A ROVIBRATIONAL ANALYSIS OF THE WATER BENDING VIBRATION IN OC-H₂O AND A MORPHED POTENTIAL OF THE COMPLEX

Luis A. Rivera-Rivera, Sean D. Springer, Blake A. McElmurry, Robert R. Lucchese, and John W. Bevan Department of Chemistry, Texas A & M University, College Station, TX, USA Igor I. Leonov

Microwave Spectroscopy, Institute of Applied Physics, Nizhny Novgorod, Russia L. H. Coudert

LISA, CNRS, Universités Paris Est Créteil et Paris Diderot, Créteil, France

Motivation

• Water and carbon monoxide are common and important molecules found in the earth's atmosphere, in the products of combustion reactions and in the interstellar medium.

- Detailed investigation of a prototypical heteromolecular pairwise water interaction.
- A pathway to understanding the properties of water complexes in more complex environments.

Motivation

- The current investigation represents the first application of non-linear Compound Model Morphing methods.
- Compound Model Morphing which integrates spectroscopic and computational investigations have provided powerful methods for direct characterizations of non-covalent interactions.

QCL cw supersonic jet spectrum of Σ - Σ transition in OC-H₂O

spectrum is 80 MHz (0.003 cm^{-1}).

The H_2O bending spectrum in the complex has been recorded using a cw supersonic jet quantum cascade laser spectrometer at 6.2 μ m.

QCL cw supersonic jet spectrum of Σ - Σ transition in OC-H₂O

Rovibrational Constants for the Water Bending Vibration in OC-H₂O

	Excited	Ground	
H2	-0.19694(33)	-0.2782393(26)	
TH2	-	- 0.0275077(14)	
Н2К	-0.01344(40)	-0.01344(40) -	
H2J×10 ³	-0.0571(49)	-0.0755(53)	
H2KJ×10 ³	-0.0363(34)	-0.0363(34) -0.03574(14)	
H2JJ×10 ⁶	-0.03(14)	-0.03(14) -0.0268(43)	
F2×10 ³	0.0478(19)	0.0564(26)	
F2J×10 ⁶	-	0.0271(32)	
ν	1598.6810(3)	-	
А	20.46392(50)	19.277226(13)	
В	0.092383(19)	92383(19) 0.09209971(15)	
С	0.091557(19)	0.09135137(40)	
$c_{kj} \times 10^3$	1.013(11)	0.75664(21)	
c _{jj} ×10 ⁶	-0.712(15)	-0.68032(47)	
d1×10 ⁶	0.071(99)	0.0281(11)	
c _{kjj} ×10 ⁶	-0.193(52)	-0.13169(43)	
h1×10 ⁹	-0.19(27)	-0.0177(55)	

7-D Ab Initio Calculations

- CCSD(T)/aug-cc-pVTZ MP2/aug-cc-pVTZ
- MP2/aug-cc-pVQZ (in progress)
- 10 R points from 3.50 to 7.00 Å
- 5 $r_{\rm CO}$ points from 1.00 to 1.30 Å
- 7 θ_{HOH} points from 74.0 to 134.0 deg
- $r_{\rm OH} = 0.9753$ Å
- 11,200 angular points $(\theta_1, \theta_2, \phi, \chi)$
- 3,920,000 total points

Interpolation Ab Initio PES

- $R, r_{\rm CO}$, and $\theta_{\rm HOH}$ coordinates
 - Reproducing Kernel Hilbert Space (RKHS)
 - T.-S. Ho, H. Rabitz, J. Chem. Phys. 104 (1996) 2584.

• Angular coordinates $(\theta_1, \theta_2, \phi, \chi)$ – IMLS

$$V\left(R_{i}, r_{\text{CO},j}, \theta_{\text{HOH},k}, \theta_{1}, \theta_{2}, \phi, \chi\right) = \sum_{L_{1}K_{1}L_{2}L} V_{L_{1}K_{1}L_{2}L, i, j, k}\left(\theta_{1}, \theta_{2}, \phi, \chi\right) A_{L_{1}K_{1}L_{2}L}\left(\theta_{1}, \theta_{2}, \phi, \chi\right)$$

Morphing the PES

• Hamiltonian

$$H = T_1 + T_2 + \frac{1}{2\mu_{1,2}R^2} \left[-\hbar^2 \frac{\partial}{\partial R} R^2 \frac{\partial}{\partial R} + J^2 + j_{1,2}^2 - 2\mathbf{j}_{1,2} \cdot \mathbf{J} \right] + V^{\nu_1,\nu_2} \left(R, \theta_1, \theta_2, \phi, \chi \right)$$

• CMM-RC

$$V_{\text{CMM-RC}}(R) = C_{1} \left[V_{\text{MP2}}(R') \right]_{\text{QZ}}^{\text{CP}} + C_{2} \left\{ \left[V_{\text{CCSD}(T)}(R') \right]_{\text{TZ}}^{\text{CP}} - \left[V_{\text{CCSD}(T)}(R') \right]_{\text{TZ}}^{\text{NO CP}} \right\} + C_{3} \left\{ \left[V_{\text{CCSD}(T)}(R') \right]_{\text{TZ}}^{\text{CP}} - \left[V_{\text{MP2}}(R') \right]_{\text{TZ}}^{\text{CP}} \right\} R' = C_{4} \left(R - R_{\text{f}} \right) + \left(1.0 + C_{5} \right) R_{\text{f}}$$

Morphed 5-D PES for H₂O-CO and D₂O-CO $V_{\text{S-RC}}(R) = C_1 \Big[V_{\text{CCSD}(T)} \Big(C_2 \Big(R - R_f \Big) + \Big(1.0 + C_3 \Big) R_f \Big) \Big]_{\text{TZ}}^{\text{CP}}$

Observable	CCSD(T)/ aug-cc-pVTZ	Morphed	Exp
$B(GS, A) 10^{-2} \text{ cm}^{-1}$	9.058	9.172	9.17011
$B(GS, B) 10^{-2} \text{ cm}^{-1}$	9.065	9.177	9.17470
$D_J(GS, A) \ 10^{-8} \ \mathrm{cm}^{-1}$	73.5	68.0	69.7
$D_J(GS, B) \ 10^{-8} \ cm^{-1}$	73.2	67.9	68.4
$D_0 ext{ cm}^{-1}$	295	349	
$B(GS, A) \ 10^{-2} \ cm^{-1}$	8.630	8.735	8.73678
$B(GS, B) 10^{-2} \text{ cm}^{-1}$	8.630	8.734	8.73583
$D_J(GS, A) \ 10^{-8} \ cm^{-1}$	59.5	55.8	55.0
$D_J(GS, B) \ 10^{-8} \ \mathrm{cm}^{-1}$	59.5	55.8	52.0
$D_0 ext{ cm}^{-1}$	342	400	

The Badger-Bauer Rule Revisited

Rivera-Rivera et al. J. Phys. Chem. A 117 (2013) 8477.

Conclusion and Outlook

• Rovibrational analysis of OC-H₂O has been completed.

• A computer algorithm has been written for a compound model morphed calculations of non-linear systems, specific to prototypical water complexes.

Conclusion and Outlook

• Preliminary morphed potential of $OC-H_2O$ has been completed at 5-D. The predicted D_0 for H_2O-CO agree with previous prediction using the Badger-Bauer rule.

• Refinement of the current treatment to 7-D morphed potential will include the H_2O bending and the CO stretch.

Acknowledgments

Robert A. Welch Foundation

 The Laboratory for Molecular Simulation and The Supercomputing Facility at Texas A&M University