
Gamesourcing Mismatched
Transcription

Yu Yao Chang

December 3, 2015



A B S T R A C T

Transcribed speech is an essential resource to develop speech tech-
nologies for different languages of the world. However, native speak-
ers of most languages of the world may not be readily available on-
line to acquire transcribed speech. The goal of this research is to ex-
plore the possibility of acquiring transcriptions for speech data from
non-native speakers of a language, referred to as mismatched tran-
scriptions. The two main problems tackled in this work are: 1) How
do we motivate non-native speakers to provide transcriptions? 2)
How do we refine the mismatched transcriptions? Firstly, we design
a novel game that facilitates the collection of mismatched transcrip-
tions from non-native speakers. In this game, players are prompted
to listen to sound clips in a foreign language and asked to transcribe
the sounds they hear to the best of their abilities using English text.
The misperceptions by the non-native speakers are modeled as a fi-
nite memory process and implemented using finite state machines.
The mismatched transcriptions are further refined using a series of
finite-state operations.

The main contributions of this thesis are as follows: 1) Creation
of a streamlined game for crowdsourcing transcriptions for speech
data from non-native speakers. 2) Algorithms that process the re-
sulting mismatched transcriptions and provide the closest sounding
English words. 3) Experiments describing various modifications to
the above-mentioned algorithms and results showing their effect on
the accuracy of the English words that are produced as output.

i



C O N T E N T S

1 introduction 1

2 prerequisite knowledge 5

2.1 Finite State Transducers 5

2.2 Edit Distance 7

3 soramimi words 9

4 the algorithm 14

5 experiments : letter to phoneme mapping 19

6 conclusion 26

References 28

ii



1
I N T R O D U C T I O N

Globalization has brought the world closer and has consequently en-
couraged the introduction of foreign languages in new lands. For
popularly spoken languages, it is easier to find a native speaker com-
pared to a language that is not commonly used. The goal of this
research is to build labeled data for languages for which resources of
native speakers are difficult to find.

Labeled data refers to the attachment of transcription to some au-
dio data containing speech in a certain language. There could be
multiple transcriptions for the same phrase or word in a language.
Differences in perceived sounds by the transcriber cause variations
in the resulting transcription. These differences are much smaller for
native transcribers compared to non-native transcribers.

The resulting labeled data would be useful for building speech tech-
nologies for the language in question. Transcriptions are very impor-
tant in building technologies such as speech recognition and even
translators, and they are hard to acquire for languages whose native
speakers are difficult to reach.

The approach used to collect the labeled data uses non-native speak-
ers to generate the transcription, then attempts to recover the original
transcription by using finite state models of cross-lingual perception.
The phenomenon of having subjects transcribe audio in a foreign lan-
guage is dubbed ”Mismatched Transcriptions” (Jyothi and Hasegawa-
Johnson 2015). In order to motivate transcribers and create a stream-
lined process for collecting labeled data, a game called ”Soramimi
Words” is created as a medium. The game interface allows for uni-
form interface and process to be presented to all subjects.

The process envisioned is as follows: a phrase from a foreign lan-
guage would be played to a subject, and the subject would transcribe
the phrase in English letters, to the best of their abilities. The subjects
are to be told beforehand that their transcriptions would not have to
make sense–what is important is that the subject captures the sounds
that they heard, in any syllables or phonemes they feel is appropriate
given their language backgrounds. The only requirement for the sub-
ject is that letters from the English alphabet would have to be used
for the transcribing process.

A phrase in Hindi, for example, will sound different to a native
speaker of Hindi and another who does not know the language at all.

1



introduction

One possible reason is that the subject would try to transcribe a sound
clip from Hindi using existing knowledge of phonemes perhaps from
a more familiar language.

This approach will not yield a perfect transcription; the probabil-
ity of a transcription matching with the language’s more recognized
transcription is very low. One reason would be that the process relies
on English letters to spell out sounds in a different language; and it is
not necessarily true that a phoneme set for a language is a proper sub-
set of the set of English phonemes. There is also the possibility that
the subject is not giving a best effort attempt at transcribing; given
the amount of data needed to build the labels and consequently the
implied number of transcribers needed, the possibility of collecting
sub-optimal transcriptions is very high.

An additional step is then needed to refine the subject’s transcrip-
tions. One possible solution would be to hire a human proctor that
would ”check” the proximity of the subject’s transcription against
what the proctor hears. However, this introduces an element of sub-
jectivity into the process and could create more uncertainty in the out-
put. The proctor may agree more with some transcriptions than oth-
ers. It is also difficult to even determine if a transcription is genuinely
poor or simply a drastically different interpretation of the perceived
sound relative to the proctor’s. Providing a form of ”answer key”
(strictly speaking, none exists as there is no ”perfect” transcription)
or guide for the proctor also deviates from the purpose of gathering
interpretations from a wide audience.

An alternative approach would be to have subjects compare tran-
scriptions and eliminate the need for a centralized human checker.
The idea of a multi-subject pool works as follows: subjects would lis-
ten to an audio file in a foreign language and write down their best at-
tempt transcription in English; then the subjects would be prompted
to tweak their transcriptions and attempt to match each others’ tran-
scription inputs. Once the two transcriptions match, the refining pro-
cess is complete. This approach faces bigger challenges in the earlier
stages of launch due to the higher requirement for the number of
subjects involved in refining the outputs.

The approach taken in this research automates the refining step.
After the subject types in the transcription, the subject would then
be exposed to the same audio files previously heard, but with the
order shuffled and audio concatenated with one other audio file. The
subject would then be asked to listen one more time to the newly
generated audio files and type in the closest sounding English word.
A computer would then take the subject’s transcriptions for the re-
spective audio files and generate its own set of English words to be
compared to. This way, the transcription can be refined by measuring
the proximity between the subject’s word output and the computer’s
word output.

2



introduction

The algorithm is a finite state model that takes in transcriptions as
inputs and outputs English words and is explained in more detail
in Chapter 4. It should be noted that in order for the subject’s tran-
scription to be evaluated fairly, the computer’s output itself would
have to be reasonable. That is, against perfect transcriptions, the com-
puter should output truly the closest sounding English word. This
is evaluated by both quantitative measure of edit-distance between
phonemes in the transcription and in the output word and subjective
measure of human evaluation judging the correlation between the
output word and audio. Similarly, with an ideal finite state model
that outputs the closest sounding English word, the evaluation of
the player should be fairly accurate. That is, the subject should be
able to correctly identify which English word (as the word is gen-
erated through the subject’s own transcription, therefore, it is truly
the sound the subject has perceived) sounds the most similar to the
audio—if the subject was attempting the transcription in good faith.
The main challenge in creating the finite state model is that there is
no universally acknowledged mapping from English letters to a set
of phonemes. Frequently in English, the same sequence of letters
produces several sets of phonemes and vice-versa.

Lastly, in addition to a streamlined procedure to collect labeled
data, there is a need for participants. One of the important factors
in recruiting participants is creating motivation. Many studies are
carried out by awarding participants with small monetary compen-
sation. It is ideal to minimize the amount of monetary incentive the
research awards and maximize the number of subjects who provide
good-effort transcriptions. For that, an alternative form of compen-
sation is needed to reward participants. One main motivating factor
that exists for humans is pleasure. Humans would naturally tend to
do something pleasurable or enjoyable such as playing video games.
The concept of embedding important studies in games is introduced
by Von Ahn (2006), who illustrates how much time people spend in
playing video games and how certain studies were conducted by cre-
ating games to conduct experiments. This research will take a similar
approach and turn the above described process into a game, which
will be described in more detail in Chapter 3.

The main contributions of this paper are follows:

• Establish a process as described above for crowd-sourcing la-
beled data.

• Create an algorithm to output the closest sounding English words
based on an input transcription.

• Create a game that encompasses the crowd-sourcing process
and makes use of the algorithm developed.

• Create several methods of mapping phonemes to letters.

3



introduction

• Conduct experiments with the algorithm to see which phoneme-
to-letter mappings would yield better outputs.

Chapter 2 will introduce prerequisite knowledge to understanding
the discussion in the paper.

4



2
P R E R E Q U I S I T E K N O W L E D G E

This paper assumes certain basic working knowledge of concepts in
algorithmic computing. This chapter will clarify and explain these
concepts.

2.1 finite state transducers

Finite state transducers (FSTs) are variations of finite state machines
(FSMs). FSTs are widely used in the field of speech recognition and
are used in this paper to identify English words based on transcrip-
tion of foreign sounds (Mohri et al. 2002). FSMs are abstract machines
that have states with transition arcs between the states and are often
useful in modeling dynamic systems. All FSMs have a start state and
an end state. When an end state is reached, no more transitions can
be made. The transition arcs are directed and labeled with input to
the state that prompted the transition between states.

Workingstart Sleeping

Tired

Woke up

Snooze

Coffee

Figure 2.1: Simple example of a finite state machine modeling life of
a college student.

While Finite State Acceptors (FSA) only takes in inputs to prompt
state changes, FST have outputs on their transition arcs and weights
for each transition arc. That is, now for a given input, the state ma-
chine will produce an output. The weight of each transition intro-
duces the concept of the shortest path, which is the path with the
lowest total cost from the start state to some end state. There could
be multiple end states in a FST. There is also the concept of n-shortest
paths, which would then list the n-paths with the lowest path costs
in the FST. This concept of shortest path would be useful later on

5



2.1 finite state transducers

to minimize the edit distance from the input to the output. For ex-
ample, suppose the input to a FST is a sequence of letters, and the
desired output is the closest spelled English word (like the feature
auto-correct). In this case, the FST can be designed such that if some
end state is reached in the FST, an English word would be output.
Transitions from one state to another would read in the input let-
ters in order, one at a time, and the final transition output would
be an English word. However, since the original input might not be
a valid English word, it might be necessary to modify the original
letter sequence to match with a valid English word. In that case, the
FST could include modification arcs–arcs that take in nothing but out-
put an English letter; these arcs would be considered insertions and
would have a cost associated with them. With the design of such an
FST, the shortest path from the start state to some end state would
yield the smallest edit distance. A similar concept is utilized in this
work’s finite state model, except using phonemes instead of letters.

1start 2 3

4 5 6 7

8

U: University/0 ε: of/0

I: Illinois/0

ε: Urbana/0 ε: -/0 ε: Champaign/0

I: Iowa/5

Figure 2.2: Example of an FST. With input letters ”UI”, the output of
the shortest path will spell out ”University of Illinois at
Urbana-Champaign”

Compositions of FSTs involve combining two FSTs such that the
input of the first FST yields a corresponding output in the second
FST. Assume there are two FSTs: FST A that takes in an input string x
and outputs a string y with weight z and FST B that takes in an input
string u and outputs a string v with weight w.

1start 2 3
n:noun/1 v:verb/3

a:adjective/5

Figure 2.3: Diagram of FST A

The composition of FST A and FST B will result in a new FST, say
C, that takes an input string y and outputs a string v with weight z+w

6



2.2 edit distance

1start 2 3

noun:apples/2 verb:are/4

adjective:red/6

Figure 2.4: Diagram of FST B

(using tropical semiring). If there is no corresponding input/output
pairs between FST A and FST B, then no new arc would be produced.

1start 2 3

n:apples/3 v:are/5

a:red/11

Figure 2.5: Diagram of composition of FST A and FST B

The FST creation and simulation in this research is done with the
library OpenFST (Mohri et al. 2000). Usage of FST and design details
of the finite state model will be discussed in Chapter 4.

2.2 edit distance

Edit distance refers to the minimum number of edits needed to change
one string to another. Edits include: insertion, deletion, and substitu-
tion. For example, the word ”Handy” has an edit distance of 1 to the
word ”Candy”—the edit needed was to substitute the letter ”H” with
”C”.

Edit distance can be calculated using FSTs. An FST representing
a word can be constructed by having its inputs and outputs on each
transition arc be letters in the word (in proper order). Then edits can
be handled by adding on arcs with weights of 1. Insertion would
include an arc from one state to itself, with an input of epsilon and
output of the letter to be inserted, deletion. Deletion would include
an arc from one state to the next, with input the original letter in the
word sequence and output of epsilon. Substitution would include an
arc from one state to the next, with input the original letter in the
word sequence, and output the letter to replace the original. The edit
distance for a given word would then simply be the total path cost
from the start state to the end state (if all arc weights for edits are set
to 1).

In figure 2.6, the word ”Handy” can be changed to ”Candy” by
taking the arc from state 1 to 2 with output ”C”. The edit distance
between ”Handy” and ”Candy” would then be 1, since that is the
total path cost from the start state to the end state. Similarly, ”Handy”
can be changed to the word ”Hand” with edit distance 1 by taking
the arc of output ε (deletion) from state 5 to 6.

7



2.2 edit distance

1start 2 3 4 5 6

H:H/0 A:A/0 N:N/0 D:D/0 Y:Y/0

H:C/1 Y:ε/1

Figure 2.6: Diagram of computing distance from the word ”Handy”
to various other words.

The next chapter will discuss the design of the process of collecting
labeled data, and further clarifying the need for a finite state model
in refining user input.

8



3

S O R A M I M I W O R D S

The process of collecting labeled data was formulated as a game in
order to attract more transcribers. The name of the game is ”So-
ramimi Words”. ”Soramimi” is a Japanese word that generally means
”mishearing”. Soramimi Words roughly means ”mishearing words”
which is the intended situation for transcribers: to mishear words
spoken in a foreign language and transcribe those words into per-
haps nonsense English letters.

A form of a game is ideal for creating an incentivized uniform pro-
cess for collecting desired labeled data. A uniform process would
minimize inconsistencies from one process to another. A more enjoy-
able game would theoretically attract more transcribers and, in turn,
increase the amount of data gathered.

To be more exact, with the rise of more gaming platforms (includ-
ing mobile devices), the amount of time humans spend in playing
video games has drastically increased. Games could be used as a
medium that naturally prompts people to perform certain tasks. In
fact, there have been successful attempts at making games that use
the general public to collect data for studies (Von Ahn 2006). One
of the more famous examples was called the ”ESP Game”, which in-
volved having two users look at a picture, and type words describing
the picture—much like the mismatched transcription process, but us-
ing pictures instead of audio files as label targets. The purpose of
the game is for the two users to agree on a label for the same exact
image. On the user end, the game is amusing and fun because it is
interesting for humans to at least attempt to understand how other
humans think. Humans are inherently social animals (in varying de-
grees), and social behaviors such as comparing different viewpoints
proved to be interesting enough to gather enough users to play the
ESP Game. The game ended up collecting more than 10 million labels
in the first few months of launch. The resulting data was very useful
in optimizing search engine results. By understanding how or what
users think when trying to describe a picture, search engines could
greatly improve search result yields given certain keywords. Simi-
larly the process of mismatched transcription also look to games as a
solution as a motivator for crowd sourcing label data.

9



soramimi words

The main purpose of Soramimi Words is to collect transcriptions of
certain phrases in various languages from a random selection of sub-
jects. However, a simple interface of playing sound clips and typing
in transcription does not provide much incentive. Games are good
incentives to play only when they are entertaining. The amount of
amusement that a foreign sound provides is very limited; perhaps
the duration of said amusement may last longer for a younger sub-
ject; however, younger subjects may not be the ideal ones to provide
accurately labeled data.

Social interactions could be a good incentive for users to play games.
However, the format of a game described for multi-players could be
complicated, making it difficult to convince a user to play. For exam-
ple, it is difficult in the early stages of the game to synchronize two
random strangers as they go through the transcription process.

Soramimi Words is broken up into two stages: the first stage is
where the player would be prompted to listen to a sound clip (which
would be a short clip of words in the language the game is cur-
rently collecting labeled data for), and the second stage is where the
player is prompted to listen to the shuffled clips again and attempt
to come up with what they think are the closest sounding English
words. Before the second stage, the player is told that their inputs
will be evaluated against the computer’s selections of best matching
English words. The computer’s output is generated from transcrip-
tions in the first stage. Each input in the first stage is fed into an
algorithm that produces an English word that has the least edit dis-
tance from the phonemes presented in the transcription. The player’s
transcription is used instead of a more standard transcription as the
computer’s goal is to create the closest sounding English word to the
current player and verify the player is giving a good faith attempt
transcription should the two English words be similar. The player’s
transcription is the best representation of what the player heard. The
player’s inputs in the second stage would then be evaluated against
those computed outputs. In addition to providing an extra step of
refinement, the presence of the computer was meant to provide a
competitor to the player, thus prompting the player to give their best
efforts.

Soramimi Words is available to play at soramimiwords.web.engr.
illinois.edu. The user interface utilizes a minimalistic approach in
order to ease the player into knowing how the game operates. The
game was demonstrated to the general public at the Beckman Open-
House at the University of Illinois at Urbana-Champaign in Spring
2015. No user data or inputs were recorded at the event. The exhibi-
tion was purely to observe user reaction to the games. The audience
at the OpenHouse were mostly young children and community fami-
lies which is not the ideal audience to collect labeled data. While most
of the audience found the game to be generally entertaining, one ob-

10

soramimiwords.web.engr.illinois.edu
soramimiwords.web.engr.illinois.edu


soramimi words

Figure 3.1: Screen shot of Soramimi’s first stage gameplay

vious flaw was that the game was too long. It was difficult to keep
the attention of the audience. The initial version of the game had a
tutorial narrative that included a story of how a machine is challeng-
ing players to transcribe foreign words. General reactions hinted that
the narration was too long. Later revisions of the game had the tuto-
rial summarized in a few GIF images. Compared to words, moving
pictures are more capable of capturing audience attention.

The flow of the game is straightforward: the player clicks on the
blue triangle on top of the page to hear a sound clip, and types in
appropriate transcriptions into the box. The grey circle around the
blue triangle is a gauge that fills up as the player submits the entries
to indicate progress. The blue triangle was chosen because it is the
standard industry form of a play button, thus creating a mapping
from the button’s shape to the intended usage of the button. Simi-
larly, there are no other buttons throughout game play; and the only
other interactive component for the player is the text box; this mini-
mizes the ”gulf of evaluation”: the difference between the intended
purpose of an object versus the user’s perceived purpose (Norman
2013). In future iterations of the game, it could be plausible to add
a help button that flashes after a period of user inactivity in order to
remind the user of the original task.

The second stage of the game is intended to refine the user’s in-
puts. The user is given instructions to click on the play button, listen
to the clips, and write down what they think is the closest sounding

11



soramimi words

English word. The sound clips in this stage are obtained by concate-
nating each clip with the succeeding sound clip from the order of
clips in the first stage. This was done to introduce some variety to
prompt the user to further think about the sound they have heard.
This stage could also be used to weed out purposefully poorly at-
tempted transcriptions.

Elaborating on how the audio files are chosen and presented to the
players in the game: In the first stage of the game, 6 random sound
clips containing a short phrase (3 to 4 syllables) in a foreign language
are chosen from a pool of about 100 audio files. For the OpenHouse,
clips in Hindi were played. The clips are then labeled numerically 1

through 6. Then in the second stage, the clips are shuffled in order
(a possible permutation would be 2,6,1,5,3,4). The clips are then con-
catenated one after the other ([2, 6], [1, 5], [3, 4]) and played again
to the player. Since each audio transcription generates one English
word, each multiple choice option will contain two English words–
and the player will listen to the sound clip again and identify the
correct corresponding English words.

Figure 3.2: Screen shot of Soramimi’s second stage gameplay

Originally, the process was designed so that the subject would type
in what they think is the best sounding English word. However, in

12



soramimi words

an effort to further shorten the refinement process (and the game in
general), the second stage of the game was simplified to asking the
subject to choose one set of English words from a list which would
match the closest to the audio files. One option in the multiple choice
would be the output English words created from the player’s first
stage transcription; the rest of the choices would be selected at ran-
dom from a dictionary. To increase the difficulty of the game, it is also
conceivable to develop a method to find a secondary closest sounding
English word sequence instead of choosing English words at random.
This deviates from the previous process where the computer’s output
word was never revealed to the subject. This change made the pro-
cess easier to explain and decreased the amount of creative thinking
the subject would have to do. Since the second stage of the game
is simply for verifying the validity of transcriptions, multiple choice
suffices.

Consider a perfect algorithm that does output the closest sounding
English word given a transcription. The user’s input in the second
stage should then match closely to the computer’s choice of closest
sounding English word. If the user’s choice of closest sounding En-
glish word is vastly different from the computer’s choice of English
word, then there are two possibilities: Either the user was not seri-
ously attempting transcription in the first stage of the game, or the
algorithm was faulty and produced incorrect English words as out-
put. The former situation is expected to occur every now and then
as players come and go. The latter prompts the researcher to perfect
the algorithm such that there are no false positives in detecting faulty
transcriptions. In the next chapter, the process of creating the finite
state model will be discussed in more depth.

13



4

T H E A L G O R I T H M

The algorithm involved in this research essentially recreates a phe-
nomenon known as mishearing. Mishearing is the process of taking
a set of phonemes, and then with some insertion, deletion, and or
editing of phonemes, creating a different set of phonemes–producing
a completely different word. Following the description of the game
in the previous chapter, the input of the algorithm would be a string
of nonsense syllables–transcribed from a sound clip in a foreign lan-
guage from a random subject. The output of the algorithm would be,
the closest sounding English word to the input.

This algorithm is a finite state model involved in the refining stage
of the game. As mentioned before, the method of detecting a poor
transcription from the player hinges on how much the player’s choice
of English word matches with the computer’s choice of English word.
For this error detection to work, the algorithm cannot be a noisy
medium that outputs a suboptimal English word.

The algorithm generally works as follows: First, an FST is created
that takes each letter in the input string as both input and output on
the transition arcs.

1start 2 3 4

y:y/0 i:i/0 c:c/0

Figure 4.1: Diagram of initial input FST A

Second, an FST is created that maps each letter to potential phoneme
mappings.

Figure 4.2 only shows three potential mappings between letters and
phonemes. The actual FST consists of more transitions that cover
more letter-to-phoneme mappings, not included above for clarity in
illustrating this particular example. In fact, coming up with a good
letter-to-phoneme mapping is very important in finding good outputs
in the algorithm. This topic of configuring the letter-to-phoneme map-
ping will be discussed in much greater detail later in the next chapter.

The third step is to compose the two FSTs mentioned above.
The above FST gives the letter ”y” two possible phonemes to map

to. However, the above phoneme mapping might not be sufficient

14



the algorithm

1start

y:y/0

c:ch/0

i:ih/0

Figure 4.2: Diagram of FST B, showing three potential mappings from
letter to phoneme

1start 2 3 4

y:y/0 i:ih/0 c:ch/0

Figure 4.3: Diagram of FST A crossed with FST B as introduced above

to form an English word. In other words, the three phonemes ”y
ih ch” may not correspond to any English word. In order to get a
match with any English word, the FST would have to allow for inser-
tion and deletion of phonemes. In a more general case, the number
of insertions includes all the letter-to-phoneme mappings that exist.
However, due to space constraints and readability concerns, the fol-
lowing FST has only a few extra insertions and deletions allowed in
the FST. This new FST will be called FST C.

1start 2 3 4

ε:aa/5

y:y/0

y:ε/5 i:ih/0

i:ε/5

ε:r/5

c:ch/0

c:ε/5

Figure 4.4: Diagram of FST C: product of FST A crossed with FST B,
with allowed insertion and deletion of phonemes

Simply by human observation, in the FST above, there are two pos-
sible paths from the start state to the end state that would have an
output of English words. The first has the phoneme sequence of ”ih
ch” (itch) with a total path cost of 5, where the first letter y’s sound
is deleted; and the arc with input letter y and output ε (nothing) is
taken from state 1 to 2. The second has the phoneme sequence of ”aa
r ch” (arch) with a total path cost of 20. State 1 will take the self-loop
and insert the phoneme ”aa” with cost 5, take the arc that deletes the
letter y with another cost 5, take the self-loop at state 2 that inserts the
phoneme ”r”, take the transition that deletes the letter i from state 2

15



the algorithm

to 3, then take the transition from 3 to 4 with input letter c and output
phoneme ”ch”.

The next step in the model is to create another FST to identify pos-
sible English words in FST C shown above. In essence, this FST auto-
mates the thinking process of mapping phonemes to English words
presented above. This FST will have one start state and one end state.
From the start state, transitions will take in phonemes and output
English words in the very last transition. The end state will only be
reached (an English word would only be produced as output) if the
correct phoneme sequence is taken. The data for the FST is taken
from CMUDict, which provides phoneme-to-word mappings. Again,
for clarity, the FST below is greatly simplified and only contains two
words from the dictionary. In the actual algorithm model, every word
contained in CMUDict is included in the FST of phonemes to English
words.

1start 2 3 4

5

aa:ε/0 r:ε/0 ch:ARCH/0

ih:ε/0 ch:ITCH/0

Figure 4.5: Diagram of FST D: with phonemes as inputs, and the last
transition to an ending state with an arc output of a corre-
sponding English word created from the path

Lastly, FST C will be composed with FST D to create FST E. The
optimal English word will then be found by finding the shortest path
from the start state to the end state.

Notice that, as discussed before on inspection of FST C, the path
costs of creating the outputs ”arch” and ”itch” are 15 and 5 respec-
tively. The English word with the least path cost is the most desirable
one. Path cost is linearly related with edit distance. The more modifi-
cation (insertion/deletion/replacement of phonemes) needed for an
input, the greater the edit distance, and thus the greater the difference
between the original input and the output in terms of phonemes. The
result can be evaluated subjectively by having human subjects evalu-
ate the output English words given an audio. On the other hand, the
result can be evaluated objectively by calculating the edit distances be-
tween the input phonemes and the phonemes of the output English
word.

The algorithm is implemented in C++ using the OpenFST library.
The insertion and deletion costs for the FSTs are both set to 5. There

16



the algorithm

1start 2

3

4

5

6

7

8

9

ε:ε/5

y:ε/5

y:ε/0

y:ε/5

y:ε/0

y:ε/5

ε:ε/5

y:ε/5

c:ARCH/0

c:ITCH/0

Figure 4.6: Diagram of FST E: composition of FST C and FST D,
used to find the English word with least edit distance of
phonemes from the original input

could be room for more research on the optimal insertion and dele-
tion costs. The immediate effect of having a lower deletion cost would
be shorter output words, and similarly, longer words with higher in-
sertion cost. In this research, it does not matter what the edit costs
are, as long as they are greater than 0.

The algorithm in its present state is not particularly fast. With
larger inputs, the FSTs grow much larger and composition of FSTs
and finding shortest paths takes longer to finish executing. Execution
speed is a concern as this algorithm is used in a game. Nobody likes
to play games with long loading times. One remedy attempted was
to cut down the number of words contained in the dictionary. CMU-
Dictionary is used for phoneme to word mapping, and the dictionary
itself contains over 100,000 words and possible pronunciations. The
dictionary also contains obscure words and sometimes words that are
not English (and not popularly used in English). Therefore, for the
sake of time and quality of output, the dictionary was reduced in
size.

In order to find which words would be best to prune out, Google
n-grams is used (Michel et al. 2011). Google n-gram contains infor-
mation on frequency of words that appeared in books over the past
200 years. If the frequency of the word is over a threshold, then the
word is added to a list. Then, each word in CMUDict is checked to
see if it exists in the list. If the word was not in the frequent word
list, it is pruned out of the CMUDict. The threshold for pruning can
be lowered or raised depending on how many frequent words are
included in the list; the initial threshold was set to word frequency

17



the algorithm

of 100, and the dictionary size was pruned down to around 15,000,
which was plenty for the purposes of the game.

18



5

E X P E R I M E N T S : L E T T E R T O P H O N E M E M A P P I N G

A big factor in determining the accuracy of the algorithm depends on
the mapping between letters and phonemes. When an input string
comes in, there are multiple ways the letters in the string can be
mapped to phonemes. In fact, it is difficult to perfectly extract what
the subject meant by certain combinations of letters, as there are de-
viations between hearing perception of the audio and spelling. There
are letters in English that are silent, or have different pronunciations
depending on the arrangements of letters.

A very bad mapping produces very bad outputs. For example, a
mapping could simply map every letter in the input string to the
phoneme ”aa”. The result would simply produce the English word
with the largest amount of the sound ”aa”. The average edit distance
for a bad mapping would also be higher than a good mapping, as
a good mapping would provide more information on the possibili-
ties of what letters could sound like, and the computer would not
have to perform as many changes to the phoneme sequence to find a
matching sequence that produces an English word.

The first mapping provided to the algorithm was done manually
based on the knowledge of the English language by the author. The
mapping took 35 phonemes in English and mapped each one to an
English letter. This mapping is very minimal and is missing map-
pings from certain letters to phonemes; for example, the letter x was
never mapped. In addition, there are multiple letters to multiple
phonemes mappings that are unaccounted for in this first iteration.

The next iteration relies on a naive implementation of expectation
maximization (EM, see Dempster et al. 1977). First we take the words
that contains the same number of letters as to phonemes, and create
a one-to-one mapping from those letters to phonemes. Then, the re-
sult is taken as a base list to compute more mappings from the rest
of the words repeatedly. For each word in the dictionary, the list of
phonemes is iterated through: if there exists a mapping between the
letter and phoneme (from the previous iteration of finding mappings),
then the phoneme is marked as mapped. At the end of this first itera-
tion, there might exist phonemes and letters that are unmapped. This
approach then maps each unmapped letter and phoneme to adjacent
2 or 3 phonemes and letters respectively.

19



experiments : letter to phoneme mapping

Table 1: First iteration of letter-to-phoneme to letter mapping

Letter Phoneme

a aa
a ae
a ah
a ao
a aw
a ay
b b
c ch
d d
d dh
e eh
e er
e ey
f f
g g
h hh
i ih
i iy
j jh
k k

Letter Phoneme

l l
m m
n n
n ng
o ow
o oy
p p
r r
s s
s sh
t t
t th
u uh
u uw
v v
w w
y y
z z
z zh

In edge cases where there are two letters or two phonemes adjacent
to each other that are not mapped, then the case of multiple-to-one
mapping is also considered. The mapping is then stored in a dictio-
nary, along with the frequency of the mapping. At the end of the
algorithm, mappings with frequency less than a set threshold (in this
case the threshold was set to be the average number of frequencies)
are considered bad and thrown away. This process is then repeated
with the new list of mappings to generate the final list of mappings.

With the second iteration, the assignments of letters and phonemes
are fairly generous. If a letter or phoneme is unmapped, it is mapped
to two or three of its adjacent phonemes or letters; while this method
picks up numerous different mappings, it also picks up numerous
erroneous mappings, such as mapping a consonant letter to a vowel
phoneme. The original intention was for the frequency pruning to
get rid of such anomalies. However, even after increasing the prun-
ing threshold, quite a few good mappings with fewer frequencies
were pruned out, while only a few bad mappings were pruned out
and the rest remained. It is very probable that certain letter and
phoneme combinations are frequent enough to skew the pruning
process. Therefore, after the results were generated, the file was in-

20



experiments : letter to phoneme mapping

Table 2: Second iteration of letter to phoneme to letter mapping using
naive EM

Letter Phoneme

a ao
a aw
a ay

bb b
d dh

dh dh
e ey
f ff

kk k
ll l
o oy
tt t
t th
u uh
y y
z zh
si zh
p p
c k
k k
ch k
fa f
f f
v v
w w
s sh

sh sh
r aa-r

Letter Phoneme

t s-t
l l
el eh
ar eh
a eh
e eh
ai ey
r er

or er
ur er
e er
gr g
g g

gg g
u y-uw
b b
rt r
r r
m m
n eh-n
i ih-ng
g jh
j jh
s s
si s
so s
c ch
a ae

Letter Phoneme

n n
nc n
nd n
y iy
a iy
e iy
i iy
e ih
i ih
u y
a r-ey
e r-eh
e er-z
d d
ti t
t t
n ih-n
o ow
h hh
u uw
z z
a aa
a ah
e ah
o ao
g ng
n ng
e s-eh
i r-ih
e r-iy

spected manually, and obvious incorrect mappings such as the letter
c mapping to phoneme ”ah” were removed from the result.

The first set of mappings was completely manual, the second set
of mappings was semi-automatic due to the last step of manually
removing incorrect results. The second set of mappings is good at
finding many mappings, with the downside of a high false-positive
rate. Ideally, it would be preferable to have a completely automated
process in generating mappings; as humans may provide good/bad
mappings not detected due to incomplete understanding of the En-
glish language or simply human error.

21



experiments : letter to phoneme mapping

The next step in generating sets of mappings is to completely auto-
mate the process of creating mappings. To this end, an open source
library called Carmel is used. Carmel is a toolkit that does EM train-
ing given training data and a FST model (Graehl and Knight 2009).
The FST model given would be all possible mappings from phoneme
to letter, and the training data would be words and their correspond-
ing phoneme sequences. Running EM training of Carmel on the
data would then output the probability of each mapping of letter to
phoneme. The FST model provided to Carmel only supports a max-
imum of two letter mappings, as any larger mappings may take too
long. Unlike the previous naive EM implementation, Carmel will not
output erroneous mappings; but the mappings Carmel provides will
not be complete or broad. In other words, the outputs will never con-
tain erroneous mappings between letters and phonemes, but would
not be complete as the original FST model provided only supports 2

letter mappings.
After Carmel assigns probability to each transition arc (phoneme to

letter mapping), a threshold is introduced such that mappings with
low probabilities are not considered valid. The number of mappings
generated by Carmel is much greater than the previous two iterations
and will be included at the end of this chapter in tables.

After the generation of the three sets of phoneme-to-letter map-
pings, experiments were then run to test how well each set did in
terms of improving the output English word.

As mentioned before, given an accurate transcription of sound
clips, the finite state machine model will ideally output a very close
sounding English word such that the effect of mishearing will be
achieved. Given a list of 50 Hindi clip transcriptions, the transcrip-
tions were inputs to the finite state models, and the output English
words were collected for each set of mappings. It should be noted that
the list of Hindi words was not used in previous iterations of work-
ing with the algorithm; and the finite state model was not changed or
tweaked based on the output English words. The author then listened
to the sound clips corresponding to each transcription, and rated the
output English words on a three-point scale: Bad, Okay, Good.

Table 3: 3 Point rating results for the 3 sets of mapping

Rating Manual Mapping Naive-EM Carmel

Bad 26 15 18

Okay 43 38 32

Good 24 40 43

The rating criterion is as follows: If the output English word has
no correlation with the audio file, that is, it is impossible to hear even
traces of the word’s syllable in the audio file, then that entry gets

22



experiments : letter to phoneme mapping

a Bad rating. If the output English word has some correlation with
the audio, and one can make out a few syllables of the English word
present in the audio, then the entry gets an Okay rating. Lastly, if the
output English word has high correlation with the audio, such that
one can really mishear the audio to be the English word, then the
entry gets a Good rating. Table 3 shows that Carmel had the largest
number of Good ratings and the least number of Bad ratings while
manual mapping contains the largest number of ”Bad” and ”Okay”
ratings across the three. There is an increase of ”Good” ratings going
from manual mapping, naive-EM, to Carmel.

A further step is taken to refine the output of the finite state model—
that is, calculating the average edit distance between the original set
of phonemes to find the closest sounding English word. This ap-
proach quantifies the evaluation method for the mappings. A lower
average edit distance would indicate the mapping was more com-
plete, covering more phonemes to letters and consequently lowering
the number of edits to the original input.

The edit distance is calculated as follows: each Hindi audio file
had a transcription and a phoneme sequence, both of which were
provided by a native Hindi speaker. Each algorithm is then given the
list of Hindi transcription, and the edit distance between the English
word and provided phoneme sequence for each audio file.

Table 4: Average edit distance for the 3 sets of mapping for a set of 50

Hindi transcriptions

Manual Mapping Naive-EM Carmel

3.90 3.73 3.75

As expected, from least automation to most automation, the num-
ber of edits needed to generate an English word decreased. In con-
junction with the results of subjective evaluations of proximity of En-
glish word outputs, the intended result of having the best mapping
stemming from a completely autonomous process is reached.

23



experiments : letter to phoneme mapping

Table 5: Part 1 of 2: Phoneme to letter mappings generated by Carmel

Letter Phoneme

a aa
o aa
a ae
a ah
e ah
i ah
o ah
u ah
a ao
o ao
o aw
i ay
y ay
b b
c ch
t ch
d d
a eh
e eh
a ey
e ey
f f

w f
g g
h hh
e ih
i ih
y ih
e iy
i iy
y iy
d jh
g jh
j jh
c k
k k
q k
l l

m m
n n
n ng
o ow
p p
r r
c s
s s
z s

Letter Phoneme

t t
o uh
u uh
o uw
u uw
w uw
v v
w v
u w
w w
e y
i y
j y
u y
y y
s z
z z
g zh
j zh
s zh
z zh
at ae
al ao
au ao
aw ao
ao aw
au aw
ai ay
ai eh
ar er
ai ey
ay ey
au ow
as zh
bb b
be b
b b-ah
cc ch
ch ch
ci ch
cz ch
ch k
ck k
ce s
ch sh
ci sh
dd d

Letter Phoneme

de d
dg jh
ei ay
ey ay
ed d
ea eh
et eh
er er
ei ey
ey ey
ea iy
ee iy
ey iy
eu oy
ed t
eu uw
ew uw
es z
fe f
ff f
gh aw
gg g
gh g
gu g
g g-ah
ge jh
gi jh
ge zh
he dh
he hh
ht t

hw w
ig ay
ir er
ie iy
i w-ih
je zh
ke k
le l
ll l

me m
mm m
m m-ah
ne n
nn n
ng ng
ou ah24



experiments : letter to phoneme mapping

Table 6: Part 2 of 2: Phoneme to letter mappings generated by Carmel

Letter Phoneme

or ao
ou ao
ou aw
ow aw
or er
oa ow
oe ow
ow ow
oi oy
oj oy
oy oy
oo uh
ou uh
oo uw
ou uw
ph f
pe p
pp p
re er
re r
rr r
se s
ss s
sc sh
sh sh
si sh
ss sh
sz sh
se z

Letter Phoneme

s z-ah
si zh
su zh
s zh-ah
ti ch
tu ch
th dh
ti sh
te t
tt t
th th
ur er
ue uh
uh uh
ul uh
ue uw
ui uw
u y-ah
u y-uh
u y-uw
ve v
wh hh
we w
wh w
x g-z
x k-s
xi zh
ze z
zh zh

25



6
C O N C L U S I O N

Labeled data for languages where resources of native speakers are
difficult to reach could be instead generated via methods of crowd
sourcing. By establishing a streamlined process embedded in a game,
the creation of Soramimi Words aims to collect labeled data via crowd
sourcing. In an attempt to refine the transcriptions obtained from the
game, a finite state model is utilized. Given the player’s transcription
input, the model outputs the closest sounding English words. If the
player sincerely attempts to provide a reasonable mismatched tran-
scription, when exposed to the same audio clip and given a list of
choices of English words, the one generated by the finite state model
should stand out as familiar, sounding closest to the audio clip.

Improvements on the finite state model in the game Soramimi
Words is explored by researching different mappings between phonemes
and letters in English. The techniques for generating the mappings
went from completely manual, semi-automatic and partially manual,
to completely automatic. The initial mapping was generated by the
author where 39 phonemes from CMUDict were taken and assigned
English letters (Weide 2007). This approached relied heavily on the
assigner’s knowledge of the English language. The second approach
is a naive implementation of expectation maximization, where a set
of one-to-one phoneme-to-letter mappings was generated examining
words with the same number of letters and phonemes; newer map-
pings were then generated by based on the previous set of assign-
ments, and unmapped phonemes were assigned adjacent letters in
the words. The new mappings were then stored along with the fre-
quency of the mappings, and mappings with frequency lower than
the average number of total mappings were discarded. The process
was then repeated with the new set of mappings generated. The
iterative process generated a large number of mappings, including,
inevitably, erroneous mappings (e.g. mapping a phoneme that be-
longs to a vowel letter to a consonant). Those erroneous mappings
were removed manually.

The last set of mappings was generated automatically via a tool
called Carmel, an open sourced library that trains FSTs via EM. While
this tool generates only completely valid mappings (unlike the pre-
vious approach, where the assignment of unmapped phonemes to

26



conclusion

letters is fairly generous) the range of assignments is quite limited as
the resulting FST would take up too much memory if an FST allowing
more than two letter assignments were created.

Experiments were performed on the three sets of English phoneme-
to-letter mappings. In both a subjective evaluation, where words gen-
erated by each mapping were evaluated by the author for how closely
they resembled a certain Hindi sound clip, and objective evaluation,
where the average edit distance needed from Hindi audio transcrip-
tion to the closest sounding words was generated, Carmel generated
mapping was the most effective.

With the creation of the game Soramimi Words and the finite state
model in the game, this work aims to collect labeled data that will
in turn be useful in building speech technologies that will advance
understanding of the languages of the world.

27



R E F E R E N C E S

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the royal
statistical society. Series B (methodological), pages 1–38, 1977.

J. Graehl and K. Knight. Carmel finite-state toolkit. Technical report,
2009. URL http://www.isi.edu/licensed-sw/carmel/.

P. Jyothi and M. Hasegawa-Johnson. Acquiring speech transcriptions
using mismatched crowdsourcing. In Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, 2015.

J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, J. P. Pickett,
D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, et al. Quantitative
analysis of culture using millions of digitized books. science, 331

(6014):176–182, 2011.

M. Mohri, F. Pereira, and M. Riley. The design principles of a
weighted finite-state transducer library. Theoretical Computer Science,
231(1):17–32, 2000.

M. Mohri, F. Pereira, and M. Riley. Weighted finite-state transduc-
ers in speech recognition. Computer Speech & Language, 16(1):69–88,
2002.

D. A. Norman. The design of everyday things: Revised and expanded
edition. Basic books, 2013.

L. Von Ahn. Games with a purpose. Computer, 39(6):92–94, 2006.

R. L. Weide. The CMU pronouncing dictionary. Technical report, 2007.
URL http://www.speech.cs.cmu.edu/cgi-bin/cmudict#about.

28

http://www.isi.edu/licensed-sw/carmel/
http://www.speech.cs.cmu.edu/cgi-bin/cmudict#about

	Abstract
	Introduction
	Prerequisite Knowledge
	Finite State Transducers
	Edit Distance

	Soramimi Words
	The Algorithm
	Experiments: Letter to Phoneme Mapping
	Conclusion
	References

