SPECTROSCOPY OF THE LOW-ENERGY STATES OF BaO+

JOSHUA BARTLETT, <u>ROBERT A. VANGUNDY</u>, MICHAEL HEAVEN, *Department of Chemistry, Emory University, Atlanta, GA, USA*.

The BaO⁺ cation is a promising candidate for studies conducted at ultra-cold temperatures. It is known that the ion can be formed by the reaction of laser-cooled Ba⁺ with N₂O or O₂. Spectroscopic data are now needed for the BaO⁺ cation, for both characterization of the internal state population distributions and the design of population transfer schemes. We have obtained the first spectroscopic data for BaO⁺ using the pulsed-field ionization, zero kinetic energy (PFI-ZEKE) photoelectron technique. Two-color ionization was carried out via the $A^1\Sigma^+ \cdot X^1\Sigma^+$ transition of BaO. Vibronic levels of the $X^2\Sigma^+$, $A^2\Pi_{3/2}$ and $A^2\Pi_{1/2}$ states of BaO⁺ have been characterized. The results are compared with the predictions of high-level electronic structure calculations.