
c© 2015 Joshua Paul-Joseph Juen

MAINTAINING PRIVACY DURING CONTINUOUS MOTION SENSING

BY

JOSHUA PAUL-JOSEPH JUEN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Associate Professor Nikita Borisov, Chair
Professor Bruce Schatz
Associate Professor Matthew Caesar
Associate Professor Romit Choudhury

ABSTRACT

Mobile devices contain sensors which allow continuous recording of a user’s

motion allowing the development of activity, fitness and health applications.

With varied applications, the motion sensors present new privacy problems

which require protection. This dissertation builds on previous work with

activity and fitness machine learning techniques demonstrating the ability

to predict medical values from motion data using smartphones. We conduct

two clinical trials collecting a data set of eighty-eight patients and forty-five

hours of monitoring to analyze the privacy implications of releasing motion

data. We extract a comprehensive set of statistical features from all available

smartphone sensors and evaluate feature selection techniques and machine

learning models. We find we can predict user identity, phone identity, speed,

FEV1/FVC, and activity from the motion signal.

Designing a privacy protection mechanism for motion data requires a pre-

cise understanding of how the signal predicts the sensitive information. We

develop algorithms to conduct private feature selection which identifies fea-

tures useful for prediction. We find that simply blocking all private features

significantly reduces the usefulness of the signal for other predictions. We

develop a sensitivity estimation framework to calibrate the noise for each

private feature requiring an order of magnitude less noise than differential

privacy sensitivity. We find adding noise to private features calibrated using

the sensitivity estimate is effective at reducing the prediction of five tested

target predictions. Our methods hide both user and phone identification

while allowing other prediction but cannot hide activity, FEV1/FVC and

speed without significantly lowering the accuracy of other predictions. Our

methods are still effective when the attacker has prior knowledge of the noise

distribution. The methods presented in this dissertation demonstrate the

need for privacy in motion data and provide a framework for protecting sen-

sitive user information in motion readings.

ii

To My Family

iii

ACKNOWLEDGMENTS

The work in this dissertation is the culmination of many hours of advice

and discussion from my advisor Nikita Borisov. I would like to thank him

for his guidance and teaching which have been instrumental for me through-

out my graduate career. I would like to thank Bruce Schatz who has been

like a second advisor to me. His guidance in machine learning and big data

analysis of the cell phone signals was invaluable to this work. His tenacity

and persistence to conduct clinical trials collected the data that made this

dissertation possible. I would like to thank the other members of my com-

mittee: Matthew Caesar and Romit Choudhury for giving advice to improve

the dissertation. The work that follows would not be possible without the

hard work and guidance from my committee.

Throughout my graduate career, my education has been impacted by many

professors and students at the University of Illinois. I would like to thank

everyone in the Hatswitch research group Amir Houmansadr, Robin Snader,

Qiyan Wang, Sonia Jahid, Giang Nyugen, and Xun Gong. I would like

to give a special thanks to Prateek Mittal for his advice and collaboration

with all my work related to AS-path prediction and Tor. I would also like to

thank Anupam Das and Aaron Johnson who collaborated with me conducting

Internet path measurements of Tor. I would like to thank Qian Cheng who

has worked tirelessly with me to collect and analyze motion data from cell

phone sensors during the clinical trials which formed the data set used in

this dissertation. I would like to thank Carl Gunter, Zbigniew Kalbarczyk,

and Donna Brown for their guidance as I worked as a teacher’s assistant. I

give special thanks to Susan Hinrichs who allowed me to assist in the cyber

security laboratory. My work would not be possible without the collaboration

of graduate students: Michael Rogers, Jeff Green, David Bergman, Dong

Jin, Naoki Tanaka, Joseph Sloan and Yitao Liu who collaborated on various

projects over the years providing insight and perspective to improve the

iv

research. I would like to thank the staff at the University of Illinois for

creating a learning environment conducive to research.

I would like to thank all the professors at Central Michigan University

who work tirelessly to prepare students for a career in engineering. My

background in basic principles has made my graduate education possible.

A special thanks to James Morrison, Koblar Jackson and Albert Peng who

encouraged me to pursue a graduate degree. I would like to thank the con-

tributors to the Centralis Scholarship. Your generous donations allowed me

to begin this journey.

Everything I have done is only possible due to the love and support from

my family. I would like to thank my father and mother Don and Michele

Juen who have encouraged and supported me as I pursued my education.

Your guidance and teaching prepared me for success in college and in life.

A special thanks goes to my mom who stayed home to homeschool me from

kindergarten through high school. I also want to thank my sister Bethany

who has always encouraged me when times have gotten tough. I would

like to thank my girlfriend Noelle for her love and support as I pursued my

doctorate. I would like to thank my Lord and Savior Jesus Christ with whom

all things are possible. Thank you to all of my close family and friends who

have supported and encouraged me throughout the years. I dedicate this

dissertation to those who have encouraged, helped, and challenged me and

to God above who watches over us all.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Overview . 1
1.2 Motivation . 5
1.3 Dissertation Outline . 8

CHAPTER 2 BACKGROUND AND RELATED WORK 11
2.1 Motion Sensors . 11
2.2 The Rise of Dedicated Health and Fitness Monitors 14
2.3 Collecting Spatial Information from Smartphones 17
2.4 Inferring Information from Motion Sensors 19
2.5 Conclusions . 22

CHAPTER 3 CLINICAL TRIALS: COLLECTING MEDICAL
READINGS WITH MOBILE DEVICES 23
3.1 Medical Quality Readings from Smartphones 23
3.2 Clinical Trials . 32
3.3 Conclusions . 43

CHAPTER 4 A DATA SET TO STUDY MOTION PRIVACY 44
4.1 Prediction Targets . 44
4.2 Sensor Streams . 46
4.3 Feature Extraction . 51
4.4 Conclusions . 59

CHAPTER 5 IDENTIFYING IMPORTANT INPUT FEATURES . . 61
5.1 Selecting the Top Features . 62
5.2 Privacy Aware Feature Selection 80
5.3 Conclusions . 102

CHAPTER 6 PREDICTION MODELS 104
6.1 Classification Models . 104
6.2 Regression Models . 109
6.3 Optimized Models and Prediction Accuracy 113
6.4 Estimating Sensitivity . 119
6.5 Sensitivity Estimation and Results 131
6.6 Conclusions . 135

vi

CHAPTER 7 PRIVACY BY OBFUSCATING FEATURE
STREAMS . 137
7.1 Obfuscation by Removing Private Features 138
7.2 Sensitivity between Prediction Models 141
7.3 Differential Privacy Frameworks 145
7.4 Protecting Private Information 149
7.5 Conclusions . 166

CHAPTER 8 CONCLUSIONS . 168
8.1 Final Thoughts . 173

REFERENCES . 174

vii

CHAPTER 1

INTRODUCTION

1.1 Overview

The rise in popularity of mobile devices presents new challenges to protecting

the privacy of users. While users are enjoying the many added conveniences

mobile devices provide throughout their daily lives, most users are unaware

of the new streams of continuous personal information being collected. Mo-

bile fitness devices are being designed to track a user’s every movement in

order to measure fitness and activity levels. Medical devices are being devel-

oped to track health with the goal of allowing medical practitioners to more

accurately diagnose and treat chronic disease. Even smartphones contain

motion sensors capable of measuring a user’s daily life through the use of

global positioning satellite (GPS) tracking location, motion sensors tracking

actions and of course communication patterns tracking social behavior and

browsing history tracking user behavior. While these devices can gather a

wide array of personal information about their users, we focus on the ability

of mobile devices to monitor a user’s motion using internal motion sensors.

While the privacy leaks from GPS, browsing history, and social contact have

been studied, motion from privacy sensors has gained little attention from

privacy research. The widespread adoption of devices containing motion sen-

sors combined with recent interest from commercial companies to monitor

health, such as Apple’s HealthKit initiative, creates a need to understand

information leaks contained in motion sensor data.

Health trackers, fitness devices, and mobile phones contain motion sensors

including accelerometers, gyroscopes and magnetometers to measure a user’s

motion through space. Motion through space is useful for many applications

including gaming, fitness tracking, and giving the phone context awareness

with new creative applications being continuously developed. Recent work

1

has demonstrated that motion sensors may leak potentially private informa-

tion including user identification, device identification, activity recognition,

walking pattern identification, and health status tracking. We expand on

previous work by conducting numerous health studies finding that data from

these sensors can leak medical metrics giving insight into users’ private health

information. Our preliminary studies motivate the need to educate users to

the potential dangers of releasing private information and develop new pri-

vacy architectures which ensure private data is protected.

The methods presented in this dissertation can be used to generally protect

predictions made from machine learning models trained with motion data;

however, we specifically focus on privacy threats which arise while carrying

mobile smartphones. While the privacy threats which arise from carrying fit-

ness and medical devices must be understood, most users are naturally more

conscientious while carrying a fitness or medical device because it is only worn

while the user is either exercising or conducting medical test. Conversely, a

phone is typically always carried for communication purposes and is cur-

rently not viewed as a threat to leaking the user’s identity, activity or health

status through motion data. We demonstrate that the sensors in a phone

are similar or better than sensors contained in popular fitness and health

devices. We develop software to collect sensor readings on Android-based

smartphones. We then conduct two clinical trials to demonstrate the viabil-

ity of collecting both health and activity data using smartphones on a wide

range of patients. The results from these tests demonstrate the viability of

smartphones to collect sensitive health information useful for health diagnosis

from both chronic and healthy subjects using sophisticated machine learning

models. Thus, we demonstrate mobile devices leaking sensitive health infor-

mation which motivates the need to design and develop privacy protection

mechanisms.

In order to design privacy mechanisms for motion sensors, we must under-

stand how raw sensor signals can be useful to make predictions about sen-

sitive fitness, health, and demographic information. We assemble the data

from two clinical trials with fifty-eight subjects and combine it with two years

of continuous collection from thirty volunteers giving a unique data set com-

prising eighty-eight subjects and over two gigabytes of raw motion data taken

from ten unique smartphones. Using this data, we conduct a detailed study

using machine learning to predict thirty pieces of private information includ-

2

ing health metrics, fitness metrics, user identification, phone identification

and various demographic information. We design and implement an anal-

ysis pipeline which extracts seventy-four statistical features from thirty-one

sensor streams from each mobile device. Our pipeline generates 2,294 total

sensor features calculated from continuous windows of data. We then train

and evaluate machine learning algorithms to predict each sensor target. We

find motion data useful to predict phone identification, user identification,

walking speed, and chronic obstructive pulmonary disease (COPD) diagno-

sis motivating the need for privacy protection to give a user control over the

release of this information.

Protecting privacy against machine learning analysis requires the devel-

opment of new analysis frameworks. We begin by studying the ability of

standard feature selection routines to identify the set of statistical sensor

features which leak private information. We find that traditional feature se-

lection techniques are not designed nor suited for identifying the complete

set of private features. We propose three algorithms to return the top set of

private features and validate each using machine learning models. We find

a tradeoff between computation power and accuracy. We find an algorithm

which clusters features using normalized mutual information and raw predic-

tion scores during the first round of a sequential forward search mechanism

using a support vector machine/regression correctly classifies most private

features while limiting the number of false positives. However, it also takes

far more computation than using the normalized mutual information score

between the feature vector and target vector which is the most accurate filter

method. We use our algorithm to identify the private features for each of

our thirty prediction targets.

The utility of any privacy mechanism is limited depending on how severely

it degrades legitimate performance. The simplest way to protect motion data

is to block the release of all private features. However, we find many predic-

tion targets have overlapping private features. We investigate the ability to

introduce sufficient noise to obfuscate a sensitive prediction target while still

leaving enough of the signal to be useful by developing methods to estimate

the sensitivity of each statistical sensor feature to added noise. We design

a framework in Python capable of estimating sensitivity for both specific

and generalized machine learning models. For classification, the algorithm

estimates the average distance the feature must change to change the clas-

3

sification output. For regression, the framework estimates the change in

prediction output per change in input feature values. Our framework allows

careful estimation of the required noise needed to obfuscate prediction.

Our analysis of each stage of the machine learning pipeline allows us to

use principles from differential privacy to design obfuscation routines. Using

the private features for each target and sensitivity analysis, we can intro-

duce noise into the signal significantly reducing the predictive ability of the

machine learning while minimizing the collateral impact on the accuracy of

predicting other targets. We test traditional differential privacy noise estima-

tion against our sensitivity routines finding our sensitivity estimates requires

on average an order of magnitude less noise to hide the target prediction.

We find we can add sufficient noise to reduce classification accuracy of phone

identification and user identification without significantly decreasing accu-

racy of health and fitness metrics. We find that our obfuscation techniques

decreases prediction accuracy across all tested machine learning model types

for each prediction target. Knowledge of the noise level can help an attacker

get better prediction accuracy but the benefit to collateral features is higher

than to the protected private feature. Overall, our analysis indicates that

regression is more sensitive to changes in noise with classification being less

sensitive to input noise. However, more testing on larger data sets using our

framework will be required to design a widely deployable system capable of

protecting privacy.

We find that motion sensors can leak sensitive information including health

metrics, fitness metrics, user identification, and phone identification. We find

various demographics more difficult to predict from our data. Our analysis

framework allows us to identify private features, estimate the sensitivity of

those features for each prediction, and add noise to obfuscate the predictive

accuracy to a user configurable threshold. We believe this work motivates

the education of users to the dangers of releasing motion sensor information

and the presented frameworks can be used to develop better access control

capable of selectively protecting sensitive information. Such frameworks will

be necessary to give users control over their personal information while al-

lowing motion sensors to be used for the wide variety of creative applications

currently being deployed on mobile devices.

4

1.2 Motivation

Mobile technology has gained widespread acceptance in our society. Mobile

phones provide users internet connectivity from virtually anywhere allowing

open access to information regardless of location. Location-based services

provide instant directions to help users by suggesting places to eat, shop,

relax or work. Fitness devices are gaining popularity to improve health by

allowing a user to track various fitness metrics including step counts, dis-

tances walked, caloric expenditure and other exercise measurements. Dedi-

cated health devices are being developed to track various conditions ranging

from general measures of health such as heart rate, blood pressure, oxygen

saturation to specific disease diagnosis such as cardiopulmonary function or

asthma inhaler use. From phones to dedicated devices, we are seeing vast

usage of mobile platforms to monitor and assess health and fitness in users.

All these devices present platforms capable of continuously collecting data

about their users from a variety of sensors. While this presents unprece-

dented utility for analysis in order to improve health tracking, it presents the

ability for side-channel attacks against a user’s privacy. Therefore, the data

which is returned from these devices must be carefully analyzed in order to

determine the privacy implications to the users.

While the development of fitness trackers and health devices has taken

place in parallel to mobile phones, the phone manufacturers are currently ex-

ploring the capabilities of the phones to mimic the functionality of dedicated

devices. Health apps are gaining popularity in the smartphone marketplaces

with hundreds of new apps appearing in both the Apple and Google Play

stores. Both Apple and Samsung are including health fitness apps in the

base installs of the operating systems making fitness trackers part of the core

phone functionality capable of tracking movement, steps taken, and caloric

expenditure. New phones are also including what have traditional been med-

ical measures including heart rate, blood oxygen level, and respiratory rate

among others. Apple’s Health Kit initiative is designed to make continuously

collected sensor data available in medical records and the Research Kit ini-

tiative has been developed to provide all the collected information to clinical

research teams. These initiatives are moving continuous monitoring to stan-

dard practice on modern smartphones and creating easy ways for researchers

and other apps to access the data.

5

Users have been extremely tolerant of giving vast amounts of personal in-

formation to phone apps in order to make their lives easier. While alarming,

this has led to a relatively relaxed privacy policies on most smartphones in

use today. Unfortunately, the access to information on current mobile devices

opens users to unprecedented exposure of all collected private information.

The ability of mobile devices combined with a history of inadequate secu-

rity creates the possibility of a user’s entire life being continuously tracked,

recorded, and analyzed. While the new medical devices will undoubtedly be

carefully protected through strict access control, the phone, which contains

almost identical motion sensors, will probably continue to be considered low

risk when releasing a user’s motion information. It is unclear how success-

ful fitness and medical monitoring will be; however, including health related

measurements continually edges closer to being classified as health informa-

tion which is strictly protected under the Health Insurance Portability and

Accountability Act (HIPAA). While the necessary privacy requirements to

protect continuously collected data from mobile devices is currently unclear,

the ability of the phones to match dedicated health devices will probably

warrant better privacy protections. Thus, it is critically important to de-

termine the capability of the smartphones to continuously collect sensitive

health information. Whether classified as protected health information or

not, such data collection introduces the need for higher security and privacy

on mobile devices. At the very least, users must be educated on the po-

tential risks of providing their data to both researchers and other apps. In

order to classify the risks, privacy research must understand and quantify

what types of inferences can be conducted by releasing information from the

various sensors in the devices.

This dissertation hopes to parallel previous research in side-channel attacks

on GPS readings which have led to better understanding for the need to

control access to the GPS. Unfortunately, motion sensors, specifically the

accelerometer, magnetometer and gyroscope, are still easily available to an

adversary due to minimal protection by access control. Motion sensors are

even available through the web browser allowing an attacker to take readings

when a user visits a malicious site. Such policy is dangerous if there is private

information contained in the raw readings themselves. Privacy research must

therefore investigate the possible inferences and design systems to protect

sensitive user information. Such systems are necessary to ensure a user’s

6

Figure 1.1: Various Possible Privacy/Sensitivity Relationships for (G)
Gender and (ID) User Identification

privacy and maintain public confidence in mobile technology.

Access to motion sensors provides access to a wide variety of motion fea-

tures which can be measured as the user carries the device. Protecting pri-

vacy against inferences requires a thorough understanding of what specific

subset of motion features are most important for classifying private informa-

tion. Specifically we wish to find the subset of primary features contained

in the motion sensor data that predicts each private characteristic. It is not

only important to understand what primary features are most useful to pre-

dict a characteristic but also how sensitive the prediction is to variations in

those features in order to design privacy systems. The sensitivity is defined

as the amount of change in a given input to change the output value. As an

example, assume we are analyzing the sensitivity to two classifiers, user iden-

tification (ID) and gender (G). In general, we can envision three outputs to

our sensitivity analysis as shown in Figure 1.1. If the primary features that

identify the user are a mutually disjoint set from the set of primary features

that identify gender, then it should be possible to add noise to the primary

features indicating each characteristic and protect privacy in both without

destroying the other classifier. If the set of two features contains intersecting

primary features, but the sensitivity of features predicting gender is less than

the sensitivity of the features predicting user ID, then it should be possible

to add an appropriate amount of noise to obfuscate ID while leaving enough

information to predict gender. Finally, it may be the case that the features

are intersected and the sensitivity is similar in which case the classifiers are

not separable and it would not be possible to hide one without hiding the

other. Determining what characteristics can be inferred from motion sensors,

what primary features in the motion sensors indicate a target characteristic

7

and how sensitive the predictions are to changes in the motion sensor fea-

tures is necessary to design privacy systems for motion sensor data. Once

determined, privacy systems may be developed to introduce various types

and levels of noise into the signal thereby hiding specific characteristics in

the data.

1.3 Dissertation Outline

It is the purpose of this dissertation to establish that raw motion data from

the accelerometer, magnetometer, and gyroscope in smartphones contain

side-channel information warranting careful protection. Chapter 2 will pro-

vide important background in mobile sensing, devices and target character-

istics which have been detected in motion data. Many studies have been

conducted on dedicated medical and fitness devices but fewer have looked at

a smartphone’s ability to track health. Thus, the dissertation will first estab-

lish that smartphones contain similar if not better capabilities than modern

fitness and medical devices. We will build on previous research in using ma-

chine learning to infer motion characteristics from accelerometers and develop

novel work establishing the ability of motion sensors to detect critical health

measures in the readings. This will require conducting multiple clinical trials

in order to collect data from patients during natural walking. The clinical

trials will collect a unique data set of patient data which will be used for the

analysis in the remainder of the dissertation. The validation of smartphone

sensors and clinical trials are presented in Chapter 3.

The clinical trials provide a rich data set to analyze in order to establish

the threat of side-channel information in motion data. Figure 1.2 outlines

the remaining analysis for the dissertation. We will choose a wide variety of

target characteristics to infer from the motion data which will be determined

from a combination of previous work and novel characteristics determined

from the clinical trials. Chapter 4 will outline what sensor streams are avail-

able from testing and what statistical features can be extracted for machine

learning. Chapter 5 will determine the set of extracted input features which

are most predictive of each target characteristics. We will then build sophis-

ticated machine learning models to predict each characteristic in Chapter

6 and determine which characteristics can accurately be inferred from the

8

Raw Data

Sensor Streams

Feature Extraction

Feature Selection

Machine Learning Models

Sensitivity Analysis
Classification

Accuracy

Primary Features

Labeled
Characteristics

Privacy Obfuscation

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Figure 1.2: Dissertation Outline

motion sensors. We will also evaluate the sensitivity of each inference to the

primary features giving an ordering of which target characteristics are easy

to predict and which are more subtle in the data.

Once the sensitivities of the critical characteristics are identified, privacy

preserving techniques will be developed to hide side-channel information. We

will investigate the use of fine-tuned techniques based on differential privacy

which attempt to hide specific side-channel information without significantly

hampering the usefulness of the sensors for legitimate prediction in Chapter 7.

Such systems will undoubtedly cause degradation in the signal quality which

must be quantified. The analysis will determine the possibility of designing

systems capable of hiding specific inferable characteristics in the signal while

still maintaining use in application which are less sensitive to noise. This

will also produce a list of inferable characteristics and determine the difficult

in obfuscating each characteristic. Finally, we will discuss conclusions and

future work in Chapter 8 outlining how the work presented in the dissertation

can be used to design privacy obfuscation techniques applicable to the signal

in real time.

It is currently unclear how privacy will be handled in a world filled with

9

mobile devices. Continuous collection of motion data opens users to unprece-

dented real-time tracking of their behavior. Understanding what character-

istics can be inferred and how noise can be injected to hide each piece of

information will allow systems to be designed with fine-tunable access con-

trol. This will allow users both better understanding of their privacy options

with the added benefit of allowing them to obfuscate if necessary. It is the

goal of this dissertation that this analysis will both promote awareness of

the privacy issues and provide a solution to allow these systems to operate

without fear of privacy loss of their users.

10

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Motion Sensors

Modern electronics use various sensors to record the motion of the devices.

The most popular sensors in use are accelerometers which measure the rel-

ative acceleration of the device, gyroscopes which measure rotation, and

magnetometers which measure the magnetic field strength around the de-

vice. These sensors combined with some signal processing allow the device

to determine the direction of gravity or the downward vector and relative

orientation in the world coordinates (in relation to true north) with some

level of accuracy.

2.1.1 Magnetic Compass

Measuring magnetic fields in a single dimension is fairly trivial by measuring

the Hall effect [1]. When a current is flowing across a conductor, a magnetic

field will cause a charge buildup perpendicular to the magnetic field and

transvers to the flow of electric current as seen in Figure 2.1. By measur-

ing the voltage of the Hall effect, the relative strength of the perpendicular

magnetic field can be determined. While straightforward in one dimension,

measuring the relative magnetic field in three dimensions is more challenging.

The most obvious solution would be to place three Hall sensors perpendicular

to one another; however, minor errors in placement cause large errors in the

final measurement. The solution as implemented in modern devices is shown

in Figure 2.2 [2]. All three directions are measured in one plane thereby

eliminating alignment errors. To accomplish this, a magnetic concentrator is

placed on the X plane which bends the X and Y magnetic fields downward

into the Hall sensors. The Hall sensors then measure the combinations of

11

Figure 2.1: The Hall Effect
Figure 2.2: Basic Theory of MEMS
Compass

magnetic fields strengths. Using two Hall sensors on either side of the con-

centrator, each sensor measure X1 = a∗Bx+x∗Bz and X2 = −a∗Bx+c∗Bz
where Bx and Bz are the relative magnetic field strengths in the x and z

directions and a and c are constants defined by the physical parameters of

the Hall sensors. Then to get the relative magnetic field strength the device

simply calculates Bx = (X1−X2)/2a and Bz = (X1 +X2)/2c. Obviously,

the By direction can be measured by using a similar set of equations with

the two Y hall sensors.

2.1.2 Acceleration

Most modern devices measure relative acceleration using micro electro-

mechanical systems (MEMS) accelerometers [3]. Accelerometers measure

the relative acceleration of the sensor in a single direction. Accelerometer

sensors are normally modelled as a mass on the end of a spring. As the

sensor is accelerated, force acts on the mass causing a change in length of

the spring. By measuring the length change, the relative acceleration can be

determined. Figure 2.3 illustrates the basic outline of a MEMS accelerometer.

A moveable plate is attached to a spring with a constant ks. When an

acceleration is applied parallel to the spring, a displacement occurs. The

relative capacitance C1 and C2 change as the plate moves. The chip measures

this capacitance and determines the appropriate acceleration. In modern

chips, three of these systems are fabricated orthogonal to each other allowing

the relative acceleration to be measured in three directions.

12

Spring

BaseMoveable Plate

Fixed Electrodes

C1 C2

Figure 2.3: Basic Outline of a MEMS
Accelerometer

Figure 2.4: Basic Theory of MEMS
Gyroscope

Figure 2.5: X-Ray of MEMS
Gyroscope

2.1.3 Rotation

Recently MEMS gyroscopes have gained popularity to increase the precision

of measuring device rotation especially in gaming applications. MEMS gy-

roscopes measure device rotation by measuring the force due to the Coriolis

effect [4]. Figures 2.4 and 2.5 demonstrate the theory behind a MEMS gy-

roscope. Two masses are put into oscillation in opposition to each other

along the X axes. When a rotation is applied around the Z axis, the Coriolis

effect causes a force in opposite directions along the Y axis. By measuring

the difference of the two forces, the amount of rotation can be determined

independently of the acceleration in the Y direction.

Thus, modern devices can measure acceleration, rotational velocity and

approximate magnetic north; however, there are still significant challenges

13

to obtaining precise measurements of motion. For example, the accelerom-

eter gives relative acceleration not velocity. A slight error in determining

the initial velocity of the phone when estimating displacement using the

accelerometer quickly accumulates compounding errors making the measure-

ment incorrect. Gyroscopes are notorious for exhibiting drifting error making

it difficult to obtain true stationary rotational velocity without using either

the compass or accelerometer. The compass while accurate in a clean envi-

ronment, must operate in close proximity to speakers and transmitters which

generate magnetic interference. Thus, each sensor has significant challenges

to overcome when taking measurements. It is also important to note that

device identification is made possible by measuring minute difference in sen-

sor fabrication. For example, the measured capacitance on the accelerometer

as shown in Figure 2.3 depends on the distance of the stationary electrodes

to the electrodes on the movable plate. While MEMS fabrication is fairly

precise, extremely small variation in the fin placement between devices can

yield detectable differences in the measurement of acceleration [5]. Both

MEMS gyroscopes and MEMS compasses can also exhibit minor differences

in readings due to variation introduced during fabrication. Detecting these

differences will become important when analyzing the ability of identifying

the device through this manufacturing “fingerprint.”

2.2 The Rise of Dedicated Health and Fitness Monitors

2.2.1 Fitness Monitors

Fitness monitors have recently gained commercial attention. The Fitbit Flex,

Jawbone Up and Nike Fuel Tracker are currently the most popular dedicated

fitness monitors. These devices track steps taken, raw motion, and caloric

estimates for their users. Marketed as devices suitable for entertainment

purposes only, the devices still have the capability to provide continuous

streams of spatio-temporal motion but limit access to the raw data to their

parent companies. While it is currently unclear how much data is being

collected, liberal terms of use agreements often allow the companies to collect

and analyze a user’s spatio-temporal motion without further consent. This

makes understanding the utility of this data critical to determine if stricter

14

permissions should be mandated.

Recently, Fitbit has launched the Fitabase initiative to encourage the use

of Fitbit devices in clinical research. Many medical researchers are gaining

interest in the accuracy of fitness trackers since they are gaining popular

use presenting a potential platform for clinical research without requiring

custom, often expensive, equipment. Recently, Lee et al. investigated the

accuracy of popular fitness devices finding them to be promising to estimate

caloric expenditure [6]. Takacs et al. validated the step counts measured

by Fitbits during treadmill walking [7]. These studies are promising for the

commercial fitness devices but severely limited in scope. The caloric trial

was limited to a short trial within the clinic and the step count trial was

limited to treadmill walking which differs significantly to natural walking.

This dissertation will contribute an accuracy assessment of popular fitness

devices in Chapter 3. Regardless of current accuracy, the motivation for

fitness devices to be used in clinical settings will likely lead to improvements

of the prediction routines. Thus, protecting the user’s data from privacy

attacks will most likely be necessary as the device’s accuracy continue to

improve.

2.2.2 Health Monitors

Health monitors have been a popular topic of research in the custom sensor

community over the past ten years. Systems have been proposed and tested

which measure activity and gait characteristics accurately using custom hard-

ware often containing motion sensors (accelerometers and gyroscopes). Ac-

tivity recognition in particular is an extremely well researched area and iden-

tifying is perhaps the most frequent activity identified [8, 9, 10, 11, 12, 13, 14].

These studies demonstrate the interest in the medical community to use ded-

icated medical quality monitors to improve patient care; however, they fail

to consider the privacy implications of the recorded motion data.

Clinical researchers have conducted a number of studies measuring pa-

tients using medically verified accelerometers. Steele et al. performed an

early experiment to classify physical activity using a medical accelerome-

ter strapped around the patient’s chest [15]. Moe-Nilssen et al. provided

medical validation of using professional medical accelerometers to measure

15

gait cycle characteristics [16]. In 2006, Pitta et al. added a motion sen-

sor (accelerometer) along with the more accepted medical questionnaires to

assess daily physical activity among chronic obstructive pulmonary disease

(COPD) patients [17]. In 2013, Rabinovich et al. validated the use of med-

ical accelerometers to monitor patients during their daily life at home [18].

Van Remoortel et al. tested and medically validated six popular activity

monitors which are now considered acceptable for use in medical trials [19].

Rabinovich et al. expanded the use of sensor systems by deploying activity

monitors to COPD patients to use in their homes [18]. Recently, most studies

have adopted the Actigraph GT3X as the standard medical accelerometer to

use in clinical trials. The Actigraph give researchers access to the raw ac-

celerometer data opening it to the possibility of side-channel privacy leaks

and motivating the need to understand what side-channel information can

be leaked from motion sensor data.

Systems capable of performing automated diagnosis of patients are cur-

rently being developed due to strong motivation to improve the quality of

care while lowering cost in the healthcare industry. In particular, measuring

activity and gait speed are important to consider since it has been recognized

that a decrease in mobility and motion, especially when walking, is a strong

measure of a patient’s health when they have both COPD and congestive

heart failure (CHF) [20, 21, 17, 22]. All these studies indicate that gait speed

and cadence are valuable indicators for health especially in COPD and CHF.

A slower cadence indicates poor health useful as an indicator for physicians.

As diseases with millions of patients, these two diseases have become the

topic of widespread study due to the high volume of hospital readmissions.

Since hospital readmissions add significant cost to the healthcare industry,

there is a strong desire for automated methods to continually allow diag-

nosis of patients when they are away from the hospital by monitoring the

mobility of the patient while at home. Such systems require strong privacy

analysis to protect sensitive side-channel information during continuous data

collection. While initial research has not considered the privacy implications

of continuous motion monitoring, the final commercial system will need to

be designed to alleviate privacy concerns. This requires an investigation of

potential privacy leaks in order to design secure systems and motivates the

need for the analysis in this dissertation.

16

2.3 Collecting Spatial Information from Smartphones

Ubiquitous adoption of smartphones to the general public is now a reality. As

volume increases and prices decrease, sophisticated smartphones continue to

gain market share. Smartphones contain the ability to run moderately sophis-

ticated programs which can interpret various sensor readings including global

positioning systems, tri-axial accelerometers, gyroscopes, magnetometers and

others. New sensor pipelines promise energy efficient monitoring addressing

concerns of battery life. These sensors combined with the computational

power of smartphones provide an ideal platform to deploy widespread moni-

toring systems to the general population. This opens a new opportunity for

medical and health measurement and a new potential threat to a user’s mo-

bile security. The phone’s widespread adoption combined with the ability to

adaptively preprocess data gives it an advantage over dedicated medical and

fitness devices which are currently gaining popularity; however, phones suffer

from questions regarding sensor accuracy. The trials referenced in Section

2.2 have demonstrated the ability of expensive medical grade accelerometers

to infer valuable health statistics for clinicians. Thus, a careful investigation

must be conducted into the ability of smartphones to infer health information

especially compared to dedicated medical devices.

While the analytic techniques used to design private systems in this dis-

sertation can easily be applied to both mobile phones and dedicated devices,

we consider the threat from smartphones greater since they are more widely

adopted and allow an adversary to passively collect sensor information with-

out the user’s knowledge. While privacy is important during data collection

using dedicated fitness and medical devices, it is likely the patients are aware

they are being monitored while carrying a dedicated device. However, if such

measurements are possible using a mere smartphone, it would be possible to

leak this health information by giving access to the smartphone sensors to

downloaded apps. In contrast, dedicated devices are often only worn during

monitoring allowing the user greater control over the release of their motion

data.

For phones to be a threat to a user’s privacy, they must be shown to have

high accuracy similar to dedicated devices. We will demonstrate in Chapter

3 that cell phones contain the same sensor chips as many popular dedicated

health and fitness devices. Unfortunately, fundamental design choices in a

17

phone’s firmware can produce difficulties in obtaining a cleanly sampled sig-

nal. Phones return sensor readings at “best effort” which can be slowed by

other processes running on the phone, but any analysis in the frequency do-

main requires a steady sampling rate high enough to capture the motions in

human movement. Studies on human gait characteristics have established

that human walking requires between 3-5 Hz to capture 99% of the signal’s

power from gait wobble contained in the spectra below 15 Hz [23]. Studies

in motion capture have established 15 Hz as ideal to capture hand move-

ments and 7 Hz to capture facial expressions [24, 25]. This requires a sensor

capable of providing a clean reading at 30 Hz to obtain the minimum re-

quired Nyquist frequency. Fortunately, software post-processing can correct

the signal [26, 27]. We will design and develop smartphone software which

overcomes phone firmware limitations and collects human motion with sim-

ilar medical accuracy as the accepted medical accelerometers. We compare

our systems using the accelerometers analyzed by Remoortel et al. as our

baseline for standard medical accelerometers [19].

One final popular criticism to phones is that unlike dedicated devices which

are often affixed to the point of interest on the subject such as the wrist or

waist, phones are often carried anywhere on the user’s body. Thus, various

positions must be considered and corrected in order to infer motion charac-

teristics. Correcting for phone position has been demonstrated using various

machine learning techniques [28, 29, 30]. Thus, correcting for various phone

placement locations is considered a solved research problem which we choose

to not address in this dissertation.

The ability for phones to monitor at similar levels of accuracy as medical

monitors naturally leads to a problem with security and privacy. While

the low quality of access control on smartphones can (and probably will) be

quickly changed to suit best practices, the raw motion sensors are required for

many applications ranging from games to simple apps which wake the phone

upon shaking. Thus, blocking access to the motion sensors is currently an

infeasible solution. Instead, privacy mechanisms must be designed which can

intelligently quantify the possibility of side-channel information in order to

provide a finer level of access control.

18

2.4 Inferring Information from Motion Sensors

The popularity of smartphones combined with the richness of the sensors has

motivated a large body of work designing and testing various measurement

systems. We will now give a broad overview of the various categories.

2.4.1 Activity Recognition

Activity recognition is focused on determining what a phone user is currently

doing. The Jigsaw system was built to conduct activity recognition and op-

timize battery efficiency while sampling from the GPS [31]. It combined

accelerometer, microphone and GPS data to attain a user’s motion profile.

The accelerometer classification used twenty-four selected input variables to

various machine learning algorithms. Each algorithm was trained on a spe-

cific device placement with the system deciding the proper training to use

with a binary decision tree. The output of the classification was whether

the user was walking, running, bicycling, in a vehicle, or stationary. The au-

thors report a 95.1% accuracy when testing on a limited trial of college-aged

students. In a similar study, Kwapisz et al. trained a neural net classifier

to recognize walking, running, jogging, going up stairs, going down stairs

and remaining stationary with 91% accuracy on college-aged subjects [32].

In addition to walking, other activities have been classified including driv-

ing [33], drunk driving [34], cleaning, eating, meeting, reading, and watching

television [8]. Thus, previous work indicates a user’s activity information is

contained in accelerometer data.

2.4.2 Gait Characteristics

Gait characteristics can often be inferred using motion data collected from

users as they walk. This includes walking direction [27], step counting [35],

and speed estimation at pre-set walking speeds [14]. Other studies use var-

ious machine learning techniques to infer gait speed with users walking on

treadmills or at set walking speeds including support vector machines [36],

Gaussian process regression [37], linear regression [38], Bayesian linear re-

gression [39], artificial neural networks [40], mechanical models [41, 42] and

19

simple statistics [43, 44]. These studies confirm the intuition that gait char-

acteristics can be inferred from accelerometer data.

2.4.3 Location Recognition

Location recognition uses the motion sensors in the phone to track the specific

location of the user. Accomplice tracks a user’s location by using the phone’s

accelerometer to estimate a list of directional displacements. As a user drives

or walks down streets, the system attempts to match the displacements to

roadways on a map in order to infer a user’s travel. This is threatening

to user privacy since most users turn off the GPS to protect their location.

Since Accomplice does not require access to the GPS, the user’s location

information is still inferable [45]. On a smaller scale, multiple dead reckoning

systems designed to establish a user’s location in a constrained area, such

as a building, use accelerometer data to fine-tune their location prediction

[46, 47, 48]. Thus, continuous acceleration data can cause leaks to location

privacy.

2.4.4 Biometric Identification or Continuous Authentication

Biometric identification uses the motion of the phone to uniquely identify the

subject carrying the phone. The idea of using gait as a biometric has been

widely studied in computer vision [49, 50, 51]. More recently, accelerometers

have been proposed to identify subjects based on their unique gait patterns

[52]. Gait-ID identifies subjects with 99% accuracy in limited testing by

using a Mexican-hat wavelet transform combined with a support vector ma-

chine classifier. A number of papers have recently attempted other machine

learning algorithms to also identify users using accelerometer and gyroscopes

using various spatial temporal parameters [53, 54, 55]. Besides identifying a

specific user, it has also been shown that accelerometers can provide a unique

signature for device-specific identification which could allow the device to be

fingerprinted across apps or internet sessions [5].

20

2.4.5 Fitness Metrics

Fitness metrics are quickly gaining popularity to help users track their health.

While not considered medical quality, these metrics often can give insight into

a user’s life and therefore present sensitive information which needs added

protection. Note that these characteristics while health related are not med-

ically validated metrics and therefore do not fall under HIPPA’s authority to

regulate the user’s health information. Calorie expenditure is a popular topic

for health management with systems being designed to use smartphone mo-

tion sensors to measure calories burned during walking and bicycling [56, 57].

Other systems have been designed to measure a user’s perceived level of stress

through their cell phones [58, 59]. SpiroSmart attempts to use mobile phone

sensors to measure a user’s lung function [60]. Finally, Rabbi et al. design

and demonstrate a system to measure a user’s perceived overall wellness in

an attempt to correlate this perception with mobility data [61]. While not

medically validated, all these studies demonstrate that mobile sensors con-

tain some useful information relating to the overall status of a subject. This

information must be protected especially if it can be proven to be correlated

with real medical values.

2.4.6 Health Quality Metrics

Limited research has been conducted in utilizing mobile sensor systems to

measure physical health features. Yavuz et al. designed a system to monitor

patients and predict the likelihood of falling down using smartphones [62].

Rabbi et al. study the ability of various mobile sensor’s capability to assess

mental and physical well-being in test subjects [61]. The viability of using

smartphones to analyze clinical gait was presented by Yang et al. but did

not contain extensive trials [43]. A more rigorous investigation of clinical

gait monitoring was presented by Nishiguchi et al. [44]. While both works

contribute to the idea of using smartphones to monitor gait, neither work

assesses the viability of monitoring gait during natural unconstrained walk-

ing. We establish the ability of using phones to measure medical quality gait

characteristics in Chapter 3.

21

2.5 Conclusions

Mobile phone sensors show great promise in measuring a variety of infor-

mation. This dissertation will first develop a platform to measure motion

similar to medical grade sensors and validate the platform by measuring gait

speed and COPD status in Chapter 3. The dissertation will then focus on

protecting privacy related to biometric identification, device identification,

activity, fitness metrics, health metrics and demographic information.

22

CHAPTER 3

CLINICAL TRIALS: COLLECTING
MEDICAL READINGS WITH MOBILE

DEVICES

In this chapter, we investigate the ability of smartphones to collect high-

quality medical data with similar quality and accuracy as validated medi-

cal devices during unconstrained walking. Previous work indicates sensitive

information including personal identification, device identification, activity

recognition, and location are all contained in the mobile phone motion sen-

sor data. Previous work has successfully used accelerometers to measure gait

in clinical settings comparing the measurements in mobile devices to tradi-

tional medical accelerometers [43, 44, 14]. While useful, these studies are

either treadmill walking studies or nurse assisted walking studies. We are in-

stead interested in unconstrained free walking or walking without a set pace

or speed. This is necessary to determine the information leaks contained in

mobile devices as subjects walk around in their ordinary lives. We therefore

validate the ability of the phone to act as a medical accelerometer and design

software to collect medical quality sensor readings. We then conduct clinical

trials to collect unconstrained free walking and demonstrate the ability of

cell phones to collect measurements relating to the health of the subjects.

3.1 Medical Quality Readings from Smartphones

3.1.1 Hardware Comparison

It might be thought that the sensor chips found in smartphones would not

be comparable to medical accelerometers; however, the accelerometer chips

in smartphones are often similar or better than the accelerometers used in

medical devices. Accelerometers measure the relative acceleration of the

device’s spatial motion. Three parameters are standardly used to evaluate the

capability of the accelerometer: range, sensitivity, and sampling frequency.

23

Table 3.1: Physical Accelerometer Chips in Popular Devices

Product Sensor Chip Range (g) Sensitivity (mg) Sampling

Mobile Devices

Apple iPad2 STMicro LIS331DLH ±2,4,8 1,2,4 .5Hz-1kHz
Apple iPad3 STMicro LIS3DH ±2,4,8,16 1,2,4,12 1Hz-5kHz
Apple iPad4 STMicro LIS3DH ±2,4,8,16 1,2,4,12 1Hz-5kHz

Apple iPhone 4S STMicro LIS331DLH ±2,4,8 1,2,4 .5Hz-1kHz
Apple iPhone 5 STMicro LIS331DLH ±2,4,8 1,2,4 .5Hz-1kHz
Apple iPhone 6 Invensense MP67B ±2,4,8,16 .061,.122,.244,.488 400 kHz Max

Asus Eepad Kionix KXTF9 ±2,4,8 1,2,4 25Hz-800Hz
HTC Evo 4G InvenSense MPU-9150 ±2,4,8,16 .06,.1,.25,.5 4Hz-1kHz

LG Optimus Zone Bosch BMA 222 ±2,4,8,16 2,4,8,16 8Hz-1kHz
Motorola Droid 3 Kionix KXTF8 ±2,4,8 1,2,4 25Hz-800Hz

Motorola Droid Mini Kionix KXTF9 ±2,4,8 1,2,4 25Hz-800Hz
Motorola Razr STMicro LIS3DH ±2,4,8,16 1,2,4,12 1Hz-5kHz

Motorola Xoom Tablet Kionix KXTF8 ±2,4,8 1,2,4 25Hz-800Hz
Nokia 808 PureView STMicro LIS302DL ±2,8 18,72 100Hz or 400 Hz

RIM Playbook Bosch BMA150 ±2,4,8 4,8,16 25Hz-1.5kHz
Samsung Beam Bosch BMA220 ±2,4,8,16 .02,4,63,250 32Hz-1kHz

Samsung Nexus I515 Bosch BMA220 ±2,4,8,16 .02,4,63,250 32Hz-1kHz
Samsung Note STMicro LIS3DH ±2,4,8,16 1,2,4,12 1Hz-5kHz

Samsung Galaxy Ace STMicro LIS3DH ±2,4,8,16 1,2,4,12 1Hz-5kHz
Samsung Galaxy SIII STMicro LIS3DH ±2,4,8,16 1,2,4,12 1Hz-5kHz
Samsung Galaxy S4 STMicro LSM330 ±2,4,8,16 .061,.122,.183,.732 10MHz Max
Samsung Galaxy S5 Invensense MPU-6500 ±2,4,8,16 .061,.122,.244,.488 400 kHz Max

Toshiba Thrive Tablet Kionix KXTF8 ±2,4,8 1,2,4 25Hz-800Hz

Medical Devices

Actigraph GT3X ADXL335 ±3 2.93 .5Hz-100Hz
Dynaport Minimod Unknown Piezo-resistive ±2,6 1,4 100Hz

Philips Actical Unknown Piezo-electric ±2 20 32Hz
Zephyr BioHarness Unknown MEMS ±16 16 100Hz

Fitness Devices

Fitbit Flex STMicro LIS2DH ±2,4,8,16 1,2,4,12 1Hz-5kHz
Jawbone Up24 Bosch BMA 250 ±2,4,8,16 2,4,8,16 8Hz-1kHz

The range is the absolute minimum and maximum accelerations the chip can

record in gravity units (g) with 1 g being standard earth gravity. For example,

±2 g means the accelerometer can measure a minimum of −2 ∗ 9.81 m/s2

and a maximum of 2 ∗ 9.81 m/s2. The sensitivity is the amount of change

in acceleration required to produce one bit of change on the output of the

digital reading. Thus, lower numbers are better and a rating of 1 mg means

that the minimum discernable difference in acceleration is 0.001 gravity units.

Sensitivity is usually limited by the analog-to-digital converter embedded in

the sensor chip. Finally, the sampling rate of the accelerometer is how often

the sensor can be sampled in readings per second (Hz). A higher frequency

rating is more preferable.

Table 3.1 lists popular mobile, fitness and medical devices along with their

actual accelerometer chips (if known) and technical specifications. We iden-

tify the chips in commercial devices by combining information from tear-

24

downs conducted by chipworks.com with our own forensic analysis of missing

devices [63]. The chip specifications are taken directly from the chip man-

ufacturers website. Medical devices are proprietary, often less popular and

are thus much less likely to be reverse engineered. Thus, the information is

often incomplete; however, the available technical specifications are provided

for four popular medical devices.

Table 3.1 demonstrates some interesting trends among mobile devices. The

table summarizes chips used by each of the most popular phone manufactur-

ers inside the United States including Apple, HTC, Motorola and Samsung.

All the accelerometers used in phones are based on MEMS technology. The

newest phones, including the Apple iPhone 6, the Samsung Galaxy S5 and

the HTC Evo 4g, are utilizing a new chip manufactured by InvenSense which

contains an accelerometer and a gyroscope. This chip is capable of 16 g read-

ings as well as much higher sensitivities to smaller changes in acceleration.

This new chip is being used due to breakthroughs in power requirements. The

chip implements numerous low power collection techniques, interrupt capa-

bilities to wake the device on activity change, and an on-chip proprietary

step counter. Older Apple and Samsung products contain less sophisticated

chips produced by STMicroelectronics capable of reading dynamically at 2

g, 4 g, 8 g, or 16 g with sensitivities of 1 mg, 2 mg, 4 mg, and 8 mg respec-

tively. Older devices including the Beam, and RIM Playbook contain chips

that cannot attain the 16g measurement instead being limited to 8 g. The

accelerometers found in older phones such as the Motorola Droid, Toshiba

and Asus products are manufactured by Kionix and sacrifice the higher end

16 g readings and are limited to lower sampling rates often under the 1 kHz

that most other accelerometers can sample. Not included in the chart are

samples from cheaper less popular phones; however, these phones also uti-

lize MEMS based accelerometers with similar characteristics often in similar

quality to the Kionix chipsets.

Moving on to the fitness devices, we note that the Fitbit uses a STMicro

LIS2DH which is almost identical to the STMicro LIS3DH found in the Sam-

sung Galazy Ace and the Jawbone Up24 uses a Bosch BMA 250 a slightly

newer, lower power version of the BMA 222 used in the LG Optimus Zone.

Thus, the most popular fitness devices are using the same MEMs chips in

their designs which were being used in the mobile devices designed in the

same time period.

25

While commercial devices are fairly uniform with the type of accelerometer

chips, medical devices tend to be more proprietary, more closed to disclosing

the enclosed hardware, and more specialized. The bottom of Table 3.1 lists

some accelerometer specifications for devices which actually publish their

specifications. The Actigraph GT3X and Omron Healthcare (not shown)

devices both have embraced the MEMS accelerometers and market their

products as utilizing cutting edge technology. Actigraph uses a ADXL335

chip commonly used in hobbyist robotics. This chip has lower capabilities of

other more expensive chips but markets as a low power alternative. Validated

medical devices use older accelerometer technology such as piezo-resistive or

piezoelectronic accelerometers. The accelerometer used in the Philips health

product Actical is limited to ±2 g with a sampling frequency of 32 Hz. The

McRoberts Dynaport Minimod employs a very impressive piezoresistive ac-

celerometer capable of ±2 g and ±6 g with 1 mg and 6 mg sensitivities. This

device is also limited to frequency sampling at 100 Hz. These devices utilize

older technology that they claim is better than MEMS due to higher pre-

cision. However, recent studies have shown that piezo-based accelerometers

suffer from larger biasing to thermal fluctuations [64]. MEMS accelerometers

are less sensitive to thermal changes but instead suffer from low precision due

to small differences during manufacturing; however, these errors in precision

are singular to the specific chip and can be one-time calibrated away thereby

fixing the manufacturing error and creating a more precise sensor [31].

Even with numerous types of accelerometers now widely available, MEMS

accelerometers are quickly becoming the accepted standard for many med-

ical devices. They offer lower power, greater range, and better sensitivity

than previous technologies. At a fundamental level, the MEMS technology

yields accelerometer devices with similar physical operating characteristics.

Furthermore, many mobile, fitness, and medical devices are using the same

chips from third party manufacturers. Even if older validated medical devices

are not yet using MEMS, the embedded accelerometer chips have inferior

physical operating specifications. Thus, the chips found in mid-high range

smartphones of today should be adequately suited to monitor walking with

the same quality assurance of the medical and fitness devices.

26

3.1.2 Medical Monitoring

Even though the underlying sensor chips in mobile devices are compara-

ble to chips in dedicated devices, the software is limited by the design of

the firmware and operating system API. These limitations do not affect the

sensitivity or range of the readings but often limit the sampling frequency.

While Android 4.4 puts increased emphasis on battery efficient continuous

monitoring, the system is not designed to implement a medical quality mon-

itor which requires fixed frequency readings. The design of the firmware

between the hardware and the software API does not expose direct access to

the sensors. Instead, a system wide sensor manager monitors, updates, and

notifies registered applications to changing sensor readings. When an appli-

cation registers a sensor handler, the system sensor event manager spawns a

dedicated system thread to continuously poll the available sensors. Android

defines a number of speeds with various levels of delays in microseconds as

well as a FASTEST setting which is only delayed by the phone’s hardware

limitations. Android leaves it up to phone developers to implement drivers

to access sensors leaving wide variation in maximum polling frequency and

sensor behavior among devices. Thus, the sensor chips themselves may be

capable of sampling at higher frequencies, but the sampling frequency may

be substantially lowered by the phone’s processing capability and driver im-

plementation.

3.1.3 Frequency Sampling Requirements

While the sensitivity and range of the accelerometer readings is unaffected

by the firmware and operating system, the sampling frequency can be sub-

stantially reduced. We therefore design software to implement a medical

health monitor which samples at a frequency sufficient to capture a patient’s

movements accurately. This requires a determination of the necessary sam-

pling frequency to measure human motion. While most medically validated

devices choose to sample at 100 Hz, medical studies tend to put the range

of human motion much lower at 3-5 Hz [16, 65]. Motion capture designed

to capture human motion typically is calibrated to capture from 15-30 Hz

[24, 25].

In order to determine the required sampling frequency, we analyze ac-

27

Figure 3.1: Magnitude of Walking
Acceleration

Figure 3.2: FFT of Magnitude of
Walking Acceleration

Figure 3.3: Low-Pass Magnitude of
Walking Acceleration

Figure 3.4: High-Pass Magnitude of
Walking Acceleration

celerometer readings collected while a patient is walking. Figures 3.1 and 3.2

plot the absolute magnitude of acceleration and the corresponding Fourier

transform as measured by a Samsung Galaxy S5 at 60 Hz during walking.

The curve demonstrates a typical noisy signal with peaks indicating the toe-

off stage of the gait pattern. The spectrograph gives little interesting signal

above 15 Hz with primarily noise in the higher bands. Figures 3.3 and 3.4 il-

lustrate the results of running the accelerometer data through a fourth-order

ideal Butterworth 15 Hz high-pass and 2 Hz low-pass filter respectively. The

low-pass filter yields a discernable sinusoidal signal with peaks corresponding

to each step while the high-pass filter demonstrates primarily white noise. We

also compare the amount of noise to good signal by considering a measured

walking signal to a noise signal taken when the phone is stationary. These

two measurements allow us to calculate the signal-to-noise ratio as seen in

(3.1). We filter out the gravity present in the noise and walking signals. The

signal-to-noise ratio of both signals after being filtered with our low-pass fil-

ter is 6.31 dB demonstrating a strong amount of actual walking signal in the

lower-frequency data. The signal-to-noise ratio is calculated to be −6.96 dB

for the high-pass filter. Thus, we confirm that the substantial bulk of the

28

walking signal is found in the lower bands and the higher-frequency bands

above 15 Hz primarily contribute noise to a high-quality medical monitor.

Therefore, a monitoring frequency of 60 Hz is more than sufficient to capture

walking characteristics. Sixty hertz yields a Nyquist rate of 30 Hz in the

output signal. This creates a medical device capable of measuring signals

that occur at thirty times a second, the same frequency that the average

hummingbird beats its wings while in flight. While proponents of expensive

medical devices may assert this sampling frequency being too low, there is

little medical evidence that such rapid movements are necessary to measure

a subject’s movement.

SNRdB = PSignal,dB10 − PSignalNoise,dB

= log10
PSignal
PNoise

= 20log10
ASignal
ANoise

(3.1)

3.1.4 MoveSense

We design MoveSense, a middleware designed to overcome frequency sam-

pling limitations on Android devices thereby transforming the phone into a

medical quality monitor. It accomplishes this by implementing its own sensor

reading queue. The overall design is shown in Figure 3.5. The Android sen-

sor manager continuously queries the sensors to access the raw readings and

dispatches OnSensorChanged messages to MoveSense. MoveSense spawns a

high-priority thread to process the accelerometer and gyroscope sensor read-

ings, record the timestamp and magnometer and insert this information into

a first-in first-out queue. MoveSense implements a data handler thread to

continuously poll the queue for new sensor readings. The data handler pops

sensor readings and calculates the interval to the next reading assuming a

fixed sampling frequency. If the readings are coming in at greater than the

fixed frequency, the algorithm will average all readings in the current interval.

If the readings are coming in at less than the fixed frequency, the algorithm

will extrapolate the missing values using a linear approximation algorithm.

The final output from the accelerometer pipeline is a fixed frequency sam-

pling from both the accelerometer and gyroscope sensors. Thus, MoveSense

uses the processing power in the phone to get an accurate fixed frequency

29

System

Sensor

Manager

Accelerometer

Data

Handler

Sensor

Receiver

Queue

Average
Linear

Interpolation

60 Hz

Reading

< 60Hz > 60Hz

Sensor OnChange

Messages

0Hz-500Hz
Thread 1

Thread 2

Phone

Firmware

MoveSense

Figure 3.5: MoveSense Pipeline

stream of sensor data at the expense of processor cycles. We note that better

hardware which returns sensor readings at a fixed frequency would alleviate

the need for this design. We also note that a similar port of our MoveSense

system could easily be ported to Apple’s iOS and plan to do so in future

work.

3.1.5 Validating MoveSense Readings

We test MoveSense on three phones from different vendors of various qual-

ity including a high-end Motorola Droid Mini, a mid-range last generation

Samsung Galaxy Ace and a low-end LG Optimus Zone. We are interested in

validating the ability of a cell phone to operate at the same accuracy as the

widely accepted medical grade Actigraph GT3X.

30

0 100 200 300 400 500

0
20

40
60

80

Frequency (Hz)

C
P

U
 U

sa
ge

 %

●
●

●

●

●

●

●

●

● ● ● ● ● ●

●

Phones

Mini
Ace
Zone

Figure 3.6: CPU Utilization versus
Sensor Sampling Frequency

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Frequency (Hz)

Q
ue

ue
 (

0−
em

pt
y

1−
ex

pa
nd

in
g)

● ● ● ● ● ●

● ● ● ● ● ● ● ●

●

Phones

Mini
Ace
Zone

Figure 3.7: MoveSense Queue Length
versus Sensor Sampling Frequency

3.1.6 Performance Benchmark of MoveSense

MoveSense must output sensor readings at a fixed frequency to allow analysis

in the frequency domain. We accomplish this by sacrificing CPU cycles to

attain our fixed frequency readings. The Droid Mini contains a dual core

1.7 GHz processor. Both the Galaxy Ace and Optimus Zone contain similar

CPUs running at approximately 800 MHz. To determine the maximum fre-

quency attainable with MoveSense, we measure CPU utilization while sam-

pling the sensors at various frequencies while tethering the phones to a laptop

running the Linux “top” command through the Android debugger. The top

command allows us to record the CPU utilization of the MoveSense monitor.

During testing, the MoveSense system records the queue length of the sen-

sor pipeline. Figures 3.6 and 3.7 present the results of sampling at various

frequency rates with MoveSense. The maximum attainable frequency is re-

alized at the point when the CPU is fully utilized but the sensor queue does

not yet grow faster than MoveSense can calculate readings. The Ace and

Zone perform similarly with full utilization occurring at 120 Hz on the Ace

and 160 Hz on the Zone. The Droid Mini, operating at 1700 MHz, maxes

out a single CPU core (48% is a full single core utilization) at roughly 520

Hz. We notice that the ability of the phone to take readings is based on

both CPU power combined with the maximum frequency the Android sensor

queue reports the raw readings. When the locked frequency is higher than

the incoming raw readings, more processing is required. Raw readings come

into the Ace at approximately 90 Hz, the Zone at approximately 110 Hz,

and the Mini at approximately 350 Hz. We finally note that the dual core

31

Table 3.2: Analysis of Variance (ANOVA) between Smartphones and an
Actigraph GT3X

Phone µ2 Avg µ2 Residual Pr(>F) p-value

S5 15.132 1.014 1.114e-4 .001
Ace 15.508 1.014 9.36e-5 .001

processor in the Mini would allow the user to multitask during monitoring.

All phones can easily attain both our target for human motion of 60 Hz and

the standard accepted 100 Hz set by medical monitors.

Finally, we test MoveSense against an Actigraph GT3X on two phones

including a high-end Samsung S5 and low-end Samsung Galaxy Ace. We

are interested in validating the ability of the two smartphones to operate at

the same accuracy as the Actigraph GT3X, a medical grade device [66]. We

measure a subject walking 10 laps on a 10 meter hallway while wearing a

waist belt at the L3 position (at the base of the back) [16] containing the

Actigraph and the two test phones running MoveSense. The 10 laps yield

3329 data points. We conduct an analysis of variance (ANOVA) between

each of the signals from the phone and Actigraph using the signal’s Z-scores.

The results are summarized in Table 3.2. We find that the phones pass the

F-test with probabilities of differing of 1.14e−4 and 9.36e−5 for the S5 and

Ace respectively using a confidence interval of .001. Therefore, the readings

from the phones are comparably identical to the readings of the Actigraph.

3.2 Clinical Trials

In order to prove the viability of inferring medical information from spa-

tiotemporal sensor readings collected with phones being carried by patients,

we conduct two clinical field trials. We choose to test patients with chronic

obstructive pulmonary disease (COPD) since these patients are regularly

assessed by conducting an American Thoracic Society (ATS) standard six-

minute walk test (6MWT). The 6MWT is a timed test conducted on a

straight corridor ranging from 10-100 meters with the ends marked with

cones. Vital signs are taken at the start and end of the test including heart

rate, blood oxygen levels and questionnaires including the modified Borg dys-

pnea and the Borg rating of perceived exertion. The subject then walks back

32

and forth on a straight walkway for six minutes being instructed to walk as

much as they can during the test. We make no changes to the standard pro-

tocol [67] except that we make subjects carry phones running the MoveSense

monitor. Subjects are given a waist pack containing the phones and in-

structed to wear it at the L3 position (at the base of the back) throughout

the entire testing procedure.

We now outline results from two clinical trials conducted while collecting

spatiotemporal data from cell phones. Our first trial collected data from

thirty patients with either asthma or COPD tested at the University of Illi-

nois Health and Hospital system in Chicago under the supervision of the

University of Illinois at Chicago Institutional Review Board protocol #2011-

0625. This trial collected data from patients as they walked a 6MWT while

being supervised by a clinician. The second trial measured twenty-eight pa-

tients who had available spirometer data at the Carle Rehabilitation Center

in Urbana Illinois under the supervision of the Carle Foundation Hospital

Institutional Review Board protocol #497221. This trial also collected data

during a standard 6MWT with an additional optional free walk around an

oval course allowing the collection of a second sample of walking while not

under testing conditions. Five healthy subjects contributed walking data to

compare fitness devices to MoveSense in our laboratory in Siebel. Finally,

thirty additional subjects have contributed data by running MoveSense on

their phones.

In each of these trials, we investigate the ability to predict health and medi-

cal values by training machine learning algorithms using eight spatiotemporal

features extracted from the raw signal chosen based on previous kinesiology

research [44]. We calculate these statistical parameters using the absolute

magnitude of the acceleration of the three directions. In the time domain,

we select the mean (µ) and standard deviation (σ) of acceleration. We also

select the mean crossing rate (MCR) which represents the ratio of above and

below the mean acceleration.

µ =
1

N
∗

N∑
t=0

at (3.2)

σ =

√√√√ 1

N
∗

N∑
t=0

(at − µ)2 (3.3)

33

MCR =
1

N
∗

N∑
t=1

It{It = 1|(at−1 − a)(at − a) < 0} (3.4)

The root mean square (RMS) provides a statistical measure on the varia-

tion of signal magnitude.

RMS =

√√√√ 1

N
∗

N∑
t=0

a2
t (3.5)

The Autocorrelation coefficient (AC) measures periodical similarity in the

time domain.

AC = max {∀t∈N,i<t (
N∑
t=0

atat−i) (3.6)

The coefficient of variance (CV) is a normalized measure for dispersion of

the discrete samples.

CV =
σa
µa

(3.7)

In the frequency domain, we compute the peak frequency (PF) which repre-

sents the frequency of the peak magnitude in the spectrum.

PF = arg maxf {xf |f = 0, ..., N} (3.8)

Finally, we calculate the Shannon entropy (H) which quantifies the informa-

tion contained in the acceleration spectrum.

H = −
N∑
f=0

xf ∗ log xf (3.9)

We call these eight parameters our feature extraction approach (FEA) and

use these features in each of our trained machine learning models in the rest

of this chapter.

34

3.2.1 Speed and Distance during Natural Walking

We investigate the possibility of using the phone sensors to predict both walk-

ing speed and walking distance. The ability to accurately measure walking

distance would allow a standard 6MWT to be conducted outside a clinic.

While previous work in health has primarily concentrated on constrained

walking with patients either walking on a treadmill or walking with a pace

setter (such as walking next to a nurse), we measure free walking during

a 6MWT. We now summarize the results from the trials conducted at the

University of Chicago as outlined in our previous publications [68, 69].

We first attempt to predict gait speed through supervised learning trained

with a support vector machine (SVM) model using a linear kernel to map

features. The model is trained using the FEA as input vectors and the av-

erage lap speed as the target using data from twelve subjects. We train

our first model with six COPD patients from the hospital in Chicago and

six healthy subjects recruited at the Institute of Genomic Biology at the

University of Illinois in Urbana-Champaign. The model produces an error

rate of 6.11% with personalized training using leave-one-lap-out training and

9.98% for cross validation with leave-one-subject-out training. The distance

errors are given in Figures 3.8, 3.9 and 3.10. Not surprisingly, the person-

alized model performs with high accuracy with the leave-one-out and cross

validation producing higher rates of error.

While initially promising, conducting an automated walk test requires dis-

tance not speed. Once patient testing was complete, we developed a strategy

for walk distance estimation more closely mirroring popular fitness devices.

First, we count the number of steps taken using our novel step detection al-

gorithm [68] then we multiply by an estimation of the patient’s stride length.

We once again develop an SVM model to predict stride length. The model

is trained on the thirty subjects tested in Chicago using the FEA as input

vectors with the target being the estimated stride length found by dividing

the lap length by the number of steps observed over the course of the lap.

The distance model attains a 5.87% error rate without training and a 4.82%

error rate with training when trained and validated on the results from the

6MWT. The Bland-Altman plot in Figure 3.11 demonstrates the error rates

of each test and indicates little bias in the method.

We expand our analysis with the data from the Carle subjects by adding

35

Figure 3.8: Gaitspeed Accuracy
Using the Personalized Model with
UIHH Patients

Figure 3.9: Gaitspeed Accuracy
Using Leave-One-Out Validation with
UIHH Patients

Figure 3.10: Gaitspeed Accuracy
Using Cross Validation with UIHH
Patients

Figure 3.11: Bland-Altman Plot of
Distance Estimation with UIHH
Patients

a free walk around a 120 meter oval course in addition to the measurements

of walking speed and distance during a 6MWT [26, 70]. The accuracy of

multiplying the estimated stride length by the number of strides used in

the Chicago experiment is limited since it is not possible to attain the in-

stantaneous stride length per step without some form of motion capture or

gait mat. Instead, we return to using a trained machine learning model for

speed. We then assess two methods to predict distance based on the pre-

dicted speed. We exploit the constraints of the 6MWT by using the compass

36

Table 3.3: Error Rates for Speed Prediction (*CV Cross Validation) for
Both FEA and CEA Input Features with Carle Patients

FEA CEA
GPR SVM ANN GPR SVM ANN

Error 5.61% 3.23% 159.3% 9.20% 8.68% 75.73%
RMS 7.15% 4.55% 166.1% 12.45% 12.35% 93.41%

Error CV* 6.67% 3.68% 17.03% 11.33% 11.53% 21.71%
RMS CV* 8.93% 5.11% 21.80% 15.47% 16.06% 28.34%

to determine the beginning and ending times of the individual laps. We can

then use our trained speed model to predict the speed during the lap and

multiply the speed by the total lap time. We call this the laps method. In

the second method, we split the walking into uniform ten second windows,

use our trained speed model to predict the speed for each window and mul-

tiply by ten seconds to obtain the distance. We call this the free distance

method. Since the free estimate does not require laps, it has the advantage of

being usable outside of a 6MWT and can therefore be used for unconstrained

walking.

In order to compare our speed models to previous work, we compare three

commonly used machine learning algorithms to predict walking speed includ-

ing support vector machines (SVM), Gaussian process regression (GPR) and

artificial neural networks (ANN). We train each speed model using a feature

extraction approach (FEA) which uses nine spatiotemporal parameters (our

initial eight in the original FEA plus step counts using our step counting

algorithm) and a component extraction approach (CEA) which uses the top

fifty eigenvalues after conducting a principal component analysis of the mag-

nitude of the Fourier transform, a technique commonly seen in the literature.

The results given in Table 3.3 and Figure 3.12 demonstrate that the SVN

trained using the FEA with an error rate of 3.23% was clearly superior to

the SVN trained using the CEA with an error rate of 8.68%. The SVN and

GPR produced less error than the ANN models. We therefore continue using

the SVN with the FEA in the rest of the experiments in this chapter.

Figures 3.13 and 3.14 show the accuracy and error of each method during

the 6MWT. Overall, the laps method improves accuracy lowering error rates

to 2.33% with healthy subjects and 2.58% for COPD patients with person-

alized training and 3.10% for healthy subjects and 3.47% for COPD patients

37

S
pe

ed
 (

m
/s

)

●●

●
●●●●●
●●●
●
●
●●●
●
●

●

●

0.
5

1.
0

1.
5

2.
0

Patients Healthy Subjects

GPR
SVM
ANN
Observed

Figure 3.12: 6MWT Speed Accuracy
from Carle Trial

6M
W

T
 D

is
ta

nc
e

(m
)

10
0

20
0

30
0

40
0

50
0

60
0

Pulm Healthy Pulm Healthy

Full CV

Free
Laps
Obs

Figure 3.13: 6MWT Distance
Accuracy from Carle Trial

Full Laps Full Free CV Laps CV Free

E
rr

or
 %

0
5

10
15

20

Pulm
Healthy

Figure 3.14: 6MWT Distance
Estimation Error from Carle Trial

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

● ●

●

●

●

●
●

●

50 100 150

−
40

−
20

0
20

Mean

D
iff

er
en

ce

Figure 3.15: Free-Walk Distance
Bland-Altman Plot from Carle Trial

without personalized training. The free method produces higher errors with

a 10.97% error rate for healthy and an 11.35% error rate for pulmonary

patients with personalized training and 11.28% for healthy and 11.92% for

pulmonary without personalized training. Figure 3.15 presents the Bland-

Altman plot for the distance prediction during the free walk around the oval.

The method is biased to predict low by roughly 7.2 meters. The method

results in a 10.2% error rate with a 7.6% standard deviation. Analysis indi-

cates that a majority of the error is occurring due to the decrease in speed

as the patients are coming into the turn during the 6MWT. Since the pa-

tients do not slow down while walking around the oval, the method predicts

lower than the actual distance. This motivates the need for instantaneous

gait speed to train the models. We leave this as an important topic to future

work, but do note that medically valid gait speed and distance does indeed

seem possible using machine learning methods.

38

Table 3.4: SVM Gold Classifier

Unified Prediction (22 Patients)

Actual Status GOLD1 GOLD2 More Sever

GOLD1 78.54% 19.51% 1.95%

GOLD2 19.96% 65.18% 17.85%

More Severe 2.96% 23.47% 73.57%

Cohort Prediction (12 Patients)

Actual Status GOLD1 GOLD2 More Sever

GOLD1 99.24% 0% 0.76%

GOLD2 0% 87.63% 12.37%

More Severe 1.23% 11.6% 87.16%

3.2.2 COPD Status

During our analysis of walk speed and distance with the patients tested in

Chicago, we noted that walk distance seemed indicative of COPD status as

seen in Figures 3.8, 3.9 and 3.10. We therefore train an SVM binary classifier

using the FEA as inputs with the target being COPD or non-COPD status.

This model attains 100% classification accuracy with an initial sample of

twelve patients providing an early indication that it is possible to extract

COPD status from motion sensors.

After testing was completed on the thirty patients at the University of

Illinois Health and Hospital system in Chicago, we revisited health status

prediction [69]. We develop an SVM trained model to predict GOLD status

classification for COPD patients. GOLD status classifies patients based on

FEV1% values. FEV1% is a measurement of the forced expiratory volume

over the first second of exhalation divided by the standard expected for the

subject’s demographic cohort. The GOLD classification is based solely on

FEV1% values with GOLD 1 being greater than 80%, GOLD 2 being 50-

79%, GOLD 3 being 30-49% and Gold 4 being <= 29%. The results in Table

3.4 yield an overall 71.57% classification accuracy for a single model across

all demographic cohorts and 89.22% accuracy when trained on a specific

cohort. Interestingly, these results do not simply mirror the walk distance

39

Figure 3.16: GOLD Prediction Accuracy over Time

in the groups since the average walk distance in the more severe group is

232.8 meters which is greater than the average walk distance in the Gold 2

group of 208.7 meters. Thus, severity prediction by gait parameters produced

better health classification than traditional 6MWT distances. Figure 3.16

demonstrates the amount of monitoring time required to make the GOLD

prediction with close to 85% accuracy after 20 seconds and 90% accuracy after

30 seconds. These tests demonstrate that we can not only train classifiers to

identify the presence of COPD, but we can also train a classifier capable of

determining a three way severity classification of COPD patients. Clearly,

the viability of such a prediction elevates the need to protect motion data

while a COPD patient is walking in order to protect leaking the status of the

patient’s condition.

3.2.3 Blood Oxygen Saturation

Finally, we investigate the ability to predict blood oxygen saturation contin-

uously as the users conduct a 6MWT and free walk during our experiments

at the Carle Pulmonary Rehabilitation Center [71, 72]. We find that we can

predict with an error rate of roughly 1% during the 6MWT and 2% during

free walking using an SVM trained using FEA on fifteen patients. The SVM

using FEA was once again proven superior to Gaussian process regression and

the CEA. We also find no significant difference between using the magnitude

of acceleration versus the three directional components. Using cohorts, we

can reduce the error by roughly one half. Thus, preliminary results indicate

that walking signal contains information correlated to blood oxygen satura-

40

50
0

55
0

60
0

65
0

70
0

st
ep

s

Patients Healthy

Predicted Steps
Observed Steps

Figure 3.17: MoveSense Step
Counting Accuracy

Table 3.5: Step Counting Accuracy of
MoveSense vs. Commercial Devices

Device Error Rate
Phone App 0.94%

Omron HJ-720ITC 5.20%
Actigraph GT3X 11.08%

tion, a widely used medically valid metric for patient status and clearly a

medically sensitive metric.

3.2.4 Comparison to Dedicated Devices

We investigate the ability of smartphones against a number of dedicated

medical accelerometers to measure both step counts and distance walked. For

the step counts, we use our novel step counting algorithm as introduced in

our previous work [68]. Figure 3.17 is the boxplot for the measured number of

steps compared to the actual number of steps taken for fifteen patients tested

at the Carle Rehabilitation center and ten healthy subjects all conducting a

6MWT. Overall, we attain 98.7 % accuracy with the COPD patients and 97.3

% accuracy with the healthy controls. Additionally, we conduct a test with

four subjects wearing a phone running MoveSense, an Omron pedometer

and an Actigraph GT3X. Each subject conducts a 500 step walking test.

Table 3.5 presents the results with the phone app attaining 99.04% accuracy

beating both the Omron and the Actigraph. Thus, phones are capable of

recording accurate step counts with greater accuracy than dedicated devices

on healthy subjects.

We now compare the distance estimation from MoveSense against com-

mon fitness and health devices. To directly compare, we conduct testing on

five healthy subjects with one female and four males from the ages of 21

to 60 years old. Due to the cumbersome nature of carrying six devices, the

IRB would not allow us to test on pulmonary patients. The subjects carry

41

A
ct

ua
l

F
itb

it

U
p2

4

O
m

ro
n

M
ov

es

M
in

i

Z
on

e

200

500

1000

2000

Device

W
al

ki
ng

 D
is

ta
nc

e

Figure 3.18: Distance Prediction
Accuracy of MoveSense against
Commercial Devices

F
itb

it

U
p2

4

O
m

ro
n

M
ov

es

M
in

i

Z
on

e

5

10

20

50

100

200

500

E
rr

or
 %

Figure 3.19: Distance Prediction
Error MoveSense against Commercial
Devices

a Fitbit Flex and Jawbone Up24 on their wrist, an Omron HJ-720ITC pe-

dometer on their belt and an iPhone 5s running Moves (a commercial app

from ProtoGeo now a FaceBook subsidiary), a Motorola Droid Mini running

MoveSense and an LG Optimus Zone running MoveSense in a pack at the L3

position. Subjects walked between two to five laps consisting of 65 meters of

busy hallways to simulate real world conditions. Subjects then stopped and

conducted office tasks for three minutes at a desk and spent two minutes sim-

ulating eating a meal at a table. Finally, the subjects walked through the 65

meters of hallways two more times and ascended and descended a set of stairs.

Each fitness device was calibrated with the subjects personal stride length

and demographic information. We recorded the distance reported from each

device and the distance from our previously trained universal free distance

model for both phones running MoveSense. These were then compared to

the known measured distances.

The results from the experiment are shown in Figures 3.18 and 3.19. Using

the FEA SVM model trained on a mixture of COPD patients and healthy

controls, we attain an error rate of 8.3% from the readings on the Droid Mini

and 7.6% from the readings on the LG Optimus Zone. This is substantially

better than the roughly 50% error using Moves, the Up24, and Omron pe-

dometers and much better than the 400% error produced by the Fitbit Flex.

Thus, our models improve the state of the art at predicting walk speed and

distance using only motion sensors during unconstrained walking with higher

accuracy than the tested dedicated fitness devices.

42

3.3 Conclusions

Through careful analysis of the hardware, design of software, and direct

testing, we find that sensors contained within smartphones can attain raw

readings statistically identical to popular medical grade devices. Machine

learning techniques presented in previous work are directly applicable to pa-

tients when re-trained using data from the correct target population. Walk

speed and distance can be inferred from the motion sensors in smartphones

with patients during unconstrained walking. Phones using a trained support

vector machine model using eight input statistical features chosen from the

kinesiology literature is the most accurate model tested in our experiments for

walk speed and walk distance. Our distance model lowers error rates com-

pared to consumer grade fitness devices by nearly an order of magnitude.

Additionally, we can infer health status including a binary classification be-

tween COPD and healthy subjects, a three way classification of severity in

COPD patients, and a continuous prediction of blood oxygen saturation ac-

curate with a mere 2% error. Thus, health status in patients with chronic

obstructive pulmonary disease is classifiable using only the motion sensors

in mobile devices. Of course, all these inferences need validation with larger

training and testing populations. This future work is currently in progress;

however, the initial proof that the models work clearly motivates the need

to investigate privacy protection to mitigate the threat of leaking sensitive

medical information.

43

CHAPTER 4

A DATA SET TO STUDY MOTION
PRIVACY

Previous work indicates it is possible to infer various activity, fitness, health

and demographic properties by using machine learning models with data

from motion sensors. We now leverage all the phone data we have collected

over a four year period of clinical trials to investigate the privacy implica-

tions of sharing motion data. Our data set includes roughly forty-two hours

of readings from ten different phones testing eighty-eight subjects. It con-

tains thirty subjects tested at the University of Illinois Health and Hospital

System in Chicago and twenty-eight subjects tested at the Pulmonary Re-

habilitation Center in Urbana. The remaining thirty subjects are healthy

controls recruited from our lab at the Institute of Genomic Biology and sup-

port staff at Carle Hospital. Many data sessions were conducted with three

phones collecting simultaneously allowing us to compare the phone classifica-

tion independently of the subject and particular test. We now outline what

prediction targets we will investigate and how we will extract features for the

machine learning in the subsequent chapters.

4.1 Prediction Targets

Determining the vulnerabilities created by a user sharing motion data re-

quires a careful analysis of what can be inferred from the data. We compile a

list of all known information we have about the subjects in our master data

set. This includes some new demographic predictions such as height, weight

and age as well as revisiting previously confirmed classifiers such as phone

and personal identification. While we expect to be able to confirm previous

work with these classifiers, it is necessary to conduct our own analysis in

order to determine the relative privacy leaks for each sensor and feature used

in the analysis.

44

Table 4.1: Available Data per Prediction Target

Target Subjects Phones Sessions Segments Time

B
io

m
et

ri
cs

PhoneID All 88 10 242 1120 42:49:15
PhoneID Walking 88 10 242 455 23:50:36

PhoneID Idle 86 10 240 665 18:58:39
UserID All 88 10 242 1120 42:49:15

UserID Walking 88 10 242 455 23:50:36
UserID Idle 86 10 240 665 18:58:39

F
it

n
es

s

Speed Walking 79 9 178 265 18:27:24
Speed Waking (Laps) 79 9 178 5956 18:18:10

Steps Walking 8 6 24 24 2:23:00
Steps Walking (Laps) 8 6 24 804 2:23:00

Activity 88 10 242 1120 42:49:15
Activity (Laps) 88 10 242 6883 42:50:37

D
em

og
ra

p
h

ic
s

Gender All 88 10 242 1120 42:49:15
Gender Walking 88 10 242 455 23:50:36

Gender Idle 86 10 240 665 18:58:39
Age All 86 10 239 1089 42:24:24

Age Walking 86 10 239 441 23:33:55
Age Idle 84 10 237 648 18:50:29

Height All 78 10 216 992 36:52:44
Height Walking 78 10 216 404 22:25:03

Height Idle 76 10 214 588 14:27:41
Weight All 78 10 216 992 36:52:44

Weight Walking 78 10 216 404 22:25:03
Weight Idle 76 10 214 588 14:27:41

M
ed

ic
al

M
ea

su
re

s

FEV1 All 64 9 123 590 20:33:25
FEV1 Walking 64 9 123 250 13:23:57

FEV1 Idle 62 9 121 340 7:09:28
FEV1/FVC All 26 7 80 401 13:02:45

FEV1/FVC Walking 26 7 80 167 9:35:04
FEV1/FVC Idle 26 7 80 234 3:27:41

GOLD All 85 10 237 1087 42:24:04
GOLD Walking 85 10 237 441 23:33:56

GOLD Idle 83 10 235 646 18:50:08

Our data set contains twelve labeled targets summarized in Table 4.1. We

manually labeled the data in order to provide ground truth for each prediction

target. We split certain labels between walking and non/walking segments

allowing us to measure the accuracy of classifiers both when the subjects are

stationary and moving. Additionally, speed and steps contain the notion of

laps in order to use the speed and step algorithms presented in Chapter 3.

Due to the varied nature of the data set, each target characteristic may have

45

various amounts of available data. The number of subjects, testing sessions,

testing segments and total recorded time for each target characteristic is

also recorded in Table 4.1. We consider both phone identification and user

identification as our biometrics. We have walking, non-walking, speed and

steps for our fitness metrics. We consider various demographics including

gender, age, height, and weight. These targets will be used to assess the

ability of classifiers to use motion data to divide subjects into demographic

cohorts. Finally, we look at the percentage of vital capacity expired in the

first second of forced exhalation (FEV1/FVC), normalized FEV1/FVC to

the standard value for the subject’s demographics (FEV1%), and standard

COPD status classification (GOLD) as targets for our medical evaluation.

4.2 Sensor Streams

We extract every sensor stream available from current generation mobile

phones giving thirty-one streams of sensor input as presented in Table 4.2.

Values 1-19 are obtained directly from the phone’s sensors by MoveSense.

MoveSense queries each value from the Android API. The Accelerometer,

Magnetometer, Gyroscope and Gravity X, Y, and Z values come directly

from the built-in sensor chip. The gravity reading is the DC component of

the acceleration from a low-pass filter. The rotation vector is calculated by

the Android API using the gravity and magnetometer sensors to estimate the

orientation of the phone in 3d space using (4.2). The rotations are calculated

using a world coordinate system with the positive X direction pointing east

and the rotation about X in the clockwise direction given by θ. The Y

direction points north with rotation around Z in the clockwise direction given

by ψ. The Z direction points up perpendicular to the ground with positive

rotations in the clockwise direction given by φ. Note that this is different

from the traditional right-hand coordinate system used in aviation. These

sensors are standard sensors as implemented by the Android API and are

collected at maximum speed and sampled at a fixed 60 Hz frequency by our

MoveSense system as outlined in Chapter 3. We also add to this list the

continuous streams of heart rate and blood oxygen level that was collected

through a wireless pulse oximeter during the clinical testing.

46

Table 4.2: Sensor Streams

1 AccX Acceleration in X Direction (Phone Coordinates)
2 AccY Acceleration in Y Direction (Phone Coordinates)
3 AccZ Acceleration in Z Direction (Phone Coordinates)
4 AccMag Magnitude of Acceleration (4.1)
5 MagX Magnetic Field Strength in X Direction (Phone Coordinates)
6 MagY Magnetic Field Strength in Y Direction (Phone Coordinates)
7 MagZ Magnetic Field Strength in Z Direction (Phone Coordinates)
8 MagMag Magnitude of Magnetometer (4.1)
9 GyroX Rotational Velocity around X (Phone Coordinates)
10 GyroY Rotational Velocity around Y (Phone Coordinates)
11 GyroZ Rotational Velocity around Z (Phone Coordinates)
12 MagGyro Magnitude of Rotational Velocity (4.1)
13 GravX Magnitude of Gravity in X Direction (Phone Coordinates)
14 GravY Magnitude of Gravity in Y Direction (Phone Coordinates)
15 GravZ Magnitude of Gravity in Z Direction (Phone Coordinates)
16 MagGrav Magnitude of the Gravity Vector (4.1)
17 RotX Rotation Azimuth (World Coordinates φ (4.2))
18 RotY Rotation Pitch (World Coordinates θ (4.2))
19 RotZ Rotation Roll (World Coordinates ψ (4.2))
20 HR Heart Rate Measured via BlueTooth PulseOx
21 POx Blood Oxygen Saturation Measured via BlueTooth PulseOx
22 AccV Acceleration in Vertical Z Direction (World Coordinates)
23 AccE Acceleration in the East X Direction (World Coordinates)
24 AccN Acceleration in the North Y Direction (World Coordinates)
25 AccF Acceleration in the Forward Walking Direction
26 AccSw Acceleration Perpendicular to Forward Walking Direction
27 AccPCA1 Acceleration in Direction of Maximum Variance
28 AccPCA2 Acceleration Perpendicular to Maximum Variance
29 DirF Rotation from North of Walking Direction in Degrees
30 DirP Rotation from North of Maximum Variance in Degrees
31 DirOff Absolute Difference between DirF and DirP

4.2.1 Calculated Sensor Streams

Sensor streams 22-31 are calculated from the other sensor readings collected

from MoveSense. For each of the raw sensor streams, we calculate the Eu-

clidian distance for the accelerometer, magnetometer gyroscope, and gravity

readings (4.1). We also conduct three projections of the accelerometer read-

ings. We project the accelerometer values to a standard world coordinate

system. We also project the accelerometer values with the X axis in the

47

forward walking direction. Finally, we apply a transformation with the X

axis aligned with the vector of maximum variance during walking. We also

calculate the forward walking direction and maximum variation in degrees

from magnetic north.

We project the accelerometer readings from the local phone coordinate

system to the world coordinate system. This transformation uses the values

of the magnetometer M which give the vector north and the gravity reading

G which gives the vector up opposite of gravity (4.2). The gravity vector is

assumed to be more accurate at pointing up than the magnetometer is at

pointing north. Thus, the cross product of the gravity vector and magne-

tometer are first taken to estimate the heading east H. The eastward vector

and gravity are normalized. The direction north is then taken as the cross

product of the gravity and the eastward vector to get the north vectors.

The local to world coordinate systems can then be transformed by simply

multiplying the given direction by the rotational matrix. The order of ro-

tation for the yaw, pitch and roll are to first rotate about the Z (gravity)

axis, then about the X (eastward) axis and finally about the Y (northward)

axis. The final definition of the rotation vector in terms of the roll pitch and

yaw and the equations to obtain them directly from the rotation vector are

given in (4.2). The values of AccV, AccE, and AccN are then the output

from multiplying the AccX, AccY and AccZ by the rotation matrix giving

the acceleration in the vertical, east and north directions respectively.

|V | =
√
VX

2 + VY
2 + VZ

2 (4.1)

48

Rot =

R0 R1 R2

R3 R4 R5

R6 R7 R8

 =

HX
|H|

HY
|H|

HZ
|H|

MX

|M |
MY

|M |
MZ

|M |
GX
|G|

GY
|G|

GZ
|G|

 =

 cosφ sinφ 0

−sinφ cosφ 0

0 0 1

 =

1 0 0

0 cosθ sinθ

0 −sinθ cosθ

 =

 cosψ 0 sinψ

0 1 0

−sinψ 0 cosψ

 cosφcosψ − sinφsinψsinθ sinφcosθ cosφsinψ + sinφcosψsinθ]

−(sinφcosψ + cosφsinψsinθ) cosφcosθ −sinφsinψ + cosφcosψsinθ)

−sinψcosθ −sinθ cosψcosθ

φ = tan−1

(
R1

R4

)

θ = sin−1(−R7)

ψ = tan−1

(
−R6

R8

)

(4.2)

A majority of the data in our data set is collected while the subject is

walking. Measuring the amount of acceleration relative to the walking direc-

tion of the subject may allow the phone to more closely track and classify

the characteristics of the gait pattern. The method we base our algorithm

to estimate walking direction was first proposed by Roy et al. [27]. The

forward walking direction is observed to be the average of the horizontal di-

rection during the swing phase over an entire gait cycle. The swing phase

is determined using the heel strike, which is easily identified as a spike in

the acceleration magnitude, as an anchor point. Once identified, the direc-

tion measured over successive heal strikes can be averaged giving a forward

walking direction.

To identify the walking direction, we filter the vertical component of accel-

eration through an ideal second-order Butterworth low-pass filter with cutoff

frequency set at 2 Hz. This yields a roughly sinusoidal signal with the neg-

49

500 1000 1500

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

time(s)

x

500 1000 1500

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

time(s)

y

Figure 4.1: Walk Direction Test

ative magnitude roughly corresponding to the swing phase of the gait. We

therefore calculate the average direction of the acceleration in the horizontal

plane (AccN and AccE) while the vertical acceleration is negative to get the

average forward direction per step. We average this direction over four cy-

cles to obtain the direction per step. Figure 4.1 plots the results from a test

conducted with the walk direction detection. The graph plots the relative

absolute magnitude of the directional components in the AccE (X) and AccN

(Y) directions during walking. In this experiment, the subject walked a two

mile course with segments pointing due south, north-east, west, and finally

north. We see that while the signal is noisy, we can clearly identify the direc-

tion with the south portion of walking from 0 to 850 seconds, the north-east

from 850 to 1200 seconds, the west from 1200 to 1450 seconds and the north

walking from 1450 seconds to the end of the experiment. The noise in the sig-

nal is trivially removed via another low-pass Butterworth filter. Finally, we

implement a rotational matrix RW to represent the transform from horizontal

50

north and east acceleration to forward walking direction (4.3). Multiplying

the north and east directional components gives the relative acceleration in

the forward walking direction accF and the acceleration in the perpendicular

direction parallel to the sway during the subject’s walking accS.

RotW =

[
FX
|F |

FY
|F |

FY
|F | −

FX
|F |

]
(4.3)

We transform the acceleration in the horizontal plain to the direction of

maximum variance and the orthogonal component by conducting a principal

component analysis (PCA). The direction of maximum variance is interesting

because it is related to the stability of the subject throughout the gait cycle.

In particular, a healthy stable individual has a tendency to have maximum

variation parallel to the forward walking direction. Conversely, an unstable

subject has more variance off the primary walking direction. Thus, investigat-

ing the relative direction of maximum variance during walking may provide

insight into the gait cycle. We therefore assemble a rotation matrix RPCA

from the output of the PCA. Multiplying the acceleration in the horizontal

direction yields accP1 and accP2.

Finally, we add the direction of the horizontal transforms in the horizontal

plane. We calculate the directions using standard coordinates with 0◦ being

north and the rotation going clockwise i.e. 90◦ is east. We calculate the

direction of the forward walking direction dirF and the direction of the PCA

dirP using θ = arctan(R0,1

R0,0
) (taking the quadrant into consideration to get

an angle between 0◦ and 360◦). Finally, we calculate the difference between

the forward walking direction and the PCA direction called dirOff.

4.3 Feature Extraction

We now have thirty-one sensor streams which can be used to predict the

target characteristics of interest. To use machine learning models, we must

extract useful features from each of these streams. While there have been

a variety of proposed features in previous work, we attempt to extract the

most comprehensive list of features in order to investigate potential privacy

leaks. We note that some of these features may seem redundant and/or ill-

suited for this data. However, these features should demonstrate low utility

51

during the feature selection analysis conducted in Chapter 5. We process the

data by first assembling sessions of readings with a specific target. We then

iterate over every session, group the data into 512 reading sliding windows

(8.5 s) with a 256 reading overlap (4.25 s). For each window, we extract

74 features in the time and frequency domain using a combination of the

LibXtract toolbox [73] and custom code written in python to fill in gaps

missing from the library and sometimes correcting for minute errors in the

libraries. The final output is a list of windows with the target and 31 sensors

multiplied by 74 features giving 2,294 sensor features for further analysis.

The first fifteen features are calculated directly from the time domain over

a window X containing N samples from (x0, x1...xN) as shown in Table 4.3.

This includes standard statistics of the window estimating the average and

spread of values including the mean (4.4), the variance (4.5), the standard

deviation (4.6), and the average deviation (4.7). The skewness is a measure

of the asymmetry of the window’s data with positive values indicating a ma-

jority of the signal is to the left of the window and a negative skew indicating

a majority of the signal is to the right of the window (4.8). The kurtosis is a

measure of the peakedness or sharpness of the peak of the window (4.9). A

kurtosis of zero indicates the distribution is close to normal while a negative

kurtosis is flatter than normal and a positive value demonstrates a distribu-

tion with a peak greater than a normal distribution. We also extract the

signal minimum (4.10), signal maximum (4.11), and sum of all values over

the window (4.12). The number of non-zero entries are also calculated (4.13).

The root-mean-square gives another approximation of the average strength

of the signal (4.14). The fundamental frequency (f0) is estimated using the

Average Magnitude Difference Function (AMDF) (4.48). If the signal con-

tains periodicity, the shift at the fundamental frequency should be close to

zero difference plus some error term caused by noise. In this method, we

first extract an estimate of the baseline noise as AMDF1. We then find the

minimum shift τ which produces the AMDFτ < AMDF1. This value of τ

is approximately the period. We estimate the contribution of the error by

dividing the AMDFτ by AMDF1. The fundamental frequency is therefore

the sampling frequency FS divided by the period (4.15). We also calculate

the signal’s mean crossing rate which is the average number of times the

signal crosses the mean across the window (4.16). We calculate the standard

Shannon entropy giving an estimate of the uncertainty in the signal (4.17).

52

Table 4.3: Standard Features Extracted from X Containing (x1,x2...xN)

1 Signal Mean (x̄) x̄ =
1

N

N∑
n=1

xn (4.4)

2 Signal Variance V ar(X) =
1

N − 1

N∑
n=1

(xn − x̄)2 (4.5)

3
Signal Standard
Deviation (σx) σx =

√√√√ 1

N − 1

N∑
n=1

(xn − x̄)2 (4.6)

4
Signal Average

Deviation AvDev(X) =
1

N

N∑
n=1

|xn − x̄| (4.7)

5 Signal Skewness Skew(X) =
1
N

∑N
n=1(xn − x̄)3

(1
N−1

∑N
n=1(xn − x̄)2)3/2

(4.8)

6 Signal Kurtosis K(X) =

(
1
N

∑N
n=1(xn − x̄)4

(1
N−1

∑N
n=1(xn − x̄)2)2

)
− 3 (4.9)

7 Signal Minimum min(X) := argmin∀n∈N(xn) (4.10)

8
Signal

Maximum
max(X) := argmax∀n∈N(xn) (4.11)

9 Signal Sum Sum(X) =
N∑
n=1

xn (4.12)

10
Signal NonZero

Count nzc(X) =
N∑
n=1

I{xn 6= 0} (4.13)

11
Signal RMS
Amplitude RMS(X) =

√√√√ 1

N

N∑
n=1

x2
n (4.14)

53

Table 4.3: Standard Features Extracted from X Containing (x1,x2...xN)
(Cont.)

12
Fundamental

Frequency

τ = min(τ |AMDFτ < AMDF1)

P = τ +
AMDFτ
AMDF1

f0 =
FS
P

(4.15)

13
Signal Mean

Crossing Rate
zcr(X) =

1

N

N−1∑
n=1

I{(xn − µ) ∗ (xn+1 − µ) < 0}

(4.16)

14
Shannon
Entropy H(X) = −

N∑
n=1

P (xn)log2P (xn) (4.17)

15
Coefficient of

Variation
cv(X) =

σx
x̄

(4.18)

Finally, we calculate the coefficient of variation (4.18).

Sk =
N−1∑
n=0

xne
−i2πk n

N ∀k = 0, ..., N − 1 (4.29)

Features 16-42 are extracted from the Fourier transform of the time do-

main signal conducted over the window. We apply a fast Fourier transform

to give the Spectrum Sk (4.29). We then define A = (a1, a1, ...aN) to be

the real component of the transform or the amplitude of the spectrum and

F = (f1, f2, ..., fN) to be the imaginary or frequency of the spectrum. We

extract the similar corresponding basic features listed in Table 4.4 in the fre-

quency domain as the time domain but weight the amplitude by the relative

frequency. These features include the spectral mean (4.19), the spectral vari-

ance (4.20) and the spectral standard deviation (4.21). The spectral skewness

demonstrates the relative proportion of the distribution in the spectrum with

54

Table 4.4: Standard Spectrum Features

16
Spectral Mean

(s̄) s̄ =
1∑N

n=1 an

N∑
n=1

fnan (4.19)

17
Spectral
Variance V ars =

1∑N
n=1 an

N∑
n=1

(fn − s̄)2an (4.20)

18
Spectral
Standard

Deviation (σs)
σs =

√√√√ 1∑N
n=1 an

N∑
n=1

(fn − s̄)2an (4.21)

19
Spectral
Skewness

SSkew =

∑N
n=1(fn − s̄)3an(

1∑N
n=1 an

∑N
n=1(fn − s̄)2an

)3/2
(4.22)

20
Spectral
Kurtosis SK =

 ∑N
n=1(fn − s̄)4an

(1∑N
n=1 an

∑N
n=1(fn − s̄)2an)2

−3 (4.23)

21
Spectral

Minimum
Amplitude

mina = arg min∀n∈N(an) (4.24)

22
Spectral

Maximum
Amplitude

maxa = arg max∀n∈N(an) (4.25)

23
Spectral

Amplitude Sum Suma =
N∑
n=1

an (4.26)

24
Spectrum
Amplitude

NonZero Count
nzca =

N∑
n=1

I{an 6= 0} (4.27)

25
Spectrum RMS

Amplitude RMSa =

√√√√ 1

N

N∑
n=1

a2
n (4.28)

55

a negative value indicating a majority of the distribution to the right of the

middle, a positive value indicating a majority of the spectrum is to the left of

the middle and a value of zero showing an approximately normal distribution

(4.22). The spectral Kurtosis once again measures the relative strength of

the peak of the spectrum compared to a normal distribution (4.23). We also

extract the minimum and maximum amplitudes of the signal (4.24), (4.25)

and the sum of the amplitudes in the window (4.26). The RMS of the signal

measure the approximate strength of the amplitude (4.28).

Table 4.5 lists the additional features we extract from the frequency spec-

trum. We extract two estimates of the irregularity in the spectra (4.30) and

(4.31). The irregularity estimates the amount of noise between peeks in the

spectra of the amount of jitter (deviation from periodicity). The Centroid

is equal to the spectral mean (4.32). The smoothness is another measure of

the amount of noise between peaks with the individual amplitudes being log

scaled (4.33). The spectral spread measures the amount of variance around

the spectrum’s centroid (4.34). The roll-off frequency is the frequency at

which a certain percentage of the spectral power is contained. For our anal-

ysis, we choose the roll-off frequency to contain 95% of the signal’s power.

Thus, 95% of the signal’s power is contained below the roll-off frequency

leaving 5% of the power above the roll-off frequency (4.35). The flatness

measures the distribution of the energy over the spectrum. Low values of

flatness indicate a majority of the energy is concentrated in a low number of

frequency bands while a higher value indicates the energy is uniformly dis-

tributed across the bands (4.36). The power is the total power in the window

(4.37). The sharpness is a perceptual measure used in sound which measures

the relative amount of high-to-low-frequency components in the signal (4.38).

A higher sharpness indicates a high number of frequency components with

relatively few low-frequency components. The spectral slope also measures

the relative strength of low-frequency to high-frequency components with a

negative slope demonstrating more low-frequency components and a posi-

tive slope demonstrating stronger high-frequency components to the signal

(4.39). The Tristimulus measures the ratios of power between bands of har-

monics. Each harmonic is a multiple of the fundamental frequency estimated

in the signal. Tristimulus 1 measures the ration between the first harmonic

to the total (4.40). Tristimulus 2 measures the ratios of harmonics two, three

and four to the total and Tristimulus 3 measures the ratio harmonics 5 and

56

Table 4.5: Other Spectrum Features

26
Irregularity

Jensen IJ =

∑N
n=1(an − an+1)∑N

n=1 a
2
n

(4.30)

27
Irregularity
Krimphoff IK =

N−1∑
n=2

|an −
an−1 + ak + an+1

3
| (4.31)

28 Centroid C =

∑N
n=1 fnan∑N
n=1 an

(4.32)

29 Smoothness
Smooth =

N−1∑
n=1

|20log(an)−

20log(an−1) + 20log(an) + 20log(an+1)

3
|

(4.33)

30 Spread Spread =

√√√√ N∑
n=1

(
(fn − s̄)2

an∑N
n=1 an

)
(4.34)

31
Rolloff

Frequency

fr = argmin(r)∀r ∈

{
N |

r∑
n=1

a2
n ≥ 0.95

N∑
n=1

a2
n

}

(4.35)

32 Flatness
F =

N

√∏N
n=1 an

1
N

∑N
n=1 an

(4.36)

33 Power P =
1

N

N∑
n=1

a2
n (4.37)

34 Sharpness

Sharp = .11 ·
∑N

n=1 n · g(n) · a.23
n

N

g(n) =

{
1 n < 15

.066e.171n n ≥ 15

} (4.38)

57

Table 4.5: Other Spectrum Features (Cont.)

35 Slope
slope =

1∑N
n=1 an

·N
∑N

n=1 fnan −
∑N

n=1 fn ·
∑N

n=1 an

N
∑N

n=0 f
2
n − (

∑N
n=0 fn)2

(4.39)

36 Tristimulus 1

Trist1 =
h1∑N
n=1 an

hk =
∑
n

an∀n ∈ {N |k − .5 <
fn
f0

< k + .5}

(4.40)

37 Tristimulus 2 Trist2 =
h2 + h3 + h4∑N

n=1 an
(4.41)

38 Tristimulus 3 Trist3 =

∑N
n=5 hn∑N
n=1 an

(4.42)

39 Inharmonicity

inharm =
2

f0

∑N
n=1 |fn − h(fn)f0| · a2

n∑N
n=1 a

2
n

h(f) = floor(
f

f0

+ .5)

(4.43)

40
Odd to Even

Ratio OER =

∑
n<H∀n∈{2k+1|k∈N} hn∑
n<H∀n∈{2k|k∈N} hn

(4.44)

41
Signal

Entropy Hs = −
N∑
n=1

P (an)log2P (an) (4.45)

58

greater to the total (4.41) and (4.42). The inharmonicity estimates the de-

viation from a purely harmonic signal. It calculates the ratio of energy not

contained in a strict harmonic increments (4.43). The odd-to-even harmonic

ratio gives the ration of power in the odd harmonics to the even harmonics

(4.44). Finally, the spectrum entropy is the Shannon entropy contained in

the amplitude distribution of the spectrum (4.45).

Ak =
1

(N − k)σ2

N−k∑
n=1

(xn − µ)(xn+k − µ)∀k < N (4.46)

AMDFk =
1

N

N−k−1∑
n=0

(x[n]− x[n+ k])2∀k < N (4.47)

AMDFk =
1

N

N−k−1∑
n=0

x[n]− x[n+ k]∀k < N (4.48)

We also extract three common vector features from the signal windows

which measures various statistics of the spectrum with a shifted version of

the spectrum. These include the Autocorrelation, which measures cross-

correlation of the signal with itself (4.46), the average squared difference

function (ASDF) which measures the average squared distance of a signal

with a shifted version of itself and the average magnitude difference function

(AMDF) which measures the average difference of a signal with a shifted

version of itself. For each vector quantity, we calculate the first 11 signal

statistics presented in Table 4.3. This gives 11 features for the Autocorre-

lation (features 42-52), the ASDF (features 53-63) and the AMDF (features

64-74) giving a total of 74 statistical features extracted from each sensor per

window of raw sensor data.

4.4 Conclusions

This chapter has presented the methodology behind our sample data set. We

have a vast data set collected from two clinical trials and continuous labora-

tory testing. This data set has been hand labeled with twelve targets split

between walking and non-walking and laps versus free yielding 30 distinct

target data sets. We collect every possible stream of raw sensor data from our

59

phones. Additionally, we transform the coordinate systems of acceleration

for forward walking and maximum variance and calculate the walking direc-

tion and direction of maximum variance during walking giving a total of 31

continuous sensor streams. Finally, we split the sensor streams into discreet

512 sample windows with 256 sample overlap and present a comprehensive

list of 74 statistical features we extract from each sensor. This provides a to-

tal of 2,294 sensor features providing an exhaustive, inclusive list of features

to train machine learning algorithms in the subsequent chapters.

60

CHAPTER 5

IDENTIFYING IMPORTANT INPUT
FEATURES

Our analysis pipeline allows us to investigate 31 sensor streams. For each

sensor stream, we extract 74 statistical features. This gives a total of 31∗74 =

2, 294 continuous sets of data collected throughout the monitoring periods.

Investigating the correlation between 2,294 input variables and target out-

comes directly using machine learning methods requires that the set of inputs

be reduced to the important or most correlated sensor stream and statistic

feature pairs. This chapter presents an analysis of input feature reduction.

The goal is to identify which sensor and statistic pairs have high correlation

with a given target inference, which pairs have no correlation and should

be discarded and which streams could potentially provide information and

would therefore require obfuscation to maintain privacy.

Reducing the input variable space before applying machine learning is a

well-studied topic [74]. In general, methods can be divided into three broad

categories. Filter methods seek to identify the input vectors independent of

the machine learning algorithm used. These methods often use an estimate of

covariance and mutual information among variables to identify the variables

most useful in prediction. Wrapper methods use a trained machine learning

algorithm as a black box to build models and select the input variables which

yield the highest accuracy score. Finally, embedded models are specific to a

certain subset of machine learning models which can score the input vectors

during iterative learning. Filter and embedded methods are generally faster

than wrapper methods when calculating with a large set of input variables.

Wrapper methods are slower because many iterations of training must be

conducted for large sets of possible features. However, since wrapper methods

use the same machine learning algorithm to score the features, they generally

give the most accurate determination of the feature’s value.

In addition to determining the top input feature vectors, we must de-

termine which features contribute meaningful information to prediction re-

61

quiring protection to maintain privacy. This problem is notably different

from the traditional problem of determining the BEST features since the set

of BEST features may exclude related highly correlated redundant features

which would not necessarily be most predictive. For example, if two features

A and B are highly correlated, the list of BEST features will choose the

feature with the highest predictability, A while discarding B as a redundant

feature. However, when protecting privacy it is important to consider the

predictive ability of B since obfuscating A may not diminish the predictive

ability if an adversary instead uses B. We therefore develop methods to de-

termine what subsets of input features allow accurate prediction. We will see

that methods generally have a design tradeoff between scalability limited by

runtime and accuracy. The final output from our analysis will be a list of

highly correlated subsets of features and a list of safe features which when

used in predictive models do not allow prediction accuracies above a user se-

lectable privacy threshold calibrated relative to the random noise threshold.

5.1 Selecting the Top Features

We evaluate two broad methods to select top input features used to train

our models. We conduct filtering of input variables using the FEAST tool-

box, a popular framework which implements a number of filter methods for

feature selection [75, 76]. We also implement a sequential forward selection

method (SFSM) using both a k-means classifier and a support vector ma-

chine/regression as the internal statistical method to score the features. To

score the features, we use the F1-score for the classifiers and the lowest mean

absolute error score (MAE) for the regressions.

H(X) = −
∑
x∈X

p(x) log p(x) (5.1)

H(X|Y) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log(p(x|y)) (5.2)

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
= H(X)−H(X|Y)

= H(Y)−H(Y |X)

(5.3)

62

I(X;Y |Z) =
∑
z∈Z

p(z)
∑
x∈X

∑
y∈Y

p(x, y|z) log

(
p(x, y|z)

p(x|z)p(y|z)

)
= H(X|Z)−H(X|Y, Z)

(5.4)

norm(I(X;Y)) =
I(X;Y)√
H(X)H(Y))

(5.5)

Various information theory metrics are useful in evaluating feature selec-

tion routines. Central to information theory is the concept of entropy. The

entropy H of the distribution X, formally given in (5.1), is determined by the

sum of the discrete probabilities of each value of X. The more uncertainty

that X is in a distinct state, the higher the value of the entropy H. As with

most probability functions, we can also condition the entropy as shown in

(5.2). Intuitively, this formula gives the amount of uncertainty in X given

that we know Y . The mutual information score given in (5.3) is a measure-

ment of the amount of information that each individual distribution reveals

about the other. Its definition can be manipulated in terms of entropy as

seen in the right side of the given equation. Intuitively, this states that the

mutual information score gives the amount of uncertainty in Y minus the

amount of uncertainty in Y that is known if we know X. Thus, we are left

with a measurement of the amount of uncertainty in Y if we do not know X.

We can condition the mutual information as shown in (5.4). This equation

represents the amount of mutual information between X and Y given we

know Z. For convenience, we can normalize this metric into a range from

0 to 1 by dividing by the square root of the product of the entropy in each

distribution as shown in (5.5). Thus, a score of 1 means that we know all of

the unknown from X if we have Y or perfect mutual information and a score

of 0 indicates X tells us nothing about Y .

Machine learning models are evaluated by a standard set of metrics. We

use the F1-score to evaluate the accuracy of classification machine learning

models as shown in (5.8). The F1-score provides a scoring of the accuracy

of the classifier from a scale of zero to one. The score takes into account

the precision (5.6) which measures the percentage of correct, true positive,

classifications out of all positive classifications. The score also takes into

account the recall (5.7) which measures the percentage of positive classifi-

63

cations out of all the classification that should be positive. The F1-score

is basically the weighted average of these two values with equal weight to

each value. In multi-label classifications we use the average F1-score over

all binary one-versus-one classification scores. Regression models use two

standard measures of error. The first is the mean average error (5.9). Given

a prediction ŷ and a known correct value y, the mean absolute error is the

average absolute difference between the two values. The mean squared error

is simply the average squared difference between ŷ and y (5.10). We prefer

the mean absolute error as the evaluation metric in our experiments.

precision =
true positives

true positives + false positives
(5.6)

recall =
true positives

true positives + false negatives
(5.7)

F1−score = 2 ∗ precision ∗ recall

precision + recall
(5.8)

MAE =
1

N

N−1∑
n=0

|yn − ŷn| (5.9)

MSE =
1

N

N−1∑
n=0

(yn − ŷn)2 (5.10)

5.1.1 Filter Methods

Filter methods rank the input feature’s ability to classify a target indepen-

dently of the machine learning algorithm used. These methods use infor-

mation theory to estimate the amount of information in each input vector

compared to the prediction target. We use the FEAST toolbox to test eleven

popular filter techniques as outlined in the following sections [75, 76]. Since

the techniques from information theory produce relatively simple formulas

to estimate the relevance, the filtering is generally useful in situations where

computational resources are limited or the input vector is too large to con-

duct wrapper or embedded methods. However, the empirical estimate of

mutual information is only accurate if the number of samples is large enough

to estimate the underlying distribution. If the number of samples does not

64

accurately reflect the underlying distribution, the estimate can be wrong

causing error in the filter methods.

We now evaluate eleven feature selection techniques which have been pro-

posed in previous work and have been recently evaluated for accuracy [76].

Each method attempts to solve the problem of scoring the inclusion of a given

feature XC from the total set of features X. The scoring in each method de-

fines a score based on the selection of XC taking into account the rest of the

currently selected features S to maximize the notion of information about the

target distribution Y . The filtering methods themselves attempt to optimize

the feature selection by trading off three primary pieces of information. First,

they look at the mutual information between the chosen input vector and the

target of the classification I(XC ;Y). Maximizing this value intuitively gives

a set of inputs XC which contains all the information in Y . To reduce redun-

dant variables, many methods introduce a penalty for mutual information

between chosen features and remaining features which can be represented

as I(XC ;Xs)∀s ∈ S. Thus, the methods would seek to minimize redundant

terms. The last term attempts to limit the penalty for redundant terms by

adding to the score if the redundancy is only apparent given knowledge of

the target distribution Y represented as I(XC ;Xs|Y)∀s ∈ S. Intuitively, if

the redundancy is only apparent given the target distribution Y , then the

mutual information between the input variables may still be relevant when

predicting Y .

MIM(XC) = I(XC ;Y) (5.11)

MIFS(XC) = I(XC ;Y)− β
∑
s∈S

I(XC ;Xs) (5.12)

mRMR(XC) = I(XC ;Y)− 1

|S|
∑
s∈S

I(XC ;Xs) (5.13)

CONDRED(XC) = I(XC ;Y) + γ
∑
s∈S

I(XC ;Xs|Y) (5.14)

65

CMIFS(XC) =
∑
s∈S

I(XCY |Xs) ≈ I(XC ;Y)−
∑
s∈S

I(XC ;XS)+∑
s∈S

I(XC ;XS|Y)
(5.15)

JMI(XC) =
∑
s∈S

I(XC ;Xs;Y) = I(XC ;Y)− 1

|S|
∑
s∈S

I(XC ;Xs)−I(XC ;Xs|Y)

(5.16)

BG(XC) = I(XC ;Y)− β
∑
s∈S

I(XC ;Xs) + γ
∑
s∈S

I(XC ;Xs|Y) (5.17)

The first seven filtering methods use linear weights among the three met-

rics. The simplest filtering method is the Mutual Information Maximization

(MIM) [77] which scores the input feature using the mutual information be-

tween the input feature and the target distribution (5.11). The Mutual Infor-

mation Feature Selection (MIFS) [78] introduces a penalty term for mutual

information between the current feature and list of selected features with

the penalty controllable by adjusting the β weighting value (5.12). Max-

Relevance Min-Redundancy (mRMR) [79] weights the penalty term by the

inverse of the size of the selected feature set (5.13). The conditional re-

dundancy method introduces a term to maximize the conditional mutual

information between the current input vector and list of selected input vec-

tors with the weight of the term being controlled by the constant γ (5.14).

The Conditional Mutual Info Feature Selection (CMIFS) [80] method max-

imizes the score of the current input feature by mutual information given

the set of already selected features. Interestingly, this method implements

a combination of the mutual information, the penalty term and the condi-

tional redundancy terms plus a few constants which do not affect the final

ordering of features (5.15). The Joint Mutual Information (JMI) [81] method

also scores based on the mutual information with a penalty term for mutual

information while dismissing the effect of the conditional mutual informa-

tion. Similar to the mRMR method, it weights the penalty term based on

the inverse of the size of the number of selected input features (5.16). Fi-

66

nally, the beta gamma method scores the input feature by maximizing the

mutual information, penalizing the mutual information and maximizing the

conditional mutual information. The weighting of the penalty for redundant

information can be adjusted by varying β and the weighting of the scoring

of the conditional mutual information can be controlled by varying γ (5.17).

CMIM(XC) = mins∈S[I(XC ;Y |Xs)]

= I(XC ;Y)−maxs∈S[I(XC ;Xs)− I(XC ;Xs|Y)]
(5.18)

IF (XC) = mins∈S[I(XCXs;Y)− I(Xs;Y)] (5.19)

ICAP (XC) = I(XC ;Y)−
∑
s∈S

max[0, {I(XC ;Xs)− I(XC ;Xs|Y)}] (5.20)

DISR(XC) =
∑
s∈S

I(XCXs;Y)

H(XCXsY)
(5.21)

Additionally, we evaluate four methods which introduce non-linear weight-

ings into their scoring criteria. While this makes the intuitive sense of the

methods less straightforward, we include them for completeness of testing.

The Conditional Mutual Information Maximization (CMIM) [82] method

scores using the mutual information between the current feature and the

target distribution with the penalty being the maximum of the difference be-

tween the mutual information and conditional mutual information of each of

the previously selected features (5.18). The Informative Fragments method

(IF) [83] considers the minimum over all previously selected features of the

difference between the mutual information of the whole set of selected fea-

tures with and without the currently scored feature included (5.19). Intu-

itively, this will select the feature with the largest gain in mutual information

over the previous set of selected features. The interaction capping (ICAP)

[84] method is similar to JMI and CMIFS but caps the contribution of the

penalty term to positive values (5.20). Finally, the Double Input Symmetrical

Relevance (DISR) [85] method normalizes the conditional mutual informa-

tion by the total entropy in an attempt to offset any inherent bias toward

rare features (5.21). All of these methods will be used to select input features

to train and evaluate our machine learning models.

67

5.1.2 Wrapper Methods

Wrapper methods use a machine learning algorithm as a black box to de-

termine the set of input features which yield the highest scoring model. We

implement a sequential forward selection method [86] which begins by scoring

every feature using a selected machine learning model. The highest scoring

feature is then chosen and models are built with a combination of that fea-

ture and every remaining feature. This process repeats greedily choosing the

input feature with the highest score each round. The algorithm continues

for a maximum of ten rounds or until the score is not improved by selecting

another input feature. We conduct two wrapper experiments with the first

experiment using a k-means clustering algorithm to score features and the

second experiment using a support vector machine or regression with a radial

basis kernel. Each round, the feature with the highest mutual information

score is chosen as the best feature for the k-means wrapper and the feature

with the highest F1-score or lowest mean absolute error is chosen for the

support vector classification or regression wrapper.

The first wrapper method uses a simple k-means classifier to identify input

features which naturally form clusters with high correlation with a given

prediction target. The k-means algorithm organizes data points into one

of k cluster sets to minimize the mean distance between data points and

cluster centers. K-means naturally identifies the ability of an input vector to

distinguish between labels. Intuitively, if the input feature has distinct values

for a given target, the clustering should identify a cluster for that target. The

algorithm begins by assigning a set of k cluster centers. It then assigns each

data point to the clusters to minimize the mean as shown in (5.22). The

initial centers are then adjusted to the center of mass for each cluster. The

algorithm repeats the assignment of points and cluster centering until a local

minima is reached. Obviously, finding the global minima of (5.22) requires

the correct initial choice of cluster centers. We use the kmeans++ algorithm

shown to increase the efficiency of choosing the initial cluster centers [87].

The k-means algorithm is run for a minimum of 10 iterations per trial with a

stopping condition of a delta of 0.1 for the inertia for each trial. The clustered

data is then compared with the label ground truth using the normalized

mutual information score. While limited to identifying distinct groups of

similar input feature values, k-means clustering is fast and efficient allowing

68

quick investigation of all 2,294 input vectors for all 30 prediction targets by

brute force giving us a first approximation of the correlation of each feature

to each target.

argmin
k∑
i=1

∑
x∈Si

‖x− µi‖2 (5.22)

Given a set of n observations (x1, x2, ..., xn) cluster each observation into
one of k sets S1, S2, ..., Sk to minimize the average distance to the center of
the clusters.

The second wrapper method uses a support vector machine (SVM) or sup-

port vector regression (SVR) with a radial basis kernel. The SVM classifier

is introduced in detail in Chapter 6. The model used as a black box here uses

the default hyper-parameters to increase running efficiency over the whole

space of input vectors. For targets with discreet values, a support vector

classifier is used trained with one-versus-one classifiers choosing the classi-

fication with the most votes. For target with a continuous distribution, a

support vector regression is used to predict the value. The round scoring for

the SVM is conducted by choosing the feature yielding the highest F1-score.

The round scoring for the support vector regression uses the mean absolute

error to score each round (5.9). The item with the lowest mean absolute

error is chosen as the top feature.

5.1.3 Evaluating Feature Selection Methods

In total, we have 15 feature selection methods with 11 filter methods pro-

duced by the FEAST toolkit and 4 wrapper methods. We include the results

of the full sequential forward analysis for the k-means and SVM called KMFS

and SVMFS respectively. We also include the ordered list of first round scor-

ing of all sensor features for the k-means and SVM called KM1 and SVM1

respectively. We are interested if the first round scoring is correlated enough

to predict feature utility without requiring the full computationally expensive

SFSM. This gives 15 lists of top features for evaluation.

69

Similarity among Feature Selection Techniques

Given 15 top feature selection techniques, it is natural to ask how similar

the feature selection techniques choose top features and if it is necessary to

evaluate all 15 methods simultaneously. Each filter selection routine returns

an ordered list of most predictive features. Classical methods of ranking sim-

ilarity of ordered lists are problematic since each list of top features contains

a different subset of the entire list of 2,294 selectable features. We therefore

use normalized discounted cumulative gain (NDCG) due to its ability to rank

ordered lists when the two lists do not necessarily contain the same features.

We define the ground truth to be an ordered list of N top features. We define

a relevance ranking rel defining the scores N,N − 1, ..., 1 for all N features

in the list. Thus, the top feature has score N down to the last feature with

a score of 1. Given a list to evaluate, the discounted cumulative gain scores

the ordering of the new list as the relevance of the top feature in the list

plus the sum of each subsequent relevance divided by the log of the position

of the item in the list (5.23). Features in the evaluation list not present in

the ground truth list are given relevance scores of zero. We then normalize

the score by dividing the discounted cumulative gain by the ideal discounted

cumulative gain. The ideal cumulative gain is the cumulative gains score at-

tainable if the ideal list is perfectly ordered. Thus, we have a metric capable

of evaluating feature ordering with a range of zero to one for ordered lists

with differing sets of members.

DCG = rel1 +
N∑
n=2

reln
log2(n)

(5.23)

nDCG =
DCG

IDCG
(5.24)

We calculate the top forty features using the filter methods and the first

round of the SVMFS and KMFS wrapper methods over all 30 prediction

targets. We consider a maximum of 10 features from the full SVMFS and

KMFS noting that 16 of the targets terminate in fewer than 10 iterations.

The remaining, features see little improvement from further features. We

calculate the normalized discounted cumulative gain for each combination of

features. Figure 5.1 plots a heat map of the scores between each top feature

selection method. Of course, the scores between the same methods yield a

70

B
G

C
IF

E
C

M
IM

C
o
n
d
M

I
C

o
n
d
re

d
D

IS
R

IC
A

P
JM

I
K

M
F1

K
M

FS
M

IF
S

M
IM

S
V

M
F1

S
V

M
FS

m
R

M
R

Feature Selection Type

BG
CIFE

CMIM
CondMI

Condred
DISR
ICAP

JMI
KMF1
KMFS
MIFS
MIM

SVMF1
SVMFS
mRMR

Fe
a
tu

re
 S

e
le

ct
io

n
 T

y
p
e

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d
 D

is
co

u
n
te

d
 C

u
m

u
la

ti
v
e
 G

a
in

Figure 5.1: Normalized Discounted Cumulative Gain Scores between All
Tested Feature Selection Techniques

perfect NDCG. The filter methods largely produce better orderings with less

variation than both the KMFS and SVMFS which differ significantly from

the orderings returned from the filtering methods. To better illustrate this,

we look at the intersection of top features returned from the methods. For the

top feature, every filter method returns the same number one feature. The

filter methods only agree with the KMFS for 9.6% of the targets and agree

with the SVMFS a mere 6.5% of the targets. The first round SVMF1 and

KMF1 agree 100% of the time. We extend our analysis to the top 10 features

as shown in Figure 5.2. We notice that even among filter methods, the highest

agreement rarely surpasses 50%. The agreement with the KMFS and SVMFS

is abysmal with many targets containing a single target in common. Figure

5.3 shows both the NDCG and average proportion of shared features. We

see that most selection methods contain a mere 10% of shared features with

mRMR giving the top score of 26.9%. Of course, this is rarely the top

feature as demonstrated by the NDCG which is higher for the SVMI score

since it always returns the same top feature. Filter methods return different

top features in different orders than the wrapper methods using SVMFS.

This motivates the need to evaluate the accuracy and utility of each method

71

B
G

C
IF

E
C

M
IM

C
o
n
d
M

I
C

o
n
d
re

d
D

IS
R

IC
A

P
JM

I
K

M
F1

K
M

FS
M

IF
S

M
IM

S
V

M
F1

S
V

M
FS

m
R

M
R

Feature Selection Type

BG
CIFE

CMIM
CondMI

Condred
DISR
ICAP

JMI
KMF1
KMFS
MIFS
MIM

SVMF1
SVMFS
mRMR

Fe
a
tu

re
 S

e
le

ct
io

n
 T

y
p
e

0
10
20
30
40
50
60
70
80
90
100

P
e
rc

e
n
t

Fe
a
tu

re
s

In
te

rs
e
ct

in
g

Figure 5.2: Intersection of Top Features between All Tested Feature
Selection Techniques

BG
CIF

E
CM

IM

Con
dM

I

Con
dr

ed
DIS

R
IC

AP
JM

I

KM
FS KM

I

M
IF
S

M
IM

SV
M
I

m
RM

R

Feature Selection Method

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

NDCG
Int

Figure 5.3: Normalized Discounted Cumulative Gain and Intersection of
Top Features of All Feature Selection Compared to SVMF

individually. Thus, we continue evaluate all feature selection routines in the

remainder of the dissertation.

Highly Correlated Features

We surmise a significant portion of the variation among top feature selection

algorithms can be explained by the variation in rating highly correlated fea-

72

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Classification Score

0.0

0.1

0.2

0.3

0.4

0.5
No

rm
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

1

2

3

4

5

6
7

8

9

1
2

3
4

5
6

7
8

9
Remaining

Figure 5.4: SVMFS First Round F1-score versus Normalized Mutual
Information between the Feature and Target with Labels Indicating the
Top SVMFS Features and Clustered Features Using Feature-Feature
Normalized Mutual Information

tures. Consider two highly correlated, highly predictive features A and B.

Feature selection methods are designed to choose what it deems the highest

predictive feature (often determined as the feature with the highest normal-

ized mutual information). Assuming it chooses feature A, most filter methods

will then discard feature B. However, if feature B scores higher during the

SVMFS, then it will be chosen even though it is discarded by the filter meth-

ods. We investigate how well the normalized mutual information calculated

between feature vectors can cluster the feature scoring both in terms of nor-

malized mutual information with the target of the classifier and with the

SVMFS classification score shown in Figure 5.4. This figure plots every fea-

ture considered during the SVMFS routine. The top feature chosen by the

classification score each round is labeled one through nine corresponding to

the round the feature is selected as optimal. Each round, features with a

NMIS greater than 0.5 with the optimally chosen feature are clustered into

a per-round cluster. Each feature is then plotted by the NMIS with the tar-

73

0.0 0.2 0.4 0.6 0.8
Normalized Mutual Information

0.00

0.02

0.04

0.06

0.08

0.10

D
el

ta
 S

VM
F

Al
l R

ou
nd

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
g1

0(
co

un
ts

)

Figure 5.5: Feature NMI versus SVMFS Scores

get on the y-axis and the classification score improvement during the first

round of the SVMFS on the x-axis. Interestingly, we see that the feature

with the top classification score was not the feature with the highest normal-

ized mutual information with the target. Thus, demonstrating why the filter

methods return a different set of top features than the SVMFS method. We

do see that features with high NMIS with other target features do seem to

have similar classification scores and NMIS with the target. However, there

are outliers in both cases.

Interestingly, we find that the optimal features chosen each round are rarely

contained in an existing cluster from a previous round. We surmise this is

due to correlated features containing redundant information. Thus, search-

ing through the similar features unnecessarily wastes time in the sequential

search. We therefore investigate the possibility of clustering features into

similar groups using the normalized mutual information between features.

Figure 5.5 shows the average correlation between the differences in SVMFS

for all rounds of the SVMFS versus the NMIS of the features. We see that

most features have little NMIS however for the ones that have high NMIS,

the difference in scores during the SVMFS search is decreased. Thus, it seems

that a high NMIS indicates a similar feature vector. It is also important to

note that the converse is not necessarily true. A small difference in relative

scoring between SVMFS rounds does not necessarily indicate a high NMIS.

74

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Mutual Information

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
e
lt

a
 S

V
M

F
A

ll
R

o
u
n
d
s

Figure 5.6: Average Feature NMI
versus SVMFS Scores

0 50 100 150
Cluster Size

0

20

40

60

80

100

%

Cluster Sizes

Figure 5.7: CDF of Cluster Sizes with
a NMIS Cutoff of 0.5

Figure 5.6 plots the average difference between SVMFS scorings against the

NMIS score averaged over all target features. We see the difference in delta

SVMFS scores diminish as NMIS increases and choose 0.5 as the cutoff to

consider features similar for clustering. Figure 5.7 demonstrates the cluster

sizes formed by considering a NMIS cutoff of 0.5. We see that roughly 40% of

features are independent of all others. The remaining features are contained

in clusters with a large cluster at 77 and 179 features. These feature clusters

can be reduced to a single feature thereby simplifying analysis during an

SVMFS search.

We combine the clustered features and again compare the similarity of

feature selection routines. Figure 5.8 shows the NDCG scores with the clus-

tered features. We see overall improvement of scores. This is especially

apparent in Figure 5.9 which plots the intersection of the top 10 features.

While the intersection of the top 10 features had a maximum of 26.8% in

the first experiment, using clustering, the maximum intersection increased

to 60.6%. However, we still find that the feature selection methods contain

enough different features to continue to investigate their top feature predic-

tions. The analysis of highly correlated features presents the opportunity to

reduce the set of features considered when classifying private features which

will be explored in Section 5.2.

75

B
G

C
IF

E
C

M
IM

C
o
n
d
M

I
C

o
n
d
re

d
D

IS
R

IC
A

P
JM

I
K

M
F1

K
M

FS
M

IF
S

M
IM

S
V

M
F1

S
V

M
FS

m
R

M
R

Feature Selection Type

BG
CIFE

CMIM
CondMI

Condred
DISR
ICAP

JMI
KMF1
KMFS
MIFS
MIM

SVMF1
SVMFS
mRMR

Fe
a
tu

re
 S

e
le

ct
io

n
 T

y
p
e

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d
 D

is
co

u
n
te

d
 C

u
m

u
la

ti
v
e
 G

a
in

Figure 5.8: Normalized Discounted Cumulative Gain Scores between All
Tested Feature Selection Techniques with Clustering

B
G

C
IF

E
C

M
IM

C
o
n
d
M

I
C

o
n
d
re

d
D

IS
R

IC
A

P
JM

I
K

M
F1

K
M

FS
M

IF
S

M
IM

S
V

M
F1

S
V

M
FS

m
R

M
R

Feature Selection Type

BG
CIFE

CMIM
CondMI

Condred
DISR
ICAP

JMI
KMF1
KMFS
MIFS
MIM

SVMF1
SVMFS
mRMR

Fe
a
tu

re
 S

e
le

ct
io

n
 T

y
p
e

0
10
20
30
40
50
60
70
80
90
100

P
e
rc

e
n
t

Fe
a
tu

re
s

In
te

rs
e
ct

in
g

Figure 5.9: Intersection of Top Features between All Tested Feature
Selection Techniques with Clustering

76

Table 5.1: Top Five Features Returned from Selected Feature Selection
Methods

SVMFS mRMR JMI DISR
A

ct
iv

it
y

AccMag SpFlx AccMag SpFlx AccMag SpFlx AccMag SpFlx
AccX AMDFSkew AccX ASDFSkew AccZ AMDFSkew dirF SigNZC
GyroX SigKurt AccZ SpVar AccX SpFlx AccMag SigEnt
AccV SignMCR AccZ SpKurt AccMag SigEnt AccMag ASDFSkew
AccE SigKurt AccV AcKurt AccMag AMDFMax AccMag SpEnt

F
E
V
1
/
F
V
C

W GravZ SigMin AccZ SigRMS AccZ SigRMS AccZ SigRMS
AccZ SpRMS AccX SigSkew AccX SigSkew AccX SigSkew
AccX SigSkew AccMag SigCoV AccZ SigMax RotZ ACMean
AccY SignMCR AccZ SigMin AccMag AmdfMean RotZ SigMin
AccY SigMax AccZ SigMax RotZ SigRMS AccMag SigSkew

p
h

o
n

eI
D

N
W GyroY SigMean AccMag SigMean AccMag SigMean AccMag SigMean

AccMag SigRMS AccF SigMean RotZ SigMin AccX SigSum
AccY SigSum AccP2 SpEnt AccX ACVar AccMag ACSD
RotZ SigMean AccV SpVar RotZ SigMax AccF SigMean
AccMag AcSD AccMag AcAvDev AccMag SigSum AccMag SigSum

u
se

rI
D

W

AccSw AMDFMax RotZ SigMean RotZ SigMean RotZ SigMean
AccZ SigMean AccMag AMDFMax AccMag SigMin AccY SigSum
AccMag SigSkew AccZ SigRMS AccZ SigRMS AccZ SigRMS
AccY SignMCR AccY SigSum AccX ACVar AccMag SigEnt
AccX ASDFSkew AccZ SigMin AccZ AMDFMean RotZ SigMin

sp
ee

d
W

AccMag AMDFMax AccZ SigRMS AccZ SigRMS AccZ SigRMS
GyroX AMDFMax AccMag AMDFMean AccMag AMDFMean AccMag AMDFMean
AccMag SignMCR AccX SigMax AccX SigMax AccZ SigMin
AccE SigAvDev AccZ SigMin AccZ SigMean AccX SigMax
AccZ AcSkew AccMag SigSkew AccMag SigSkew AccZ SigMean

Top Ranked Features

Both of the forward selection methods give a base estimate of the accuracy of

each classification. While the data is presented in this section, it is important

to remember that the model’s hyperparameters will be optimized in Chapter

6. However, the top selected features and relative scoring is presented here

both for completeness and to motivate the need for privacy aware feature

selection.

Table 5.1 shows the top selected features for the SVM forward selection,

and the three filter methods with the highest feature intersection. As repre-

sentative examples, we present the activity, FEV1/FVC while walking, phone

identification when the user is not walking, user identification while the user

is walking, and the walking speed of the user. We note wide variation in

the features returned. As noted earlier, the filter methods tend to return

similar features with the top feature often being identical. Unfortunately,

these feature selection techniques differ greatly from the SVMFS method

which is most likely the most accurate method to score the features. We

finally note that most returned features are from the accelerometer, gyro-

77

scope and change in rotation all features we would expect to be important

for classification and regression models.

We next present the relative classification accuracies of the KMFS and

SVMFS. Each k-means model is fit to the set of input features with k being

set to the number of target features. Regression models are fit by binning the

target of the regression into ten distinct bins. The output from the trained

model is then compared to the correct answers using the normalized mutual

information scores. The silhouette score is also recorded. The silhouette score

is measure of how distinct the clusters are in the model (5.25). Intuitively,

more distinct clusters indicate a better model fitting to distinctly separable

data. Table 5.2 shows the overall scoring of all classification and regression

models. We see a range of NMIS scores with activity, speed, phone identi-

fication, and FEV1/FVC getting the highest scores. Unfortunately, we find

these scores rather inaccurate as can be seen by the relatively low silhouette

scores indicating the clustering is not creating unique clusters. This demon-

strates the weakness of the k-means methods to score the features which can

be overcome by higher-dimensional SVM models.

silhouette score = average

(
b− a

max(a, b)

)
(5.25)

Here a is the distance from the point to its assigned cluster and b is the
distance from the point and the nearest non-assigned cluster.

Table 5.3 presents the top F1-scores for each SVM classification model

using a radial basis kernel. We see higher accuracy scores for activity clas-

sification closely followed by high scores for phone identification and COPD

classification. We see lower scores for gender and user identification with

little indication that users can be identified while stationary. Intuitively,

this result makes sense since we expect the users to not be identified while

stationary. Conversely, we expect phones to be identified with more accu-

racy through sensor fingerprinting while stationary. The mean absolute error

rates for the regression models are given in Table 5.4. As expected, we can

identify each characteristic with better accuracy while the users are walking.

We can predict age within 10 years. The FEV1% seems difficult to predict

directly from the raw features confirming the results from our previous work.

The FEV1/FVC value, however, does have potential to be predictable. The

78

Table 5.2: Top Wrapper k-Means
Cluster Scores

Target NMIS Silhouette
Score

Activity 0.91 0.546
SpeedW 0.801 0.368
PhoneIDNW 0.777 0.896
FEV1/FVCW 0.744 0.456
UserIDW 0.736 0.333
PhoneIDW 0.719 1.0
PhoneIDAll 0.716 1.0
FEV1W 0.71 0.43
WeightW 0.701 0.427
FEV1/FVCAll 0.636 0.498
FEV1/FVCNW 0.623 0.476
AgeW 0.601 0.356
FEV1All 0.591 0.462
FEV1NW 0.573 0.619
UserIDAll 0.572 0.423
WeightAll 0.547 0.353
StepsW 0.547 0.296
WeightNW 0.544 0.481
CopdNW 0.54 0.472
UserIDNW 0.519 0.465
SpeedWLaps 0.453 0.393
AgeNW 0.451 0.561
AgeAll 0.445 0.278
HeightW 0.444 0.404
HeightNW 0.403 0.764
HeightAll 0.296 0.455
CopdAll 0.262 0.718
GenderW 0.225 0.919
CopdW 0.199 0.735
GenderAll 0.18 0.607
GenderNW 0.164 0.677

Table 5.3: Top Wrapper SVM
Classification Scores

Target Max F1-score

Activity 0.9948
PhoneIDNW 0.9402
PhoneIDW 0.9396
CopdW 0.9376
PhoneIDAll 0.9246
GenderW 0.9234
UserIDW 0.8814
CopdNW 0.8728
CopdAll 0.832
GenderNW 0.8157
GenderAll 0.7639
UserIDAll 0.4827
UserIDNW 0.459

Table 5.4: Top SVM Regression
Scores

Target Minimum MAE

AgeAll 10.5766
AgeNW 12.3722
AgeW 7.9577
FEV1All 15.0327
FEV1NW 17.1854
FEV1W 13.2044
FEV1/FVCAll 8.5551
FEV1/FVCNW 10.9753
FEV1/FVCW 7.3196
HeightAll 2.2185
HeightNW 2.0513
HeightW 1.7693
SpeedW 0.0574
SpeedWLaps 0.0671
StepsW 0.5812
WeightAll 25.3018
WeightNW 26.8351
WeightW 23.4036

speed and steps appear to be predictable with high accuracy. All regres-

sion and classification models will be optimized and scored in the Chapter 6.

79

0 5000 10000 15000 20000
Trial

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

Rnd 1
Rnd 2
Rnd 3
Rnd 4
Rnd 5
Rnd 6
Rnd 7
Rnd 8
Rnd 9
Rnd 10

Figure 5.10: F1-score per Round of SVMFS

However, the prediction scores and wide variations in selected top features

across feature selection methods demonstrate the need to further investigate

which features are important to protect privacy.

5.2 Privacy Aware Feature Selection

Ideally, one of the top feature selection routines would return the set of top

private features. However, we have seen that feature selection techniques

provide wide variation in the top predicted features. To protect privacy, we

must understand to what extent an individual feature can be used to leak

information. This is particularly problematic since combinations of individ-

ual features can yield predictions not attainable from the separate features.

Additionally, the top feature selection algorithms will discard features with

high mutual information. A typical example of the score improvement per

round for an SVM sequential forward selection routine is plotted in Figure

5.10. The selection of the first features establishes the highest improvement

of F1-score with diminishing returns for each subsequent round. In the brute

force case, we could simply evaluate every possible subset of feature combi-

nations; however, this would quickly become impractical for large numbers of

input features. In this section, we will develop techniques to classify features

given a privacy score cutoff. We will also measure relative computation time

and accuracy of various feature selection techniques to classify the privacy

level of the features.

80

Result: Privacy Sensitive Features
searchFeatures = allFeatures
privateFeatures = []
topFeature, topScore = SFSMScore(searchFeatures)
while topScore > privThreshold do

privateFeatures.add(topFeature)
searchFeatures.remove(topFeature)
topFeature, topScore = SFSMScore(searchFeatures)

end
return privateFeatures

Algorithm 1: Full Base Algorithm for Identifying Privacy Sensitive Fea-
tures

5.2.1 Identifying Private Features

Algorithms to Search for Private Features

We develop three algorithms to identify the privacy sensitive features in our

data. We want to evaluate the predictive capability of each input feature

using an SVM or SVR model with radial basis kernel. The brute force method

for feature selection would be to evaluate every possible combination of input

features; however, this would result in the training and evaluation of 2N

machine learning models. Since the training of machine learning models is

non-trivial for our large data set, we must optimize this procedure.

We first reduce the number of required models with our base algorithm by

implementing a sequential forward search method at the core of our search

as given in Algorithm 1. The full base algorithm begins with the set of all

features. With each loop, it conducts a SFSM. If the feature with the top

score is above the privacy threshold, it is removed and the SFSM is conducted

again with the set of features minus the last optimal feature. While it is

possible this method could miss features, SFSM has been shown to rank

features with high accuracy. However, this algorithm still suffers from high

computation time. On the full data set, we have seen it take up to two

weeks to conduct a full SFSM search during our tests running on a single

core of an AMD Opteron 8431 for a single target. This can be improved with

parallelization, but for larger data sets, runtime must be improved.

We have seen that certain features can be clustered by computing the

normalized mutual information between the feature vectors. Using these

clusters, we can optimize the runtime of the algorithm by removing entire

clusters of feature scores instead of single features after each round of the

81

Result: Privacy Sensitive Features
searchFeatures = allFeatures
privateFeatures = []
topFeature, topScore = SFSMScore(searchFeatures)
while topScore > privThreshold do

privateFeatures.add(topFeature)
searchFeatures.remove(topFeature)
for each MIScore do

if MIScore > 0.5 then
privateFeatures.add(MIFeature)
searchFeatures.remove(MIFeature)

end

end
topFeature, topScore = SFSMScore(searchFeatures)

end
return privateFeatures

Algorithm 2: The MI Algorithm for Identifying Privacy Sensitive Features
Optimized with Mutual Information

SFSM search. We implement this in our MI algorithm as given in Algorithm

2. The MI algorithm also searches for the top feature found each round of the

SFSM search; however, upon identifying the top feature of interest, it also

removes all features with high normalized mutual information scores to the

identified optimal feature. This greatly decreases the runtime by decreasing

searches depending on the cluster sizes of the top feature, but may introduce

false positives if the features with high NMIS are not actually predictive of

the target.

We consider Algorithm 1 as the baseline for accuracy when identifying

private features. The MI algorithm, Algorithm 2, decreases runtime but may

introduce false positive due to some features with high NMIS actually having

a low correlation of predictability. We finally present the MIS algorithm given

in Algorithm 3 which adds a second check before eliminating features with

high NMIS. This algorithm also requires clustered features have less than a

0.01 difference in the first round of the SVMFS for the given target to be

considered private. This should ensure that a feature not only has high NMIS,

but also has similar predictive accuracy when predicting the target during

the less computationally expensive first round of the SVMFS. We finally

implement a shorter version of the full SVMFS search which terminates as

soon as the maximum prediction score is surpassed during the SVMFS search

lowering the number of iterations required during the SVMFS search for top

features which are highly predictive.

82

Result: Privacy Sensitive Features
searchFeatures = allFeatures
privateFeatures = []
topFeature, topScore = SFSMScore(searchFeatures)
while topScore > privThreshold do

privateFeatures.add(topFeature)
searchFeatures.remove(topFeature)
for each MIScore do

if MIScore > 0.5 and DeltaSVMF1 < 0.01 then
privateFeatures.add(MIFeature)
searchFeatures.remove(MIFeature)

end

end
topFeature, topScore = SFSMScore(searchFeatures)

end
return privateFeatures

Algorithm 3: The MIS Algorithm for Identifying Privacy Sensitive Fea-
tures Optimized with Mutual Information and SVMF First Round Delta
Scoring

ϕ

ftθ α

β

T

O

S

Figure 5.11: Latent Dirichlet Allocation Plate Diagram

Advanced Clustering with Latent Dirichlet Allocation

While k-means has classically been used to cluster individual samples into

obvious groups, the method is simplistic. We investigate the ability of an

advanced clustering method to predict the usefulness of a feature. Latent

Dirichlet Allocation (LDA) was originally designed to classify the topics as-

sociated with words in a document. It is a generative model which given a

set of observations attempts to establish unobserved clustering that explain

the similarity seen across sessions. It has recently been found useful in nat-

ural language processing, genetics, and image processing. LDA models are

trained through Gibbs sampling [88, 89]. We use the LDA implementation

in Python to build the LDA models [90].

83

We adapt our problem to LDA by defining an individual testing period

with a specific target as a session. Each sensor reading is discretized with

the value being binned into a feature word encoded with the sensor, feature

and binning value. The number of topics is set to the number of classification

targets or the number of bins in the discretization of the regression targets.

LDA takes as input the sessions, word vocabulary, and number of topics

generating both a set of unique topics and probability that a specific word

in the vocabulary indicates that a session should be classified as one of the

identified topics. The plate representation seen in Figure 5.11 demonstrates

how the observed feature words f is annotated for each observation o ∈
O. The hyperparameters α and β are priors for Dirichlet distributions θ ∼
Dir(α) and φ ∼ Dir(β) representing distributions of topics per session S

and topics over feature words respectively. For each session s ∈ S, a topic

classification t ∈ T is drawn from θ to define the topics assigned to the

session with probability θ
(s)
t = P (t|S). Similarly, for feature word f , a topic

t ∈ T is sampled from φ and assigned to the feature word with probability

φ
(t)
f = P (f |t). The LDA algorithm uses Gibb’s sampling to estimate the topic

assignment to features as shown in (5.26). Then, the assignment distributions

can be trained by (5.27) and (5.28).

P (ti = j|t−i,f) ∝
n

(f)
−i,j + β

n
(·)
−i,j + Fβ

n
(si)
−i,j + α

n
(si)
−i + Tα

(5.26)

θ
(s)
j =

n
(s)
j + α

n
(s)
· + Tα

(5.27)

φ
(j)
f =

n
(f)
j + β

n
(·)
j + Fβ

(5.28)

Since we set our number of topics as the number of unique targets, we

would ideally like the algorithm to map an individual set of observations to

an individual target. This is accomplished by choosing a small number for

the α prior. We therefore set α to 0.001. We would like the number of feature

words considered for each topic to be large in order to classify the relative

importance of each feature word to the topic. Thus, we set β relatively large

at 0.1. The LDA analysis provides us with a ranked probability of topics

per session and ranked probability of topic probabilities per feature word.

84

The ranked probability of topic probabilities allows us to determine how

important each feature word is to predict the topic thus giving us another

way to rank features.

Classical Feature Selection Techniques

We investigate the relationship between the privacy of features and the nor-

malized mutual information score with the target of the predictions. The

normalized mutual information score is often the most widely accepted in-

formation metric when designing filter methods, thus we would expect the

NMI score to approximate the privacy value of the features. We will also

evaluate how well the 15 top feature selection routines eliminate the top

private features as identified by our three algorithms including the 11 filter

methods and four wrapper methods.

5.2.2 Private Feature Evaluation

Evaluating the ability of all methods to determine the private data set with

the full set of sensors would take a significant amount of computation. To

keep the experiments manageable, we limit our input features to the features

extracted from the magnitude of acceleration, magnitude of the gyroscope

and the orientation in the Z direction. We choose these sensors as a sampling

of the three main types of sensors available to the models including a motion

sensor, a rotational velocity sensor and an orientation sensor. We investigate

five targets including the identity of the phone collecting the motion readings,

the identity of the user, the activity, the FEV1/FVC of the subject, and the

walking speed. This gives us a data set with 222 continuously collected

features over 45 hours of readings tested on three classification targets and

two regression targets.

Private Feature Algorithms

We first compare the results from the three private feature selection algo-

rithms. Each algorithm is run five times with various privacy thresholds. For

the classification, we use the F1-score to determine the privacy threshold.

Thus, the algorithms iteratively remove features until the forward selection

85

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Figure 5.12: ROC Curve of SVM
Phone Classification Using All
Features from SVMFS (Area Under
Curve = 0.99)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Figure 5.13: ROC Curve of SVM
Phone Classification Using Safe
Features from Privacy Algorithm #1
(0.7 Privacy Threshold) (Area Under
Curve = 0.74)

cannot attain a F1-score higher than the threshold. We test at F1-score cut-

offs of 0.4, 0.5, 0.6, 0.7 and 0.8. Since the regression returns variable absolute

errors depending on scale of the prediction target, we must define a privacy

metric that is comparable across regressions. We first calculate the interval

from the best classification score attained during the optimal forward search

and the noise threshold or level of prediction when the regression algorithm

is given purely random noise. This represents the interval between the best

prediction and worst prediction. We define our privacy metric as the per-

centage from the optimal prediction to the noise level. We test the regression

with privacy thresholds set at 0.2, 0.4, 0.6, and 0.8 on this interval i.e. for 0.2

features are removed until the best MAE score is greater than 20% of the

difference between the maximum MAE score and the noise threshold.

We consider our base algorithm, Algorithm 1, as the standard for identi-

fying the private features. Figures 5.12 and 5.13 show the ROC curve for

predicting the phoneID both with and without the identified sensitive fea-

tures with a privacy level of 0.7. The figures clearly demonstrate that with

all features, the phone classification attains high accuracy but with the fea-

ture elimination, the remaining features still cannot accurately predict the

phone above roughly 70% combined accuracy. The three algorithms return

slightly different sets of private features. Figure 5.14 gives the average num-

86

Act
iv
ity

FE
V1/

FV
C

Ph
on

eI
DNW

Sp
ee

dW

Use
rID

W

Target

0

50

100

150

200

250
Fe

a
tu

re
s

Full MIS MI

Figure 5.14: Private Features
Identified Using Three Private
Feature Identification Algorithms
Averaged over All Privacy Levels

Act
iv
ity

FE
V1/

FV
C

Ph
on

eI
DNW

Sp
ee

dW

Use
rID

W

Target

0

10

20

30

40

50

60

Fe
a
tu

re
s

MI FP
MIS FP

MI FN
MIS FN

Figure 5.15: False Positive and False
Negatives for MI and MIS Private
Feature Selection Compared to the
Full Algorithm Averaged over All
Privacy Levels

ber of private features identified for each of the three algorithms over the five

experiments. The MI and MIS algorithms returned more features than the

full method with the straight MI returning more than the MIS for the phone

identification, FEV1/FVC, and user identification. We found that the MI

and MIS performed similarly for the activity and speed predictions. Over-

all, we see many more features identified as private for activity especially

for lower privacy levels. This is hardly surprising since activity is a binary

classifier and is the easiest classification for the motion sensor. We find that

health and user identification contain the lowest number of private features

in our sample data set. In most tests, the baseline returned the lowest num-

ber of private features followed by the MIS method and the MI methods.

This is expected since the baseline method only eliminates one feature at a

time, the MI method eliminates all clustered features, and the MIS method

eliminates all clustered features that have a similar first round SVMFS score.

Figure 5.15 shows the average false positives and false negatives compared

to the baseline private feature identification algorithm. Since most features

are identified as private for activity, we see a small number of false positives

and negatives. For the rest of the targets, we see the MI algorithm returning

the most false positives with the MIS algorithm correctly filtering a majority

of false positive with both the FEV1/FVC capacity and the phone identifi-

87

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Privacy Threshold

40

60

80

100

120

140

160

#
 F

e
a
tu

re
s

Full
MI
MIS

Figure 5.16: Phone Identification
Privacy Sensitive Features versus
Privacy Level (Lower = More
Private)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Privacy Threshold

80

90

100

110

120

130

140

150

160

170

#
 F

e
a
tu

re
s

Full
MI
MIS

Figure 5.17: Walking Speed Privacy
Sensitive Features versus Privacy
Level (Higher = More Private)

cation. We see that the MIS is fairly successful at lowering the features with

high NMIS but low similarity in predictive utility. There are relatively few

false negatives for each method. For each false negative, we carefully retrain

the classifier to identify the attainable accuracy compared to privacy thresh-

old and find that the classification scores with the added false negative tests

never surpass 0.01 above the target privacy threshold. The analysis indicates

the clustering is most likely to assign false negatives to features which are

close to the privacy threshold.

Figures 5.16 and 5.17 present the number of private features for the phones

and walking speed over various privacy thresholds. The phones followed the

ideal case with the MI yielding the highest number of features, followed by the

MIS method with the base method yielding the smallest number of private

features. As expected, the number of private features increases as the privacy

threshold is lowered (becomes more strict) and the number of private features

decreases as the privacy threshold is raised. For a privacy threshold of .6,

46 features are identified as private by the full privacy search with the MIS

yielding 60 and MI algorithm yielding 93 features. Interestingly, the MI and

MIS methods yields similar results for features. Thus, the MIS methods does

not always eliminate the false positives from features with high NMIS. Once

again, we see the number of private features rise as the privacy threshold is

lowered. We surmise 0.4 as a reasonable level of privacy for the regression

with 84 features being identified as private by the full algorithm and 103 being

identified as private by the MI and MIS methods. Finally, Figures 5.18 and

88

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Privacy Threshold

0

10

20

30

40

50
#

 F
e
a
tu

re
s

MI FP
MI FN

MIS FP
MIS FN

Figure 5.18: Phone Identification
Sensitive Features Identification
False Positives and Negatives
(Lower = More Private)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Privacy Threshold

0

5

10

15

20

25

30

35

#
 F

e
a
tu

re
s

MI FP
MI FN

MIS FP
MIS FN

Figure 5.19: Walking Speed Sensitive
Features Identification False Positives
and Negatives (Higher = More
Private)

5.19 illustrate the false positives and negatives for the phone identification

and walking speeds at various privacy levels. We do not observe any patterns

across the five experiments in false positives; however, we do note that the

false negatives seem to be more prevalent at stricter privacy thresholds. We

surmise that a privacy level which is too strict begins to be affected by more

subtle combinations of less predictive features. As the classification score

requirement decreases, it becomes more likely that combinations of features

with little predictive utility can combine to edge over the threshold. This is

encouraging since false negatives with low predictability will not substantially

hurt the privacy of the user.

Tables 5.5 and 5.6 give the runtimes in hours of each of the private feature

identification algorithms. It is important to note that all runtimes are con-

ducted on a single core of an AMD Opteron 8431. The algorithms do conduct

a large search of machine learning training which can be run in parallel; how-

ever, to compare the overall runtime, we limit our analysis to a single core.

We find that higher privacy thresholds which identify more features tend to

finish more quickly. Lower privacy thresholds have a tendency to have more

features on the boundary thus lengthening the search. Regression searches

are generally shorter since the underlying machine learning SVR model only

needs to be trained once. The FEV1/FVC models with lower number of

private features finished in as little as 36 minutes with the worst case only

89

Table 5.5: Privacy Feature Selection Runtime Comparison for Classification
Targets

Activity PhoneIDNW
Method Base(h) MI (h) MIS (h) Base(h) MI (h) MIS (h)

Best .14 .08 .09 3.4 2.3 3.1
Average 15.06 7.3 9.0 6.4 2.7 4.0
Worst 44.9 21.8 26.7 8.2 3.2 4.6

UserIDW
Method Base(h) MI (h) MIS (h)

Best 11.0 9.0 10.6
Average 142.3 35.0 44.1
Worst 165.5 55.3 62.7

Table 5.6: Privacy Feature Selection Runtime Comparison for Regression
Targets

FEV1/FVC SpeedW
Method Base(h) MI (h) MIS (h) Base(h) MI (h) MIS (h)

Best .6 .6 .6 23.2 7.9 8.3
Average 6.3 1.8 3.4 32.3 9.9 9.6
Worst 13.8 3.3 7.0 45.0 12.8 11.6

reaching to 13.8 hours. Of course, regression trials with more private features

can take almost 2 days for the base algorithm. We do see substantial speed

improvements by using the MI and MIS algorithms. The classification takes

much longer since the SVM classifier is composed of many one-versus-one

classifiers. This makes the user identification with 88 targets particularly

computationally expensive. With the base case, the privacy algorithm takes

roughly two weeks to complete. The MI and MIS algorithms cut that down

to 2-3 days. The number of private feature also increases the computation

of the activity models. The shortest classification runtime was seen in the

phone identification which has a relatively low number of sensitive features

and targets compared the activity and user identification classifiers.

Overall, we see two primary effects which determine the total computation

time. The number of classification targets greatly increases the complexity

of an SVM classifier. We therefore recommend using a classifier which scales

better with a high number of prediction targets. We will investigate other

possible classifiers in Chapter 6. The number of features which yield pre-

90

diction rates close to the privacy threshold also increase the runtime since

the forward selective search must search more rounds at the threshold. Since

more features tend to be included with tighter privacy thresholds, a lower

security threshold seems to increase the runtime. Overall, we see non-trivial

performance gains for the MI and MIS algorithms with the MI performing

the fastest followed by the MIS. Thus, we find a design trade-off between the

accuracy of identifying the complete set of private features and computation.

Filter Method Top Features and Private Features

The private aware features selection routines presented in Section 5.2.1 quan-

tify the relative privacy risk of features by conducting repeated forward se-

lection searches using a machine learning model. This procedure is still

computationally expensive requiring hours to days of computation. Ideally,

filter methods could be used to select features since the methods carry far

less computational overhead and therefore scale to higher number of features.

We look at the ability of the filter methods implemented in FEAST to

predict the most sensitive features for various classification and regression

targets. We conduct our analysis with a privacy threshold F1-score of 0.6.

To compare all features, we conduct the FEAST search returning the ordered

ranking of all 222 features. We then compare the top features returned from

FEAST to the base private feature identification algorithm. If the FEAST

feature is identified as a private feature, it is considered a true positive identi-

fication. If the FEAST feature is not a private feature, it is considered a false

positive. Figures 5.20 and 5.21 plot the ROC for various filter methods iden-

tifying the private features for regression models including the FEV1/FVC

and walking speed estimation respectively. Figures 5.22 and 5.23 show similar

ROC curves for classification models including the phone and user identifi-

cation models. The filter selection techniques perform similarly for the range

of privacy thresholds tested with similar number of false positive and nega-

tives for each particular classification target. We see that the top perform-

ing filter methods are the mutual information maximization, max-relavance

min-redundancy, joint mutual information and double input symmetrical rel-

evance methods. Both the conditional mutual information maximization and

conditional redundancy perform similarly to random guessing with the re-

maining features actually performing worse than random guessing. Interest-

91

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

BG

CIFE

CMIM

CondMI

Condred

DISR

ICAP

JMI

MIFS

MIM

mRMR

Figure 5.20: FEV1/FVC Filter
Feature Selection Private Feature
Identification ROC Curve (0.6
Privacy Threshold)

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

BG

CIFE

CMIM

CondMI

Condred

DISR

ICAP

JMI

MIFS

MIM

mRMR

Figure 5.21: Walking Speed Filter
Feature Selection Private Feature
Identification ROC Curve (0.6
Privacy Threshold)

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

BG

CIFE

CMIM

CondMI

Condred

DISR

ICAP

JMI

MIFS

MIM

mRMR

Figure 5.22: Phone Identification
Filter Feature Selection Private
Feature Identification ROC Curve
(0.5 Privacy Threshold)

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

BG

CIFE

CMIM

CondMI

Condred

DISR

ICAP

JMI

MIFS

MIM

mRMR

Figure 5.23: User Identification Filter
Feature Selection Private Feature
Identification ROC Curve (0.5
Privacy Threshold)

92

ingly, the same top features perform well for identifying the private features

necessary to conduct the user identification classification. However, the fil-

ter methods perform quite poorly for the phone identification task with all

methods tending to follow the diagonal best guess line.

Overall, we find that the filter selection techniques perform fairly well for

the private features identified during regression analysis. The MIM method

actually identifies 60% of the top private features before generating a false

positive. All methods do generate false positives and negatives; however,

they significantly reduce the computation time from days to mere minutes

with total runtime of the FEAST algorithm taking 8 minutes per target

feature. Unfortunately, the methods perform extremely poorly for phone

identification tasks and reduced accuracy for user identification.

Other Metrics to Predict Private Features

Ideally, a low computation metric would be useful to identify private fea-

tures eliminating the necessity of calculating an expensive feature elimina-

tion with forward selection search. We investigate three basic methods to

classify private features including k-means clustering, NMIS with the target

of the classifier, and a latent Dirichlet allocation feature scoring. The re-

sults are presented in Figures 5.24 and 5.25. We see that overall, the simple

normalized mutual information score is most effective at identifying private

features. The LDA scoring does an extremely poor job of classifying private

features giving results similar to random in the best case and actually order-

ing features in the inverse order in the worst case. The k-means also does

fairly well at classification actually beating the NMI for the phone ID. We

find that using the k-means clustering and normalized mutual information

with the target provide the best alternative to an expensive iterative search.

While the search is guaranteed to provide ground truth, algorithms which

require less computation are highly desirable for larger data sets with more

possible features. We finally note that the results from the filter analysis

agree with our recommendation to user the straight normalized mutual in-

formation. The top scoring filter method is actually the mutual information

maximization function. Furthermore, the max-relavance min-redundancy,

joint mutual information and double input symmetrical relevance methods

all scale the penalty term by 1
S

where S is the number of samples consid-

93

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

Activity NMI

Activity LDA

Activity KM1

UserIDW NMI

UserIDW LDA

UserIDW KM1

PhoneIDNW NMI

PhoneIDNW LDA

PhoneIDNW KM1

Figure 5.24: ROC Curve of NMI and
LDA Rankings for Classification
Private Feature Selection

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

FEV1/FVC NMI

FEV1/FVC LDA

FEV1/FVC KM1

SpeedW NMI

SpeedW LDA

SpeedW KM1

Figure 5.25: ROC Curve of NMI and
LDA Rankings for Regression Private
Feature Selection

ered. Since we are considering on the order of 10 k-1 M samples, this term is

negligible when calculating the scores. Thus, the top scoring filter methods

are simply using the normalized mutual information with the target of the

model.

Overall, we find the basic algorithm for private feature identification re-

turns the best estimate of the features important for the prediction models,

but require high computation. Computation time can be reduced by consid-

ering eliminating groups of features which have high NMIS inside the group.

However, this can lead to false positives. We reduce these false positives

giving a hybrid MIS method by only grouping features with high NMIS and

similar scoring during the first round of a forward sequential search using

a SVM/SVR classifier. If computation is extremely limited, the best non-

wrapper method to implement private feature selection is using the NMIS

with the target directly. This is computationally efficient at the expense of

a higher misclassification rate especially for models with many classification

targets such as user identification.

94

5.2.3 Features Relevant to Privacy

We now identify the set of relevant private features out of the set of 2294

features contained in our full data set. We use the MIS algorithm outlined in

the previous section. The algorithm searches for the set of private features by

repeatedly searching for and removing the most predictive feature returning

the set of safe features which cannot provide a classification score higher than

the privacy threshold. The algorithm scores features using the highest F1-

score for classification models and the lowest mean absolute error attained

by removing the feature. We run for all target classification and regression

targets returning an ordered list of important sensor features. We adaptively

determine our privacy cutoff by calculating the point between the maximum

prediction accuracy determined during the forward sequential search and the

noise threshold. The sequential forward search is conducted using an SVM for

classification or an SVR for regression both using a radial basis kernel. The

noise threshold is determined by training the model with randomly generated

noise and averaging the prediction scores over all available testing data.

We investigate what features appear useful and must be hidden to protect

privacy. Table 5.7 lists the top 5 first identified private features per predic-

tion target. We see that each prediction target returns different top private

features. We break down the top features by sensor, features and sensor fea-

tures and compare the intersection of top features between prediction targets

in the subsequent sections.

Important Sensors

Figure 5.26 shows the percentage of sensors which were selected as top sensor

features for each classification target. We see three primary classes of results

for each target from the model. For targets with low prediction scores, the

distribution of chosen sensors has a tendency to be more uniform than models

with higher accuracy. This is unsurprising since models with lower accuracy

will be more likely to over fit to sensors which may not be highly predictive.

This is especially apparent in the COPDNW and FEV1NW which have a

nearly uniform distribution of selected sensors. We see two primary types of

useful information from the sensor linear motion and rotational motion. The

FEV1%, FEV1/FVC and weight models have higher accuracy when training

95

Table 5.7: Top Five Private Features over All Prediction Targets

A
ct

iv
it

y

MagZ SigAvDev

A
ge

A
ll

AccY SpSum

A
g
eN

W

GravMag SigMin
GyroZ AMDFAvDev AccP1 AMDFAvDev MagMag ASDFNZC
AccZ SpHPS AccF SigVar MagZ IrrJ
AccP1 ACAvDev AccN AMDFVar HR SigMax
AccMag SpFlx AccY AMDFSD RotX IrrJ

A
g
eW

AccV ASDFAvDev

C
o
p

d
A

ll

GyroZ AMDFAvDev

C
o
p

d
N

W

GravY AMDFNZC
AccMag SpFlx AccP1 ACAvDev MagZ IrrJ
AccV SpKurt MagZ IrrJ GravMag ACSkew
GyroX ASDFSum GyroX ASDFSum GyroX SigMean
AccN AMDFVar GyroY ASDFMax GyroMag ASDFKurt

C
o
p

d
W

GyroX IrrK

F
E

V
1A

ll

GyroX AMDFMin

F
E

V
1
N

W

AccSw ACSkew
GyroMag SigVar GyroX IrrK MagZ SigAvDev
GyroZ AMDFAvDev GravMag SigMin GyroZ AMDFAvDev
GyroY SpSD GyroZ SigMin AccP1 ACAvDev
GyroZ SigFF GyroMag SigVar MagZ IrrJ

F
E

V
1
W

GyroX IrrK

F
E
V
1
/
F
V
C
A
ll GravMag SigMin

F
E
V
1
/
F
V
C
N
W AccX SpSlp

GyroMag AMDFSD MagX AMDFAvDev RotX SigMax
GyroZ SigMin MagZ AMDFMean AccMag SpFlx
GyroMag SigVar AccMag SpFlx AccF SignMCR
GyroZ AMDFAvDev MagX ASDFAvDev AccY SpSum

F
E
V
1
/
F
V
C
W

MagX AMDFAvDev

G
en

d
er

A
ll DirOff SigMin

G
en

d
er

N
W

AccSw ACSkew
MagX ASDFAvDev GravY AMDFNZC DirOff SigMin
AccY SpSum POx SpSmooth DirF ACMax
AccP1 AMDFAvDev AccMag SpFlx AccP1 ACAvDev
AccF SigVar MagZ IrrJ AccMag SpFlx

G
en

d
er

W

AccSw ACSkew

H
ei

g
h
tA

ll AccN SpRoll

H
ei

gh
tN

W

GravMag SigMin
DirOff SigMin AccN SpSD AccN SpSD
GravY AMDFNZC GravMag SigNZC GravMag SigNZC
GyroZ AMDFAvDev AccP1 SpSD AccSw SpSmooth
AccZ SpHPS AccZ SigMax HR SigMax

H
ei

gh
tW

GravY AMDFNZC

P
h

on
eI

D
A

ll GyroX IrrK

P
h

on
eI

D
N

W GyroZ AMDFAvDev
GravMag SigNZC GyroZ SigMin AccP1 ACAvDev
AccMag SpFlx GyroMag SigVar MagZ IrrJ
GravZ AMDFNZC GyroZ AMDFAvDev GyroX ASDFSum
AccV SpKurt GyroY SpSD GyroZ ACKurt

P
h

on
eI

D
W

GyroZ AMDFAvDev

S
p

ee
d

W

AccV ASDFAvDev

S
te

p
sW

MagZ SigAvDev
GravX AMDFKurt GravY AMDFNZC AccV ASDFAvDev
RotY SpKurt GyroZ AMDFAvDev GravY AMDFNZC
AccN AMDFVar AccZ SpHPS GyroZ AMDFAvDev
GyroX ASDFSum AccP1 ACAvDev AccZ SpHPS

U
se

rI
D

A
ll RotY SigMean

U
se

rI
D

N
W

AccP1 SigMean

U
se

rI
D

W

AccSw SpRMS
AccY ACSum AccN SigSum AccP2 SpSkews
RotY ACVar AccF ACMean AccV SigEnt
AccY SigSum AccP1 ACAvDev AccZ SpEnt
AccY ACSD AccP1 ACRMS AccP2 SpSum

W
ei

gh
tA

ll GyroX AMDFMin

W
ei

gh
tN

W

GyroZ AMDFAvDev

W
ei

gh
tW

GyroY SigSD
GyroX IrrK AccP1 ACAvDev GyroZ AMDFAvDev
GyroZ SigMin MagZ IrrJ GyroY AMDFAvDev
GyroMag SigVar HR SigMax GyroMag SpCent
GyroZ AMDFAvDev GyroX ASDFSum GyroY SpEnt

96

A
cc

X
A

cc
Y

A
cc

Z
A

cc
M

a
g

M
a
g
X

M
a
g
Y

M
a
g
Z

M
a
g
M

a
g

G
y
ro

X
G

y
ro

Y
G

y
ro

Z
G

y
ro

M
a
g

G
ra

v
X

G
ra

v
Y

G
ra

v
Z

G
ra

v
M

a
g

R
o
tX

R
o
tY

R
o
tZ

H
R

P
O

x
A

cc
V

A
cc

E
A

cc
N

A
cc

F
A

cc
S
w

A
cc

P
1

A
cc

P
2

D
ir

F
D

ir
P

D
ir

O
ff

Sensor

Activity
AgeAll

AgeNW
AgeW

CopdAll
CopdNW

CopdW
FEV1All

FEV1NW
FEV1W

FEV1/FVCAll
FEV1/FVCNW

FEV1/FVCW
GenderAll

GenderNW
GenderW
HeightAll

HeightNW
HeightW

PhoneIDAll
PhoneIDNW

PhoneIDW
SpeedW

SpeedWLaps
StepsW

UserIDAll
UserIDNW

UserIDW
WeightAll

WeightNW
WeightW

T
a
rg

e
t

0

3

6

9

12

15

18

21

24

27

30

%
 C

h
o
se

n
 i
n
 F

e
a
tu

re
 S

e
le

ct
io

n

Figure 5.26: Private Feature Rates per Sensor

on sensors related to rotation of the device as measured by the gyroscope.

Most other models attain higher accuracy looking at the linear motion sen-

sors. We see models for speed and activity showing little preference for which

reference frame used for the model. Interestingly, we see both user identifica-

tion and age choosing acceleration streams in the walking reference frames.

We finally note that the direction of walking and difference statistics of rela-

tive motion between forward and sway accelerations are almost never chosen

as private features. Intuitively, the walking direction should not help predict

these targets. Thus, not choosing the direction provides a nice sanity check

for the methods. We note that these three streams can be safely eliminated

for the remaining privacy analysis DirF, DirP and DirOff.

97

Important Statistical Features

Figure 5.27 shows the percentage of chosen statistical features across all sen-

sors. We observe a wide variety of sensor features chosen as private features.

Overall, prediction targets with low overall scores once again have a tendency

toward a uniform distribution of statistical features. The important contri-

bution of this analysis are what statistical features do not leak significant

privacy leaks. The most noticeable features which contribute little to the

privacy include the signal fundamental frequency, signal covariance, spectral

minimum, spectral flatness, the three spectral tristimulus values, the spec-

tral inharmicity, spectral odd/even ration, ASDF kurtosis, ASDF minimum,

AMDF kurtosis and AMDF minimum. Identifying the features with little

contribution to privacy allows us to further reduce our set of total sensor

features from 31 * 74 = 2294 down to 28 sensors times 61 features for a

total of 28 * 61 = 1708 thus eliminating 26% of the sensor features from

consideration.

Important Sensor Statistical Features

Figure 5.28 lists the relative selection position of every sensor feature under

consideration. We notice that the accelerometer and gyroscope sensors con-

tribute greatly to most predictions. The gyroscope is particularly useful for

predicting COPD, FEV1%, phone identification, and weight. Gender, a pre-

diction with low classification accuracy, has the most uniform distribution of

sensor features. Prediction targets including activity, speed and steps have

higher prediction accuracy when using the accelerometer sensors. The dia-

gram more clearly illustrates that the direction, heartrate, and pulse oximeter

sensors give little predictive information. The rotation, magnetometer, and

gravity sensors give less information than the gyroscope and accelerometer.

However, as expected, many features give redundant information useful for

prediction requiring a wide consideration for the necessary noise to maintain

privacy in the raw data signal.

98

A
ct

iv
it

y
A

g
e
A

ll
A

g
e
N

W
A

g
e
W

C
o
p
d
A

ll
C

o
p
d
N

W
C

o
p
d
W

FE
V

1
A

ll
FE

V
1

N
W

FE
V

1
W

FE
V

1
/F

V
C

A
ll

FE
V

1
/F

V
C

N
W

FE
V

1
/F

V
C

W
G

e
n
d
e
rA

ll
G

e
n
d
e
rN

W
G

e
n
d
e
rW

H
e
ig

h
tA

ll
H

e
ig

h
tN

W
H

e
ig

h
tW

P
h
o
n
e
ID

A
ll

P
h
o
n
e
ID

N
W

P
h
o
n
e
ID

W
S
p
e
e
d
W

S
p
e
e
d
W

La
p
s

S
te

p
sW

U
se

rI
D

A
ll

U
se

rI
D

N
W

U
se

rI
D

W
W

e
ig

h
tA

ll
W

e
ig

h
tN

W
W

e
ig

h
tW

Feature

SigMean
SigVar
SigSD

SigAvDev
SigSkew
SigKurt
SigMin

SigMax
SigSum
SigNZC
SigRMS

SigFF
SignMCR

SigEnt
SigCoV

SpMean
SpVar
SpSD

SpSkews
SpKurt
SpMin

SpMax
SpSum
SpNZC
SpRMS

IrrJ
IrrK

SpCent
SpSmooth
SpSpread

SpRoll
SpFlat
SpPwr

SpSharp
SpSlp

SpHPS
SpFlx
SpTr1
SpTr2
SpTr3

SpInharm
SpOdEv

SpEnt
ACMean

ACVar
ACSD

ACAvDev
ACSkew
ACKurt
ACMin

ACMax
ACSum
ACNZC
ACRMS

ASDFMean
ASDFVar
ASDFSD

ASDFAvDev
ASDFSkew
ASDFKurt
ASDFMin

ASDFMax
ASDFSum
ASDFNZC
ASDFRMS

AMDFMean
AMDFVar
AMDFSD

AMDFAvDev
AMDFSkew
AMDFKurt
AMDFMin

AMDFMax
AMDFSum
AMDFNZC
AMDFRMS

T
a
rg

e
t

0

2

4

6

8

10

12

14

16

%
 C

h
o
se

n
 i
n
 F

e
a
tu

re
 S

e
le

ct
io

n

Figure 5.27: Private Feature Rates per Feature

99

Figure 5.28: Top Scoring Private Features per Sensor Feature

100

A
ct

iv
it

y
A

g
e
A

ll
A

g
e
N

W
A

g
e
W

C
o
p
d
A

ll
C

o
p
d
N

W
C

o
p
d
W

FE
V

1
A

ll
FE

V
1
N

W
FE

V
1
W

FE
V

1
/F

V
C

A
ll

FE
V

1
/F

V
C

N
W

FE
V

1
/F

V
C

W
G

e
n
d
e
rA

ll
G

e
n
d
e
rN

W
G

e
n
d
e
rW

H
e
ig

h
tA

ll
H

e
ig

h
tN

W
H

e
ig

h
tW

P
h
o
n
e
ID

A
ll

P
h
o
n
e
ID

N
W

P
h
o
n
e
ID

W
S
p
e
e
d
W

S
p
e
e
d
W

La
p
s

S
te

p
sW

U
se

rI
D

A
ll

U
se

rI
D

N
W

U
se

rI
D

W
W

e
ig

h
tA

ll
W

e
ig

h
tN

W
W

e
ig

h
tW

Target

Activity
AgeAll

AgeNW
AgeW

CopdAll
CopdNW

CopdW
FEV1All

FEV1NW
FEV1W

FEV1/FVCAll
FEV1/FVCNW

FEV1/FVCW
GenderAll

GenderNW
GenderW
HeightAll

HeightNW
HeightW

PhoneIDAll
PhoneIDNW

PhoneIDW
SpeedW

SpeedWLaps
StepsW

UserIDAll
UserIDNW

UserIDW
WeightAll

WeightNW
WeightW

T
a
rg

e
t

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

%
 C

h
o
se

n
 o

v
e
rl

a
p
p
in

g
 T

o
p
 F

e
a
tu

re
s

Figure 5.29: Intersection of Private Features among Targets

Comparing Private Features among Prediction Targets

Figure 5.29 gives a clearer picture of the intersection of private sensor fea-

tures between predictions. We see that overall overlap varies per prediction

target. Unsurprisingly, many prediction targets demonstrate strong corre-

lation of private features between walking, non-walking and combined data

sets. Optimistically, the overlap between user identification and other pre-

dictions is relatively small. This is primarily due to user identification having

a smaller number of private features. Overall, we see a high rate of overlap

between phone identification and health classification including FEV1% and

COPD classification. Activity also overlaps with most predictive targets due

to the high number of private features. Figure 5.30 demonstrates the relative

number of private sensor features per predictive target. We see that many

101

A
ct

iv
it

y
A

g
e
A

ll
A

g
e
N

W
A

g
e
W

C
o
p
d
A

ll
C

o
p
d
N

W
C

o
p
d
W

FE
V

1
A

ll
FE

V
1

N
W

FE
V

1
W

FE
V

1
/F

V
C

A
ll

FE
V

1
/F

V
C

N
W

FE
V

1
/F

V
C

W
G

e
n
d
e
rA

ll
G

e
n
d
e
rN

W
G

e
n
d
e
rW

H
e
ig

h
tA

ll
H

e
ig

h
tN

W
H

e
ig

h
tW

P
h
o
n
e
ID

A
ll

P
h
o
n
e
ID

N
W

P
h
o
n
e
ID

W
S
p
e
e
d
W

S
p
e
e
d
W

La
p
s

S
te

p
sW

U
se

rI
D

A
ll

U
se

rI
D

N
W

U
se

rI
D

W
W

e
ig

h
tA

ll
W

e
ig

h
tN

W
W

e
ig

h
tW

Target

0

200

400

600

800

1000

1200

1400

1600

P
ri

v
a
te

 F
e
a
tu

re
s

Figure 5.30: Number of Private Features per Target

predictive targets contain fewer than 500 private features removed to lower

the predictive power below the 0.5 threshold. We notice that targets with

an extremely high number of private features also attain low prediction ac-

curacy. We surmise this is an indication of over fitting in the models which

will be addressed in Chapter 6.

5.3 Conclusions

We have analyzed various feature selection routines in this chapter finding

that filter and wrapper methods differ significantly in the top features identi-

fied. We investigated the effect of redundant features in top feature selection

algorithms finding that subsets of features with high correlation can be iden-

tified and classified with similar levels of predictability. We then developed

algorithms to identify the set of all private features which can be useful to

conduct a prediction. While effective, our initial algorithms are computa-

tionally expensive requiring optimization. We therefore use NMI clustering

102

to reduce computation time evaluating the optimized and unoptimized algo-

rithm for accuracy and runtime. We also evaluated the ability of traditional

feature selection and feature evaluation statistics to identify private features.

We find that using the original NMIS between features and target variables

is the most accurate low computation method to identify the set of private

features but still produces false positives and negatives against our baseline

algorithm.

We determined the private features for all thirty predictive targets in our

data set. We find significant overlap in both sensors and features requiring

further analysis of the relative sensitivity between features for each target to

determine the ability of obfuscating one prediction while leaving the other.

We do identify thirteen features and three sensors not useful for predictions

allowing us to reduce our total number of sensitive features by 26% to 1,708

sensor features. We determine the relative sensitivity of each sensor feature

to give accurate predictions and design privacy obfuscation methods using

this identified set of private features in the following chapters.

103

CHAPTER 6

PREDICTION MODELS

In this chapter, we consider various classification and regression models and

evaluate their ability to predict sensitive information when trained with the

top selected features presented in Chapter 5. Each classification model is

trained using a given set of features X to predict a given target Y. For

optimization, each model’s hyperparameters are chosen using a grid search

for the highest scoring model with reasonable boundaries depending on the

model type. Once the ideal hyperparameters are found, the model is trained

and cross validated using standard ten-fold cross validation. Once the model

accuracy is determined, the chapter will finish by presenting novel methods to

estimate the sensitivity of each feature in X to the target predictions Y. This

analysis will be used in Chapter 7 to design privacy obfuscation techniques.

6.1 Classification Models

Classification models are designed to predict what class a group of input data

belongs to or indicates. Each model is trained with a set of input parame-

ters and target values. The model then determines cutoff points in the data

to later classify unknown input as one of the previously trained classes. We

now evaluate various classification models in their ability to predict classes in-

cluding phone identification, user identification, gender, activity, and COPD

status.

6.1.1 K-Nearest Neighbors

K-Nearest Neighbors or k-NN classification is perhaps the simplest algorithm

in classification [91]. All training points are retained as a set of feature

vectors with corresponding target values. When a new input feature vector

104

is presented, the algorithm searches for the k closest input feature vectors and

predicts the target class using simple a majority vote of the most represented

target in the set. The k parameter can be adjusted to optimize prediction

accuracy to the underlying feature distribution.

6.1.2 Naive Bayes

Nave Bayes seeks to choose a classification target which reflects the prior

observations used for training by defining an estimator ŷ which estimates

the most likely y given an input feature vector x [92]. Formally, it looks for

the best target y satisfying P (y|x1, x2, ..., xN) where the feature vector X

contains N observations. We can represent this conditional probability using

Bayes theorem (6.1). Of course, estimating the joint probability distribution

given in (6.2) is not trivial. Thus, the “Naive” assumption of independence is

assumed between all input features (6.3). This yields the simplification of the

numerator with the conditional probability being replaced with the product

of the independent conditional probability of each feature given the output

target y. For our prediction of the best y, we can drop the denominator since

the numerator is proportional to the joint probability (6.4). This yields the

final estimator ŷ as the y that yields the maximum product of the probability

of Y and the joint distributions of each feature value conditioned on the

trained targets (6.5).

P (y) is estimated using maximum a posteriori estimation which conve-

niently simplifies to the number of times the target y is observed divided by

the total number of observations. The conditional probability can be mod-

eled by a few distributions. Since the feature vectors in our training set are

sampled from continuous distributions, we will model the conditional prob-

ability using the Gaussian distribution (6.6). This assumes the observations

are sampled from a normally distributed continuous distribution. The para-

maters µy and γy are calculated using maximum likelihood for each feature

xn for each target y.

P (y|x1, x2, ..., xN) =
P (y)P (x1, x2, ..., xN |y)

P (x1, x2..., xN)
(6.1)

P (xn|y, x1, ..., xn−1, xn+1, ..., xN) = P (xn|y) (6.2)

105

P (y|x1, x2, ..., xN) =
P (y)

∏N
n=1 P (xn|y)

P (x1, x2..., xN)
(6.3)

P (y|x1, x2, ..., xN) ∝ P (y)
N∏
n=1

P (xn|y) (6.4)

ŷ = arg max
y
P (y)

N∏
n=1

P (xn|y) (6.5)

P (xn|y) =
1√

2πσ2
y

e
− (x−µy)2

2σ2y (6.6)

6.1.3 Quadratic Discriminant Analysis

Quadratic discriminant analysis uses the covariance between variables to es-

timate the particular class of a given set of inputs [93]. Once again, the

variables are assumed to have a Gaussian distribution; however, no assump-

tion is made of the independence of the features. We are again looking for

the probability of a given target y given a set of x inputs. This can be rep-

resented by Bayes theorem (6.8). The probability of x, P (x), is constant to

all the comparative classifications and can be ignored. The probability of

y, P (y), is estimated using maximum likelihood estimation to be the rela-

tive frequency counts of the target y divided by the total observations (θ).

The conditional probability distribution P (x|y) is given by the multivariate

Gaussian distribution (6.7) where k is the number of samples, µ is the mean

of each feature x for the given target and
∑

is the covariance.

We can then define an estimator ŷ to predict the class. This corresponds

to the maximum logarithmic a posteriori given by taking the logarithm of the

multivariate Gaussian distribution multiplied by the prior. Once again, the

(2π)−
k
2 term is a constant to all estimates and can be ignored. This gives the

final terms of the estimator which includes a multiplication yielding an x2

quadratic term (6.9). Classification is once again conducted by calculating

(6.9) for every value of y and choosing the class with the greatest value (6.10).

f(x) = (2π)
k
2 |
∑
|−

1
2 e−

1
2

(x−µ)′
∑−1(x−µ) (6.7)

106

P (y|x) =
P (x|y)P (y)

P (x)
=
fy(x)θy

c
(6.8)

δy(x) = ln(((2π)−
k
2 |
∑
|− 1

2 e−
1
2

(x−µy)′
∑−1(x−µy)) ∗ θy)

≈ −1
2
ln|
∑
|− 1

2 − 1
2
(x− µy)′

∑−1(x− µy) + ln θy
(6.9)

ŷ = arg max
y

δy(x) (6.10)

6.1.4 Decision Trees

Decision trees conduct classification by constructing a binary search tree

with splits at each node made based on the input vector and the target of

the classification in the leaf nodes [94, 95]. The algorithm iteratively builds

the tree by recursively splitting the nodes until either the leaves only contains

a single target or the tree reaches the maximum depth parameter. For each

potential split, the algorithm calculates the fraction of targets which are

contained in each potentially created leaf (6.11). The split is chosen with

the minimum Gini impurity score (6.12). Intuitively, the Gini impurity score

maximizes the number of unique targets contained in the split with an ideal

score of zero having the split contain the complete subsets of each labeled

target in the new leaf nodes.

fi =
1

N

∑
k∈N

I(yk = i) (6.11)

H(f) =
N∑
n=1

fn(1− fn) =
N∑
n=1

(fn− f 2
n) =

N∑
n=1

fn−
N∑
n=1

f 2
n = 1−

N∑
n=1

f 2
n (6.12)

Classification is conducted by traversing the tree with the input vector X.

The nodes are traversed according to the corresponding training rules and

the predicted target ŷ is chosen at the reached leaf node. Decision trees work

well at fitting the data exactly in noisy environments, but suffer severely

from over-fitting in the presence of noise. Thus, two ensemble methods are

often used in conjunction with decision trees including bagging and random

forests [96, 97].

Bagging attempts to average the effect of over-fitting by training numer-

ous decision trees on randomly sampled subsets of the training data with

107

replacement. The final classification is then conducted by taking the average

probability for the answer from the generated trees.

Random forest decision trees also train multiple decision trees to reduce

over-fitting. The training data is subsampled similarly to bagging, but the

random forests train multiple decision trees per sample with each tree only

training on a subset of the total number of input training vectors. Once

again, the classification is conducted using the average probability of the

answer over all the trees. This method also allows the importance of the

individual features to be assessed by returning the score of the sub-trees

which are trained on the individual features.

6.1.5 Support Vector Machines

Support vector machines are a class of machine learning algorithms which al-

low classification by remapping training data into a higher dimensional space

and determining sets of hyperplanes that separate classes [98]. These hyper-

planes called “support vectors” are calculated to maximize the separation

between data points in the given space. Formally, the algorithm searches

for the set of hyperparameters given by w which satisfies (6.13) subject to

(6.14).

min
w,b,γ

1

2
wTw + C

N∑
n=1

ξn (6.13)

yn(wTφ(xn) + b) ≥ 1− ξn, ξ ≥ 1, n = 1, ..., N, y = {−1, 1} (6.14)

Here w is the matrix of optimal support vectors. The mapping of the input

vector of length N to higher dimensions is conducting by the φ operator.

Outliers from the training data which may not be separable are handled

with an error term ξ with C as an input parameter to the model controlling

the penalty for incorrectly separated data points. This optimization problem

is solved by introducing Lagrange multipliers and forming the dual (6.15)

subject to (6.16). The decision function is then reduced to (6.17), where

a positive sign indicates a predicted Y classification of 1 and a negative

sign indicates a predicted Y classification of −1. While various choices for

108

kernels are possible, the two investigated in this dissertation are the linear

kernel K(xn, x) = 〈xn, x〉 and the radial basis kernel K(xn, x) = e−γ|xn−x|
2
.

min
α

1

2

N∑
m=1

N∑
n=1

αmαnymynk(xm, xn)−
N∑
n=1

αn (6.15)

N∑
n=1

αnyn = 0, 0 ≤ αn ≤ C ∀n = 1, ..., N (6.16)

sgn(
N∑
n=1

ynαnK(xn, x)− ρ) (6.17)

Obviously, the formulation given is a binary classifier. To conduct classi-

fication with more than two groups, a one-versus-one classification strategy

is conducted with the final classification being the majority vote from the

classifiers. Specifically, if there are k distinct targets, the classifier with train
k∗(k−1)

2
classifiers or one for each pair of unique targets. The prediction will

then be the target that gets the most votes from among the classifiers.

6.2 Regression Models

Regression models predict the value of a continuous variable based on a given

input vector. We will consider multiple types of regression models to predict

the continuous targets in our data set including the age, weight, height,

distance walked, FEV1% and FEV1/FVC.

6.2.1 Classical Regression

The simplest form of regressions fit a line directly correlating the inputs

x and outputs y. These methods have the advantage of being extremely

fast; however, input features that do not have linear relationships cannot

be properly represented. Additionally, the linear methods can be extremely

sensitive to noise in the input data. Thus, the simplicity often severely limits

the utility of the linear regression methods. We evaluate a simple linear

regression which chooses coefficients to minimize the ordinary least square

problem as shown in (6.18).

109

min
w
||Xw − y|| (6.18)

Since we have noisy data, we also evaluate ridge regression which attempts

to limit the effect of noise in creating unreasonably large coefficients by in-

troducing a penalty as shown in (6.19) [99].

min
w
||Xw − y||+ α||w|| (6.19)

Our final classical model is the Bayesian ridge regression which assumes

the output y is represented by a multivariate Gaussian distribution centered

around X and w (6.20) [100]. The values of the w coefficients are estimated

using a prior of independent coefficients estimated from the data during train-

ing (6.21). The Bayesian ridge regression has the advantage of allowing for

error during the training and estimation of the regression since the param-

eters are drawn from Gaussian distributions. This gives the model more

versatility to fit the training data.

p(y|X,w, α) = N (y|X,w, α) (6.20)

p(w|λ) = N (w|0, λ−1I) (6.21)

6.2.2 k-Nearest Neighbors Regression

The k-nearest neighbors regression retains all points used during training

[101]. To predict the output value, the k nearest training points are selected

with the prediction being the average value among the k points. Similar to

the k-NN classifier, the value of k is a user selectable hyperparameter.

6.2.3 Regression Trees

Regression trees are constructed in a similar manner to decision trees. Both

methods construct a binary search tree with splits made at each node based

on the target values in the training data for a given input vector [95]. Unlike

the decision trees which split based on Gini impurity score, the regression

trees choose the split to minimize the mean square error for each set of

110

training data represented in the new nodes (6.22). The final leaves hold the

average values seen in the training data for their respective branches in the

tree. Regression is conducted by traversing the tree choosing the split based

on the given input vector X with the predicted output y being the averaged

value in the leaf node. Regression trees can also be susceptible to over-fitting.

As with decision trees, both bagging and random forest trees are ensemble

methods which can help generalize the models.

H(f) = 1
N

∑
n∈N(yn − cf)2

cf = 1
N

∑
n∈N yn

(6.22)

6.2.4 Support Vector Regression

Support vector regression (SVR) uses the same underlying theory used for

support vector classification to predict value from a continuous distribution

[98]. Instead of predicting the exact output value, the SVR predicts values

within a margin of ε basically grouping output values within this margin to

similar classes. Since the prediction predicts either above or below the mean,

the margin of error term ξ is expanded to misclassification above the mean

ξ and below the mean ξ∗. Once again, the method seeks a set of coefficients

to minimize (6.23) under the constraint that the linear fit must be within

the error term ε with C setting the penalty for misclassification. The dual

optimization problem introduces the terms α and α∗ (6.24). The prediction

function is then given in (6.25) giving the estimate for the output value y.

minw
1
2
||w||2 + C

∑N
n=1(ξn + ξ∗n)

yn − wxn − b ≤ ε+ ξn, ξn ≥ 0

wxn + b− yn ≤ ε+ ξ∗n, ξ
∗
n ≥ 0

(6.23)

minα,α∗
1
2
(α− α∗)TK(xi, x)(α− α∗) + εeT (α− α∗)− yT (α− α∗)

eT (α− α∗) = 0, 0 ≤ αn, α
∗
n ≤ C, n = 1, ..., N

(6.24)

111

y =
N∑
n=1

(αn − α∗n)K(xn, x) + b (6.25)

6.2.5 Gaussian Process Regression

Gaussian process regression predicts the output target by modeling the in-

put features as sets of normally distributed random variables [102]. Gaussian

process regression defines an estimator ŷ to estimate the output y after trans-

forming the input features using a Gaussian function h(). It is assumed that

the ŷ is also Gaussian with noise ε (6.26) giving a Gaussian ∼ N (h(xn), εn)

leaving the mean of the estimator h(xn). This assumes that h() is also Gaus-

sian such that ∼ N (0, k) where k is the specified kernel function estimating

the covariance between x values. K(X,X∗) is defined to be a m by m kernel

matrix such that (K(X,X∗))ij = k(xi, x∗j). Using these assumptions, we

can define the Gaussian estimate of the distribution of input variables, the

Gaussian estimate of the noise, and combine the estimates into an estima-

tor of the output variables ŷ (6.27). Equation (6.28) follows directly from

rules conditioning Gaussians. Therefore given an training set X and a set of

corresponding kernel functions, we can obtain an estimate for the value of ŷ.

ŷi = h(xn) + εn, n = 1, ..., N (6.26)

112

[
h

h∗

]
|X,X∗ ∼ N

(
0,

[
K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
[
ε

ε∗

]
∼ N

(
0,

[
σ2I 0

0T σ2I

])
[
ŷ

ŷ∗

]
|X,X∗ =

[
h

h∗

]
+

[
ε

ε∗

]
∼ N

(
0,

[
K(X,X) + σ2I) K(X,X∗)

K(X∗, X)) K(X∗, X∗) + σ2I

])
(6.27)

P (ŷ∗|ŷ, X,X∗) ∼ N (µ∗, σ∗)

µ∗ = K(X∗, X)(K(X,X) + σ2I)−1ŷ

σ∗ = K(X∗, X∗) + σ2I−

K(X∗, X)(K(X,X) + σ2I)−1K(X,X∗)

(6.28)

6.3 Optimized Models and Prediction Accuracy

Previous work has used each of the presented models to conduct both clas-

sification and regression. We now evaluate each of our classification and re-

gression targets using each model and feature selection method. While many

previous works have been vague in presenting details about hyper-parameter

selection and cross-validation methods, we seek to optimize each model type

both in terms of hyperparameter selection and cross-fold validation. We will

then present the results of the best feature selection and models which have

been carefully optimized and trained.

6.3.1 Model Optimization

We test nine classification algorithms and nine regression algorithms for all

targets. Each model is evaluated using a ten-fold cross validation which

divides the data into ten equal pieces, trains on nine pieces, and evaluates

on the held out piece. This process is repeated so every set of pieces is used

once as evaluation and the results are averaged to attain the final F1-score

(for classification) or mean absolute error (for regression). This process helps

113

to reduce overly optimistic estimates due to over fitting of the model.

Additionally, many models have various hyperparameters which need to be

chosen. These parameters yield better models depending on the underlying

data distributions of the training data. Since the distributions are largely

unknown, it is common practice to train multiple models while sweeping

over reasonable hyperparameters. The model with the best score is generally

chosen and the same hyperparameters are used for further training. To reduce

over fitting, we use a three-fold cross validation while training our models to

select the ideal hyperparameters. For the support vector classification and

support vector regression, we test both linear and radial basis kernels with

C values of 0.001, 0.01, 0.1, 1, 10 and 100 and gamma values with logarithmic

steps from 10−12 to 0.1. We sweep over nearest neighbors for k-nearest-

neighbor classification and regression from 10% to 90% of total samples used

as nearest neighbors. Both bagged and random forest decision tree models

are trained sweeping from 10 to 110 base trees. Linear regression is tested

using an alpha value ranging from 10−5 to 10 in log space. Finally, the linear

ridge regression is tested from 10−5 to 10 in log space for the alpha1, alpha2,

lambda1 and lambda2 values.

The goal of the proposed analysis is to select the model most accurate

for each prediction and to produce a cross-validated estimate which more

accurately demonstrates the model’s accuracy against over fitting. For each

target, the nine classification or regression algorithms are first optimized

using three-fold cross validation over all hyperparameters for the selected

model. The optimal hyperparameters are then used to train a ten-fold cross-

validated model. The cross-validated model with the highest classification

score or lowest regression score is then selected as the optimal model for the

prediction.

6.3.2 Choosing the Optimal Model

Figures 6.1 and 6.2 plot the percentage of times each model type is cho-

sen when choosing the optimal model over all classification and regression

optimizations. We see that the random forest classifier and support vector

machine with radial basis kernels are most likely to have the highest accuracy

for classification tasks. For regression, we find that the k-nearest neighbors

114

B
a
g
g
e
d
 T

re
e

D
e
ci

si
o
n
 T

re
e

K
-N

N
C

Lo
g
 R

e
g

N
a
iv

e
 B

a
y
e
s

Q
D

A

R
a
n
d
o
m

 F
o
re

st

S
V

M
 (

L)

S
V

M
 (

R
B

)

Classification Method

0

5

10

15

20

25

30

%
 T

im
e
s

C
h
o
se

n

Figure 6.1: Top Classification
Methods

B
R

R

B
a
g
g
e
d
 T

re
e
s

G
P
R

K
-N

N
R

Li
n
e
a
r

R
e
g
re

ss
io

n

R
a
n
d
o
m

 F
o
re

st

R
e
g
re

ss
io

n
 T

re
e

R
id

g
e
 R

e
g
re

ss
io

n

S
V

R

Regression Method

0

10

20

30

40

50

%
 T

im
e
s

C
h
o
se

n

Figure 6.2: Top Regression Methods

and support vector regressions attain the lowest absolute mean error. Over-

all, the classification algorithms have more variation in the selection of top

classifiers. The regression models are less varied with linear, Bayesian and

tree based models having a much lower chance of being selected. It is par-

ticularly interesting that the decision trees, random forest tress, and bagged

trees perform much poorer in regression tasks than classification tasks. This

may be due to the added error of averaging between leaf nodes necessary

during regression tasks.

While the SVM and random forest trees are generally the most accurate

models for each task, the overall difference in accuracies between models for

classification are actually fairly similar. This is unsurprising considering that

many previous works have used each model to create accurate predictions.

Figures 6.3 and 6.4 plot the min, average and maximum F1-scores of each

optimized model for all feature selection methods. We see that the methods

all predict activity with fairly high accuracies (F1-score greater than 0.9).

The phone identification performs more poorly with the SVM and random

forest giving the highest F1-scores of 0.8 and other models giving less accu-

racy ranging from 0.6-0.8. The accuracy per model type for speed is plotted

in Figure 6.5. We notice that the Gaussian process regression performs ex-

tremely poor on outliers often returning absurd results. The figure is redrawn

with a more reasonable axes in Figure 6.6. Once again, most models perform

fairly well with the SVR yielding the lowest absolute error of 0.15 m/s. Thus,

115

B
a
g
g
e
d
 T

re
e

D
e
ci

si
o
n
 T

re
e

K
-N

N
C

Lo
g
 R

e
g

N
a
iv

e
 B

a
y
e
s

Q
D

A

R
a
n
d
o
m

 F
o
re

st

S
V

M
 (

L)

S
V

M
 (

R
B

)

Classification Method

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 (

F1
-S

co
re

)

Min Avg Max

Figure 6.3: Activity Classification
Model Accuracy

B
a
g
g
e
d
 T

re
e

D
e
ci

si
o
n
 T

re
e

K
-N

N
C

Lo
g
 R

e
g

N
a
iv

e
 B

a
y
e
s

Q
D

A

R
a
n
d
o
m

 F
o
re

st

S
V

M
 (

L)

S
V

M
 (

R
B

)

Classification Method

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 (

F1
-S

co
re

)

Min Avg Max

Figure 6.4: Phone Identification
Model Accuracy

B
R

R

B
a
g
g
e
d
 T

re
e
s

G
P
R

K
-N

N
R

Li
n
e
a
r

R
e
g
re

ss
io

n

R
a
n
d
o
m

 F
o
re

st

R
e
g
re

ss
io

n
 T

re
e

R
id

g
e
 R

e
g
re

ss
io

n

S
V

R

Regression Method

0
20
40
60
80

100
120
140
160
180

E
rr

o
r

(m
/s

)

Min Avg Max

Figure 6.5: Speed Regression Model
Accuracy

B
R

R

B
a
g
g
e
d
 T

re
e
s

G
P
R

K
-N

N
R

Li
n
e
a
r

R
e
g
re

ss
io

n

R
a
n
d
o
m

 F
o
re

st

R
e
g
re

ss
io

n
 T

re
e

R
id

g
e
 R

e
g
re

ss
io

n

S
V

R

Regression Method

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

o
r

(m
/s

)

Min Avg Max

Figure 6.6: Magnified Speed
Regression Model Accuracy

116

B
G

C
IF

E
C

M
IM

C
o
n
d
M

I
C

o
n
d
re

d
D

IS
R

IC
A

P
JM

I
K

M
FS K
M

I
M

IF
S

M
IM

S
V

M
FS

S
V

M
I

m
R

M
R

Feature Selection Method

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy
 (

F1
-S

co
re

)

Figure 6.7: Average Best
Classification Accuracy per Feature
Selection Type

B
G

C
IF

E
C

M
IM

C
o
n
d
M

I
C

o
n
d
re

d
D

IS
R

IC
A

P
JM

I
K

M
FS K
M

I
M

IF
S

M
IM

S
V

M
FS

S
V

M
I

m
R

M
R

Feature Selection Method

0.00

0.05

0.10

0.15

0.20

E
rr

o
r

(m
/s

)

Figure 6.8: Best Prediction Accuracy
for Speed Estimation

with exception of the GPR most models produce reasonable results when op-

timized; however, we find that support vector regression is most likely to be

the best for regression tasks and support vector classification and random

forest trees are most likely to be the best for classification tasks.

6.3.3 Comparing Feature Selection Accuracy

In Chapter 5, we found that feature selection routines varied widely in the

sets of top features used for prediction. We now test the predictions with

each of the fifteen feature selection techniques previously presented. Figure

6.7 lists the average best F1-score for each classification model over all clas-

sification targets. In general, most filter feature selection techniques appear

to perform similarly. We see small performance gains in the JMI, CMIM and

mRMR filter methods which affirms previous work which recommended the

use of JMI as the default selection method [76]. We see that selecting the top

features using k-means clustering performs worse than other methods which

were tested. We also see that the SVM sequential forward search attains the

highest accuracy overall. Since the scale of absolute average errors varies

among regression methods, we plot a single regression, speed estimation, in

Figure 6.8. In regression, we see more variation with the average performance

in all cases. However, we still see that using the SVMFS wrapper method

produces the lowest error in every model tested. Thus, we recommend run-

117

A
ct

iv
it

y
A

ct
iv

it
y
La

p
s

C
o
p
d
A

ll
C

o
p
d
N

W
C

o
p
d
W

G
e
n
d
e
rA

ll
G

e
n
d
e
rN

W
G

e
n
d
e
rW

P
h
o
n
e
ID

A
ll

P
h
o
n
e
ID

N
W

P
h
o
n
e
ID

W
U

se
rI

D
A

ll
U

se
rI

D
N

W
U

se
rI

D
W

Target

0.0

0.2

0.4

0.6

0.8

1.0

B
e
st

 A
cc

u
ra

cy
 (

F1
-S

co
re

)

Figure 6.9: Best Prediction
Accuracy for Classifications

A
g
e
A

ll
A

g
e
N

W
A

g
e
W

FE
V

1
A

ll
FE

V
1

N
W

FE
V

1
W

FE
V

1
/F

V
C

A
ll

FE
V

1
/F

V
C

N
W

FE
V

1
/F

V
C

W
H

e
ig

h
tA

ll
H

e
ig

h
tN

W
H

e
ig

h
tW

S
p
e
e
d
W

S
p
e
e
d
W

La
p
s

S
te

p
sW

S
te

p
sW

L
W

e
ig

h
tA

ll
W

e
ig

h
tN

W
W

e
ig

h
tW

Target

0
5

10
15
20
25
30
35

B
e
st

 A
cc

u
ra

cy
 (

%
 E

rr
o
r)

Figure 6.10: Best Prediction
Accuracy for Regressions

ning the SVMFS for the highest accuracy. If computation power is limited,

then we affirm that the JMI method overall produces the most accurate re-

sults for filter methods and recommend against using k-means clustering to

select features.

6.3.4 Prediction Accuracies

After choosing the best feature selection technique and optimizing each ma-

chine learning model with 10-fold cross validation, we can now present an es-

timate of the prediction accuracies for each of our targets. Figure 6.9 demon-

strates the F1-scores of each target. We find that predicting walking/non-

walking activity is the most accurate with close to 99% accuracy over all

samples using an optimized SVM with radial basis kernel trained using the

features from the SVM sequential forward search. Phone identification is

also quite accurate during periods of non-walking with scores above 0.91 for

ten phones. COPD status classification attains an average F1-score of 0.87.

User identification accuracy is quite low with walking identification F1-score

of 0.31. Our sample size of 88 subjects is much larger than most previous

work in subject identification. While previous work in user identification

was conducted in carefully controlled laboratory settings, our walking in-

cludes many samples of free, unconstrained walking. However, we believe

the decrease in accuracy is primarily caused by the ten-fold cross validation.

118

When testing so many subjects, the ten-fold cross validation can easily (and

often) leaves out training for a subset of labeled targets. If we add the con-

straint that all ten-fold cross validation must have samples from all users,

we attain F1-scores of 0.87, 0.93, and 0.82 for user identification all, walking,

and not walking respectively (as shown). We find gender attains low predic-

tion scores. Gender prediction with an average of 0.61 barely attains better

than a random binary classification.

Figure 6.10 presents the regression scores for the optimal regression models.

We find that our methodology predicts speed with less than 0.08 meter per

second error. We find that trained step regression models with roughly 1.5

step error over a ten second window perform more poorly than the anomaly

detection techniques used in our own previous work. Our models predict

the age of the subject within a ten-year period and the vital capacity within

11%. Unfortunately, the height had an average accuracy of three inches, the

weight had an accuracy of thirty kilograms and the FEV1% scores roughly

20%. Since the ranges of target height had a standard deviation of 3.7 inches,

weight 40 kilograms and FEV1% 14.7%, each model returns errors roughly

equivalent to the standard deviation in the target’s range making the pre-

dictions from the model statistically of little significance. Thus, we find our

models can return predictions for speed, age, and FEV1/FVC with significant

accuracy but are less accurate when predicting FEV1%, height, or weight.

Steps are significant but less accurate than traditional step detection routines

thus limiting the usefulness of the machine learning step models.

6.4 Estimating Sensitivity

Machine learning algorithms use sophisticated statistical models which of-

ten find underlying correlations in input vectors which are both non-trivial

and non-obvious. While this makes the models useful for prediction, it also

presents great difficulty in designing privacy techniques to protect the data.

In order to protect the targets of the inference, we now present methods

to estimate the amount of sensitivity S of an input vector given a machine

learning model trained to predict a target T . Intuitively, knowing the average

amount of change required in the input feature to affect the prediction target

naturally leads to an intuition of the amount of obfuscation to maintain the

119

Result: List of Sensitivities
for training sample ts do

for target t do
for feature f do

Target distance[f] = distance from ts to decision boundary
end

end
Training sample distance[f] = min(target distance[f])

end
Sensitivity[f] = average(training sample distance[f]

Algorithm 4: Average Sensitivity for General Classifier

privacy of the target.

The following sections use the underlying theory of each model to design

algorithms which estimate the sensitivity of the input feature to the predic-

tion target. For classifiers, this is an estimation of the average distance of

the input feature to the decision boundary. The derived algorithms calculate

the distance for an individual feature calculated per training sample with

the average distance over every training sample giving the estimate of sen-

sitivity for each feature per target. In many cases, this can be represented

by an equation giving a closed-form solution for the distance to the decision

boundary. To estimate the sensitivity for the regression models, we estimate

the ratio of change in input feature to change in output feature for each

specific training point. The sensitivity will be defined as the change in out-

put feature per unit change in input feature for each training point with the

overall sensitivity being the average sensitivity per feature and target over

all training points.

Numerous classification models internally use formulas or algorithms which

allow direct calculation of the distance from a specified point to the decision

boundary of the classifier. The general form of the algorithm used to get

the average sensitivity when the distance is known is given in Algorithm

4. The sensitivity is calculated per feature as the average change in the

feature over all training samples to change the classification. Of course, the

amount of change required is the distance to the nearest decision boundary

or the minimum across all possible decision boundaries. Thus the estimated

sensitivity of a given feature is calculated to be the average minimum change

required to cause the classification to differ from the true predicted value.

The following sections will outline how the distances to the decision boundary

120

are extracted for each classifier.

6.4.1 Naive Bayes Classification

Recall that the estimator ŷ selects the classification with the maximum score

for a given input point x∀n ∈ N as given in (6.29). Therefore, the deci-

sion boundary is the point at which the score for a given target y1 is equal

to y2 (6.30). Substituting the Gaussian distance metric for the conditional

probability and π1 and π2 for the maximum likelihood priors for y1 and y2,

respectively, yields (6.31).

ŷ = max
y
p(y)

N∏
n=1

p(xn|y) (6.29)

p(y1)
N∏
n=1

p(xn, y1) = p(y2)
N∏
n=1

p(xn|y2) (6.30)

π1

N∏
n=1

1√
2πσ2

1n

e
− (xn−µ1n)2

2σ21n = π2

N∏
n=1

1√
2πσ2

2n

e
− (xn−µ2n)2

2σ22n (6.31)

We are only interested in the change per feature f for which we are esti-

mating the sensitivity. Fixing the other features and separating the terms we

get (6.32). Taking the logarithm and re-arranging terms gives (6.33). This

allows us to solve for the point xf which is the distance from the training

point to the decision plane for the feature f from the quadratic equation

given in (6.34). Of course the final distance for feature n is the difference

between the original training point xn and the point on the decision plane

xf (6.35). The minimum distance between the training point xn and each xf

for each available target is then taken as the minimum change required to

cause a misclassification. This is then averaged over all training points for

each feature to get the average sensitivity of each feature.

121

π1
1√

2πσ2
1f

e
−

(xf−µ1f)2

2σ21f

N∏
n=16=f

e
− (xn−µ1n)2

2σ21n =

π2
1√

2πσ2
2f

e
−

(xn−µ2f)2

2σ22f

N∏
n=16=f

e
− (xn−µ2n)2

2σ22n

(6.32)

(xf − µ1f)
2

2σ2
1f

−
(xf − µ2f)

2

2σ2
2f

= ln

π1

√
2πσ2

2f

π2

√
2πσ2

1f

−
N∑

n=16=f

(xn − µ1n)2

2σ2
1n

+
N∑

n=16=f

(xn − µ2n)2

2σ2
2n

(6.33)

x2
f (2σ

2
2f
− 2σ2

1f
) + xf (4σ

2
1f
µ2f − 4σ2

2f
µ1f)+

2σ2
2f
µ2

1f
− 2σ2

1f
µ2

2f
− ln

π1

√
2πσ2

2f

π2

√
2πσ2

1f

+

N∑
n=16=f

(xn − µ1n)2

2σ2
1n

−
N∑

n=16=f

(xn − µ2n)2

2σ2
2n

= 0

(6.34)

dn = abs (xf − xn) (6.35)

6.4.2 Quadratic Discriminant Analysis

Quadratic discriminant analysis also allows us to derive a distance estimation

from an arbitrary point to the decision boundary. Quadratic discriminant

analysis chooses the classification that maximizes the discriminant function

as given in (6.36) which is equal to the formula given in (6.37) after sub-

stituting the maximum likelihood prior estimate πy, and taking the singular

value decomposition of the covariance matrix to get the singular values S,

the covariance inverse matrix R, and the input point P = x − µ. In this

formula, the summations over the matrices are written out with sums over

all C target classes and F features. Once again, the point of interest is when

122

the value of the discriminant is equal for the given points or when P satisfies

(6.38) for arbitrary targets 1 and 2.

δ(y) = −1

2
ln|
∑
|−

1
2 − 1

2
(x− µy)′(

∑
)−1(x− µy) + ln θy (6.36)

δ(y) = −1

2

 C∑
c=1

ln(S) +
C∑
c=1

(
F∑
f=i

Rfc ∗ Pf

)2
+ lnπy (6.37)

−
∑C

c=1

(∑F
f=iR1fc ∗ P1f

)2

+
∑C

c=1

(∑F
f=iR2fc ∗ P2f

)2

= t

t =
∑C

c=1 ln(S1)−
∑C

c=1 ln(S2) + 2 lnπ2
π1

(6.38)

Given an arbitrary point x, we are interested in the distance between the

point and the decision plane. Letting P1 = x−µ1 and P2 = x−µ2 and adding

a slack variable xk representing the distance on the k feature axis of interest

yields (6.39). Factoring out the xk terms and defining convenience functions

C1 and C2 yields (6.40). Rearranging terms, yields the quadratic equation

given in (6.41). Once again, the distance is defined to be the difference

between the given point xn and the point on the decision plane xk given in

(6.42).

−
C∑
c=1

(
F∑

f=i 6=k

(R1fc ∗ P1f) + (xk + P1k)R1kc

)2

+

C∑
c=1

(
F∑

f=i 6=k

(R2fc ∗ P2f) + (xk + P1k)R1kc

)2

= t

(6.39)

−
∑C

c=1 (xk ∗R1kc + C1c)
2 +

∑C
c=1 (xk ∗R2kc + C2c)

2 = t

C1c =
∑F

f=iR1fc ∗ P1f

C2c =
∑F

f=iR2fc ∗ P2f

(6.40)

123

x2
k

C∑
c=1

(R2
2fc
−R2

1fc
) + xk

C∑
c=1

(2R2fcC2c − 2R1fcC1c) +
C∑
c=1

(C2
2c − C

2
1c)− t = 0

(6.41)

dn = abs (xk − xn) (6.42)

6.4.3 Decision Trees

Result: List of Windows

extractWindows(node, bounds);

if leaf node then

if bounds != None then
windows.add(bounds, node.target)

end

else

if node.feature == feature then
windows = extractWindows(node.right child, (bounds[0], node.threshold)

windows = extractWindows(node.left child, (node.threshold, bounds[1])

else

if sample[node.feature] < node.threshold then
windows = extractWindows(node.left child, bounds)

else
windows = extractWindows(nod.right child, bounds)

end

end

end

return windows

Algorithm 5: Get Ranges of Feature Values That Predict Each Target

The average sensitivity using a decision tree model is once again calculated

using Algorithm 4 to estimate the average variation per parameter. The

distance or amount of change to change the classification is estimated using

the recursive algorithm given in Algorithm 5. Given a root node in the tree,

the algorithm searches the tree extracting the ranges of values of feature

which predict each target assuming all other features in the given sample are

kept constant. Thus, the algorithm will explore both sub-branches of the tree

if the comparison feature of the node matches feature. The recursion down

the left node sets the decision threshold of the node to the maximum bound

of the window while the recursion down the right node sets the minimum

124

bound of the window. If the node does not make a decision based on the

feature of interest, then the algorithm only explores the portion of the tree

which would be selected based on the fixed features in sample. Of course,

if the node is a leaf node, the current bounds and target set are added to

windows. The final output is then the list of every set of bounds that will

predict a specific target. This list is then parsed to determined which target

in the set has the highest number of votes and merges adjacent windows with

different target sets which would provide the same classification. Finally, the

distance of the feature is set to the minimum distance between the original

point of interest and the upper or lower bound of the window which contains

the point.

The decision tree sensitivity algorithm can also be used to estimate the

sensitivities of ensemble methods including bagging and random forest tress.

In both cases, the average sensitivities of all sampled bagged decision trees

and all subsampled random forest decision trees can be determined by taking

the minimum, maximum or average values from the sub-trees in the classifier.

6.4.4 Support Vector Machines

SVMs are a binary classifier which uses a set of support vectors to calculate

a given classification. We consider three popular implementations of the

classifier including the SVC with linear and radial basis kernels which uses a

set of one-versus-one classifiers and the linear SVC library which uses a set of

one-versus-many classifiers. The one-versus-many method strategy used in

the SVC routines creates a classifier which makes a binary decision between

each target class. Thus, the decision point is when the prediction equals zero

(6.43) with y, α and ρ being trained constants from the model and sv being

one of the V support vectors. We calculate the decision point with a linear

kernel by plugging in the formula for the kernel (6.44) into (6.43). Once

again, taking the constants from the trained model and setting all but the

selected feature of interest as constants yields (6.45). Solving this equation

gives the point of the decision plane for the feature of interest for the SVC

model using a linear kernel (6.46). The distance is then calculated as the

distance between the point of interest n and the decision point (6.47).

125

0 =
V∑
v=1

yvαvk(sv,x) + ρ (6.43)

k(sv,x) = sTv x =
V∑
i=1

svixi (6.44)

V∑
v=1

yiαi

(
F∑

i=16=f

svixi + svfxf

)
+ ρ = 0 (6.45)

xf =
−ρ−

∑V
v=1 yvαv

∑F
i=16=f svixi∑V

v=1 yvαvxvf
(6.46)

dn = abs (xf − xn) (6.47)

Once the distance from each individual one-versus-one classifier is deter-

mined, it is then possible to determine the minimum change of the feature

value required to change the classification vote. This is done algorithmi-

cally as given in Algorithm 6. First, the current classification for the given

point is determined. The total number of votes is then calculated for all

one-versus-one classifiers. The votes for the current classification are stored

in swingvotes. The list is sorted by ascending by distance. The algorithm

then changes the swingvotes one at a time until the classification changes

and returns the minimum distance necessary to change the vote.

The linear SVM method uses a one-versus-all approach to solve the direct

SVC problem. This method while faster than the SVC method sacrifices some

classification accuracy for speed and computational efficiency. Specifically,

it chooses the class which yields the highest score given by the set of linear

relationships in (6.48). Thus, the distance to each decision boundary is the

value for x which makes the score for a given classification 1 equal to the

score for a given classification 2 (6.49). Plugging in the trained values from

the model for w and b and setting all but the feature of interest to constants

yields an equation for the critical point of decision for a given feature (6.50).

In the case of only two targets, the decision function is binary with only a

single row of values for w and the critical point when the right side of (6.49)

is zero. The decision point for this case is given in (6.51) and the distance

126

Result: Sensitivity
votes = array of votes per class
class = argmax(votes)
for each vote do

if vote.winner == class then
swingvotes.add(vote.distance, vote.winner, vote.loser)

end

end
swingvotes.sort(ascending by distance) for each swingvote sv do

votes[sv.winner] -= 1
votes[sv.loser] += 1
distance = sv.distance
if argmax(votes != current) then

break
end

end
return distance

Algorithm 6: Calculate Sensitivity of One-versus-One SVC

between the point of interest and the decision point is again given in (6.47).

maxwTφ(x) + b (6.48)

F∑
i=1

w1ixi + b1 =
F∑
i=1

w2ixi + b2 (6.49)

xf =
b2 − b1 +

∑F
i=16=f xi(w2i − w1i)

w1f − w2f

(6.50)

xf =
−b−

∑F
i=16=f xiwi

wf
(6.51)

The final SVC model considered is the SVC with a radial basis function

used as the kernel (6.52). Each decision function in this case yields (6.53).

This gives a summation of exponentials and an unsolvable equation. Thus,

the exact distance function cannot be calculated and we must instead use a

generic estimation method as presented in Section 6.4.5.

k(sv,x) = e−γ|x−sv|
2

(6.52)

0 =
V∑
v=1

yvαve
−γ|x−sv|2 + ρ (6.53)

127

6.4.5 General Classification Sensitivity Estimation

While some classification techniques allow direct calculation of the sensitivity

of a feature by calculating the distance to the decision point, many other

models are either impossible to solve such as the SVC with a radial basis

kernel presented in Section 5.4.4 or lack a simple way to represent the decision

boundary such as k-Nearest Neighbors (k-NN). Recall that k-NN classifiers

work by taking the point to predict and finding the k nearest neighbors to

the point. The output classification is then the majority vote of the k nearest

neighbors. The decision plane between the points is therefore the point at

which the majority vote changes.

To estimate the amount of sensitivity per feature for models which lack

methods to calculate the distance to the decision point, we design Algorithm

7. The algorithm calculates the average change required in each input fea-

ture f required to change the classification over all training points p. It

accomplishes this by first noting the total range difference between the max-

imum and minimum values for the feature. For each training point, it then

recursively searches the positive and negative directions to find the distance

to the decision boundary. The search is conducted by making successively

smaller hops each time hopping half the previous distance until reaching a

hop size less than a minstep, the stopping criteria passed to the algorithm.

The distance for the training sample is taken to be the minimum distance to

a change for both the positive and negative directions. The average required

change is then taken over all changes calculated for all training points. This

gives the average change in each feature which may change the output target

prediction. While simple, the algorithm is unfortunately, slow compared to

the closed-form solutions presented in the previous sections.

128

Result: List of Feature Sensitivities

for Each Input Feature f do

range = max(f) - min(f);

for Each Training Point p do

step = range / 2.0;

p’ = p[f] + range;

if model.predict(p’) == model.predict(p) then

s[f][p] = 0;

else

p’ = p[f] + step;

while step > minstep do

step = step / 2.0;

if model.predict(p’) == model.predict(p) then

p’ = p’[f] + step;

else

p’ = p’[f] - step;

end

end

s[f][p] = abs(p[f] - p’[f]);

end

step = range / 2.0;

p’ = p[f] - range;

if model.predict(p’) != model.predict(p) then

p’ = p[f] - step;

while step > minstep do

step = step / 2.0;

if model.predict(p’) == model.predict(p) then

p’ = p’[f] - step;

else

p’ = p’[f] + step;

end

end

sneg = abs(p[f] - p’[f]);

if sneg < s[f][p] or s[f][p] == 0 then

S[f][p] = sneg;

end

end

end

S[f] = average(s[f][p] over p);

end

Return S;

Algorithm 7: Calculate Average Sensitivity for General Classifiers

129

6.4.6 Regression Sensitivity Estimation

Determining the sensitivity of a regression model to changes in an input fea-

ture is best accomplished by measuring the change in the output variable

for various changes to the input. To determine this sensitivity, we present

Algorithm 8. The function accepts an optional list of steps for manual cal-

ibration. If none is passed, the function will generate a list of steps to test

between the minimum and maximum of each feature with a given minimum

step size as the resolution. The algorithm will then iterate over all given sam-

ple points, over each input feature, and over each step each time calculating

the absolute difference of the output divided by the step size. The algorithm

then averages the value for all steps. This gives an estimate of the sensitivity

per unit change in the input vector for each feature for each sample. The

final sensitivity can then optionally be the minimum, maximum or average

sensitivity over all given samples.

Result: List of Feature Sensitivities

if steps=None then

for each feature f do
steps[f] = range(min(f),max(f),minstep)

end

end

for each sample s do
basepredict = model.predict(s)

for each feature f do
numpredicts = 0

for each step[f] st do
test = s

test[f] += st

sensitivity[f] += abs(model.predict(test) - basepredict) / t

Test[f] -= 2*st

sensitivity[f] += abs(model.predict(test) - basepredict) / t

numpredicts += 2

end

sensitivity[f] = sensitivity[f] / numpredicts

end

senssamples.append(sensitivity)

end

return sensamples

Algorithm 8: Calculate Average Sensitivity for General Regressors

130

6.5 Sensitivity Estimation and Results

We implement the methods presented in Section 5.4 using Python in our sen-

sitivity estimation framework. The framework takes a trained model from

the Scikit learning toolkit [103] and either a target point or set of train-

ing points and estimates the sensitivity of each individual feature. For an

individual point, it returns the amount of change required to change the clas-

sification for classification models or the amount of change of output target

per unit change of input feature for regression models. If a single point is

passed, the framework returns the sensitivity of the single point. If the point

is none, the framework will return the result of computing each training point

with the answer either being the minimum, maximum or average distance

depending on the input flags. Various methods also allow different averaging

of internal distances (for example, the Naive Bayes can average the differ-

ent combination of classifications). While configurable, the default methods

are recommended. The framework automatically chooses the best method

depending on the type of model passed to the calculate sensitivity function.

Each method returns none, if there are no possible change in values for an

input feature that yields a change in target prediction or the sensitivity is

effectively infinite.

6.5.1 Types of Sensitivity

Sensitivity is useful in order to determine the amount of noise necessary to

mitigate the threat of predicting privacy sensitive information. We present

three types of sensitivity estimation. The most conservative sensitivity es-

timation is to introduce noise relative to the maximum difference between

values of the input features. Intuitively, this makes it difficult to distinguish

any two particular values from the input features but requires substantial

noise since features may differ greatly between minimum and maximum val-

ues. Because traditional differential privacy uses this sensitivity estimate to

provide a strong privacy guarantee, we call this noise estimate the differen-

tial sensitivity or diff sensitivity. We can also use our sensitivity estimation

framework to estimate the sensitivity from the trained model but must care-

fully choose the trained models to use for the estimation. We use two types of

models to evaluate the sensitivity. The first is to train SVM or SVR models

131

using each input feature individually. We call this the single sensitivity or S

sensitivity estimate because it gives a sensitivity estimate of the individual

feature to affect the output target prediction. Our final method is to train a

SVM or SVR model using each of the top features using our fifteen feature

selection routines and evaluate the sensitivity of each feature used in the

model. We then average the sensitivity per feature to get the sensitivity of

each feature giving an estimate of the amount of change per feature to affect

the output of the prediction. We call this last sensitivity estimate the feature

selection sensitivity estimate or FS sensitivity.

6.5.2 Sensitivity Estimate Testing

We conduct initial testing to demonstrate the different levels of sensitivity

for our prediction targets including phone identification, user identification,

FEV1/FVC, activity, and walking speed. We extract the set of all top fea-

tures found using our fifteen features selection techniques. We train SVM

or SVR models both for each individual feature and all features combined

into one model. The maximum difference between feature values is used to

estimate the differential sensitivity. The sensitivity estimation framework is

used to extract the sensitivities for all individual feature sensitivities and

for all combined models giving the single sensitivity and feature selection

sensitivity estimates respectively.

Figure 6.11 lists the sensitivity values for each of the top features for the

phone identification. We expect the maximum difference between feature

values to be greater than any decision plane in a trained model. As ex-

pected, we see the highest sensitivity scores for the differential sensitivity

estimates. Generally, we see the sensitivities found using the model trained

with all features from feature selection have higher sensitivity than the esti-

mates obtained from the individual models. Since the sensitivity measures

the change required by an individual feature to change the output of the

prediction model, a model with multiple features will require a single feature

to be moved further to affect the decision of the model as a whole. Thus,

the single sensitivity model which predicts the target solely dependent on a

single feature yields the lowest estimate for sensitivity. Figure 6.12 presents

the percentage of the differential sensitivity that is returned from both the

132

M
a
g
X

 S
ig

n
M

C
R

G
y
ro

X
 S

ig
R

M
S

G
y
ro

Y
 S

ig
M

e
a
n

G
y
ro

Y
 S

ig
S
u
m

G
y
ro

Y
 S

ig
R

M
S

G
y
ro

Z
 S

ig
M

e
a
n

G
y
ro

Z
 S

ig
S
u
m

G
y
ro

Z
 S

ig
R

M
S

G
y
ro

M
a
g
 S

ig
M

e
a
n

G
y
ro

M
a
g
 S

ig
M

in

G
y
ro

M
a
g
 S

ig
S
u
m

G
ra

v
Z

 S
p
R

M
S

Features

6

4

2

0

2

4

6

8
S
e
n
si

ti
v
it

y
 (

LN
 S

ca
le

)
Diff Sensitivity Single Sensitivity FS Sensitivity

Figure 6.11: Phone Identification Sensitivity per Estimation Method (Log
Scale)

M
a
g
X

 S
ig

n
M

C
R

G
y
ro

X
 S

ig
R

M
S

G
y
ro

Y
 S

ig
M

e
a
n

G
y
ro

Y
 S

ig
S
u
m

G
y
ro

Y
 S

ig
R

M
S

G
y
ro

Z
 S

ig
M

e
a
n

G
y
ro

Z
 S

ig
S
u
m

G
y
ro

Z
 S

ig
R

M
S

G
y
ro

M
a
g
 S

ig
M

e
a
n

G
y
ro

M
a
g
 S

ig
M

in

G
y
ro

M
a
g
 S

ig
S
u
m

G
ra

v
Z

 S
p
R

M
S

Features

0.0

0.2

0.4

0.6

0.8

1.0

1.2

%
 o

f
D

if
f

S
e
n
si

ti
v
it

y

Single Sensitivity FS Sensitivity

Figure 6.12: Phone Identification Sensitivity Fraction of Differential
Sensitivity

133

A
cc

X
 S

ig
M

e
a
n

A
cc

X
 S

ig
M

in
A

cc
X

 S
ig

M
a
x

A
cc

X
 S

ig
S
u
m

A
cc

X
 S

ig
n
M

C
R

A
cc

X
 S

ig
C

o
V

A
cc

X
 S

p
M

a
x

A
cc

X
 S

p
T
r3

A
cc

X
 A

cV
a
r

A
cc

X
 A

m
d
fS

ke
w

A
cc

X
 A

m
d
fM

a
x

A
cc

Y
 S

ig
S
u
m

A
cc

Y
 S

ig
n
M

C
R

A
cc

Y
 S

p
S
u
m

A
cc

Y
 A

m
d
fA

v
D

e
v

A
cc

Z
 S

ig
M

e
a
n

A
cc

Z
 S

ig
M

in
A

cc
Z

 S
ig

S
u
m

A
cc

Z
 S

ig
R

M
S

A
cc

Z
 S

ig
C

o
V

A
cc

Z
 A

cS
ke

w
A

cc
Z

 A
m

d
fM

e
a
n

A
cc

Z
 A

m
d
fA

v
D

e
v

A
cc

Z
 A

m
d
fR

M
S

A
cc

M
a
g
 S

ig
S
D

A
cc

M
a
g
 S

ig
A

v
D

e
v

A
cc

M
a
g
 S

ig
S
ke

w
A

cc
M

a
g
 S

ig
n
M

C
R

A
cc

M
a
g
 S

ig
C

o
V

A
cc

M
a
g
 S

p
M

a
x

A
cc

M
a
g
 S

p
R

M
S

A
cc

M
a
g
 A

cS
D

A
cc

M
a
g
 A

cS
ke

w
A

cc
M

a
g
 A

sd
fS

ke
w

A
cc

M
a
g
 A

sd
fM

a
x

A
cc

M
a
g
 A

m
d
fM

e
a
n

A
cc

M
a
g
 A

m
d
fV

a
r

A
cc

M
a
g
 A

m
d
fS

D
A

cc
M

a
g
 A

m
d
fM

a
x

A
cc

M
a
g
 A

m
d
fS

u
m

A
cc

M
a
g
 A

m
d
fR

M
S

M
a
g
X

 S
p
E
n
t

G
y
ro

X
 A

m
d
fM

a
x

R
o
tX

 S
ig

M
in

R
o
tX

 S
ig

M
a
x

R
o
tX

 S
ig

S
u
m

R
o
tX

 S
ig

R
M

S
R

o
tX

 S
p
Fl

x
R

o
tY

 S
ig

M
e
a
n

R
o
tY

 S
p
In

h
a
rm

R
o
tY

 A
m

d
fA

v
D

e
v

R
o
tZ

 S
ig

M
e
a
n

R
o
tZ

 S
ig

M
in

R
o
tZ

 S
ig

M
a
x

R
o
tZ

 S
ig

S
u
m

A
cc

V
 S

p
H

P
S

A
cc

V
 A

cM
in

A
cc

E
 S

ig
A

v
D

e
v

A
cc

S
w

 A
m

d
fM

a
x

d
ir

F
S
ig

M
in

d
ir

F
S
ig

M
a
x

d
ir

P
 S

p
V

a
r

d
ir

O
ff

 S
p
V

a
r

Features

6

4

2

0

2

4

6

8

10

S
e
n
si

ti
v
it

y
 (

LN
 S

ca
le

)

Diff Sensitivity Single Sensitivity FS Sensitivity

Figure 6.13: Speed Sensitivity per Estimation Method (Log Scale)

single and feature selection sensitivity estimates. We see that many features

return sensitivities around 10% of the differential sensitivity estimates. Thus,

using the sensitivity estimates requires noise roughly an order of magnitude

less than the traditional differential private methods.

Figures 6.13 and 6.14 show the results of the three sensitivity estimates on

the speed estimation. We note that the speed estimation has a larger set of

top features returned from the feature selection methods due to less agree-

ment of top features for this prediction. The sensitivity framework returns

the amount of change in the input feature which produces a 1 m/s change

in the output prediction. We see the same general ordering of features as in

the phone classification example with both the single and feature selection

sensitivity estimates returning an average of 20% the sensitivity of the dif-

ferential private estimates. Interestingly, we do see outliers in the analysis,

but find that most estimates with similar sensitivities between the differen-

tial and single/feature selection sensitivity estimates require absurdly high

amounts of noise to change the output by one unit. Thus, features which are

selected but do not greatly contribute to prediction still require high levels

of noise. We surmise this is acceptable since these features can be filtered

134

A
cc

X
 S

ig
M

e
a
n

A
cc

X
 S

ig
M

in
A

cc
X

 S
ig

M
a
x

A
cc

X
 S

ig
S
u
m

A
cc

X
 S

ig
n
M

C
R

A
cc

X
 S

ig
C

o
V

A
cc

X
 S

p
M

a
x

A
cc

X
 S

p
T
r3

A
cc

X
 A

cV
a
r

A
cc

X
 A

m
d
fS

ke
w

A
cc

X
 A

m
d
fM

a
x

A
cc

Y
 S

ig
S
u
m

A
cc

Y
 S

ig
n
M

C
R

A
cc

Y
 S

p
S
u
m

A
cc

Y
 A

m
d
fA

v
D

e
v

A
cc

Z
 S

ig
M

e
a
n

A
cc

Z
 S

ig
M

in
A

cc
Z

 S
ig

S
u
m

A
cc

Z
 S

ig
R

M
S

A
cc

Z
 S

ig
C

o
V

A
cc

Z
 A

cS
ke

w
A

cc
Z

 A
m

d
fM

e
a
n

A
cc

Z
 A

m
d
fA

v
D

e
v

A
cc

Z
 A

m
d
fR

M
S

A
cc

M
a
g
 S

ig
S
D

A
cc

M
a
g
 S

ig
A

v
D

e
v

A
cc

M
a
g
 S

ig
S
ke

w
A

cc
M

a
g
 S

ig
n
M

C
R

A
cc

M
a
g
 S

ig
C

o
V

A
cc

M
a
g
 S

p
M

a
x

A
cc

M
a
g
 S

p
R

M
S

A
cc

M
a
g
 A

cS
D

A
cc

M
a
g
 A

cS
ke

w
A

cc
M

a
g
 A

sd
fS

ke
w

A
cc

M
a
g
 A

sd
fM

a
x

A
cc

M
a
g
 A

m
d
fM

e
a
n

A
cc

M
a
g
 A

m
d
fV

a
r

A
cc

M
a
g
 A

m
d
fS

D
A

cc
M

a
g
 A

m
d
fM

a
x

A
cc

M
a
g
 A

m
d
fS

u
m

A
cc

M
a
g
 A

m
d
fR

M
S

M
a
g
X

 S
p
E
n
t

G
y
ro

X
 A

m
d
fM

a
x

R
o
tX

 S
ig

M
in

R
o
tX

 S
ig

M
a
x

R
o
tX

 S
ig

S
u
m

R
o
tX

 S
ig

R
M

S
R

o
tX

 S
p
Fl

x
R

o
tY

 S
ig

M
e
a
n

R
o
tY

 S
p
In

h
a
rm

R
o
tY

 A
m

d
fA

v
D

e
v

R
o
tZ

 S
ig

M
e
a
n

R
o
tZ

 S
ig

M
in

R
o
tZ

 S
ig

M
a
x

R
o
tZ

 S
ig

S
u
m

A
cc

V
 S

p
H

P
S

A
cc

V
 A

cM
in

A
cc

E
 S

ig
A

v
D

e
v

A
cc

S
w

 A
m

d
fM

a
x

d
ir

F
S
ig

M
in

d
ir

F
S
ig

M
a
x

d
ir

P
 S

p
V

a
r

d
ir

O
ff

 S
p
V

a
r

Features

0.0

0.5

1.0

1.5

2.0

%
 o

f
D

if
f

S
e
n
si

ti
v
it

y

Single Sensitivity FS Sensitivity

Figure 6.14: Speed Estimation Sensitivity Fraction of Differential
Sensitivity

as unnecessary for obfuscation when protecting privacy because they have

little effect on the regression estimates. The AccMag ACSD which actually

returned a higher single sensitivity value than the differential private value

presents an example of a feature with high noise requirements. We clearly see

that high changes in this input feature caused little change to the output of

the regression. Thus, the feature itself is a low priority for obfuscation since

it contributes little to the speed prediction. Identifying features with high

noise requirements that contribute little to the actual regression estimate is

important to minimize the noise requirement during obfuscation.

6.6 Conclusions

In this chapter, we have explored the ability of machine learning models to

predict a wide range of targets relating to health, fitness, demographic and

devices using motion sensors from mobile phones. We used the feature selec-

tion techniques presented in the previous chapters to train optimal models

for each target. Each model type was trained with optimized hyperparame-

ters using three-fold cross validation. The prediction scores were evaluated

using a ten-fold cross-validated training algorithm. We found that support

135

vector machines and random forest decision trees were most accurate for

classification and support vector regression was most accurate for regression

problems. However, we note that all the difference in maximum accuracy per

classifier was much less than the difference between accuracies for feature se-

lection. We surmise this similarity in accuracy helps drive the diversity of

opinions in the literature in selecting the best machine learning tool. We

find that the sequential forward selection wrapper method produces the best

classification with the top score in nearly every case; however, it is fairly

expensive. If computation power is limited, the JMI gives the best overall

score of all tested filter methods. As a final note, we highlight that using

a k-means clustering algorithm to choose features performed less accurately

than all other feature selection techniques.

We developed a framework to estimate the sensitivity of a machine learn-

ing model’s prediction to changes in an individual input feature. We present

algorithms to estimate the distance to the decision boundary of a variety

of classification and regression models. We implement our algorithms in a

Python library to estimate the sensitivity of machine learning models trained

using the Scikit learn library. We then compare the sensitivity of a machine

learning model trained with the feature of interest and a machine learning

model trained using the top features from feature selection against the tra-

ditional sensitivity estimate used in differential privacy. Overall, we see our

framework giving sensitivity estimates which require substantially less noise

for obfuscation than the differential privacy sensitivity. We will use these

estimates to explore obfuscation techniques in Chapter 7.

136

CHAPTER 7

PRIVACY BY OBFUSCATING FEATURE
STREAMS

In this chapter we design and evaluate methods to obfuscate feature streams

to mitigate leaking information for specific inference targets. While we have

seen the ability to predict multiple targets, we focus on realistic scenarios

where privacy protection would be useful. We have seen that motion sensor

data can be useful for phone identification and user identification. Phone

identification has been proposed as a way to uniquely identify the device

allowing targeted advertisements to track a specific device across sessions.

User identification would allow a user to be tracked across devices and link

all device activities to a specific individual. Both identifications are poten-

tially sensitive, motivating the need to obfuscate the predictions from both

health and fitness continuous monitoring. Thus, the first privacy scenario

is to protect phone identification while predicting both health and fitness

information. The second privacy scenario is to protect user identification

while predicting both health and fitness information. There is clearly a dis-

tinction between basic fitness monitoring which includes activity recognition

and steps taken and medical monitoring which includes precise speed mea-

surement and medically accepted heuristics. Thus, our final scenario is to

determine if we can hide health metrics while predicting fitness values. We

consider activity using our walking or not walking binary classifier as the

main fitness metric. We use the FEV1/FVC and medically accurate walking

speed as our medical metrics. We note that speed could be considered a

fitness metric; however, most fitness devices record speed with substantially

less accuracy. Since medical studies have found strong correlation between

speed and patient status, we surmise highly accurate speed requires similar

protection as the standard medical measures. We now see which of our five

targets can be obfuscated without significantly affecting the prediction of the

other metrics.

We develop and analyze methods to reduce the ability of inferring various

137

targets from motion data based on our identification of private features and

their respective sensitivity to noise. The most obvious way to stop prediction

of sensitive features is to hide all private features for that prediction target.

However, simply blocking features may cause significant collateral damage

to the other prediction targets. By considering individual sensor features,

we can directly apply ideas of differential privacy to determine the appro-

priate level of added noise required to block the ability to infer the private

target without blocking the entire feature. Using the relative sensitivities

determined from our sensitivity estimation framework, we can minimize the

required noise thus minimizing the collateral damage. In the following sec-

tions, we will briefly review the idea of differential privacy and how we use it

to determine the appropriate noise level for both classification and regression

predictions. We will then look at the noise levels required based on the sensi-

tivity estimates in Chapter 6. We will inject the appropriate amount of noise

and verify the privacy produced against inference. We can then test the abil-

ity to infer other characteristics demonstrating how to selectively obfuscate

target inferences while allowing the signal to be useful for other applications.

We will then investigate the resistance of various machine learning methods

to noise. We finish by assuming the attacker has prior knowledge of the noise

levels used to obfuscate the features to determine if such knowledge would

break a privacy system which adds noise. We conclude with a discussion of

which of our privacy scenarios can be realized using the frameworks presented

in this dissertation.

7.1 Obfuscation by Removing Private Features

The most straightforward method to protect privacy is to simply block all

private features identified in the preceding chapters for each target of interest.

However, since each prediction target has various overlapping features, this

method may also significantly decreases the prediction accuracy of other

targets. We evaluate the utility of blocking all private features by comparing

models trained using the full set of features against models trained only

using the non-private features. By comparing the prediction accuracy of

the privacy sensitive target with and without the use of private features,

we can determine the amount of privacy attained by blocking the features.

138

Bag
ge

d
Tr

ee

Dec
isi

on
 T

re
e

K-
NNC

Lo
g

Reg

Nai
ve

 B
ay

es

Ran
do

m
 F
or

es
t

SV
M
 (L

)

SV
M
 (R

B)

Classification Method

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 (

F1
-s

co
re

)

All w/o Private

Figure 7.1: Phone Identification Accuracy with Phone Identification Private
Features Removed over All Models

Models are then trained to predict the remaining four targets without the

private features to determine the collateral damage of obfuscating the private

target. This allows us to determine if blocking the private features destroys

the ability to use the motion data for other predictions.

Figure 7.1 shows the prediction of phone identification for all classifica-

tion models after removing all private features for phone identification. As

expected, the ability to identify the phone is significantly diminished with

only the bagged tree and SVM (RB) models giving any accurate predictions.

Unsurprisingly, completely eliminating features classified as private signifi-

cantly reduces the ability to predict our targets. We see two outcomes to

remaining prediction targets when blocking all private features to obfuscate

a prediction. For models with low feature overlap we see little performance

difference between the prediction with and without the private features. Fig-

ure 7.2 demonstrates the effect of removing the private features identified for

phone identification before doing the user identification. As expected, there

is little drop in accuracy for the user identification since the removed fea-

tures are not useful for predicting the user. It is important to note that the

user identification has the least private features from our five target predic-

tions. Furthermore, the phone identification is ideal since it favors features

extracted from the gyroscope sensor in the phone while the other four targets

139

Bag
ge

d
Tr

ee

Dec
isi

on
 T

re
e

K-
NNC

Lo
g

Reg

Nai
ve

 B
ay

es

Ran
do

m
 F
or

es
t

SV
M
 (L

)

SV
M
 (R

B)

Classification Method

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 (

F1
-s

co
re

)

All w/o Private

Figure 7.2: User Identification Accuracy with Phone Identification Private
Features Removed over All Models

favor features extracted from the accelerometer.

Unfortunately, simply blocking the private features significantly decreases

the performance of predictions with overlapping private features. Figure 7.3

compares the error rates for each model both with and without the private

features useful to do phone identification. We see that removing the features

useful for phone prediction significantly increases the error of the speed pre-

diction. Thus, hiding the set of all private features does allow the phone

identification to be protected without affecting targets with different private

features such as user identification. However, for predictions which have

overlapping private features including the speed, FEV1/FVC, and activity,

removing the information causes the prediction to have unacceptable error

rates. Prediction targets with overlapping features motivate the need to also

investigate the sensitivity of the features and develop methods to introduce

noise calibrated to the sensitivity of the features.

140

BRR

Bag
ge

d
Tr

ee
s

K-
NNR

Li
ne

ar
 R

eg
re

ss
io
n

Ran
do

m
 F
or

es
t

Reg
re

ss
io
n

Tr
ee

Rid
ge

 R
eg

re
ss

io
n

SV
R

Regression Method

0

5

10

15

20

25

30

35

40

%
 E

rr
o
r

All w/o Private

Figure 7.3: Speed Accuracy with Phone Identification Private Features
Removed over All Models

7.2 Sensitivity between Prediction Models

The analysis in Chapter 5 demonstrated that many prediction targets share

features which must be protected to obfuscate prediction. Thus, it is in-

sufficient to simply drop the feature or block it in order to protect privacy

without reducing the ability of other predictions. We expand on this analysis

in this section using our sensitivity analysis framework presented in Section

7.1. We are specifically interested in determining if the features have simi-

lar sensitivity estimates per prediction. If a feature is highly sensitive when

predicting target A but has much less sensitivity when predicting target B,

then we can calibrate our noise level to hide A without significantly affecting

the inference of B. In this case, we say that A and B can be obfuscated

separately.

We refine our estimation of the obfuscation separability of targets A and B

by taking the intersection of all identified private features using the analysis

in Chapter 5. We then estimate the sensitivity using an individually trained

SVM or SVR model with a radial basis kernel using the sensitivity frame-

work presented in Chapter 6. This gives us the individual private sensitivity

estimate for every overlapping private features for targets A and B. We then

calculate the difference between sensitivity estimates as the percentage differ-

141

ence of the mean (7.1). Intuitively, features with similar sensitivity estimates

or low scores will adversely affect both predictions when noise is introduced

for obfuscation.

Percentage Difference =

(
abs(S1 − S2)

mean(S1, S2)

)
∗ 100% (7.1)

We look at the difference in overlapping sensitivity estimates for five fea-

tures including the FEV1/FVC, phone identification, user identification,

speed prediction and activity identification. For each target, we calculate

the sensitivity difference for all overlapping features with the other four tar-

gets. Figure 7.4 shows the cumulative distribution function of the difference

across all mutually intersecting private features. We see that the activity has

many intersecting features with the other four predictions. We surmise this

is due to activity being relatively easy to identify in most features extracted

from the signal. Furthermore, these initial estimates imply obfuscating ac-

tivity will most likely require a substantial amount of noise introduced into

the signal which will affect intersecting predictions. Figure 7.5 plots the sen-

sitivity intersection for the FEV1/FVC compared to the four other targets.

We see that the FEV1/FVC shares similar sensitivity with a large number

of features used to predict speed. The intersection with speed is interesting

because it supports the suspected link between a subject’s ability to walk

and health status. Figures 7.6 and 7.7 illustrate the overlapping sensitivity

between the phone identification and user identification to the four other tar-

gets respectively. We see few similar sensitivity estimates for both classifiers.

Figure 7.8 plots the CDF of the relative sensitivity of each feature selection

method to the sensitivity of the activity classification given by (7.2). The

diagram demonstrates that roughly 80% of user identification sensitivities

and 70% of phone identification features sensitivities have lower sensitivity

values and are more sensitive than activity recognition making them both

more sensitive to noise than activity. Conversely, both the FEV1/FVCW

and speed estimation feature sensitivities are generally less sensitive to noise

than activity. We see similar patterns for FEV1/FVCW in Figure 7.9, phone

identification in Figure 7.10 and user identification in Figure 7.11. Overall,

we see that both phone and user identification have the lowest sensitivity

values which should make them easier to obfuscate followed by activity with

both walking speed and health identification having the highest sensitivity

142

0 50 100 150 200
Sensitivity Percentage Difference

0

20

40

60

80

100
%

FEV1/FVCW
UserIDW

PhoneIDNW
SpeedW

Figure 7.4: CDF of Activity
Sensitivity Similarity

50 100 150
Sensitivity Percentage Difference

0

20

40

60

80

100

%

Activity
UserIDW

PhoneIDNW
SpeedW

Figure 7.5: CDF of FEV1/FVC
Sensitivity Similarity

50 100 150 200
Sensitivity Percentage Difference

0

20

40

60

80

100

%

Activity
FEV1/FVCW

UserIDW
SpeedW

Figure 7.6: CDF of Phone
Identification Sensitivity Similarity

50 100 150
Sensitivity Percentage Difference

0

20

40

60

80

100

%
Activity
FEV1/FVCW

PhoneIDNW
SpeedW

Figure 7.7: CDF of User
Identification Similarity

values requiring more noise to obfuscate them from the signal.

relative sensitivity =

(
S1

ST

)
∗ 100% (7.2)

Initial sensitivity analysis indicates walking ability and health status ap-

pear to share similar sensitivity with overlapping training features. We see

that activity recognition appears to have the greatest number of private fea-

tures with enough sensitivity similarity to imply difficulty to obfuscate ac-

tivity without negatively affecting other classifiers especially with user and

143

0 100 200 300 400 500
Percent of Target Sensitivity

0

20

40

60

80

100
%

FEV1/FVCW
UserIDW

PhoneIDNW
SpeedW

Figure 7.8: CDF of Sensitivity
Relative to Activity Classification

100 200 300 400 500
Percent of Target Sensitivity

0

20

40

60

80

100

%

Activity
UserIDW

PhoneIDNW
SpeedW

Figure 7.9: CDF of Sensitivity
Relative to FEV1/FVC Regression

0 100 200 300 400 500
Percent of Target Sensitivity

0

20

40

60

80

100

%

Activity
FEV1/FVCW

UserIDW
SpeedW

Figure 7.10: CDF of Sensitivity
Relative to Phone Identification
Classification

100 200 300 400 500
Percent of Target Sensitivity

0

20

40

60

80

100

%
Activity
FEV1/FVCW

PhoneIDNW
SpeedW

Figure 7.11: CDF of Sensitivity
Relative to User Identification
Classification

phone identification which are more sensitive to a majority of the overlapping

features. Finally, both phone identification and user identification show lower

sensitivity differences to other targets with lower sensitivity values implying

they may be able to be obfuscated without affecting other predictions.

144

7.3 Differential Privacy Frameworks

P (A(D1) ∈ S) ≤ eεP (A(D2) ∈ S) (7.3)

Differential privacy has been developed to produce strong guarantees of

privacy to an individual when contributing data to a database [104]. The

idea is to define a differential private query A which runs on a set of data

entries Dk to produce a query result. Differential privacy guarantees that

any two database entries that differ by one entry, D1 and D2, cannot allow

an attacker to distinguish the database based on the query (7.3). In other

words, the query will return a result which does not allow an attacker to

determine the exact composition of the underlying database. This protects

the identity of the individual records in the database. The classical way to

design differentially private mechanisms is to introduce noise drawn from a

Laplace definition proportional to the sensitivity of the release mechanism.

The sensitivity is defined as the maximum difference between two sets of

points that differ by one entry (7.4).

|f(x)− f(x′)| ≤ S(f) (7.4)

While not directly applicable to sensor feature streams, the ideas of dif-

ferential privacy have already been extended to other applications by Kifer

and Machanavajjhala [105]. We will therefore use ideas from the differential

framework to calibrate our obfuscation noise depending on the sensitivity of

our classification techniques.

7.3.1 Classification Privacy

We first present the framework we will use to obfuscate feature steams to

carefully decrease the ability to classify target characteristics. We assume we

are measuring a feature x ∈ X. We define an obfuscation routine F that will

release a point given x. Furthermore, we have a classification routine C that

for some x will return a classification c ∈ C. We are interested in bounding

the ability of an attacker to determine the correct classification ck given the

value x. We therefore define the classification privacy condition (7.5).

P (F (x)|C(x) = ci) ≤ eεP (F (x)|C(x) = cj) (7.5)

145

We state that the probability of our obfuscation function F (x) returning

a value given the classification C(x) being a specific class, is bounded by

at most eε. This restriction is dependent on the sensitivity of change in

classification to differences in x. Thus, the definition of the privacy metric

is dependent on the trained model. The maximum sensitivity between any

pair of classifications for a given pair of classifications is given in (7.6).

|(F (x)|C(x) = ci)− (F (x)|C(x) = cj)| ≤ S(x)∀x ∈ X, ∀i, j ∈ C (7.6)

The preceding definition of sensitivity states that F (x) must add enough

noise that any two possible classification outcomes i, j must be equally likely.

We also define a relaxed version of (7.6) where the sensitivity is defined as

the distance required to guarantee at least two classifications are possible

(7.7).

min
j∈C

(|(F (x)|C(x) = ci)− (F (x)|C(x) = cj)| ≤ S(x)∀x ∈ X, ∀i ∈ C) (7.7)

Intuitively, this relaxation may be reasonable to trade off sensitivity versus

privacy. For example, in a database with many distinct users, the motion

data may be able to classify each individual user. However, there will most

likely be subsets in the user population. Perhaps males form a distinct subset

and females form a distinct subset. Equation 7.6 requires that every user has

enough obfuscation to be indistinguishable from every other user which would

require a significant amount of noise. Equation 7.7 allows us to relax this

constraint to forcing the ε differential privacy between any two users. Thus,

the user is not uniquely identifiable but is still afforded some privacy. Since

we are dealing with a one-dimensional data set, we maintain the differential

privacy guarantee by adding noise sampled from a Laplace distribution (7.8).

F (x) = x+ n(x), n(x) = laplace

(
S(x)

ε

)
(7.8)

146

7.3.2 Regression Privacy

Protecting features from regression analysis is slightly more complicated than

protecting classification. In the most trivial sense, any obfuscation will affect

the output from the regression. However, since most regression algorithms

use some form of continuous estimation function, it is expected that a similar

value in the input feature will yield a similar value in the output feature. We

build and expand on previous work applying the ideas from differential pri-

vacy to obfuscate location privacy in order to protect against values inferred

from regression [106, 107, 108]. Our goal is to define a privacy mechanism

that does not allow an adversary to know the true value of a regression bet-

ter than a certain privacy range. For example, if the regression algorithm

predicts a user’s weight, we may define our privacy distance d as 50. If the

regression outputs the weight in kilograms, this means an attacker should not

be able to be confident that the feature data yields information which the

regression would predict the weight to within 50 kilograms. Thus, the policy

driven value d is selected as the distance to which the attacker is uncertain

about the predicted value. We note that the distance metric has a unit in

this case kg. To make the input of privacy dimensionless, we assume the

unit of ε is the inverse of whatever unit of measurement under consideration.

Thus, in the formulations when we multiply ε ∗ d, we get a dimensionless

constant.

We begin by defining the distance of uncertainty around the input feature.

We estimated this in Chapter 6 as the amount of change in the feature

required to affect a corresponding change in the output from the regression.

This means that the relationship between the distance of the feature df and

the distance of the output from the regression dr is related by dr = ∆R
∆F
df .

We want to intuitively provide privacy for a change in dr but the units of

x are relative to df . Since we define the sensitivity of the regression to be

change in regression per change in feature, ∆F = 1 and we want our distance

to be df = dr ∗ (∆R)−1. Note that ∆R is a constant of the regression model

being evaluated. We will use this in each of the formulations below.

We first place a limit on the amount of information that releasing a feature

value f can leak about the probability of yielding a specific value. Ideally,

we would like the observation f to not give any further information about

the relative probability of the possibility of two values. In other words, we

147

would like P (x|f)
P (x)

≤ eε. However, this is far too strong of a condition since

knowing the range of values will give the attacker some information. We

therefore define a function Bd(x) to be the range of all possible values less

than df away from the point x. We are only interested in the ability of an

attacker to distinguish values within this range. Thus, we define our privacy

distance df = dr ∗ (∆R)−1 and say that any two points within this distance

leak a bounded amount of information (7.9). The proof that this condition

is satisfied by a differential private mechanism is defined in [107].

P (x|f,Bd(x))

P (x|Bd(x))
≤ eε∆Rd

−1
r ∀ dr > 0 x ∈ X (7.9)

Classical differential privacy has strong guarantees about prior informa-

tion. Ideally, the ability of an attacker to infer one point over another given

a released observation would be bounded P (x|f)
P (x′|f)

≤ eε. Unfortunately, the

output from a regression means that the attacker may know certain values

are far more likely than others before any information is released. In other

words P (x)
P (x′)

may be large. In this case, we want to guarantee that releasing

f does not significantly change the ability of the attacker to discern x versus

x′ (7.10). We note that this equation is trivially obtained from (7.11) using

Bayes rule.

P (x|f))

P (x′|f)
≤ eε∆Rd

−1
r
P (x)

P (x′)
∀dr > 0 ∀x, x′ : |x− x′| ≤ dr(∆R)−1 (7.10)

Finally, we define the bounds on choosing the output value f to that the

value f does not distinguish between two point x and x′ given that the

distance between the two points are within the range df as shown in (7.11).

Notice that this equation closely resembles the classical differential privacy

form by some simple algebraic manipulation (7.12).

P (f |x)

P (f |x′)
≤ eε∆Rd

−1
r ∀dr > 0 ∀x, x′ : |x− x′| ≤ dr(∆R)−1 (7.11)

P (f |x) ≤ eε∆Rd
−1
r P (f |x′) ∀dr > 0 ∀x, x′ : |x− x′| ≤ dr(∆R)−1 (7.12)

We add noise to the feature set in order to satisfy the above equations by

148

again sampling from the Laplace distribution. We sample with a standard

deviation of
df
ε

= dr
ε∆R

in order to add the appropriate noise. Thus, we only

need to choose the range of interest dr and the relative privacy guarantee ε.

DeltaR is a constant estimated from the regression models from Chapter 6.

We then sample noise according to (7.13). We will design experiments and

evaluate this method in the following sections.

f = x+ n(x), n(x) = laplace

(
dr
ε∆R

)
(7.13)

7.4 Protecting Private Information

We now test our obfuscation techniques to hide five prediction targets (three

classification and two regression models) including phone identification, user

identification, activity recognition, FEV1/FVC, and walking speed. We im-

plement a function to introduce noise drawn from a Laplace distribution into

the feature vector. We obfuscate the ability to conduct each prediction by in-

troducing noise into all privacy sensitive features produced by the sequential

forward selection with clustering and similarity scoring metrics introduced

in Chapter 5. The noise level is estimated using the three sensitivity estima-

tion techniques produced in Chapter 6 including the traditional differential

privacy estimate, the single trained model estimate and the feature selection

model estimate.

We first evaluate and compare the various sensitivity estimation tech-

niques. We then look at the overall ability to obfuscate prediction targets

without affecting the other predictions by adding noise using the single model

method with various privacy ε values. After adding noise, the ability of all

five models is then re-evaluated to determine the accuracy reduction to pre-

dict the private feature as well as the effect on the prediction accuracy of the

other models. In our final test, we investigate the ability of alternate predic-

tion models to resist our obfuscation techniques by comparing the reduction

in accuracy for each model type after adding noise. We also train the models

using a noisy signal to simulate the ability of an attacker to improve models

by taking the privacy obfuscation into consideration.

149

BG

CI
FE

CM
IM

Co
nd

M
I

Co
nd

re
d

DI
SR

IC
AP JM

I

KM
FS KM

I

M
IF

S

M
IM

SV
M

FS

SV
M

I

m
RM

R

Feature Selection

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
 (F

1-
Sc

or
e)

Baseline Diff Sens Sing Sens FS Sens

Figure 7.12: Phone Identification Accuracy with Phone Identity Obfuscated
with Various Sensitivity Estimates

7.4.1 Estimating Sensitivity

We first use our testing to compare the three sensitivity estimation techniques

presented in Chapter 6. Figure 7.12 plots the best case classification accuracy

across all trained models of phone identification after obfuscating the private

features according to the sensitivity estimates needed to hide the identity of

the phone with an ε value of 1.0. As expected, the pure differential privacy

which introduces noise proportional to the maximum difference between any

two feature values produces the lowest classification score when trying to

identify the phone after obfuscation. We see that both sensitivity estimates

derived from the single sensitivity model and feature selection sensitivity

models yield similar levels of privacy. Overall, we see some variation in

the effectiveness of the noise to provide privacy guarantees across feature

selection techniques. In the phone classification, the various noise estimates

produce prediction scores which are proportionally similar. All three methods

do significantly decrease the F1-scores and decrease the ability to predict

phone identification.

150

BG

CI
FE

CM
IM

Co
nd

M
I

Co
nd

re
d

DI
SR

IC
AP JM

I

KM
FS KM

I

M
IF

S

M
IM

SV
M

FS

SV
M

I

m
RM

R

Feature Selection

3

2

1

0

1

2

3
M

ea
n

Ab
so

lu
te

 E
rr

or
 (l

og
 s

ca
le

)

Baseline Diff Sens Sing Sens FS Sens

Figure 7.13: Speed Identification Accuracy with Speed Obfuscated with
Various Sensitivity Estimates

Figure 7.13 demonstrates the best case prediction of speed over all re-

gression models when the speed is obfuscated with a distance of 1 and ε

of 1. Once again, the differential sensitivity estimate provides the greatest

amount of obfuscation providing the most obfuscation. The single model and

feature selection sensitivity estimation methods again provide similar predic-

tion scores after obfuscation. While the baseline error is on the order of 0.1

m/s, the minimum error after obfuscation is on the order of 1 m/s. Thus,

the method appears to satisfy (7.12) by making the points difficult to predict

within a 1 m/s interval. This implies that in this test, the error in the regres-

sion estimate is relatively low. We finally note that the maximum amount of

obfuscation is introduced in the two most accurate feature selection routines,

the JMI and SVMFS.

We note that both graphs demonstrate that the methods work across var-

ious feature selection even though the feature obfuscation is estimated from

the private feature identification algorithm. This algorithm does not contain

the same set of features as most of the filter method selection algorithms.

151

This can explain some of the variation in prediction results across feature

selection algorithms. We find that obfuscation is most effective when the set

of features in the feature selection are contained in the privately identified

features. This should not be problematic as long as the features not iden-

tified as private cannot predict above the threshold used to identify private

features. We see this working especially in the speed identification example

where the ICAP, KMFS, and KMI identify fewer than three private features.

Since the remaining features do have predictive usefulness, albeit less than is

required to be classified as a sensitive feature, the prediction score is higher

than the feature selection routines which choose all obfuscated features. But,

since the features are less predictive the speed prediction is still within the

bounds of the privacy mechanism. We finally point out that both the sin-

gle sensitivity models and feature selection models produce similar levels of

degradation in the privacy predictions; however, the single sensitivity model

requires significantly less noise per feature as was demonstrated in Chapter

6.

We have seen that the three sensitivity methods can obfuscate a prediction

target with various levels of effective privacy. In the classification case, we saw

the differential sensitivity giving better privacy, but in the speed regression,

many feature selection methods actually had similar privacy even though the

differential method introduces an order of magnitude more noise. Figure 7.14

shows the obfuscation from all three sensitivity methods when used on the

optimally trained phone classification model only. We see that each method

reduces the accuracy of phone classification to roughly 50% using an epsilon

value of 2. It is noteworthy that once again, privacy is maintained using

the single sensitivity estimate which requires significantly less noise. Figure

7.15 demonstrates that using too much noise can lead to interference when

classifying other targets. This figure shows the classification accuracy of user

identification when the same noise is introduced into the features that was

used to generate Figure 7.14. We see that the accuracy of user identification

is least affected when using the single sensitivity estimate with the classifier

almost being useless when using the diff sensitivity estimate. Thus, we use

the single sensitivity estimate for the remainder of this chapter.

152

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 0.99)
Diff Sens (area = 0.52)
Sing Sens (area = 0.52)
FS Sens (area = 0.52)

Figure 7.14: Phone Identification
Accuracy with Phone Identity
Obfuscated with Various Sensitivity
Estimates

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 0.94)
Diff Sens (area = 0.61)
Sing Sens (area = 0.91)
FS Sens (area = 0.79)

Figure 7.15: User Identification
Accuracy with Phone Identity
Obfuscated with Various Sensitivity
Estimates

7.4.2 Effectiveness of Obfuscation and Collateral Damage

We now investigate the effect on each model’s predictive power when we

obfuscate a prediction target. To keep the experiments tractable, we only

consider the optimized top model returned from the model optimization from

Chapter 6. This means that each model uses the top scoring cross-validated

model with the top-rated feature selection method. The base score is the

score returned from the fully trained model. We then sweep over each op-

timized model predicting the output target with various values of epsilon

including 2.0, 1.0, 0.5 and 0.1. We repeat the testing for each obfuscation

target giving five targets and five assessments totaling twenty-five tests.

Figure 7.16 compares the effects on activity prediction using various sensi-

tivity levels to obfuscate against activity classification. We see that without

noise, activity classification is nearly perfect. With a large ε value, the ac-

curacy of activity classification is hardly affected. With a low value of ε, we

see activity classification drop to nearly random guessing for the binary clas-

sifier. Figures 7.17 and 7.18 show the effects on predicting both phone and

user classification with activity obfuscated. We see that phone identification

is not diminished when hiding activity but user identification is significantly

decreased. Tables 7.1 and 7.2 list the error rates of the regressions with

activity obfuscated. We see a significant increase in error for both regres-

sions with activity obfuscated even at low levels. Thus, we see activity as

153

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 1.00)
ε=2 (area = 0.99)
ε=1.0 (area = 0.94)
ε=0.5 (area = 0.81)
ε=0.1 (area = 0.59)

Figure 7.16: Activity Accuracy with
Activity Obfuscated

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 0.99)
ε=2 (area = 0.99)
ε=1.0 (area = 0.99)
ε=0.5 (area = 0.99)
ε=0.1 (area = 0.99)

Figure 7.17: Phone Identification
Accuracy with Activity Obfuscated

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 0.76)
ε=2 (area = 0.71)
ε=1.0 (area = 0.68)
ε=0.5 (area = 0.65)
ε=0.1 (area = 0.60)

Figure 7.18: User Identification with Activity Obfuscated

difficult to hide without significantly decreasing all classifiers except phone

identification which seems to have a disjoint set of predictive features.

Table 7.2 presents the relative speed regression accuracy with various levels

of obfuscation for speed. We see the effect of varying the distance param-

eter most clearly in the speed regression. A change in ε is equivalent to

the inverse of the distance. Thus, epsilon values of 2, 1, 0.5, and 0.1 cor-

respond to distance values of 0.5, 1, 2, and 10. We see this directly in the

mean noise estimates with the speed obfuscation returning a mean error of

0.53, 0.98, 1.90, and 7.20 respectively. Thus, we see that obfuscation working

well for our privacy levels. Obfuscating speed significantly hinders our other

predictions. Figures 7.19, 7.20 and 7.21 demonstrate that obfuscating speed

significantly decrease classification accuracy for activity, phone identification

154

Table 7.1: FEV1/FVCW Accuracy with Various Obfuscations

Obfuscated Privacy ε Values
Target .1 .5 1 2

FEV1/FVCW 33.30 15.69 13.58 12.55

Activity 46.74 18.44 14.85 13.00
PhoneIDNW 20.93 12.78 11.76 11.21
SpeedW 37.84 16.68 13.94 12.47
UserIDW 10.58 10.54 10.52 10.50

Table 7.2: SpeedW Accuracy with Various Obfuscations

Obfuscation Privacy ε Values
Target .1 .5 1 2

SpeedW 7.20 1.90 0.98 0.53

Activity 7.85 2.20 1.20 0.63
FEV1/FVCW 5.99 1.45 0.76 0.43
PhoneIDNW 1.60 0.63 0.34 0.20
UserIDW 0.52 0.24 0.15 0.11

and user identification respectively. We also see significant error introduced

to FEV1/FVCW prediction as seen in Table 7.1. Thus, obfuscating speed

also obfuscates the other targets of prediction. We also see that speed and

FEV1/FVCW are linked with both being difficult to obfuscate without neg-

atively affecting the remaining predictions.

We find that both phone and user identification require lower levels of noise

to hide the signal than activity, speed and health estimates. Figure 7.22

shows the relative phone prediction accuracy with the phone identification

obfuscated. We see that both activity and user identification predictions

are hardly affected with the introduction of noise to obfuscate the phone

identification as shown in Figures 7.23 and 7.24. We see that both speed

estimates and FEV1/FVC are adversely affected with the introduction of

obfuscation; however, the introduced error is roughly half of the introduced

error from both activity and speed obfuscation. Figure 7.25 presents the

user prediction accuracy after obfuscating the user identification. For user

identification, we see a decrease in phone identification accuracy in Figure

7.26 but almost no effect on activity recognition as shown in Figure 7.27.

We also see the least effect on both regression estimations with Table 7.1

showing almost no effect on FEV1/FVC prediction and the smallest effect of

155

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 1.00)
ε=2 (area = 0.89)
ε=1.0 (area = 0.76)
ε=0.5 (area = 0.65)
ε=0.1 (area = 0.53)

Figure 7.19: Activity Accuracy with
Speed Obfuscated

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 0.99)
ε=2 (area = 0.76)
ε=1.0 (area = 0.75)
ε=0.5 (area = 0.72)
ε=0.1 (area = 0.69)

Figure 7.20: Phone Identification
with Speed Obfuscated

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 0.76)
ε=2 (area = 0.69)
ε=1.0 (area = 0.65)
ε=0.5 (area = 0.61)
ε=0.1 (area = 0.60)

Figure 7.21: User Identification with
Speed Obfuscated

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Receiver Operating Characteristic

Baseline (area = 0.99)
ε=2 (area = 0.98)
ε=1.0 (area = 0.96)
ε=0.5 (area = 0.93)
ε=0.1 (area = 0.81)

Figure 7.22: Phone Identity Accuracy
with Phone Identity Obfuscated

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 1.00)
ε=2 (area = 1.00)
ε=1.0 (area = 1.00)
ε=0.5 (area = 1.00)
ε=0.1 (area = 0.98)

Figure 7.23: Activity Accuracy with
Phone Identity Obfuscated

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 0.76)
ε=2 (area = 0.76)
ε=1.0 (area = 0.76)
ε=0.5 (area = 0.76)
ε=0.1 (area = 0.76)

Figure 7.24: User Identification with
Phone Identity Obfuscated

156

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 0.76)
ε=2 (area = 0.72)
ε=1.0 (area = 0.70)
ε=0.5 (area = 0.66)
ε=0.1 (area = 0.59)

Figure 7.25: User Identification with
User Identity Obfuscated

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 0.99)
ε=2 (area = 0.97)
ε=1.0 (area = 0.96)
ε=0.5 (area = 0.93)
ε=0.1 (area = 0.85)

Figure 7.26: Phone Identification
with User Identity Obfuscated

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Baseline (area = 1.00)
ε=2 (area = 1.00)
ε=1.0 (area = 1.00)
ε=0.5 (area = 1.00)
ε=0.1 (area = 1.00)

Figure 7.27: Activity Accuracy with User Identity Obfuscated

any obfuscation on speed as seen in Table 7.2.

The analysis in this section have demonstrated the utility of our privacy

obfuscation techniques calibrated to noise estimated on the privacy sensitive

features. The techniques present promise to hide both user identification and

phone identification while inferring walking speed, FEV1/FVC and activity

corresponding to success with our first and second scenarios. We see more

difficulty when trying to hide health information while maintaining activity.

While a negative result for privacy, our results do support the link between

activity and health status which is currently being studied in the medical

community.

157

Bag
ge

d
Tr

ee

Dec
isi

on
 T

re
e

K-
NNC

Lo
g

Reg

Nai
ve

 B
ay

es

Ran
do

m
 F
or

es
t

SV
M
 (L

)

SV
M
 (R

B)

Classification Method

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 (

F1
-s

co
re

)

Base ε=2.0 ε=1.0 ε=0.5 ε=0.1

Figure 7.28: Activity Accuracy with Activity Obfuscated over All Models

7.4.3 Obfuscating Features by Model Type

In Section 7.4.2, we demonstrated the ability of our noise models to protect

privacy when using the most accurate prediction models. We now repeat the

tests using all nine classification and nine regression models to determine if

adding noise provides privacy for all model types. We again focus on the

activity, user identification, phone identification, FEV1/FVC, and walking

speed. We first train the most accurate model by both model type and feature

selection as the baseline model. We again introduce speed with various values

of ε and test the ability of all model types to predict the classifier. To keep

the experiments tractable, we only consider the top features from the JMI

and SVMFS feature selection methods.

After obfuscation, we generally see decreased prediction performance for

all model types with each private target. For example, Figure 7.28 presents

the accuracy of predicting the activity after obfuscating the activity. The

random forest classifier was originally the most accurate classification model

for this prediction. We see that the random forest and decision tree models

lose accuracy with lower privacy values more quickly than the bagged tree

model. Since the bagged tree model is designed to decrease over fitting

158

Bag
ge

d
Tr

ee

Dec
isi

on
 T

re
e

K-
NNC

Lo
g

Reg

Nai
ve

 B
ay

es

Ran
do

m
 F
or

es
t

SV
M
 (L

)

SV
M
 (R

B)

Classification Method

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 (

F1
-s

co
re

)

Base ε=2.0 ε=1.0 ε=0.5 ε=0.1

Figure 7.29: Phone Identification Accuracy with Activity Obfuscated over
All Models

compared to the decision tree and random forest models, models with less

over fitting seem to be less sensitive to our input noise. Intuitively, this is

probably due to decision trees having tighter boundaries when incorrectly

splitting at leaf nodes due to noise in the training data. Since the bagged

tree is more resistant to this training noise and the decision thresholds have a

higher range, the bagged tree model is less prone to obfuscation. Overall, we

see that all models respond to the added noise with a privacy level of ε = 1.0

reducing the maximum F1-score from nearly 1.0 to 0.8 and a privacy level

of ε = 0.01 reducing all models’ F1-score to a mere 0.5 or random guessing

accuracy. Encouragingly, we see the same pattern of decreased prediction

accuracy over all private targets tested. Thus, no model tested resists our

noise allowing prediction for the private target.

We see the same trends when looking at the ability of various model types

to perform predictions on collateral targets. In general, all tests return sim-

ilar patterns with results either showing the collateral feature can still be

predicted with reasonable accuracy or the collateral target is no longer able

to be predicted. Figure 7.29 shows an example of a collateral classification

159

Bag
ge

d
Tr

ee

Dec
isi

on
 T

re
e

K-
NNC

Lo
g

Reg

Nai
ve

 B
ay

es

Ran
do

m
 F
or

es
t

SV
M
 (L

)

SV
M
 (R

B)

Classification Method

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 (

F1
-s

co
re

)

Base ε=2.0 ε=1.0 ε=0.5 ε=0.1

Figure 7.30: User Identification Accuracy with Activity Obfuscated over All
Models

which can still be predicted after obfuscation by obfuscating the activity

while identifying the phone. Figure 7.30 shows an example of a classification

which has decreased accuracy after obfuscating the private target by obfus-

cating the activity and predicting the user identification. Once again, the

best models for prediction have a tendency to be more accurate for predic-

tion after adding noise. We see relatively little decrease in accuracy for the

k-NN, random forest, and SVM (RB) for less strict noise thresholds with

severe penalties in phone identification once ε = 0.1. We notice a less pro-

nounced sensitivity in the random forest classifier. We surmise the model is

able to maintain higher accuracy since only the input features which overlap

with the private activity features get obfuscation noise. Thus, the model still

chooses the correct path in the tree for the non-obfuscated features. The user

identification models all see substantial decreases in accuracy when noise is

added. The relative drop in accuracy for both phone and user identification

seems relative to the initial prediction accuracy of the models without noise.

The effects of adding noise to regression estimates are shown in Figures

7.31 and 7.32. The FEV1/FVC prediction with activity obfuscated demon-

160

BRR

Bag
ge

d
Tr

ee
s

K-
NNR

Li
ne

ar
 R

eg
re

ss
io
n

Ran
do

m
 F
or

es
t

Reg
re

ss
io
n

Tr
ee

Rid
ge

 R
eg

re
ss

io
n

SV
R

Regression Method

0

20

40

60

80

100
%

 E
rr

o
r

Base ε=2.0 ε=1.0 ε=0.5 ε=0.1

Figure 7.31: FEV1/FVC Accuracy with Activity Obfuscated over All
Models

BRR

Bag
ge

d
Tr

ee
s

K-
NNR

Li
ne

ar
 R

eg
re

ss
io
n

Ran
do

m
 F
or

es
t

Reg
re

ss
io
n

Tr
ee

Rid
ge

 R
eg

re
ss

io
n

SV
R

Regression Method

0

20

40

60

80

100

%
 E

rr
o
r

Base ε=2.0 ε=1.0 ε=0.5 ε=0.1

Figure 7.32: Speed Accuracy with Activity Obfuscated over All Models

161

strates a regression with similar accuracy after adding the noise. The speed

prediction with activity obfuscated demonstrates a regression with significant

error added after adding the noise. Once again, we see that obfuscating the

activity affects both the FEV1/FVC and speed error rates, but certain mod-

els for FEV1/FVC resist the noise much better especially the bagged tree

and SVR models. We notice that certain regression techniques are prone to

massive error rates with the introduction of noise including Bayesian ridge

regression, linear regression, and ridge regression. The other models perform

with similar accuracy. Once again, both random forest and regression trees

perform well without noise, but attain high error rates with even a small

amount of obfuscation. All models perform with similar degradation due to

noise for the speed estimation. Overall, linear models can produce unrealis-

tic predictions with noise obfuscation while models such as SVR and bagged

trees seem most resistant to noise. Both regression trees and random forest

produce low errors but lose accuracy quickly with noise indicating a tighter

fit within the model itself to the training data.

Over all prediction targets, we see the most accurate models for each pre-

diction tend to continue to be the most accurate after noise is added to the

training data. We do see an exception for the random forest, decision tree,

and regression tree classifiers since they have a tendency to predict with high

accuracy with no noise but quickly lose accuracy when noise is added to the

input features of the model. We see that linear regression models often pro-

duce values with unrealistically high error rates when tight privacy values are

used. Optimistically, we see that all models are affected by obfuscation noise.

We also see that collateral damage appears in all predictions we tested; how-

ever, the SVM/SVR appears overall to be a good model to assess the impact

of obfuscation noise since it maintains high initial prediction accuracy and is

less prone to the over fitting of random forest tree models.

7.4.4 Resistance to Further Training

We now test the ability of our noise obfuscation to hide private information

even if the attacker trains the machine learning model on noisy data. We

do this by repeating the experiment in Section 7.4.3 after retraining all nine

classification and regression models using data which is obfuscated using our

162

Bag
ge

d
Tr

ee

Dec
isi

on
 T

re
e

K-
NNC

Lo
g

Reg

Nai
ve

 B
ay

es

Ran
do

m
 F
or

es
t

SV
M
 (L

)

SV
M
 (R

B)

Classification Method

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 (

F1
-s

co
re

)

Base ε=2.0 ε=1.0 ε=0.5 ε=0.1

Figure 7.33: Activity Accuracy with Activity Obfuscated over All Models
(Noisy Training)

randomly drawn noise. To model realistic conditions, the attacker trains the

models on an obfuscated data set. The models are then tested on the same

data with the same obfuscation parameter but with the noise resampled.

Thus, this models the situation where the attacker trained the models on

noisy data and subsequently attempts to predict the private information

using samples which have been obfuscated using the same privacy algorithms.

Figure 7.33 illustrates the results of obfuscating the activity and predicting

the activity when the models are trained on noisy data. As expected, models

trained on data which has been obfuscated with the correct level of noise will

predict with higher accuracies then models trained on clean data. However,

the added noise is still effective at reducing the prediction accuracy of the

activity especially with strict privacy thresholds. For example, we see an

average F1-score of 0.6 with ε = 0.1 over all models. We see the same

increased resistance to noise in all tested obfuscations which demonstrate

increased accuracy for inference with models trained on noisy data when the

noise level is known. We note that knowing the exact level of noise for each

feature is the best case scenario for an attacker. We would suggest privacy

163

Bag
ge

d
Tr

ee

Dec
isi

on
 T

re
e

K-
NNC

Lo
g

Reg

Nai
ve

 B
ay

es

Ran
do

m
 F
or

es
t

SV
M
 (L

)

SV
M
 (R

B)

Classification Method

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 (

F1
-s

co
re

)

Base ε=2.0 ε=1.0 ε=0.5 ε=0.1

Figure 7.34: Phone Identification Accuracy with Activity Obfuscated over
All Models (Noisy Training)

obfuscation mechanisms limit the availability of such information but leave an

exploration of varying the noise level randomly to disrupt such improvements

in inference accuracy as a topic of future work.

While training on noisy data does slightly decrease the privacy introduced

by obfuscation, our testing indicates that it significantly reduces the collat-

eral damage to other predictions. As an example, Figure 7.34 presents the

prediction accuracy of the phone when each model is re-trained using noisy

data. We see that each model resists noise much better than the models

trained on clean data. Recall that only features considered private to activ-

ity receive obfuscation. The models trained on noise effectively place more

weight on the features which receive no obfuscation. Since these features

do not change, the models appear more resistant to obfuscation noise. We

see much less resistance for regression models trained on noise. Figure 7.35

shows the output from the speed models after obfuscating activity. We see

that training on noisy data eliminates the unrealistic outliers in the linear

models; however, all models give similar error rates when introducing noise

compared to non-linear models trained without noise.

164

BRR

Bag
ge

d
Tr

ee
s

K-
NNR

Li
ne

ar
 R

eg
re

ss
io
n

Ran
do

m
 F
or

es
t

Reg
re

ss
io
n

Tr
ee

Rid
ge

 R
eg

re
ss

io
n

SV
R

Regression Method

0

5

10

15

20

%
 E

rr
o
r

Base ε=2.0 ε=1.0 ε=0.5 ε=0.1

Figure 7.35: Speed Accuracy with Activity Obfuscated over All Models
(Noisy Training)

In general, using models trained on noisy data increases the accuracy of

making predictions using data with the same level of noise. However even

with models trained on noisy data, strict privacy levels still significantly re-

duce the ability of all model types to make a prediction. The increase in

accuracy of models trained with noisy data help to reduce the collateral

damage when predicting alternate targets. While all models again perform

similarly with obfuscation, we again see tighter fits with random forest and

decision trees. We see striking examples where random forest performance

significantly decreases such as Figure 7.36 which indicates the random forest

model having significantly reduced performance when adding a little noise.

Our testing indicates knowing the exact level of noise used to obfuscate the

data could be useful for an attacker attempting to infer private information.

Conversely, we see knowing the noise could help a legitimate user infer col-

lateral information. Both observations could be useful for the future design

of a motion sensor privacy mechanism.

165

Bag
ge

d
Tr

ee

Dec
isi

on
 T

re
e

K-
NNC

Lo
g

Reg

Nai
ve

 B
ay

es

Ran
do

m
 F
or

es
t

SV
M
 (L

)

SV
M
 (R

B)

Classification Method

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 (

F1
-s

co
re

)

Base ε=2.0 ε=1.0 ε=0.5 ε=0.1

Figure 7.36: Phone Identification Accuracy with Phone Obfuscated over All
Models (Noisy Training)

7.5 Conclusions

This chapter used the feature selection methods, optimized models and sen-

sitivity estimates to investigate the ability of hiding specific target features

independently of others. As anticipated, significant obfuscation to a single

prediction target often causes degradation in the ability to predict other tar-

gets. We see three primary tiers of features in our testing. The easiest to

obfuscate are the phone and user identification targets which appear to be

more sensitive to noise. When we introduce noise according to their sensi-

tivity, we can still predict activity, speed, and FEV1/FVC with reasonable

accuracy. Obfuscating activity does not seem to affect phone identification

but affects the other classifiers. We finally find that obfuscating speed and

FEV1/FVC are challenging without affecting the other targets. We also note

that regressions seem to be more sensitive to noise as they return a contin-

uous distribution of values while classification seems to absorb more noise

before affecting a change.

We conclude by investigating the ability of each type of model to predict

targets when adding obfuscation noise. We find that noise degrades the per-

166

formance of all model types. Generally, the most accurate model for each

prediction type continues to be the most accurate for each noise threshold.

Tree-based models including random forest, binary decision, and regression

trees which internally contain tight prediction boundaries are more sensitive

to over fitting and obfuscation noise. Thus, they see bigger reduction in ac-

curacy for similar noise levels than SVM/SVR models. We finally investigate

the effectiveness of noise if the prediction models are trained on obfuscated

data. As expected, prediction accuracies increase for all models, but more

so for the models predicting alternate targets than the one protected by the

obfuscation. Thus, knowing the level of noise could help an attacker gain

private information, but would be significantly more helpful to increasing

prediction accuracy of collateral targets.

The analysis in this chapter demonstrates the design and testing of pri-

vacy obfuscation to hide phone identity while conducting health and fitness

monitoring and the ability to hide user identification while conducting fit-

ness and health measurements, two useful scenarios for motion privacy. Our

third scenario, predicting fitness while hiding health information, is difficult

since our results indicate health and fitness metrics are strongly correlated.

We believe our results support the studies indicating fitness metrics could be

useful to infer health status and conclude fitness metrics may warrant more

careful privacy protection.

167

CHAPTER 8

CONCLUSIONS

The widespread adoption of mobile devices including fitness devices, medical

devices, and smartphones introduce novel threats to users’ privacy. We have

found mobile devices are collecting continuous traces from motion sensors in-

cluding accelerometers, gyroscopes and magnetometers. Previous work has

demonstrated the usefulness of motion sensors to predict sensitive user infor-

mation including fitness metrics, user identification and phone identification.

This leads to serious privacy concerns since motion sensors are not currently

considered sensitive information and are thus fairly easy to access from a

malicious phone application. Recently, the use of fitness devices and phones

to conduct continuous health monitoring has begun to attract attention. The

prospect of monitoring health through a smartphone significantly increases

the privacy risk of motion sensors since health information is generally con-

sidered high risk data which must be protected. Thus, users must be warned

and educated about the information they are leaking by giving apps access

to their motion data. Once educated, we expect users will demand systems

to provide greater access control to limit the threats to their privacy. How-

ever, such access control requires greater analysis and understanding of the

sophisticated machine learning techniques used to infer private information

from the sensor signals.

To understand the ability of phones to monitor a user’s health, we designed

and developed software to collect raw motion data with medical grade sensor

quality on Android smartphones. We then demonstrated that the motion

sensors contained in smartphones could be used to accurately monitor pa-

tients and infer health status. With three studies conducted on eighty-eight

patients, we presented models to predict unconstrained walking speed useful

to conduct the equivalent to a standard six-minute walk test which is used

to diagnose chronic obstructive pulmonary disease and congestive heart fail-

ure, two serious chronic diseases. We also built models to predict FEV1%,

168

COPD status and blood oxygen saturation. The trials and predictive mod-

els demonstrate the usefulness of using mobile sensors to predict health and

provide strong motivation the need for privacy against malicious inference of

sensitive information.

The three studies provide a unique data set to both analyze the ability of

motion data to be used to predict sensitive information and test the ability

of obfuscation to mitigate these threats. The tests collected data from every

type of sensor available from our set of ten phones giving thirty-one raw

sensor streams including nineteen sensors directly recorded from the phone.

Our thirty-one sensors contained the standard set of motion sensors including

the accelerometer, gyroscope, orientation, and magnetometer. The remaining

twelve sensors were calculated with different reference frames for motion as

well as estimation of the user’s walking direction and direction of maximum

acceleration. For each sensor stream, we use the LibXtract tool kit combined

with custom code to extract 74 statistical features giving a total of 2,294 total

sensor features in our analysis with roughly 2 GB of raw data.

We demonstrate the ability to predict a comprehensive set of thirty targets

including the prediction capability of user identification, phone identification,

demographics including age, height, weight and gender. We also looked at ac-

tivity recognition (walking/non-walking), walking speed, and step counts. Fi-

nally, we considered heath status including FEV1%, FEV1/FVC and COPD

classification. We split each target classification into periods of walking,

non-walking, and a combination of both activities to measure the predic-

tion accuracy both when the user’s activity is stationary or unknown and

when the user is conducting a known activity such as walking. Our analysis

encompasses over forty hours of continuous readings from ten phones and

eighty-eight test subjects allowing use to analyze the predictability of our

targets.

We explored feature selection for our machine learning models. We eval-

uated both filter and wrapper methods to predict the top features to train

models for each prediction target. We find that filter methods run quickly,

but return a different subset of top features than wrapper methods using

sequential forward selection with SVM, SVR and k-means models to score

features. Understanding the variation in top features is important to under-

stand which features actually need to be obfuscated to protect privacy. The

difference in top features returned from feature selection led to the investi-

169

gation of how to select the set of privacy sensitive features or features which

must be hidden in order to diminish the ability of an attacker to infer the pri-

vate target value. We find that while related to optimal feature selection, se-

lecting the private features is a significantly different problem. We developed

three algorithms to identify the private features with the most accurate being

a brute force method which conducts a sequential forward feature selection

search and classifies the top feature as private per round. Unfortunately, we

find that this algorithm takes substantial computational power to run. We

found that certain features with high correlation measured by normalized

mutual information can be clustered allowing the search to eliminate multi-

ple features per round; however, this led to a high false positive rate. We

therefore only clustered features with high normalized mutual information if

the features also had similar predictability scores in the first round of the

sequential forward top feature search. We found that this method reduced

the number of false positives while still significantly reducing runtime.

We evaluated the private feature selection using the subset of features in-

cluding the magnitude of acceleration, magnitude of gyroscope, and phone

orientation. We found that the private feature identification with mutual in-

formation and first round SFS scoring completed in roughly half the time of

the brute force search while returning fairly low false positive and negatives.

We also found that various features had differing numbers of private features

with user identification having a relatively low number of private features

and activity having a high number of private features. We evaluated with

various privacy thresholds for F1-score predictions and mean absolute errors

in the sequential forward search identifying the number of private features

per privacy threshold. Finally, we evaluated the ability of top feature selec-

tion routines to identify the private features finding that the raw normalized

mutual information score with the target actually identifies the private fea-

tures with highest accuracy. We make special note that using the wrapper

with k-means clustering to choose private features performed more poorly

than other methods considered.

We run the private feature identification with normalized mutual infor-

mation and first round similarity scoring on the entire data set identifying

the private features for all 30 prediction targets. We use the midpoint be-

tween the noise threshold or prediction score with random training vectors

and the maximum prediction accuracy using an un-optimized SVC or SVR

170

model. We find that many target predictions contain overlapping features

with many correlated features especially between transformations of the mo-

tion data. We do see two main clusters of important sensor features with

one corresponding to predicting raw motion encompassing data from the ac-

celerometers and another corresponding to rotation being extracted from the

orientation and gyroscope sensors. We do eliminate 13 features and 3 sen-

sors which are not useful for prediction from our comprehensive set of sensor

features.

We next investigated the ability of machine learning models to predict each

target feature and the relative sensitivity of the predictions to changes in the

input sensor features. We evaluated nine classification machine learning mod-

els and nine regression models with optimized hyperparameters and ten-fold

cross validation to accurately measure how well the models can predict the

target without significant over fitting. We find that the models themselves

do not differ significantly in their ability to predict the target; however, ran-

dom forest and SVM perform best for classification and SVR performs best

for regression. We find that the forward sequential search gives the best in-

put sensor features overall. The filter method giving the highest accuracy

is the JMI method. We find that phone and activity identification can be

conducted with high accuracy. User identification suffers with ten-fold cross

validation due to dropping training targets but performs with leave-one-out

validation motivating the need for an individually trained model. We find

that COPD status and gender identification have lower accuracy. For re-

gressions, speed, steps, and FEV1/FVC show promise with speed and steps

giving the highest accuracy. Age, height, and weight are not predicted with

high statistical significance.

We developed strategies to estimate the amount of sensitivity present in

sensor features when predicting a target. We develop a library capable of

estimating the sensitivity of sklearn machine learning models. We use this

to estimate the sensitivity of models trained with both a single input feature

to each target and combinations of top features from the feature selection to

each target. We compare these sensitivity estimates to the standard sensi-

tivity in differential privacy (the maximum difference between sensor feature

values) and confirm that the sensitivity to the decision plane of a classifier

and amount of change to the sensor feature per unit change of regression is

substantially lower than the worst case differential method. Our methods al-

171

low us to calibrate noise for obfuscation to lower levels reducing the collateral

damage to other prediction targets.

Finally, we tie together the analysis methods presented in the dissertation

by taking the top features, the sensitivity estimates and the clinical data

set, developing obfuscation strategies, introducing noise, and evaluating the

ability to predict the targets while obfuscating specific targets. We compare

the sensitivities of five targets including three classification and two regression

models. We compare the user identification, phone identification, activity

identification, speed prediction, and FEV1/FVC. We first analyze the relative

sensitivity of the overlapping features noting that activity has a significant

number of overlapping features, speed and FEV1/FVC have low sensitivity

and phone and user identification have relatively high sensitivity. We then

present obfuscation techniques based on ε differential privacy and obfuscate

each target using various values for epsilon. We compare the prediction

accuracy of each prediction target with the obfuscation yielding twenty-five

sets of experiments.

We find that activity, speed, and FEV1/FVC obfuscation significantly di-

minishes the ability to accurately predict the other targets. Conversely, ob-

fuscating both the user’s identity and phone identity can be done with less

interference to the other targets. Thus, our framework allows us to design

feature level noise capable of hiding individual prediction targets as unobtru-

sively as possible to protect the usefulness of the signal for other predictions.

This allows us to design privacy for two useful scenarios including hiding

phone identity during health and fitness sensing and hiding user identity dur-

ing health and fitness sensing. Our results indicate that health and fitness

are closely related motivating the need to have more strict privacy policies

with fitness data.

We have presented frameworks to identify private features in motion data

and to estimate the sensitivity for each identified private feature. We have

also implemented and analyzed a framework to introduce calibrated noise

based on differential privacy to obfuscate prediction targets. The next step

to this research is to design signal processing techniques to introduce appro-

priate noise into the sensitive features. For example, we see that the phone

identification in particular is sensitive to many features extracted from the

rotational rate of the gyroscope. We therefore propose to investigate raw

obfuscation into the gyroscope signal in order to affect the gyroscope’s fea-

172

tures. Such analysis will allow the raw signal to be obfuscated in real time

and lead the way to the development of privacy frameworks in the firmware

which can guarantee privacy.

8.1 Final Thoughts

In this dissertation, we have developed a comprehensive framework to iden-

tify, quantify, and analyze private features as well as their sensitivity to

prediction. We believe this is a useful first step toward designing privacy

frameworks for motion data in real time. The ability to determine private

features will allow better policy to protect sensitive features. The framework

to determine the sensitivity of the features allows the noise to be carefully

calibrated in order to leave a useful signal for other applications. These con-

tributions combined with principles from differential privacy allow sensitive

features to be obfuscated with noise producing the least possible damage to

unrelated predictions. We hope the work in health prediction in this dis-

sertation can raise awareness to the dangers of releasing raw motion data.

We hope the libraries for private feature identification and sensitivity esti-

mation will provide a framework for further analysis to implement privacy

frameworks giving users greater control over their private motion data.

We believe the current trend to collect health data from mobile devices is

dangerous without access control for a user’s data. It is important for users

to understand what information both attackers and legitimate companies

can obtain from their mobile devices. Furthermore, it will be important for

users to be able to protect their personal information without completely

blocking access to the motion sensors for every app they may not trust. By

understanding the private features necessary to make private predictions and

the sensitivity of each feature, we can take the first steps to secure the privacy

of users against threats to motion sensor data.

173

REFERENCES

[1] “Hall effect,” 2015. [Online]. Available: http://en.wikipedia.org/wiki/
Hall effect

[2] A. Sandhu, “Information and communications technology: Electronic
compass,” 2010. [Online]. Available: http://asia.iop.org/cws/article/
news/42833

[3] InstrumentationToday, “MEMS accelerometer,” 2011. [Online]. Avail-
able: http://www.instrumentationtoday.com/mems-accelerometer/
2011/08/

[4] J. Esfandyari, “Introduction to MEMS gyroscopes,”
2010. [Online]. Available: http://electroiq.com/blog/2010/11/
introduction-to-mems-gyroscopes/

[5] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi, “Accel-
print: Imperfections of accelerometers make smartphones trackable,”
in Proceedings of the Network and Distributed System Security Sympo-
sium (NDSS), 2014.

[6] J. Lee, Y. Kim, and G. J. Welk, “Validity of consumer-based physi-
cal activity monitors,” Medicine and Science in Sports and Exercise,
vol. 46, no. 9, pp. 1840–1848, 2014.

[7] J. Takacs, C. L. Pollock, J. R. Guenther, M. Bahar, C. Napier, and
M. A. Hunt, “Validation of the Fitbit One activity monitor device
during treadmill walking,” Journal of Science and Medicine in Sport,
vol. 17, no. 5, pp. 496–500, 2014.

[8] M. Keally, G. Zhou, G. Xing, J. Wu, and A. Pyles, “PBN: Towards
practical activity recognition using smartphone-based body sensor net-
works,” in Proceedings of the 9th ACM Conference on Embedded Net-
worked Sensor Systems. ACM, 2011, pp. 246–259.

[9] K. Yatani and K. N. Truong, “Bodyscope: A wearable acoustic sensor
for activity recognition,” in Proceedings of the 14th ACM Conference
on Ubiquitous Computing (UbiComp). ACM, 2012, pp. 341–350.

174

[10] H. Cao, M. N. Nguyen, C. Phua, S. Krishnaswamy, and X. Li, “An
integrated framework for human activity classification,” in Proceedings
of the 14th ACM Conference on Ubiquitous Computing (UbiComp).
ACM, 2012, pp. 331–340.

[11] E. Berlin and K. Van Laerhoven, “Detecting leisure activities with
dense motif discovery,” in Proceedings of the 14th ACM Conference on
Ubiquitous Computing (UbiComp). ACM, 2012, pp. 250–259.

[12] N. D. Lane, Y. Xu, H. Lu, S. Hu, T. Choudhury, A. T. Campbell,
and F. Zhao, “Enabling large-scale human activity inference on smart-
phones using community similarity networks (CSN),” in Proceedings of
the 13th International Conference on Ubiquitous Computing. ACM,
2011, pp. 355–364.

[13] P. Panuccio, H. Ghasemzadeh, G. Fortino, and R. Jafari, “Power-aware
action recognition with optimal sensor selection: An AdaBoost driven
distributed template matching approach,” in Proceedings of the First
ACM Workshop on Mobile Systems, Applications, and Services for
Healthcare. ACM, 2011, pp. 5:1–5:6.

[14] J. Park, A. Patel, D. Curtis, S. Teller, and J. Ledlie, “Online pose
classification and walking speed estimation using handheld devices,”
in Proceedings of the 14th ACM Conference on Ubiquitous Computing
(UbiComp). ACM, 2012, pp. 113–122.

[15] B. G. Steele, L. Holt, B. Belza, S. Ferris, S. Lakshminaryan, and D. M.
Buchner, “Quantitating physical activity in COPD using a triaxial ac-
celerometer,” CHEST Journal, vol. 117, no. 5, pp. 1359–1367, 2000.

[16] R. Moe-Nilssen and J. L. Helbostad, “Estimation of gait cycle char-
acteristics by trunk accelerometry,” Journal of Biomechanics, vol. 37,
no. 1, pp. 121–126, 2004.

[17] F. Pitta, T. Troosters, V. Probst, M. Spruit, M. Decramer, and R. Gos-
selink, “Quantifying physical activity in daily life with questionnaires
and motion sensors in COPD,” European Respiratory Journal, vol. 27,
no. 5, pp. 1040–1055, 2006.

[18] R. A. Rabinovich, Z. Louvaris, Y. Raste, D. Langer, H. Van Remoortel,
S. Giavedoni, C. Burtin, E. M. Regueiro, I. Vogiatzis, N. S. Hopkin-
son, M. I. Polkey, F. J. Wilson, W. MacNee, K. R. Westerterp, and
T. Trooster, “Validity of physical activity monitors during daily life in
patients with COPD,” European Respiratory Journal, vol. 42, no. 5,
pp. 1205–1215, 2013.

175

[19] H. Van Remoortel, Y. Raste, Z. Louvaris, S. Giavedoni, C. Burtin,
D. Langer, F. Wilson, R. Rabinovich, I. Vogiatzis, N. S. Hopkinson
et al., “Validity of six activity monitors in chronic obstructive pul-
monary disease: A comparison with indirect calorimetry,” PLoS One,
vol. 7, no. 6, p. e39198, 2012.

[20] F. Pitta, T. Troosters, M. A. Spruit, V. S. Probst, M. Decramer,
and R. Gosselink, “Characteristics of physical activities in daily life
in chronic obstructive pulmonary disease,” American Journal of Res-
piratory and Critical Care Medicine, vol. 171, no. 9, pp. 972–977, 2005.

[21] N. A. Hernandes, D. d. C. Teixeira, V. S. Probst, A. F. Brunetto,
E. M. C. Ramos, and F. Pitta, “Profile of the level of physical activity
in the daily lives of patients with COPD in Brazil,” Jornal Brasileiro
de Pneumologia, vol. 35, no. 10, pp. 949–956, 2009.

[22] G. K. Pepera, G. R. Sandercock, R. Sloan, J. J. Cleland, L. Ingle, and
A. L. Clark, “Influence of step length on 6-minute walk test perfor-
mance in patients with chronic heart failure,” Physiotherapy, vol. 98,
no. 4, pp. 325–329, 2012.

[23] E. K. Antonsson and R. W. Mann, “The frequency content of gait,”
Journal of Biomechanics, vol. 18, no. 1, pp. 39–47, 1985.

[24] S. A. Skogstad, K. Nymoen, M. E. Høvin, S. Holm, and A. R. Jensenius,
“Filtering motion capture data for real-time applications,” in Proceed-
ings of the International Conference on New Interfaces for Musical
Expression, pp. 143–147.

[25] D. A. Furtado, A. A. Pereira, A. de Oliveira Andrade, D. P. B. Junior,
and M. R. da Silva, “A specialized motion capture system for real-time
analysis of mandibular movements using infrared cameras,” Biomedical
Engineering Online, vol. 12, no. 1, p. 17, 2013.

[26] J. Juen, Q. Cheng, and B. Schatz, “Towards a natural walking monitor
for pulmonary patients using simple smart phones,” in Proceedings of
the 5th ACM Conference on Bioinformatics, Computational Biology,
and Health Informatics. ACM, 2014, pp. 53–62.

[27] N. Roy, H. Wang, and R. R. Choudhury, “I am a smartphone and I
can tell my users walking direction,” in Proceedings of the 12th In-
ternational Conference on Mobile Systems, Applications, and Services.
ACM, 2014, pp. 329–342.

[28] E. Miluzzo, M. Papandrea, N. D. Lane, H. Lu, and A. T. Camp-
bell, “Pocket, bag, hand, etc. - Automatically detecting phone context
through discovery,” in Proceedings of PhoneSense, 2010, pp. 21–25.

176

[29] L. Pei, J. Liu, R. Guinness, Y. Chen, H. Kuusniemi, and R. Chen, “Us-
ing LS-SVM based motion recognition for smartphone indoor wireless
positioning,” Sensors, vol. 12, no. 5, pp. 6155–6175, 2012.

[30] M. Susi, V. Renaudin, and G. Lachapelle, “Motion mode recognition
and step detection algorithms for mobile phone users,” Sensors, vol. 13,
no. 2, pp. 1539–1562, 2013.

[31] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell,
“The jigsaw continuous sensing engine for mobile phone applications,”
in Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2010, pp. 71–84.

[32] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition
using cell phone accelerometers,” ACM SIGKDD Explorations Newslet-
ter, vol. 12, no. 2, pp. 74–82, 2011.

[33] H. L. Chu, V. Raman, J. Shen, A. Kansal, V. Bahl, and R. R. Choud-
hury, “I am a smartphone and I know my user is driving,” in Proceed-
ings of Communication Systems and Networks (COMSNETS), 2014,
pp. 1–8.

[34] J. Dai, J. Teng, X. Bai, Z. Shen, and D. Xuan, “Mobile phone based
drunk driving detection,” in Proceedings of the 4th International Con-
ference on Pervasive Computing Technologies for Healthcare (Perva-
siveHealth). IEEE, 2010, pp. 1–8.

[35] A. Brajdic and R. Harle, “Walk detection and step counting on uncon-
strained smartphones,” in Proceedings of the 2013 ACM International
Joint Conference on Pervasive and Ubiquitous Computing. ACM,
2013, pp. 225–234.

[36] A. Mannini and A. M. Sabatini, “On-line classification of human ac-
tivity and estimation of walk-run speed from acceleration data using
support vector machines,” in Proceedings of Engineering in Medicine
and Biology Society (EMBS). IEEE, 2011, pp. 3302–3305.

[37] H. Vathsangam, A. Emken, D. Spruijt-Metz, and G. S. Sukhatme, “To-
ward free-living walking speed estimation using Gaussian process-based
regression with on-body accelerometers and gyroscopes,” in Proceedings
of Pervasive Computing Technologies for Healthcare (PervasiveHealth).
IEEE, 2010, pp. 1–8.

[38] A. Panagiota, S. Layal, and H. Stefan, “Assessment of human gait
speed and energy expenditure using a single triaxial accelerometer,”
in Proceedings of the 9th International Conference on Wearable and
Implantable Body Sensor Networks (BSN). IEEE, 2012, pp. 184–188.

177

[39] H. Vathsangam, A. Tulsyan, and G. Sukhatme, “A data-driven move-
ment model for single cellphone-based indoor positioning,” in Pro-
ceedings of the 8th International Conference on Body Sensor Networks
(BSN). IEEE, 2011, pp. 174–179.

[40] Y. Song, S. Shin, S. Kim, D. Lee, and K. H. Lee, “Speed estimation
from a tri-axial accelerometer using neural networks,” in Proceedings of
the 29th Annual International Conference on Engineering in Medicine
and Biology. IEEE, 2007, pp. 3224–3227.

[41] S. Chen, C. L. Cunningham, J. Lach, and B. C. Bennett, “Extracting
spatio-temporal information from inertial body sensor networks for gait
speed estimation,” in Proceedings of the 8th International Conference
on Wearable and Implantable Body Sensor Networks (BSN). IEEE,
2011, pp. 71–76.

[42] J. Hu, K. Sun, and C. Cheng, “A kinematic human-walking model
for the normal-gait-speed estimation using tri-axial acceleration signals
at waist location,” IEEE Transactions on Bio-Medical Engineering,
vol. 60, no. 8, p. 2271, 2013.

[43] M. Yang, H. Zheng, H. Wang, S. McClean, and N. Harris, “Assessing
the utility of smart mobile phones in gait pattern analysis,” Health and
Technology, vol. 2, no. 1, pp. 81–88, 2012.

[44] S. Nishiguchi, M. Yamada, K. Nagai, S. Mori, Y. Kajiwara, T. Sonoda,
K. Yoshimura, H. Yoshitomi, H. Ito, K. Okamoto et al., “Reliability and
validity of gait analysis by android-based smartphone,” Telemedicine
and e-Health, vol. 18, no. 4, pp. 292–296, 2012.

[45] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang, “Accomplice:
Location inference using accelerometers on smartphones,” in Proceed-
ings of the 4th International Conference on Communication Systems
and Networks (COMSNETS). IEEE, 2012, pp. 1–9.

[46] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A reliable
and accurate indoor localization method using phone inertial sensors,”
in Proceedings of the 14th ACM Conference on Ubiquitous Computing
(UbiComp). ACM, 2012, pp. 421–430.

[47] M. Sousa, A. Techmer, A. Steinhage, C. Lauterbach, and P. Lukowicz,
“Human tracking and identification using a sensitive floor and wearable
accelerometers,” in Proceedings of the IEEE International Conference
on Pervasive Computing and Communications (PerCom). IEEE, 2013,
pp. 166–171.

178

[48] S. Hilsenbeck, D. Bobkov, G. Schroth, R. Huitl, and E. Steinbach,
“Graph-based data fusion of pedometer and wifi measurements for mo-
bile indoor positioning,” in Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing. ACM,
2014, pp. 147–158.

[49] A. Kale, A. Rajagopalan, N. Cuntoor, and V. Kruger, “Gait-based
recognition of humans using continuous HMMs,” in Proceedings of the
5th IEEE International Conference on Automatic Face and Gesture
Recognition. IEEE, 2002, pp. 336–341.

[50] M. S. Nixon and J. N. Carter, “Automatic recognition by gait,” Pro-
ceedings of the IEEE, vol. 94, no. 11, pp. 2013–2024, 2006.

[51] J. E. Boyd and J. J. Little, “Biometric gait recognition,” in Advanced
Studies in Biometrics. Springer, 2005, pp. 19–42.

[52] D. Gafurov, K. Helkala, and T. Søndrol, “Gait recognition using accel-
eration from MEMS,” in Proceedings of the 1st International Confer-
ence on Availability, Reliability and Security. IEEE, 2006, pp. 432–437.

[53] M. Tanviruzzaman and S. I. Ahamed, “Your phone knows you: Almost
transparent authentication for smartphones,” in Proceedings of the 38th
Annual Computer Software and Applications Conference (COMPSAC).
IEEE, 2014, pp. 374–383.

[54] J. E. Bardram, R. E. Kjær, and M. Ø. Pedersen, “Context-aware user
authentication–Supporting proximity-based login in pervasive comput-
ing,” in Proceedings of the 5th International Conference on Ubiquitous
Computing (UbiComp). Springer, 2003, pp. 107–123.

[55] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Cell phone-based bio-
metric identification,” in Proceedings of the 4th International Confer-
ence on Biometrics: Theory Applications and Systems (BTAS). IEEE,
2010, pp. 1–7.

[56] J. Lester, C. Hartung, L. Pina, R. Libby, G. Borriello, and G. Duncan,
“Validated caloric expenditure estimation using a single body-worn sen-
sor,” in Proceedings of the 11th International Conference on Ubiquitous
Computing. ACM, 2009, pp. 225–234.

[57] A. Zhan, M. Chang, Y. Chen, and A. Terzis, “Accurate caloric expen-
diture of bicyclists using cellphones,” in Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems. ACM, 2012, pp.
71–84.

179

[58] E. Ertin, N. Stohs, S. Kumar, A. Raij, M. al’Absi, and S. Shah, “Au-
tosense: Unobtrusively wearable sensor suite for inferring the onset,
causality, and consequences of stress in the field,” in Proceedings of the
9th ACM Conference on Embedded Networked Sensor Systems. ACM,
2011, pp. 274–287.

[59] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chittaranjan,
A. T. Campbell, D. Gatica-Perez, and T. Choudhury, “Stresssense:
Detecting stress in unconstrained acoustic environments using smart-
phones,” in Proceedings of the 14th International Conference on Ubiq-
uitous Computing. ACM, 2012, pp. 351–360.

[60] E. C. Larson, M. Goel, G. Boriello, S. Heltshe, M. Rosenfeld, and
S. N. Patel, “Spirosmart: Using a microphone to measure lung function
on a mobile phone,” in Proceedings of the 2012 ACM Conference on
Ubiquitous Computing. ACM, 2012, pp. 280–289.

[61] M. Rabbi, S. Ali, T. Choudhury, and E. Berke, “Passive and in-situ
assessment of mental and physical well-being using mobile sensors,” in
Proceedings of the 13th International Conference on Ubiquitous Com-
puting, 2011, pp. 385–394.

[62] G. Yavuz, M. Kocak, G. Ergun, H. Alemdar, H. Yalcin, O. D. Incel,
and C. Ersoy, “A smartphone based fall detector with online location
support,” in Proceedings of the International Workshop on Sensing for
App Phones; Zurich, Switzerland, 2010, pp. 31–35.

[63] Chipworks, “Chipworks.com,” April 2013. [Online]. Available:
http://www.chipworks.com/

[64] A. Albarbar, A. Badri, J. K. Sinha, and A. Starr, “Performance eval-
uation of MEMS accelerometers,” Measurement, vol. 42, no. 5, pp.
790–795, 2009.

[65] R. LeMoyne, C. Coroian, T. Mastroianni, and W. Grundfest, “Ac-
celerometers for quantification of gait and movement disorders: A per-
spective review,” Journal of Mechanics in Medicine and Biology, vol. 8,
no. 02, pp. 137–152, 2008.

[66] D. John and P. Freedson, “Actigraph and Actical physical activity
monitors: A peek under the hood,” Medicine and Science in Sports
and Exercise, vol. 44, pp. S86–S89, 2012.

[67] D. Brooks and S. Solway, “ATS statement on six-minute walk test,”
American Journal of Respiratory and Critical Care Medicine, vol. 167,
no. 9, pp. 1287–1287, 2003.

180

[68] Q. Cheng, J. Juen, Y. Li, V. Prieto-Centurion, J. A. Krishnan, and
B. R. Schatz, “Gaittrack: Health monitoring of body motion from
spatio-temporal parameters of simple smart phones,” in Proceedings of
the International Conference on Bioinformatics, Computational Biol-
ogy and Biomedical Informatics (BCB). ACM, 2013, pp. 897–906.

[69] J. Juen, Q. Cheng, V. Prieto-Centurion, J. A. Krishnan, and B. Schatz,
“Health monitors for chronic disease by gait analysis with mobile
phones,” Telemedicine and e-Health, pp. 1035–1041, 2014.

[70] J. Juen, Q. Cheng, and B. Schatz, “A natural walking monitor for
pulmonary patients using mobile phones,” IEEE Journal of Biomedical
and Health Informatics, vol. 19, no. 4, pp. 1399–1405, 2015.

[71] Q. Cheng, J. Juen, and B. R. Schatz, “Using mobile phones to simulate
pulse oximeters: Gait analysis predicts oxygen saturation,” in Proceed-
ings of the 5th ACM Conference on Bioinformatics, Computational
Biology, and Health Informatics. ACM, 2014, pp. 331–340.

[72] Q. Cheng, J. Juen, J. Hsu-Lumetta, and B. Schatz, “Predicting tran-
sitions in oxygen saturation using phone sensors,” Telemedicine and
e-Health.

[73] J. Bullock and U. Conservatoire, “Libxtract: A lightweight library for
audio feature extraction,” in Proceedings of the International Computer
Music Conference, vol. 43, 2007.

[74] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” The Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[75] A. Pocock and G. Brown, “Feast,” 2014. [Online]. Available:
http://mloss.org/software/view/386/

[76] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional like-
lihood maximisation: A unifying framework for information theoretic
feature selection,” The Journal of Machine Learning Research, vol. 13,
pp. 27–66, 2012.

[77] K. Torkkola, “Feature extraction by non parametric mutual informa-
tion maximization,” The Journal of Machine Learning Research, vol. 3,
pp. 1415–1438, 2003.

[78] P. A. Estévez, M. Tesmer, C. A. Perez, and J. M. Zurada, “Normalized
mutual information feature selection,” IEEE Transactions on Neural
Networks, vol. 20, no. 2, pp. 189–201, 2009.

181

[79] H. Peng, F. Long, and C. Ding, “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[80] J. Novovičová, P. Somol, M. Haindl, and P. Pudil, “Conditional mutual
information based feature selection for classification task,” in Progress
in Pattern Recognition, Image Analysis and Applications. Springer,
2007, pp. 417–426.

[81] H. Yang and J. Moody, “Feature selection based on joint mutual in-
formation,” in Proceedings of the International ICSC Symposium on
Advances in Intelligent Data Analysis. Citeseer, 1999, pp. 22–25.

[82] F. Fleuret, “Fast binary feature selection with conditional mutual in-
formation,” The Journal of Machine Learning Research, vol. 5, pp.
1531–1555, 2004.

[83] S. Ullman, E. Sali, and M. Vidal-Naquet, “A fragment-based ap-
proach to object representation and classification,” in Visual Form
2001. Springer, 2001, pp. 85–100.

[84] A. Jakulin, “Machine learning based on attribute interactions,” Ph.D.
dissertation, Univerza v Ljubljani, 2005.

[85] P. E. Meyer, C. Schretter, and G. Bontempi, “Information-theoretic
feature selection in microarray data using variable complementarity,”
IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 3, pp.
261–274, 2008.

[86] J. Kittler, “Feature selection and extraction,” Handbook of Pattern
Recognition and Image Processing, pp. 59–83, 1986.

[87] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms. Society for Industrial and Applied Mathematics,
2007, pp. 1027–1035.

[88] T. Griffiths, “Gibbs sampling in the generative model of latent Dirichlet
allocation,” Stanford University, Tech. Rep.

[89] G. Casella and E. I. George, “Explaining the Gibbs sampler,” The
American Statistician, vol. 46, no. 3, pp. 167–174, 1992.

[90] A. Riddell, “Topic modeling with latent Dirichlet allocation,” 2015.
[Online]. Available: https://github.com/ariddell/lda/

182

[91] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
Information Theory, IEEE Transactions on, vol. 13, no. 1, pp. 21–27,
1967.

[92] T. F. Chan, G. H. Golub, and R. J. LeVeque, “Updating formulae and
a pairwise algorithm for computing sample variances,” in Proceedings
of COMPSTAT 1982 5th Symposium Held at Toulouse 1982. Springer,
1982, pp. 30–41.

[93] T. M. Cover, “Geometrical and statistical properties of systems of lin-
ear inequalities with applications in pattern recognition,” IEEE Trans-
actions on Electronic Computers, no. 3, pp. 326–334, 1965.

[94] C.-Y. Lee, “Representation of switching circuits by binary-decision pro-
grams,” Bell System Technical Journal, vol. 38, no. 4, pp. 985–999,
1959.

[95] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and Regression Trees. CRC Press, 1984.

[96] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996.

[97] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[98] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn-
ing, vol. 20, no. 3, pp. 273–297, 1995.

[99] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67,
1970.

[100] D. J. MacKay, “Bayesian interpolation,” Neural Computation, vol. 4,
no. 3, pp. 415–447, 1992.

[101] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

[102] C. E. Rasmussen, “Gaussian processes for machine learning,” in Pro-
ceedings of Adaptive Computation and Machine Learning. Citeseer,
2006.

[103] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in Python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

183

[104] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of Cryptography.
Springer, 2006, pp. 265–284.

[105] D. Kifer and A. Machanavajjhala, “A rigorous and customizable frame-
work for privacy,” in Proceedings of the 31st Symposium on Principles
of Database Systems. ACM, 2012, pp. 77–88.

[106] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, “GUPT: Pri-
vacy preserving data analysis made easy,” in Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data.
ACM, 2012, pp. 349–360.

[107] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi, “Geo-indistinguishability: Differential privacy for
location-based systems,” in Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security. ACM, 2013,
pp. 901–914.

[108] K. Chatzikokolakis, C. Palamidessi, and M. Stronati, “A predictive
differentially-private mechanism for mobility traces,” in Privacy
Enhancing Technologies, ser. Lecture Notes in Computer Science,
E. De Cristofaro and S. Murdoch, Eds. Springer International
Publishing, 2014, vol. 8555, pp. 21–41. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-08506-7 2

184

