AN EMPIRICAL DIPOLE POLARIZABILITY FOR HE FROM A FIT TO SPECTROSCOPIC DATA YIELDING ANA-LYTIC EMPIRICAL POTENTIALS FOR ALL ISOTOPOLOGUES OF HeH⁺

<u>YOUNG-SANG CHO</u>, ROBERT J. LE ROY, Department of Chemistry, University of Waterloo, Waterloo, ON, Canada; NIKESH S. DATTANI^a, Graduate School of Science, Department of Chemistry, Kyoto University, Kyoto, Japan.

All available spectroscopic data for all stable isotopologues of HeH⁺ are analyzed with a direct-potential-fit (DPF) procedure that uses least-squares fits to experimental data in order to optimize the parameters defining an analytic potential. Since the coefficient of the leading $(1/r^4)$ inverse-power term is $C_4 = \alpha^{\text{He}}/2$, when treated as a free parameter in the fit, it provides an independent empirical estimate of the polarizability of the He atom. The fact that the present model for the long-range behaviour includes accurate theoretical C_6 , C_7 and C_8 coefficients (which are held fixed in the fits) should make it possible to obtain a good estimate of this quantity.

The Boltzmann constant k_B , a fundamental constant that can define temperature, is directly related to the dipole polarizability α of a gas by the expression $k_B = \frac{\alpha}{3\epsilon_0} \left(\frac{\epsilon_r + 2}{\epsilon_r - 1}\right) \frac{p}{T}$, in which ϵ_0 is the permittivity of free space, and ϵ_r is the relative dielectric permittivity at pressure p and temperature T. If k_B can be determined with greater precision, it can be used to define temperature based on a fundamental constant, rather than based on the rather arbitrary triple point of water, which is only known to 5 digits of precision. α for He is known theoretically to 8 digits of precision, but an empirical value lags behind. This work, examines the question of how precisely α^{He} can be determined from a DPF to spectroscopic HeH⁺ data, where the limiting long-range tail of the analytic potential has the correct form implied by Rydberg theory: $\alpha^{\text{He}}/2r^4$. Although the highest observed vibrational level is bound by over 1000 cm⁻¹, our current fits determine an empirical $C_4 = \alpha^{\text{He}}/2$ with an uncertainty of only 0.6%. It has been shown that with more precise spectroscopic data near the dissociation, α^{He} can be determined with high enough precision to determine a more precise k_B and hence redefine temperature more accurately^b.

^adattani.nike@gmail.com

^bDattani N S. & Puchalski M. (2015) *Physical Review Letters* (in press)