bsc have similar performance for small number of threads but diverge with

la-int performing better with larger number of threads.

Speedups increase with increasing grid sizes for smaller grids, but fallxs

down to nearly 2x as demonstrated in figure 5.7. A comparison of speedups
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Figure 5.5: Execution time of Jacobi for 1000 iterations using Galois

with respect to number of iterations is shown for a grid size of 1024 in figure

5.8. It can be observed that the speedup falls with increasing iterations for

8 threads but does not significantly change for 12 threads.

5.3 Comparison of OpenMP and Galois

A comparison of performance of Jacobi iterations for OpenMP and Galois is

shown in figure 5.9. The minimum time across all implementations is consid-

ered for this comparison. It can be observed that the OpenMP overhead for

1 thread is higher than that of Galois significantly. However, OpenMP has

a uniform speedup and outperforms Galois from 2 threads onwards. Galois

catches up with OpenMP for a grid size of 1024 for 10 and 12 threads. How-

ever, for a grid size of 4096, ftp of OpenMP performs relatively better while

Galois stays almost on par with the other implementations of OpenMP.
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Figure 5.6: Speedup of Jacobi for 1000 iterations using Galois
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Figure 5.7: Comparison of speedup across grid sizes using Galois
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Figure 5.8: Comparison of speedup across iterations using Galois
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Figure 5.9: Comparison of execution time using OpenMP and Galois

20



CHAPTER 6

PERFORMANCE EVALUATION FOR
IRREGULAR DATA STRUCTURES

The problem used for evaluation of performance for irregular data structures

is Jacobi iterations using a triangulated mesh. Each triangular element com-

putes a new value based on the neighboring elements’ current value. Two

variants of this computation are used to perform the evaluations. In the first

variant, each element reads the current value of its neighbors and computes

its new value. This variant is annotated pull to signify that the data is pulled

from the neighbors by each element. In the second variant, each element adds

its current value component to its neighboring elements to compute the new

value. This variant is annotated push to signify that the data is pushed to the

neighbors by each element. Pull requires no explicit synchronization while

push requires synchronization for correct computation. An element holds

both the old and the new values in a struct or a class. It is very likely that

these two values share the same cache-line which can cause false sharing.

The focus of this evaluation is to explore effects of memory allocation in

parallel for both OpenMP and Galois. Additionally, synchronization meth-

ods for OpenMP are evaluated for the push variant. These experiments are

performed on the I2PC machine.

The triangulated meshes used in this evaluation are described in table 6.1.

Table 6.1: Test cases for Jacobi iterations in a mesh

Name Nodes Elements
A 37, 615 74, 474
B 311, 974 621, 893
C 1, 246, 282 2, 488, 434
D 4, 979, 645 9, 951, 030
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6.1 OpenMP

Memory allocation and synchronization optimizations are evaluated using

OpenMP.

6.1.1 Memory Allocation

To compare the effects of memory allocation optimizations using OpenMP,

three implementations are considered. The basic implementation, bsc, only

parallelizes the computation loop. The parallel initialization version, ftp,

reads the mesh into a temporary data-structure and initializes the final data-

structure in parallel. The parallel initialization with space-filling curves, sfp,

sorts the data in the temporary structure and then initializes in parallel. The

results presented are for 100 Jacobi iterations. The atomic directive is used

for synchronization in the push variant for all the three versions.
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Figure 6.1: Execution time of mesh Jacobi using OpenMP

Figures 6.1 and 6.2 show the execution time and speedup for push and pull

variants for test cases A and C.
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Figure 6.2: Speedup of mesh Jacobi using OpenMP

It can be observed that sfp performs better than the other two for both

mesh sizes. This is due to improved cache locality and parallel allocation of

data. It can also be observed that ftp performs similar to bsc for 1 thread

as expected. It stays closer to bsc for smaller mesh size but moves closer

to sfp for larger mesh sizes. Also, sfp performs better than the other two

versions even for a single thread, owing to higher cache locality. Even though

the execution time for a single thread is higher for sfp, sfp out-performs the

other two with respect to speedup.

A comparison of speedup across mesh sizes is shown in figure 6.3. It can

be seen that test case B in sfp performs super linearly at 32 threads. This is

mainly due to the mesh fitting in cache in parallel allocation and improved

locality in sfp. Additionally, gap between bsc and ftp widens with larger grid

sizes. This is due to improved memory usage, similar to the improvement

observed in the case of regular data structures. However, this improvement

is limited here, due to the irregular and random access patterns.
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Figure 6.3: Speedup of mesh Jacobi using OpenMP

6.1.2 Synchronization

Three synchronization methods using atomic directive (atm), critical di-

rective (crt) and OpenMP locks (lck) are evaluated for the push variant of

Jacobi iterations on a mesh.
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Figure 6.4: Evaluation of synchronization methods using OpenMP

A comparison of execution time and speedup is shown in figure 6.4 for the

three synchronization directives on test case D. The behavior is similar for

the other test cases as well. Using critical directive in a loop where the

only operation performed is a critical operation makes the execution much
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worse than serial execution. critical directive is useful only if each iteration

spends a significantly longer time outside the critical region. Figure 6.4 shows

that atm performs better than lck.

6.1.3 Other
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Figure 6.5: Comparison of push and pull for test cases B and D using
OpenMP

The two variants push and pull are compared for test cases B and D using

space-filling parallel allocation sfp in figure 6.5. As expected, pull takes lesser

time than push generally. However, it is interesting to note that this trend

reverses for the larger mesh, D, beyond 10 threads. This is the observed

behavior for test case C as well, although it has not been shown in the figure.

The I2PC machine used for running these tests has 10 cores per processor

which indicates that in a NUMA setting, pull is more expensive than push.

One major reason could be false sharing as the location read from and the

location written to are very close to each other. Hence they may fall on the

same cache line. This causes the observed performance degradation.

6.2 Galois

Memory allocation optimizations are evaluated for Galois considering three

implementations, bsc where the data structure is built serially, ftp where the

data structure is built in parallel, and sfp where data is sorted using a space-

filling curve and then the data structure is built in parallel. The same two

variants push and pull are implemented using Galois.
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Figure 6.6: Execution time of mesh Jacobi using Galois

Figures 6.6 and 6.7 show the execution time and speedup for push and pull

variants for test cases A and C.

From figures 6.6 and 6.7, sfp performs better than the other two for all

grid sizes. This is due to improved cache locality and parallel allocation of

data. In addition, ftp and sfp do not have much speedup beyond 10 threads

for both push and pull for the smaller test case A but this is not the case for

the larger test case C.

A comparison of speedup across mesh sizes is shown in figure 6.8. It shows

the abnormally high speedup for test case B is present for Galois too. We

assume this must be due to the same reasons as applicable for OpenMP. It

can also be noted that the speedup of bsc is significantly low.

A comparison of the two variants push and pull for test cases B and D

using space-filling parallel allocation sfp is shown in figure 6.9. Pull performs

better than push throughout except for a little overlap for high number of

threads in test case B.
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Figure 6.7: Speedup of mesh Jacobi using Galois

6.3 Comparison of OpenMP and Galois

Figure 6.10 shows the execution time of Galois and OpenMP for two test

cases, B and D using sfp. It is clear that OpenMP has lesser serial overhead

in both test cases due to its simpler code structure. However, Galois performs

more steadily for the larger test case D where the gap between OpenMP and

Galois is less while the gap increases significantly for the smaller test case B.

27



0

2

4

6

8

10

12

14

16

18

20

A B C D

S
p

e
e

d
u

p

Test cases

bsc pal sfp

(i) Threads = 32

0

5

10

15

20

25

30

35

40

A B C D

S
p

e
e

d
u

p

Test cases

bsc pal sfp

(ii) Threads = 40

(a) Pull

0

5

10

15

20

25

A B C D

S
p

e
e

d
u

p

Test cases

bsc pal sfp

(i) Threads = 32

0

5

10

15

20

25

30

35

40

45

50

A B C D

S
p

e
e

d
u

p

Test cases

bsc pal sfp

(ii) Threads = 40

(b) Push

Figure 6.8: Speedup of mesh Jacobi using Galois

0.125

0.25

0.5

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64

T
im

e
 (

s
e

c
)

Threads
pull - B push - B pull - D push - D

Figure 6.9: Comparison of push and pull for test cases B and D using Galois
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Figure 6.10: Comparison of OpenMP and Galois for mesh Jacobi
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CHAPTER 7

PERFORMANCE EVALUATION ON REAL
WORLD APPLICATIONS

Three applications with different data layouts and algorithms are selected for

performance evaluation of parallelization using OpenMP and Galois. High

Accuracy Relativistic Magnetohydrodynamics (HARM) operates on a set of

arrays, Delaunay Triangulation operates on a set of points to construct a

triangulated mesh, and Dynamic Fracture Propagation operates on a trian-

gulated mesh.

7.1 High Accuracy Relativistic

Magnetohydrodynamics (HARM)

7.1.1 Description

HARM is a conservative finite volume approach to solve hyperbolic partial

differential equations (PDE). This application was developed by Grammie et

al. [6] and extended by Noble et al. [9] to solve general relativistic magneto-

hydrodynamics (GRMHD).

7.1.2 Algorithm

The main data structures used are grids for primitive variables P, conserved

variables U and fluxes F. The algorithm uses a conservative approach and

updates a combination of a set of “conserved” variables at each timestep. A

vector of conserved variables U for each grid point is updated using fluxes F.

Then, multidimensional Newton-Raphson routine uses the updated U and

P from the previous timestep to update P.

The algorithm uses half steps to advance in each iteration. An overview

of the steps are described in Algorithm 2
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Algorithm 2 HARM pseudocode

function Main()
Initialize data
while time < max time do

Advance half step
Fix primitive variables at half step
Advance half step
Fix primitive variables after full step
Update time
Update timestep

end while
end function

function Advance()
Update flux in both directions
Fix fluxes
for all grid points do

Compute conserved variables using updated flux
Solve to obtain updated primitive variables

end for
Compute maximum safe timestep

end function

function Update Flux()
for all grid points do

Evaluate slope of primitive variables
end for
for all grid points do

Compute a slope-limited extrapolation of primitive variables
Compute wave speeds
Update flux

end for
end function

30



Each of these steps perform Jacobi-like iterations that read one matrix and

write to another matrix with a 9 point stencil. For each of these loops, the

iterations are independent. However, a number of such loops need to be run

in each iteration.

7.1.3 Implementation

The sequential version of the code is obtained from the astrophysical code

library hosted by Grammie et. al [6], [9]. It is implemented in C using a set

of static 5 dimensional arrays as the basic data structures.

As a primer, the code is converted from C to C++ by hand as Galois only

works for C++. Also, functions with global variables that are modified in

each iteration were changed to receive them as parameters instead.

Using both OpenMP and Galois, the same set of loops were parallelized

using their corresponding parallelization constructs.

7.1.4 Evaluation

Figures 7.1 and 7.2 show execution time and speedups of HARM on the

machine Taub using OpenMP and Galois, respectively. The results shown

are for 100 iterations with different grid sizes. Both OpenMP and Galois

perform almost similar in this case subject to experimental errors. This

could be because they are both run for a moderate number of iterations and

perform significant computation in each step. The memory is allocated on

the stack as all the arrays are static.
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Figure 7.1: Performance of HARM using OpenMP

Comparison of OpenMP and Galois are shown in figure 7.3.

31



0.25

1

4

16

64

256

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

s
e

c
)

Threads
64X64 128X128 256X256 512X512

(a) Execution time

11 12

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

S
p
e
e
d
u
p

Threads
64X64 128X128 256X256 512X512

(b) Speedup

Figure 7.2: Performance of HARM using Galois
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Figure 7.3: Performance of HARM using OpenMP and Galois for
1024X1024 size grid on I2PC machine

7.2 Delaunay Triangulation

7.2.1 Description

Delaunay triangulation is a triangulation of a given set of points P such that

no point in P lies in the circumcircle of any triangle in the triangulation.

Delaunay triangulations are often used to build meshes for finite element

methods, for modelling surfaces and terrains, etc. There are several methods

for computing Delaunay triangulation and the following implementations use

an incremental approach [17].

7.2.2 Algorithm

Delaunay triangulation implementation uses an incremental construction.

The main steps of the algorithm are given in algorithm 3.

The main data structures used are a graph to represent the triangulation

and a quad tree of all the inserted points to obtain a close triangle.
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Algorithm 3 Delaunay triangulation pseudocode

Initialize data
Compute bounding triangle containing all the given points
for all Points do

Locate triangle containing the point to be inserted
Compute the cavity - region that is affected by insertion
Update cavity

end for

7.2.3 Implementation

OpenMP

Problems Based Benchmarks Suite (PBBS) has an implementation of De-

launay triangulation using OpenMP/Cilk [11]. Although it was primarily

designed to be used for Cilk, the OpenMP version could be setup with min-

imal changes.

This implementation picks a few set of points in each iteration and tries

to insert these points to the triangulation. Any points that failed due to

conflicts are added to the remaining worklist.

It is done in two phases. The first phase is the cavity building phase, where

all the selected points are located and the cavities are computed. This phase

does not modify the graph. The second phase modifies the graph where each

thread reserves its cavity and updates it. Any point whose cavity could not

be reserved is added back to the worklist as a new cavity must be computed.

Galois

Galois provides an implementation of Delaunay triangulation as a sample

application. This implementation uses a WorkSet for points to be inserted,

a Galois::FirstGraph for the triangulation and a QuadTree for point loca-

tion. The algorithm uses Galois specified for loop where cavity for each node

where the containing triangle is located, cavity is built and updated. This

does not have two different phases as in the OpenMP implementation, and

reserves the cavity as it builds.
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7.2.4 Evaluation

Figures 7.4 and 7.5 show the execution time and speedup for a test case of

10 million points on Taub and I2PC respectively. Galois has a speedup of

10x and 30x while OpenMP has 7x and 20x on Taub and I2PC respectively.

Galois performs particularly well on these kind of applications as it is tuned

to handle such data. Also, there is a single Galois loop in this application

which makes the overheads minimum. OpenMP on the other hand, is not

well suited for these kinds of applications and consequently, performance

suffers.
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Figure 7.4: Delaunay triangulation on Taub for 10 million points
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Figure 7.5: Delaunay triangulation on I2PC for 10 million points

7.3 Dynamic Fracture Simulation

7.3.1 Description

Dynamic fracture simulation solves dynamic structural problems using sec-

ond order explicit central difference finite element method in a plane with 3

node triangular elements.
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7.3.2 Algorithm

The main data structures in this problem are a list of nodes and a graph of

the triangulated mesh.

The structure of the code in high level is described in Algorithm 4.

Algorithm 4 Dynamic fracture simulation pseudocode

Initialize data
while time < max time do

Update time
for all nodes do

Update displacement
end for
for all triangles do

Compute stress and strain tensor
Smoothen stress using viscous stress
Compute damage parameter
Add element’s contribution to nodal internal force vectors

end for
for all nodes do

Update velocity and acceleration
end for
if Mesh refinement needs to be performed then

for all triangles do
Mark if refinement is needed

end for
Refine mesh
Recompute lumped mass
Transfer old solution to new by interpolation
Adapt the timestep

end if
for all Boundary nodes do

Apply boundary conditions
end for

end while

Majority of the execution time is spent in the the computation. How-

ever, refinement increases the problem size gradually which affects the total

execution time. A key data dependency in the computation phase is the

computation of internal nodal force vector by looping over the triangles and

updating its incident nodes.
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7.3.3 Implementation

OpenMP

The sequential code is implemented in C++ with minimal object-oriented

programming. The nodes and triangles are stored in a vector class of the

C++ standard template library. Indices are used as the primary point of

reference and each triangle stores indices of its incident nodes and neighboring

triangles.

The update to nodes while looping over triangles is performed using the

OpenMP atomic operation as stress contribution is only added to the existing

stress. For mesh refinement, each triangle is marked to be either refined into

4 triangles or bisected into two. The triangles to be refined are first processed

and then the necessary triangles are bisected. A map is kept to check if an

edge has already been bisected and neighboring triangles are reserved for

refinement. Updates in this section are using built-in atomic operations.

Two implementations of OpenMP, one using an array of structures for

nodes and elements, and another using a structure of arrays are implemented.

They are annotated struct and no-struct respectively.

Galois

The Galois code is implemented in C++ with Galois objects. The nodes

extend Galois::GChecked and are stored in a Galois::InsertBag. The

triangles are stored in a Galois::FirstGraph, where each vertex is a triangle

and the edges indicate adjacency. Unlike OpenMP, pointers are used instead

of indices to point to the nodes. The edges are maintained by the graph data

structure and no extra pointers are used.

The nodes are updated using Galois native conflict detection. For trian-

gulation, a similar phase of marking the triangles to be refined or bisected is

used. However, a worklist of these triangles is built and processed instead of

iteration over all the triangles. Conflicts for insertion and deletion of triangles

in the mesh during refinement is also handled by the Galois data structures.

Three versions of dynamic fracture propagation have been implemented

in Galois using different memory allocation schemes, serial allocation (bsc),

parallel allocation (ftp) and parallel allocation with data sorted in a space
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filling manner (sfp).

7.3.4 Evaluation

(a) Initial medium mesh (b) Final medium mesh

(c) Initial large mesh (d) Final large mesh

Figure 7.6: Initial and final triangulated meshes for the test cases

Table 7.1: Test cases for dynamic fracture simulation

Test
Initial Final

Iterations
Nodes Elements Nodes Elements

Medium 7074 13852 9376 18429 80000
Large 37615 74474 72497 144001 31000

Two test cases are used for this evaluation. The first is a medium sized

square material with a side of 0.03m. It has an initial crack length of 0.001m.

The simulation runs for a duration of 0.25ms. A constant vertical velocity

of 0.8m/s is imposed on the top boundary with an initial ramp-up phase

for 10% of the time. The bottom boundary is held stationary while the size

boundaries are fixed in the x direction but free to move in y. The crack

is traction free. The second is a larger material which is 0.06m long and
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0.08m wide with a 0.001m long initial crack. The simulation runs for 0.1ms

with a constant velocity of 3m/s imposed on the top border. The remaining

conditions are similar to the first test case including the initial ramp-up

phase.

Table 7.1 gives the numerical size of the test cases with initial and final

mesh sizes and number of iterations. Figure 7.6 shows the initial and final

meshes for the two test cases.

The stress and velocity distribution for both the test cases at different

times of simulation are shown in figures 7.7 and 7.8. It can be seen that the

cut is along the center for the medium test case which has a lower imposed

velocity for a longer time duration where as the damage for the large test

case is not very uniform. This is due to a higher velocity imposed for a short

duration of time.

OpenMP

The execution time and speedup for the medium test case are shown in figure

7.9. Clearly, flattening out the array of structures into a series of arrays did

not gain any benefit for this application. One major reason is that although

the initializations can be vectorized, the bulk of the computation accesses

data randomly and cannot be vectorized.

The execution time and speedup for both the test cases without structures

are shown in figure 7.10. It can be seen that with fewer iterations and much

larger mesh size, large test case has a speedup of 23x compared to the 13x

speedup of medium test case.

Galois

Figure 7.11 shows execution time and speedup using Galois on the medium

test case. It can be observed that a significant slowdown occurs when moving

from 10 to 16 threads as the application is run on a I2PC machine which has

10 cores per processor. The application does not efficiently handle the tran-

sition from execution on a single processor to execution on multi-processors

with a NUMA memory layout. The improvement from serial allocation to

parallel allocation is significant, however the performance of sorted sft and

unsorted ftp parallel allocation is not significant.
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The allocation of the mesh and nodes using 16 threads for the medium test

case is shown in figures 7.12 and 7.13. Although the initial distribution max-

imizes locality, the mesh loses this upon refinement. Refinement increases

the number of triangles significantly and Galois redistributes the additional

triangles uniformly for load balancing. However, as the refinement is progres-

sive, this allocation becomes random and increases memory accesses across

NUMA domains.

The execution time and speedup for both the test cases is shown in figure

7.14 using the space filling sorted version sfp. It can be observed that al-

though the speedup does not increase proportionally, speedup is significantly

improved in the large test case compared to the medium test case. The

size of the mesh is about 5 times larger, increasing the work per thread per

iteration and reducing the overheads. Also, it has been observed that Ga-

lois performance degrades for higher number of iterations, which is the case

with 80, 000 iterations in the medium case where as only 31, 000 iterations

in the large test case. A step-up in execution time from 10 threads to 16

as observed in the medium test case is absent in the large test case. How-

ever, performance flattens out in this region and improves again for higher

number of threads. This behavior is similar to the observed behavior in the

analysis of irregular data structures in chapter 6, where alois handles larger

data structures better.

Comparison of OpenMP and Galois

A comparison of performance using OpenMP and Galois is shown in figure

7.15. It can be observed that OpenMP performs better than Galois through

out for the large test case, where as it has similar performance for the medium

test case up to 4 threads but diverges later.
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Figure 7.7: Stress and velocity progress at different times for the medium
test case
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Figure 7.8: Stress and velocity progress at different times for the large test
case
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Figure 7.9: Performance of Dynamic Fracture Propagation using OpenMP
on medium test case
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Figure 7.10: Performance of Dynamic Fracture Propagation using OpenMP
on medium test case
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Figure 7.11: Performance of Dynamic Fracture Propagation using Galois on
medium test case

42



(a) Initial allocation

(b) Final allocation

Figure 7.12: Allocation of nodes and triangles for 16 threads with parallel
allocation

(a) Initial allocation

(b) Final allocation

Figure 7.13: Allocation of nodes and triangles for 16 threads with
space-filling sorted allocation
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Figure 7.14: Performance of Dynamic Fracture Propagation using Galois
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Figure 7.15: Performance of Dynamic Fracture Propagation using Galois
and OpenMP
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CHAPTER 8

COMPARISON OF PROGRAMMING WITH
OPENMP AND GALOIS

Parallel frameworks need to be easy to use and powerful for them to be

easily adopted by the programming community. An evaluation of ease of

programming with OpenMP and Galois is discussed with respect to two

aspects, parallelizing an existing serial code and writing parallel code from

scratch.

Table 8.1 qualitatively compares programming with OpenMP and Galois

and table 8.2 demonstrates a quantitative comparison based on the dynamic

fracture simulation application.

8.1 Parallelizing existing serial code

Existing serial code is generally not written with parallelization in consider-

ation. This, in itself, creates a few difficulties irrespective of the paralleliza-

tion framework adopted. Excessive use of global variables that are modified

frequently may cause incorrect parallel executions, leading to bugs. Identifi-

cation of data dependencies and isolation of race conditions is a tedious task

for a large code base. Some algorithms are inherently suitable only for serial

execution and perform poorly in parallel. However, rewriting a huge code

base is not generally an option.

OpenMP provides non-intrusive compiler directives which do not call for

any modification of existing data structures or major code refactoring. Time-

critical sections of the code can be identified and parallelized with a few

simple directives, assuming the data dependencies allow for parallelization.

Galois, on the other hand, works on functors or function pointers and code

needs to be refactored to obtain parallelism. Galois works best with its

built-in data structures and modifying these in a huge code base is often

cumbersome.
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8.2 Writing parallel code from scratch

It is beneficial to write code with a parallel perspective from the outset.

This allows for cleaner data structure layouts and algorithm choices. How-

ever, programming with OpenMP does not have significant difference from

sequential programming apart from the compiler directives and runtime calls.

Galois provides an extensive library of parallel classes and routines which can

be readily used. Synchronization and scheduling are handled by the Galois

runtime and the programmer only needs to work on the functionality on the

program.

8.3 Qualitative comparison of OpenMP and Galois

Table 8.1: Programming with OpenMP and Galois - a qualitative
comparison

Criteria OpenMP Galois
Regular data structures Easy Difficult
Irregular data structures Difficult Easy
Major development time Synchronization Writing suitable functors

Code Readability Less More
Debugging serial code Similar Similar

Debugging parallel errors Difficult Easy
Learning curve Gentle Steep

Resources for learning Plenty Limited

Table 8.1 shows a few criteria to compare and contrast OpenMP and Ga-

lois. Parallelization of regular data structures is easy with OpenMP as this

data is typically accessed in a loop and OpenMP has a rich feature set

to handle general data dependencies in these cases. Galois, on the other

hand, requires more complex parallelization methods irrespective of using

their LargeArray.

Parallelization of irregular data structures is easier to handle in Galois as

Galois provides a set of standard irregular data structures which are easy

to use and it handles synchronization in its runtime. OpenMP on the other

hand needs explicit locks or constructs to avoid race conditions, some of

which are not apparent in an obvious manner.
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Major programming time using OpenMP is spent in synchronization strate-

gies and choosing the data structure layout, specially for irregular applica-

tions. Major programming time using Galois is spent in writing the functors.

Although the functionality is same in OpenMP and Galois, Galois classes

must be properly encapsulated for best results and this requires more pro-

grammer time. Although increased readability is a bonus.

OpenMP code with the numerous synchronization constructs is not easily

readable whereas the abstractions in Galois provide an easy to read code

structure. However, OpenMP code is easier to read for regular data struc-

tures as loops are explicitly declared, clearly depicting the behavior of the

code. Galois, using functors, makes it difficult to get the big picture.

Debugging serial code or execution of code with a single thread running

has nearly equal difficulty using both frameworks. Also, it is no worse than

debugging without any parallel framework. Debugging parallel execution is

more tricky due to non-deterministic behavior. Galois supports deterministic

parallel execution at the cost of performance which can be used to identify

reproducible bugs. In OpenMP programs, synchronization errors are most

common as the programmer is responsible for correct race-free memory ac-

cesses.

OpenMP has simple interfaces and is easy to achieve modest speedups

with relatively little effort. Galois on the hand has a steep learning curve to

familiarize oneself with the data structures and functionalities of the different

constructs before achieving desirable performance gains.

OpenMP is extensively used and has a wide range of online resources for

both beginners and advanced users. Galois has limited examples and provides

only auto generated documentation online. However, it must be noted that

Galois users group mailing list is active and queries get prompt and helpful

responses.

8.4 Quantitative comparison of OpenMP and Galois

A quantitative comparison of OpenMP and Galois is presented in table 8.2

using the Dynamic Fracture Simulation application. The total lines include

blank spaces and comments. C++ code, C++ header code and total code

are obtained using cloc. The compiler directives in OpenMP include all
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Table 8.2: Programming with OpenMP and Galois - a quantitative
comparison

Criteria OpenMP Galois
Total lines 1582 2139
C++ code 1179 756

C++ header code 57 828
Total code 1236 1584

Compiler directives 29 N/A
Get calls N/A 61

Executable size 0.4 MB 6.7 MB

pragma calls. These do not include other OpenMP library routine calls such

as set omp num threads. The Get calls field for Galois lists the number of

calls made to the runtime system to obtain an object. These include all the

calls, irrespective of whether contention is checked or not.

Galois has more lines of code and also uses an elaborate Galois code base

and Boost libraries. The executable generated is 16 times the size of the

OpenMP executable. Quantitatively, OpenMP provides a more concise so-

lution, both in terms of code volume and deliverable size.
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CHAPTER 9

CONCLUSION

This thesis presented an evaluation of two parallel frameworks, OpenMP and

Galois. A detailed study of optimization in memory allocation and usage have

been performed for both OpenMP and Galois along with a few other opti-

mization analyses for OpenMP. It has been found that allocating memory in

parallel benefits both OpenMP and Galois. Sorting data using a space-filling

curve before allocation in parallel provides the best performance for irregular

data structures in both OpenMP and Galois. Also, näıve parallelization of

loops using OpenMP definitely has poorer performance, but explicitly paral-

lelizing loops does not yield a significant benefit. Memory is a bottleneck for

parallelization of simple tasks dealing with large data sets. Galois performs

better for applications with small number of iterations on large data rather

than those that have large number of iterations over moderate data size.

It has also been found that performance for parallelizing existing serial code

HARM using both OpenMP and Galois have similar benefits. Galois pro-

vided the best speedup for Delaunay triangulation with about 30x speedup

for 40 threads as opposed to about 20x for OpenMP. Galois has performed

well for small number of iterations over a large amount of data, and it has

been true with Delaunay triangulation as well. OpenMP, on the other hand,

performed better in Dynamic Fracture Propagation with a speedup of 23x

as compared to 9x using Galois. Dynamic fracture propagation has a large

number of iterations with moderately sized data which could be the reason

for Galois not performing on par with OpenMP.

In conclusion, OpenMP is a simple and effective parallel framework that

can achieve reasonable performance with relative ease. However, OpenMP

is more suited for regular data structures or iterations over irregular data

structures but not for mesh refinements and dynamically updated workloads.

Galois provides a reasonably easy to use framework to parallelize applications

with irregular data and access patterns. Galois is not inherently suitable for
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regular structures. Both the frameworks have their own advantages and

disadvantages and handle almost disjoint set of work loads. Other parallel

frameworks need to be explored to find one that is easy to use and powerful

to handle a majority of workloads.
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