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Abstract 

 This paper describes a distributed data retrieval algorithm for crowd-sensing 

application, which aims to collect data with minimized bandwidth cost while satisfying data 

freshness constraints. In a resource-limited setting, data loses freshness very fast. For instance, 

the condition of a road during a rush hour may be dynamic due to the rapid change of the 

traffic. In order to schedule an optimized route to a destination from a given location, we have 

to know its real-time condition. The protocol we design is to exploit logic dependencies among 

data by using and-or tree to reduce the overhead of the network and handle concurrent 

requests at the same time. Meanwhile, we further modify the centralized system into a 

distributed form so that each node in this network is able to calculate the best retrieval order 

locally. Furthermore, we integrate some ideas of other literature to let each node store the 

retrieved data locally due to the fact that the price of storage is lower and lower these days. 

Finally, we implement part of the algorithms and test the efficiency of using varying 

probabilities and earliest deadline first to sort queries. 
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1. Introduction 

 In many real-world scenarios, the network bandwidth is very limited. For instance, some less 

developed areas around the world may not have money to build broadband networks. In other settings 

such as post-earthquake, the infrastructure is severely damaged. Therefore, there is a need to find a 

way to save the network resources. Moreover, some emergencies need to be handled as quickly as 

possible. For instance, a rescue team needs to save citizens in a building after an earthquake. If there are 

other less urgent requests happening at the same time, we still need to perform the rescue task first 

since saving people’s lives is of the first priority. Once the task is fixed, we need to evaluate the 

conditions of different routes we might need to go through. Each route consists of several roads, which 

may or may not be destroyed. Once we know one road is unusable, we will decide not to go along that 

path. We can model that into a Boolean expression (shelterOccupied) ∧ (path1IsGood ∨ path2isGood ^ 

path3isGood). If we know path2 is in bad condition, the retrieval of information of path 3 would become 

meaningless. Since the size of a piece of information can be very large, avoiding fetching useless data 

can make a huge difference. Thus, the key to minimizing the network bandwidth cost is to fetch the data 

in a proper order. Another thing we need to take into consideration is the freshness deadline of each 

piece of data. In other words, the information contained in each of the data can expire within a short 

amount of time. The information that indicates that the path was available one hour ago might not 

imply that the path is available now. Therefore, the more perishable the data, the later should we 

execute the actual retrieval. Therefore, we integrate the above factors and come up with an efficient 

algorithm.  

 The rest of the paper is organized as follows. We discuss some relevant work in Section 2. We 

then discuss the algorithms we design and some calculation processes in Section 3. In the end, Section 4 

summarizes the paper.   
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2. Literature Review 

 Crowd-sensing is one of the hottest areas in distributed systems nowadays. Many scientists put 

efforts into finding various scenarios in which the crowd-sensing can be applied. For instance, in order to 

find legal parking lots more efficiently, a crowd-sensing model was given by Coric et al. [1]. As far as the 

basic underlying mathematic model is concerned, the optimal Boolean predicate evaluation order has 

also been studied in computer theory. Casanova et al. [2] analyze the query tree structure and suggest 

some efficient evaluation orders. Other researchers also give some potential heuristics to optimize the 

result. In distributed systems community, Hu et al. [3] [4] give an algorithm to handle the concurrent 

request scenarios and deal with the query deadline and object freshness constraints, respectively. In 

contrast to the previous work, our model satisfies all the constraints above simultaneously in a 

distributed fashion. Moreover, we add a pre-fetch feature to further its performance. 
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3. Description of Research Results 

3.1 High level distributed data retrieval algorithm  

 This paper adapts a centralized data retrieval algorithm to distributed mode for crowd-sensing 

scenarios under freshness constraints. It is known that the internet resources are very limited in a 

crowd-sensing setting, such as the post-disaster environment. In that case, we have to use an optimized 

algorithm to retrieve data to reach our goal. We model it into a tree structure, where leaf nodes stand 

for the data objects and non-leaf nodes represent AND-OR relationships. In order for the whole tree to 

be true, we have to ensure that each AND branch is true and at least one OR branch is true. As long as 

we know one OR branch is true, we can shortcircuit other OR branches. Similarly, we can shortcircuit 

other AND branches as long as we know there is an AND branch is evaluated to be true. Therefore, the 

tree model gives us good evaluation guidelines. 

 Another issue we need to consider is the freshness of each data. It could be the case that the 

data we retrieve expire when the decision is made since it takes some time before we gather all the data 

we need. Therefore, we have to add parallel level to meet the freshness deadline or we need to reorder 

the data retrieval. Moreover, we also take into consideration the deadline of a request since each 

requester might need to respond to an emergency as soon as possible. 

 Overall, we need to perform three evaluations based on different factors. First, we need to 

figure out the query needed to be processed with the earliest deadline. Second, in order to minimize the 

total expected bandwidth cost as much as possible, we focus on one query tree and evaluate which data 

object needs to be retrieved first. Here we use 𝑡𝑖𝑗
 to denote the data object on i’s query tree. As the 

equation (1) shows, the higher the value of 
1−𝑝𝑖𝑢

𝑐𝑖𝑢

, the earlier the retrieval of 𝑡𝑖𝑣
 should be.  
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 𝑡𝑖𝑢
> 𝑡𝑖𝑣

↔
1 − 𝑝𝑖𝑢

𝑐𝑖𝑢

>
1 − 𝑝𝑖𝑣

𝑐𝑖𝑣

 (1) 

Third, in order to meet the freshness deadline, we also need to order data objects. We apply the Latest 

Deadline First policy to order all the data first. If we find that some piece of data still expires under the 

best optimized order, we have to add the parallel retrieval level. After we combine the above three 

order rules, we can achieve a balanced retrieval order.    

Input: The set M of retrieved data in previous round, the set Q of all unresolved queries and set O of object requests, current time 

T 

1 Initialize R ← ∅ 

2 Order all its queries according to their deadlines 

3 Fetch one query following the earliest deadline first policy 

4 Repeat 

5 use values in M to update cache  

6 If current node is the root node 

7 prune unnecessary leaves in Qc ← ∅, Qd ← LDF order of all objects in the query, Sp ← ∅ 

8 L ← {tij } sorted in descending order of (1− pi)/cij 

9                while |Qd| > 0                  

10                               te ← end element of Qd 

11                                 Qd ← Qd \ te, Sp ← Sp ∪ {te} 

12                                 if Qd + Sp meets freshness deadlines 

13   L<-L\Sp 

14                                   break             

15                for each tl  in L     

16   QH ← Qc + t1 + Qd \ t1  

17                                                        if QH  meets freshness constraints            

18                                     Qd ← Qd \ t1 
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19    Qc ← Qc + t1 

20   for each t2 in L  such that t2 is  less optimized than t1 but are in the same branch  

21    QH ← Qc + t2 + Qd \ t2 

22     if QH  meets freshness constraints 

23                                                                              Qd ← Qd \  t2 , Qc ← Qc +   t2  

24                                                                              break 

25  bind t1 and t2 together 

26  append the rest of Qd to QH 

27 for each te  in QH 

28  if te  is being processed by checking whether they are marked in the cache 

29   check whether resolved by without violating the freshness 

30     if not violate 

31     remove it from QH 

32    else  

33    Perform the sequential retrieval  

 

 In addition, we modify the algorithm running on a single node to run on different nodes. Each 

node can compute its own optimized order itself, and can function as a forward node and storage node 

at the same time. 

3.2 Conditional probability calculation 

 

 In order to update the probability for each object data, we need to compute the conditional 

probability according to the elapse of the time after the data exists in the local cache. To make it close to 

the real world scenarios, we search the data from the California Department of Transportation. We first 

plot the average traffic in a day. Then we set a threshold by heuristics, which is the red line in the left 

graph in figure 1 to indicate the level of traffic. If the curve is above the threshold, it is believed to be 

congested. Then we designed our own algorithms to calculate whether the traffic is still heavy after 
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different periods of time and plot the result as a graph on the right. After analyzing, we get an 

approximate piece wise function to fit the discrete points. 

 

Figure 1 Left: The traffic condition in a day with x axis representing time in minutes and y axis representing level of traffic. 

Right: The conditional probability changing with time 

3.3 EDF policy 

 In order to handle multiple requests scenarios, we use Earliest Deadline First policy to sort the 

queries and resolve each of them sequentially. It is obvious that we need to meet the earliest deadline 

since these queries are more emergent. We compare it with the random order case.   

3.4 Simulation result 

 After applying the conditional probability, I write the code and compare the results of three 

different cases. The base case is that the probability of each condition doesn’t change with time and we 

only use each piece of data to resolve the conjunction where the data is in. In the second case, I vary the 

probability by time according to the function computed in the above section and still only resolve the 

current conjunction. In the third case, I resolve conditions in other AND nodes and use conditional 

probability as well. The result goes as follows. The improvement makes a strikingly difference and 

block 
1

blo 5



7 
 

outperforms the baseline. The conditional probability decreases the cost and resolving multiple 

conjunctions also lower the cost a lot. 
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4. Conclusion 

During the research, we developed an efficient algorithm for the crowd-sensing scenarios. We have 

integrated a variety of constraints such as freshness deadline and request deadline. One of the 

innovative parts of our works is the pre-fetch scheme we applied to reduce the bandwidth cost. Another 

key breakthrough is the distributed form of calculating the retrieval order, which can be robust to 

extreme conditions and has the ability to get the globally optimized retrieval order rather than locally 

optimized order. We use heuristics to tune the value of different parameters such as the bandwidth 

limit and the parallel retrieval level. We also gather real-world data of traffic of San Francisco to 

calculate the conditional probability of the degree of congestion. Future work can be done to optimize 

the parameters of the heuristics to achieve better performance. 
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